1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Vectorize.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/EquivalenceClasses.h" 48 #include "llvm/ADT/Hashing.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallSet.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/Analysis/AliasAnalysis.h" 57 #include "llvm/Analysis/AliasSetTracker.h" 58 #include "llvm/Analysis/AssumptionCache.h" 59 #include "llvm/Analysis/BlockFrequencyInfo.h" 60 #include "llvm/Analysis/CodeMetrics.h" 61 #include "llvm/Analysis/LoopInfo.h" 62 #include "llvm/Analysis/LoopIterator.h" 63 #include "llvm/Analysis/LoopPass.h" 64 #include "llvm/Analysis/ScalarEvolution.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 67 #include "llvm/Analysis/TargetTransformInfo.h" 68 #include "llvm/Analysis/ValueTracking.h" 69 #include "llvm/IR/Constants.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugInfo.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/DiagnosticInfo.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/PatternMatch.h" 82 #include "llvm/IR/Type.h" 83 #include "llvm/IR/Value.h" 84 #include "llvm/IR/ValueHandle.h" 85 #include "llvm/IR/Verifier.h" 86 #include "llvm/Pass.h" 87 #include "llvm/Support/BranchProbability.h" 88 #include "llvm/Support/CommandLine.h" 89 #include "llvm/Support/Debug.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Transforms/Scalar.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/VectorUtils.h" 95 #include <algorithm> 96 #include <map> 97 #include <tuple> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 102 #define LV_NAME "loop-vectorize" 103 #define DEBUG_TYPE LV_NAME 104 105 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 106 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 107 108 static cl::opt<unsigned> 109 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, 110 cl::desc("Sets the SIMD width. Zero is autoselect.")); 111 112 static cl::opt<unsigned> 113 VectorizationInterleave("force-vector-interleave", cl::init(0), cl::Hidden, 114 cl::desc("Sets the vectorization interleave count. " 115 "Zero is autoselect.")); 116 117 static cl::opt<bool> 118 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 119 cl::desc("Enable if-conversion during vectorization.")); 120 121 /// We don't vectorize loops with a known constant trip count below this number. 122 static cl::opt<unsigned> 123 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 124 cl::Hidden, 125 cl::desc("Don't vectorize loops with a constant " 126 "trip count that is smaller than this " 127 "value.")); 128 129 /// This enables versioning on the strides of symbolically striding memory 130 /// accesses in code like the following. 131 /// for (i = 0; i < N; ++i) 132 /// A[i * Stride1] += B[i * Stride2] ... 133 /// 134 /// Will be roughly translated to 135 /// if (Stride1 == 1 && Stride2 == 1) { 136 /// for (i = 0; i < N; i+=4) 137 /// A[i:i+3] += ... 138 /// } else 139 /// ... 140 static cl::opt<bool> EnableMemAccessVersioning( 141 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 142 cl::desc("Enable symblic stride memory access versioning")); 143 144 /// We don't unroll loops with a known constant trip count below this number. 145 static const unsigned TinyTripCountUnrollThreshold = 128; 146 147 /// When performing memory disambiguation checks at runtime do not make more 148 /// than this number of comparisons. 149 static const unsigned RuntimeMemoryCheckThreshold = 8; 150 151 /// Maximum simd width. 152 static const unsigned MaxVectorWidth = 64; 153 154 static cl::opt<unsigned> ForceTargetNumScalarRegs( 155 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 156 cl::desc("A flag that overrides the target's number of scalar registers.")); 157 158 static cl::opt<unsigned> ForceTargetNumVectorRegs( 159 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 160 cl::desc("A flag that overrides the target's number of vector registers.")); 161 162 /// Maximum vectorization interleave count. 163 static const unsigned MaxInterleaveFactor = 16; 164 165 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 166 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 167 cl::desc("A flag that overrides the target's max interleave factor for " 168 "scalar loops.")); 169 170 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 171 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 172 cl::desc("A flag that overrides the target's max interleave factor for " 173 "vectorized loops.")); 174 175 static cl::opt<unsigned> ForceTargetInstructionCost( 176 "force-target-instruction-cost", cl::init(0), cl::Hidden, 177 cl::desc("A flag that overrides the target's expected cost for " 178 "an instruction to a single constant value. Mostly " 179 "useful for getting consistent testing.")); 180 181 static cl::opt<unsigned> SmallLoopCost( 182 "small-loop-cost", cl::init(20), cl::Hidden, 183 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 184 185 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 186 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 187 cl::desc("Enable the use of the block frequency analysis to access PGO " 188 "heuristics minimizing code growth in cold regions and being more " 189 "aggressive in hot regions.")); 190 191 // Runtime unroll loops for load/store throughput. 192 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 193 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 194 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 195 196 /// The number of stores in a loop that are allowed to need predication. 197 static cl::opt<unsigned> NumberOfStoresToPredicate( 198 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 199 cl::desc("Max number of stores to be predicated behind an if.")); 200 201 static cl::opt<bool> EnableIndVarRegisterHeur( 202 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 203 cl::desc("Count the induction variable only once when unrolling")); 204 205 static cl::opt<bool> EnableCondStoresVectorization( 206 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 207 cl::desc("Enable if predication of stores during vectorization.")); 208 209 static cl::opt<unsigned> MaxNestedScalarReductionUF( 210 "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden, 211 cl::desc("The maximum unroll factor to use when unrolling a scalar " 212 "reduction in a nested loop.")); 213 214 namespace { 215 216 // Forward declarations. 217 class LoopVectorizationLegality; 218 class LoopVectorizationCostModel; 219 class LoopVectorizeHints; 220 221 /// Optimization analysis message produced during vectorization. Messages inform 222 /// the user why vectorization did not occur. 223 class Report { 224 std::string Message; 225 raw_string_ostream Out; 226 Instruction *Instr; 227 228 public: 229 Report(Instruction *I = nullptr) : Out(Message), Instr(I) { 230 Out << "loop not vectorized: "; 231 } 232 233 template <typename A> Report &operator<<(const A &Value) { 234 Out << Value; 235 return *this; 236 } 237 238 Instruction *getInstr() { return Instr; } 239 240 std::string &str() { return Out.str(); } 241 operator Twine() { return Out.str(); } 242 }; 243 244 /// InnerLoopVectorizer vectorizes loops which contain only one basic 245 /// block to a specified vectorization factor (VF). 246 /// This class performs the widening of scalars into vectors, or multiple 247 /// scalars. This class also implements the following features: 248 /// * It inserts an epilogue loop for handling loops that don't have iteration 249 /// counts that are known to be a multiple of the vectorization factor. 250 /// * It handles the code generation for reduction variables. 251 /// * Scalarization (implementation using scalars) of un-vectorizable 252 /// instructions. 253 /// InnerLoopVectorizer does not perform any vectorization-legality 254 /// checks, and relies on the caller to check for the different legality 255 /// aspects. The InnerLoopVectorizer relies on the 256 /// LoopVectorizationLegality class to provide information about the induction 257 /// and reduction variables that were found to a given vectorization factor. 258 class InnerLoopVectorizer { 259 public: 260 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 261 DominatorTree *DT, const DataLayout *DL, 262 const TargetLibraryInfo *TLI, unsigned VecWidth, 263 unsigned UnrollFactor) 264 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 265 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 266 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 267 Legal(nullptr) {} 268 269 // Perform the actual loop widening (vectorization). 270 void vectorize(LoopVectorizationLegality *L) { 271 Legal = L; 272 // Create a new empty loop. Unlink the old loop and connect the new one. 273 createEmptyLoop(); 274 // Widen each instruction in the old loop to a new one in the new loop. 275 // Use the Legality module to find the induction and reduction variables. 276 vectorizeLoop(); 277 // Register the new loop and update the analysis passes. 278 updateAnalysis(); 279 } 280 281 virtual ~InnerLoopVectorizer() {} 282 283 protected: 284 /// A small list of PHINodes. 285 typedef SmallVector<PHINode*, 4> PhiVector; 286 /// When we unroll loops we have multiple vector values for each scalar. 287 /// This data structure holds the unrolled and vectorized values that 288 /// originated from one scalar instruction. 289 typedef SmallVector<Value*, 2> VectorParts; 290 291 // When we if-convert we need create edge masks. We have to cache values so 292 // that we don't end up with exponential recursion/IR. 293 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 294 VectorParts> EdgeMaskCache; 295 296 /// \brief Add code that checks at runtime if the accessed arrays overlap. 297 /// 298 /// Returns a pair of instructions where the first element is the first 299 /// instruction generated in possibly a sequence of instructions and the 300 /// second value is the final comparator value or NULL if no check is needed. 301 std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc); 302 303 /// \brief Add checks for strides that where assumed to be 1. 304 /// 305 /// Returns the last check instruction and the first check instruction in the 306 /// pair as (first, last). 307 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 308 309 /// Create an empty loop, based on the loop ranges of the old loop. 310 void createEmptyLoop(); 311 /// Copy and widen the instructions from the old loop. 312 virtual void vectorizeLoop(); 313 314 /// \brief The Loop exit block may have single value PHI nodes where the 315 /// incoming value is 'Undef'. While vectorizing we only handled real values 316 /// that were defined inside the loop. Here we fix the 'undef case'. 317 /// See PR14725. 318 void fixLCSSAPHIs(); 319 320 /// A helper function that computes the predicate of the block BB, assuming 321 /// that the header block of the loop is set to True. It returns the *entry* 322 /// mask for the block BB. 323 VectorParts createBlockInMask(BasicBlock *BB); 324 /// A helper function that computes the predicate of the edge between SRC 325 /// and DST. 326 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 327 328 /// A helper function to vectorize a single BB within the innermost loop. 329 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 330 331 /// Vectorize a single PHINode in a block. This method handles the induction 332 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 333 /// arbitrary length vectors. 334 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 335 unsigned UF, unsigned VF, PhiVector *PV); 336 337 /// Insert the new loop to the loop hierarchy and pass manager 338 /// and update the analysis passes. 339 void updateAnalysis(); 340 341 /// This instruction is un-vectorizable. Implement it as a sequence 342 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 343 /// scalarized instruction behind an if block predicated on the control 344 /// dependence of the instruction. 345 virtual void scalarizeInstruction(Instruction *Instr, 346 bool IfPredicateStore=false); 347 348 /// Vectorize Load and Store instructions, 349 virtual void vectorizeMemoryInstruction(Instruction *Instr); 350 351 /// Create a broadcast instruction. This method generates a broadcast 352 /// instruction (shuffle) for loop invariant values and for the induction 353 /// value. If this is the induction variable then we extend it to N, N+1, ... 354 /// this is needed because each iteration in the loop corresponds to a SIMD 355 /// element. 356 virtual Value *getBroadcastInstrs(Value *V); 357 358 /// This function adds 0, 1, 2 ... to each vector element, starting at zero. 359 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). 360 /// The sequence starts at StartIndex. 361 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 362 363 /// When we go over instructions in the basic block we rely on previous 364 /// values within the current basic block or on loop invariant values. 365 /// When we widen (vectorize) values we place them in the map. If the values 366 /// are not within the map, they have to be loop invariant, so we simply 367 /// broadcast them into a vector. 368 VectorParts &getVectorValue(Value *V); 369 370 /// Generate a shuffle sequence that will reverse the vector Vec. 371 virtual Value *reverseVector(Value *Vec); 372 373 /// This is a helper class that holds the vectorizer state. It maps scalar 374 /// instructions to vector instructions. When the code is 'unrolled' then 375 /// then a single scalar value is mapped to multiple vector parts. The parts 376 /// are stored in the VectorPart type. 377 struct ValueMap { 378 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 379 /// are mapped. 380 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 381 382 /// \return True if 'Key' is saved in the Value Map. 383 bool has(Value *Key) const { return MapStorage.count(Key); } 384 385 /// Initializes a new entry in the map. Sets all of the vector parts to the 386 /// save value in 'Val'. 387 /// \return A reference to a vector with splat values. 388 VectorParts &splat(Value *Key, Value *Val) { 389 VectorParts &Entry = MapStorage[Key]; 390 Entry.assign(UF, Val); 391 return Entry; 392 } 393 394 ///\return A reference to the value that is stored at 'Key'. 395 VectorParts &get(Value *Key) { 396 VectorParts &Entry = MapStorage[Key]; 397 if (Entry.empty()) 398 Entry.resize(UF); 399 assert(Entry.size() == UF); 400 return Entry; 401 } 402 403 private: 404 /// The unroll factor. Each entry in the map stores this number of vector 405 /// elements. 406 unsigned UF; 407 408 /// Map storage. We use std::map and not DenseMap because insertions to a 409 /// dense map invalidates its iterators. 410 std::map<Value *, VectorParts> MapStorage; 411 }; 412 413 /// The original loop. 414 Loop *OrigLoop; 415 /// Scev analysis to use. 416 ScalarEvolution *SE; 417 /// Loop Info. 418 LoopInfo *LI; 419 /// Dominator Tree. 420 DominatorTree *DT; 421 /// Alias Analysis. 422 AliasAnalysis *AA; 423 /// Data Layout. 424 const DataLayout *DL; 425 /// Target Library Info. 426 const TargetLibraryInfo *TLI; 427 428 /// The vectorization SIMD factor to use. Each vector will have this many 429 /// vector elements. 430 unsigned VF; 431 432 protected: 433 /// The vectorization unroll factor to use. Each scalar is vectorized to this 434 /// many different vector instructions. 435 unsigned UF; 436 437 /// The builder that we use 438 IRBuilder<> Builder; 439 440 // --- Vectorization state --- 441 442 /// The vector-loop preheader. 443 BasicBlock *LoopVectorPreHeader; 444 /// The scalar-loop preheader. 445 BasicBlock *LoopScalarPreHeader; 446 /// Middle Block between the vector and the scalar. 447 BasicBlock *LoopMiddleBlock; 448 ///The ExitBlock of the scalar loop. 449 BasicBlock *LoopExitBlock; 450 ///The vector loop body. 451 SmallVector<BasicBlock *, 4> LoopVectorBody; 452 ///The scalar loop body. 453 BasicBlock *LoopScalarBody; 454 /// A list of all bypass blocks. The first block is the entry of the loop. 455 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 456 457 /// The new Induction variable which was added to the new block. 458 PHINode *Induction; 459 /// The induction variable of the old basic block. 460 PHINode *OldInduction; 461 /// Holds the extended (to the widest induction type) start index. 462 Value *ExtendedIdx; 463 /// Maps scalars to widened vectors. 464 ValueMap WidenMap; 465 EdgeMaskCache MaskCache; 466 467 LoopVectorizationLegality *Legal; 468 }; 469 470 class InnerLoopUnroller : public InnerLoopVectorizer { 471 public: 472 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 473 DominatorTree *DT, const DataLayout *DL, 474 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 475 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 476 477 private: 478 void scalarizeInstruction(Instruction *Instr, 479 bool IfPredicateStore = false) override; 480 void vectorizeMemoryInstruction(Instruction *Instr) override; 481 Value *getBroadcastInstrs(Value *V) override; 482 Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override; 483 Value *reverseVector(Value *Vec) override; 484 }; 485 486 /// \brief Look for a meaningful debug location on the instruction or it's 487 /// operands. 488 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 489 if (!I) 490 return I; 491 492 DebugLoc Empty; 493 if (I->getDebugLoc() != Empty) 494 return I; 495 496 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 497 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 498 if (OpInst->getDebugLoc() != Empty) 499 return OpInst; 500 } 501 502 return I; 503 } 504 505 /// \brief Set the debug location in the builder using the debug location in the 506 /// instruction. 507 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 508 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 509 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 510 else 511 B.SetCurrentDebugLocation(DebugLoc()); 512 } 513 514 #ifndef NDEBUG 515 /// \return string containing a file name and a line # for the given loop. 516 static std::string getDebugLocString(const Loop *L) { 517 std::string Result; 518 if (L) { 519 raw_string_ostream OS(Result); 520 const DebugLoc LoopDbgLoc = L->getStartLoc(); 521 if (!LoopDbgLoc.isUnknown()) 522 LoopDbgLoc.print(L->getHeader()->getContext(), OS); 523 else 524 // Just print the module name. 525 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 526 OS.flush(); 527 } 528 return Result; 529 } 530 #endif 531 532 /// \brief Propagate known metadata from one instruction to another. 533 static void propagateMetadata(Instruction *To, const Instruction *From) { 534 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 535 From->getAllMetadataOtherThanDebugLoc(Metadata); 536 537 for (auto M : Metadata) { 538 unsigned Kind = M.first; 539 540 // These are safe to transfer (this is safe for TBAA, even when we 541 // if-convert, because should that metadata have had a control dependency 542 // on the condition, and thus actually aliased with some other 543 // non-speculated memory access when the condition was false, this would be 544 // caught by the runtime overlap checks). 545 if (Kind != LLVMContext::MD_tbaa && 546 Kind != LLVMContext::MD_alias_scope && 547 Kind != LLVMContext::MD_noalias && 548 Kind != LLVMContext::MD_fpmath) 549 continue; 550 551 To->setMetadata(Kind, M.second); 552 } 553 } 554 555 /// \brief Propagate known metadata from one instruction to a vector of others. 556 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) { 557 for (Value *V : To) 558 if (Instruction *I = dyn_cast<Instruction>(V)) 559 propagateMetadata(I, From); 560 } 561 562 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 563 /// to what vectorization factor. 564 /// This class does not look at the profitability of vectorization, only the 565 /// legality. This class has two main kinds of checks: 566 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 567 /// will change the order of memory accesses in a way that will change the 568 /// correctness of the program. 