1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11 // and generates target-independent LLVM-IR.
12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13 // of instructions in order to estimate the profitability of vectorization.
14 //
15 // The loop vectorizer combines consecutive loop iterations into a single
16 // 'wide' iteration. After this transformation the index is incremented
17 // by the SIMD vector width, and not by one.
18 //
19 // This pass has three parts:
20 // 1. The main loop pass that drives the different parts.
21 // 2. LoopVectorizationLegality - A unit that checks for the legality
22 //    of the vectorization.
23 // 3. InnerLoopVectorizer - A unit that performs the actual
24 //    widening of instructions.
25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
26 //    of vectorization. It decides on the optimal vector width, which
27 //    can be one, if vectorization is not profitable.
28 //
29 //===----------------------------------------------------------------------===//
30 //
31 // The reduction-variable vectorization is based on the paper:
32 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33 //
34 // Variable uniformity checks are inspired by:
35 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
36 //
37 // Other ideas/concepts are from:
38 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
39 //
40 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
41 //  Vectorizing Compilers.
42 //
43 //===----------------------------------------------------------------------===//
44 
45 #include "llvm/Transforms/Vectorize.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/EquivalenceClasses.h"
48 #include "llvm/ADT/Hashing.h"
49 #include "llvm/ADT/MapVector.h"
50 #include "llvm/ADT/SetVector.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/SmallSet.h"
53 #include "llvm/ADT/SmallVector.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/Analysis/AliasAnalysis.h"
57 #include "llvm/Analysis/AliasSetTracker.h"
58 #include "llvm/Analysis/AssumptionCache.h"
59 #include "llvm/Analysis/BlockFrequencyInfo.h"
60 #include "llvm/Analysis/CodeMetrics.h"
61 #include "llvm/Analysis/LoopInfo.h"
62 #include "llvm/Analysis/LoopIterator.h"
63 #include "llvm/Analysis/LoopPass.h"
64 #include "llvm/Analysis/ScalarEvolution.h"
65 #include "llvm/Analysis/ScalarEvolutionExpander.h"
66 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
67 #include "llvm/Analysis/TargetTransformInfo.h"
68 #include "llvm/Analysis/ValueTracking.h"
69 #include "llvm/IR/Constants.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DebugInfo.h"
72 #include "llvm/IR/DerivedTypes.h"
73 #include "llvm/IR/DiagnosticInfo.h"
74 #include "llvm/IR/Dominators.h"
75 #include "llvm/IR/Function.h"
76 #include "llvm/IR/IRBuilder.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/IntrinsicInst.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/PatternMatch.h"
82 #include "llvm/IR/Type.h"
83 #include "llvm/IR/Value.h"
84 #include "llvm/IR/ValueHandle.h"
85 #include "llvm/IR/Verifier.h"
86 #include "llvm/Pass.h"
87 #include "llvm/Support/BranchProbability.h"
88 #include "llvm/Support/CommandLine.h"
89 #include "llvm/Support/Debug.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include "llvm/Transforms/Scalar.h"
92 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
93 #include "llvm/Transforms/Utils/Local.h"
94 #include "llvm/Transforms/Utils/VectorUtils.h"
95 #include <algorithm>
96 #include <map>
97 #include <tuple>
98 
99 using namespace llvm;
100 using namespace llvm::PatternMatch;
101 
102 #define LV_NAME "loop-vectorize"
103 #define DEBUG_TYPE LV_NAME
104 
105 STATISTIC(LoopsVectorized, "Number of loops vectorized");
106 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
107 
108 static cl::opt<unsigned>
109 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
110                     cl::desc("Sets the SIMD width. Zero is autoselect."));
111 
112 static cl::opt<unsigned>
113 VectorizationInterleave("force-vector-interleave", cl::init(0), cl::Hidden,
114                     cl::desc("Sets the vectorization interleave count. "
115                              "Zero is autoselect."));
116 
117 static cl::opt<bool>
118 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
119                    cl::desc("Enable if-conversion during vectorization."));
120 
121 /// We don't vectorize loops with a known constant trip count below this number.
122 static cl::opt<unsigned>
123 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
124                              cl::Hidden,
125                              cl::desc("Don't vectorize loops with a constant "
126                                       "trip count that is smaller than this "
127                                       "value."));
128 
129 /// This enables versioning on the strides of symbolically striding memory
130 /// accesses in code like the following.
131 ///   for (i = 0; i < N; ++i)
132 ///     A[i * Stride1] += B[i * Stride2] ...
133 ///
134 /// Will be roughly translated to
135 ///    if (Stride1 == 1 && Stride2 == 1) {
136 ///      for (i = 0; i < N; i+=4)
137 ///       A[i:i+3] += ...
138 ///    } else
139 ///      ...
140 static cl::opt<bool> EnableMemAccessVersioning(
141     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
142     cl::desc("Enable symblic stride memory access versioning"));
143 
144 /// We don't unroll loops with a known constant trip count below this number.
145 static const unsigned TinyTripCountUnrollThreshold = 128;
146 
147 /// When performing memory disambiguation checks at runtime do not make more
148 /// than this number of comparisons.
149 static const unsigned RuntimeMemoryCheckThreshold = 8;
150 
151 /// Maximum simd width.
152 static const unsigned MaxVectorWidth = 64;
153 
154 static cl::opt<unsigned> ForceTargetNumScalarRegs(
155     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
156     cl::desc("A flag that overrides the target's number of scalar registers."));
157 
158 static cl::opt<unsigned> ForceTargetNumVectorRegs(
159     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
160     cl::desc("A flag that overrides the target's number of vector registers."));
161 
162 /// Maximum vectorization interleave count.
163 static const unsigned MaxInterleaveFactor = 16;
164 
165 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
166     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
167     cl::desc("A flag that overrides the target's max interleave factor for "
168              "scalar loops."));
169 
170 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
171     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
172     cl::desc("A flag that overrides the target's max interleave factor for "
173              "vectorized loops."));
174 
175 static cl::opt<unsigned> ForceTargetInstructionCost(
176     "force-target-instruction-cost", cl::init(0), cl::Hidden,
177     cl::desc("A flag that overrides the target's expected cost for "
178              "an instruction to a single constant value. Mostly "
179              "useful for getting consistent testing."));
180 
181 static cl::opt<unsigned> SmallLoopCost(
182     "small-loop-cost", cl::init(20), cl::Hidden,
183     cl::desc("The cost of a loop that is considered 'small' by the unroller."));
184 
185 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
186     "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
187     cl::desc("Enable the use of the block frequency analysis to access PGO "
188              "heuristics minimizing code growth in cold regions and being more "
189              "aggressive in hot regions."));
190 
191 // Runtime unroll loops for load/store throughput.
192 static cl::opt<bool> EnableLoadStoreRuntimeUnroll(
193     "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden,
194     cl::desc("Enable runtime unrolling until load/store ports are saturated"));
195 
196 /// The number of stores in a loop that are allowed to need predication.
197 static cl::opt<unsigned> NumberOfStoresToPredicate(
198     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
199     cl::desc("Max number of stores to be predicated behind an if."));
200 
201 static cl::opt<bool> EnableIndVarRegisterHeur(
202     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
203     cl::desc("Count the induction variable only once when unrolling"));
204 
205 static cl::opt<bool> EnableCondStoresVectorization(
206     "enable-cond-stores-vec", cl::init(false), cl::Hidden,
207     cl::desc("Enable if predication of stores during vectorization."));
208 
209 static cl::opt<unsigned> MaxNestedScalarReductionUF(
210     "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden,
211     cl::desc("The maximum unroll factor to use when unrolling a scalar "
212              "reduction in a nested loop."));
213 
214 namespace {
215 
216 // Forward declarations.
217 class LoopVectorizationLegality;
218 class LoopVectorizationCostModel;
219 class LoopVectorizeHints;
220 
221 /// Optimization analysis message produced during vectorization. Messages inform
222 /// the user why vectorization did not occur.
223 class Report {
224   std::string Message;
225   raw_string_ostream Out;
226   Instruction *Instr;
227 
228 public:
229   Report(Instruction *I = nullptr) : Out(Message), Instr(I) {
230     Out << "loop not vectorized: ";
231   }
232 
233   template <typename A> Report &operator<<(const A &Value) {
234     Out << Value;
235     return *this;
236   }
237 
238   Instruction *getInstr() { return Instr; }
239 
240   std::string &str() { return Out.str(); }
241   operator Twine() { return Out.str(); }
242 };
243 
244 /// InnerLoopVectorizer vectorizes loops which contain only one basic
245 /// block to a specified vectorization factor (VF).
246 /// This class performs the widening of scalars into vectors, or multiple
247 /// scalars. This class also implements the following features:
248 /// * It inserts an epilogue loop for handling loops that don't have iteration
249 ///   counts that are known to be a multiple of the vectorization factor.
250 /// * It handles the code generation for reduction variables.
251 /// * Scalarization (implementation using scalars) of un-vectorizable
252 ///   instructions.
253 /// InnerLoopVectorizer does not perform any vectorization-legality
254 /// checks, and relies on the caller to check for the different legality
255 /// aspects. The InnerLoopVectorizer relies on the
256 /// LoopVectorizationLegality class to provide information about the induction
257 /// and reduction variables that were found to a given vectorization factor.
258 class InnerLoopVectorizer {
259 public:
260   InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
261                       DominatorTree *DT, const DataLayout *DL,
262                       const TargetLibraryInfo *TLI, unsigned VecWidth,
263                       unsigned UnrollFactor)
264       : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
265         VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()),
266         Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor),
267         Legal(nullptr) {}
268 
269   // Perform the actual loop widening (vectorization).
270   void vectorize(LoopVectorizationLegality *L) {
271     Legal = L;
272     // Create a new empty loop. Unlink the old loop and connect the new one.
273     createEmptyLoop();
274     // Widen each instruction in the old loop to a new one in the new loop.
275     // Use the Legality module to find the induction and reduction variables.
276     vectorizeLoop();
277     // Register the new loop and update the analysis passes.
278     updateAnalysis();
279   }
280 
281   virtual ~InnerLoopVectorizer() {}
282 
283 protected:
284   /// A small list of PHINodes.
285   typedef SmallVector<PHINode*, 4> PhiVector;
286   /// When we unroll loops we have multiple vector values for each scalar.
287   /// This data structure holds the unrolled and vectorized values that
288   /// originated from one scalar instruction.
289   typedef SmallVector<Value*, 2> VectorParts;
290 
291   // When we if-convert we need create edge masks. We have to cache values so
292   // that we don't end up with exponential recursion/IR.
293   typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
294                    VectorParts> EdgeMaskCache;
295 
296   /// \brief Add code that checks at runtime if the accessed arrays overlap.
297   ///
298   /// Returns a pair of instructions where the first element is the first
299   /// instruction generated in possibly a sequence of instructions and the
300   /// second value is the final comparator value or NULL if no check is needed.
301   std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc);
302 
303   /// \brief Add checks for strides that where assumed to be 1.
304   ///
305   /// Returns the last check instruction and the first check instruction in the
306   /// pair as (first, last).
307   std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc);
308 
309   /// Create an empty loop, based on the loop ranges of the old loop.
310   void createEmptyLoop();
311   /// Copy and widen the instructions from the old loop.
312   virtual void vectorizeLoop();
313 
314   /// \brief The Loop exit block may have single value PHI nodes where the
315   /// incoming value is 'Undef'. While vectorizing we only handled real values
316   /// that were defined inside the loop. Here we fix the 'undef case'.
317   /// See PR14725.
318   void fixLCSSAPHIs();
319 
320   /// A helper function that computes the predicate of the block BB, assuming
321   /// that the header block of the loop is set to True. It returns the *entry*
322   /// mask for the block BB.
323   VectorParts createBlockInMask(BasicBlock *BB);
324   /// A helper function that computes the predicate of the edge between SRC
325   /// and DST.
326   VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
327 
328   /// A helper function to vectorize a single BB within the innermost loop.
329   void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
330 
331   /// Vectorize a single PHINode in a block. This method handles the induction
332   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
333   /// arbitrary length vectors.
334   void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
335                            unsigned UF, unsigned VF, PhiVector *PV);
336 
337   /// Insert the new loop to the loop hierarchy and pass manager
338   /// and update the analysis passes.
339   void updateAnalysis();
340 
341   /// This instruction is un-vectorizable. Implement it as a sequence
342   /// of scalars. If \p IfPredicateStore is true we need to 'hide' each
343   /// scalarized instruction behind an if block predicated on the control
344   /// dependence of the instruction.
345   virtual void scalarizeInstruction(Instruction *Instr,
346                                     bool IfPredicateStore=false);
347 
348   /// Vectorize Load and Store instructions,
349   virtual void vectorizeMemoryInstruction(Instruction *Instr);
350 
351   /// Create a broadcast instruction. This method generates a broadcast
352   /// instruction (shuffle) for loop invariant values and for the induction
353   /// value. If this is the induction variable then we extend it to N, N+1, ...
354   /// this is needed because each iteration in the loop corresponds to a SIMD
355   /// element.
356   virtual Value *getBroadcastInstrs(Value *V);
357 
358   /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
359   /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
360   /// The sequence starts at StartIndex.
361   virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
362 
363   /// When we go over instructions in the basic block we rely on previous
364   /// values within the current basic block or on loop invariant values.
365   /// When we widen (vectorize) values we place them in the map. If the values
366   /// are not within the map, they have to be loop invariant, so we simply
367   /// broadcast them into a vector.
368   VectorParts &getVectorValue(Value *V);
369 
370   /// Generate a shuffle sequence that will reverse the vector Vec.
371   virtual Value *reverseVector(Value *Vec);
372 
373   /// This is a helper class that holds the vectorizer state. It maps scalar
374   /// instructions to vector instructions. When the code is 'unrolled' then
375   /// then a single scalar value is mapped to multiple vector parts. The parts
376   /// are stored in the VectorPart type.
377   struct ValueMap {
378     /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
379     /// are mapped.
380     ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
381 
382     /// \return True if 'Key' is saved in the Value Map.
383     bool has(Value *Key) const { return MapStorage.count(Key); }
384 
385     /// Initializes a new entry in the map. Sets all of the vector parts to the
386     /// save value in 'Val'.
387     /// \return A reference to a vector with splat values.
388     VectorParts &splat(Value *Key, Value *Val) {
389       VectorParts &Entry = MapStorage[Key];
390       Entry.assign(UF, Val);
391       return Entry;
392     }
393 
394     ///\return A reference to the value that is stored at 'Key'.
395     VectorParts &get(Value *Key) {
396       VectorParts &Entry = MapStorage[Key];
397       if (Entry.empty())
398         Entry.resize(UF);
399       assert(Entry.size() == UF);
400       return Entry;
401     }
402 
403   private:
404     /// The unroll factor. Each entry in the map stores this number of vector
405     /// elements.
406     unsigned UF;
407 
408     /// Map storage. We use std::map and not DenseMap because insertions to a
409     /// dense map invalidates its iterators.
410     std::map<Value *, VectorParts> MapStorage;
411   };
412 
413   /// The original loop.
414   Loop *OrigLoop;
415   /// Scev analysis to use.
416   ScalarEvolution *SE;
417   /// Loop Info.
418   LoopInfo *LI;
419   /// Dominator Tree.
420   DominatorTree *DT;
421   /// Alias Analysis.
422   AliasAnalysis *AA;
423   /// Data Layout.
424   const DataLayout *DL;
425   /// Target Library Info.
426   const TargetLibraryInfo *TLI;
427 
428   /// The vectorization SIMD factor to use. Each vector will have this many
429   /// vector elements.
430   unsigned VF;
431 
432 protected:
433   /// The vectorization unroll factor to use. Each scalar is vectorized to this
434   /// many different vector instructions.
435   unsigned UF;
436 
437   /// The builder that we use
438   IRBuilder<> Builder;
439 
440   // --- Vectorization state ---
441 
442   /// The vector-loop preheader.
443   BasicBlock *LoopVectorPreHeader;
444   /// The scalar-loop preheader.
445   BasicBlock *LoopScalarPreHeader;
446   /// Middle Block between the vector and the scalar.
447   BasicBlock *LoopMiddleBlock;
448   ///The ExitBlock of the scalar loop.
449   BasicBlock *LoopExitBlock;
450   ///The vector loop body.
451   SmallVector<BasicBlock *, 4> LoopVectorBody;
452   ///The scalar loop body.
453   BasicBlock *LoopScalarBody;
454   /// A list of all bypass blocks. The first block is the entry of the loop.
455   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
456 
457   /// The new Induction variable which was added to the new block.
458   PHINode *Induction;
459   /// The induction variable of the old basic block.
460   PHINode *OldInduction;
461   /// Holds the extended (to the widest induction type) start index.
462   Value *ExtendedIdx;
463   /// Maps scalars to widened vectors.
464   ValueMap WidenMap;
465   EdgeMaskCache MaskCache;
466 
467   LoopVectorizationLegality *Legal;
468 };
469 
470 class InnerLoopUnroller : public InnerLoopVectorizer {
471 public:
472   InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
473                     DominatorTree *DT, const DataLayout *DL,
474                     const TargetLibraryInfo *TLI, unsigned UnrollFactor) :
475     InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { }
476 
477 private:
478   void scalarizeInstruction(Instruction *Instr,
479                             bool IfPredicateStore = false) override;
480   void vectorizeMemoryInstruction(Instruction *Instr) override;
481   Value *getBroadcastInstrs(Value *V) override;
482   Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override;
483   Value *reverseVector(Value *Vec) override;
484 };
485 
486 /// \brief Look for a meaningful debug location on the instruction or it's
487 /// operands.
488 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
489   if (!I)
490     return I;
491 
492   DebugLoc Empty;
493   if (I->getDebugLoc() != Empty)
494     return I;
495 
496   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
497     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
498       if (OpInst->getDebugLoc() != Empty)
499         return OpInst;
500   }
501 
502   return I;
503 }
504 
505 /// \brief Set the debug location in the builder using the debug location in the
506 /// instruction.
507 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
508   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
509     B.SetCurrentDebugLocation(Inst->getDebugLoc());
510   else
511     B.SetCurrentDebugLocation(DebugLoc());
512 }
513 
514 #ifndef NDEBUG
515 /// \return string containing a file name and a line # for the given loop.
516 static std::string getDebugLocString(const Loop *L) {
517   std::string Result;
518   if (L) {
519     raw_string_ostream OS(Result);
520     const DebugLoc LoopDbgLoc = L->getStartLoc();
521     if (!LoopDbgLoc.isUnknown())
522       LoopDbgLoc.print(L->getHeader()->getContext(), OS);
523     else
524       // Just print the module name.
525       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
526     OS.flush();
527   }
528   return Result;
529 }
530 #endif
531 
532 /// \brief Propagate known metadata from one instruction to another.
533 static void propagateMetadata(Instruction *To, const Instruction *From) {
534   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
535   From->getAllMetadataOtherThanDebugLoc(Metadata);
536 
537   for (auto M : Metadata) {
538     unsigned Kind = M.first;
539 
540     // These are safe to transfer (this is safe for TBAA, even when we
541     // if-convert, because should that metadata have had a control dependency
542     // on the condition, and thus actually aliased with some other
543     // non-speculated memory access when the condition was false, this would be
544     // caught by the runtime overlap checks).
545     if (Kind != LLVMContext::MD_tbaa &&
546         Kind != LLVMContext::MD_alias_scope &&
547         Kind != LLVMContext::MD_noalias &&
548         Kind != LLVMContext::MD_fpmath)
549       continue;
550 
551     To->setMetadata(Kind, M.second);
552   }
553 }
554 
555 /// \brief Propagate known metadata from one instruction to a vector of others.
556 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) {
557   for (Value *V : To)
558     if (Instruction *I = dyn_cast<Instruction>(V))
559       propagateMetadata(I, From);
560 }
561 
562 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
563 /// to what vectorization factor.
564 /// This class does not look at the profitability of vectorization, only the
565 /// legality. This class has two main kinds of checks:
566 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
567 ///   will change the order of memory accesses in a way that will change the
568 ///   correctness of the program.
569 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
570 /// checks for a number of different conditions, such as the availability of a
571 /// single induction variable, that all types are supported and vectorize-able,
572 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
573 /// This class is also used by InnerLoopVectorizer for identifying
574 /// induction variable and the different reduction variables.
575 class LoopVectorizationLegality {
576 public:
577   unsigned NumLoads;
578   unsigned NumStores;
579   unsigned NumPredStores;
580 
581   LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL,
582                             DominatorTree *DT, TargetLibraryInfo *TLI,
583                             AliasAnalysis *AA, Function *F,
584                             const TargetTransformInfo *TTI)
585       : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL),
586         DT(DT), TLI(TLI), AA(AA), TheFunction(F), TTI(TTI), Induction(nullptr),
587         WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) {
588   }
589 
590   /// This enum represents the kinds of reductions that we support.
591   enum ReductionKind {
592     RK_NoReduction, ///< Not a reduction.
593     RK_IntegerAdd,  ///< Sum of integers.
594     RK_IntegerMult, ///< Product of integers.
595     RK_IntegerOr,   ///< Bitwise or logical OR of numbers.
596     RK_IntegerAnd,  ///< Bitwise or logical AND of numbers.
597     RK_IntegerXor,  ///< Bitwise or logical XOR of numbers.
598     RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
599     RK_FloatAdd,    ///< Sum of floats.
600     RK_FloatMult,   ///< Product of floats.
601     RK_FloatMinMax  ///< Min/max implemented in terms of select(cmp()).
602   };
603 
604   /// This enum represents the kinds of inductions that we support.
605   enum InductionKind {
606     IK_NoInduction,         ///< Not an induction variable.
607     IK_IntInduction,        ///< Integer induction variable. Step = 1.
608     IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
609     IK_PtrInduction,        ///< Pointer induction var. Step = sizeof(elem).
610     IK_ReversePtrInduction  ///< Reverse ptr indvar. Step = - sizeof(elem).
611   };
612 
613   // This enum represents the kind of minmax reduction.
614   enum MinMaxReductionKind {
615     MRK_Invalid,
616     MRK_UIntMin,
617     MRK_UIntMax,
618     MRK_SIntMin,
619     MRK_SIntMax,
620     MRK_FloatMin,
621     MRK_FloatMax
622   };
623 
624   /// This struct holds information about reduction variables.
625   struct ReductionDescriptor {
626     ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr),
627       Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
628 
629     ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
630                         MinMaxReductionKind MK)
631         : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
632 
633     // The starting value of the reduction.
634     // It does not have to be zero!
635     TrackingVH<Value> StartValue;
636     // The instruction who's value is used outside the loop.
637     Instruction *LoopExitInstr;
638     // The kind of the reduction.
639     ReductionKind Kind;
640     // If this a min/max reduction the kind of reduction.
641     MinMaxReductionKind MinMaxKind;
642   };
643 
644   /// This POD struct holds information about a potential reduction operation.
645   struct ReductionInstDesc {
646     ReductionInstDesc(bool IsRedux, Instruction *I) :
647       IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
648 
649     ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
650       IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
651 
652     // Is this instruction a reduction candidate.
653     bool IsReduction;
654     // The last instruction in a min/max pattern (select of the select(icmp())
655     // pattern), or the current reduction instruction otherwise.
656     Instruction *PatternLastInst;
657     // If this is a min/max pattern the comparison predicate.
658     MinMaxReductionKind MinMaxKind;
659   };
660 
661   /// This struct holds information about the memory runtime legality
662   /// check that a group of pointers do not overlap.
663   struct RuntimePointerCheck {
664     RuntimePointerCheck() : Need(false) {}
665 
666     /// Reset the state of the pointer runtime information.
667     void reset() {
668       Need = false;
669       Pointers.clear();
670       Starts.clear();
671       Ends.clear();
672       IsWritePtr.clear();
673       DependencySetId.clear();
674       AliasSetId.clear();
675     }
676 
677     /// Insert a pointer and calculate the start and end SCEVs.
678     void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
679                 unsigned DepSetId, unsigned ASId, ValueToValueMap &Strides);
680 
681     /// This flag indicates if we need to add the runtime check.
682     bool Need;
683     /// Holds the pointers that we need to check.
684     SmallVector<TrackingVH<Value>, 2> Pointers;
685     /// Holds the pointer value at the beginning of the loop.
686     SmallVector<const SCEV*, 2> Starts;
687     /// Holds the pointer value at the end of the loop.
688     SmallVector<const SCEV*, 2> Ends;
689     /// Holds the information if this pointer is used for writing to memory.
690     SmallVector<bool, 2> IsWritePtr;
691     /// Holds the id of the set of pointers that could be dependent because of a
692     /// shared underlying object.
693     SmallVector<unsigned, 2> DependencySetId;
694     /// Holds the id of the disjoint alias set to which this pointer belongs.
695     SmallVector<unsigned, 2> AliasSetId;
696   };
697 
698   /// A struct for saving information about induction variables.
699   struct InductionInfo {
700     InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
701     InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {}
702     /// Start value.
703     TrackingVH<Value> StartValue;
704     /// Induction kind.
705     InductionKind IK;
706   };
707 
708   /// ReductionList contains the reduction descriptors for all
709   /// of the reductions that were found in the loop.
710   typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
711 
712   /// InductionList saves induction variables and maps them to the
713   /// induction descriptor.
714   typedef MapVector<PHINode*, InductionInfo> InductionList;
715 
716   /// Returns true if it is legal to vectorize this loop.
717   /// This does not mean that it is profitable to vectorize this
718   /// loop, only that it is legal to do so.
719   bool canVectorize();
720 
721   /// Returns the Induction variable.
722   PHINode *getInduction() { return Induction; }
723 
724   /// Returns the reduction variables found in the loop.
725   ReductionList *getReductionVars() { return &Reductions; }
726 
727   /// Returns the induction variables found in the loop.
728   InductionList *getInductionVars() { return &Inductions; }
729 
730   /// Returns the widest induction type.
731   Type *getWidestInductionType() { return WidestIndTy; }
732 
733   /// Returns True if V is an induction variable in this loop.
734   bool isInductionVariable(const Value *V);
735 
736   /// Return true if the block BB needs to be predicated in order for the loop
737   /// to be vectorized.
738   bool blockNeedsPredication(BasicBlock *BB);
739 
740   /// Check if this  pointer is consecutive when vectorizing. This happens
741   /// when the last index of the GEP is the induction variable, or that the
742   /// pointer itself is an induction variable.
743   /// This check allows us to vectorize A[idx] into a wide load/store.
744   /// Returns:
745   /// 0 - Stride is unknown or non-consecutive.
746   /// 1 - Address is consecutive.
747   /// -1 - Address is consecutive, and decreasing.
748   int isConsecutivePtr(Value *Ptr);
749 
750   /// Returns true if the value V is uniform within the loop.
751   bool isUniform(Value *V);
752 
753   /// Returns true if this instruction will remain scalar after vectorization.
754   bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
755 
756   /// Returns the information that we collected about runtime memory check.
757   RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
758 
759   /// This function returns the identity element (or neutral element) for
760   /// the operation K.
761   static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
762 
763   unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
764 
765   bool hasStride(Value *V) { return StrideSet.count(V); }
766   bool mustCheckStrides() { return !StrideSet.empty(); }
767   SmallPtrSet<Value *, 8>::iterator strides_begin() {
768     return StrideSet.begin();
769   }
770   SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); }
771 
772   /// Returns true if the target machine supports masked store operation
773   /// for the given \p DataType and kind of access to \p Ptr.
774   bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
775     return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr));
776   }
777   /// Returns true if the target machine supports masked load operation
778   /// for the given \p DataType and kind of access to \p Ptr.
779   bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
780     return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr));
781   }
782   /// Returns true if vector representation of the instruction \p I
783   /// requires mask.