569 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 570 /// checks for a number of different conditions, such as the availability of a 571 /// single induction variable, that all types are supported and vectorize-able, 572 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 573 /// This class is also used by InnerLoopVectorizer for identifying 574 /// induction variable and the different reduction variables. 575 class LoopVectorizationLegality { 576 public: 577 unsigned NumLoads; 578 unsigned NumStores; 579 unsigned NumPredStores; 580 581 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL, 582 DominatorTree *DT, TargetLibraryInfo *TLI, 583 AliasAnalysis *AA, Function *F, 584 const TargetTransformInfo *TTI) 585 : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL), 586 DT(DT), TLI(TLI), AA(AA), TheFunction(F), TTI(TTI), Induction(nullptr), 587 WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) { 588 } 589 590 /// This enum represents the kinds of reductions that we support. 591 enum ReductionKind { 592 RK_NoReduction, ///< Not a reduction. 593 RK_IntegerAdd, ///< Sum of integers. 594 RK_IntegerMult, ///< Product of integers. 595 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 596 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 597 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 598 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 599 RK_FloatAdd, ///< Sum of floats. 600 RK_FloatMult, ///< Product of floats. 601 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 602 }; 603 604 /// This enum represents the kinds of inductions that we support. 605 enum InductionKind { 606 IK_NoInduction, ///< Not an induction variable. 607 IK_IntInduction, ///< Integer induction variable. Step = 1. 608 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1. 609 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem). 610 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem). 611 }; 612 613 // This enum represents the kind of minmax reduction. 614 enum MinMaxReductionKind { 615 MRK_Invalid, 616 MRK_UIntMin, 617 MRK_UIntMax, 618 MRK_SIntMin, 619 MRK_SIntMax, 620 MRK_FloatMin, 621 MRK_FloatMax 622 }; 623 624 /// This struct holds information about reduction variables. 625 struct ReductionDescriptor { 626 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr), 627 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 628 629 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 630 MinMaxReductionKind MK) 631 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 632 633 // The starting value of the reduction. 634 // It does not have to be zero! 635 TrackingVH<Value> StartValue; 636 // The instruction who's value is used outside the loop. 637 Instruction *LoopExitInstr; 638 // The kind of the reduction. 639 ReductionKind Kind; 640 // If this a min/max reduction the kind of reduction. 641 MinMaxReductionKind MinMaxKind; 642 }; 643 644 /// This POD struct holds information about a potential reduction operation. 645 struct ReductionInstDesc { 646 ReductionInstDesc(bool IsRedux, Instruction *I) : 647 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 648 649 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 650 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 651 652 // Is this instruction a reduction candidate. 653 bool IsReduction; 654 // The last instruction in a min/max pattern (select of the select(icmp()) 655 // pattern), or the current reduction instruction otherwise. 656 Instruction *PatternLastInst; 657 // If this is a min/max pattern the comparison predicate. 658 MinMaxReductionKind MinMaxKind; 659 }; 660 661 /// This struct holds information about the memory runtime legality 662 /// check that a group of pointers do not overlap. 663 struct RuntimePointerCheck { 664 RuntimePointerCheck() : Need(false) {} 665 666 /// Reset the state of the pointer runtime information. 667 void reset() { 668 Need = false; 669 Pointers.clear(); 670 Starts.clear(); 671 Ends.clear(); 672 IsWritePtr.clear(); 673 DependencySetId.clear(); 674 AliasSetId.clear(); 675 } 676 677 /// Insert a pointer and calculate the start and end SCEVs. 678 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, 679 unsigned DepSetId, unsigned ASId, ValueToValueMap &Strides); 680 681 /// This flag indicates if we need to add the runtime check. 682 bool Need; 683 /// Holds the pointers that we need to check. 684 SmallVector<TrackingVH<Value>, 2> Pointers; 685 /// Holds the pointer value at the beginning of the loop. 686 SmallVector<const SCEV*, 2> Starts; 687 /// Holds the pointer value at the end of the loop. 688 SmallVector<const SCEV*, 2> Ends; 689 /// Holds the information if this pointer is used for writing to memory. 690 SmallVector<bool, 2> IsWritePtr; 691 /// Holds the id of the set of pointers that could be dependent because of a 692 /// shared underlying object. 693 SmallVector<unsigned, 2> DependencySetId; 694 /// Holds the id of the disjoint alias set to which this pointer belongs. 695 SmallVector<unsigned, 2> AliasSetId; 696 }; 697 698 /// A struct for saving information about induction variables. 699 struct InductionInfo { 700 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {} 701 InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {} 702 /// Start value. 703 TrackingVH<Value> StartValue; 704 /// Induction kind. 705 InductionKind IK; 706 }; 707 708 /// ReductionList contains the reduction descriptors for all 709 /// of the reductions that were found in the loop. 710 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 711 712 /// InductionList saves induction variables and maps them to the 713 /// induction descriptor. 714 typedef MapVector<PHINode*, InductionInfo> InductionList; 715 716 /// Returns true if it is legal to vectorize this loop. 717 /// This does not mean that it is profitable to vectorize this 718 /// loop, only that it is legal to do so. 719 bool canVectorize(); 720 721 /// Returns the Induction variable. 722 PHINode *getInduction() { return Induction; } 723 724 /// Returns the reduction variables found in the loop. 725 ReductionList *getReductionVars() { return &Reductions; } 726 727 /// Returns the induction variables found in the loop. 728 InductionList *getInductionVars() { return &Inductions; } 729 730 /// Returns the widest induction type. 731 Type *getWidestInductionType() { return WidestIndTy; } 732 733 /// Returns True if V is an induction variable in this loop. 734 bool isInductionVariable(const Value *V); 735 736 /// Return true if the block BB needs to be predicated in order for the loop 737 /// to be vectorized. 738 bool blockNeedsPredication(BasicBlock *BB); 739 740 /// Check if this pointer is consecutive when vectorizing. This happens 741 /// when the last index of the GEP is the induction variable, or that the 742 /// pointer itself is an induction variable. 743 /// This check allows us to vectorize A[idx] into a wide load/store. 744 /// Returns: 745 /// 0 - Stride is unknown or non-consecutive. 746 /// 1 - Address is consecutive. 747 /// -1 - Address is consecutive, and decreasing. 748 int isConsecutivePtr(Value *Ptr); 749 750 /// Returns true if the value V is uniform within the loop. 751 bool isUniform(Value *V); 752 753 /// Returns true if this instruction will remain scalar after vectorization. 754 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 755 756 /// Returns the information that we collected about runtime memory check. 757 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; } 758 759 /// This function returns the identity element (or neutral element) for 760 /// the operation K. 761 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 762 763 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 764 765 bool hasStride(Value *V) { return StrideSet.count(V); } 766 bool mustCheckStrides() { return !StrideSet.empty(); } 767 SmallPtrSet<Value *, 8>::iterator strides_begin() { 768 return StrideSet.begin(); 769 } 770 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 771 772 /// Returns true if the target machine supports masked store operation 773 /// for the given \p DataType and kind of access to \p Ptr. 774 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 775 return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr)); 776 } 777 /// Returns true if the target machine supports masked load operation 778 /// for the given \p DataType and kind of access to \p Ptr. 779 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 780 return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr)); 781 } 782 /// Returns true if vector representation of the instruction \p I 783 /// requires mask. 784 bool isMaskRequired(const Instruction* I) { 785 return (MaskedOp.count(I) != 0); 786 } 787 private: 788 /// Check if a single basic block loop is vectorizable. 789 /// At this point we know that this is a loop with a constant trip count 790 /// and we only need to check individual instructions. 791 bool canVectorizeInstrs(); 792 793 /// When we vectorize loops we may change the order in which 794 /// we read and write from memory. This method checks if it is 795 /// legal to vectorize the code, considering only memory constrains. 796 /// Returns true if the loop is vectorizable 797 bool canVectorizeMemory(); 798 799 /// Return true if we can vectorize this loop using the IF-conversion 800 /// transformation. 801 bool canVectorizeWithIfConvert(); 802 803 /// Collect the variables that need to stay uniform after vectorization. 804 void collectLoopUniforms(); 805 806 /// Return true if all of the instructions in the block can be speculatively 807 /// executed. \p SafePtrs is a list of addresses that are known to be legal 808 /// and we know that we can read from them without segfault. 809 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 810 811 /// Returns True, if 'Phi' is the kind of reduction variable for type 812 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 813 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 814 /// Returns a struct describing if the instruction 'I' can be a reduction 815 /// variable of type 'Kind'. If the reduction is a min/max pattern of 816 /// select(icmp()) this function advances the instruction pointer 'I' from the 817 /// compare instruction to the select instruction and stores this pointer in 818 /// 'PatternLastInst' member of the returned struct. 819 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 820 ReductionInstDesc &Desc); 821 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 822 /// pattern corresponding to a min(X, Y) or max(X, Y). 823 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 824 ReductionInstDesc &Prev); 825 /// Returns the induction kind of Phi. This function may return NoInduction 826 /// if the PHI is not an induction variable. 827 InductionKind isInductionVariable(PHINode *Phi); 828 829 /// \brief Collect memory access with loop invariant strides. 830 /// 831 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 832 /// invariant. 833 void collectStridedAccess(Value *LoadOrStoreInst); 834 835 /// Report an analysis message to assist the user in diagnosing loops that are 836 /// not vectorized. 837 void emitAnalysis(Report &Message) { 838 DebugLoc DL = TheLoop->getStartLoc(); 839 if (Instruction *I = Message.getInstr()) 840 DL = I->getDebugLoc(); 841 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 842 *TheFunction, DL, Message.str()); 843 } 844 845 /// The loop that we evaluate. 846 Loop *TheLoop; 847 /// Scev analysis. 848 ScalarEvolution *SE; 849 /// DataLayout analysis. 850 const DataLayout *DL; 851 /// Dominators. 852 DominatorTree *DT; 853 /// Target Library Info. 854 TargetLibraryInfo *TLI; 855 /// Alias analysis. 856 AliasAnalysis *AA; 857 /// Parent function 858 Function *TheFunction; 859 /// Target Transform Info 860 const TargetTransformInfo *TTI; 861 862 // --- vectorization state --- // 863 864 /// Holds the integer induction variable. This is the counter of the 865 /// loop. 866 PHINode *Induction; 867 /// Holds the reduction variables. 868 ReductionList Reductions; 869 /// Holds all of the induction variables that we found in the loop. 870 /// Notice that inductions don't need to start at zero and that induction 871 /// variables can be pointers. 872 InductionList Inductions; 873 /// Holds the widest induction type encountered. 874 Type *WidestIndTy; 875 876 /// Allowed outside users. This holds the reduction 877 /// vars which can be accessed from outside the loop. 878 SmallPtrSet<Value*, 4> AllowedExit; 879 /// This set holds the variables which are known to be uniform after 880 /// vectorization. 881 SmallPtrSet<Instruction*, 4> Uniforms; 882 /// We need to check that all of the pointers in this list are disjoint 883 /// at runtime. 884 RuntimePointerCheck PtrRtCheck; 885 /// Can we assume the absence of NaNs. 886 bool HasFunNoNaNAttr; 887 888 unsigned MaxSafeDepDistBytes; 889 890 ValueToValueMap Strides; 891 SmallPtrSet<Value *, 8> StrideSet; 892 893 /// While vectorizing these instructions we have to generate a 894 /// call to the appropriate masked intrinsic 895 SmallPtrSet<const Instruction*, 8> MaskedOp; 896 }; 897 898 /// LoopVectorizationCostModel - estimates the expected speedups due to 899 /// vectorization. 900 /// In many cases vectorization is not profitable. This can happen because of 901 /// a number of reasons. In this class we mainly attempt to predict the 902 /// expected speedup/slowdowns due to the supported instruction set. We use the 903 /// TargetTransformInfo to query the different backends for the cost of 904 /// different operations. 905 class LoopVectorizationCostModel { 906 public: 907 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 908 LoopVectorizationLegality *Legal, 909 const TargetTransformInfo &TTI, 910 const DataLayout *DL, const TargetLibraryInfo *TLI, 911 AssumptionCache *AC, const Function *F, 912 const LoopVectorizeHints *Hints) 913 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI), 914 TheFunction(F), Hints(Hints) { 915 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 916 } 917 918 /// Information about vectorization costs 919 struct VectorizationFactor { 920 unsigned Width; // Vector width with best cost 921 unsigned Cost; // Cost of the loop with that width 922 }; 923 /// \return The most profitable vectorization factor and the cost of that VF. 924 /// This method checks every power of two up to VF. If UserVF is not ZERO 925 /// then this vectorization factor will be selected if vectorization is 926 /// possible. 927 VectorizationFactor selectVectorizationFactor(bool OptForSize); 928 929 /// \return The size (in bits) of the widest type in the code that 930 /// needs to be vectorized. We ignore values that remain scalar such as 931 /// 64 bit loop indices. 932 unsigned getWidestType(); 933 934 /// \return The most profitable unroll factor. 935 /// If UserUF is non-zero then this method finds the best unroll-factor 936 /// based on register pressure and other parameters. 937 /// VF and LoopCost are the selected vectorization factor and the cost of the 938 /// selected VF. 939 unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost); 940 941 /// \brief A struct that represents some properties of the register usage 942 /// of a loop. 943 struct RegisterUsage { 944 /// Holds the number of loop invariant values that are used in the loop. 945 unsigned LoopInvariantRegs; 946 /// Holds the maximum number of concurrent live intervals in the loop. 947 unsigned MaxLocalUsers; 948 /// Holds the number of instructions in the loop. 949 unsigned NumInstructions; 950 }; 951 952 /// \return information about the register usage of the loop. 953 RegisterUsage calculateRegisterUsage(); 954 955 private: 956 /// Returns the expected execution cost. The unit of the cost does 957 /// not matter because we use the 'cost' units to compare different 958 /// vector widths. The cost that is returned is *not* normalized by 959 /// the factor width. 960 unsigned expectedCost(unsigned VF); 961 962 /// Returns the execution time cost of an instruction for a given vector 963 /// width. Vector width of one means scalar. 964 unsigned getInstructionCost(Instruction *I, unsigned VF); 965 966 /// A helper function for converting Scalar types to vector types. 967 /// If the incoming type is void, we return void. If the VF is 1, we return 968 /// the scalar type. 969 static Type* ToVectorTy(Type *Scalar, unsigned VF); 970 971 /// Returns whether the instruction is a load or store and will be a emitted 972 /// as a vector operation. 973 bool isConsecutiveLoadOrStore(Instruction *I); 974 975 /// Report an analysis message to assist the user in diagnosing loops that are 976 /// not vectorized. 977 void emitAnalysis(Report &Message) { 978 DebugLoc DL = TheLoop->getStartLoc(); 979 if (Instruction *I = Message.getInstr()) 980 DL = I->getDebugLoc(); 981 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 982 *TheFunction, DL, Message.str()); 983 } 984 985 /// Values used only by @llvm.assume calls. 986 SmallPtrSet<const Value *, 32> EphValues; 987 988 /// The loop that we evaluate. 989 Loop *TheLoop; 990 /// Scev analysis. 991 ScalarEvolution *SE; 992 /// Loop Info analysis. 993 LoopInfo *LI; 994 /// Vectorization legality. 995 LoopVectorizationLegality *Legal; 996 /// Vector target information. 997 const TargetTransformInfo &TTI; 998 /// Target data layout information. 999 const DataLayout *DL; 1000 /// Target Library Info. 1001 const TargetLibraryInfo *TLI; 1002 const Function *TheFunction; 1003 // Loop Vectorize Hint. 1004 const LoopVectorizeHints *Hints; 1005 }; 1006 1007 /// Utility class for getting and setting loop vectorizer hints in the form 1008 /// of loop metadata. 1009 /// This class keeps a number of loop annotations locally (as member variables) 1010 /// and can, upon request, write them back as metadata on the loop. It will 1011 /// initially scan the loop for existing metadata, and will update the local 1012 /// values based on information in the loop. 1013 /// We cannot write all values to metadata, as the mere presence of some info, 1014 /// for example 'force', means a decision has been made. So, we need to be 1015 /// careful NOT to add them if the user hasn't specifically asked so. 1016 class LoopVectorizeHints { 1017 enum HintKind { 1018 HK_WIDTH, 1019 HK_UNROLL, 1020 HK_FORCE 1021 }; 1022 1023 /// Hint - associates name and validation with the hint value. 1024 struct Hint { 1025 const char * Name; 1026 unsigned Value; // This may have to change for non-numeric values. 1027 HintKind Kind; 1028 1029 Hint(const char * Name, unsigned Value, HintKind Kind) 1030 : Name(Name), Value(Value), Kind(Kind) { } 1031 1032 bool validate(unsigned Val) { 1033 switch (Kind) { 1034 case HK_WIDTH: 1035 return isPowerOf2_32(Val) && Val <= MaxVectorWidth; 1036 case HK_UNROLL: 1037 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1038 case HK_FORCE: 1039 return (Val <= 1); 1040 } 1041 return false; 1042 } 1043 }; 1044 1045 /// Vectorization width. 1046 Hint Width; 1047 /// Vectorization interleave factor. 1048 Hint Interleave; 1049 /// Vectorization forced 1050 Hint Force; 1051 1052 /// Return the loop metadata prefix. 1053 static StringRef Prefix() { return "llvm.loop."; } 1054 1055 public: 1056 enum ForceKind { 1057 FK_Undefined = -1, ///< Not selected. 1058 FK_Disabled = 0, ///< Forcing disabled. 1059 FK_Enabled = 1, ///< Forcing enabled. 1060 }; 1061 1062 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 1063 : Width("vectorize.width", VectorizationFactor, HK_WIDTH), 1064 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1065 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1066 TheLoop(L) { 1067 // Populate values with existing loop metadata. 1068 getHintsFromMetadata(); 1069 1070 // force-vector-interleave overrides DisableInterleaving. 1071 if (VectorizationInterleave.getNumOccurrences() > 0) 1072 Interleave.Value = VectorizationInterleave; 1073 1074 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1075 << "LV: Interleaving disabled by the pass manager\n"); 1076 } 1077 1078 /// Mark the loop L as already vectorized by setting the width to 1. 1079 void setAlreadyVectorized() { 1080 Width.Value = Interleave.Value = 1; 1081 Hint Hints[] = {Width, Interleave}; 1082 writeHintsToMetadata(Hints); 1083 } 1084 1085 /// Dumps all the hint information. 