784   bool isMaskRequired(const Instruction* I) {
785     return (MaskedOp.count(I) != 0);
786   }
787 private:
788   /// Check if a single basic block loop is vectorizable.
789   /// At this point we know that this is a loop with a constant trip count
790   /// and we only need to check individual instructions.
791   bool canVectorizeInstrs();
792 
793   /// When we vectorize loops we may change the order in which
794   /// we read and write from memory. This method checks if it is
795   /// legal to vectorize the code, considering only memory constrains.
796   /// Returns true if the loop is vectorizable
797   bool canVectorizeMemory();
798 
799   /// Return true if we can vectorize this loop using the IF-conversion
800   /// transformation.
801   bool canVectorizeWithIfConvert();
802 
803   /// Collect the variables that need to stay uniform after vectorization.
804   void collectLoopUniforms();
805 
806   /// Return true if all of the instructions in the block can be speculatively
807   /// executed. \p SafePtrs is a list of addresses that are known to be legal
808   /// and we know that we can read from them without segfault.
809   bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
810 
811   /// Returns True, if 'Phi' is the kind of reduction variable for type
812   /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
813   bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
814   /// Returns a struct describing if the instruction 'I' can be a reduction
815   /// variable of type 'Kind'. If the reduction is a min/max pattern of
816   /// select(icmp()) this function advances the instruction pointer 'I' from the
817   /// compare instruction to the select instruction and stores this pointer in
818   /// 'PatternLastInst' member of the returned struct.
819   ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
820                                      ReductionInstDesc &Desc);
821   /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
822   /// pattern corresponding to a min(X, Y) or max(X, Y).
823   static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
824                                                     ReductionInstDesc &Prev);
825   /// Returns the induction kind of Phi. This function may return NoInduction
826   /// if the PHI is not an induction variable.
827   InductionKind isInductionVariable(PHINode *Phi);
828 
829   /// \brief Collect memory access with loop invariant strides.
830   ///
831   /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
832   /// invariant.
833   void collectStridedAccess(Value *LoadOrStoreInst);
834 
835   /// Report an analysis message to assist the user in diagnosing loops that are
836   /// not vectorized.
837   void emitAnalysis(Report &Message) {
838     DebugLoc DL = TheLoop->getStartLoc();
839     if (Instruction *I = Message.getInstr())
840       DL = I->getDebugLoc();
841     emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE,
842                                    *TheFunction, DL, Message.str());
843   }
844 
845   /// The loop that we evaluate.
846   Loop *TheLoop;
847   /// Scev analysis.
848   ScalarEvolution *SE;
849   /// DataLayout analysis.
850   const DataLayout *DL;
851   /// Dominators.
852   DominatorTree *DT;
853   /// Target Library Info.
854   TargetLibraryInfo *TLI;
855   /// Alias analysis.
856   AliasAnalysis *AA;
857   /// Parent function
858   Function *TheFunction;
859   /// Target Transform Info
860   const TargetTransformInfo *TTI;
861 
862   //  ---  vectorization state --- //
863 
864   /// Holds the integer induction variable. This is the counter of the
865   /// loop.
866   PHINode *Induction;
867   /// Holds the reduction variables.
868   ReductionList Reductions;
869   /// Holds all of the induction variables that we found in the loop.
870   /// Notice that inductions don't need to start at zero and that induction
871   /// variables can be pointers.
872   InductionList Inductions;
873   /// Holds the widest induction type encountered.
874   Type *WidestIndTy;
875 
876   /// Allowed outside users. This holds the reduction
877   /// vars which can be accessed from outside the loop.
878   SmallPtrSet<Value*, 4> AllowedExit;
879   /// This set holds the variables which are known to be uniform after
880   /// vectorization.
881   SmallPtrSet<Instruction*, 4> Uniforms;
882   /// We need to check that all of the pointers in this list are disjoint
883   /// at runtime.
884   RuntimePointerCheck PtrRtCheck;
885   /// Can we assume the absence of NaNs.
886   bool HasFunNoNaNAttr;
887 
888   unsigned MaxSafeDepDistBytes;
889 
890   ValueToValueMap Strides;
891   SmallPtrSet<Value *, 8> StrideSet;
892 
893   /// While vectorizing these instructions we have to generate a
894   /// call to the appropriate masked intrinsic
895   SmallPtrSet<const Instruction*, 8> MaskedOp;
896 };
897 
898 /// LoopVectorizationCostModel - estimates the expected speedups due to
899 /// vectorization.
900 /// In many cases vectorization is not profitable. This can happen because of
901 /// a number of reasons. In this class we mainly attempt to predict the
902 /// expected speedup/slowdowns due to the supported instruction set. We use the
903 /// TargetTransformInfo to query the different backends for the cost of
904 /// different operations.
905 class LoopVectorizationCostModel {
906 public:
907   LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
908                              LoopVectorizationLegality *Legal,
909                              const TargetTransformInfo &TTI,
910                              const DataLayout *DL, const TargetLibraryInfo *TLI,
911                              AssumptionCache *AC, const Function *F,
912                              const LoopVectorizeHints *Hints)
913       : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI),
914         TheFunction(F), Hints(Hints) {
915     CodeMetrics::collectEphemeralValues(L, AC, EphValues);
916   }
917 
918   /// Information about vectorization costs
919   struct VectorizationFactor {
920     unsigned Width; // Vector width with best cost
921     unsigned Cost; // Cost of the loop with that width
922   };
923   /// \return The most profitable vectorization factor and the cost of that VF.
924   /// This method checks every power of two up to VF. If UserVF is not ZERO
925   /// then this vectorization factor will be selected if vectorization is
926   /// possible.
927   VectorizationFactor selectVectorizationFactor(bool OptForSize);
928 
929   /// \return The size (in bits) of the widest type in the code that
930   /// needs to be vectorized. We ignore values that remain scalar such as
931   /// 64 bit loop indices.
932   unsigned getWidestType();
933 
934   /// \return The most profitable unroll factor.
935   /// If UserUF is non-zero then this method finds the best unroll-factor
936   /// based on register pressure and other parameters.
937   /// VF and LoopCost are the selected vectorization factor and the cost of the
938   /// selected VF.
939   unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost);
940 
941   /// \brief A struct that represents some properties of the register usage
942   /// of a loop.
943   struct RegisterUsage {
944     /// Holds the number of loop invariant values that are used in the loop.
945     unsigned LoopInvariantRegs;
946     /// Holds the maximum number of concurrent live intervals in the loop.
947     unsigned MaxLocalUsers;
948     /// Holds the number of instructions in the loop.
949     unsigned NumInstructions;
950   };
951 
952   /// \return  information about the register usage of the loop.
953   RegisterUsage calculateRegisterUsage();
954 
955 private:
956   /// Returns the expected execution cost. The unit of the cost does
957   /// not matter because we use the 'cost' units to compare different
958   /// vector widths. The cost that is returned is *not* normalized by
959   /// the factor width.
960   unsigned expectedCost(unsigned VF);
961 
962   /// Returns the execution time cost of an instruction for a given vector
963   /// width. Vector width of one means scalar.
964   unsigned getInstructionCost(Instruction *I, unsigned VF);
965 
966   /// A helper function for converting Scalar types to vector types.
967   /// If the incoming type is void, we return void. If the VF is 1, we return
968   /// the scalar type.
969   static Type* ToVectorTy(Type *Scalar, unsigned VF);
970 
971   /// Returns whether the instruction is a load or store and will be a emitted
972   /// as a vector operation.
973   bool isConsecutiveLoadOrStore(Instruction *I);
974 
975   /// Report an analysis message to assist the user in diagnosing loops that are
976   /// not vectorized.
977   void emitAnalysis(Report &Message) {
978     DebugLoc DL = TheLoop->getStartLoc();
979     if (Instruction *I = Message.getInstr())
980       DL = I->getDebugLoc();
981     emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE,
982                                    *TheFunction, DL, Message.str());
983   }
984 
985   /// Values used only by @llvm.assume calls.
986   SmallPtrSet<const Value *, 32> EphValues;
987 
988   /// The loop that we evaluate.
989   Loop *TheLoop;
990   /// Scev analysis.
991   ScalarEvolution *SE;
992   /// Loop Info analysis.
993   LoopInfo *LI;
994   /// Vectorization legality.
995   LoopVectorizationLegality *Legal;
996   /// Vector target information.
997   const TargetTransformInfo &TTI;
998   /// Target data layout information.
999   const DataLayout *DL;
1000   /// Target Library Info.
1001   const TargetLibraryInfo *TLI;
1002   const Function *TheFunction;
1003   // Loop Vectorize Hint.
1004   const LoopVectorizeHints *Hints;
1005 };
1006 
1007 /// Utility class for getting and setting loop vectorizer hints in the form
1008 /// of loop metadata.
1009 /// This class keeps a number of loop annotations locally (as member variables)
1010 /// and can, upon request, write them back as metadata on the loop. It will
1011 /// initially scan the loop for existing metadata, and will update the local
1012 /// values based on information in the loop.
1013 /// We cannot write all values to metadata, as the mere presence of some info,
1014 /// for example 'force', means a decision has been made. So, we need to be
1015 /// careful NOT to add them if the user hasn't specifically asked so.
1016 class LoopVectorizeHints {
1017   enum HintKind {
1018     HK_WIDTH,
1019     HK_UNROLL,
1020     HK_FORCE
1021   };
1022 
1023   /// Hint - associates name and validation with the hint value.
1024   struct Hint {
1025     const char * Name;
1026     unsigned Value; // This may have to change for non-numeric values.
1027     HintKind Kind;
1028 
1029     Hint(const char * Name, unsigned Value, HintKind Kind)
1030       : Name(Name), Value(Value), Kind(Kind) { }
1031 
1032     bool validate(unsigned Val) {
1033       switch (Kind) {
1034       case HK_WIDTH:
1035         return isPowerOf2_32(Val) && Val <= MaxVectorWidth;
1036       case HK_UNROLL:
1037         return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
1038       case HK_FORCE:
1039         return (Val <= 1);
1040       }
1041       return false;
1042     }
1043   };
1044 
1045   /// Vectorization width.
1046   Hint Width;
1047   /// Vectorization interleave factor.
1048   Hint Interleave;
1049   /// Vectorization forced
1050   Hint Force;
1051 
1052   /// Return the loop metadata prefix.
1053   static StringRef Prefix() { return "llvm.loop."; }
1054 
1055 public:
1056   enum ForceKind {
1057     FK_Undefined = -1, ///< Not selected.
1058     FK_Disabled = 0,   ///< Forcing disabled.
1059     FK_Enabled = 1,    ///< Forcing enabled.
1060   };
1061 
1062   LoopVectorizeHints(const Loop *L, bool DisableInterleaving)
1063       : Width("vectorize.width", VectorizationFactor, HK_WIDTH),
1064         Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
1065         Force("vectorize.enable", FK_Undefined, HK_FORCE),
1066         TheLoop(L) {
1067     // Populate values with existing loop metadata.
1068     getHintsFromMetadata();
1069 
1070     // force-vector-interleave overrides DisableInterleaving.
1071     if (VectorizationInterleave.getNumOccurrences() > 0)
1072       Interleave.Value = VectorizationInterleave;
1073 
1074     DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
1075           << "LV: Interleaving disabled by the pass manager\n");
1076   }
1077 
1078   /// Mark the loop L as already vectorized by setting the width to 1.
1079   void setAlreadyVectorized() {
1080     Width.Value = Interleave.Value = 1;
1081     Hint Hints[] = {Width, Interleave};
1082     writeHintsToMetadata(Hints);
1083   }
1084 
1085   /// Dumps all the hint information.
1086   std::string emitRemark() const {
1087     Report R;
1088     if (Force.Value == LoopVectorizeHints::FK_Disabled)
1089       R << "vectorization is explicitly disabled";
1090     else {
1091       R << "use -Rpass-analysis=loop-vectorize for more info";
1092       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
1093         R << " (Force=true";
1094         if (Width.Value != 0)
1095           R << ", Vector Width=" << Width.Value;
1096         if (Interleave.Value != 0)
1097           R << ", Interleave Count=" << Interleave.Value;
1098         R << ")";
1099       }
1100     }
1101 
1102     return R.str();
1103   }
1104 
1105   unsigned getWidth() const { return Width.Value; }
1106   unsigned getInterleave() const { return Interleave.Value; }
1107   enum ForceKind getForce() const { return (ForceKind)Force.Value; }
1108 
1109 private:
1110   /// Find hints specified in the loop metadata and update local values.
1111   void getHintsFromMetadata() {
1112     MDNode *LoopID = TheLoop->getLoopID();
1113     if (!LoopID)
1114       return;
1115 
1116     // First operand should refer to the loop id itself.
1117     assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1118     assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1119 
1120     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1121       const MDString *S = nullptr;
1122       SmallVector<Metadata *, 4> Args;
1123 
1124       // The expected hint is either a MDString or a MDNode with the first
1125       // operand a MDString.
1126       if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
1127         if (!MD || MD->getNumOperands() == 0)
1128           continue;
1129         S = dyn_cast<MDString>(MD->getOperand(0));
1130         for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
1131           Args.push_back(MD->getOperand(i));
1132       } else {
1133         S = dyn_cast<MDString>(LoopID->getOperand(i));
1134         assert(Args.size() == 0 && "too many arguments for MDString");
1135       }
1136 
1137       if (!S)
1138         continue;
1139 
1140       // Check if the hint starts with the loop metadata prefix.
1141       StringRef Name = S->getString();
1142       if (Args.size() == 1)
1143         setHint(Name, Args[0]);
1144     }
1145   }
1146 
1147   /// Checks string hint with one operand and set value if valid.
1148   void setHint(StringRef Name, Metadata *Arg) {
1149     if (!Name.startswith(Prefix()))
1150       return;
1151     Name = Name.substr(Prefix().size(), StringRef::npos);
1152 
1153     const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
1154     if (!C) return;
1155     unsigned Val = C->getZExtValue();
1156 
1157     Hint *Hints[] = {&Width, &Interleave, &Force};
1158     for (auto H : Hints) {
1159       if (Name == H->Name) {
1160         if (H->validate(Val))
1161           H->Value = Val;
1162         else
1163           DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
1164         break;
1165       }
1166     }
1167   }
1168 
1169   /// Create a new hint from name / value pair.
1170   MDNode *createHintMetadata(StringRef Name, unsigned V) const {
1171     LLVMContext &Context = TheLoop->getHeader()->getContext();
1172     Metadata *MDs[] = {MDString::get(Context, Name),
1173                        ConstantAsMetadata::get(
1174                            ConstantInt::get(Type::getInt32Ty(Context), V))};
1175     return MDNode::get(Context, MDs);
1176   }
1177 
1178   /// Matches metadata with hint name.
1179   bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
1180     MDString* Name = dyn_cast<MDString>(Node->getOperand(0));
1181     if (!Name)
1182       return false;
1183 
1184     for (auto H : HintTypes)
1185       if (Name->getString().endswith(H.Name))
1186         return true;
1187     return false;
1188   }
1189 
1190   /// Sets current hints into loop metadata, keeping other values intact.
1191   void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
1192     if (HintTypes.size() == 0)
1193       return;
1194 
1195     // Reserve the first element to LoopID (see below).
1196     SmallVector<Metadata *, 4> MDs(1);
1197     // If the loop already has metadata, then ignore the existing operands.
1198     MDNode *LoopID = TheLoop->getLoopID();
1199     if (LoopID) {
1200       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1201         MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
1202         // If node in update list, ignore old value.
1203         if (!matchesHintMetadataName(Node, HintTypes))
1204           MDs.push_back(Node);
1205       }
1206     }
1207 
1208     // Now, add the missing hints.
1209     for (auto H : HintTypes)
1210       MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
1211 
1212     // Replace current metadata node with new one.
1213     LLVMContext &Context = TheLoop->getHeader()->getContext();
1214     MDNode *NewLoopID = MDNode::get(Context, MDs);
1215     // Set operand 0 to refer to the loop id itself.
1216     NewLoopID->replaceOperandWith(0, NewLoopID);
1217 
1218     TheLoop->setLoopID(NewLoopID);
1219   }
1220 
1221   /// The loop these hints belong to.
1222   const Loop *TheLoop;
1223 };
1224 
1225 static void emitMissedWarning(Function *F, Loop *L,
1226                               const LoopVectorizeHints &LH) {
1227   emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F,
1228                                L->getStartLoc(), LH.emitRemark());
1229 
1230   if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
1231     if (LH.getWidth() != 1)
1232       emitLoopVectorizeWarning(
1233           F->getContext(), *F, L->getStartLoc(),
1234           "failed explicitly specified loop vectorization");
1235     else if (LH.getInterleave() != 1)
1236       emitLoopInterleaveWarning(
1237           F->getContext(), *F, L->getStartLoc(),
1238           "failed explicitly specified loop interleaving");
1239   }
1240 }
1241 
1242 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
1243   if (L.empty())
1244     return V.push_back(&L);
1245 
1246   for (Loop *InnerL : L)
1247     addInnerLoop(*InnerL, V);
1248 }
1249 
1250 /// The LoopVectorize Pass.
1251 struct LoopVectorize : public FunctionPass {
1252   /// Pass identification, replacement for typeid
1253   static char ID;
1254 
1255   explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
1256     : FunctionPass(ID),
1257       DisableUnrolling(NoUnrolling),
1258       AlwaysVectorize(AlwaysVectorize) {
1259     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1260   }
1261 
1262   ScalarEvolution *SE;
1263   const DataLayout *DL;
1264   LoopInfo *LI;
1265   TargetTransformInfo *TTI;
1266   DominatorTree *DT;
1267   BlockFrequencyInfo *BFI;
1268   TargetLibraryInfo *TLI;
1269   AliasAnalysis *AA;
1270   AssumptionCache *AC;
1271   bool DisableUnrolling;
1272   bool AlwaysVectorize;
1273 
1274   BlockFrequency ColdEntryFreq;
1275 
1276   bool runOnFunction(Function &F) override {
1277     SE = &getAnalysis<ScalarEvolution>();
1278     DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1279     DL = DLP ? &DLP->getDataLayout() : nullptr;
1280     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1281     TTI = &getAnalysis<TargetTransformInfo>();
1282     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1283     BFI = &getAnalysis<BlockFrequencyInfo>();
1284     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1285     TLI = TLIP ? &TLIP->getTLI() : nullptr;
1286     AA = &getAnalysis<AliasAnalysis>();
1287     AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1288 
1289     // Compute some weights outside of the loop over the loops. Compute this
1290     // using a BranchProbability to re-use its scaling math.
1291     const BranchProbability ColdProb(1, 5); // 20%
1292     ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
1293 
1294     // If the target claims to have no vector registers don't attempt
1295     // vectorization.
1296     if (!TTI->getNumberOfRegisters(true))
1297       return false;
1298 
1299     if (!DL) {
1300       DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName()
1301                    << ": Missing data layout\n");
1302       return false;
1303     }
1304 
1305     // Build up a worklist of inner-loops to vectorize. This is necessary as
1306     // the act of vectorizing or partially unrolling a loop creates new loops
1307     // and can invalidate iterators across the loops.
1308     SmallVector<Loop *, 8> Worklist;
1309 
1310     for (Loop *L : *LI)
1311       addInnerLoop(*L, Worklist);
1312 
1313     LoopsAnalyzed += Worklist.size();
1314 
1315     // Now walk the identified inner loops.
1316     bool Changed = false;
1317     while (!Worklist.empty())
1318       Changed |= processLoop(Worklist.pop_back_val());
1319 
1320     // Process each loop nest in the function.
1321     return Changed;
1322   }
1323 
1324   bool processLoop(Loop *L) {
1325     assert(L->empty() && "Only process inner loops.");
1326 
1327 #ifndef NDEBUG
1328     const std::string DebugLocStr = getDebugLocString(L);
1329 #endif /* NDEBUG */
1330 
1331     DEBUG(dbgs() << "\nLV: Checking a loop in \""
1332                  << L->getHeader()->getParent()->getName() << "\" from "
1333                  << DebugLocStr << "\n");
1334 
1335     LoopVectorizeHints Hints(L, DisableUnrolling);
1336 
1337     DEBUG(dbgs() << "LV: Loop hints:"
1338                  << " force="
1339                  << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
1340                          ? "disabled"
1341                          : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
1342                                 ? "enabled"
1343                                 : "?")) << " width=" << Hints.getWidth()
1344                  << " unroll=" << Hints.getInterleave() << "\n");
1345 
1346     // Function containing loop
1347     Function *F = L->getHeader()->getParent();
1348 
1349     // Looking at the diagnostic output is the only way to determine if a loop
1350     // was vectorized (other than looking at the IR or machine code), so it
1351     // is important to generate an optimization remark for each loop. Most of
1352     // these messages are generated by emitOptimizationRemarkAnalysis. Remarks
1353     // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are
1354     // less verbose reporting vectorized loops and unvectorized loops that may
1355     // benefit from vectorization, respectively.
1356 
1357     if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) {
1358       DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
1359       emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
1360                                      L->getStartLoc(), Hints.emitRemark());
1361       return false;
1362     }
1363 
1364     if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) {
1365       DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
1366       emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
1367                                      L->getStartLoc(), Hints.emitRemark());
1368       return false;
1369     }
1370 
1371     if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) {
1372       DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
1373       emitOptimizationRemarkAnalysis(
1374           F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1375           "loop not vectorized: vector width and interleave count are "
1376           "explicitly set to 1");
1377       return false;
1378     }
1379 
1380     // Check the loop for a trip count threshold:
1381     // do not vectorize loops with a tiny trip count.
1382     const unsigned TC = SE->getSmallConstantTripCount(L);
1383     if (TC > 0u && TC < TinyTripCountVectorThreshold) {
1384       DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
1385                    << "This loop is not worth vectorizing.");
1386       if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
1387         DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
1388       else {
1389         DEBUG(dbgs() << "\n");
1390         emitOptimizationRemarkAnalysis(
1391             F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1392             "vectorization is not beneficial and is not explicitly forced");
1393         return false;
1394       }
1395     }
1396 
1397     // Check if it is legal to vectorize the loop.
1398     LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F, TTI);
1399     if (!LVL.canVectorize()) {
1400       DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
1401       emitMissedWarning(F, L, Hints);
1402       return false;
1403     }
1404 
1405     // Use the cost model.
1406     LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, AC, F,
1407                                   &Hints);
1408 
1409     // Check the function attributes to find out if this function should be
1410     // optimized for size.
1411     bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
1412                       F->hasFnAttribute(Attribute::OptimizeForSize);
1413 
1414     // Compute the weighted frequency of this loop being executed and see if it
1415     // is less than 20% of the function entry baseline frequency. Note that we
1416     // always have a canonical loop here because we think we *can* vectoriez.
1417     // FIXME: This is hidden behind a flag due to pervasive problems with
1418     // exactly what block frequency models.
1419     if (LoopVectorizeWithBlockFrequency) {
1420       BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
1421       if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
1422           LoopEntryFreq < ColdEntryFreq)
1423         OptForSize = true;
1424     }
1425 
1426     // Check the function attributes to see if implicit floats are allowed.a
1427     // FIXME: This check doesn't seem possibly correct -- what if the loop is
1428     // an integer loop and the vector instructions selected are purely integer
1429     // vector instructions?
1430     if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
1431       DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
1432             "attribute is used.\n");
1433       emitOptimizationRemarkAnalysis(
1434           F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1435           "loop not vectorized due to NoImplicitFloat attribute");
1436       emitMissedWarning(F, L, Hints);
1437       return false;
1438     }
1439 
1440     // Select the optimal vectorization factor.
1441     const LoopVectorizationCostModel::VectorizationFactor VF =
1442         CM.selectVectorizationFactor(OptForSize);
1443 
1444     // Select the unroll factor.
1445     const unsigned UF =
1446         CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost);
1447 
1448     DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
1449                  << DebugLocStr << '\n');
1450     DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n');
1451 
1452     if (VF.Width == 1) {
1453       DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n");
1454 
1455       if (UF == 1) {
1456         emitOptimizationRemarkAnalysis(
1457             F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1458             "not beneficial to vectorize and user disabled interleaving");
1459         return false;
1460       }
1461       DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n");
1462 
1463       // Report the unrolling decision.
1464       emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1465                              Twine("unrolled with interleaving factor " +
1466                                    Twine(UF) +
1467                                    " (vectorization not beneficial)"));
1468 
1469       // We decided not to vectorize, but we may want to unroll.
1470 
1471       InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF);
1472       Unroller.vectorize(&LVL);
1473     } else {
1474       // If we decided that it is *legal* to vectorize the loop then do it.
1475       InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
1476       LB.vectorize(&LVL);
1477       ++LoopsVectorized;
1478 
1479       // Report the vectorization decision.
1480       emitOptimizationRemark(
1481           F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1482           Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) +
1483               ", unrolling interleave factor: " + Twine(UF) + ")");
1484     }
1485 
1486     // Mark the loop as already vectorized to avoid vectorizing again.
1487     Hints.setAlreadyVectorized();
1488 
1489     DEBUG(verifyFunction(*L->getHeader()->getParent()));
1490     return true;
1491   }
1492 
1493   void getAnalysisUsage(AnalysisUsage &AU) const override {
1494     AU.addRequired<AssumptionCacheTracker>();
1495     AU.addRequiredID(LoopSimplifyID);
1496     AU.addRequiredID(LCSSAID);
1497     AU.addRequired<BlockFrequencyInfo>();
1498     AU.addRequired<DominatorTreeWrapperPass>();
1499     AU.addRequired<LoopInfoWrapperPass>();
1500     AU.addRequired<ScalarEvolution>();
1501     AU.addRequired<TargetTransformInfo>();
1502     AU.addRequired<AliasAnalysis>();
1503     AU.addPreserved<LoopInfoWrapperPass>();
1504     AU.addPreserved<DominatorTreeWrapperPass>();
1505     AU.addPreserved<AliasAnalysis>();
1506   }
1507 
1508 };
1509 
1510 } // end anonymous namespace
1511 
1512 //===----------------------------------------------------------------------===//
1513 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1514 // LoopVectorizationCostModel.
1515 //===----------------------------------------------------------------------===//
1516 
1517 static Value *stripIntegerCast(Value *V) {
1518   if (CastInst *CI = dyn_cast<CastInst>(V))
1519     if (CI->getOperand(0)->getType()->isIntegerTy())
1520       return CI->getOperand(0);
1521   return V;
1522 }
1523 
1524 ///\brief Replaces the symbolic stride in a pointer SCEV expression by one.
1525 ///
1526 /// If \p OrigPtr is not null, use it to look up the stride value instead of
1527 /// \p Ptr.
1528 static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE,
1529                                              ValueToValueMap &PtrToStride,
1530                                              Value *Ptr, Value *OrigPtr = nullptr) {
1531 
1532   const SCEV *OrigSCEV = SE->getSCEV(Ptr);
1533 
1534   // If there is an entry in the map return the SCEV of the pointer with the
1535   // symbolic stride replaced by one.
1536   ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
1537   if (SI != PtrToStride.end()) {
1538     Value *StrideVal = SI->second;
1539 
1540     // Strip casts.
1541     StrideVal = stripIntegerCast(StrideVal);
1542 
1543     // Replace symbolic stride by one.
1544     Value *One = ConstantInt::get(StrideVal->getType(), 1);
1545     ValueToValueMap RewriteMap;
1546     RewriteMap[StrideVal] = One;
1547 
1548     const SCEV *ByOne =
1549         SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
1550     DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
1551                  << "\n");
1552     return ByOne;
1553   }
1554 
1555   // Otherwise, just return the SCEV of the original pointer.
1556   return SE->getSCEV(Ptr);
1557 }
1558 
1559 void LoopVectorizationLegality::RuntimePointerCheck::insert(
1560     ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
1561     unsigned ASId, ValueToValueMap &Strides) {
1562   // Get the stride replaced scev.
1563   const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
1564   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
1565   assert(AR && "Invalid addrec expression");
1566   const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
1567   const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
1568   Pointers.push_back(Ptr);
1569   Starts.push_back(AR->getStart());
1570   Ends.push_back(ScEnd);
1571   IsWritePtr.push_back(WritePtr);
1572   DependencySetId.push_back(DepSetId);
1573   AliasSetId.push_back(ASId);
1574 }
1575 
1576 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1577   // We need to place the broadcast of invariant variables outside the loop.
1578   Instruction *Instr = dyn_cast<Instruction>(V);
1579   bool NewInstr =
1580       (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(),
1581                           Instr->getParent()) != LoopVectorBody.end());
1582   bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
1583 
1584   // Place the code for broadcasting invariant variables in the new preheader.
1585   IRBuilder<>::InsertPointGuard Guard(Builder);
1586   if (Invariant)
1587     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1588 
1589   // Broadcast the scalar into all locations in the vector.
1590   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1591 
1592   return Shuf;
1593 }
1594 
1595 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
1596                                                  bool Negate) {
1597   assert(Val->getType()->isVectorTy() && "Must be a vector");
1598   assert(Val->getType()->getScalarType()->isIntegerTy() &&
1599          "Elem must be an integer");
1600   // Create the types.
1601   Type *ITy = Val->getType()->getScalarType();
1602   VectorType *Ty = cast<VectorType>(Val->getType());
1603   int VLen = Ty->getNumElements();
1604   SmallVector<Constant*, 8> Indices;
1605 
1606   // Create a vector of consecutive numbers from zero to VF.
1607   for (int i = 0; i < VLen; ++i) {
1608     int64_t Idx = Negate ? (-i) : i;
1609     Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
1610   }
1611 
1612   // Add the consecutive indices to the vector value.
1613   Constant *Cv = ConstantVector::get(Indices);
1614   assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1615   return Builder.CreateAdd(Val, Cv, "induction");
1616 }
1617 
1618 /// \brief Find the operand of the GEP that should be checked for consecutive
1619 /// stores. This ignores trailing indices that have no effect on the final
1620 /// pointer.
1621 static unsigned getGEPInductionOperand(const DataLayout *DL,
1622                                        const GetElementPtrInst *Gep) {
1623   unsigned LastOperand = Gep->getNumOperands() - 1;
1624   unsigned GEPAllocSize = DL->getTypeAllocSize(
1625       cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
1626 
1627   // Walk backwards and try to peel off zeros.
1628   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
1629     // Find the type we're currently indexing into.
1630     gep_type_iterator GEPTI = gep_type_begin(Gep);
1631     std::advance(GEPTI, LastOperand - 1);
1632 
1633     // If it's a type with the same allocation size as the result of the GEP we
1634     // can peel off the zero index.
1635     if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize)
1636       break;
1637     --LastOperand;
1638   }
1639 
1640   return LastOperand;
1641 }
1642 
1643 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
1644   assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
1645   // Make sure that the pointer does not point to structs.
1646   if (Ptr->getType()->getPointerElementType()->isAggregateType())
1647     return 0;
1648 
1649   // If this value is a pointer induction variable we know it is consecutive.
1650   PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
1651   if (Phi && Inductions.count(Phi)) {
1652     InductionInfo II = Inductions[Phi];
1653     if (IK_PtrInduction == II.IK)
1654       return 1;
1655     else if (IK_ReversePtrInduction == II.IK)
1656       return -1;
1657   }
1658 
1659   GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
1660   if (!Gep)
1661     return 0;
1662 
1663   unsigned NumOperands = Gep->getNumOperands();
1664   Value *GpPtr = Gep->getPointerOperand();
1665   // If this GEP value is a consecutive pointer induction variable and all of
1666   // the indices are constant then we know it is consecutive. We can
1667   Phi = dyn_cast<PHINode>(GpPtr);
1668   if (Phi && Inductions.count(Phi)) {
1669 
1670     // Make sure that the pointer does not point to structs.
1671     PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
1672     if (GepPtrType->getElementType()->isAggregateType())
1673       return 0;
1674 
1675     // Make sure that all of the index operands are loop invariant.
1676     for (unsigned i = 1; i < NumOperands; ++i)
1677       if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1678         return 0;
1679 
1680     InductionInfo II = Inductions[Phi];
1681     if (IK_PtrInduction == II.IK)
1682       return 1;
1683     else if (IK_ReversePtrInduction == II.IK)
1684       return -1;
1685   }
1686 
1687   unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1688 
1689   // Check that all of the gep indices are uniform except for our induction
1690   // operand.
1691   for (unsigned i = 0; i != NumOperands; ++i)
1692     if (i != InductionOperand &&
1693         !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1694       return 0;
1695 
1696   // We can emit wide load/stores only if the last non-zero index is the
1697   // induction variable.
1698   const SCEV *Last = nullptr;
1699   if (!Strides.count(Gep))
1700     Last = SE->getSCEV(Gep->getOperand(InductionOperand));
1701   else {
1702     // Because of the multiplication by a stride we can have a s/zext cast.
1703     // We are going to replace this stride by 1 so the cast is safe to ignore.
1704     //
1705     //  %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
1706     //  %0 = trunc i64 %indvars.iv to i32
1707     //  %mul = mul i32 %0, %Stride1
1708     //  %idxprom = zext i32 %mul to i64  << Safe cast.
1709     //  %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
1710     //
1711     Last = replaceSymbolicStrideSCEV(SE, Strides,
1712                                      Gep->getOperand(InductionOperand), Gep);
1713     if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
1714       Last =
1715           (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
1716               ? C->getOperand()
1717               : Last;
1718   }
1719   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
1720     const SCEV *Step = AR->getStepRecurrence(*SE);
1721 
1722     // The memory is consecutive because the last index is consecutive
1723     // and all other indices are loop invariant.
1724     if (Step->isOne())
1725       return 1;
1726     if (Step->isAllOnesValue())
1727       return -1;
1728   }
1729 
1730   return 0;
1731 }
1732 
1733 bool LoopVectorizationLegality::isUniform(Value *V) {
1734   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1735 }
1736 
1737 InnerLoopVectorizer::VectorParts&
1738 InnerLoopVectorizer::getVectorValue(Value *V) {
1739   assert(V != Induction && "The new induction variable should not be used.");
1740   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
1741 
1742   // If we have a stride that is replaced by one, do it here.
1743   if (Legal->hasStride(V))
1744     V = ConstantInt::get(V->getType(), 1);
1745 
1746   // If we have this scalar in the map, return it.
1747   if (WidenMap.has(V))
1748     return WidenMap.get(V);
1749 
1750   // If this scalar is unknown, assume that it is a constant or that it is
1751   // loop invariant. Broadcast V and save the value for future uses.
1752   Value *B = getBroadcastInstrs(V);
1753   return WidenMap.splat(V, B);
1754 }
1755 
1756 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
1757   assert(Vec->getType()->isVectorTy() && "Invalid type");
1758   SmallVector<Constant*, 8> ShuffleMask;
1759   for (unsigned i = 0; i < VF; ++i)
1760     ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
1761 
1762   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
1763                                      ConstantVector::get(ShuffleMask),
1764                                      "reverse");
1765 }
1766 
1767 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
1768   // Attempt to issue a wide load.
1769   LoadInst *LI = dyn_cast<LoadInst>(Instr);
1770   StoreInst *SI = dyn_cast<StoreInst>(Instr);
1771 
1772   assert((LI || SI) && "Invalid Load/Store instruction");
1773 
1774   Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
1775   Type *DataTy = VectorType::get(ScalarDataTy, VF);
1776   Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
1777   unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
1778   // An alignment of 0 means target abi alignment. We need to use the scalar's
1779   // target abi alignment in such a case.
1780   if (!Alignment)
1781     Alignment = DL->getABITypeAlignment(ScalarDataTy);
1782   unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
1783   unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
1784   unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
1785 
1786   if (SI && Legal->blockNeedsPredication(SI->getParent()) &&
1787       !Legal->isMaskRequired(SI))
1788     return scalarizeInstruction(Instr, true);
1789 
1790   if (ScalarAllocatedSize != VectorElementSize)
1791     return scalarizeInstruction(Instr);
1792 
1793   // If the pointer is loop invariant or if it is non-consecutive,
1794   // scalarize the load.
1795   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
1796   bool Reverse = ConsecutiveStride < 0;
1797   bool UniformLoad = LI && Legal->isUniform(Ptr);
1798   if (!ConsecutiveStride || UniformLoad)
1799     return scalarizeInstruction(Instr);
1800 
1801   Constant *Zero = Builder.getInt32(0);
1802   VectorParts &Entry = WidenMap.get(Instr);
1803 
1804   // Handle consecutive loads/stores.
1805   GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
1806   if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
1807     setDebugLocFromInst(Builder, Gep);
1808     Value *PtrOperand = Gep->getPointerOperand();
1809     Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
1810     FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
1811 
1812     // Create the new GEP with the new induction variable.
1813     GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1814     Gep2->setOperand(0, FirstBasePtr);
1815     Gep2->setName("gep.indvar.base");
1816     Ptr = Builder.Insert(Gep2);
1817   } else if (Gep) {
1818     setDebugLocFromInst(Builder, Gep);
1819     assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
1820                                OrigLoop) && "Base ptr must be invariant");
1821 
1822     // The last index does not have to be the induction. It can be
1823     // consecutive and be a function of the index. For example A[I+1];
1824     unsigned NumOperands = Gep->getNumOperands();
1825     unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1826     // Create the new GEP with the new induction variable.
1827     GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1828 
1829     for (unsigned i = 0; i < NumOperands; ++i) {
1830       Value *GepOperand = Gep->getOperand(i);
1831       Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
1832 
1833       // Update last index or loop invariant instruction anchored in loop.
1834       if (i == InductionOperand ||
1835           (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
1836         assert((i == InductionOperand ||
1837                SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
1838                "Must be last index or loop invariant");
1839 
1840         VectorParts &GEPParts = getVectorValue(GepOperand);
1841         Value *Index = GEPParts[0];
1842         Index = Builder.CreateExtractElement(Index, Zero);
1843         Gep2->setOperand(i, Index);
1844         Gep2->setName("gep.indvar.idx");
1845       }
1846     }
1847     Ptr = Builder.Insert(Gep2);
1848   } else {
1849     // Use the induction element ptr.
1850     assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1851     setDebugLocFromInst(Builder, Ptr);
1852     VectorParts &PtrVal = getVectorValue(Ptr);
1853     Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1854   }
1855 
1856   VectorParts Mask = createBlockInMask(Instr->getParent());
1857   // Handle Stores:
1858   if (SI) {
1859     assert(!Legal->isUniform(SI->getPointerOperand()) &&
1860            "We do not allow storing to uniform addresses");
1861     setDebugLocFromInst(Builder, SI);
1862     // We don't want to update the value in the map as it might be used in
1863     // another expression. So don't use a reference type for "StoredVal".
1864     VectorParts StoredVal = getVectorValue(SI->getValueOperand());
1865 
1866     for (unsigned Part = 0; Part < UF; ++Part) {
1867       // Calculate the pointer for the specific unroll-part.
1868       Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1869 
1870       if (Reverse) {
1871         // If we store to reverse consecutive memory locations then we need
1872         // to reverse the order of elements in the stored value.
1873         StoredVal[Part] = reverseVector(StoredVal[Part]);
1874         // If the address is consecutive but reversed, then the
1875         // wide store needs to start at the last vector element.
1876         PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1877         PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1878         Mask[Part] = reverseVector(Mask[Part]);
1879       }
1880 
1881       Value *VecPtr = Builder.CreateBitCast(PartPtr,
1882                                             DataTy->getPointerTo(AddressSpace));
1883 
1884       Instruction *NewSI;
1885       if (Legal->isMaskRequired(SI))
1886         NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment,
1887                                           Mask[Part]);
1888       else
1889         NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment);
1890       propagateMetadata(NewSI, SI);
1891     }
1892     return;
1893   }
1894 
1895   // Handle loads.
1896   assert(LI && "Must have a load instruction");
1897   setDebugLocFromInst(Builder, LI);
1898   for (unsigned Part = 0; Part < UF; ++Part) {
1899     // Calculate the pointer for the specific unroll-part.
1900     Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1901 
1902     if (Reverse) {
1903       // If the address is consecutive but reversed, then the
1904       // wide load needs to start at the last vector element.
1905       PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1906       PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1907       Mask[Part] = reverseVector(Mask[Part]);
1908     }
1909 
1910     Instruction* NewLI;
1911     Value *VecPtr = Builder.CreateBitCast(PartPtr,
1912                                           DataTy->getPointerTo(AddressSpace));
1913     if (Legal->isMaskRequired(LI))
1914       NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
1915                                        UndefValue::get(DataTy),
1916                                        "wide.masked.load");
1917     else
1918       NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
1919     propagateMetadata(NewLI, LI);
1920     Entry[Part] = Reverse ? reverseVector(NewLI) :  NewLI;
1921   }
1922 }
1923 
1924 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) {
1925   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
1926   // Holds vector parameters or scalars, in case of uniform vals.
1927   SmallVector<VectorParts, 4> Params;
1928 
1929   setDebugLocFromInst(Builder, Instr);
1930 
1931   // Find all of the vectorized parameters.
1932   for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1933     Value *SrcOp = Instr->getOperand(op);
1934 
1935     // If we are accessing the old induction variable, use the new one.
1936     if (SrcOp == OldInduction) {
1937       Params.push_back(getVectorValue(SrcOp));
1938       continue;
1939     }
1940 
1941     // Try using previously calculated values.
1942     Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
1943 
1944     // If the src is an instruction that appeared earlier in the basic block
1945     // then it should already be vectorized.
1946     if (SrcInst && OrigLoop->contains(SrcInst)) {
1947       assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
1948       // The parameter is a vector value from earlier.
1949       Params.push_back(WidenMap.get(SrcInst));
1950     } else {
1951       // The parameter is a scalar from outside the loop. Maybe even a constant.
1952       VectorParts Scalars;
1953       Scalars.append(UF, SrcOp);
1954       Params.push_back(Scalars);
1955     }
1956   }
1957 
1958   assert(Params.size() == Instr->getNumOperands() &&
1959          "Invalid number of operands");
1960 
1961   // Does this instruction return a value ?
1962   bool IsVoidRetTy = Instr->getType()->isVoidTy();
1963 
1964   Value *UndefVec = IsVoidRetTy ? nullptr :
1965     UndefValue::get(VectorType::get(Instr->getType(), VF));
1966   // Create a new entry in the WidenMap and initialize it to Undef or Null.
1967   VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
1968 
1969   Instruction *InsertPt = Builder.GetInsertPoint();
1970   BasicBlock *IfBlock = Builder.GetInsertBlock();
1971   BasicBlock *CondBlock = nullptr;
1972 
1973   VectorParts Cond;
1974   Loop *VectorLp = nullptr;
1975   if (IfPredicateStore) {
1976     assert(Instr->getParent()->getSinglePredecessor() &&
1977            "Only support single predecessor blocks");
1978     Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
1979                           Instr->getParent());
1980     VectorLp = LI->getLoopFor(IfBlock);
1981     assert(VectorLp && "Must have a loop for this block");
1982   }
1983 
1984   // For each vector unroll 'part':
1985   for (unsigned Part = 0; Part < UF; ++Part) {
1986     // For each scalar that we create:
1987     for (unsigned Width = 0; Width < VF; ++Width) {
1988 
1989       // Start if-block.
1990       Value *Cmp = nullptr;
1991       if (IfPredicateStore) {
1992         Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width));
1993         Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1));
1994         CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
1995         LoopVectorBody.push_back(CondBlock);
1996         VectorLp->addBasicBlockToLoop(CondBlock, *LI);
1997         // Update Builder with newly created basic block.
1998         Builder.SetInsertPoint(InsertPt);
1999       }
2000 
2001       Instruction *Cloned = Instr->clone();
2002       if (!IsVoidRetTy)
2003         Cloned->setName(Instr->getName() + ".cloned");
2004       // Replace the operands of the cloned instructions with extracted scalars.
2005       for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
2006         Value *Op = Params[op][Part];
2007         // Param is a vector. Need to extract the right lane.
2008         if (Op->getType()->isVectorTy())
2009           Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
2010         Cloned->setOperand(op, Op);
2011       }
2012 
2013       // Place the cloned scalar in the new loop.
2014       Builder.Insert(Cloned);
2015 
2016       // If the original scalar returns a value we need to place it in a vector
2017       // so that future users will be able to use it.
2018       if (!IsVoidRetTy)
2019         VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
2020                                                        Builder.getInt32(Width));
2021       // End if-block.
2022       if (IfPredicateStore) {
2023          BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
2024          LoopVectorBody.push_back(NewIfBlock);
2025          VectorLp->addBasicBlockToLoop(NewIfBlock, *LI);
2026          Builder.SetInsertPoint(InsertPt);
2027          Instruction *OldBr = IfBlock->getTerminator();
2028          BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
2029          OldBr->eraseFromParent();
2030          IfBlock = NewIfBlock;
2031       }
2032     }
2033   }
2034 }
2035 
2036 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
2037                                  Instruction *Loc) {
2038   if (FirstInst)
2039     return FirstInst;
2040   if (Instruction *I = dyn_cast<Instruction>(V))
2041     return I->getParent() == Loc->getParent() ? I : nullptr;
2042   return nullptr;
2043 }
2044 
2045 std::pair<Instruction *, Instruction *>
2046 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) {
2047   Instruction *tnullptr = nullptr;
2048   if (!Legal->mustCheckStrides())
2049     return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
2050 
2051   IRBuilder<> ChkBuilder(Loc);
2052 
2053   // Emit checks.
2054   Value *Check = nullptr;
2055   Instruction *FirstInst = nullptr;
2056   for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(),
2057                                          SE = Legal->strides_end();
2058        SI != SE; ++SI) {
2059     Value *Ptr = stripIntegerCast(*SI);
2060     Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1),
2061                                        "stride.chk");
2062     // Store the first instruction we create.
2063     FirstInst = getFirstInst(FirstInst, C, Loc);
2064     if (Check)
2065       Check = ChkBuilder.CreateOr(Check, C);
2066     else
2067       Check = C;
2068   }
2069 
2070   // We have to do this trickery because the IRBuilder might fold the check to a
2071   // constant expression in which case there is no Instruction anchored in a
2072   // the block.
2073   LLVMContext &Ctx = Loc->getContext();
2074   Instruction *TheCheck =
2075       BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx));
2076   ChkBuilder.Insert(TheCheck, "stride.not.one");
2077   FirstInst = getFirstInst(FirstInst, TheCheck, Loc);
2078 
2079   return std::make_pair(FirstInst, TheCheck);
2080 }
2081 
2082 std::pair<Instruction *, Instruction *>
2083 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) {
2084   LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
2085   Legal->getRuntimePointerCheck();
2086 
2087   Instruction *tnullptr = nullptr;
2088   if (!PtrRtCheck->Need)
2089     return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
2090 
2091   unsigned NumPointers = PtrRtCheck->Pointers.size();
2092   SmallVector<TrackingVH<Value> , 2> Starts;
2093   SmallVector<TrackingVH<Value> , 2> Ends;
2094 
2095   LLVMContext &Ctx = Loc->getContext();
2096   SCEVExpander Exp(*SE, "induction");
2097   Instruction *FirstInst = nullptr;
2098 
2099   for (unsigned i = 0; i < NumPointers; ++i) {
2100     Value *Ptr = PtrRtCheck->Pointers[i];
2101     const SCEV *Sc = SE->getSCEV(Ptr);
2102 
2103     if (SE->isLoopInvariant(Sc, OrigLoop)) {
2104       DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
2105             *Ptr <<"\n");
2106       Starts.push_back(Ptr);
2107       Ends.push_back(Ptr);
2108     } else {
2109       DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n');
2110       unsigned AS = Ptr->getType()->getPointerAddressSpace();
2111 
2112       // Use this type for pointer arithmetic.
2113       Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
2114 
2115       Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
2116       Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
2117       Starts.push_back(Start);
2118       Ends.push_back(End);
2119     }
2120   }
2121 
2122   IRBuilder<> ChkBuilder(Loc);
2123   // Our instructions might fold to a constant.
2124   Value *MemoryRuntimeCheck = nullptr;
2125   for (unsigned i = 0; i < NumPointers; ++i) {
2126     for (unsigned j = i+1; j < NumPointers; ++j) {
2127       // No need to check if two readonly pointers intersect.
2128       if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
2129         continue;
2130 
2131       // Only need to check pointers between two different dependency sets.
2132       if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j])
2133        continue;
2134       // Only need to check pointers in the same alias set.
2135       if (PtrRtCheck->AliasSetId[i] != PtrRtCheck->AliasSetId[j])
2136         continue;
2137 
2138       unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
2139       unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
2140 
2141       assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
2142              (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
2143              "Trying to bounds check pointers with different address spaces");
2144 
2145       Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
2146       Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
2147 
2148       Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
2149       Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
2150       Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy1, "bc");
2151       Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy0, "bc");
2152 
2153       Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
2154       FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
2155       Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
2156       FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
2157       Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
2158       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2159       if (MemoryRuntimeCheck) {
2160         IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
2161                                          "conflict.rdx");
2162         FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
2163       }
2164       MemoryRuntimeCheck = IsConflict;
2165     }
2166   }
2167 
2168   // We have to do this trickery because the IRBuilder might fold the check to a
2169   // constant expression in which case there is no Instruction anchored in a
2170   // the block.
2171   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
2172                                                  ConstantInt::getTrue(Ctx));
2173   ChkBuilder.Insert(Check, "memcheck.conflict");
2174   FirstInst = getFirstInst(FirstInst, Check, Loc);
2175   return std::make_pair(FirstInst, Check);
2176 }
2177 
2178 void InnerLoopVectorizer::createEmptyLoop() {
2179   /*
2180    In this function we generate a new loop. The new loop will contain
2181    the vectorized instructions while the old loop will continue to run the
2182    scalar remainder.
2183 
2184        [ ] <-- Back-edge taken count overflow check.
2185     /   |
2186    /    v
2187   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
2188   |  /  |
2189   | /   v
2190   ||   [ ]     <-- vector pre header.
2191   ||    |
2192   ||    v
2193   ||   [  ] \
2194   ||   [  ]_|   <-- vector loop.
2195   ||    |
2196   | \   v
2197   |   >[ ]   <--- middle-block.
2198   |  /  |
2199   | /   v
2200   -|- >[ ]     <--- new preheader.
2201    |    |
2202    |    v
2203    |   [ ] \
2204    |   [ ]_|   <-- old scalar loop to handle remainder.
2205     \   |
2206      \  v
2207       >[ ]     <-- exit block.
2208    ...
2209    */
2210 
2211   BasicBlock *OldBasicBlock = OrigLoop->getHeader();
2212   BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
2213   BasicBlock *ExitBlock = OrigLoop->getExitBlock();
2214   assert(BypassBlock && "Invalid loop structure");
2215   assert(ExitBlock && "Must have an exit block");
2216 
2217   // Some loops have a single integer induction variable, while other loops
2218   // don't. One example is c++ iterators that often have multiple pointer
2219   // induction variables. In the code below we also support a case where we
2220   // don't have a single induction variable.
2221   OldInduction = Legal->getInduction();
2222   Type *IdxTy = Legal->getWidestInductionType();
2223 
2224   // Find the loop boundaries.
2225   const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
2226   assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
2227 
2228   // The exit count might have the type of i64 while the phi is i32. This can
2229   // happen if we have an induction variable that is sign extended before the
2230   // compare. The only way that we get a backedge taken count is that the
2231   // induction variable was signed and as such will not overflow. In such a case
2232   // truncation is legal.
2233   if (ExitCount->getType()->getPrimitiveSizeInBits() >
2234       IdxTy->getPrimitiveSizeInBits())
2235     ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy);
2236 
2237   const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy);
2238   // Get the total trip count from the count by adding 1.
2239   ExitCount = SE->getAddExpr(BackedgeTakeCount,
2240                              SE->getConstant(BackedgeTakeCount->getType(), 1));
2241 
2242   // Expand the trip count and place the new instructions in the preheader.
2243   // Notice that the pre-header does not change, only the loop body.
2244   SCEVExpander Exp(*SE, "induction");
2245 
2246   // We need to test whether the backedge-taken count is uint##_max. Adding one
2247   // to it will cause overflow and an incorrect loop trip count in the vector
2248   // body. In case of overflow we want to directly jump to the scalar remainder
2249   // loop.
2250   Value *BackedgeCount =
2251       Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(),
2252                         BypassBlock->getTerminator());
2253   if (BackedgeCount->getType()->isPointerTy())
2254     BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy,
2255                                                 "backedge.ptrcnt.to.int",
2256                                                 BypassBlock->getTerminator());
2257   Instruction *CheckBCOverflow =
2258       CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount,
2259                       Constant::getAllOnesValue(BackedgeCount->getType()),
2260                       "backedge.overflow", BypassBlock->getTerminator());
2261 
2262   // The loop index does not have to start at Zero. Find the original start
2263   // value from the induction PHI node. If we don't have an induction variable
2264   // then we know that it starts at zero.
2265   Builder.SetInsertPoint(BypassBlock->getTerminator());
2266   Value *StartIdx = ExtendedIdx = OldInduction ?
2267     Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
2268                        IdxTy):
2269     ConstantInt::get(IdxTy, 0);
2270 
2271   // We need an instruction to anchor the overflow check on. StartIdx needs to
2272   // be defined before the overflow check branch. Because the scalar preheader
2273   // is going to merge the start index and so the overflow branch block needs to
2274   // contain a definition of the start index.
2275   Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd(
2276       StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor",
2277       BypassBlock->getTerminator());
2278 
2279   // Count holds the overall loop count (N).
2280   Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2281                                    BypassBlock->getTerminator());
2282 
2283   LoopBypassBlocks.push_back(BypassBlock);
2284 
2285   // Split the single block loop into the two loop structure described above.
2286   BasicBlock *VectorPH =
2287   BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
2288   BasicBlock *VecBody =
2289   VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
2290   BasicBlock *MiddleBlock =
2291   VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
2292   BasicBlock *ScalarPH =
2293   MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
2294 
2295   // Create and register the new vector loop.
2296   Loop* Lp = new Loop();
2297   Loop *ParentLoop = OrigLoop->getParentLoop();
2298 
2299   // Insert the new loop into the loop nest and register the new basic blocks
2300   // before calling any utilities such as SCEV that require valid LoopInfo.
2301   if (ParentLoop) {
2302     ParentLoop->addChildLoop(Lp);
2303     ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
2304     ParentLoop->addBasicBlockToLoop(VectorPH, *LI);
2305     ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
2306   } else {
2307     LI->addTopLevelLoop(Lp);
2308   }
2309   Lp->addBasicBlockToLoop(VecBody, *LI);
2310 
2311   // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
2312   // inside the loop.
2313   Builder.SetInsertPoint(VecBody->getFirstNonPHI());
2314 
2315   // Generate the induction variable.
2316   setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
2317   Induction = Builder.CreatePHI(IdxTy, 2, "index");
2318   // The loop step is equal to the vectorization factor (num of SIMD elements)
2319   // times the unroll factor (num of SIMD instructions).
2320   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
2321 
2322   // This is the IR builder that we use to add all of the logic for bypassing
2323   // the new vector loop.
2324   IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
2325   setDebugLocFromInst(BypassBuilder,
2326                       getDebugLocFromInstOrOperands(OldInduction));
2327 
2328   // We may need to extend the index in case there is a type mismatch.
2329   // We know that the count starts at zero and does not overflow.