1086 std::string emitRemark() const { 1087 Report R; 1088 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1089 R << "vectorization is explicitly disabled"; 1090 else { 1091 R << "use -Rpass-analysis=loop-vectorize for more info"; 1092 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1093 R << " (Force=true"; 1094 if (Width.Value != 0) 1095 R << ", Vector Width=" << Width.Value; 1096 if (Interleave.Value != 0) 1097 R << ", Interleave Count=" << Interleave.Value; 1098 R << ")"; 1099 } 1100 } 1101 1102 return R.str(); 1103 } 1104 1105 unsigned getWidth() const { return Width.Value; } 1106 unsigned getInterleave() const { return Interleave.Value; } 1107 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1108 1109 private: 1110 /// Find hints specified in the loop metadata and update local values. 1111 void getHintsFromMetadata() { 1112 MDNode *LoopID = TheLoop->getLoopID(); 1113 if (!LoopID) 1114 return; 1115 1116 // First operand should refer to the loop id itself. 1117 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1118 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1119 1120 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1121 const MDString *S = nullptr; 1122 SmallVector<Metadata *, 4> Args; 1123 1124 // The expected hint is either a MDString or a MDNode with the first 1125 // operand a MDString. 1126 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1127 if (!MD || MD->getNumOperands() == 0) 1128 continue; 1129 S = dyn_cast<MDString>(MD->getOperand(0)); 1130 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1131 Args.push_back(MD->getOperand(i)); 1132 } else { 1133 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1134 assert(Args.size() == 0 && "too many arguments for MDString"); 1135 } 1136 1137 if (!S) 1138 continue; 1139 1140 // Check if the hint starts with the loop metadata prefix. 1141 StringRef Name = S->getString(); 1142 if (Args.size() == 1) 1143 setHint(Name, Args[0]); 1144 } 1145 } 1146 1147 /// Checks string hint with one operand and set value if valid. 1148 void setHint(StringRef Name, Metadata *Arg) { 1149 if (!Name.startswith(Prefix())) 1150 return; 1151 Name = Name.substr(Prefix().size(), StringRef::npos); 1152 1153 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1154 if (!C) return; 1155 unsigned Val = C->getZExtValue(); 1156 1157 Hint *Hints[] = {&Width, &Interleave, &Force}; 1158 for (auto H : Hints) { 1159 if (Name == H->Name) { 1160 if (H->validate(Val)) 1161 H->Value = Val; 1162 else 1163 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1164 break; 1165 } 1166 } 1167 } 1168 1169 /// Create a new hint from name / value pair. 1170 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1171 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1172 Metadata *MDs[] = {MDString::get(Context, Name), 1173 ConstantAsMetadata::get( 1174 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1175 return MDNode::get(Context, MDs); 1176 } 1177 1178 /// Matches metadata with hint name. 1179 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1180 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1181 if (!Name) 1182 return false; 1183 1184 for (auto H : HintTypes) 1185 if (Name->getString().endswith(H.Name)) 1186 return true; 1187 return false; 1188 } 1189 1190 /// Sets current hints into loop metadata, keeping other values intact. 1191 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1192 if (HintTypes.size() == 0) 1193 return; 1194 1195 // Reserve the first element to LoopID (see below). 1196 SmallVector<Metadata *, 4> MDs(1); 1197 // If the loop already has metadata, then ignore the existing operands. 1198 MDNode *LoopID = TheLoop->getLoopID(); 1199 if (LoopID) { 1200 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1201 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1202 // If node in update list, ignore old value. 1203 if (!matchesHintMetadataName(Node, HintTypes)) 1204 MDs.push_back(Node); 1205 } 1206 } 1207 1208 // Now, add the missing hints. 1209 for (auto H : HintTypes) 1210 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1211 1212 // Replace current metadata node with new one. 1213 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1214 MDNode *NewLoopID = MDNode::get(Context, MDs); 1215 // Set operand 0 to refer to the loop id itself. 1216 NewLoopID->replaceOperandWith(0, NewLoopID); 1217 1218 TheLoop->setLoopID(NewLoopID); 1219 } 1220 1221 /// The loop these hints belong to. 1222 const Loop *TheLoop; 1223 }; 1224 1225 static void emitMissedWarning(Function *F, Loop *L, 1226 const LoopVectorizeHints &LH) { 1227 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1228 L->getStartLoc(), LH.emitRemark()); 1229 1230 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1231 if (LH.getWidth() != 1) 1232 emitLoopVectorizeWarning( 1233 F->getContext(), *F, L->getStartLoc(), 1234 "failed explicitly specified loop vectorization"); 1235 else if (LH.getInterleave() != 1) 1236 emitLoopInterleaveWarning( 1237 F->getContext(), *F, L->getStartLoc(), 1238 "failed explicitly specified loop interleaving"); 1239 } 1240 } 1241 1242 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1243 if (L.empty()) 1244 return V.push_back(&L); 1245 1246 for (Loop *InnerL : L) 1247 addInnerLoop(*InnerL, V); 1248 } 1249 1250 /// The LoopVectorize Pass. 1251 struct LoopVectorize : public FunctionPass { 1252 /// Pass identification, replacement for typeid 1253 static char ID; 1254 1255 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1256 : FunctionPass(ID), 1257 DisableUnrolling(NoUnrolling), 1258 AlwaysVectorize(AlwaysVectorize) { 1259 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1260 } 1261 1262 ScalarEvolution *SE; 1263 const DataLayout *DL; 1264 LoopInfo *LI; 1265 TargetTransformInfo *TTI; 1266 DominatorTree *DT; 1267 BlockFrequencyInfo *BFI; 1268 TargetLibraryInfo *TLI; 1269 AliasAnalysis *AA; 1270 AssumptionCache *AC; 1271 bool DisableUnrolling; 1272 bool AlwaysVectorize; 1273 1274 BlockFrequency ColdEntryFreq; 1275 1276 bool runOnFunction(Function &F) override { 1277 SE = &getAnalysis<ScalarEvolution>(); 1278 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 1279 DL = DLP ? &DLP->getDataLayout() : nullptr; 1280 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1281 TTI = &getAnalysis<TargetTransformInfo>(); 1282 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1283 BFI = &getAnalysis<BlockFrequencyInfo>(); 1284 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1285 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1286 AA = &getAnalysis<AliasAnalysis>(); 1287 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1288 1289 // Compute some weights outside of the loop over the loops. Compute this 1290 // using a BranchProbability to re-use its scaling math. 1291 const BranchProbability ColdProb(1, 5); // 20% 1292 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1293 1294 // If the target claims to have no vector registers don't attempt 1295 // vectorization. 1296 if (!TTI->getNumberOfRegisters(true)) 1297 return false; 1298 1299 if (!DL) { 1300 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName() 1301 << ": Missing data layout\n"); 1302 return false; 1303 } 1304 1305 // Build up a worklist of inner-loops to vectorize. This is necessary as 1306 // the act of vectorizing or partially unrolling a loop creates new loops 1307 // and can invalidate iterators across the loops. 1308 SmallVector<Loop *, 8> Worklist; 1309 1310 for (Loop *L : *LI) 1311 addInnerLoop(*L, Worklist); 1312 1313 LoopsAnalyzed += Worklist.size(); 1314 1315 // Now walk the identified inner loops. 1316 bool Changed = false; 1317 while (!Worklist.empty()) 1318 Changed |= processLoop(Worklist.pop_back_val()); 1319 1320 // Process each loop nest in the function. 1321 return Changed; 1322 } 1323 1324 bool processLoop(Loop *L) { 1325 assert(L->empty() && "Only process inner loops."); 1326 1327 #ifndef NDEBUG 1328 const std::string DebugLocStr = getDebugLocString(L); 1329 #endif /* NDEBUG */ 1330 1331 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1332 << L->getHeader()->getParent()->getName() << "\" from " 1333 << DebugLocStr << "\n"); 1334 1335 LoopVectorizeHints Hints(L, DisableUnrolling); 1336 1337 DEBUG(dbgs() << "LV: Loop hints:" 1338 << " force=" 1339 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1340 ? "disabled" 1341 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1342 ? "enabled" 1343 : "?")) << " width=" << Hints.getWidth() 1344 << " unroll=" << Hints.getInterleave() << "\n"); 1345 1346 // Function containing loop 1347 Function *F = L->getHeader()->getParent(); 1348 1349 // Looking at the diagnostic output is the only way to determine if a loop 1350 // was vectorized (other than looking at the IR or machine code), so it 1351 // is important to generate an optimization remark for each loop. Most of 1352 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1353 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1354 // less verbose reporting vectorized loops and unvectorized loops that may 1355 // benefit from vectorization, respectively. 1356 1357 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1358 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1359 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1360 L->getStartLoc(), Hints.emitRemark()); 1361 return false; 1362 } 1363 1364 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1365 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1366 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1367 L->getStartLoc(), Hints.emitRemark()); 1368 return false; 1369 } 1370 1371 if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) { 1372 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1373 emitOptimizationRemarkAnalysis( 1374 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1375 "loop not vectorized: vector width and interleave count are " 1376 "explicitly set to 1"); 1377 return false; 1378 } 1379 1380 // Check the loop for a trip count threshold: 1381 // do not vectorize loops with a tiny trip count. 1382 const unsigned TC = SE->getSmallConstantTripCount(L); 1383 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1384 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1385 << "This loop is not worth vectorizing."); 1386 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1387 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1388 else { 1389 DEBUG(dbgs() << "\n"); 1390 emitOptimizationRemarkAnalysis( 1391 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1392 "vectorization is not beneficial and is not explicitly forced"); 1393 return false; 1394 } 1395 } 1396 1397 // Check if it is legal to vectorize the loop. 1398 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F, TTI); 1399 if (!LVL.canVectorize()) { 1400 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1401 emitMissedWarning(F, L, Hints); 1402 return false; 1403 } 1404 1405 // Use the cost model. 1406 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, AC, F, 1407 &Hints); 1408 1409 // Check the function attributes to find out if this function should be 1410 // optimized for size. 1411 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1412 F->hasFnAttribute(Attribute::OptimizeForSize); 1413 1414 // Compute the weighted frequency of this loop being executed and see if it 1415 // is less than 20% of the function entry baseline frequency. Note that we 1416 // always have a canonical loop here because we think we *can* vectoriez. 1417 // FIXME: This is hidden behind a flag due to pervasive problems with 1418 // exactly what block frequency models. 1419 if (LoopVectorizeWithBlockFrequency) { 1420 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1421 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1422 LoopEntryFreq < ColdEntryFreq) 1423 OptForSize = true; 1424 } 1425 1426 // Check the function attributes to see if implicit floats are allowed.a 1427 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1428 // an integer loop and the vector instructions selected are purely integer 1429 // vector instructions? 1430 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1431 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1432 "attribute is used.\n"); 1433 emitOptimizationRemarkAnalysis( 1434 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1435 "loop not vectorized due to NoImplicitFloat attribute"); 1436 emitMissedWarning(F, L, Hints); 1437 return false; 1438 } 1439 1440 // Select the optimal vectorization factor. 1441 const LoopVectorizationCostModel::VectorizationFactor VF = 1442 CM.selectVectorizationFactor(OptForSize); 1443 1444 // Select the unroll factor. 1445 const unsigned UF = 1446 CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost); 1447 1448 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1449 << DebugLocStr << '\n'); 1450 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1451 1452 if (VF.Width == 1) { 1453 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 1454 1455 if (UF == 1) { 1456 emitOptimizationRemarkAnalysis( 1457 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1458 "not beneficial to vectorize and user disabled interleaving"); 1459 return false; 1460 } 1461 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1462 1463 // Report the unrolling decision. 1464 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1465 Twine("unrolled with interleaving factor " + 1466 Twine(UF) + 1467 " (vectorization not beneficial)")); 1468 1469 // We decided not to vectorize, but we may want to unroll. 1470 1471 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 1472 Unroller.vectorize(&LVL); 1473 } else { 1474 // If we decided that it is *legal* to vectorize the loop then do it. 1475 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 1476 LB.vectorize(&LVL); 1477 ++LoopsVectorized; 1478 1479 // Report the vectorization decision. 1480 emitOptimizationRemark( 1481 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1482 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1483 ", unrolling interleave factor: " + Twine(UF) + ")"); 1484 } 1485 1486 // Mark the loop as already vectorized to avoid vectorizing again. 1487 Hints.setAlreadyVectorized(); 1488 1489 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1490 return true; 1491 } 1492 1493 void getAnalysisUsage(AnalysisUsage &AU) const override { 1494 AU.addRequired<AssumptionCacheTracker>(); 1495 AU.addRequiredID(LoopSimplifyID); 1496 AU.addRequiredID(LCSSAID); 1497 AU.addRequired<BlockFrequencyInfo>(); 1498 AU.addRequired<DominatorTreeWrapperPass>(); 1499 AU.addRequired<LoopInfoWrapperPass>(); 1500 AU.addRequired<ScalarEvolution>(); 1501 AU.addRequired<TargetTransformInfo>(); 1502 AU.addRequired<AliasAnalysis>(); 1503 AU.addPreserved<LoopInfoWrapperPass>(); 1504 AU.addPreserved<DominatorTreeWrapperPass>(); 1505 AU.addPreserved<AliasAnalysis>(); 1506 } 1507 1508 }; 1509 1510 } // end anonymous namespace 1511 1512 //===----------------------------------------------------------------------===// 1513 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1514 // LoopVectorizationCostModel. 1515 //===----------------------------------------------------------------------===// 1516 1517 static Value *stripIntegerCast(Value *V) { 1518 if (CastInst *CI = dyn_cast<CastInst>(V)) 1519 if (CI->getOperand(0)->getType()->isIntegerTy()) 1520 return CI->getOperand(0); 1521 return V; 1522 } 1523 1524 ///\brief Replaces the symbolic stride in a pointer SCEV expression by one. 1525 /// 1526 /// If \p OrigPtr is not null, use it to look up the stride value instead of 1527 /// \p Ptr. 1528 static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE, 1529 ValueToValueMap &PtrToStride, 1530 Value *Ptr, Value *OrigPtr = nullptr) { 1531 1532 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 1533 1534 // If there is an entry in the map return the SCEV of the pointer with the 1535 // symbolic stride replaced by one. 1536 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 1537 if (SI != PtrToStride.end()) { 1538 Value *StrideVal = SI->second; 1539 1540 // Strip casts. 1541 StrideVal = stripIntegerCast(StrideVal); 1542 1543 // Replace symbolic stride by one. 1544 Value *One = ConstantInt::get(StrideVal->getType(), 1); 1545 ValueToValueMap RewriteMap; 1546 RewriteMap[StrideVal] = One; 1547 1548 const SCEV *ByOne = 1549 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 1550 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 1551 << "\n"); 1552 return ByOne; 1553 } 1554 1555 // Otherwise, just return the SCEV of the original pointer. 1556 return SE->getSCEV(Ptr); 1557 } 1558 1559 void LoopVectorizationLegality::RuntimePointerCheck::insert( 1560 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, 1561 unsigned ASId, ValueToValueMap &Strides) { 1562 // Get the stride replaced scev. 1563 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 1564 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1565 assert(AR && "Invalid addrec expression"); 1566 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 1567 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 1568 Pointers.push_back(Ptr); 1569 Starts.push_back(AR->getStart()); 1570 Ends.push_back(ScEnd); 1571 IsWritePtr.push_back(WritePtr); 1572 DependencySetId.push_back(DepSetId); 1573 AliasSetId.push_back(ASId); 1574 } 1575 1576 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1577 // We need to place the broadcast of invariant variables outside the loop. 1578 Instruction *Instr = dyn_cast<Instruction>(V); 1579 bool NewInstr = 1580 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1581 Instr->getParent()) != LoopVectorBody.end()); 1582 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1583 1584 // Place the code for broadcasting invariant variables in the new preheader. 1585 IRBuilder<>::InsertPointGuard Guard(Builder); 1586 if (Invariant) 1587 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1588 1589 // Broadcast the scalar into all locations in the vector. 1590 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1591 1592 return Shuf; 1593 } 1594 1595 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx, 1596 bool Negate) { 1597 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1598 assert(Val->getType()->getScalarType()->isIntegerTy() && 1599 "Elem must be an integer"); 1600 // Create the types. 1601 Type *ITy = Val->getType()->getScalarType(); 1602 VectorType *Ty = cast<VectorType>(Val->getType()); 1603 int VLen = Ty->getNumElements(); 1604 SmallVector<Constant*, 8> Indices; 1605 1606 // Create a vector of consecutive numbers from zero to VF. 1607 for (int i = 0; i < VLen; ++i) { 1608 int64_t Idx = Negate ? (-i) : i; 1609 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate)); 1610 } 1611 1612 // Add the consecutive indices to the vector value. 1613 Constant *Cv = ConstantVector::get(Indices); 1614 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1615 return Builder.CreateAdd(Val, Cv, "induction"); 1616 } 1617 1618 /// \brief Find the operand of the GEP that should be checked for consecutive 1619 /// stores. This ignores trailing indices that have no effect on the final 1620 /// pointer. 1621 static unsigned getGEPInductionOperand(const DataLayout *DL, 1622 const GetElementPtrInst *Gep) { 1623 unsigned LastOperand = Gep->getNumOperands() - 1; 1624 unsigned GEPAllocSize = DL->getTypeAllocSize( 1625 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1626 1627 // Walk backwards and try to peel off zeros. 1628 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1629 // Find the type we're currently indexing into. 1630 gep_type_iterator GEPTI = gep_type_begin(Gep); 1631 std::advance(GEPTI, LastOperand - 1); 1632 1633 // If it's a type with the same allocation size as the result of the GEP we 1634 // can peel off the zero index. 1635 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize) 1636 break; 1637 --LastOperand; 1638 } 1639 1640 return LastOperand; 1641 } 1642 1643 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1644 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1645 // Make sure that the pointer does not point to structs. 