2330   if (Count->getType() != IdxTy) {
2331     // The exit count can be of pointer type. Convert it to the correct
2332     // integer type.
2333     if (ExitCount->getType()->isPointerTy())
2334       Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
2335     else
2336       Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
2337   }
2338 
2339   // Add the start index to the loop count to get the new end index.
2340   Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
2341 
2342   // Now we need to generate the expression for N - (N % VF), which is
2343   // the part that the vectorized body will execute.
2344   Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
2345   Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
2346   Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
2347                                                      "end.idx.rnd.down");
2348 
2349   // Now, compare the new count to zero. If it is zero skip the vector loop and
2350   // jump to the scalar loop.
2351   Value *Cmp =
2352       BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero");
2353 
2354   BasicBlock *LastBypassBlock = BypassBlock;
2355 
2356   // Generate code to check that the loops trip count that we computed by adding
2357   // one to the backedge-taken count will not overflow.
2358   {
2359     auto PastOverflowCheck =
2360         std::next(BasicBlock::iterator(OverflowCheckAnchor));
2361     BasicBlock *CheckBlock =
2362       LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked");
2363     if (ParentLoop)
2364       ParentLoop->addBasicBlockToLoop(CheckBlock, *LI);
2365     LoopBypassBlocks.push_back(CheckBlock);
2366     Instruction *OldTerm = LastBypassBlock->getTerminator();
2367     BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm);
2368     OldTerm->eraseFromParent();
2369     LastBypassBlock = CheckBlock;
2370   }
2371 
2372   // Generate the code to check that the strides we assumed to be one are really
2373   // one. We want the new basic block to start at the first instruction in a
2374   // sequence of instructions that form a check.
2375   Instruction *StrideCheck;
2376   Instruction *FirstCheckInst;
2377   std::tie(FirstCheckInst, StrideCheck) =
2378       addStrideCheck(LastBypassBlock->getTerminator());
2379   if (StrideCheck) {
2380     // Create a new block containing the stride check.
2381     BasicBlock *CheckBlock =
2382         LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck");
2383     if (ParentLoop)
2384       ParentLoop->addBasicBlockToLoop(CheckBlock, *LI);
2385     LoopBypassBlocks.push_back(CheckBlock);
2386 
2387     // Replace the branch into the memory check block with a conditional branch
2388     // for the "few elements case".
2389     Instruction *OldTerm = LastBypassBlock->getTerminator();
2390     BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
2391     OldTerm->eraseFromParent();
2392 
2393     Cmp = StrideCheck;
2394     LastBypassBlock = CheckBlock;
2395   }
2396 
2397   // Generate the code that checks in runtime if arrays overlap. We put the
2398   // checks into a separate block to make the more common case of few elements
2399   // faster.
2400   Instruction *MemRuntimeCheck;
2401   std::tie(FirstCheckInst, MemRuntimeCheck) =
2402       addRuntimeCheck(LastBypassBlock->getTerminator());
2403   if (MemRuntimeCheck) {
2404     // Create a new block containing the memory check.
2405     BasicBlock *CheckBlock =
2406         LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck");
2407     if (ParentLoop)
2408       ParentLoop->addBasicBlockToLoop(CheckBlock, *LI);
2409     LoopBypassBlocks.push_back(CheckBlock);
2410 
2411     // Replace the branch into the memory check block with a conditional branch
2412     // for the "few elements case".
2413     Instruction *OldTerm = LastBypassBlock->getTerminator();
2414     BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
2415     OldTerm->eraseFromParent();
2416 
2417     Cmp = MemRuntimeCheck;
2418     LastBypassBlock = CheckBlock;
2419   }
2420 
2421   LastBypassBlock->getTerminator()->eraseFromParent();
2422   BranchInst::Create(MiddleBlock, VectorPH, Cmp,
2423                      LastBypassBlock);
2424 
2425   // We are going to resume the execution of the scalar loop.
2426   // Go over all of the induction variables that we found and fix the
2427   // PHIs that are left in the scalar version of the loop.
2428   // The starting values of PHI nodes depend on the counter of the last
2429   // iteration in the vectorized loop.
2430   // If we come from a bypass edge then we need to start from the original
2431   // start value.
2432 
2433   // This variable saves the new starting index for the scalar loop.
2434   PHINode *ResumeIndex = nullptr;
2435   LoopVectorizationLegality::InductionList::iterator I, E;
2436   LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
2437   // Set builder to point to last bypass block.
2438   BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
2439   for (I = List->begin(), E = List->end(); I != E; ++I) {
2440     PHINode *OrigPhi = I->first;
2441     LoopVectorizationLegality::InductionInfo II = I->second;
2442 
2443     Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
2444     PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
2445                                          MiddleBlock->getTerminator());
2446     // We might have extended the type of the induction variable but we need a
2447     // truncated version for the scalar loop.
2448     PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
2449       PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
2450                       MiddleBlock->getTerminator()) : nullptr;
2451 
2452     // Create phi nodes to merge from the  backedge-taken check block.
2453     PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val",
2454                                            ScalarPH->getTerminator());
2455     BCResumeVal->addIncoming(ResumeVal, MiddleBlock);
2456 
2457     PHINode *BCTruncResumeVal = nullptr;
2458     if (OrigPhi == OldInduction) {
2459       BCTruncResumeVal =
2460           PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val",
2461                           ScalarPH->getTerminator());
2462       BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock);
2463     }
2464 
2465     Value *EndValue = nullptr;
2466     switch (II.IK) {
2467     case LoopVectorizationLegality::IK_NoInduction:
2468       llvm_unreachable("Unknown induction");
2469     case LoopVectorizationLegality::IK_IntInduction: {
2470       // Handle the integer induction counter.
2471       assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
2472 
2473       // We have the canonical induction variable.
2474       if (OrigPhi == OldInduction) {
2475         // Create a truncated version of the resume value for the scalar loop,
2476         // we might have promoted the type to a larger width.
2477         EndValue =
2478           BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
2479         // The new PHI merges the original incoming value, in case of a bypass,
2480         // or the value at the end of the vectorized loop.
2481         for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2482           TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
2483         TruncResumeVal->addIncoming(EndValue, VecBody);
2484 
2485         BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
2486 
2487         // We know what the end value is.
2488         EndValue = IdxEndRoundDown;
2489         // We also know which PHI node holds it.
2490         ResumeIndex = ResumeVal;
2491         break;
2492       }
2493 
2494       // Not the canonical induction variable - add the vector loop count to the
2495       // start value.
2496       Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
2497                                                    II.StartValue->getType(),
2498                                                    "cast.crd");
2499       EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
2500       break;
2501     }
2502     case LoopVectorizationLegality::IK_ReverseIntInduction: {
2503       // Convert the CountRoundDown variable to the PHI size.
2504       Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
2505                                                    II.StartValue->getType(),
2506                                                    "cast.crd");
2507       // Handle reverse integer induction counter.
2508       EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end");
2509       break;
2510     }
2511     case LoopVectorizationLegality::IK_PtrInduction: {
2512       // For pointer induction variables, calculate the offset using
2513       // the end index.
2514       EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown,
2515                                          "ptr.ind.end");
2516       break;
2517     }
2518     case LoopVectorizationLegality::IK_ReversePtrInduction: {
2519       // The value at the end of the loop for the reverse pointer is calculated
2520       // by creating a GEP with a negative index starting from the start value.
2521       Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
2522       Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown,
2523                                               "rev.ind.end");
2524       EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx,
2525                                          "rev.ptr.ind.end");
2526       break;
2527     }
2528     }// end of case
2529 
2530     // The new PHI merges the original incoming value, in case of a bypass,
2531     // or the value at the end of the vectorized loop.
2532     for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) {
2533       if (OrigPhi == OldInduction)
2534         ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
2535       else
2536         ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
2537     }
2538     ResumeVal->addIncoming(EndValue, VecBody);
2539 
2540     // Fix the scalar body counter (PHI node).
2541     unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
2542 
2543     // The old induction's phi node in the scalar body needs the truncated
2544     // value.
2545     if (OrigPhi == OldInduction) {
2546       BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]);
2547       OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal);
2548     } else {
2549       BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
2550       OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
2551     }
2552   }
2553 
2554   // If we are generating a new induction variable then we also need to
2555   // generate the code that calculates the exit value. This value is not
2556   // simply the end of the counter because we may skip the vectorized body
2557   // in case of a runtime check.
2558   if (!OldInduction){
2559     assert(!ResumeIndex && "Unexpected resume value found");
2560     ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
2561                                   MiddleBlock->getTerminator());
2562     for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2563       ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
2564     ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
2565   }
2566 
2567   // Make sure that we found the index where scalar loop needs to continue.
2568   assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
2569          "Invalid resume Index");
2570 
2571   // Add a check in the middle block to see if we have completed
2572   // all of the iterations in the first vector loop.
2573   // If (N - N%VF) == N, then we *don't* need to run the remainder.
2574   Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
2575                                 ResumeIndex, "cmp.n",
2576                                 MiddleBlock->getTerminator());
2577 
2578   BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
2579   // Remove the old terminator.
2580   MiddleBlock->getTerminator()->eraseFromParent();
2581 
2582   // Create i+1 and fill the PHINode.
2583   Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
2584   Induction->addIncoming(StartIdx, VectorPH);
2585   Induction->addIncoming(NextIdx, VecBody);
2586   // Create the compare.
2587   Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
2588   Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
2589 
2590   // Now we have two terminators. Remove the old one from the block.
2591   VecBody->getTerminator()->eraseFromParent();
2592 
2593   // Get ready to start creating new instructions into the vectorized body.
2594   Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
2595 
2596   // Save the state.
2597   LoopVectorPreHeader = VectorPH;
2598   LoopScalarPreHeader = ScalarPH;
2599   LoopMiddleBlock = MiddleBlock;
2600   LoopExitBlock = ExitBlock;
2601   LoopVectorBody.push_back(VecBody);
2602   LoopScalarBody = OldBasicBlock;
2603 
2604   LoopVectorizeHints Hints(Lp, true);
2605   Hints.setAlreadyVectorized();
2606 }
2607 
2608 /// This function returns the identity element (or neutral element) for
2609 /// the operation K.
2610 Constant*
2611 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
2612   switch (K) {
2613   case RK_IntegerXor:
2614   case RK_IntegerAdd:
2615   case RK_IntegerOr:
2616     // Adding, Xoring, Oring zero to a number does not change it.
2617     return ConstantInt::get(Tp, 0);
2618   case RK_IntegerMult:
2619     // Multiplying a number by 1 does not change it.
2620     return ConstantInt::get(Tp, 1);
2621   case RK_IntegerAnd:
2622     // AND-ing a number with an all-1 value does not change it.
2623     return ConstantInt::get(Tp, -1, true);
2624   case  RK_FloatMult:
2625     // Multiplying a number by 1 does not change it.
2626     return ConstantFP::get(Tp, 1.0L);
2627   case  RK_FloatAdd:
2628     // Adding zero to a number does not change it.
2629     return ConstantFP::get(Tp, 0.0L);
2630   default:
2631     llvm_unreachable("Unknown reduction kind");
2632   }
2633 }
2634 
2635 /// This function translates the reduction kind to an LLVM binary operator.
2636 static unsigned
2637 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
2638   switch (Kind) {
2639     case LoopVectorizationLegality::RK_IntegerAdd:
2640       return Instruction::Add;
2641     case LoopVectorizationLegality::RK_IntegerMult:
2642       return Instruction::Mul;
2643     case LoopVectorizationLegality::RK_IntegerOr:
2644       return Instruction::Or;
2645     case LoopVectorizationLegality::RK_IntegerAnd:
2646       return Instruction::And;
2647     case LoopVectorizationLegality::RK_IntegerXor:
2648       return Instruction::Xor;
2649     case LoopVectorizationLegality::RK_FloatMult:
2650       return Instruction::FMul;
2651     case LoopVectorizationLegality::RK_FloatAdd:
2652       return Instruction::FAdd;
2653     case LoopVectorizationLegality::RK_IntegerMinMax:
2654       return Instruction::ICmp;
2655     case LoopVectorizationLegality::RK_FloatMinMax:
2656       return Instruction::FCmp;
2657     default:
2658       llvm_unreachable("Unknown reduction operation");
2659   }
2660 }
2661 
2662 Value *createMinMaxOp(IRBuilder<> &Builder,
2663                       LoopVectorizationLegality::MinMaxReductionKind RK,
2664                       Value *Left,
2665                       Value *Right) {
2666   CmpInst::Predicate P = CmpInst::ICMP_NE;
2667   switch (RK) {
2668   default:
2669     llvm_unreachable("Unknown min/max reduction kind");
2670   case LoopVectorizationLegality::MRK_UIntMin:
2671     P = CmpInst::ICMP_ULT;
2672     break;
2673   case LoopVectorizationLegality::MRK_UIntMax:
2674     P = CmpInst::ICMP_UGT;
2675     break;
2676   case LoopVectorizationLegality::MRK_SIntMin:
2677     P = CmpInst::ICMP_SLT;
2678     break;
2679   case LoopVectorizationLegality::MRK_SIntMax:
2680     P = CmpInst::ICMP_SGT;
2681     break;
2682   case LoopVectorizationLegality::MRK_FloatMin:
2683     P = CmpInst::FCMP_OLT;
2684     break;
2685   case LoopVectorizationLegality::MRK_FloatMax:
2686     P = CmpInst::FCMP_OGT;
2687     break;
2688   }
2689 
2690   Value *Cmp;
2691   if (RK == LoopVectorizationLegality::MRK_FloatMin ||
2692       RK == LoopVectorizationLegality::MRK_FloatMax)
2693     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
2694   else
2695     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
2696 
2697   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
2698   return Select;
2699 }
2700 
2701 namespace {
2702 struct CSEDenseMapInfo {
2703   static bool canHandle(Instruction *I) {
2704     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
2705            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
2706   }
2707   static inline Instruction *getEmptyKey() {
2708     return DenseMapInfo<Instruction *>::getEmptyKey();
2709   }
2710   static inline Instruction *getTombstoneKey() {
2711     return DenseMapInfo<Instruction *>::getTombstoneKey();
2712   }
2713   static unsigned getHashValue(Instruction *I) {
2714     assert(canHandle(I) && "Unknown instruction!");
2715     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
2716                                                            I->value_op_end()));
2717   }
2718   static bool isEqual(Instruction *LHS, Instruction *RHS) {
2719     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2720         LHS == getTombstoneKey() || RHS == getTombstoneKey())
2721       return LHS == RHS;
2722     return LHS->isIdenticalTo(RHS);
2723   }
2724 };
2725 }
2726 
2727 /// \brief Check whether this block is a predicated block.
2728 /// Due to if predication of stores we might create a sequence of "if(pred) a[i]
2729 /// = ...;  " blocks. We start with one vectorized basic block. For every
2730 /// conditional block we split this vectorized block. Therefore, every second
2731 /// block will be a predicated one.
2732 static bool isPredicatedBlock(unsigned BlockNum) {
2733   return BlockNum % 2;
2734 }
2735 
2736 ///\brief Perform cse of induction variable instructions.
2737 static void cse(SmallVector<BasicBlock *, 4> &BBs) {
2738   // Perform simple cse.
2739   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
2740   for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
2741     BasicBlock *BB = BBs[i];
2742     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2743       Instruction *In = I++;
2744 
2745       if (!CSEDenseMapInfo::canHandle(In))
2746         continue;
2747 
2748       // Check if we can replace this instruction with any of the
2749       // visited instructions.
2750       if (Instruction *V = CSEMap.lookup(In)) {
2751         In->replaceAllUsesWith(V);
2752         In->eraseFromParent();
2753         continue;
2754       }
2755       // Ignore instructions in conditional blocks. We create "if (pred) a[i] =
2756       // ...;" blocks for predicated stores. Every second block is a predicated
2757       // block.
2758       if (isPredicatedBlock(i))
2759         continue;
2760 
2761       CSEMap[In] = In;
2762     }
2763   }
2764 }
2765 
2766 /// \brief Adds a 'fast' flag to floating point operations.
2767 static Value *addFastMathFlag(Value *V) {
2768   if (isa<FPMathOperator>(V)){
2769     FastMathFlags Flags;
2770     Flags.setUnsafeAlgebra();
2771     cast<Instruction>(V)->setFastMathFlags(Flags);
2772   }
2773   return V;
2774 }
2775 
2776 void InnerLoopVectorizer::vectorizeLoop() {
2777   //===------------------------------------------------===//
2778   //
2779   // Notice: any optimization or new instruction that go
2780   // into the code below should be also be implemented in
2781   // the cost-model.
2782   //
2783   //===------------------------------------------------===//
2784   Constant *Zero = Builder.getInt32(0);
2785 
2786   // In order to support reduction variables we need to be able to vectorize
2787   // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
2788   // stages. First, we create a new vector PHI node with no incoming edges.
2789   // We use this value when we vectorize all of the instructions that use the
2790   // PHI. Next, after all of the instructions in the block are complete we
2791   // add the new incoming edges to the PHI. At this point all of the
2792   // instructions in the basic block are vectorized, so we can use them to
2793   // construct the PHI.
2794   PhiVector RdxPHIsToFix;
2795 
2796   // Scan the loop in a topological order to ensure that defs are vectorized
2797   // before users.
2798   LoopBlocksDFS DFS(OrigLoop);
2799   DFS.perform(LI);
2800 
2801   // Vectorize all of the blocks in the original loop.
2802   for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
2803        be = DFS.endRPO(); bb != be; ++bb)
2804     vectorizeBlockInLoop(*bb, &RdxPHIsToFix);
2805 
2806   // At this point every instruction in the original loop is widened to
2807   // a vector form. We are almost done. Now, we need to fix the PHI nodes
2808   // that we vectorized. The PHI nodes are currently empty because we did
2809   // not want to introduce cycles. Notice that the remaining PHI nodes
2810   // that we need to fix are reduction variables.
2811 
2812   // Create the 'reduced' values for each of the induction vars.
2813   // The reduced values are the vector values that we scalarize and combine
2814   // after the loop is finished.
2815   for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
2816        it != e; ++it) {
2817     PHINode *RdxPhi = *it;
2818     assert(RdxPhi && "Unable to recover vectorized PHI");
2819 
2820     // Find the reduction variable descriptor.
2821     assert(Legal->getReductionVars()->count(RdxPhi) &&
2822            "Unable to find the reduction variable");
2823     LoopVectorizationLegality::ReductionDescriptor RdxDesc =
2824     (*Legal->getReductionVars())[RdxPhi];
2825 
2826     setDebugLocFromInst(Builder, RdxDesc.StartValue);
2827 
2828     // We need to generate a reduction vector from the incoming scalar.
2829     // To do so, we need to generate the 'identity' vector and override
2830     // one of the elements with the incoming scalar reduction. We need
2831     // to do it in the vector-loop preheader.
2832     Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
2833 
2834     // This is the vector-clone of the value that leaves the loop.
2835     VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
2836     Type *VecTy = VectorExit[0]->getType();
2837 
2838     // Find the reduction identity variable. Zero for addition, or, xor,
2839     // one for multiplication, -1 for And.
2840     Value *Identity;
2841     Value *VectorStart;
2842     if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
2843         RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
2844       // MinMax reduction have the start value as their identify.
2845       if (VF == 1) {
2846         VectorStart = Identity = RdxDesc.StartValue;
2847       } else {
2848         VectorStart = Identity = Builder.CreateVectorSplat(VF,
2849                                                            RdxDesc.StartValue,
2850                                                            "minmax.ident");
2851       }
2852     } else {
2853       // Handle other reduction kinds:
2854       Constant *Iden =
2855       LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
2856                                                       VecTy->getScalarType());
2857       if (VF == 1) {
2858         Identity = Iden;
2859         // This vector is the Identity vector where the first element is the
2860         // incoming scalar reduction.
2861         VectorStart = RdxDesc.StartValue;
2862       } else {
2863         Identity = ConstantVector::getSplat(VF, Iden);
2864 
2865         // This vector is the Identity vector where the first element is the
2866         // incoming scalar reduction.
2867         VectorStart = Builder.CreateInsertElement(Identity,
2868                                                   RdxDesc.StartValue, Zero);
2869       }
2870     }
2871 
2872     // Fix the vector-loop phi.
2873 
2874     // Reductions do not have to start at zero. They can start with
2875     // any loop invariant values.
2876     VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
2877     BasicBlock *Latch = OrigLoop->getLoopLatch();
2878     Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
2879     VectorParts &Val = getVectorValue(LoopVal);
2880     for (unsigned part = 0; part < UF; ++part) {
2881       // Make sure to add the reduction stat value only to the
2882       // first unroll part.
2883       Value *StartVal = (part == 0) ? VectorStart : Identity;
2884       cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal,
2885                                                   LoopVectorPreHeader);
2886       cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part],
2887                                                   LoopVectorBody.back());
2888     }
2889 
2890     // Before each round, move the insertion point right between
2891     // the PHIs and the values we are going to write.
2892     // This allows us to write both PHINodes and the extractelement
2893     // instructions.
2894     Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
2895 
2896     VectorParts RdxParts;
2897     setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
2898     for (unsigned part = 0; part < UF; ++part) {
2899       // This PHINode contains the vectorized reduction variable, or
2900       // the initial value vector, if we bypass the vector loop.
2901       VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
2902       PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
2903       Value *StartVal = (part == 0) ? VectorStart : Identity;
2904       for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2905         NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
2906       NewPhi->addIncoming(RdxExitVal[part],
2907                           LoopVectorBody.back());
2908       RdxParts.push_back(NewPhi);
2909     }
2910 
2911     // Reduce all of the unrolled parts into a single vector.
2912     Value *ReducedPartRdx = RdxParts[0];
2913     unsigned Op = getReductionBinOp(RdxDesc.Kind);
2914     setDebugLocFromInst(Builder, ReducedPartRdx);
2915     for (unsigned part = 1; part < UF; ++part) {
2916       if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2917         // Floating point operations had to be 'fast' to enable the reduction.
2918         ReducedPartRdx = addFastMathFlag(
2919             Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
2920                                 ReducedPartRdx, "bin.rdx"));
2921       else
2922         ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
2923                                         ReducedPartRdx, RdxParts[part]);
2924     }
2925 
2926     if (VF > 1) {
2927       // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
2928       // and vector ops, reducing the set of values being computed by half each
2929       // round.
2930       assert(isPowerOf2_32(VF) &&
2931              "Reduction emission only supported for pow2 vectors!");
2932       Value *TmpVec = ReducedPartRdx;
2933       SmallVector<Constant*, 32> ShuffleMask(VF, nullptr);
2934       for (unsigned i = VF; i != 1; i >>= 1) {
2935         // Move the upper half of the vector to the lower half.
2936         for (unsigned j = 0; j != i/2; ++j)
2937           ShuffleMask[j] = Builder.getInt32(i/2 + j);
2938 
2939         // Fill the rest of the mask with undef.
2940         std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
2941                   UndefValue::get(Builder.getInt32Ty()));
2942 
2943         Value *Shuf =
2944         Builder.CreateShuffleVector(TmpVec,
2945                                     UndefValue::get(TmpVec->getType()),
2946                                     ConstantVector::get(ShuffleMask),
2947                                     "rdx.shuf");
2948 
2949         if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2950           // Floating point operations had to be 'fast' to enable the reduction.
2951           TmpVec = addFastMathFlag(Builder.CreateBinOp(
2952               (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
2953         else
2954           TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
2955       }
2956 
2957       // The result is in the first element of the vector.
2958       ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
2959                                                     Builder.getInt32(0));
2960     }
2961 
2962     // Create a phi node that merges control-flow from the backedge-taken check
2963     // block and the middle block.
2964     PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx",
2965                                           LoopScalarPreHeader->getTerminator());
2966     BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]);
2967     BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
2968 
2969     // Now, we need to fix the users of the reduction variable
2970     // inside and outside of the scalar remainder loop.
2971     // We know that the loop is in LCSSA form. We need to update the
2972     // PHI nodes in the exit blocks.
2973     for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2974          LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2975       PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2976       if (!LCSSAPhi) break;
2977 
2978       // All PHINodes need to have a single entry edge, or two if
2979       // we already fixed them.
2980       assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
2981 
2982       // We found our reduction value exit-PHI. Update it with the
2983       // incoming bypass edge.
2984       if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
2985         // Add an edge coming from the bypass.
2986         LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
2987         break;
2988       }
2989     }// end of the LCSSA phi scan.
2990 
2991     // Fix the scalar loop reduction variable with the incoming reduction sum
2992     // from the vector body and from the backedge value.
2993     int IncomingEdgeBlockIdx =
2994     (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
2995     assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
2996     // Pick the other block.
2997     int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
2998     (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
2999     (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
3000   }// end of for each redux variable.
3001 
3002   fixLCSSAPHIs();
3003 
3004   // Remove redundant induction instructions.
3005   cse(LoopVectorBody);
3006 }
3007 
3008 void InnerLoopVectorizer::fixLCSSAPHIs() {
3009   for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
3010        LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
3011     PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
3012     if (!LCSSAPhi) break;
3013     if (LCSSAPhi->getNumIncomingValues() == 1)
3014       LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
3015                             LoopMiddleBlock);
3016   }
3017 }
3018 
3019 InnerLoopVectorizer::VectorParts
3020 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
3021   assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
3022          "Invalid edge");
3023 
3024   // Look for cached value.
3025   std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
3026   EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
3027   if (ECEntryIt != MaskCache.end())
3028     return ECEntryIt->second;
3029 
3030   VectorParts SrcMask = createBlockInMask(Src);
3031 
3032   // The terminator has to be a branch inst!
3033   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
3034   assert(BI && "Unexpected terminator found");
3035 
3036   if (BI->isConditional()) {
3037     VectorParts EdgeMask = getVectorValue(BI->getCondition());
3038 
3039     if (BI->getSuccessor(0) != Dst)
3040       for (unsigned part = 0; part < UF; ++part)
3041         EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
3042 
3043     for (unsigned part = 0; part < UF; ++part)
3044       EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
3045 
3046     MaskCache[Edge] = EdgeMask;
3047     return EdgeMask;
3048   }
3049 
3050   MaskCache[Edge] = SrcMask;
3051   return SrcMask;
3052 }
3053 
3054 InnerLoopVectorizer::VectorParts
3055 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
3056   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
3057 
3058   // Loop incoming mask is all-one.
3059   if (OrigLoop->getHeader() == BB) {
3060     Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
3061     return getVectorValue(C);
3062   }
3063 
3064   // This is the block mask. We OR all incoming edges, and with zero.
3065   Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
3066   VectorParts BlockMask = getVectorValue(Zero);
3067 
3068   // For each pred:
3069   for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
3070     VectorParts EM = createEdgeMask(*it, BB);
3071     for (unsigned part = 0; part < UF; ++part)
3072       BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
3073   }
3074 
3075   return BlockMask;
3076 }
3077 
3078 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
3079                                               InnerLoopVectorizer::VectorParts &Entry,
3080                                               unsigned UF, unsigned VF, PhiVector *PV) {
3081   PHINode* P = cast<PHINode>(PN);
3082   // Handle reduction variables:
3083   if (Legal->getReductionVars()->count(P)) {
3084     for (unsigned part = 0; part < UF; ++part) {
3085       // This is phase one of vectorizing PHIs.
3086       Type *VecTy = (VF == 1) ? PN->getType() :
3087       VectorType::get(PN->getType(), VF);
3088       Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
3089                                     LoopVectorBody.back()-> getFirstInsertionPt());
3090     }
3091     PV->push_back(P);
3092     return;
3093   }
3094 
3095   setDebugLocFromInst(Builder, P);
3096   // Check for PHI nodes that are lowered to vector selects.
3097   if (P->getParent() != OrigLoop->getHeader()) {
3098     // We know that all PHIs in non-header blocks are converted into
3099     // selects, so we don't have to worry about the insertion order and we
3100     // can just use the builder.
3101     // At this point we generate the predication tree. There may be
3102     // duplications since this is a simple recursive scan, but future
3103     // optimizations will clean it up.
3104 
3105     unsigned NumIncoming = P->getNumIncomingValues();
3106 
3107     // Generate a sequence of selects of the form:
3108     // SELECT(Mask3, In3,
3109     //      SELECT(Mask2, In2,
3110     //                   ( ...)))
3111     for (unsigned In = 0; In < NumIncoming; In++) {
3112       VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
3113                                         P->getParent());
3114       VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
3115 
3116       for (unsigned part = 0; part < UF; ++part) {
3117         // We might have single edge PHIs (blocks) - use an identity
3118         // 'select' for the first PHI operand.
3119         if (In == 0)
3120           Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
3121                                              In0[part]);
3122         else
3123           // Select between the current value and the previous incoming edge
3124           // based on the incoming mask.
3125           Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
3126                                              Entry[part], "predphi");
3127       }
3128     }
3129     return;
3130   }
3131 
3132   // This PHINode must be an induction variable.
3133   // Make sure that we know about it.
3134   assert(Legal->getInductionVars()->count(P) &&
3135          "Not an induction variable");
3136 
3137   LoopVectorizationLegality::InductionInfo II =
3138   Legal->getInductionVars()->lookup(P);
3139 
3140   switch (II.IK) {
3141     case LoopVectorizationLegality::IK_NoInduction:
3142       llvm_unreachable("Unknown induction");
3143     case LoopVectorizationLegality::IK_IntInduction: {
3144       assert(P->getType() == II.StartValue->getType() && "Types must match");
3145       Type *PhiTy = P->getType();
3146       Value *Broadcasted;
3147       if (P == OldInduction) {
3148         // Handle the canonical induction variable. We might have had to
3149         // extend the type.
3150         Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
3151       } else {
3152         // Handle other induction variables that are now based on the
3153         // canonical one.
3154         Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
3155                                                  "normalized.idx");
3156         NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
3157         Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
3158                                         "offset.idx");
3159       }
3160       Broadcasted = getBroadcastInstrs(Broadcasted);
3161       // After broadcasting the induction variable we need to make the vector
3162       // consecutive by adding 0, 1, 2, etc.
3163       for (unsigned part = 0; part < UF; ++part)
3164         Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
3165       return;
3166     }
3167     case LoopVectorizationLegality::IK_ReverseIntInduction:
3168     case LoopVectorizationLegality::IK_PtrInduction:
3169     case LoopVectorizationLegality::IK_ReversePtrInduction:
3170       // Handle reverse integer and pointer inductions.
3171       Value *StartIdx = ExtendedIdx;
3172       // This is the normalized GEP that starts counting at zero.
3173       Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
3174                                                "normalized.idx");
3175 
3176       // Handle the reverse integer induction variable case.
3177       if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
3178         IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
3179         Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
3180                                                "resize.norm.idx");
3181         Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
3182                                                "reverse.idx");
3183 
3184         // This is a new value so do not hoist it out.
3185         Value *Broadcasted = getBroadcastInstrs(ReverseInd);
3186         // After broadcasting the induction variable we need to make the
3187         // vector consecutive by adding  ... -3, -2, -1, 0.
3188         for (unsigned part = 0; part < UF; ++part)
3189           Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
3190                                              true);
3191         return;
3192       }
3193 
3194       // Handle the pointer induction variable case.
3195       assert(P->getType()->isPointerTy() && "Unexpected type.");
3196 
3197       // Is this a reverse induction ptr or a consecutive induction ptr.
3198       bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
3199                       II.IK);
3200 
3201       // This is the vector of results. Notice that we don't generate
3202       // vector geps because scalar geps result in better code.
3203       for (unsigned part = 0; part < UF; ++part) {
3204         if (VF == 1) {
3205           int EltIndex = (part) * (Reverse ? -1 : 1);
3206           Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
3207           Value *GlobalIdx;
3208           if (Reverse)
3209             GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
3210           else
3211             GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
3212 
3213           Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
3214                                              "next.gep");
3215           Entry[part] = SclrGep;
3216           continue;
3217         }
3218 
3219         Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
3220         for (unsigned int i = 0; i < VF; ++i) {
3221           int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
3222           Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
3223           Value *GlobalIdx;
3224           if (!Reverse)
3225             GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
3226           else
3227             GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
3228 
3229           Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
3230                                              "next.gep");
3231           VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
3232                                                Builder.getInt32(i),
3233                                                "insert.gep");
3234         }
3235         Entry[part] = VecVal;
3236       }
3237       return;
3238   }
3239 }
3240 
3241 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
3242   // For each instruction in the old loop.
3243   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
3244     VectorParts &Entry = WidenMap.get(it);
3245     switch (it->getOpcode()) {
3246     case Instruction::Br:
3247       // Nothing to do for PHIs and BR, since we already took care of the
3248       // loop control flow instructions.
3249       continue;
3250     case Instruction::PHI:{
3251       // Vectorize PHINodes.
3252       widenPHIInstruction(it, Entry, UF, VF, PV);
3253       continue;
3254     }// End of PHI.
3255 
3256     case Instruction::Add:
3257     case Instruction::FAdd:
3258     case Instruction::Sub:
3259     case Instruction::FSub:
3260     case Instruction::Mul:
3261     case Instruction::FMul:
3262     case Instruction::UDiv:
3263     case Instruction::SDiv:
3264     case Instruction::FDiv:
3265     case Instruction::URem:
3266     case Instruction::SRem:
3267     case Instruction::FRem:
3268     case Instruction::Shl:
3269     case Instruction::LShr:
3270     case Instruction::AShr:
3271     case Instruction::And:
3272     case Instruction::Or:
3273     case Instruction::Xor: {
3274       // Just widen binops.
3275       BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
3276       setDebugLocFromInst(Builder, BinOp);
3277       VectorParts &A = getVectorValue(it->getOperand(0));
3278       VectorParts &B = getVectorValue(it->getOperand(1));
3279 
3280       // Use this vector value for all users of the original instruction.
3281       for (unsigned Part = 0; Part < UF; ++Part) {
3282         Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
3283 
3284         if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
3285           VecOp->copyIRFlags(BinOp);
3286 
3287         Entry[Part] = V;
3288       }
3289 
3290       propagateMetadata(Entry, it);
3291       break;
3292     }
3293     case Instruction::Select: {
3294       // Widen selects.
3295       // If the selector is loop invariant we can create a select
3296       // instruction with a scalar condition. Otherwise, use vector-select.
3297       bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
3298                                                OrigLoop);
3299       setDebugLocFromInst(Builder, it);
3300 
3301       // The condition can be loop invariant  but still defined inside the
3302       // loop. This means that we can't just use the original 'cond' value.
3303       // We have to take the 'vectorized' value and pick the first lane.
3304       // Instcombine will make this a no-op.
3305       VectorParts &Cond = getVectorValue(it->getOperand(0));
3306       VectorParts &Op0  = getVectorValue(it->getOperand(1));
3307       VectorParts &Op1  = getVectorValue(it->getOperand(2));
3308 
3309       Value *ScalarCond = (VF == 1) ? Cond[0] :
3310         Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
3311 
3312       for (unsigned Part = 0; Part < UF; ++Part) {
3313         Entry[Part] = Builder.CreateSelect(
3314           InvariantCond ? ScalarCond : Cond[Part],
3315           Op0[Part],
3316           Op1[Part]);
3317       }
3318 
3319       propagateMetadata(Entry, it);
3320       break;
3321     }
3322 
3323     case Instruction::ICmp:
3324     case Instruction::FCmp: {
3325       // Widen compares. Generate vector compares.
3326       bool FCmp = (it->getOpcode() == Instruction::FCmp);
3327       CmpInst *Cmp = dyn_cast<CmpInst>(it);
3328       setDebugLocFromInst(Builder, it);
3329       VectorParts &A = getVectorValue(it->getOperand(0));
3330       VectorParts &B = getVectorValue(it->getOperand(1));
3331       for (unsigned Part = 0; Part < UF; ++Part) {
3332         Value *C = nullptr;
3333         if (FCmp)
3334           C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
3335         else
3336           C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
3337         Entry[Part] = C;
3338       }
3339 
3340       propagateMetadata(Entry, it);
3341       break;
3342     }
3343 
3344     case Instruction::Store:
3345     case Instruction::Load:
3346       vectorizeMemoryInstruction(it);
3347         break;
3348     case Instruction::ZExt:
3349     case Instruction::SExt:
3350     case Instruction::FPToUI:
3351     case Instruction::FPToSI:
3352     case Instruction::FPExt:
3353     case Instruction::PtrToInt:
3354     case Instruction::IntToPtr:
3355     case Instruction::SIToFP:
3356     case Instruction::UIToFP:
3357     case Instruction::Trunc:
3358     case Instruction::FPTrunc:
3359     case Instruction::BitCast: {
3360       CastInst *CI = dyn_cast<CastInst>(it);
3361       setDebugLocFromInst(Builder, it);
3362       /// Optimize the special case where the source is the induction
3363       /// variable. Notice that we can only optimize the 'trunc' case
3364       /// because: a. FP conversions lose precision, b. sext/zext may wrap,
3365       /// c. other casts depend on pointer size.
3366       if (CI->getOperand(0) == OldInduction &&
3367           it->getOpcode() == Instruction::Trunc) {
3368         Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
3369                                                CI->getType());
3370         Value *Broadcasted = getBroadcastInstrs(ScalarCast);
3371         for (unsigned Part = 0; Part < UF; ++Part)
3372           Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
3373         propagateMetadata(Entry, it);
3374         break;
3375       }
3376       /// Vectorize casts.
3377       Type *DestTy = (VF == 1) ? CI->getType() :
3378                                  VectorType::get(CI->getType(), VF);
3379 
3380       VectorParts &A = getVectorValue(it->getOperand(0));
3381       for (unsigned Part = 0; Part < UF; ++Part)
3382         Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
3383       propagateMetadata(Entry, it);
3384       break;
3385     }
3386 
3387     case Instruction::Call: {
3388       // Ignore dbg intrinsics.
3389       if (isa<DbgInfoIntrinsic>(it))
3390         break;
3391       setDebugLocFromInst(Builder, it);
3392 
3393       Module *M = BB->getParent()->getParent();
3394       CallInst *CI = cast<CallInst>(it);
3395       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
3396       assert(ID && "Not an intrinsic call!");
3397       switch (ID) {
3398       case Intrinsic::assume:
3399       case Intrinsic::lifetime_end:
3400       case Intrinsic::lifetime_start:
3401         scalarizeInstruction(it);
3402         break;
3403       default:
3404         bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1);
3405         for (unsigned Part = 0; Part < UF; ++Part) {
3406           SmallVector<Value *, 4> Args;
3407           for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
3408             if (HasScalarOpd && i == 1) {
3409               Args.push_back(CI->getArgOperand(i));
3410               continue;
3411             }
3412             VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
3413             Args.push_back(Arg[Part]);
3414           }
3415           Type *Tys[] = {CI->getType()};
3416           if (VF > 1)
3417             Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF);
3418 
3419           Function *F = Intrinsic::getDeclaration(M, ID, Tys);
3420           Entry[Part] = Builder.CreateCall(F, Args);
3421         }
3422 
3423         propagateMetadata(Entry, it);
3424         break;
3425       }
3426       break;
3427     }
3428 
3429     default:
3430       // All other instructions are unsupported. Scalarize them.
3431       scalarizeInstruction(it);
3432       break;
3433     }// end of switch.
3434   }// end of for_each instr.
3435 }
3436 
3437 void InnerLoopVectorizer::updateAnalysis() {
3438   // Forget the original basic block.
3439   SE->forgetLoop(OrigLoop);
3440 
3441   // Update the dominator tree information.
3442   assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
3443          "Entry does not dominate exit.");
3444 
3445   for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
3446     DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
3447   DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
3448 
3449   // Due to if predication of stores we might create a sequence of "if(pred)
3450   // a[i] = ...;  " blocks.
3451   for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) {
3452     if (i == 0)
3453       DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader);
3454     else if (isPredicatedBlock(i)) {
3455       DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]);
3456     } else {
3457       DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]);
3458     }
3459   }
3460 
3461   DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]);
3462   DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
3463   DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
3464   DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
3465 
3466   DEBUG(DT->verifyDomTree());
3467 }
3468 
3469 /// \brief Check whether it is safe to if-convert this phi node.
3470 ///
3471 /// Phi nodes with constant expressions that can trap are not safe to if
3472 /// convert.
3473 static bool canIfConvertPHINodes(BasicBlock *BB) {
3474   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
3475     PHINode *Phi = dyn_cast<PHINode>(I);
3476     if (!Phi)
3477       return true;
3478     for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p)
3479       if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p)))
3480         if (C->canTrap())
3481           return false;
3482   }
3483   return true;
3484 }
3485 
3486 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
3487   if (!EnableIfConversion) {
3488     emitAnalysis(Report() << "if-conversion is disabled");
3489     return false;
3490   }
3491 
3492   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
3493 
3494   // A list of pointers that we can safely read and write to.
3495   SmallPtrSet<Value *, 8> SafePointes;
3496 
3497   // Collect safe addresses.
3498   for (Loop::block_iterator BI = TheLoop->block_begin(),
3499          BE = TheLoop->block_end(); BI != BE; ++BI) {
3500     BasicBlock *BB = *BI;
3501 
3502     if (blockNeedsPredication(BB))
3503       continue;
3504 
3505     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
3506       if (LoadInst *LI = dyn_cast<LoadInst>(I))
3507         SafePointes.insert(LI->getPointerOperand());
3508       else if (StoreInst *SI = dyn_cast<StoreInst>(I))
3509         SafePointes.insert(SI->getPointerOperand());
3510     }
3511   }
3512 
3513   // Collect the blocks that need predication.
3514   BasicBlock *Header = TheLoop->getHeader();
3515   for (Loop::block_iterator BI = TheLoop->block_begin(),
3516          BE = TheLoop->block_end(); BI != BE; ++BI) {
3517     BasicBlock *BB = *BI;
3518 
3519     // We don't support switch statements inside loops.
3520     if (!isa<BranchInst>(BB->getTerminator())) {
3521       emitAnalysis(Report(BB->getTerminator())
3522                    << "loop contains a switch statement");
3523       return false;
3524     }
3525 
3526     // We must be able to predicate all blocks that need to be predicated.
3527     if (blockNeedsPredication(BB)) {
3528       if (!blockCanBePredicated(BB, SafePointes)) {
3529         emitAnalysis(Report(BB->getTerminator())
3530                      << "control flow cannot be substituted for a select");
3531         return false;
3532       }
3533     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
3534       emitAnalysis(Report(BB->getTerminator())
3535                    << "control flow cannot be substituted for a select");
3536       return false;
3537     }
3538   }
3539 
3540   // We can if-convert this loop.
3541   return true;
3542 }
3543 
3544 bool LoopVectorizationLegality::canVectorize() {
3545   // We must have a loop in canonical form. Loops with indirectbr in them cannot
3546   // be canonicalized.
3547   if (!TheLoop->getLoopPreheader()) {
3548     emitAnalysis(
3549         Report() << "loop control flow is not understood by vectorizer");
3550     return false;
3551   }
3552 
3553   // We can only vectorize innermost loops.
3554   if (!TheLoop->getSubLoopsVector().empty()) {
3555     emitAnalysis(Report() << "loop is not the innermost loop");
3556     return false;
3557   }
3558 
3559   // We must have a single backedge.
3560   if (TheLoop->getNumBackEdges() != 1) {
3561     emitAnalysis(
3562         Report() << "loop control flow is not understood by vectorizer");
3563     return false;
3564   }
3565 
3566   // We must have a single exiting block.
3567   if (!TheLoop->getExitingBlock()) {
3568     emitAnalysis(
3569         Report() << "loop control flow is not understood by vectorizer");
3570     return false;
3571   }
3572 
3573   // We only handle bottom-tested loops, i.e. loop in which the condition is
3574   // checked at the end of each iteration. With that we can assume that all
3575   // instructions in the loop are executed the same number of times.
3576   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
3577     emitAnalysis(
3578         Report() << "loop control flow is not understood by vectorizer");
3579     return false;
3580   }
3581 
3582   // We need to have a loop header.
3583   DEBUG(dbgs() << "LV: Found a loop: " <<
3584         TheLoop->getHeader()->getName() << '\n');
3585 
3586   // Check if we can if-convert non-single-bb loops.
3587   unsigned NumBlocks = TheLoop->getNumBlocks();
3588   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
3589     DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
3590     return false;
3591   }
3592 
3593   // ScalarEvolution needs to be able to find the exit count.
3594   const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
3595   if (ExitCount == SE->getCouldNotCompute()) {
3596     emitAnalysis(Report() << "could not determine number of loop iterations");
3597     DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
3598     return false;
3599   }
3600 
3601   // Check if we can vectorize the instructions and CFG in this loop.
3602   if (!canVectorizeInstrs()) {
3603     DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
3604     return false;
3605   }
3606 
3607   // Go over each instruction and look at memory deps.
3608   if (!canVectorizeMemory()) {
3609     DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
3610     return false;
3611   }
3612 
3613   // Collect all of the variables that remain uniform after vectorization.
3614   collectLoopUniforms();
3615 
3616   DEBUG(dbgs() << "LV: We can vectorize this loop" <<
3617         (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
3618         <<"!\n");
3619 
3620   // Okay! We can vectorize. At this point we don't have any other mem analysis
3621   // which may limit our maximum vectorization factor, so just return true with
3622   // no restrictions.
3623   return true;
3624 }
3625 
3626 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
3627   if (Ty->isPointerTy())
3628     return DL.getIntPtrType(Ty);
3629 
3630   // It is possible that char's or short's overflow when we ask for the loop's
3631   // trip count, work around this by changing the type size.
3632   if (Ty->getScalarSizeInBits() < 32)
3633     return Type::getInt32Ty(Ty->getContext());
3634 
3635   return Ty;
3636 }
3637 
3638 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
3639   Ty0 = convertPointerToIntegerType(DL, Ty0);
3640   Ty1 = convertPointerToIntegerType(DL, Ty1);
3641   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
3642     return Ty0;
3643   return Ty1;
3644 }
3645 
3646 /// \brief Check that the instruction has outside loop users and is not an
3647 /// identified reduction variable.
3648 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
3649                                SmallPtrSetImpl<Value *> &Reductions) {
3650   // Reduction instructions are allowed to have exit users. All other
3651   // instructions must not have external users.
3652   if (!Reductions.count(Inst))
3653     //Check that all of the users of the loop are inside the BB.
3654     for (User *U : Inst->users()) {
3655       Instruction *UI = cast<Instruction>(U);
3656       // This user may be a reduction exit value.
3657       if (!TheLoop->contains(UI)) {
3658         DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
3659         return true;
3660       }
3661     }
3662   return false;
3663 }
3664 
3665 bool LoopVectorizationLegality::canVectorizeInstrs() {
3666   BasicBlock *PreHeader = TheLoop->getLoopPreheader();
3667   BasicBlock *Header = TheLoop->getHeader();
3668 
3669   // Look for the attribute signaling the absence of NaNs.
3670   Function &F = *Header->getParent();
3671   if (F.hasFnAttribute("no-nans-fp-math"))
3672     HasFunNoNaNAttr = F.getAttributes().getAttribute(
3673       AttributeSet::FunctionIndex,
3674       "no-nans-fp-math").getValueAsString() == "true";
3675 
3676   // For each block in the loop.
3677   for (Loop::block_iterator bb = TheLoop->block_begin(),
3678        be = TheLoop->block_end(); bb != be; ++bb) {
3679 
3680     // Scan the instructions in the block and look for hazards.
3681     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
3682          ++it) {
3683 
3684       if (PHINode *Phi = dyn_cast<PHINode>(it)) {
3685         Type *PhiTy = Phi->getType();
3686         // Check that this PHI type is allowed.
3687         if (!PhiTy->isIntegerTy() &&
3688             !PhiTy->isFloatingPointTy() &&
3689             !PhiTy->isPointerTy()) {
3690           emitAnalysis(Report(it)
3691                        << "loop control flow is not understood by vectorizer");
3692           DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
3693           return false;
3694         }
3695 
3696         // If this PHINode is not in the header block, then we know that we
3697         // can convert it to select during if-conversion. No need to check if
3698         // the PHIs in this block are induction or reduction variables.
3699         if (*bb != Header) {
3700           // Check that this instruction has no outside users or is an
3701           // identified reduction value with an outside user.
3702           if (!hasOutsideLoopUser(TheLoop, it, AllowedExit))
3703             continue;
3704           emitAnalysis(Report(it) << "value could not be identified as "
3705                                      "an induction or reduction variable");
3706           return false;
3707         }
3708 
3709         // We only allow if-converted PHIs with exactly two incoming values.
3710         if (Phi->getNumIncomingValues() != 2) {
3711           emitAnalysis(Report(it)
3712                        << "control flow not understood by vectorizer");
3713           DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
3714           return false;
3715         }
3716 
3717         // This is the value coming from the preheader.
3718         Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
3719         // Check if this is an induction variable.
3720         InductionKind IK = isInductionVariable(Phi);
3721 
3722         if (IK_NoInduction != IK) {
3723           // Get the widest type.
3724           if (!WidestIndTy)
3725             WidestIndTy = convertPointerToIntegerType(*DL, PhiTy);
3726           else
3727             WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
3728 
3729           // Int inductions are special because we only allow one IV.
3730           if (IK == IK_IntInduction) {
3731             // Use the phi node with the widest type as induction. Use the last
3732             // one if there are multiple (no good reason for doing this other
3733             // than it is expedient).
3734             if (!Induction || PhiTy == WidestIndTy)
3735               Induction = Phi;
3736           }
3737 
3738           DEBUG(dbgs() << "LV: Found an induction variable.\n");
3739           Inductions[Phi] = InductionInfo(StartValue, IK);
3740 
3741           // Until we explicitly handle the case of an induction variable with
3742           // an outside loop user we have to give up vectorizing this loop.
3743           if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
3744             emitAnalysis(Report(it) << "use of induction value outside of the "
3745                                        "loop is not handled by vectorizer");
3746             return false;
3747           }
3748 
3749           continue;
3750         }
3751 
3752         if (AddReductionVar(Phi, RK_IntegerAdd)) {
3753           DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
3754           continue;
3755         }
3756         if (AddReductionVar(Phi, RK_IntegerMult)) {
3757           DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
3758           continue;
3759         }
3760         if (AddReductionVar(Phi, RK_IntegerOr)) {
3761           DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
3762           continue;
3763         }
3764         if (AddReductionVar(Phi, RK_IntegerAnd)) {
3765           DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
3766           continue;
3767         }
3768         if (AddReductionVar(Phi, RK_IntegerXor)) {
3769           DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
3770           continue;
3771         }
3772         if (AddReductionVar(Phi, RK_IntegerMinMax)) {
3773           DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
3774           continue;
3775         }
3776         if (AddReductionVar(Phi, RK_FloatMult)) {
3777           DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
3778           continue;
3779         }
3780         if (AddReductionVar(Phi, RK_FloatAdd)) {
3781           DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
3782           continue;
3783         }
3784         if (AddReductionVar(Phi, RK_FloatMinMax)) {
3785           DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
3786                 "\n");
3787           continue;
3788         }
3789 
3790         emitAnalysis(Report(it) << "value that could not be identified as "
3791                                    "reduction is used outside the loop");
3792         DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
3793         return false;
3794       }// end of PHI handling
3795 
3796       // We still don't handle functions. However, we can ignore dbg intrinsic
3797       // calls and we do handle certain intrinsic and libm functions.
3798       CallInst *CI = dyn_cast<CallInst>(it);
3799       if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
3800         emitAnalysis(Report(it) << "call instruction cannot be vectorized");
3801         DEBUG(dbgs() << "LV: Found a call site.\n");
3802         return false;
3803       }
3804 
3805       // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
3806       // second argument is the same (i.e. loop invariant)
3807       if (CI &&
3808           hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) {
3809         if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) {
3810           emitAnalysis(Report(it)
3811                        << "intrinsic instruction cannot be vectorized");
3812           DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
3813           return false;
3814         }
3815       }
3816 
3817       // Check that the instruction return type is vectorizable.
3818       // Also, we can't vectorize extractelement instructions.
3819       if ((!VectorType::isValidElementType(it->getType()) &&
3820            !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
3821         emitAnalysis(Report(it)
3822                      << "instruction return type cannot be vectorized");
3823         DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
3824         return false;
3825       }
3826 
3827       // Check that the stored type is vectorizable.
3828       if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
3829         Type *T = ST->getValueOperand()->getType();
3830         if (!VectorType::isValidElementType(T)) {
3831           emitAnalysis(Report(ST) << "store instruction cannot be vectorized");
3832           return false;
3833         }
3834         if (EnableMemAccessVersioning)
3835           collectStridedAccess(ST);
3836       }
3837 
3838       if (EnableMemAccessVersioning)
3839         if (LoadInst *LI = dyn_cast<LoadInst>(it))
3840           collectStridedAccess(LI);
3841 
3842       // Reduction instructions are allowed to have exit users.
3843       // All other instructions must not have external users.
3844       if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
3845         emitAnalysis(Report(it) << "value cannot be used outside the loop");
3846         return false;
3847       }
3848 
3849     } // next instr.
3850 
3851   }
3852 
3853   if (!Induction) {
3854     DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
3855     if (Inductions.empty()) {
3856       emitAnalysis(Report()
3857                    << "loop induction variable could not be identified");
3858       return false;
3859     }
3860   }
3861 
3862   return true;
3863 }
3864 
3865 ///\brief Remove GEPs whose indices but the last one are loop invariant and
3866 /// return the induction operand of the gep pointer.
3867 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE,
3868                                  const DataLayout *DL, Loop *Lp) {
3869   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3870   if (!GEP)
3871     return Ptr;
3872 
3873   unsigned InductionOperand = getGEPInductionOperand(DL, GEP);
3874 
3875   // Check that all of the gep indices are uniform except for our induction
3876   // operand.
3877   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
3878     if (i != InductionOperand &&
3879         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
3880       return Ptr;
3881   return GEP->getOperand(InductionOperand);
3882 }
3883 
3884 ///\brief Look for a cast use of the passed value.
3885 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
3886   Value *UniqueCast = nullptr;
3887   for (User *U : Ptr->users()) {
3888     CastInst *CI = dyn_cast<CastInst>(U);
3889     if (CI && CI->getType() == Ty) {
3890       if (!UniqueCast)
3891         UniqueCast = CI;
3892       else
3893         return nullptr;
3894     }
3895   }
3896   return UniqueCast;
3897 }
3898 
3899 ///\brief Get the stride of a pointer access in a loop.
3900 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a
3901 /// pointer to the Value, or null otherwise.
3902 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE,
3903                                    const DataLayout *DL, Loop *Lp) {
3904   const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
3905   if (!PtrTy || PtrTy->isAggregateType())
3906     return nullptr;
3907 
3908   // Try to remove a gep instruction to make the pointer (actually index at this
3909   // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
3910   // pointer, otherwise, we are analyzing the index.
3911   Value *OrigPtr = Ptr;
3912 
3913   // The size of the pointer access.
3914   int64_t PtrAccessSize = 1;
3915 
3916   Ptr = stripGetElementPtr(Ptr, SE, DL, Lp);
3917   const SCEV *V = SE->getSCEV(Ptr);
3918 
3919   if (Ptr != OrigPtr)
3920     // Strip off casts.