1646 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1647 return 0; 1648 1649 // If this value is a pointer induction variable we know it is consecutive. 1650 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1651 if (Phi && Inductions.count(Phi)) { 1652 InductionInfo II = Inductions[Phi]; 1653 if (IK_PtrInduction == II.IK) 1654 return 1; 1655 else if (IK_ReversePtrInduction == II.IK) 1656 return -1; 1657 } 1658 1659 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1660 if (!Gep) 1661 return 0; 1662 1663 unsigned NumOperands = Gep->getNumOperands(); 1664 Value *GpPtr = Gep->getPointerOperand(); 1665 // If this GEP value is a consecutive pointer induction variable and all of 1666 // the indices are constant then we know it is consecutive. We can 1667 Phi = dyn_cast<PHINode>(GpPtr); 1668 if (Phi && Inductions.count(Phi)) { 1669 1670 // Make sure that the pointer does not point to structs. 1671 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1672 if (GepPtrType->getElementType()->isAggregateType()) 1673 return 0; 1674 1675 // Make sure that all of the index operands are loop invariant. 1676 for (unsigned i = 1; i < NumOperands; ++i) 1677 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1678 return 0; 1679 1680 InductionInfo II = Inductions[Phi]; 1681 if (IK_PtrInduction == II.IK) 1682 return 1; 1683 else if (IK_ReversePtrInduction == II.IK) 1684 return -1; 1685 } 1686 1687 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1688 1689 // Check that all of the gep indices are uniform except for our induction 1690 // operand. 1691 for (unsigned i = 0; i != NumOperands; ++i) 1692 if (i != InductionOperand && 1693 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1694 return 0; 1695 1696 // We can emit wide load/stores only if the last non-zero index is the 1697 // induction variable. 1698 const SCEV *Last = nullptr; 1699 if (!Strides.count(Gep)) 1700 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1701 else { 1702 // Because of the multiplication by a stride we can have a s/zext cast. 1703 // We are going to replace this stride by 1 so the cast is safe to ignore. 1704 // 1705 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1706 // %0 = trunc i64 %indvars.iv to i32 1707 // %mul = mul i32 %0, %Stride1 1708 // %idxprom = zext i32 %mul to i64 << Safe cast. 1709 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1710 // 1711 Last = replaceSymbolicStrideSCEV(SE, Strides, 1712 Gep->getOperand(InductionOperand), Gep); 1713 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1714 Last = 1715 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1716 ? C->getOperand() 1717 : Last; 1718 } 1719 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1720 const SCEV *Step = AR->getStepRecurrence(*SE); 1721 1722 // The memory is consecutive because the last index is consecutive 1723 // and all other indices are loop invariant. 1724 if (Step->isOne()) 1725 return 1; 1726 if (Step->isAllOnesValue()) 1727 return -1; 1728 } 1729 1730 return 0; 1731 } 1732 1733 bool LoopVectorizationLegality::isUniform(Value *V) { 1734 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1735 } 1736 1737 InnerLoopVectorizer::VectorParts& 1738 InnerLoopVectorizer::getVectorValue(Value *V) { 1739 assert(V != Induction && "The new induction variable should not be used."); 1740 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1741 1742 // If we have a stride that is replaced by one, do it here. 1743 if (Legal->hasStride(V)) 1744 V = ConstantInt::get(V->getType(), 1); 1745 1746 // If we have this scalar in the map, return it. 1747 if (WidenMap.has(V)) 1748 return WidenMap.get(V); 1749 1750 // If this scalar is unknown, assume that it is a constant or that it is 1751 // loop invariant. Broadcast V and save the value for future uses. 1752 Value *B = getBroadcastInstrs(V); 1753 return WidenMap.splat(V, B); 1754 } 1755 1756 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1757 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1758 SmallVector<Constant*, 8> ShuffleMask; 1759 for (unsigned i = 0; i < VF; ++i) 1760 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1761 1762 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1763 ConstantVector::get(ShuffleMask), 1764 "reverse"); 1765 } 1766 1767 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 1768 // Attempt to issue a wide load. 1769 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1770 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1771 1772 assert((LI || SI) && "Invalid Load/Store instruction"); 1773 1774 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1775 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1776 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1777 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1778 // An alignment of 0 means target abi alignment. We need to use the scalar's 1779 // target abi alignment in such a case. 1780 if (!Alignment) 1781 Alignment = DL->getABITypeAlignment(ScalarDataTy); 1782 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1783 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1784 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1785 1786 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 1787 !Legal->isMaskRequired(SI)) 1788 return scalarizeInstruction(Instr, true); 1789 1790 if (ScalarAllocatedSize != VectorElementSize) 1791 return scalarizeInstruction(Instr); 1792 1793 // If the pointer is loop invariant or if it is non-consecutive, 1794 // scalarize the load. 1795 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1796 bool Reverse = ConsecutiveStride < 0; 1797 bool UniformLoad = LI && Legal->isUniform(Ptr); 1798 if (!ConsecutiveStride || UniformLoad) 1799 return scalarizeInstruction(Instr); 1800 1801 Constant *Zero = Builder.getInt32(0); 1802 VectorParts &Entry = WidenMap.get(Instr); 1803 1804 // Handle consecutive loads/stores. 1805 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1806 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1807 setDebugLocFromInst(Builder, Gep); 1808 Value *PtrOperand = Gep->getPointerOperand(); 1809 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1810 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1811 1812 // Create the new GEP with the new induction variable. 1813 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1814 Gep2->setOperand(0, FirstBasePtr); 1815 Gep2->setName("gep.indvar.base"); 1816 Ptr = Builder.Insert(Gep2); 1817 } else if (Gep) { 1818 setDebugLocFromInst(Builder, Gep); 1819 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1820 OrigLoop) && "Base ptr must be invariant"); 1821 1822 // The last index does not have to be the induction. It can be 1823 // consecutive and be a function of the index. For example A[I+1]; 1824 unsigned NumOperands = Gep->getNumOperands(); 1825 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1826 // Create the new GEP with the new induction variable. 1827 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1828 1829 for (unsigned i = 0; i < NumOperands; ++i) { 1830 Value *GepOperand = Gep->getOperand(i); 1831 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1832 1833 // Update last index or loop invariant instruction anchored in loop. 1834 if (i == InductionOperand || 1835 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1836 assert((i == InductionOperand || 1837 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1838 "Must be last index or loop invariant"); 1839 1840 VectorParts &GEPParts = getVectorValue(GepOperand); 1841 Value *Index = GEPParts[0]; 1842 Index = Builder.CreateExtractElement(Index, Zero); 1843 Gep2->setOperand(i, Index); 1844 Gep2->setName("gep.indvar.idx"); 1845 } 1846 } 1847 Ptr = Builder.Insert(Gep2); 1848 } else { 1849 // Use the induction element ptr. 1850 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1851 setDebugLocFromInst(Builder, Ptr); 1852 VectorParts &PtrVal = getVectorValue(Ptr); 1853 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1854 } 1855 1856 VectorParts Mask = createBlockInMask(Instr->getParent()); 1857 // Handle Stores: 1858 if (SI) { 1859 assert(!Legal->isUniform(SI->getPointerOperand()) && 1860 "We do not allow storing to uniform addresses"); 1861 setDebugLocFromInst(Builder, SI); 1862 // We don't want to update the value in the map as it might be used in 1863 // another expression. So don't use a reference type for "StoredVal". 1864 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1865 1866 for (unsigned Part = 0; Part < UF; ++Part) { 1867 // Calculate the pointer for the specific unroll-part. 1868 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1869 1870 if (Reverse) { 1871 // If we store to reverse consecutive memory locations then we need 1872 // to reverse the order of elements in the stored value. 1873 StoredVal[Part] = reverseVector(StoredVal[Part]); 1874 // If the address is consecutive but reversed, then the 1875 // wide store needs to start at the last vector element. 1876 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1877 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1878 Mask[Part] = reverseVector(Mask[Part]); 1879 } 1880 1881 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1882 DataTy->getPointerTo(AddressSpace)); 1883 1884 Instruction *NewSI; 1885 if (Legal->isMaskRequired(SI)) 1886 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 1887 Mask[Part]); 1888 else 1889 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 1890 propagateMetadata(NewSI, SI); 1891 } 1892 return; 1893 } 1894 1895 // Handle loads. 1896 assert(LI && "Must have a load instruction"); 1897 setDebugLocFromInst(Builder, LI); 1898 for (unsigned Part = 0; Part < UF; ++Part) { 1899 // Calculate the pointer for the specific unroll-part. 1900 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1901 1902 if (Reverse) { 1903 // If the address is consecutive but reversed, then the 1904 // wide load needs to start at the last vector element. 1905 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1906 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1907 Mask[Part] = reverseVector(Mask[Part]); 1908 } 1909 1910 Instruction* NewLI; 1911 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1912 DataTy->getPointerTo(AddressSpace)); 1913 if (Legal->isMaskRequired(LI)) 1914 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 1915 UndefValue::get(DataTy), 1916 "wide.masked.load"); 1917 else 1918 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 1919 propagateMetadata(NewLI, LI); 1920 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 1921 } 1922 } 1923 1924 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 1925 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1926 // Holds vector parameters or scalars, in case of uniform vals. 1927 SmallVector<VectorParts, 4> Params; 1928 1929 setDebugLocFromInst(Builder, Instr); 1930 1931 // Find all of the vectorized parameters. 1932 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1933 Value *SrcOp = Instr->getOperand(op); 1934 1935 // If we are accessing the old induction variable, use the new one. 1936 if (SrcOp == OldInduction) { 1937 Params.push_back(getVectorValue(SrcOp)); 1938 continue; 1939 } 1940 1941 // Try using previously calculated values. 1942 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1943 1944 // If the src is an instruction that appeared earlier in the basic block 1945 // then it should already be vectorized. 1946 if (SrcInst && OrigLoop->contains(SrcInst)) { 1947 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1948 // The parameter is a vector value from earlier. 1949 Params.push_back(WidenMap.get(SrcInst)); 1950 } else { 1951 // The parameter is a scalar from outside the loop. Maybe even a constant. 1952 VectorParts Scalars; 1953 Scalars.append(UF, SrcOp); 1954 Params.push_back(Scalars); 1955 } 1956 } 1957 1958 assert(Params.size() == Instr->getNumOperands() && 1959 "Invalid number of operands"); 1960 1961 // Does this instruction return a value ? 1962 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1963 1964 Value *UndefVec = IsVoidRetTy ? nullptr : 1965 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1966 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1967 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1968 1969 Instruction *InsertPt = Builder.GetInsertPoint(); 1970 BasicBlock *IfBlock = Builder.GetInsertBlock(); 1971 BasicBlock *CondBlock = nullptr; 1972 1973 VectorParts Cond; 1974 Loop *VectorLp = nullptr; 1975 if (IfPredicateStore) { 1976 assert(Instr->getParent()->getSinglePredecessor() && 1977 "Only support single predecessor blocks"); 1978 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 1979 Instr->getParent()); 1980 VectorLp = LI->getLoopFor(IfBlock); 1981 assert(VectorLp && "Must have a loop for this block"); 1982 } 1983 1984 // For each vector unroll 'part': 1985 for (unsigned Part = 0; Part < UF; ++Part) { 1986 // For each scalar that we create: 1987 for (unsigned Width = 0; Width < VF; ++Width) { 1988 1989 // Start if-block. 1990 Value *Cmp = nullptr; 1991 if (IfPredicateStore) { 1992 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 1993 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 1994 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1995 LoopVectorBody.push_back(CondBlock); 1996 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 1997 // Update Builder with newly created basic block. 1998 Builder.SetInsertPoint(InsertPt); 1999 } 2000 2001 Instruction *Cloned = Instr->clone(); 2002 if (!IsVoidRetTy) 2003 Cloned->setName(Instr->getName() + ".cloned"); 2004 // Replace the operands of the cloned instructions with extracted scalars. 2005 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2006 Value *Op = Params[op][Part]; 2007 // Param is a vector. Need to extract the right lane. 2008 if (Op->getType()->isVectorTy()) 2009 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2010 Cloned->setOperand(op, Op); 2011 } 2012 2013 // Place the cloned scalar in the new loop. 2014 Builder.Insert(Cloned); 2015 2016 // If the original scalar returns a value we need to place it in a vector 2017 // so that future users will be able to use it. 2018 if (!IsVoidRetTy) 2019 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2020 Builder.getInt32(Width)); 2021 // End if-block. 2022 if (IfPredicateStore) { 2023 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 2024 LoopVectorBody.push_back(NewIfBlock); 2025 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 2026 Builder.SetInsertPoint(InsertPt); 2027 Instruction *OldBr = IfBlock->getTerminator(); 2028 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 2029 OldBr->eraseFromParent(); 2030 IfBlock = NewIfBlock; 2031 } 2032 } 2033 } 2034 } 2035 2036 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 2037 Instruction *Loc) { 2038 if (FirstInst) 2039 return FirstInst; 2040 if (Instruction *I = dyn_cast<Instruction>(V)) 2041 return I->getParent() == Loc->getParent() ? I : nullptr; 2042 return nullptr; 2043 } 2044 2045 std::pair<Instruction *, Instruction *> 2046 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 2047 Instruction *tnullptr = nullptr; 2048 if (!Legal->mustCheckStrides()) 2049 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 2050 2051 IRBuilder<> ChkBuilder(Loc); 2052 2053 // Emit checks. 2054 Value *Check = nullptr; 2055 Instruction *FirstInst = nullptr; 2056 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 2057 SE = Legal->strides_end(); 2058 SI != SE; ++SI) { 2059 Value *Ptr = stripIntegerCast(*SI); 2060 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 2061 "stride.chk"); 2062 // Store the first instruction we create. 2063 FirstInst = getFirstInst(FirstInst, C, Loc); 2064 if (Check) 2065 Check = ChkBuilder.CreateOr(Check, C); 2066 else 2067 Check = C; 2068 } 2069 2070 // We have to do this trickery because the IRBuilder might fold the check to a 2071 // constant expression in which case there is no Instruction anchored in a 2072 // the block. 2073 LLVMContext &Ctx = Loc->getContext(); 2074 Instruction *TheCheck = 2075 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 2076 ChkBuilder.Insert(TheCheck, "stride.not.one"); 2077 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 2078 2079 return std::make_pair(FirstInst, TheCheck); 2080 } 2081 2082 std::pair<Instruction *, Instruction *> 2083 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) { 2084 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = 2085 Legal->getRuntimePointerCheck(); 2086 2087 Instruction *tnullptr = nullptr; 2088 if (!PtrRtCheck->Need) 2089 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 2090 2091 unsigned NumPointers = PtrRtCheck->Pointers.size(); 2092 SmallVector<TrackingVH<Value> , 2> Starts; 2093 SmallVector<TrackingVH<Value> , 2> Ends; 2094 2095 LLVMContext &Ctx = Loc->getContext(); 2096 SCEVExpander Exp(*SE, "induction"); 2097 Instruction *FirstInst = nullptr; 2098 2099 for (unsigned i = 0; i < NumPointers; ++i) { 2100 Value *Ptr = PtrRtCheck->Pointers[i]; 2101 const SCEV *Sc = SE->getSCEV(Ptr); 2102 2103 if (SE->isLoopInvariant(Sc, OrigLoop)) { 2104 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << 2105 *Ptr <<"\n"); 2106 Starts.push_back(Ptr); 2107 Ends.push_back(Ptr); 2108 } else { 2109 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n'); 2110 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 2111 2112 // Use this type for pointer arithmetic. 2113 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 2114 2115 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); 2116 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); 2117 Starts.push_back(Start); 2118 Ends.push_back(End); 2119 } 2120 } 2121 2122 IRBuilder<> ChkBuilder(Loc); 2123 // Our instructions might fold to a constant. 2124 Value *MemoryRuntimeCheck = nullptr; 2125 for (unsigned i = 0; i < NumPointers; ++i) { 2126 for (unsigned j = i+1; j < NumPointers; ++j) { 2127 // No need to check if two readonly pointers intersect. 2128 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) 2129 continue; 2130 2131 // Only need to check pointers between two different dependency sets. 2132 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j]) 2133 continue; 2134 // Only need to check pointers in the same alias set. 2135 if (PtrRtCheck->AliasSetId[i] != PtrRtCheck->AliasSetId[j]) 2136 continue; 2137 2138 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 2139 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 2140 2141 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 2142 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 2143 "Trying to bounds check pointers with different address spaces"); 2144 2145 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 2146 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 2147 2148 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 2149 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 2150 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 2151 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 2152 2153 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 2154 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 2155 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 2156 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 2157 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 2158 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2159 if (MemoryRuntimeCheck) { 2160 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 2161 "conflict.rdx"); 2162 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2163 } 2164 MemoryRuntimeCheck = IsConflict; 2165 } 2166 } 2167 2168 // We have to do this trickery because the IRBuilder might fold the check to a 2169 // constant expression in which case there is no Instruction anchored in a 2170 // the block. 2171 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 2172 ConstantInt::getTrue(Ctx)); 2173 ChkBuilder.Insert(Check, "memcheck.conflict"); 2174 FirstInst = getFirstInst(FirstInst, Check, Loc); 2175 return std::make_pair(FirstInst, Check); 2176 } 2177 2178 void InnerLoopVectorizer::createEmptyLoop() { 2179 /* 2180 In this function we generate a new loop. The new loop will contain 2181 the vectorized instructions while the old loop will continue to run the 2182 scalar remainder. 2183 2184 [ ] <-- Back-edge taken count overflow check. 2185 / | 2186 / v 2187 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2188 | / | 2189 | / v 2190 || [ ] <-- vector pre header. 2191 || | 2192 || v 2193 || [ ] \ 2194 || [ ]_| <-- vector loop. 2195 || | 2196 | \ v 2197 | >[ ] <--- middle-block. 2198 | / | 2199 | / v 2200 -|- >[ ] <--- new preheader. 2201 | | 2202 | v 2203 | [ ] \ 2204 | [ ]_| <-- old scalar loop to handle remainder. 2205 \ | 2206 \ v 2207 >[ ] <-- exit block. 2208 ... 2209 */ 2210 2211 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2212 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 2213 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2214 assert(BypassBlock && "Invalid loop structure"); 2215 assert(ExitBlock && "Must have an exit block"); 2216 2217 // Some loops have a single integer induction variable, while other loops 2218 // don't. One example is c++ iterators that often have multiple pointer 2219 // induction variables. In the code below we also support a case where we 2220 // don't have a single induction variable. 2221 OldInduction = Legal->getInduction(); 2222 Type *IdxTy = Legal->getWidestInductionType(); 2223 2224 // Find the loop boundaries. 2225 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 2226 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 2227 2228 // The exit count might have the type of i64 while the phi is i32. This can 2229 // happen if we have an induction variable that is sign extended before the 2230 // compare. The only way that we get a backedge taken count is that the 2231 // induction variable was signed and as such will not overflow. In such a case 2232 // truncation is legal. 2233 if (ExitCount->getType()->getPrimitiveSizeInBits() > 2234 IdxTy->getPrimitiveSizeInBits()) 2235 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 2236 2237 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 2238 // Get the total trip count from the count by adding 1. 2239 ExitCount = SE->getAddExpr(BackedgeTakeCount, 2240 SE->getConstant(BackedgeTakeCount->getType(), 1)); 2241 2242 // Expand the trip count and place the new instructions in the preheader. 2243 // Notice that the pre-header does not change, only the loop body. 2244 SCEVExpander Exp(*SE, "induction"); 2245 2246 // We need to test whether the backedge-taken count is uint##_max. Adding one 2247 // to it will cause overflow and an incorrect loop trip count in the vector 2248 // body. In case of overflow we want to directly jump to the scalar remainder 2249 // loop. 2250 Value *BackedgeCount = 2251 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 2252 BypassBlock->getTerminator()); 2253 if (BackedgeCount->getType()->isPointerTy()) 2254 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 2255 "backedge.ptrcnt.to.int", 2256 BypassBlock->getTerminator()); 2257 Instruction *CheckBCOverflow = 2258 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 2259 Constant::getAllOnesValue(BackedgeCount->getType()), 2260 "backedge.overflow", BypassBlock->getTerminator()); 2261 2262 // The loop index does not have to start at Zero. Find the original start 2263 // value from the induction PHI node. If we don't have an induction variable 2264 // then we know that it starts at zero. 2265 Builder.SetInsertPoint(BypassBlock->getTerminator()); 2266 Value *StartIdx = ExtendedIdx = OldInduction ? 2267 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 2268 IdxTy): 2269 ConstantInt::get(IdxTy, 0); 2270 2271 // We need an instruction to anchor the overflow check on. StartIdx needs to 2272 // be defined before the overflow check branch. Because the scalar preheader 2273 // is going to merge the start index and so the overflow branch block needs to 2274 // contain a definition of the start index. 2275 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd( 2276 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor", 2277 BypassBlock->getTerminator()); 2278 2279 // Count holds the overall loop count (N). 2280 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2281 BypassBlock->getTerminator()); 2282 2283 LoopBypassBlocks.push_back(BypassBlock); 2284 2285 // Split the single block loop into the two loop structure described above. 2286 BasicBlock *VectorPH = 2287 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 2288 BasicBlock *VecBody = 2289 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2290 BasicBlock *MiddleBlock = 2291 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2292 BasicBlock *ScalarPH = 2293 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2294 2295 // Create and register the new vector loop. 2296 Loop* Lp = new Loop(); 2297 Loop *ParentLoop = OrigLoop->getParentLoop(); 2298 2299 // Insert the new loop into the loop nest and register the new basic blocks 2300 // before calling any utilities such as SCEV that require valid LoopInfo. 2301 if (ParentLoop) { 2302 ParentLoop->addChildLoop(Lp); 2303 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2304 ParentLoop->addBasicBlockToLoop(VectorPH, *LI); 2305 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2306 } else { 2307 LI->addTopLevelLoop(Lp); 2308 } 2309 Lp->addBasicBlockToLoop(VecBody, *LI); 2310 2311 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2312 // inside the loop. 2313 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2314 2315 // Generate the induction variable. 2316 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2317 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2318 // The loop step is equal to the vectorization factor (num of SIMD elements) 2319 // times the unroll factor (num of SIMD instructions). 2320 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2321 2322 // This is the IR builder that we use to add all of the logic for bypassing 2323 // the new vector loop. 2324 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 2325 setDebugLocFromInst(BypassBuilder, 2326 getDebugLocFromInstOrOperands(OldInduction)); 2327 2328 // We may need to extend the index in case there is a type mismatch. 2329 // We know that the count starts at zero and does not overflow. 2330 if (Count->getType() != IdxTy) { 2331 // The exit count can be of pointer type. Convert it to the correct 2332 // integer type. 2333 if (ExitCount->getType()->isPointerTy()) 2334 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2335 else 2336 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2337 } 2338 2339 // Add the start index to the loop count to get the new end index. 2340 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2341 2342 // Now we need to generate the expression for N - (N % VF), which is 2343 // the part that the vectorized body will execute. 2344 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2345 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2346 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2347 "end.idx.rnd.down"); 2348 2349 // Now, compare the new count to zero. If it is zero skip the vector loop and 2350 // jump to the scalar loop. 2351 Value *Cmp = 2352 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2353 2354 BasicBlock *LastBypassBlock = BypassBlock; 2355 2356 // Generate code to check that the loops trip count that we computed by adding 2357 // one to the backedge-taken count will not overflow. 2358 { 2359 auto PastOverflowCheck = 2360 std::next(BasicBlock::iterator(OverflowCheckAnchor)); 2361 BasicBlock *CheckBlock = 2362 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked"); 2363 if (ParentLoop) 2364 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2365 LoopBypassBlocks.push_back(CheckBlock); 2366 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2367 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm); 2368 OldTerm->eraseFromParent(); 2369 LastBypassBlock = CheckBlock; 2370 } 2371 2372 // Generate the code to check that the strides we assumed to be one are really 2373 // one. We want the new basic block to start at the first instruction in a 2374 // sequence of instructions that form a check. 2375 Instruction *StrideCheck; 2376 Instruction *FirstCheckInst; 2377 std::tie(FirstCheckInst, StrideCheck) = 2378 addStrideCheck(LastBypassBlock->getTerminator()); 2379 if (StrideCheck) { 2380 // Create a new block containing the stride check. 2381 BasicBlock *CheckBlock = 2382 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 2383 if (ParentLoop) 2384 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2385 LoopBypassBlocks.push_back(CheckBlock); 2386 2387 // Replace the branch into the memory check block with a conditional branch 2388 // for the "few elements case". 2389 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2390 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2391 OldTerm->eraseFromParent(); 2392 2393 Cmp = StrideCheck; 2394 LastBypassBlock = CheckBlock; 2395 } 2396 2397 // Generate the code that checks in runtime if arrays overlap. We put the 2398 // checks into a separate block to make the more common case of few elements 2399 // faster. 2400 Instruction *MemRuntimeCheck; 2401 std::tie(FirstCheckInst, MemRuntimeCheck) = 2402 addRuntimeCheck(LastBypassBlock->getTerminator()); 2403 if (MemRuntimeCheck) { 2404 // Create a new block containing the memory check. 2405 BasicBlock *CheckBlock = 2406 LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck"); 2407 if (ParentLoop) 2408 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2409 LoopBypassBlocks.push_back(CheckBlock); 2410 2411 // Replace the branch into the memory check block with a conditional branch 2412 // for the "few elements case". 2413 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2414 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2415 OldTerm->eraseFromParent(); 2416 2417 Cmp = MemRuntimeCheck; 2418 LastBypassBlock = CheckBlock; 2419 } 2420 2421 LastBypassBlock->getTerminator()->eraseFromParent(); 2422 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 2423 LastBypassBlock); 2424 2425 // We are going to resume the execution of the scalar loop. 2426 // Go over all of the induction variables that we found and fix the 2427 // PHIs that are left in the scalar version of the loop. 2428 // The starting values of PHI nodes depend on the counter of the last 2429 // iteration in the vectorized loop. 2430 // If we come from a bypass edge then we need to start from the original 2431 // start value. 2432 2433 // This variable saves the new starting index for the scalar loop. 2434 PHINode *ResumeIndex = nullptr; 2435 LoopVectorizationLegality::InductionList::iterator I, E; 2436 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2437 // Set builder to point to last bypass block. 2438 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2439 for (I = List->begin(), E = List->end(); I != E; ++I) { 2440 PHINode *OrigPhi = I->first; 2441 LoopVectorizationLegality::InductionInfo II = I->second; 2442 2443 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2444 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2445 MiddleBlock->getTerminator()); 2446 // We might have extended the type of the induction variable but we need a 2447 // truncated version for the scalar loop. 2448 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2449 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2450 MiddleBlock->getTerminator()) : nullptr; 2451 2452 // Create phi nodes to merge from the backedge-taken check block. 2453 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2454 ScalarPH->getTerminator()); 2455 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2456 2457 PHINode *BCTruncResumeVal = nullptr; 2458 if (OrigPhi == OldInduction) { 2459 BCTruncResumeVal = 2460 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2461 ScalarPH->getTerminator()); 2462 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2463 } 2464 2465 Value *EndValue = nullptr; 2466 switch (II.IK) { 2467 case LoopVectorizationLegality::IK_NoInduction: 2468 llvm_unreachable("Unknown induction"); 2469 case LoopVectorizationLegality::IK_IntInduction: { 2470 // Handle the integer induction counter. 2471 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2472 2473 // We have the canonical induction variable. 2474 if (OrigPhi == OldInduction) { 2475 // Create a truncated version of the resume value for the scalar loop, 2476 // we might have promoted the type to a larger width. 2477 EndValue = 2478 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2479 // The new PHI merges the original incoming value, in case of a bypass, 2480 // or the value at the end of the vectorized loop. 2481 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2482 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2483 TruncResumeVal->addIncoming(EndValue, VecBody); 2484 2485 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2486 2487 // We know what the end value is. 2488 EndValue = IdxEndRoundDown; 2489 // We also know which PHI node holds it. 2490 ResumeIndex = ResumeVal; 2491 break; 2492 } 2493 2494 // Not the canonical induction variable - add the vector loop count to the 2495 // start value. 2496 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2497 II.StartValue->getType(), 2498 "cast.crd"); 2499 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end"); 2500 break; 2501 } 2502 case LoopVectorizationLegality::IK_ReverseIntInduction: { 2503 // Convert the CountRoundDown variable to the PHI size. 2504 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2505 II.StartValue->getType(), 2506 "cast.crd"); 2507 // Handle reverse integer induction counter. 2508 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end"); 2509 break; 2510 } 2511 case LoopVectorizationLegality::IK_PtrInduction: { 2512 // For pointer induction variables, calculate the offset using 2513 // the end index. 2514 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown, 2515 "ptr.ind.end"); 2516 break; 2517 } 2518 case LoopVectorizationLegality::IK_ReversePtrInduction: { 2519 // The value at the end of the loop for the reverse pointer is calculated 2520 // by creating a GEP with a negative index starting from the start value. 2521 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0); 2522 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown, 2523 "rev.ind.end"); 2524 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx, 2525 "rev.ptr.ind.end"); 2526 break; 2527 } 2528 }// end of case 2529 2530 // The new PHI merges the original incoming value, in case of a bypass, 2531 // or the value at the end of the vectorized loop. 2532 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2533 if (OrigPhi == OldInduction) 2534 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2535 else 2536 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2537 } 2538 ResumeVal->addIncoming(EndValue, VecBody); 2539 2540 // Fix the scalar body counter (PHI node). 2541 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2542 2543 // The old induction's phi node in the scalar body needs the truncated 2544 // value. 2545 if (OrigPhi == OldInduction) { 2546 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2547 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2548 } else { 2549 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2550 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2551 } 2552 } 2553 2554 // If we are generating a new induction variable then we also need to 2555 // generate the code that calculates the exit value. This value is not 2556 // simply the end of the counter because we may skip the vectorized body 2557 // in case of a runtime check. 2558 if (!OldInduction){ 2559 assert(!ResumeIndex && "Unexpected resume value found"); 2560 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2561 MiddleBlock->getTerminator()); 2562 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2563 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2564 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2565 } 2566 2567 // Make sure that we found the index where scalar loop needs to continue. 2568 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2569 "Invalid resume Index"); 2570 2571 // Add a check in the middle block to see if we have completed 2572 // all of the iterations in the first vector loop. 2573 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2574 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2575 ResumeIndex, "cmp.n", 2576 MiddleBlock->getTerminator()); 2577 2578 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2579 // Remove the old terminator. 2580 MiddleBlock->getTerminator()->eraseFromParent(); 2581 2582 // Create i+1 and fill the PHINode. 2583 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2584 Induction->addIncoming(StartIdx, VectorPH); 2585 Induction->addIncoming(NextIdx, VecBody); 2586 // Create the compare. 2587 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2588 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2589 2590 // Now we have two terminators. Remove the old one from the block. 2591 VecBody->getTerminator()->eraseFromParent(); 2592 2593 // Get ready to start creating new instructions into the vectorized body. 2594 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2595 2596 // Save the state. 2597 LoopVectorPreHeader = VectorPH; 2598 LoopScalarPreHeader = ScalarPH; 2599 LoopMiddleBlock = MiddleBlock; 2600 LoopExitBlock = ExitBlock; 2601 LoopVectorBody.push_back(VecBody); 2602 LoopScalarBody = OldBasicBlock; 2603 2604 LoopVectorizeHints Hints(Lp, true); 2605 Hints.setAlreadyVectorized(); 2606 } 2607 2608 /// This function returns the identity element (or neutral element) for 2609 /// the operation K. 2610 Constant* 2611 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 2612 switch (K) { 2613 case RK_IntegerXor: 2614 case RK_IntegerAdd: 2615 case RK_IntegerOr: 2616 // Adding, Xoring, Oring zero to a number does not change it. 2617 return ConstantInt::get(Tp, 0); 2618 case RK_IntegerMult: 2619 // Multiplying a number by 1 does not change it. 2620 return ConstantInt::get(Tp, 1); 2621 case RK_IntegerAnd: 2622 // AND-ing a number with an all-1 value does not change it. 2623 return ConstantInt::get(Tp, -1, true); 2624 case RK_FloatMult: 2625 // Multiplying a number by 1 does not change it. 2626 return ConstantFP::get(Tp, 1.0L); 2627 case RK_FloatAdd: 2628 // Adding zero to a number does not change it. 2629 return ConstantFP::get(Tp, 0.0L); 2630 default: 2631 llvm_unreachable("Unknown reduction kind"); 2632 } 2633 } 2634 2635 /// This function translates the reduction kind to an LLVM binary operator. 