3921     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
3922       V = C->getOperand();
3923 
3924   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
3925   if (!S)
3926     return nullptr;
3927 
3928   V = S->getStepRecurrence(*SE);
3929   if (!V)
3930     return nullptr;
3931 
3932   // Strip off the size of access multiplication if we are still analyzing the
3933   // pointer.
3934   if (OrigPtr == Ptr) {
3935     DL->getTypeAllocSize(PtrTy->getElementType());
3936     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
3937       if (M->getOperand(0)->getSCEVType() != scConstant)
3938         return nullptr;
3939 
3940       const APInt &APStepVal =
3941           cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue();
3942 
3943       // Huge step value - give up.
3944       if (APStepVal.getBitWidth() > 64)
3945         return nullptr;
3946 
3947       int64_t StepVal = APStepVal.getSExtValue();
3948       if (PtrAccessSize != StepVal)
3949         return nullptr;
3950       V = M->getOperand(1);
3951     }
3952   }
3953 
3954   // Strip off casts.
3955   Type *StripedOffRecurrenceCast = nullptr;
3956   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
3957     StripedOffRecurrenceCast = C->getType();
3958     V = C->getOperand();
3959   }
3960 
3961   // Look for the loop invariant symbolic value.
3962   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
3963   if (!U)
3964     return nullptr;
3965 
3966   Value *Stride = U->getValue();
3967   if (!Lp->isLoopInvariant(Stride))
3968     return nullptr;
3969 
3970   // If we have stripped off the recurrence cast we have to make sure that we
3971   // return the value that is used in this loop so that we can replace it later.
3972   if (StripedOffRecurrenceCast)
3973     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
3974 
3975   return Stride;
3976 }
3977 
3978 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) {
3979   Value *Ptr = nullptr;
3980   if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
3981     Ptr = LI->getPointerOperand();
3982   else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
3983     Ptr = SI->getPointerOperand();
3984   else
3985     return;
3986 
3987   Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop);
3988   if (!Stride)
3989     return;
3990 
3991   DEBUG(dbgs() << "LV: Found a strided access that we can version");
3992   DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
3993   Strides[Ptr] = Stride;
3994   StrideSet.insert(Stride);
3995 }
3996 
3997 void LoopVectorizationLegality::collectLoopUniforms() {
3998   // We now know that the loop is vectorizable!
3999   // Collect variables that will remain uniform after vectorization.
4000   std::vector<Value*> Worklist;
4001   BasicBlock *Latch = TheLoop->getLoopLatch();
4002 
4003   // Start with the conditional branch and walk up the block.
4004   Worklist.push_back(Latch->getTerminator()->getOperand(0));
4005 
4006   // Also add all consecutive pointer values; these values will be uniform
4007   // after vectorization (and subsequent cleanup) and, until revectorization is
4008   // supported, all dependencies must also be uniform.
4009   for (Loop::block_iterator B = TheLoop->block_begin(),
4010        BE = TheLoop->block_end(); B != BE; ++B)
4011     for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end();
4012          I != IE; ++I)
4013       if (I->getType()->isPointerTy() && isConsecutivePtr(I))
4014         Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
4015 
4016   while (!Worklist.empty()) {
4017     Instruction *I = dyn_cast<Instruction>(Worklist.back());
4018     Worklist.pop_back();
4019 
4020     // Look at instructions inside this loop.
4021     // Stop when reaching PHI nodes.
4022     // TODO: we need to follow values all over the loop, not only in this block.
4023     if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
4024       continue;
4025 
4026     // This is a known uniform.
4027     Uniforms.insert(I);
4028 
4029     // Insert all operands.
4030     Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
4031   }
4032 }
4033 
4034 namespace {
4035 /// \brief Analyses memory accesses in a loop.
4036 ///
4037 /// Checks whether run time pointer checks are needed and builds sets for data
4038 /// dependence checking.
4039 class AccessAnalysis {
4040 public:
4041   /// \brief Read or write access location.
4042   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
4043   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
4044 
4045   /// \brief Set of potential dependent memory accesses.
4046   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
4047 
4048   AccessAnalysis(const DataLayout *Dl, AliasAnalysis *AA, DepCandidates &DA) :
4049     DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {}
4050 
4051   /// \brief Register a load  and whether it is only read from.
4052   void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) {
4053     Value *Ptr = const_cast<Value*>(Loc.Ptr);
4054     AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags);
4055     Accesses.insert(MemAccessInfo(Ptr, false));
4056     if (IsReadOnly)
4057       ReadOnlyPtr.insert(Ptr);
4058   }
4059 
4060   /// \brief Register a store.
4061   void addStore(AliasAnalysis::Location &Loc) {
4062     Value *Ptr = const_cast<Value*>(Loc.Ptr);
4063     AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags);
4064     Accesses.insert(MemAccessInfo(Ptr, true));
4065   }
4066 
4067   /// \brief Check whether we can check the pointers at runtime for
4068   /// non-intersection.
4069   bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
4070                        unsigned &NumComparisons, ScalarEvolution *SE,
4071                        Loop *TheLoop, ValueToValueMap &Strides,
4072                        bool ShouldCheckStride = false);
4073 
4074   /// \brief Goes over all memory accesses, checks whether a RT check is needed
4075   /// and builds sets of dependent accesses.
4076   void buildDependenceSets() {
4077     processMemAccesses();
4078   }
4079 
4080   bool isRTCheckNeeded() { return IsRTCheckNeeded; }
4081 
4082   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
4083   void resetDepChecks() { CheckDeps.clear(); }
4084 
4085   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
4086 
4087 private:
4088   typedef SetVector<MemAccessInfo> PtrAccessSet;
4089 
4090   /// \brief Go over all memory access and check whether runtime pointer checks
4091   /// are needed /// and build sets of dependency check candidates.
4092   void processMemAccesses();
4093 
4094   /// Set of all accesses.
4095   PtrAccessSet Accesses;
4096 
4097   /// Set of accesses that need a further dependence check.
4098   MemAccessInfoSet CheckDeps;
4099 
4100   /// Set of pointers that are read only.
4101   SmallPtrSet<Value*, 16> ReadOnlyPtr;
4102 
4103   const DataLayout *DL;
4104 
4105   /// An alias set tracker to partition the access set by underlying object and
4106   //intrinsic property (such as TBAA metadata).
4107   AliasSetTracker AST;
4108 
4109   /// Sets of potentially dependent accesses - members of one set share an
4110   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
4111   /// dependence check.
4112   DepCandidates &DepCands;
4113 
4114   bool IsRTCheckNeeded;
4115 };
4116 
4117 } // end anonymous namespace
4118 
4119 /// \brief Check whether a pointer can participate in a runtime bounds check.
4120 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides,
4121                                 Value *Ptr) {
4122   const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
4123   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
4124   if (!AR)
4125     return false;
4126 
4127   return AR->isAffine();
4128 }
4129 
4130 /// \brief Check the stride of the pointer and ensure that it does not wrap in
4131 /// the address space.
4132 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
4133                         const Loop *Lp, ValueToValueMap &StridesMap);
4134 
4135 bool AccessAnalysis::canCheckPtrAtRT(
4136     LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
4137     unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop,
4138     ValueToValueMap &StridesMap, bool ShouldCheckStride) {
4139   // Find pointers with computable bounds. We are going to use this information
4140   // to place a runtime bound check.
4141   bool CanDoRT = true;
4142 
4143   bool IsDepCheckNeeded = isDependencyCheckNeeded();
4144   NumComparisons = 0;
4145 
4146   // We assign a consecutive id to access from different alias sets.
4147   // Accesses between different groups doesn't need to be checked.
4148   unsigned ASId = 1;
4149   for (auto &AS : AST) {
4150     unsigned NumReadPtrChecks = 0;
4151     unsigned NumWritePtrChecks = 0;
4152 
4153     // We assign consecutive id to access from different dependence sets.
4154     // Accesses within the same set don't need a runtime check.
4155     unsigned RunningDepId = 1;
4156     DenseMap<Value *, unsigned> DepSetId;
4157 
4158     for (auto A : AS) {
4159       Value *Ptr = A.getValue();
4160       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
4161       MemAccessInfo Access(Ptr, IsWrite);
4162 
4163       if (IsWrite)
4164         ++NumWritePtrChecks;
4165       else
4166         ++NumReadPtrChecks;
4167 
4168       if (hasComputableBounds(SE, StridesMap, Ptr) &&
4169           // When we run after a failing dependency check we have to make sure we
4170           // don't have wrapping pointers.
4171           (!ShouldCheckStride ||
4172            isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) {
4173         // The id of the dependence set.
4174         unsigned DepId;
4175 
4176         if (IsDepCheckNeeded) {
4177           Value *Leader = DepCands.getLeaderValue(Access).getPointer();
4178           unsigned &LeaderId = DepSetId[Leader];
4179           if (!LeaderId)
4180             LeaderId = RunningDepId++;
4181           DepId = LeaderId;
4182         } else
4183           // Each access has its own dependence set.
4184           DepId = RunningDepId++;
4185 
4186         RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap);
4187 
4188         DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n');
4189       } else {
4190         CanDoRT = false;
4191       }
4192     }
4193 
4194     if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
4195       NumComparisons += 0; // Only one dependence set.
4196     else {
4197       NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks +
4198                                               NumWritePtrChecks - 1));
4199     }
4200 
4201     ++ASId;
4202   }
4203 
4204   // If the pointers that we would use for the bounds comparison have different
4205   // address spaces, assume the values aren't directly comparable, so we can't
4206   // use them for the runtime check. We also have to assume they could
4207   // overlap. In the future there should be metadata for whether address spaces
4208   // are disjoint.
4209   unsigned NumPointers = RtCheck.Pointers.size();
4210   for (unsigned i = 0; i < NumPointers; ++i) {
4211     for (unsigned j = i + 1; j < NumPointers; ++j) {
4212       // Only need to check pointers between two different dependency sets.
4213       if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
4214        continue;
4215       // Only need to check pointers in the same alias set.
4216       if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j])
4217         continue;
4218 
4219       Value *PtrI = RtCheck.Pointers[i];
4220       Value *PtrJ = RtCheck.Pointers[j];
4221 
4222       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
4223       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
4224       if (ASi != ASj) {
4225         DEBUG(dbgs() << "LV: Runtime check would require comparison between"
4226                        " different address spaces\n");
4227         return false;
4228       }
4229     }
4230   }
4231 
4232   return CanDoRT;
4233 }
4234 
4235 void AccessAnalysis::processMemAccesses() {
4236   // We process the set twice: first we process read-write pointers, last we
4237   // process read-only pointers. This allows us to skip dependence tests for
4238   // read-only pointers.
4239 
4240   DEBUG(dbgs() << "LV: Processing memory accesses...\n");
4241   DEBUG(dbgs() << "  AST: "; AST.dump());
4242   DEBUG(dbgs() << "LV:   Accesses:\n");
4243   DEBUG({
4244     for (auto A : Accesses)
4245       dbgs() << "\t" << *A.getPointer() << " (" <<
4246                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ?
4247                                          "read-only" : "read")) << ")\n";
4248   });
4249 
4250   // The AliasSetTracker has nicely partitioned our pointers by metadata
4251   // compatibility and potential for underlying-object overlap. As a result, we
4252   // only need to check for potential pointer dependencies within each alias
4253   // set.
4254   for (auto &AS : AST) {
4255     // Note that both the alias-set tracker and the alias sets themselves used
4256     // linked lists internally and so the iteration order here is deterministic
4257     // (matching the original instruction order within each set).
4258 
4259     bool SetHasWrite = false;
4260 
4261     // Map of pointers to last access encountered.
4262     typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
4263     UnderlyingObjToAccessMap ObjToLastAccess;
4264 
4265     // Set of access to check after all writes have been processed.
4266     PtrAccessSet DeferredAccesses;
4267 
4268     // Iterate over each alias set twice, once to process read/write pointers,
4269     // and then to process read-only pointers.
4270     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
4271       bool UseDeferred = SetIteration > 0;
4272       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
4273 
4274       for (auto AV : AS) {
4275         Value *Ptr = AV.getValue();
4276 
4277         // For a single memory access in AliasSetTracker, Accesses may contain
4278         // both read and write, and they both need to be handled for CheckDeps.
4279         for (auto AC : S) {
4280           if (AC.getPointer() != Ptr)
4281             continue;
4282 
4283           bool IsWrite = AC.getInt();
4284 
4285           // If we're using the deferred access set, then it contains only
4286           // reads.
4287           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
4288           if (UseDeferred && !IsReadOnlyPtr)
4289             continue;
4290           // Otherwise, the pointer must be in the PtrAccessSet, either as a
4291           // read or a write.
4292           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
4293                   S.count(MemAccessInfo(Ptr, false))) &&
4294                  "Alias-set pointer not in the access set?");
4295 
4296           MemAccessInfo Access(Ptr, IsWrite);
4297           DepCands.insert(Access);
4298 
4299           // Memorize read-only pointers for later processing and skip them in
4300           // the first round (they need to be checked after we have seen all
4301           // write pointers). Note: we also mark pointer that are not
4302           // consecutive as "read-only" pointers (so that we check
4303           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
4304           if (!UseDeferred && IsReadOnlyPtr) {
4305             DeferredAccesses.insert(Access);
4306             continue;
4307           }
4308 
4309           // If this is a write - check other reads and writes for conflicts. If
4310           // this is a read only check other writes for conflicts (but only if
4311           // there is no other write to the ptr - this is an optimization to
4312           // catch "a[i] = a[i] + " without having to do a dependence check).
4313           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
4314             CheckDeps.insert(Access);
4315             IsRTCheckNeeded = true;
4316           }
4317 
4318           if (IsWrite)
4319             SetHasWrite = true;
4320 
4321           // Create sets of pointers connected by a shared alias set and
4322           // underlying object.
4323           typedef SmallVector<Value *, 16> ValueVector;
4324           ValueVector TempObjects;
4325           GetUnderlyingObjects(Ptr, TempObjects, DL);
4326           for (Value *UnderlyingObj : TempObjects) {
4327             UnderlyingObjToAccessMap::iterator Prev =
4328                 ObjToLastAccess.find(UnderlyingObj);
4329             if (Prev != ObjToLastAccess.end())
4330               DepCands.unionSets(Access, Prev->second);
4331 
4332             ObjToLastAccess[UnderlyingObj] = Access;
4333           }
4334         }
4335       }
4336     }
4337   }
4338 }
4339 
4340 namespace {
4341 /// \brief Checks memory dependences among accesses to the same underlying
4342 /// object to determine whether there vectorization is legal or not (and at
4343 /// which vectorization factor).
4344 ///
4345 /// This class works under the assumption that we already checked that memory
4346 /// locations with different underlying pointers are "must-not alias".
4347 /// We use the ScalarEvolution framework to symbolically evalutate access
4348 /// functions pairs. Since we currently don't restructure the loop we can rely
4349 /// on the program order of memory accesses to determine their safety.
4350 /// At the moment we will only deem accesses as safe for:
4351 ///  * A negative constant distance assuming program order.
4352 ///
4353 ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
4354 ///            a[i] = tmp;                y = a[i];
4355 ///
4356 ///   The latter case is safe because later checks guarantuee that there can't
4357 ///   be a cycle through a phi node (that is, we check that "x" and "y" is not
4358 ///   the same variable: a header phi can only be an induction or a reduction, a
4359 ///   reduction can't have a memory sink, an induction can't have a memory
4360 ///   source). This is important and must not be violated (or we have to
4361 ///   resort to checking for cycles through memory).
4362 ///
4363 ///  * A positive constant distance assuming program order that is bigger
4364 ///    than the biggest memory access.
4365 ///
4366 ///     tmp = a[i]        OR              b[i] = x
4367 ///     a[i+2] = tmp                      y = b[i+2];
4368 ///
4369 ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
4370 ///
4371 ///  * Zero distances and all accesses have the same size.
4372 ///
4373 class MemoryDepChecker {
4374 public:
4375   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
4376   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
4377 
4378   MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L)
4379       : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
4380         ShouldRetryWithRuntimeCheck(false) {}
4381 
4382   /// \brief Register the location (instructions are given increasing numbers)
4383   /// of a write access.
4384   void addAccess(StoreInst *SI) {
4385     Value *Ptr = SI->getPointerOperand();
4386     Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
4387     InstMap.push_back(SI);
4388     ++AccessIdx;
4389   }
4390 
4391   /// \brief Register the location (instructions are given increasing numbers)
4392   /// of a write access.
4393   void addAccess(LoadInst *LI) {
4394     Value *Ptr = LI->getPointerOperand();
4395     Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
4396     InstMap.push_back(LI);
4397     ++AccessIdx;
4398   }
4399 
4400   /// \brief Check whether the dependencies between the accesses are safe.
4401   ///
4402   /// Only checks sets with elements in \p CheckDeps.
4403   bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
4404                    MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides);
4405 
4406   /// \brief The maximum number of bytes of a vector register we can vectorize
4407   /// the accesses safely with.
4408   unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
4409 
4410   /// \brief In same cases when the dependency check fails we can still
4411   /// vectorize the loop with a dynamic array access check.
4412   bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
4413 
4414 private:
4415   ScalarEvolution *SE;
4416   const DataLayout *DL;
4417   const Loop *InnermostLoop;
4418 
4419   /// \brief Maps access locations (ptr, read/write) to program order.
4420   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
4421 
4422   /// \brief Memory access instructions in program order.
4423   SmallVector<Instruction *, 16> InstMap;
4424 
4425   /// \brief The program order index to be used for the next instruction.
4426   unsigned AccessIdx;
4427 
4428   // We can access this many bytes in parallel safely.
4429   unsigned MaxSafeDepDistBytes;
4430 
4431   /// \brief If we see a non-constant dependence distance we can still try to
4432   /// vectorize this loop with runtime checks.
4433   bool ShouldRetryWithRuntimeCheck;
4434 
4435   /// \brief Check whether there is a plausible dependence between the two
4436   /// accesses.
4437   ///
4438   /// Access \p A must happen before \p B in program order. The two indices
4439   /// identify the index into the program order map.
4440   ///
4441   /// This function checks  whether there is a plausible dependence (or the
4442   /// absence of such can't be proved) between the two accesses. If there is a
4443   /// plausible dependence but the dependence distance is bigger than one
4444   /// element access it records this distance in \p MaxSafeDepDistBytes (if this
4445   /// distance is smaller than any other distance encountered so far).
4446   /// Otherwise, this function returns true signaling a possible dependence.
4447   bool isDependent(const MemAccessInfo &A, unsigned AIdx,
4448                    const MemAccessInfo &B, unsigned BIdx,
4449                    ValueToValueMap &Strides);
4450 
4451   /// \brief Check whether the data dependence could prevent store-load
4452   /// forwarding.
4453   bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
4454 };
4455 
4456 } // end anonymous namespace
4457 
4458 static bool isInBoundsGep(Value *Ptr) {
4459   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
4460     return GEP->isInBounds();
4461   return false;
4462 }
4463 
4464 /// \brief Check whether the access through \p Ptr has a constant stride.
4465 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
4466                         const Loop *Lp, ValueToValueMap &StridesMap) {
4467   const Type *Ty = Ptr->getType();
4468   assert(Ty->isPointerTy() && "Unexpected non-ptr");
4469 
4470   // Make sure that the pointer does not point to aggregate types.
4471   const PointerType *PtrTy = cast<PointerType>(Ty);
4472   if (PtrTy->getElementType()->isAggregateType()) {
4473     DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
4474           "\n");
4475     return 0;
4476   }
4477 
4478   const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr);
4479 
4480   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
4481   if (!AR) {
4482     DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
4483           << *Ptr << " SCEV: " << *PtrScev << "\n");
4484     return 0;
4485   }
4486 
4487   // The accesss function must stride over the innermost loop.
4488   if (Lp != AR->getLoop()) {
4489     DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
4490           *Ptr << " SCEV: " << *PtrScev << "\n");
4491   }
4492 
4493   // The address calculation must not wrap. Otherwise, a dependence could be
4494   // inverted.
4495   // An inbounds getelementptr that is a AddRec with a unit stride
4496   // cannot wrap per definition. The unit stride requirement is checked later.
4497   // An getelementptr without an inbounds attribute and unit stride would have
4498   // to access the pointer value "0" which is undefined behavior in address
4499   // space 0, therefore we can also vectorize this case.
4500   bool IsInBoundsGEP = isInBoundsGep(Ptr);
4501   bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
4502   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
4503   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
4504     DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
4505           << *Ptr << " SCEV: " << *PtrScev << "\n");
4506     return 0;
4507   }
4508 
4509   // Check the step is constant.
4510   const SCEV *Step = AR->getStepRecurrence(*SE);
4511 
4512   // Calculate the pointer stride and check if it is consecutive.
4513   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4514   if (!C) {
4515     DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
4516           " SCEV: " << *PtrScev << "\n");
4517     return 0;
4518   }
4519 
4520   int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
4521   const APInt &APStepVal = C->getValue()->getValue();
4522 
4523   // Huge step value - give up.
4524   if (APStepVal.getBitWidth() > 64)
4525     return 0;
4526 
4527   int64_t StepVal = APStepVal.getSExtValue();
4528 
4529   // Strided access.
4530   int64_t Stride = StepVal / Size;
4531   int64_t Rem = StepVal % Size;
4532   if (Rem)
4533     return 0;
4534 
4535   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
4536   // know we can't "wrap around the address space". In case of address space
4537   // zero we know that this won't happen without triggering undefined behavior.
4538   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
4539       Stride != 1 && Stride != -1)
4540     return 0;
4541 
4542   return Stride;
4543 }
4544 
4545 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
4546                                                     unsigned TypeByteSize) {
4547   // If loads occur at a distance that is not a multiple of a feasible vector
4548   // factor store-load forwarding does not take place.
4549   // Positive dependences might cause troubles because vectorizing them might
4550   // prevent store-load forwarding making vectorized code run a lot slower.
4551   //   a[i] = a[i-3] ^ a[i-8];
4552   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
4553   //   hence on your typical architecture store-load forwarding does not take
4554   //   place. Vectorizing in such cases does not make sense.
4555   // Store-load forwarding distance.
4556   const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
4557   // Maximum vector factor.
4558   unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize;
4559   if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
4560     MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
4561 
4562   for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
4563        vf *= 2) {
4564     if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
4565       MaxVFWithoutSLForwardIssues = (vf >>=1);
4566       break;
4567     }
4568   }
4569 
4570   if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
4571     DEBUG(dbgs() << "LV: Distance " << Distance <<
4572           " that could cause a store-load forwarding conflict\n");
4573     return true;
4574   }
4575 
4576   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
4577       MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize)
4578     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
4579   return false;
4580 }
4581 
4582 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
4583                                    const MemAccessInfo &B, unsigned BIdx,
4584                                    ValueToValueMap &Strides) {
4585   assert (AIdx < BIdx && "Must pass arguments in program order");
4586 
4587   Value *APtr = A.getPointer();
4588   Value *BPtr = B.getPointer();
4589   bool AIsWrite = A.getInt();
4590   bool BIsWrite = B.getInt();
4591 
4592   // Two reads are independent.
4593   if (!AIsWrite && !BIsWrite)
4594     return false;
4595 
4596   // We cannot check pointers in different address spaces.
4597   if (APtr->getType()->getPointerAddressSpace() !=
4598       BPtr->getType()->getPointerAddressSpace())
4599     return true;
4600 
4601   const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr);
4602   const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr);
4603 
4604   int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides);
4605   int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides);
4606 
4607   const SCEV *Src = AScev;
4608   const SCEV *Sink = BScev;
4609 
4610   // If the induction step is negative we have to invert source and sink of the
4611   // dependence.
4612   if (StrideAPtr < 0) {
4613     //Src = BScev;
4614     //Sink = AScev;
4615     std::swap(APtr, BPtr);
4616     std::swap(Src, Sink);
4617     std::swap(AIsWrite, BIsWrite);
4618     std::swap(AIdx, BIdx);
4619     std::swap(StrideAPtr, StrideBPtr);
4620   }
4621 
4622   const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
4623 
4624   DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
4625         << "(Induction step: " << StrideAPtr <<  ")\n");
4626   DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
4627         << *InstMap[BIdx] << ": " << *Dist << "\n");
4628 
4629   // Need consecutive accesses. We don't want to vectorize
4630   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
4631   // the address space.
4632   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
4633     DEBUG(dbgs() << "Non-consecutive pointer access\n");
4634     return true;
4635   }
4636 
4637   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
4638   if (!C) {
4639     DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n");
4640     ShouldRetryWithRuntimeCheck = true;
4641     return true;
4642   }
4643 
4644   Type *ATy = APtr->getType()->getPointerElementType();
4645   Type *BTy = BPtr->getType()->getPointerElementType();
4646   unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
4647 
4648   // Negative distances are not plausible dependencies.
4649   const APInt &Val = C->getValue()->getValue();
4650   if (Val.isNegative()) {
4651     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
4652     if (IsTrueDataDependence &&
4653         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
4654          ATy != BTy))
4655       return true;
4656 
4657     DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
4658     return false;
4659   }
4660 
4661   // Write to the same location with the same size.
4662   // Could be improved to assert type sizes are the same (i32 == float, etc).
4663   if (Val == 0) {
4664     if (ATy == BTy)
4665       return false;
4666     DEBUG(dbgs() << "LV: Zero dependence difference but different types\n");
4667     return true;
4668   }
4669 
4670   assert(Val.isStrictlyPositive() && "Expect a positive value");
4671 
4672   // Positive distance bigger than max vectorization factor.
4673   if (ATy != BTy) {
4674     DEBUG(dbgs() <<
4675           "LV: ReadWrite-Write positive dependency with different types\n");
4676     return false;
4677   }
4678 
4679   unsigned Distance = (unsigned) Val.getZExtValue();
4680 
4681   // Bail out early if passed-in parameters make vectorization not feasible.
4682   unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1;
4683   unsigned ForcedUnroll = VectorizationInterleave ? VectorizationInterleave : 1;
4684 
4685   // The distance must be bigger than the size needed for a vectorized version
4686   // of the operation and the size of the vectorized operation must not be
4687   // bigger than the currrent maximum size.
4688   if (Distance < 2*TypeByteSize ||
4689       2*TypeByteSize > MaxSafeDepDistBytes ||
4690       Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
4691     DEBUG(dbgs() << "LV: Failure because of Positive distance "
4692         << Val.getSExtValue() << '\n');
4693     return true;
4694   }
4695 
4696   MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
4697     Distance : MaxSafeDepDistBytes;
4698 
4699   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
4700   if (IsTrueDataDependence &&
4701       couldPreventStoreLoadForward(Distance, TypeByteSize))
4702      return true;
4703 
4704   DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
4705         " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
4706 
4707   return false;
4708 }
4709 
4710 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
4711                                    MemAccessInfoSet &CheckDeps,
4712                                    ValueToValueMap &Strides) {
4713 
4714   MaxSafeDepDistBytes = -1U;
4715   while (!CheckDeps.empty()) {
4716     MemAccessInfo CurAccess = *CheckDeps.begin();
4717 
4718     // Get the relevant memory access set.
4719     EquivalenceClasses<MemAccessInfo>::iterator I =
4720       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
4721 
4722     // Check accesses within this set.
4723     EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
4724     AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
4725 
4726     // Check every access pair.
4727     while (AI != AE) {
4728       CheckDeps.erase(*AI);
4729       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
4730       while (OI != AE) {
4731         // Check every accessing instruction pair in program order.
4732         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
4733              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
4734           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
4735                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
4736             if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides))
4737               return false;
4738             if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides))
4739               return false;
4740           }
4741         ++OI;
4742       }
4743       AI++;
4744     }
4745   }
4746   return true;
4747 }
4748 
4749 bool LoopVectorizationLegality::canVectorizeMemory() {
4750 
4751   typedef SmallVector<Value*, 16> ValueVector;
4752   typedef SmallPtrSet<Value*, 16> ValueSet;
4753 
4754   // Holds the Load and Store *instructions*.