2636 static unsigned 2637 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 2638 switch (Kind) { 2639 case LoopVectorizationLegality::RK_IntegerAdd: 2640 return Instruction::Add; 2641 case LoopVectorizationLegality::RK_IntegerMult: 2642 return Instruction::Mul; 2643 case LoopVectorizationLegality::RK_IntegerOr: 2644 return Instruction::Or; 2645 case LoopVectorizationLegality::RK_IntegerAnd: 2646 return Instruction::And; 2647 case LoopVectorizationLegality::RK_IntegerXor: 2648 return Instruction::Xor; 2649 case LoopVectorizationLegality::RK_FloatMult: 2650 return Instruction::FMul; 2651 case LoopVectorizationLegality::RK_FloatAdd: 2652 return Instruction::FAdd; 2653 case LoopVectorizationLegality::RK_IntegerMinMax: 2654 return Instruction::ICmp; 2655 case LoopVectorizationLegality::RK_FloatMinMax: 2656 return Instruction::FCmp; 2657 default: 2658 llvm_unreachable("Unknown reduction operation"); 2659 } 2660 } 2661 2662 Value *createMinMaxOp(IRBuilder<> &Builder, 2663 LoopVectorizationLegality::MinMaxReductionKind RK, 2664 Value *Left, 2665 Value *Right) { 2666 CmpInst::Predicate P = CmpInst::ICMP_NE; 2667 switch (RK) { 2668 default: 2669 llvm_unreachable("Unknown min/max reduction kind"); 2670 case LoopVectorizationLegality::MRK_UIntMin: 2671 P = CmpInst::ICMP_ULT; 2672 break; 2673 case LoopVectorizationLegality::MRK_UIntMax: 2674 P = CmpInst::ICMP_UGT; 2675 break; 2676 case LoopVectorizationLegality::MRK_SIntMin: 2677 P = CmpInst::ICMP_SLT; 2678 break; 2679 case LoopVectorizationLegality::MRK_SIntMax: 2680 P = CmpInst::ICMP_SGT; 2681 break; 2682 case LoopVectorizationLegality::MRK_FloatMin: 2683 P = CmpInst::FCMP_OLT; 2684 break; 2685 case LoopVectorizationLegality::MRK_FloatMax: 2686 P = CmpInst::FCMP_OGT; 2687 break; 2688 } 2689 2690 Value *Cmp; 2691 if (RK == LoopVectorizationLegality::MRK_FloatMin || 2692 RK == LoopVectorizationLegality::MRK_FloatMax) 2693 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 2694 else 2695 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 2696 2697 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 2698 return Select; 2699 } 2700 2701 namespace { 2702 struct CSEDenseMapInfo { 2703 static bool canHandle(Instruction *I) { 2704 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2705 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2706 } 2707 static inline Instruction *getEmptyKey() { 2708 return DenseMapInfo<Instruction *>::getEmptyKey(); 2709 } 2710 static inline Instruction *getTombstoneKey() { 2711 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2712 } 2713 static unsigned getHashValue(Instruction *I) { 2714 assert(canHandle(I) && "Unknown instruction!"); 2715 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2716 I->value_op_end())); 2717 } 2718 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2719 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2720 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2721 return LHS == RHS; 2722 return LHS->isIdenticalTo(RHS); 2723 } 2724 }; 2725 } 2726 2727 /// \brief Check whether this block is a predicated block. 2728 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2729 /// = ...; " blocks. We start with one vectorized basic block. For every 2730 /// conditional block we split this vectorized block. Therefore, every second 2731 /// block will be a predicated one. 2732 static bool isPredicatedBlock(unsigned BlockNum) { 2733 return BlockNum % 2; 2734 } 2735 2736 ///\brief Perform cse of induction variable instructions. 2737 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2738 // Perform simple cse. 2739 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2740 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2741 BasicBlock *BB = BBs[i]; 2742 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2743 Instruction *In = I++; 2744 2745 if (!CSEDenseMapInfo::canHandle(In)) 2746 continue; 2747 2748 // Check if we can replace this instruction with any of the 2749 // visited instructions. 2750 if (Instruction *V = CSEMap.lookup(In)) { 2751 In->replaceAllUsesWith(V); 2752 In->eraseFromParent(); 2753 continue; 2754 } 2755 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2756 // ...;" blocks for predicated stores. Every second block is a predicated 2757 // block. 2758 if (isPredicatedBlock(i)) 2759 continue; 2760 2761 CSEMap[In] = In; 2762 } 2763 } 2764 } 2765 2766 /// \brief Adds a 'fast' flag to floating point operations. 2767 static Value *addFastMathFlag(Value *V) { 2768 if (isa<FPMathOperator>(V)){ 2769 FastMathFlags Flags; 2770 Flags.setUnsafeAlgebra(); 2771 cast<Instruction>(V)->setFastMathFlags(Flags); 2772 } 2773 return V; 2774 } 2775 2776 void InnerLoopVectorizer::vectorizeLoop() { 2777 //===------------------------------------------------===// 2778 // 2779 // Notice: any optimization or new instruction that go 2780 // into the code below should be also be implemented in 2781 // the cost-model. 2782 // 2783 //===------------------------------------------------===// 2784 Constant *Zero = Builder.getInt32(0); 2785 2786 // In order to support reduction variables we need to be able to vectorize 2787 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2788 // stages. First, we create a new vector PHI node with no incoming edges. 2789 // We use this value when we vectorize all of the instructions that use the 2790 // PHI. Next, after all of the instructions in the block are complete we 2791 // add the new incoming edges to the PHI. At this point all of the 2792 // instructions in the basic block are vectorized, so we can use them to 2793 // construct the PHI. 2794 PhiVector RdxPHIsToFix; 2795 2796 // Scan the loop in a topological order to ensure that defs are vectorized 2797 // before users. 2798 LoopBlocksDFS DFS(OrigLoop); 2799 DFS.perform(LI); 2800 2801 // Vectorize all of the blocks in the original loop. 2802 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2803 be = DFS.endRPO(); bb != be; ++bb) 2804 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 2805 2806 // At this point every instruction in the original loop is widened to 2807 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2808 // that we vectorized. The PHI nodes are currently empty because we did 2809 // not want to introduce cycles. Notice that the remaining PHI nodes 2810 // that we need to fix are reduction variables. 2811 2812 // Create the 'reduced' values for each of the induction vars. 2813 // The reduced values are the vector values that we scalarize and combine 2814 // after the loop is finished. 2815 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2816 it != e; ++it) { 2817 PHINode *RdxPhi = *it; 2818 assert(RdxPhi && "Unable to recover vectorized PHI"); 2819 2820 // Find the reduction variable descriptor. 2821 assert(Legal->getReductionVars()->count(RdxPhi) && 2822 "Unable to find the reduction variable"); 2823 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2824 (*Legal->getReductionVars())[RdxPhi]; 2825 2826 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2827 2828 // We need to generate a reduction vector from the incoming scalar. 2829 // To do so, we need to generate the 'identity' vector and override 2830 // one of the elements with the incoming scalar reduction. We need 2831 // to do it in the vector-loop preheader. 2832 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 2833 2834 // This is the vector-clone of the value that leaves the loop. 2835 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2836 Type *VecTy = VectorExit[0]->getType(); 2837 2838 // Find the reduction identity variable. Zero for addition, or, xor, 2839 // one for multiplication, -1 for And. 2840 Value *Identity; 2841 Value *VectorStart; 2842 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2843 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2844 // MinMax reduction have the start value as their identify. 2845 if (VF == 1) { 2846 VectorStart = Identity = RdxDesc.StartValue; 2847 } else { 2848 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2849 RdxDesc.StartValue, 2850 "minmax.ident"); 2851 } 2852 } else { 2853 // Handle other reduction kinds: 2854 Constant *Iden = 2855 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2856 VecTy->getScalarType()); 2857 if (VF == 1) { 2858 Identity = Iden; 2859 // This vector is the Identity vector where the first element is the 2860 // incoming scalar reduction. 2861 VectorStart = RdxDesc.StartValue; 2862 } else { 2863 Identity = ConstantVector::getSplat(VF, Iden); 2864 2865 // This vector is the Identity vector where the first element is the 2866 // incoming scalar reduction. 2867 VectorStart = Builder.CreateInsertElement(Identity, 2868 RdxDesc.StartValue, Zero); 2869 } 2870 } 2871 2872 // Fix the vector-loop phi. 2873 2874 // Reductions do not have to start at zero. They can start with 2875 // any loop invariant values. 2876 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2877 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2878 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2879 VectorParts &Val = getVectorValue(LoopVal); 2880 for (unsigned part = 0; part < UF; ++part) { 2881 // Make sure to add the reduction stat value only to the 2882 // first unroll part. 2883 Value *StartVal = (part == 0) ? VectorStart : Identity; 2884 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 2885 LoopVectorPreHeader); 2886 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 2887 LoopVectorBody.back()); 2888 } 2889 2890 // Before each round, move the insertion point right between 2891 // the PHIs and the values we are going to write. 2892 // This allows us to write both PHINodes and the extractelement 2893 // instructions. 2894 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2895 2896 VectorParts RdxParts; 2897 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2898 for (unsigned part = 0; part < UF; ++part) { 2899 // This PHINode contains the vectorized reduction variable, or 2900 // the initial value vector, if we bypass the vector loop. 2901 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2902 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2903 Value *StartVal = (part == 0) ? VectorStart : Identity; 2904 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2905 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2906 NewPhi->addIncoming(RdxExitVal[part], 2907 LoopVectorBody.back()); 2908 RdxParts.push_back(NewPhi); 2909 } 2910 2911 // Reduce all of the unrolled parts into a single vector. 2912 Value *ReducedPartRdx = RdxParts[0]; 2913 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2914 setDebugLocFromInst(Builder, ReducedPartRdx); 2915 for (unsigned part = 1; part < UF; ++part) { 2916 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2917 // Floating point operations had to be 'fast' to enable the reduction. 2918 ReducedPartRdx = addFastMathFlag( 2919 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 2920 ReducedPartRdx, "bin.rdx")); 2921 else 2922 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2923 ReducedPartRdx, RdxParts[part]); 2924 } 2925 2926 if (VF > 1) { 2927 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2928 // and vector ops, reducing the set of values being computed by half each 2929 // round. 2930 assert(isPowerOf2_32(VF) && 2931 "Reduction emission only supported for pow2 vectors!"); 2932 Value *TmpVec = ReducedPartRdx; 2933 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 2934 for (unsigned i = VF; i != 1; i >>= 1) { 2935 // Move the upper half of the vector to the lower half. 2936 for (unsigned j = 0; j != i/2; ++j) 2937 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2938 2939 // Fill the rest of the mask with undef. 2940 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2941 UndefValue::get(Builder.getInt32Ty())); 2942 2943 Value *Shuf = 2944 Builder.CreateShuffleVector(TmpVec, 2945 UndefValue::get(TmpVec->getType()), 2946 ConstantVector::get(ShuffleMask), 2947 "rdx.shuf"); 2948 2949 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2950 // Floating point operations had to be 'fast' to enable the reduction. 2951 TmpVec = addFastMathFlag(Builder.CreateBinOp( 2952 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 2953 else 2954 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2955 } 2956 2957 // The result is in the first element of the vector. 2958 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2959 Builder.getInt32(0)); 2960 } 2961 2962 // Create a phi node that merges control-flow from the backedge-taken check 2963 // block and the middle block. 2964 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 2965 LoopScalarPreHeader->getTerminator()); 2966 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]); 2967 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2968 2969 // Now, we need to fix the users of the reduction variable 2970 // inside and outside of the scalar remainder loop. 2971 // We know that the loop is in LCSSA form. We need to update the 2972 // PHI nodes in the exit blocks. 2973 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2974 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2975 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2976 if (!LCSSAPhi) break; 2977 2978 // All PHINodes need to have a single entry edge, or two if 2979 // we already fixed them. 2980 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2981 2982 // We found our reduction value exit-PHI. Update it with the 2983 // incoming bypass edge. 2984 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2985 // Add an edge coming from the bypass. 2986 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2987 break; 2988 } 2989 }// end of the LCSSA phi scan. 2990 2991 // Fix the scalar loop reduction variable with the incoming reduction sum 2992 // from the vector body and from the backedge value. 2993 int IncomingEdgeBlockIdx = 2994 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2995 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2996 // Pick the other block. 2997 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2998 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 2999 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 3000 }// end of for each redux variable. 3001 3002 fixLCSSAPHIs(); 3003 3004 // Remove redundant induction instructions. 3005 cse(LoopVectorBody); 3006 } 3007 3008 void InnerLoopVectorizer::fixLCSSAPHIs() { 3009 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3010 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3011 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3012 if (!LCSSAPhi) break; 3013 if (LCSSAPhi->getNumIncomingValues() == 1) 3014 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 3015 LoopMiddleBlock); 3016 } 3017 } 3018 3019 InnerLoopVectorizer::VectorParts 3020 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3021 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3022 "Invalid edge"); 3023 3024 // Look for cached value. 3025 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 3026 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3027 if (ECEntryIt != MaskCache.end()) 3028 return ECEntryIt->second; 3029 3030 VectorParts SrcMask = createBlockInMask(Src); 3031 3032 // The terminator has to be a branch inst! 3033 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3034 assert(BI && "Unexpected terminator found"); 3035 3036 if (BI->isConditional()) { 3037 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3038 3039 if (BI->getSuccessor(0) != Dst) 3040 for (unsigned part = 0; part < UF; ++part) 3041 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3042 3043 for (unsigned part = 0; part < UF; ++part) 3044 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 3045 3046 MaskCache[Edge] = EdgeMask; 3047 return EdgeMask; 3048 } 3049 3050 MaskCache[Edge] = SrcMask; 3051 return SrcMask; 3052 } 3053 3054 InnerLoopVectorizer::VectorParts 3055 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3056 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3057 3058 // Loop incoming mask is all-one. 3059 if (OrigLoop->getHeader() == BB) { 3060 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3061 return getVectorValue(C); 3062 } 3063 3064 // This is the block mask. We OR all incoming edges, and with zero. 3065 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3066 VectorParts BlockMask = getVectorValue(Zero); 3067 3068 // For each pred: 3069 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3070 VectorParts EM = createEdgeMask(*it, BB); 3071 for (unsigned part = 0; part < UF; ++part) 3072 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3073 } 3074 3075 return BlockMask; 3076 } 3077 3078 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 3079 InnerLoopVectorizer::VectorParts &Entry, 3080 unsigned UF, unsigned VF, PhiVector *PV) { 3081 PHINode* P = cast<PHINode>(PN); 3082 // Handle reduction variables: 3083 if (Legal->getReductionVars()->count(P)) { 3084 for (unsigned part = 0; part < UF; ++part) { 3085 // This is phase one of vectorizing PHIs. 3086 Type *VecTy = (VF == 1) ? PN->getType() : 3087 VectorType::get(PN->getType(), VF); 3088 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 3089 LoopVectorBody.back()-> getFirstInsertionPt()); 3090 } 3091 PV->push_back(P); 3092 return; 3093 } 3094 3095 setDebugLocFromInst(Builder, P); 3096 // Check for PHI nodes that are lowered to vector selects. 3097 if (P->getParent() != OrigLoop->getHeader()) { 3098 // We know that all PHIs in non-header blocks are converted into 3099 // selects, so we don't have to worry about the insertion order and we 3100 // can just use the builder. 3101 // At this point we generate the predication tree. There may be 3102 // duplications since this is a simple recursive scan, but future 3103 // optimizations will clean it up. 3104 3105 unsigned NumIncoming = P->getNumIncomingValues(); 3106 3107 // Generate a sequence of selects of the form: 3108 // SELECT(Mask3, In3, 3109 // SELECT(Mask2, In2, 3110 // ( ...))) 3111 for (unsigned In = 0; In < NumIncoming; In++) { 3112 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 3113 P->getParent()); 3114 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 3115 3116 for (unsigned part = 0; part < UF; ++part) { 3117 // We might have single edge PHIs (blocks) - use an identity 3118 // 'select' for the first PHI operand. 3119 if (In == 0) 3120 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3121 In0[part]); 3122 else 3123 // Select between the current value and the previous incoming edge 3124 // based on the incoming mask. 3125 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3126 Entry[part], "predphi"); 3127 } 3128 } 3129 return; 3130 } 3131 3132 // This PHINode must be an induction variable. 3133 // Make sure that we know about it. 3134 assert(Legal->getInductionVars()->count(P) && 3135 "Not an induction variable"); 3136 3137 LoopVectorizationLegality::InductionInfo II = 3138 Legal->getInductionVars()->lookup(P); 3139 3140 switch (II.IK) { 3141 case LoopVectorizationLegality::IK_NoInduction: 3142 llvm_unreachable("Unknown induction"); 3143 case LoopVectorizationLegality::IK_IntInduction: { 3144 assert(P->getType() == II.StartValue->getType() && "Types must match"); 3145 Type *PhiTy = P->getType(); 3146 Value *Broadcasted; 3147 if (P == OldInduction) { 3148 // Handle the canonical induction variable. We might have had to 3149 // extend the type. 3150 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 3151 } else { 3152 // Handle other induction variables that are now based on the 3153 // canonical one. 3154 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 3155 "normalized.idx"); 3156 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 3157 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx, 3158 "offset.idx"); 3159 } 3160 Broadcasted = getBroadcastInstrs(Broadcasted); 3161 // After broadcasting the induction variable we need to make the vector 3162 // consecutive by adding 0, 1, 2, etc. 3163 for (unsigned part = 0; part < UF; ++part) 3164 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false); 3165 return; 3166 } 3167 case LoopVectorizationLegality::IK_ReverseIntInduction: 3168 case LoopVectorizationLegality::IK_PtrInduction: 3169 case LoopVectorizationLegality::IK_ReversePtrInduction: 3170 // Handle reverse integer and pointer inductions. 3171 Value *StartIdx = ExtendedIdx; 3172 // This is the normalized GEP that starts counting at zero. 3173 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx, 3174 "normalized.idx"); 3175 3176 // Handle the reverse integer induction variable case. 3177 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) { 3178 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType()); 3179 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy, 3180 "resize.norm.idx"); 3181 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI, 3182 "reverse.idx"); 3183 3184 // This is a new value so do not hoist it out. 3185 Value *Broadcasted = getBroadcastInstrs(ReverseInd); 3186 // After broadcasting the induction variable we need to make the 3187 // vector consecutive by adding ... -3, -2, -1, 0. 3188 for (unsigned part = 0; part < UF; ++part) 3189 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part, 3190 true); 3191 return; 3192 } 3193 3194 // Handle the pointer induction variable case. 3195 assert(P->getType()->isPointerTy() && "Unexpected type."); 3196 3197 // Is this a reverse induction ptr or a consecutive induction ptr. 3198 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction == 3199 II.IK); 3200 3201 // This is the vector of results. Notice that we don't generate 3202 // vector geps because scalar geps result in better code. 3203 for (unsigned part = 0; part < UF; ++part) { 3204 if (VF == 1) { 3205 int EltIndex = (part) * (Reverse ? -1 : 1); 3206 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3207 Value *GlobalIdx; 3208 if (Reverse) 3209 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3210 else 3211 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3212 3213 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3214 "next.gep"); 3215 Entry[part] = SclrGep; 3216 continue; 3217 } 3218 3219 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3220 for (unsigned int i = 0; i < VF; ++i) { 3221 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1); 3222 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3223 Value *GlobalIdx; 3224 if (!Reverse) 3225 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3226 else 3227 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3228 3229 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3230 "next.gep"); 3231 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3232 Builder.getInt32(i), 3233 "insert.gep"); 3234 } 3235 Entry[part] = VecVal; 3236 } 3237 return; 3238 } 3239 } 3240 3241 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3242 // For each instruction in the old loop. 3243 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3244 VectorParts &Entry = WidenMap.get(it); 3245 switch (it->getOpcode()) { 3246 case Instruction::Br: 3247 // Nothing to do for PHIs and BR, since we already took care of the 3248 // loop control flow instructions. 3249 continue; 3250 case Instruction::PHI:{ 3251 // Vectorize PHINodes. 3252 widenPHIInstruction(it, Entry, UF, VF, PV); 3253 continue; 3254 }// End of PHI. 3255 3256 case Instruction::Add: 3257 case Instruction::FAdd: 3258 case Instruction::Sub: 3259 case Instruction::FSub: 3260 case Instruction::Mul: 3261 case Instruction::FMul: 3262 case Instruction::UDiv: 3263 case Instruction::SDiv: 3264 case Instruction::FDiv: 3265 case Instruction::URem: 3266 case Instruction::SRem: 3267 case Instruction::FRem: 3268 case Instruction::Shl: 3269 case Instruction::LShr: 3270 case Instruction::AShr: 3271 case Instruction::And: 3272 case Instruction::Or: 3273 case Instruction::Xor: { 3274 // Just widen binops. 3275 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3276 setDebugLocFromInst(Builder, BinOp); 3277 VectorParts &A = getVectorValue(it->getOperand(0)); 3278 VectorParts &B = getVectorValue(it->getOperand(1)); 3279 3280 // Use this vector value for all users of the original instruction. 3281 for (unsigned Part = 0; Part < UF; ++Part) { 3282 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3283 3284 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3285 VecOp->copyIRFlags(BinOp); 3286 3287 Entry[Part] = V; 3288 } 3289 3290 propagateMetadata(Entry, it); 3291 break; 3292 } 3293 case Instruction::Select: { 3294 // Widen selects. 3295 // If the selector is loop invariant we can create a select 3296 // instruction with a scalar condition. Otherwise, use vector-select. 3297 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3298 OrigLoop); 3299 setDebugLocFromInst(Builder, it); 3300 3301 // The condition can be loop invariant but still defined inside the 3302 // loop. This means that we can't just use the original 'cond' value. 3303 // We have to take the 'vectorized' value and pick the first lane. 3304 // Instcombine will make this a no-op. 3305 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3306 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3307 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3308 3309 Value *ScalarCond = (VF == 1) ? Cond[0] : 3310 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3311 3312 for (unsigned Part = 0; Part < UF; ++Part) { 3313 Entry[Part] = Builder.CreateSelect( 3314 InvariantCond ? ScalarCond : Cond[Part], 3315 Op0[Part], 3316 Op1[Part]); 3317 } 3318 3319 propagateMetadata(Entry, it); 3320 break; 3321 } 3322 3323 case Instruction::ICmp: 3324 case Instruction::FCmp: { 3325 // Widen compares. Generate vector compares. 3326 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3327 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3328 setDebugLocFromInst(Builder, it); 3329 VectorParts &A = getVectorValue(it->getOperand(0)); 3330 VectorParts &B = getVectorValue(it->getOperand(1)); 3331 for (unsigned Part = 0; Part < UF; ++Part) { 3332 Value *C = nullptr; 3333 if (FCmp) 3334 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3335 else 3336 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3337 Entry[Part] = C; 3338 } 3339 3340 propagateMetadata(Entry, it); 3341 break; 3342 } 3343 3344 case Instruction::Store: 3345 case Instruction::Load: 3346 vectorizeMemoryInstruction(it); 3347 break; 3348 case Instruction::ZExt: 3349 case Instruction::SExt: 3350 case Instruction::FPToUI: 3351 case Instruction::FPToSI: 3352 case Instruction::FPExt: 3353 case Instruction::PtrToInt: 3354 case Instruction::IntToPtr: 3355 case Instruction::SIToFP: 3356 case Instruction::UIToFP: 3357 case Instruction::Trunc: 3358 case Instruction::FPTrunc: 3359 case Instruction::BitCast: { 3360 CastInst *CI = dyn_cast<CastInst>(it); 3361 setDebugLocFromInst(Builder, it); 3362 /// Optimize the special case where the source is the induction 3363 /// variable. Notice that we can only optimize the 'trunc' case 3364 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3365 /// c. other casts depend on pointer size. 3366 if (CI->getOperand(0) == OldInduction && 3367 it->getOpcode() == Instruction::Trunc) { 3368 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3369 CI->getType()); 3370 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3371 for (unsigned Part = 0; Part < UF; ++Part) 3372 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false); 3373 propagateMetadata(Entry, it); 3374 break; 3375 } 3376 /// Vectorize casts. 3377 Type *DestTy = (VF == 1) ? CI->getType() : 3378 VectorType::get(CI->getType(), VF); 3379 3380 VectorParts &A = getVectorValue(it->getOperand(0)); 3381 for (unsigned Part = 0; Part < UF; ++Part) 3382 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3383 propagateMetadata(Entry, it); 3384 break; 3385 } 3386 3387 case Instruction::Call: { 3388 // Ignore dbg intrinsics. 3389 if (isa<DbgInfoIntrinsic>(it)) 3390 break; 3391 setDebugLocFromInst(Builder, it); 3392 3393 Module *M = BB->getParent()->getParent(); 3394 CallInst *CI = cast<CallInst>(it); 3395 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3396 assert(ID && "Not an intrinsic call!"); 3397 switch (ID) { 3398 case Intrinsic::assume: 3399 case Intrinsic::lifetime_end: 3400 case Intrinsic::lifetime_start: 3401 scalarizeInstruction(it); 3402 break; 3403 default: 3404 bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1); 3405 for (unsigned Part = 0; Part < UF; ++Part) { 3406 SmallVector<Value *, 4> Args; 3407 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3408 if (HasScalarOpd && i == 1) { 3409 Args.push_back(CI->getArgOperand(i)); 3410 continue; 3411 } 3412 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 3413 Args.push_back(Arg[Part]); 3414 } 3415 Type *Tys[] = {CI->getType()}; 3416 if (VF > 1) 3417 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3418 3419 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 3420 Entry[Part] = Builder.CreateCall(F, Args); 3421 } 3422 3423 propagateMetadata(Entry, it); 3424 break; 3425 } 3426 break; 3427 } 3428 3429 default: 3430 // All other instructions are unsupported. Scalarize them. 3431 scalarizeInstruction(it); 3432 break; 3433 }// end of switch. 3434 }// end of for_each instr. 3435 } 3436 3437 void InnerLoopVectorizer::updateAnalysis() { 3438 // Forget the original basic block. 3439 SE->forgetLoop(OrigLoop); 3440 3441 // Update the dominator tree information. 3442 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3443 "Entry does not dominate exit."); 3444 3445 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3446 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3447 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3448 3449 // Due to if predication of stores we might create a sequence of "if(pred) 3450 // a[i] = ...; " blocks. 3451 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3452 if (i == 0) 3453 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3454 else if (isPredicatedBlock(i)) { 3455 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3456 } else { 3457 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3458 } 3459 } 3460 3461 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3462 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3463 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3464 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 3465 3466 DEBUG(DT->verifyDomTree()); 3467 } 3468 3469 /// \brief Check whether it is safe to if-convert this phi node. 3470 /// 3471 /// Phi nodes with constant expressions that can trap are not safe to if 3472 /// convert. 3473 static bool canIfConvertPHINodes(BasicBlock *BB) { 3474 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3475 PHINode *Phi = dyn_cast<PHINode>(I); 3476 if (!Phi) 3477 return true; 3478 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3479 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3480 if (C->canTrap()) 3481 return false; 3482 } 3483 return true; 3484 } 3485 3486 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3487 if (!EnableIfConversion) { 3488 emitAnalysis(Report() << "if-conversion is disabled"); 3489 return false; 3490 } 3491 3492 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3493 3494 // A list of pointers that we can safely read and write to. 3495 SmallPtrSet<Value *, 8> SafePointes; 3496 3497 // Collect safe addresses. 3498 for (Loop::block_iterator BI = TheLoop->block_begin(), 3499 BE = TheLoop->block_end(); BI != BE; ++BI) { 3500 BasicBlock *BB = *BI; 3501 3502 if (blockNeedsPredication(BB)) 3503 continue; 3504 3505 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3506 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3507 SafePointes.insert(LI->getPointerOperand()); 3508 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3509 SafePointes.insert(SI->getPointerOperand()); 3510 } 3511 } 3512 3513 // Collect the blocks that need predication. 3514 BasicBlock *Header = TheLoop->getHeader(); 3515 for (Loop::block_iterator BI = TheLoop->block_begin(), 3516 BE = TheLoop->block_end(); BI != BE; ++BI) { 3517 BasicBlock *BB = *BI; 3518 3519 // We don't support switch statements inside loops. 3520 if (!isa<BranchInst>(BB->getTerminator())) { 3521 emitAnalysis(Report(BB->getTerminator()) 3522 << "loop contains a switch statement"); 3523 return false; 3524 } 3525 3526 // We must be able to predicate all blocks that need to be predicated. 3527 if (blockNeedsPredication(BB)) { 3528 if (!blockCanBePredicated(BB, SafePointes)) { 3529 emitAnalysis(Report(BB->getTerminator()) 3530 << "control flow cannot be substituted for a select"); 3531 return false; 3532 } 3533 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 3534 emitAnalysis(Report(BB->getTerminator()) 3535 << "control flow cannot be substituted for a select"); 3536 return false; 3537 } 3538 } 3539 3540 // We can if-convert this loop. 3541 return true; 3542 } 3543 3544 bool LoopVectorizationLegality::canVectorize() { 3545 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3546 // be canonicalized. 3547 if (!TheLoop->getLoopPreheader()) { 3548 emitAnalysis( 3549 Report() << "loop control flow is not understood by vectorizer"); 3550 return false; 3551 } 3552 3553 // We can only vectorize innermost loops. 3554 if (!TheLoop->getSubLoopsVector().empty()) { 3555 emitAnalysis(Report() << "loop is not the innermost loop"); 3556 return false; 3557 } 3558 3559 // We must have a single backedge. 3560 if (TheLoop->getNumBackEdges() != 1) { 3561 emitAnalysis( 3562 Report() << "loop control flow is not understood by vectorizer"); 3563 return false; 3564 } 3565 3566 // We must have a single exiting block. 3567 if (!TheLoop->getExitingBlock()) { 3568 emitAnalysis( 3569 Report() << "loop control flow is not understood by vectorizer"); 3570 return false; 3571 } 3572 3573 // We only handle bottom-tested loops, i.e. loop in which the condition is 3574 // checked at the end of each iteration. With that we can assume that all 3575 // instructions in the loop are executed the same number of times. 3576 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 3577 emitAnalysis( 3578 Report() << "loop control flow is not understood by vectorizer"); 3579 return false; 3580 } 3581 3582 // We need to have a loop header. 3583 DEBUG(dbgs() << "LV: Found a loop: " << 3584 TheLoop->getHeader()->getName() << '\n'); 3585 3586 // Check if we can if-convert non-single-bb loops. 3587 unsigned NumBlocks = TheLoop->getNumBlocks(); 3588 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3589 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3590 return false; 3591 } 3592 3593 // ScalarEvolution needs to be able to find the exit count. 3594 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3595 if (ExitCount == SE->getCouldNotCompute()) { 3596 emitAnalysis(Report() << "could not determine number of loop iterations"); 3597 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3598 return false; 3599 } 3600 3601 // Check if we can vectorize the instructions and CFG in this loop. 3602 if (!canVectorizeInstrs()) { 3603 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3604 return false; 3605 } 3606 3607 // Go over each instruction and look at memory deps. 3608 if (!canVectorizeMemory()) { 3609 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3610 return false; 3611 } 3612 3613 // Collect all of the variables that remain uniform after vectorization. 3614 collectLoopUniforms(); 3615 3616 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3617 (PtrRtCheck.Need ? " (with a runtime bound check)" : "") 3618 <<"!\n"); 3619 3620 // Okay! We can vectorize. At this point we don't have any other mem analysis 3621 // which may limit our maximum vectorization factor, so just return true with 3622 // no restrictions. 3623 return true; 3624 } 3625 3626 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3627 if (Ty->isPointerTy()) 3628 return DL.getIntPtrType(Ty); 3629 3630 // It is possible that char's or short's overflow when we ask for the loop's 3631 // trip count, work around this by changing the type size. 3632 if (Ty->getScalarSizeInBits() < 32) 3633 return Type::getInt32Ty(Ty->getContext()); 3634 3635 return Ty; 3636 } 3637 3638 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3639 Ty0 = convertPointerToIntegerType(DL, Ty0); 3640 Ty1 = convertPointerToIntegerType(DL, Ty1); 3641 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3642 return Ty0; 3643 return Ty1; 3644 } 3645 3646 /// \brief Check that the instruction has outside loop users and is not an 3647 /// identified reduction variable. 3648 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3649 SmallPtrSetImpl<Value *> &Reductions) { 3650 // Reduction instructions are allowed to have exit users. All other 3651 // instructions must not have external users. 3652 if (!Reductions.count(Inst)) 3653 //Check that all of the users of the loop are inside the BB. 3654 for (User *U : Inst->users()) { 3655 Instruction *UI = cast<Instruction>(U); 3656 // This user may be a reduction exit value. 3657 if (!TheLoop->contains(UI)) { 3658 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3659 return true; 3660 } 3661 } 3662 return false; 3663 } 3664 3665 bool LoopVectorizationLegality::canVectorizeInstrs() { 3666 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3667 BasicBlock *Header = TheLoop->getHeader(); 3668 3669 // Look for the attribute signaling the absence of NaNs. 3670 Function &F = *Header->getParent(); 3671 if (F.hasFnAttribute("no-nans-fp-math")) 3672 HasFunNoNaNAttr = F.getAttributes().getAttribute( 3673 AttributeSet::FunctionIndex, 3674 "no-nans-fp-math").getValueAsString() == "true"; 3675 3676 // For each block in the loop. 3677 for (Loop::block_iterator bb = TheLoop->block_begin(), 3678 be = TheLoop->block_end(); bb != be; ++bb) { 3679 3680 // Scan the instructions in the block and look for hazards. 3681 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3682 ++it) { 3683 3684 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3685 Type *PhiTy = Phi->getType(); 3686 // Check that this PHI type is allowed. 3687 if (!PhiTy->isIntegerTy() && 3688 !PhiTy->isFloatingPointTy() && 3689 !PhiTy->isPointerTy()) { 3690 emitAnalysis(Report(it) 3691 << "loop control flow is not understood by vectorizer"); 3692 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3693 return false; 3694 } 3695 3696 // If this PHINode is not in the header block, then we know that we 3697 // can convert it to select during if-conversion. No need to check if 3698 // the PHIs in this block are induction or reduction variables. 3699 if (*bb != Header) { 3700 // Check that this instruction has no outside users or is an 3701 // identified reduction value with an outside user. 3702 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3703 continue; 3704 emitAnalysis(Report(it) << "value could not be identified as " 3705 "an induction or reduction variable"); 3706 return false; 3707 } 3708 3709 // We only allow if-converted PHIs with exactly two incoming values. 3710 if (Phi->getNumIncomingValues() != 2) { 3711 emitAnalysis(Report(it) 3712 << "control flow not understood by vectorizer"); 3713 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3714 return false; 3715 } 3716 3717 // This is the value coming from the preheader. 3718 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3719 // Check if this is an induction variable. 3720 InductionKind IK = isInductionVariable(Phi); 3721 3722 if (IK_NoInduction != IK) { 3723 // Get the widest type. 3724 if (!WidestIndTy) 3725 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 3726 else 3727 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 3728 3729 // Int inductions are special because we only allow one IV. 3730 if (IK == IK_IntInduction) { 3731 // Use the phi node with the widest type as induction. Use the last 3732 // one if there are multiple (no good reason for doing this other 3733 // than it is expedient). 3734 if (!Induction || PhiTy == WidestIndTy) 3735 Induction = Phi; 3736 } 3737 3738 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 3739 Inductions[Phi] = InductionInfo(StartValue, IK); 3740 3741 // Until we explicitly handle the case of an induction variable with 3742 // an outside loop user we have to give up vectorizing this loop. 3743 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3744 emitAnalysis(Report(it) << "use of induction value outside of the " 3745 "loop is not handled by vectorizer"); 3746 return false; 3747 } 3748 3749 continue; 3750 } 3751 3752 if (AddReductionVar(Phi, RK_IntegerAdd)) { 3753 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 3754 continue; 3755 } 3756 if (AddReductionVar(Phi, RK_IntegerMult)) { 3757 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 3758 continue; 3759 } 3760 if (AddReductionVar(Phi, RK_IntegerOr)) { 3761 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 3762 continue; 3763 } 3764 if (AddReductionVar(Phi, RK_IntegerAnd)) { 3765 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 3766 continue; 3767 } 3768 if (AddReductionVar(Phi, RK_IntegerXor)) { 3769 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 3770 continue; 3771 } 3772 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 3773 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 3774 continue; 3775 } 3776 if (AddReductionVar(Phi, RK_FloatMult)) { 3777 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 3778 continue; 3779 } 3780 if (AddReductionVar(Phi, RK_FloatAdd)) { 3781 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 3782 continue; 3783 } 3784 if (AddReductionVar(Phi, RK_FloatMinMax)) { 3785 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 3786 "\n"); 3787 continue; 3788 } 3789 3790 emitAnalysis(Report(it) << "value that could not be identified as " 3791 "reduction is used outside the loop"); 3792 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 3793 return false; 3794 }// end of PHI handling 3795 3796 // We still don't handle functions. However, we can ignore dbg intrinsic 3797 // calls and we do handle certain intrinsic and libm functions. 