4755   ValueVector Loads;
4756   ValueVector Stores;
4757 
4758   // Holds all the different accesses in the loop.
4759   unsigned NumReads = 0;
4760   unsigned NumReadWrites = 0;
4761 
4762   PtrRtCheck.Pointers.clear();
4763   PtrRtCheck.Need = false;
4764 
4765   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
4766   MemoryDepChecker DepChecker(SE, DL, TheLoop);
4767 
4768   // For each block.
4769   for (Loop::block_iterator bb = TheLoop->block_begin(),
4770        be = TheLoop->block_end(); bb != be; ++bb) {
4771 
4772     // Scan the BB and collect legal loads and stores.
4773     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
4774          ++it) {
4775 
4776       // If this is a load, save it. If this instruction can read from memory
4777       // but is not a load, then we quit. Notice that we don't handle function
4778       // calls that read or write.
4779       if (it->mayReadFromMemory()) {
4780         // Many math library functions read the rounding mode. We will only
4781         // vectorize a loop if it contains known function calls that don't set
4782         // the flag. Therefore, it is safe to ignore this read from memory.
4783         CallInst *Call = dyn_cast<CallInst>(it);
4784         if (Call && getIntrinsicIDForCall(Call, TLI))
4785           continue;
4786 
4787         LoadInst *Ld = dyn_cast<LoadInst>(it);
4788         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
4789           emitAnalysis(Report(Ld)
4790                        << "read with atomic ordering or volatile read");
4791           DEBUG(dbgs() << "LV: Found a non-simple load.\n");
4792           return false;
4793         }
4794         NumLoads++;
4795         Loads.push_back(Ld);
4796         DepChecker.addAccess(Ld);
4797         continue;
4798       }
4799 
4800       // Save 'store' instructions. Abort if other instructions write to memory.
4801       if (it->mayWriteToMemory()) {
4802         StoreInst *St = dyn_cast<StoreInst>(it);
4803         if (!St) {
4804           emitAnalysis(Report(it) << "instruction cannot be vectorized");
4805           return false;
4806         }
4807         if (!St->isSimple() && !IsAnnotatedParallel) {
4808           emitAnalysis(Report(St)
4809                        << "write with atomic ordering or volatile write");
4810           DEBUG(dbgs() << "LV: Found a non-simple store.\n");
4811           return false;
4812         }
4813         NumStores++;
4814         Stores.push_back(St);
4815         DepChecker.addAccess(St);
4816       }
4817     } // Next instr.
4818   } // Next block.
4819 
4820   // Now we have two lists that hold the loads and the stores.
4821   // Next, we find the pointers that they use.
4822 
4823   // Check if we see any stores. If there are no stores, then we don't
4824   // care if the pointers are *restrict*.
4825   if (!Stores.size()) {
4826     DEBUG(dbgs() << "LV: Found a read-only loop!\n");
4827     return true;
4828   }
4829 
4830   AccessAnalysis::DepCandidates DependentAccesses;
4831   AccessAnalysis Accesses(DL, AA, DependentAccesses);
4832 
4833   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
4834   // multiple times on the same object. If the ptr is accessed twice, once
4835   // for read and once for write, it will only appear once (on the write
4836   // list). This is okay, since we are going to check for conflicts between
4837   // writes and between reads and writes, but not between reads and reads.
4838   ValueSet Seen;
4839 
4840   ValueVector::iterator I, IE;
4841   for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
4842     StoreInst *ST = cast<StoreInst>(*I);
4843     Value* Ptr = ST->getPointerOperand();
4844 
4845     if (isUniform(Ptr)) {
4846       emitAnalysis(
4847           Report(ST)
4848           << "write to a loop invariant address could not be vectorized");
4849       DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
4850       return false;
4851     }
4852 
4853     // If we did *not* see this pointer before, insert it to  the read-write
4854     // list. At this phase it is only a 'write' list.
4855     if (Seen.insert(Ptr).second) {
4856       ++NumReadWrites;
4857 
4858       AliasAnalysis::Location Loc = AA->getLocation(ST);
4859       // The TBAA metadata could have a control dependency on the predication
4860       // condition, so we cannot rely on it when determining whether or not we
4861       // need runtime pointer checks.
4862       if (blockNeedsPredication(ST->getParent()))
4863         Loc.AATags.TBAA = nullptr;
4864 
4865       Accesses.addStore(Loc);
4866     }
4867   }
4868 
4869   if (IsAnnotatedParallel) {
4870     DEBUG(dbgs()
4871           << "LV: A loop annotated parallel, ignore memory dependency "
4872           << "checks.\n");
4873     return true;
4874   }
4875 
4876   for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
4877     LoadInst *LD = cast<LoadInst>(*I);
4878     Value* Ptr = LD->getPointerOperand();
4879     // If we did *not* see this pointer before, insert it to the
4880     // read list. If we *did* see it before, then it is already in
4881     // the read-write list. This allows us to vectorize expressions
4882     // such as A[i] += x;  Because the address of A[i] is a read-write
4883     // pointer. This only works if the index of A[i] is consecutive.
4884     // If the address of i is unknown (for example A[B[i]]) then we may
4885     // read a few words, modify, and write a few words, and some of the
4886     // words may be written to the same address.
4887     bool IsReadOnlyPtr = false;
4888     if (Seen.insert(Ptr).second ||
4889         !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) {
4890       ++NumReads;
4891       IsReadOnlyPtr = true;
4892     }
4893 
4894     AliasAnalysis::Location Loc = AA->getLocation(LD);
4895     // The TBAA metadata could have a control dependency on the predication
4896     // condition, so we cannot rely on it when determining whether or not we
4897     // need runtime pointer checks.
4898     if (blockNeedsPredication(LD->getParent()))
4899       Loc.AATags.TBAA = nullptr;
4900 
4901     Accesses.addLoad(Loc, IsReadOnlyPtr);
4902   }
4903 
4904   // If we write (or read-write) to a single destination and there are no
4905   // other reads in this loop then is it safe to vectorize.
4906   if (NumReadWrites == 1 && NumReads == 0) {
4907     DEBUG(dbgs() << "LV: Found a write-only loop!\n");
4908     return true;
4909   }
4910 
4911   // Build dependence sets and check whether we need a runtime pointer bounds
4912   // check.
4913   Accesses.buildDependenceSets();
4914   bool NeedRTCheck = Accesses.isRTCheckNeeded();
4915 
4916   // Find pointers with computable bounds. We are going to use this information
4917   // to place a runtime bound check.
4918   unsigned NumComparisons = 0;
4919   bool CanDoRT = false;
4920   if (NeedRTCheck)
4921     CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop,
4922                                        Strides);
4923 
4924   DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
4925         " pointer comparisons.\n");
4926 
4927   // If we only have one set of dependences to check pointers among we don't
4928   // need a runtime check.
4929   if (NumComparisons == 0 && NeedRTCheck)
4930     NeedRTCheck = false;
4931 
4932   // Check that we did not collect too many pointers or found an unsizeable
4933   // pointer.
4934   if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
4935     PtrRtCheck.reset();
4936     CanDoRT = false;
4937   }
4938 
4939   if (CanDoRT) {
4940     DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
4941   }
4942 
4943   if (NeedRTCheck && !CanDoRT) {
4944     emitAnalysis(Report() << "cannot identify array bounds");
4945     DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
4946           "the array bounds.\n");
4947     PtrRtCheck.reset();
4948     return false;
4949   }
4950 
4951   PtrRtCheck.Need = NeedRTCheck;
4952 
4953   bool CanVecMem = true;
4954   if (Accesses.isDependencyCheckNeeded()) {
4955     DEBUG(dbgs() << "LV: Checking memory dependencies\n");
4956     CanVecMem = DepChecker.areDepsSafe(
4957         DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
4958     MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
4959 
4960     if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
4961       DEBUG(dbgs() << "LV: Retrying with memory checks\n");
4962       NeedRTCheck = true;
4963 
4964       // Clear the dependency checks. We assume they are not needed.
4965       Accesses.resetDepChecks();
4966 
4967       PtrRtCheck.reset();
4968       PtrRtCheck.Need = true;
4969 
4970       CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE,
4971                                          TheLoop, Strides, true);
4972       // Check that we did not collect too many pointers or found an unsizeable
4973       // pointer.
4974       if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
4975         if (!CanDoRT && NumComparisons > 0)
4976           emitAnalysis(Report()
4977                        << "cannot check memory dependencies at runtime");
4978         else
4979           emitAnalysis(Report()
4980                        << NumComparisons << " exceeds limit of "
4981                        << RuntimeMemoryCheckThreshold
4982                        << " dependent memory operations checked at runtime");
4983         DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n");
4984         PtrRtCheck.reset();
4985         return false;
4986       }
4987 
4988       CanVecMem = true;
4989     }
4990   }
4991 
4992   if (!CanVecMem)
4993     emitAnalysis(Report() << "unsafe dependent memory operations in loop");
4994 
4995   DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") <<
4996         " need a runtime memory check.\n");
4997 
4998   return CanVecMem;
4999 }
5000 
5001 static bool hasMultipleUsesOf(Instruction *I,
5002                               SmallPtrSetImpl<Instruction *> &Insts) {
5003   unsigned NumUses = 0;
5004   for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
5005     if (Insts.count(dyn_cast<Instruction>(*Use)))
5006       ++NumUses;
5007     if (NumUses > 1)
5008       return true;
5009   }
5010 
5011   return false;
5012 }
5013 
5014 static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) {
5015   for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
5016     if (!Set.count(dyn_cast<Instruction>(*Use)))
5017       return false;
5018   return true;
5019 }
5020 
5021 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
5022                                                 ReductionKind Kind) {
5023   if (Phi->getNumIncomingValues() != 2)
5024     return false;
5025 
5026   // Reduction variables are only found in the loop header block.
5027   if (Phi->getParent() != TheLoop->getHeader())
5028     return false;
5029 
5030   // Obtain the reduction start value from the value that comes from the loop
5031   // preheader.
5032   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
5033 
5034   // ExitInstruction is the single value which is used outside the loop.
5035   // We only allow for a single reduction value to be used outside the loop.
5036   // This includes users of the reduction, variables (which form a cycle
5037   // which ends in the phi node).
5038   Instruction *ExitInstruction = nullptr;
5039   // Indicates that we found a reduction operation in our scan.
5040   bool FoundReduxOp = false;
5041 
5042   // We start with the PHI node and scan for all of the users of this
5043   // instruction. All users must be instructions that can be used as reduction
5044   // variables (such as ADD). We must have a single out-of-block user. The cycle
5045   // must include the original PHI.
5046   bool FoundStartPHI = false;
5047 
5048   // To recognize min/max patterns formed by a icmp select sequence, we store
5049   // the number of instruction we saw from the recognized min/max pattern,
5050   //  to make sure we only see exactly the two instructions.
5051   unsigned NumCmpSelectPatternInst = 0;
5052   ReductionInstDesc ReduxDesc(false, nullptr);
5053 
5054   SmallPtrSet<Instruction *, 8> VisitedInsts;
5055   SmallVector<Instruction *, 8> Worklist;
5056   Worklist.push_back(Phi);
5057   VisitedInsts.insert(Phi);
5058 
5059   // A value in the reduction can be used:
5060   //  - By the reduction:
5061   //      - Reduction operation:
5062   //        - One use of reduction value (safe).
5063   //        - Multiple use of reduction value (not safe).
5064   //      - PHI:
5065   //        - All uses of the PHI must be the reduction (safe).
5066   //        - Otherwise, not safe.
5067   //  - By one instruction outside of the loop (safe).
5068   //  - By further instructions outside of the loop (not safe).
5069   //  - By an instruction that is not part of the reduction (not safe).
5070   //    This is either:
5071   //      * An instruction type other than PHI or the reduction operation.
5072   //      * A PHI in the header other than the initial PHI.
5073   while (!Worklist.empty()) {
5074     Instruction *Cur = Worklist.back();
5075     Worklist.pop_back();
5076 
5077     // No Users.
5078     // If the instruction has no users then this is a broken chain and can't be
5079     // a reduction variable.
5080     if (Cur->use_empty())
5081       return false;
5082 
5083     bool IsAPhi = isa<PHINode>(Cur);
5084 
5085     // A header PHI use other than the original PHI.
5086     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
5087       return false;
5088 
5089     // Reductions of instructions such as Div, and Sub is only possible if the
5090     // LHS is the reduction variable.
5091     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
5092         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
5093         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
5094       return false;
5095 
5096     // Any reduction instruction must be of one of the allowed kinds.
5097     ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
5098     if (!ReduxDesc.IsReduction)
5099       return false;
5100 
5101     // A reduction operation must only have one use of the reduction value.
5102     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
5103         hasMultipleUsesOf(Cur, VisitedInsts))
5104       return false;
5105 
5106     // All inputs to a PHI node must be a reduction value.
5107     if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
5108       return false;
5109 
5110     if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
5111                                      isa<SelectInst>(Cur)))
5112       ++NumCmpSelectPatternInst;
5113     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
5114                                    isa<SelectInst>(Cur)))
5115       ++NumCmpSelectPatternInst;
5116 
5117     // Check  whether we found a reduction operator.
5118     FoundReduxOp |= !IsAPhi;
5119 
5120     // Process users of current instruction. Push non-PHI nodes after PHI nodes
5121     // onto the stack. This way we are going to have seen all inputs to PHI
5122     // nodes once we get to them.
5123     SmallVector<Instruction *, 8> NonPHIs;
5124     SmallVector<Instruction *, 8> PHIs;
5125     for (User *U : Cur->users()) {
5126       Instruction *UI = cast<Instruction>(U);
5127 
5128       // Check if we found the exit user.
5129       BasicBlock *Parent = UI->getParent();
5130       if (!TheLoop->contains(Parent)) {
5131         // Exit if you find multiple outside users or if the header phi node is
5132         // being used. In this case the user uses the value of the previous
5133         // iteration, in which case we would loose "VF-1" iterations of the
5134         // reduction operation if we vectorize.
5135         if (ExitInstruction != nullptr || Cur == Phi)
5136           return false;
5137 
5138         // The instruction used by an outside user must be the last instruction
5139         // before we feed back to the reduction phi. Otherwise, we loose VF-1
5140         // operations on the value.
5141         if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
5142          return false;
5143 
5144         ExitInstruction = Cur;
5145         continue;
5146       }
5147 
5148       // Process instructions only once (termination). Each reduction cycle
5149       // value must only be used once, except by phi nodes and min/max
5150       // reductions which are represented as a cmp followed by a select.
5151       ReductionInstDesc IgnoredVal(false, nullptr);
5152       if (VisitedInsts.insert(UI).second) {
5153         if (isa<PHINode>(UI))
5154           PHIs.push_back(UI);
5155         else
5156           NonPHIs.push_back(UI);
5157       } else if (!isa<PHINode>(UI) &&
5158                  ((!isa<FCmpInst>(UI) &&
5159                    !isa<ICmpInst>(UI) &&
5160                    !isa<SelectInst>(UI)) ||
5161                   !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction))
5162         return false;
5163 
5164       // Remember that we completed the cycle.
5165       if (UI == Phi)
5166         FoundStartPHI = true;
5167     }
5168     Worklist.append(PHIs.begin(), PHIs.end());
5169     Worklist.append(NonPHIs.begin(), NonPHIs.end());
5170   }
5171 
5172   // This means we have seen one but not the other instruction of the
5173   // pattern or more than just a select and cmp.
5174   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
5175       NumCmpSelectPatternInst != 2)
5176     return false;
5177 
5178   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
5179     return false;
5180 
5181   // We found a reduction var if we have reached the original phi node and we
5182   // only have a single instruction with out-of-loop users.
5183 
5184   // This instruction is allowed to have out-of-loop users.
5185   AllowedExit.insert(ExitInstruction);
5186 
5187   // Save the description of this reduction variable.
5188   ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
5189                          ReduxDesc.MinMaxKind);
5190   Reductions[Phi] = RD;
5191   // We've ended the cycle. This is a reduction variable if we have an
5192   // outside user and it has a binary op.
5193 
5194   return true;
5195 }
5196 
5197 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
5198 /// pattern corresponding to a min(X, Y) or max(X, Y).
5199 LoopVectorizationLegality::ReductionInstDesc
5200 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
5201                                                     ReductionInstDesc &Prev) {
5202 
5203   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
5204          "Expect a select instruction");
5205   Instruction *Cmp = nullptr;
5206   SelectInst *Select = nullptr;
5207 
5208   // We must handle the select(cmp()) as a single instruction. Advance to the
5209   // select.
5210   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
5211     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
5212       return ReductionInstDesc(false, I);
5213     return ReductionInstDesc(Select, Prev.MinMaxKind);
5214   }
5215 
5216   // Only handle single use cases for now.
5217   if (!(Select = dyn_cast<SelectInst>(I)))
5218     return ReductionInstDesc(false, I);
5219   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
5220       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
5221     return ReductionInstDesc(false, I);
5222   if (!Cmp->hasOneUse())
5223     return ReductionInstDesc(false, I);
5224 
5225   Value *CmpLeft;
5226   Value *CmpRight;
5227 
5228   // Look for a min/max pattern.
5229   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5230     return ReductionInstDesc(Select, MRK_UIntMin);
5231   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5232     return ReductionInstDesc(Select, MRK_UIntMax);
5233   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5234     return ReductionInstDesc(Select, MRK_SIntMax);
5235   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5236     return ReductionInstDesc(Select, MRK_SIntMin);
5237   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5238     return ReductionInstDesc(Select, MRK_FloatMin);
5239   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5240     return ReductionInstDesc(Select, MRK_FloatMax);
5241   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5242     return ReductionInstDesc(Select, MRK_FloatMin);
5243   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5244     return ReductionInstDesc(Select, MRK_FloatMax);
5245 
5246   return ReductionInstDesc(false, I);
5247 }
5248 
5249 LoopVectorizationLegality::ReductionInstDesc
5250 LoopVectorizationLegality::isReductionInstr(Instruction *I,
5251                                             ReductionKind Kind,
5252                                             ReductionInstDesc &Prev) {
5253   bool FP = I->getType()->isFloatingPointTy();
5254   bool FastMath = FP && I->hasUnsafeAlgebra();
5255   switch (I->getOpcode()) {
5256   default:
5257     return ReductionInstDesc(false, I);
5258   case Instruction::PHI:
5259       if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
5260                  Kind != RK_FloatMinMax))
5261         return ReductionInstDesc(false, I);
5262     return ReductionInstDesc(I, Prev.MinMaxKind);
5263   case Instruction::Sub:
5264   case Instruction::Add:
5265     return ReductionInstDesc(Kind == RK_IntegerAdd, I);
5266   case Instruction::Mul:
5267     return ReductionInstDesc(Kind == RK_IntegerMult, I);
5268   case Instruction::And:
5269     return ReductionInstDesc(Kind == RK_IntegerAnd, I);
5270   case Instruction::Or:
5271     return ReductionInstDesc(Kind == RK_IntegerOr, I);
5272   case Instruction::Xor:
5273     return ReductionInstDesc(Kind == RK_IntegerXor, I);
5274   case Instruction::FMul:
5275     return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
5276   case Instruction::FSub:
5277   case Instruction::FAdd:
5278     return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
5279   case Instruction::FCmp:
5280   case Instruction::ICmp:
5281   case Instruction::Select:
5282     if (Kind != RK_IntegerMinMax &&
5283         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
5284       return ReductionInstDesc(false, I);
5285     return isMinMaxSelectCmpPattern(I, Prev);
5286   }
5287 }
5288 
5289 LoopVectorizationLegality::InductionKind
5290 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
5291   Type *PhiTy = Phi->getType();
5292   // We only handle integer and pointer inductions variables.
5293   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
5294     return IK_NoInduction;
5295 
5296   // Check that the PHI is consecutive.
5297   const SCEV *PhiScev = SE->getSCEV(Phi);
5298   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
5299   if (!AR) {
5300     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
5301     return IK_NoInduction;
5302   }
5303   const SCEV *Step = AR->getStepRecurrence(*SE);
5304 
5305   // Integer inductions need to have a stride of one.
5306   if (PhiTy->isIntegerTy()) {
5307     if (Step->isOne())
5308       return IK_IntInduction;
5309     if (Step->isAllOnesValue())
5310       return IK_ReverseIntInduction;
5311     return IK_NoInduction;
5312   }
5313 
5314   // Calculate the pointer stride and check if it is consecutive.
5315   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
5316   if (!C)
5317     return IK_NoInduction;
5318 
5319   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
5320   Type *PointerElementType = PhiTy->getPointerElementType();
5321   // The pointer stride cannot be determined if the pointer element type is not
5322   // sized.
5323   if (!PointerElementType->isSized())
5324     return IK_NoInduction;
5325 
5326   uint64_t Size = DL->getTypeAllocSize(PointerElementType);
5327   if (C->getValue()->equalsInt(Size))
5328     return IK_PtrInduction;
5329   else if (C->getValue()->equalsInt(0 - Size))
5330     return IK_ReversePtrInduction;
5331 
5332   return IK_NoInduction;
5333 }
5334 
5335 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
5336   Value *In0 = const_cast<Value*>(V);
5337   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
5338   if (!PN)
5339     return false;
5340 
5341   return Inductions.count(PN);
5342 }
5343 
5344 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
5345   assert(TheLoop->contains(BB) && "Unknown block used");
5346 
5347   // Blocks that do not dominate the latch need predication.
5348   BasicBlock* Latch = TheLoop->getLoopLatch();
5349   return !DT->dominates(BB, Latch);
5350 }
5351 
5352 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
5353                                            SmallPtrSetImpl<Value *> &SafePtrs) {
5354 
5355   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
5356     // Check that we don't have a constant expression that can trap as operand.
5357     for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end();
5358          OI != OE; ++OI) {
5359       if (Constant *C = dyn_cast<Constant>(*OI))
5360         if (C->canTrap())
5361           return false;
5362     }
5363     // We might be able to hoist the load.
5364     if (it->mayReadFromMemory()) {
5365       LoadInst *LI = dyn_cast<LoadInst>(it);
5366       if (!LI)
5367         return false;
5368       if (!SafePtrs.count(LI->getPointerOperand())) {
5369         if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) {
5370           MaskedOp.insert(LI);
5371           continue;
5372         }
5373         return false;
5374       }
5375     }
5376 
5377     // We don't predicate stores at the moment.
5378     if (it->mayWriteToMemory()) {
5379       StoreInst *SI = dyn_cast<StoreInst>(it);
5380       // We only support predication of stores in basic blocks with one
5381       // predecessor.
5382       if (!SI)
5383         return false;
5384 
5385       bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0);
5386       bool isSinglePredecessor = SI->getParent()->getSinglePredecessor();
5387 
5388       if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr ||
5389           !isSinglePredecessor) {
5390         // Build a masked store if it is legal for the target, otherwise scalarize
5391         // the block.
5392         bool isLegalMaskedOp =
5393           isLegalMaskedStore(SI->getValueOperand()->getType(),
5394                              SI->getPointerOperand());
5395         if (isLegalMaskedOp) {
5396           --NumPredStores;
5397           MaskedOp.insert(SI);
5398           continue;
5399         }
5400         return false;
5401       }
5402     }
5403     if (it->mayThrow())
5404       return false;
5405 
5406     // The instructions below can trap.
5407     switch (it->getOpcode()) {
5408     default: continue;
5409     case Instruction::UDiv:
5410     case Instruction::SDiv:
5411     case Instruction::URem:
5412     case Instruction::SRem:
5413       return false;
5414     }
5415   }
5416 
5417   return true;
5418 }
5419 
5420 LoopVectorizationCostModel::VectorizationFactor
5421 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) {
5422   // Width 1 means no vectorize
5423   VectorizationFactor Factor = { 1U, 0U };
5424   if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
5425     emitAnalysis(Report() << "runtime pointer checks needed. Enable vectorization of this loop with '#pragma clang loop vectorize(enable)' when compiling with -Os");
5426     DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
5427     return Factor;
5428   }
5429 
5430   if (!EnableCondStoresVectorization && Legal->NumPredStores) {
5431     emitAnalysis(Report() << "store that is conditionally executed prevents vectorization");
5432     DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
5433     return Factor;
5434   }
5435 
5436   // Find the trip count.
5437   unsigned TC = SE->getSmallConstantTripCount(TheLoop);
5438   DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5439 
5440   unsigned WidestType = getWidestType();
5441   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
5442   unsigned MaxSafeDepDist = -1U;
5443   if (Legal->getMaxSafeDepDistBytes() != -1U)
5444     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
5445   WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
5446                     WidestRegister : MaxSafeDepDist);
5447   unsigned MaxVectorSize = WidestRegister / WidestType;
5448   DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
5449   DEBUG(dbgs() << "LV: The Widest register is: "
5450           << WidestRegister << " bits.\n");
5451 
5452   if (MaxVectorSize == 0) {
5453     DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5454     MaxVectorSize = 1;
5455   }
5456 
5457   assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"
5458          " into one vector!");
5459 
5460   unsigned VF = MaxVectorSize;
5461 
5462   // If we optimize the program for size, avoid creating the tail loop.
5463   if (OptForSize) {
5464     // If we are unable to calculate the trip count then don't try to vectorize.
5465     if (TC < 2) {
5466       emitAnalysis(Report() << "unable to calculate the loop count due to complex control flow");
5467       DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
5468       return Factor;
5469     }
5470 
5471     // Find the maximum SIMD width that can fit within the trip count.
5472     VF = TC % MaxVectorSize;
5473 
5474     if (VF == 0)
5475       VF = MaxVectorSize;
5476 
5477     // If the trip count that we found modulo the vectorization factor is not
5478     // zero then we require a tail.
5479     if (VF < 2) {
5480       emitAnalysis(Report() << "cannot optimize for size and vectorize at the "
5481                                "same time. Enable vectorization of this loop "
5482                                "with '#pragma clang loop vectorize(enable)' "
5483                                "when compiling with -Os");
5484       DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
5485       return Factor;
5486     }
5487   }
5488 
5489   int UserVF = Hints->getWidth();
5490   if (UserVF != 0) {
5491     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
5492     DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
5493 
5494     Factor.Width = UserVF;
5495     return Factor;
5496   }
5497 
5498   float Cost = expectedCost(1);
5499 #ifndef NDEBUG
5500   const float ScalarCost = Cost;
5501 #endif /* NDEBUG */
5502   unsigned Width = 1;
5503   DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
5504 
5505   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5506   // Ignore scalar width, because the user explicitly wants vectorization.
5507   if (ForceVectorization && VF > 1) {
5508     Width = 2;
5509     Cost = expectedCost(Width) / (float)Width;
5510   }
5511 
5512   for (unsigned i=2; i <= VF; i*=2) {
5513     // Notice that the vector loop needs to be executed less times, so
5514     // we need to divide the cost of the vector loops by the width of
5515     // the vector elements.
5516     float VectorCost = expectedCost(i) / (float)i;
5517     DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
5518           (int)VectorCost << ".\n");
5519     if (VectorCost < Cost) {
5520       Cost = VectorCost;
5521       Width = i;
5522     }
5523   }
5524 
5525   DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
5526         << "LV: Vectorization seems to be not beneficial, "
5527         << "but was forced by a user.\n");
5528   DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n");
5529   Factor.Width = Width;
5530   Factor.Cost = Width * Cost;
5531   return Factor;
5532 }
5533 
5534 unsigned LoopVectorizationCostModel::getWidestType() {
5535   unsigned MaxWidth = 8;
5536 
5537   // For each block.
5538   for (Loop::block_iterator bb = TheLoop->block_begin(),
5539        be = TheLoop->block_end(); bb != be; ++bb) {
5540     BasicBlock *BB = *bb;
5541 
5542     // For each instruction in the loop.
5543     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
5544       Type *T = it->getType();
5545 
5546       // Ignore ephemeral values.
5547       if (EphValues.count(it))
5548         continue;
5549 
5550       // Only examine Loads, Stores and PHINodes.
5551       if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
5552         continue;
5553 
5554       // Examine PHI nodes that are reduction variables.
5555       if (PHINode *PN = dyn_cast<PHINode>(it))
5556         if (!Legal->getReductionVars()->count(PN))
5557           continue;
5558 
5559       // Examine the stored values.
5560       if (StoreInst *ST = dyn_cast<StoreInst>(it))
5561         T = ST->getValueOperand()->getType();
5562 
5563       // Ignore loaded pointer types and stored pointer types that are not
5564       // consecutive. However, we do want to take consecutive stores/loads of
5565       // pointer vectors into account.
5566       if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
5567         continue;
5568 
5569       MaxWidth = std::max(MaxWidth,
5570                           (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
5571     }
5572   }
5573 
5574   return MaxWidth;
5575 }
5576 
5577 unsigned
5578 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
5579                                                unsigned VF,
5580                                                unsigned LoopCost) {
5581 
5582   // -- The unroll heuristics --
5583   // We unroll the loop in order to expose ILP and reduce the loop overhead.
5584   // There are many micro-architectural considerations that we can't predict
5585   // at this level. For example, frontend pressure (on decode or fetch) due to
5586   // code size, or the number and capabilities of the execution ports.
5587   //
5588   // We use the following heuristics to select the unroll factor:
5589   // 1. If the code has reductions, then we unroll in order to break the cross
5590   // iteration dependency.
5591   // 2. If the loop is really small, then we unroll in order to reduce the loop
5592   // overhead.
5593   // 3. We don't unroll if we think that we will spill registers to memory due
5594   // to the increased register pressure.
5595 
5596   // Use the user preference, unless 'auto' is selected.
5597   int UserUF = Hints->getInterleave();
5598   if (UserUF != 0)
5599     return UserUF;
5600 
5601   // When we optimize for size, we don't unroll.
5602   if (OptForSize)
5603     return 1;
5604 
5605   // We used the distance for the unroll factor.
5606   if (Legal->getMaxSafeDepDistBytes() != -1U)
5607     return 1;
5608 
5609   // Do not unroll loops with a relatively small trip count.
5610   unsigned TC = SE->getSmallConstantTripCount(TheLoop);
5611   if (TC > 1 && TC < TinyTripCountUnrollThreshold)
5612     return 1;
5613 
5614   unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
5615   DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters <<
5616         " registers\n");
5617 
5618   if (VF == 1) {
5619     if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5620       TargetNumRegisters = ForceTargetNumScalarRegs;
5621   } else {
5622     if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5623       TargetNumRegisters = ForceTargetNumVectorRegs;
5624   }
5625 
5626   LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
5627   // We divide by these constants so assume that we have at least one
5628   // instruction that uses at least one register.
5629   R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
5630   R.NumInstructions = std::max(R.NumInstructions, 1U);
5631 
5632   // We calculate the unroll factor using the following formula.
5633   // Subtract the number of loop invariants from the number of available
5634   // registers. These registers are used by all of the unrolled instances.
5635   // Next, divide the remaining registers by the number of registers that is
5636   // required by the loop, in order to estimate how many parallel instances
5637   // fit without causing spills. All of this is rounded down if necessary to be
5638   // a power of two. We want power of two unroll factors to simplify any
5639   // addressing operations or alignment considerations.
5640   unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
5641                               R.MaxLocalUsers);
5642 
5643   // Don't count the induction variable as unrolled.
5644   if (EnableIndVarRegisterHeur)
5645     UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
5646                        std::max(1U, (R.MaxLocalUsers - 1)));
5647 
5648   // Clamp the unroll factor ranges to reasonable factors.
5649   unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor();
5650 
5651   // Check if the user has overridden the unroll max.
5652   if (VF == 1) {
5653     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5654       MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor;
5655   } else {
5656     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5657       MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor;
5658   }
5659 
5660   // If we did not calculate the cost for VF (because the user selected the VF)
5661   // then we calculate the cost of VF here.
5662   if (LoopCost == 0)
5663     LoopCost = expectedCost(VF);
5664 
5665   // Clamp the calculated UF to be between the 1 and the max unroll factor
5666   // that the target allows.
5667   if (UF > MaxInterleaveSize)
5668     UF = MaxInterleaveSize;
5669   else if (UF < 1)
5670     UF = 1;
5671 
5672   // Unroll if we vectorized this loop and there is a reduction that could
5673   // benefit from unrolling.
5674   if (VF > 1 && Legal->getReductionVars()->size()) {
5675     DEBUG(dbgs() << "LV: Unrolling because of reductions.\n");
5676     return UF;
5677   }
5678 
5679   // Note that if we've already vectorized the loop we will have done the
5680   // runtime check and so unrolling won't require further checks.
5681   bool UnrollingRequiresRuntimePointerCheck =
5682       (VF == 1 && Legal->getRuntimePointerCheck()->Need);
5683 
5684   // We want to unroll small loops in order to reduce the loop overhead and
5685   // potentially expose ILP opportunities.
5686   DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
5687   if (!UnrollingRequiresRuntimePointerCheck &&
5688       LoopCost < SmallLoopCost) {
5689     // We assume that the cost overhead is 1 and we use the cost model
5690     // to estimate the cost of the loop and unroll until the cost of the
5691     // loop overhead is about 5% of the cost of the loop.
5692     unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5693 
5694     // Unroll until store/load ports (estimated by max unroll factor) are
5695     // saturated.
5696     unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1);
5697     unsigned LoadsUF = UF /  (Legal->NumLoads ? Legal->NumLoads : 1);
5698 
5699     // If we have a scalar reduction (vector reductions are already dealt with
5700     // by this point), we can increase the critical path length if the loop
5701     // we're unrolling is inside another loop. Limit, by default to 2, so the
5702     // critical path only gets increased by one reduction operation.
5703     if (Legal->getReductionVars()->size() &&
5704         TheLoop->getLoopDepth() > 1) {
5705       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF);
5706       SmallUF = std::min(SmallUF, F);
5707       StoresUF = std::min(StoresUF, F);
5708       LoadsUF = std::min(LoadsUF, F);
5709     }
5710 
5711     if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) {
5712       DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n");
5713       return std::max(StoresUF, LoadsUF);
5714     }
5715 
5716     DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n");
5717     return SmallUF;
5718   }
5719 
5720   DEBUG(dbgs() << "LV: Not Unrolling.\n");
5721   return 1;
5722 }
5723 
5724 LoopVectorizationCostModel::RegisterUsage
5725 LoopVectorizationCostModel::calculateRegisterUsage() {
5726   // This function calculates the register usage by measuring the highest number
5727   // of values that are alive at a single location. Obviously, this is a very
5728   // rough estimation. We scan the loop in a topological order in order and
5729   // assign a number to each instruction. We use RPO to ensure that defs are
5730   // met before their users. We assume that each instruction that has in-loop
5731   // users starts an interval. We record every time that an in-loop value is
5732   // used, so we have a list of the first and last occurrences of each
5733   // instruction. Next, we transpose this data structure into a multi map that
5734   // holds the list of intervals that *end* at a specific location. This multi
5735   // map allows us to perform a linear search. We scan the instructions linearly
5736   // and record each time that a new interval starts, by placing it in a set.
5737   // If we find this value in the multi-map then we remove it from the set.
5738   // The max register usage is the maximum size of the set.
5739   // We also search for instructions that are defined outside the loop, but are
5740   // used inside the loop. We need this number separately from the max-interval
5741   // usage number because when we unroll, loop-invariant values do not take
5742   // more register.
5743   LoopBlocksDFS DFS(TheLoop);
5744   DFS.perform(LI);
5745 
5746   RegisterUsage R;
5747   R.NumInstructions = 0;
5748 
5749   // Each 'key' in the map opens a new interval. The values
5750   // of the map are the index of the 'last seen' usage of the
5751   // instruction that is the key.
5752   typedef DenseMap<Instruction*, unsigned> IntervalMap;
5753   // Maps instruction to its index.
5754   DenseMap<unsigned, Instruction*> IdxToInstr;
5755   // Marks the end of each interval.
5756   IntervalMap EndPoint;
5757   // Saves the list of instruction indices that are used in the loop.
5758   SmallSet<Instruction*, 8> Ends;
5759   // Saves the list of values that are used in the loop but are
5760   // defined outside the loop, such as arguments and constants.
5761   SmallPtrSet<Value*, 8> LoopInvariants;
5762 
5763   unsigned Index = 0;
5764   for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
5765        be = DFS.endRPO(); bb != be; ++bb) {
5766     R.NumInstructions += (*bb)->size();
5767     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
5768          ++it) {
5769       Instruction *I = it;
5770       IdxToInstr[Index++] = I;
5771 
5772       // Save the end location of each USE.
5773       for (unsigned i = 0; i < I->getNumOperands(); ++i) {
5774         Value *U = I->getOperand(i);
5775         Instruction *Instr = dyn_cast<Instruction>(U);
5776 
5777         // Ignore non-instruction values such as arguments, constants, etc.
5778         if (!Instr) continue;
5779 
5780         // If this instruction is outside the loop then record it and continue.
5781         if (!TheLoop->contains(Instr)) {
5782           LoopInvariants.insert(Instr);
5783           continue;
5784         }
5785 
5786         // Overwrite previous end points.
5787         EndPoint[Instr] = Index;
5788         Ends.insert(Instr);
5789       }
5790     }
5791   }
5792 
5793   // Saves the list of intervals that end with the index in 'key'.
5794   typedef SmallVector<Instruction*, 2> InstrList;
5795   DenseMap<unsigned, InstrList> TransposeEnds;
5796 
5797   // Transpose the EndPoints to a list of values that end at each index.
5798   for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
5799        it != e; ++it)
5800     TransposeEnds[it->second].push_back(it->first);
5801 
5802   SmallSet<Instruction*, 8> OpenIntervals;
5803   unsigned MaxUsage = 0;
5804 
5805 
5806   DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5807   for (unsigned int i = 0; i < Index; ++i) {
5808     Instruction *I = IdxToInstr[i];
5809     // Ignore instructions that are never used within the loop.
5810     if (!Ends.count(I)) continue;
5811 
5812     // Ignore ephemeral values.
5813     if (EphValues.count(I))
5814       continue;
5815 
5816     // Remove all of the instructions that end at this location.
5817     InstrList &List = TransposeEnds[i];
5818     for (unsigned int j=0, e = List.size(); j < e; ++j)
5819       OpenIntervals.erase(List[j]);
5820 
5821     // Count the number of live interals.
5822     MaxUsage = std::max(MaxUsage, OpenIntervals.size());
5823 
5824     DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
5825           OpenIntervals.size() << '\n');
5826 
5827     // Add the current instruction to the list of open intervals.
5828     OpenIntervals.insert(I);
5829   }
5830 
5831   unsigned Invariant = LoopInvariants.size();
5832   DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n');
5833   DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
5834   DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n');
5835 
5836   R.LoopInvariantRegs = Invariant;
5837   R.MaxLocalUsers = MaxUsage;
5838   return R;
5839 }
5840 
5841 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
5842   unsigned Cost = 0;
5843 
5844   // For each block.
5845   for (Loop::block_iterator bb = TheLoop->block_begin(),
5846        be = TheLoop->block_end(); bb != be; ++bb) {
5847     unsigned BlockCost = 0;
5848     BasicBlock *BB = *bb;
5849 
5850     // For each instruction in the old loop.
5851     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
5852       // Skip dbg intrinsics.
5853       if (isa<DbgInfoIntrinsic>(it))
5854         continue;
5855 
5856       // Ignore ephemeral values.
5857       if (EphValues.count(it))
5858         continue;
5859 
5860       unsigned C = getInstructionCost(it, VF);
5861 
5862       // Check if we should override the cost.
5863       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
5864         C = ForceTargetInstructionCost;
5865 
5866       BlockCost += C;
5867       DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<
5868             VF << " For instruction: " << *it << '\n');
5869     }
5870 
5871     // We assume that if-converted blocks have a 50% chance of being executed.
5872     // When the code is scalar then some of the blocks are avoided due to CF.
5873     // When the code is vectorized we execute all code paths.
5874     if (VF == 1 && Legal->blockNeedsPredication(*bb))
5875       BlockCost /= 2;
5876 
5877     Cost += BlockCost;
5878   }
5879 
5880   return Cost;
5881 }
5882 
5883 /// \brief Check whether the address computation for a non-consecutive memory
5884 /// access looks like an unlikely candidate for being merged into the indexing
5885 /// mode.
5886 ///
5887 /// We look for a GEP which has one index that is an induction variable and all
5888 /// other indices are loop invariant. If the stride of this access is also
5889 /// within a small bound we decide that this address computation can likely be
5890 /// merged into the addressing mode.
5891 /// In all other cases, we identify the address computation as complex.
5892 static bool isLikelyComplexAddressComputation(Value *Ptr,
5893                                               LoopVectorizationLegality *Legal,
5894                                               ScalarEvolution *SE,
5895                                               const Loop *TheLoop) {
5896   GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5897   if (!Gep)
5898     return true;
5899 
5900   // We are looking for a gep with all loop invariant indices except for one
5901   // which should be an induction variable.
5902   unsigned NumOperands = Gep->getNumOperands();
5903   for (unsigned i = 1; i < NumOperands; ++i) {
5904     Value *Opd = Gep->getOperand(i);
5905     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5906         !Legal->isInductionVariable(Opd))
5907       return true;
5908   }
5909 
5910   // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
5911   // can likely be merged into the address computation.
5912   unsigned MaxMergeDistance = 64;
5913 
5914   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
5915   if (!AddRec)
5916     return true;
5917 
5918   // Check the step is constant.
5919   const SCEV *Step = AddRec->getStepRecurrence(*SE);
5920   // Calculate the pointer stride and check if it is consecutive.
5921   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
5922   if (!C)
5923     return true;
5924 
5925   const APInt &APStepVal = C->getValue()->getValue();
5926 
5927   // Huge step value - give up.
5928   if (APStepVal.getBitWidth() > 64)
5929     return true;
5930 
5931   int64_t StepVal = APStepVal.getSExtValue();
5932 
5933   return StepVal > MaxMergeDistance;
5934 }
5935 
5936 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
5937   if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1)))
5938     return true;
5939   return false;
5940 }
5941 
5942 unsigned
5943 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
5944   // If we know that this instruction will remain uniform, check the cost of
5945   // the scalar version.
5946   if (Legal->isUniformAfterVectorization(I))
5947     VF = 1;
5948 
5949   Type *RetTy = I->getType();
5950   Type *VectorTy = ToVectorTy(RetTy, VF);
5951 
5952   // TODO: We need to estimate the cost of intrinsic calls.
5953   switch (I->getOpcode()) {
5954   case Instruction::GetElementPtr:
5955     // We mark this instruction as zero-cost because the cost of GEPs in
5956     // vectorized code depends on whether the corresponding memory instruction
5957     // is scalarized or not. Therefore, we handle GEPs with the memory
5958     // instruction cost.
5959     return 0;
5960   case Instruction::Br: {
5961     return TTI.getCFInstrCost(I->getOpcode());
5962   }
5963   case Instruction::PHI:
5964     //TODO: IF-converted IFs become selects.
5965     return 0;
5966   case Instruction::Add:
5967   case Instruction::FAdd:
5968   case Instruction::Sub:
5969   case Instruction::FSub:
5970   case Instruction::Mul:
5971   case Instruction::FMul:
5972   case Instruction::UDiv:
5973   case Instruction::SDiv:
5974   case Instruction::FDiv:
5975   case Instruction::URem:
5976   case Instruction::SRem:
5977   case Instruction::FRem:
5978   case Instruction::Shl:
5979   case Instruction::LShr:
5980   case Instruction::AShr:
5981   case Instruction::And:
5982   case Instruction::Or:
5983   case Instruction::Xor: {
5984     // Since we will replace the stride by 1 the multiplication should go away.
5985     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
5986       return 0;
5987     // Certain instructions can be cheaper to vectorize if they have a constant
5988     // second vector operand. One example of this are shifts on x86.
5989     TargetTransformInfo::OperandValueKind Op1VK =
5990       TargetTransformInfo::OK_AnyValue;
5991     TargetTransformInfo::OperandValueKind Op2VK =
5992       TargetTransformInfo::OK_AnyValue;
5993     TargetTransformInfo::OperandValueProperties Op1VP =
5994         TargetTransformInfo::OP_None;
5995     TargetTransformInfo::OperandValueProperties Op2VP =
5996         TargetTransformInfo::OP_None;
5997     Value *Op2 = I->getOperand(1);
5998 
5999     // Check for a splat of a constant or for a non uniform vector of constants.
6000     if (isa<ConstantInt>(Op2)) {
6001       ConstantInt *CInt = cast<ConstantInt>(Op2);
6002       if (CInt && CInt->getValue().isPowerOf2())
6003         Op2VP = TargetTransformInfo::OP_PowerOf2;
6004       Op2VK = TargetTransformInfo::OK_UniformConstantValue;
6005     } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
6006       Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
6007       Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
6008       if (SplatValue) {
6009         ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
6010         if (CInt && CInt->getValue().isPowerOf2())
6011           Op2VP = TargetTransformInfo::OP_PowerOf2;
6012         Op2VK = TargetTransformInfo::OK_UniformConstantValue;
6013       }
6014     }
6015 
6016     return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK,
6017                                       Op1VP, Op2VP);
6018   }
6019   case Instruction::Select: {
6020     SelectInst *SI = cast<SelectInst>(I);
6021     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6022     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6023     Type *CondTy = SI->getCondition()->getType();
6024     if (!ScalarCond)
6025       CondTy = VectorType::get(CondTy, VF);
6026 
6027     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
6028   }
6029   case Instruction::ICmp:
6030   case Instruction::FCmp: {
6031     Type *ValTy = I->getOperand(0)->getType();
6032     VectorTy = ToVectorTy(ValTy, VF);
6033     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
6034   }
6035   case Instruction::Store:
6036   case Instruction::Load: {
6037     StoreInst *SI = dyn_cast<StoreInst>(I);
6038     LoadInst *LI = dyn_cast<LoadInst>(I);
6039     Type *ValTy = (SI ? SI->getValueOperand()->getType() :
6040                    LI->getType());
6041     VectorTy = ToVectorTy(ValTy, VF);
6042 
6043     unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
6044     unsigned AS = SI ? SI->getPointerAddressSpace() :
6045       LI->getPointerAddressSpace();
6046     Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
6047     // We add the cost of address computation here instead of with the gep
6048     // instruction because only here we know whether the operation is
6049     // scalarized.
6050     if (VF == 1)
6051       return TTI.getAddressComputationCost(VectorTy) +
6052         TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
6053 
6054     // Scalarized loads/stores.
6055     int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
6056     bool Reverse = ConsecutiveStride < 0;
6057     unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
6058     unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
6059     if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
6060       bool IsComplexComputation =
6061         isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
6062       unsigned Cost = 0;
6063       // The cost of extracting from the value vector and pointer vector.
6064       Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6065       for (unsigned i = 0; i < VF; ++i) {
6066         //  The cost of extracting the pointer operand.
6067         Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
6068         // In case of STORE, the cost of ExtractElement from the vector.
6069         // In case of LOAD, the cost of InsertElement into the returned
6070         // vector.
6071         Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
6072                                             Instruction::InsertElement,
6073                                             VectorTy, i);
6074       }
6075 
6076       // The cost of the scalar loads/stores.
6077       Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
6078       Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
6079                                        Alignment, AS);
6080       return Cost;
6081     }
6082 
6083     // Wide load/stores.
6084     unsigned Cost = TTI.getAddressComputationCost(VectorTy);
6085     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
6086 
6087     if (Reverse)
6088       Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
6089                                   VectorTy, 0);
6090     return Cost;
6091   }
6092   case Instruction::ZExt:
6093   case Instruction::SExt:
6094   case Instruction::FPToUI:
6095   case Instruction::FPToSI:
6096   case Instruction::FPExt:
6097   case Instruction::PtrToInt:
6098   case Instruction::IntToPtr:
6099   case Instruction::SIToFP:
6100   case Instruction::UIToFP:
6101   case Instruction::Trunc:
6102   case Instruction::FPTrunc:
6103   case Instruction::BitCast: {
6104     // We optimize the truncation of induction variable.
6105     // The cost of these is the same as the scalar operation.
6106     if (I->getOpcode() == Instruction::Trunc &&
6107         Legal->isInductionVariable(I->getOperand(0)))
6108       return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
6109                                   I->getOperand(0)->getType());
6110 
6111     Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
6112     return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
6113   }
6114   case Instruction::Call: {
6115     CallInst *CI = cast<CallInst>(I);
6116     Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
6117     assert(ID && "Not an intrinsic call!");
6118     Type *RetTy = ToVectorTy(CI->getType(), VF);
6119     SmallVector<Type*, 4> Tys;
6120     for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
6121       Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
6122     return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
6123   }
6124   default: {
6125     // We are scalarizing the instruction. Return the cost of the scalar
6126     // instruction, plus the cost of insert and extract into vector
6127     // elements, times the vector width.
6128     unsigned Cost = 0;
6129 
6130     if (!RetTy->isVoidTy() && VF != 1) {
6131       unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
6132                                                 VectorTy);
6133       unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
6134                                                 VectorTy);
6135 
6136       // The cost of inserting the results plus extracting each one of the
6137       // operands.
6138       Cost += VF * (InsCost + ExtCost * I->getNumOperands());
6139     }
6140 
6141     // The cost of executing VF copies of the scalar instruction. This opcode
6142     // is unknown. Assume that it is the same as 'mul'.
6143     Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
6144     return Cost;
6145   }
6146   }// end of switch.
6147 }
6148 
6149 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
6150   if (Scalar->isVoidTy() || VF == 1)
6151     return Scalar;
6152   return VectorType::get(Scalar, VF);
6153 }
6154 
6155 char LoopVectorize::ID = 0;
6156 static const char lv_name[] = "Loop Vectorization";
6157 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
6158 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
6159 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
6160 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
6161 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo)
6162 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6163 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
6164 INITIALIZE_PASS_DEPENDENCY(LCSSA)
6165 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6166 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
6167 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
6168 
6169 namespace llvm {
6170   Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
6171     return new LoopVectorize(NoUnrolling, AlwaysVectorize);
6172   }
6173 }
6174 
6175 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
6176   // Check for a store.
6177   if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
6178     return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
6179 
6180   // Check for a load.
6181   if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
6182     return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
6183 
6184   return false;
6185 }
6186 
6187 
6188 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
6189                                              bool IfPredicateStore) {
6190   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
6191   // Holds vector parameters or scalars, in case of uniform vals.
6192   SmallVector<VectorParts, 4> Params;
6193 
6194   setDebugLocFromInst(Builder, Instr);
6195 
6196   // Find all of the vectorized parameters.
6197   for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
6198     Value *SrcOp = Instr->getOperand(op);
6199 
6200     // If we are accessing the old induction variable, use the new one.
6201     if (SrcOp == OldInduction) {
6202       Params.push_back(getVectorValue(SrcOp));
6203       continue;
6204     }
6205 
6206     // Try using previously calculated values.
6207     Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
6208 
6209     // If the src is an instruction that appeared earlier in the basic block
6210     // then it should already be vectorized.
6211     if (SrcInst && OrigLoop->contains(SrcInst)) {
6212       assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
6213       // The parameter is a vector value from earlier.
6214       Params.push_back(WidenMap.get(SrcInst));
6215     } else {
6216       // The parameter is a scalar from outside the loop. Maybe even a constant.
6217       VectorParts Scalars;
6218       Scalars.append(UF, SrcOp);
6219       Params.push_back(Scalars);
6220     }
6221   }
6222 
6223   assert(Params.size() == Instr->getNumOperands() &&
6224          "Invalid number of operands");
6225 
6226   // Does this instruction return a value ?
6227   bool IsVoidRetTy = Instr->getType()->isVoidTy();
6228 
6229   Value *UndefVec = IsVoidRetTy ? nullptr :
6230   UndefValue::get(Instr->getType());
6231   // Create a new entry in the WidenMap and initialize it to Undef or Null.
6232   VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
6233 
6234   Instruction *InsertPt = Builder.GetInsertPoint();
6235   BasicBlock *IfBlock = Builder.GetInsertBlock();
6236   BasicBlock *CondBlock = nullptr;
6237 
6238   VectorParts Cond;
6239   Loop *VectorLp = nullptr;
6240   if (IfPredicateStore) {
6241     assert(Instr->getParent()->getSinglePredecessor() &&
6242            "Only support single predecessor blocks");
6243     Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
6244                           Instr->getParent());
6245     VectorLp = LI->getLoopFor(IfBlock);
6246     assert(VectorLp && "Must have a loop for this block");
6247   }
6248 
6249   // For each vector unroll 'part':
6250   for (unsigned Part = 0; Part < UF; ++Part) {
6251     // For each scalar that we create:
6252 
6253     // Start an "if (pred) a[i] = ..." block.
6254     Value *Cmp = nullptr;
6255     if (IfPredicateStore) {
6256       if (Cond[Part]->getType()->isVectorTy())
6257         Cond[Part] =
6258             Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0));
6259       Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part],
6260                                ConstantInt::get(Cond[Part]->getType(), 1));
6261       CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
6262       LoopVectorBody.push_back(CondBlock);
6263       VectorLp->addBasicBlockToLoop(CondBlock, *LI);
6264       // Update Builder with newly created basic block.
6265       Builder.SetInsertPoint(InsertPt);
6266     }
6267 
6268     Instruction *Cloned = Instr->clone();
6269       if (!IsVoidRetTy)
6270         Cloned->setName(Instr->getName() + ".cloned");
6271       // Replace the operands of the cloned instructions with extracted scalars.
6272       for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
6273         Value *Op = Params[op][Part];
6274         Cloned->setOperand(op, Op);
6275       }
6276 
6277       // Place the cloned scalar in the new loop.
6278       Builder.Insert(Cloned);
6279 
6280       // If the original scalar returns a value we need to place it in a vector
6281       // so that future users will be able to use it.
6282       if (!IsVoidRetTy)
6283         VecResults[Part] = Cloned;
6284 
6285     // End if-block.
6286       if (IfPredicateStore) {
6287         BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
6288         LoopVectorBody.push_back(NewIfBlock);
6289         VectorLp->addBasicBlockToLoop(NewIfBlock, *LI);
6290         Builder.SetInsertPoint(InsertPt);
6291         Instruction *OldBr = IfBlock->getTerminator();
6292         BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
6293         OldBr->eraseFromParent();
6294         IfBlock = NewIfBlock;
6295       }
6296   }
6297 }
6298 
6299 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) {
6300   StoreInst *SI = dyn_cast<StoreInst>(Instr);
6301   bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent()));
6302 
6303   return scalarizeInstruction(Instr, IfPredicateStore);
6304 }
6305 
6306 Value *InnerLoopUnroller::reverseVector(Value *Vec) {
6307   return Vec;
6308 }
6309 
6310 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
6311   return V;
6312 }
6313 
6314 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx,
6315                                                bool Negate) {
6316   // When unrolling and the VF is 1, we only need to add a simple scalar.
6317   Type *ITy = Val->getType();
6318   assert(!ITy->isVectorTy() && "Val must be a scalar");
6319   Constant *C = ConstantInt::get(ITy, StartIdx, Negate);
6320   return Builder.CreateAdd(Val, C, "induction");
6321 }
6322