3798 CallInst *CI = dyn_cast<CallInst>(it); 3799 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 3800 emitAnalysis(Report(it) << "call instruction cannot be vectorized"); 3801 DEBUG(dbgs() << "LV: Found a call site.\n"); 3802 return false; 3803 } 3804 3805 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 3806 // second argument is the same (i.e. loop invariant) 3807 if (CI && 3808 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 3809 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 3810 emitAnalysis(Report(it) 3811 << "intrinsic instruction cannot be vectorized"); 3812 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 3813 return false; 3814 } 3815 } 3816 3817 // Check that the instruction return type is vectorizable. 3818 // Also, we can't vectorize extractelement instructions. 3819 if ((!VectorType::isValidElementType(it->getType()) && 3820 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 3821 emitAnalysis(Report(it) 3822 << "instruction return type cannot be vectorized"); 3823 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 3824 return false; 3825 } 3826 3827 // Check that the stored type is vectorizable. 3828 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 3829 Type *T = ST->getValueOperand()->getType(); 3830 if (!VectorType::isValidElementType(T)) { 3831 emitAnalysis(Report(ST) << "store instruction cannot be vectorized"); 3832 return false; 3833 } 3834 if (EnableMemAccessVersioning) 3835 collectStridedAccess(ST); 3836 } 3837 3838 if (EnableMemAccessVersioning) 3839 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 3840 collectStridedAccess(LI); 3841 3842 // Reduction instructions are allowed to have exit users. 3843 // All other instructions must not have external users. 3844 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3845 emitAnalysis(Report(it) << "value cannot be used outside the loop"); 3846 return false; 3847 } 3848 3849 } // next instr. 3850 3851 } 3852 3853 if (!Induction) { 3854 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 3855 if (Inductions.empty()) { 3856 emitAnalysis(Report() 3857 << "loop induction variable could not be identified"); 3858 return false; 3859 } 3860 } 3861 3862 return true; 3863 } 3864 3865 ///\brief Remove GEPs whose indices but the last one are loop invariant and 3866 /// return the induction operand of the gep pointer. 3867 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, 3868 const DataLayout *DL, Loop *Lp) { 3869 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3870 if (!GEP) 3871 return Ptr; 3872 3873 unsigned InductionOperand = getGEPInductionOperand(DL, GEP); 3874 3875 // Check that all of the gep indices are uniform except for our induction 3876 // operand. 3877 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 3878 if (i != InductionOperand && 3879 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 3880 return Ptr; 3881 return GEP->getOperand(InductionOperand); 3882 } 3883 3884 ///\brief Look for a cast use of the passed value. 3885 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 3886 Value *UniqueCast = nullptr; 3887 for (User *U : Ptr->users()) { 3888 CastInst *CI = dyn_cast<CastInst>(U); 3889 if (CI && CI->getType() == Ty) { 3890 if (!UniqueCast) 3891 UniqueCast = CI; 3892 else 3893 return nullptr; 3894 } 3895 } 3896 return UniqueCast; 3897 } 3898 3899 ///\brief Get the stride of a pointer access in a loop. 3900 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 3901 /// pointer to the Value, or null otherwise. 3902 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, 3903 const DataLayout *DL, Loop *Lp) { 3904 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 3905 if (!PtrTy || PtrTy->isAggregateType()) 3906 return nullptr; 3907 3908 // Try to remove a gep instruction to make the pointer (actually index at this 3909 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 3910 // pointer, otherwise, we are analyzing the index. 3911 Value *OrigPtr = Ptr; 3912 3913 // The size of the pointer access. 3914 int64_t PtrAccessSize = 1; 3915 3916 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp); 3917 const SCEV *V = SE->getSCEV(Ptr); 3918 3919 if (Ptr != OrigPtr) 3920 // Strip off casts. 3921 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 3922 V = C->getOperand(); 3923 3924 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 3925 if (!S) 3926 return nullptr; 3927 3928 V = S->getStepRecurrence(*SE); 3929 if (!V) 3930 return nullptr; 3931 3932 // Strip off the size of access multiplication if we are still analyzing the 3933 // pointer. 3934 if (OrigPtr == Ptr) { 3935 DL->getTypeAllocSize(PtrTy->getElementType()); 3936 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 3937 if (M->getOperand(0)->getSCEVType() != scConstant) 3938 return nullptr; 3939 3940 const APInt &APStepVal = 3941 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 3942 3943 // Huge step value - give up. 3944 if (APStepVal.getBitWidth() > 64) 3945 return nullptr; 3946 3947 int64_t StepVal = APStepVal.getSExtValue(); 3948 if (PtrAccessSize != StepVal) 3949 return nullptr; 3950 V = M->getOperand(1); 3951 } 3952 } 3953 3954 // Strip off casts. 3955 Type *StripedOffRecurrenceCast = nullptr; 3956 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 3957 StripedOffRecurrenceCast = C->getType(); 3958 V = C->getOperand(); 3959 } 3960 3961 // Look for the loop invariant symbolic value. 3962 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 3963 if (!U) 3964 return nullptr; 3965 3966 Value *Stride = U->getValue(); 3967 if (!Lp->isLoopInvariant(Stride)) 3968 return nullptr; 3969 3970 // If we have stripped off the recurrence cast we have to make sure that we 3971 // return the value that is used in this loop so that we can replace it later. 3972 if (StripedOffRecurrenceCast) 3973 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 3974 3975 return Stride; 3976 } 3977 3978 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 3979 Value *Ptr = nullptr; 3980 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 3981 Ptr = LI->getPointerOperand(); 3982 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 3983 Ptr = SI->getPointerOperand(); 3984 else 3985 return; 3986 3987 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop); 3988 if (!Stride) 3989 return; 3990 3991 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 3992 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 3993 Strides[Ptr] = Stride; 3994 StrideSet.insert(Stride); 3995 } 3996 3997 void LoopVectorizationLegality::collectLoopUniforms() { 3998 // We now know that the loop is vectorizable! 3999 // Collect variables that will remain uniform after vectorization. 4000 std::vector<Value*> Worklist; 4001 BasicBlock *Latch = TheLoop->getLoopLatch(); 4002 4003 // Start with the conditional branch and walk up the block. 4004 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 4005 4006 // Also add all consecutive pointer values; these values will be uniform 4007 // after vectorization (and subsequent cleanup) and, until revectorization is 4008 // supported, all dependencies must also be uniform. 4009 for (Loop::block_iterator B = TheLoop->block_begin(), 4010 BE = TheLoop->block_end(); B != BE; ++B) 4011 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 4012 I != IE; ++I) 4013 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 4014 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4015 4016 while (!Worklist.empty()) { 4017 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 4018 Worklist.pop_back(); 4019 4020 // Look at instructions inside this loop. 4021 // Stop when reaching PHI nodes. 4022 // TODO: we need to follow values all over the loop, not only in this block. 4023 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 4024 continue; 4025 4026 // This is a known uniform. 4027 Uniforms.insert(I); 4028 4029 // Insert all operands. 4030 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4031 } 4032 } 4033 4034 namespace { 4035 /// \brief Analyses memory accesses in a loop. 4036 /// 4037 /// Checks whether run time pointer checks are needed and builds sets for data 4038 /// dependence checking. 4039 class AccessAnalysis { 4040 public: 4041 /// \brief Read or write access location. 4042 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4043 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4044 4045 /// \brief Set of potential dependent memory accesses. 4046 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 4047 4048 AccessAnalysis(const DataLayout *Dl, AliasAnalysis *AA, DepCandidates &DA) : 4049 DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {} 4050 4051 /// \brief Register a load and whether it is only read from. 4052 void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) { 4053 Value *Ptr = const_cast<Value*>(Loc.Ptr); 4054 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 4055 Accesses.insert(MemAccessInfo(Ptr, false)); 4056 if (IsReadOnly) 4057 ReadOnlyPtr.insert(Ptr); 4058 } 4059 4060 /// \brief Register a store. 4061 void addStore(AliasAnalysis::Location &Loc) { 4062 Value *Ptr = const_cast<Value*>(Loc.Ptr); 4063 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 4064 Accesses.insert(MemAccessInfo(Ptr, true)); 4065 } 4066 4067 /// \brief Check whether we can check the pointers at runtime for 4068 /// non-intersection. 4069 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 4070 unsigned &NumComparisons, ScalarEvolution *SE, 4071 Loop *TheLoop, ValueToValueMap &Strides, 4072 bool ShouldCheckStride = false); 4073 4074 /// \brief Goes over all memory accesses, checks whether a RT check is needed 4075 /// and builds sets of dependent accesses. 4076 void buildDependenceSets() { 4077 processMemAccesses(); 4078 } 4079 4080 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 4081 4082 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 4083 void resetDepChecks() { CheckDeps.clear(); } 4084 4085 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 4086 4087 private: 4088 typedef SetVector<MemAccessInfo> PtrAccessSet; 4089 4090 /// \brief Go over all memory access and check whether runtime pointer checks 4091 /// are needed /// and build sets of dependency check candidates. 4092 void processMemAccesses(); 4093 4094 /// Set of all accesses. 4095 PtrAccessSet Accesses; 4096 4097 /// Set of accesses that need a further dependence check. 4098 MemAccessInfoSet CheckDeps; 4099 4100 /// Set of pointers that are read only. 4101 SmallPtrSet<Value*, 16> ReadOnlyPtr; 4102 4103 const DataLayout *DL; 4104 4105 /// An alias set tracker to partition the access set by underlying object and 4106 //intrinsic property (such as TBAA metadata). 4107 AliasSetTracker AST; 4108 4109 /// Sets of potentially dependent accesses - members of one set share an 4110 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 4111 /// dependence check. 4112 DepCandidates &DepCands; 4113 4114 bool IsRTCheckNeeded; 4115 }; 4116 4117 } // end anonymous namespace 4118 4119 /// \brief Check whether a pointer can participate in a runtime bounds check. 4120 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides, 4121 Value *Ptr) { 4122 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 4123 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4124 if (!AR) 4125 return false; 4126 4127 return AR->isAffine(); 4128 } 4129 4130 /// \brief Check the stride of the pointer and ensure that it does not wrap in 4131 /// the address space. 4132 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 4133 const Loop *Lp, ValueToValueMap &StridesMap); 4134 4135 bool AccessAnalysis::canCheckPtrAtRT( 4136 LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 4137 unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop, 4138 ValueToValueMap &StridesMap, bool ShouldCheckStride) { 4139 // Find pointers with computable bounds. We are going to use this information 4140 // to place a runtime bound check. 4141 bool CanDoRT = true; 4142 4143 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 4144 NumComparisons = 0; 4145 4146 // We assign a consecutive id to access from different alias sets. 4147 // Accesses between different groups doesn't need to be checked. 4148 unsigned ASId = 1; 4149 for (auto &AS : AST) { 4150 unsigned NumReadPtrChecks = 0; 4151 unsigned NumWritePtrChecks = 0; 4152 4153 // We assign consecutive id to access from different dependence sets. 4154 // Accesses within the same set don't need a runtime check. 4155 unsigned RunningDepId = 1; 4156 DenseMap<Value *, unsigned> DepSetId; 4157 4158 for (auto A : AS) { 4159 Value *Ptr = A.getValue(); 4160 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 4161 MemAccessInfo Access(Ptr, IsWrite); 4162 4163 if (IsWrite) 4164 ++NumWritePtrChecks; 4165 else 4166 ++NumReadPtrChecks; 4167 4168 if (hasComputableBounds(SE, StridesMap, Ptr) && 4169 // When we run after a failing dependency check we have to make sure we 4170 // don't have wrapping pointers. 4171 (!ShouldCheckStride || 4172 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) { 4173 // The id of the dependence set. 4174 unsigned DepId; 4175 4176 if (IsDepCheckNeeded) { 4177 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 4178 unsigned &LeaderId = DepSetId[Leader]; 4179 if (!LeaderId) 4180 LeaderId = RunningDepId++; 4181 DepId = LeaderId; 4182 } else 4183 // Each access has its own dependence set. 4184 DepId = RunningDepId++; 4185 4186 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); 4187 4188 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n'); 4189 } else { 4190 CanDoRT = false; 4191 } 4192 } 4193 4194 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 4195 NumComparisons += 0; // Only one dependence set. 4196 else { 4197 NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks + 4198 NumWritePtrChecks - 1)); 4199 } 4200 4201 ++ASId; 4202 } 4203 4204 // If the pointers that we would use for the bounds comparison have different 4205 // address spaces, assume the values aren't directly comparable, so we can't 4206 // use them for the runtime check. We also have to assume they could 4207 // overlap. In the future there should be metadata for whether address spaces 4208 // are disjoint. 4209 unsigned NumPointers = RtCheck.Pointers.size(); 4210 for (unsigned i = 0; i < NumPointers; ++i) { 4211 for (unsigned j = i + 1; j < NumPointers; ++j) { 4212 // Only need to check pointers between two different dependency sets. 4213 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 4214 continue; 4215 // Only need to check pointers in the same alias set. 4216 if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j]) 4217 continue; 4218 4219 Value *PtrI = RtCheck.Pointers[i]; 4220 Value *PtrJ = RtCheck.Pointers[j]; 4221 4222 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 4223 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 4224 if (ASi != ASj) { 4225 DEBUG(dbgs() << "LV: Runtime check would require comparison between" 4226 " different address spaces\n"); 4227 return false; 4228 } 4229 } 4230 } 4231 4232 return CanDoRT; 4233 } 4234 4235 void AccessAnalysis::processMemAccesses() { 4236 // We process the set twice: first we process read-write pointers, last we 4237 // process read-only pointers. This allows us to skip dependence tests for 4238 // read-only pointers. 4239 4240 DEBUG(dbgs() << "LV: Processing memory accesses...\n"); 4241 DEBUG(dbgs() << " AST: "; AST.dump()); 4242 DEBUG(dbgs() << "LV: Accesses:\n"); 4243 DEBUG({ 4244 for (auto A : Accesses) 4245 dbgs() << "\t" << *A.getPointer() << " (" << 4246 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 4247 "read-only" : "read")) << ")\n"; 4248 }); 4249 4250 // The AliasSetTracker has nicely partitioned our pointers by metadata 4251 // compatibility and potential for underlying-object overlap. As a result, we 4252 // only need to check for potential pointer dependencies within each alias 4253 // set. 4254 for (auto &AS : AST) { 4255 // Note that both the alias-set tracker and the alias sets themselves used 4256 // linked lists internally and so the iteration order here is deterministic 4257 // (matching the original instruction order within each set). 4258 4259 bool SetHasWrite = false; 4260 4261 // Map of pointers to last access encountered. 4262 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 4263 UnderlyingObjToAccessMap ObjToLastAccess; 4264 4265 // Set of access to check after all writes have been processed. 4266 PtrAccessSet DeferredAccesses; 4267 4268 // Iterate over each alias set twice, once to process read/write pointers, 4269 // and then to process read-only pointers. 4270 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 4271 bool UseDeferred = SetIteration > 0; 4272 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 4273 4274 for (auto AV : AS) { 4275 Value *Ptr = AV.getValue(); 4276 4277 // For a single memory access in AliasSetTracker, Accesses may contain 4278 // both read and write, and they both need to be handled for CheckDeps. 4279 for (auto AC : S) { 4280 if (AC.getPointer() != Ptr) 4281 continue; 4282 4283 bool IsWrite = AC.getInt(); 4284 4285 // If we're using the deferred access set, then it contains only 4286 // reads. 4287 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 4288 if (UseDeferred && !IsReadOnlyPtr) 4289 continue; 4290 // Otherwise, the pointer must be in the PtrAccessSet, either as a 4291 // read or a write. 4292 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 4293 S.count(MemAccessInfo(Ptr, false))) && 4294 "Alias-set pointer not in the access set?"); 4295 4296 MemAccessInfo Access(Ptr, IsWrite); 4297 DepCands.insert(Access); 4298 4299 // Memorize read-only pointers for later processing and skip them in 4300 // the first round (they need to be checked after we have seen all 4301 // write pointers). Note: we also mark pointer that are not 4302 // consecutive as "read-only" pointers (so that we check 4303 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 4304 if (!UseDeferred && IsReadOnlyPtr) { 4305 DeferredAccesses.insert(Access); 4306 continue; 4307 } 4308 4309 // If this is a write - check other reads and writes for conflicts. If 4310 // this is a read only check other writes for conflicts (but only if 4311 // there is no other write to the ptr - this is an optimization to 4312 // catch "a[i] = a[i] + " without having to do a dependence check). 4313 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 4314 CheckDeps.insert(Access); 4315 IsRTCheckNeeded = true; 4316 } 4317 4318 if (IsWrite) 4319 SetHasWrite = true; 4320 4321 // Create sets of pointers connected by a shared alias set and 4322 // underlying object. 4323 typedef SmallVector<Value *, 16> ValueVector; 4324 ValueVector TempObjects; 4325 GetUnderlyingObjects(Ptr, TempObjects, DL); 4326 for (Value *UnderlyingObj : TempObjects) { 4327 UnderlyingObjToAccessMap::iterator Prev = 4328 ObjToLastAccess.find(UnderlyingObj); 4329 if (Prev != ObjToLastAccess.end()) 4330 DepCands.unionSets(Access, Prev->second); 4331 4332 ObjToLastAccess[UnderlyingObj] = Access; 4333 } 4334 } 4335 } 4336 } 4337 } 4338 } 4339 4340 namespace { 4341 /// \brief Checks memory dependences among accesses to the same underlying 4342 /// object to determine whether there vectorization is legal or not (and at 4343 /// which vectorization factor). 4344 /// 4345 /// This class works under the assumption that we already checked that memory 4346 /// locations with different underlying pointers are "must-not alias". 4347 /// We use the ScalarEvolution framework to symbolically evalutate access 4348 /// functions pairs. Since we currently don't restructure the loop we can rely 4349 /// on the program order of memory accesses to determine their safety. 4350 /// At the moment we will only deem accesses as safe for: 4351 /// * A negative constant distance assuming program order. 4352 /// 4353 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 4354 /// a[i] = tmp; y = a[i]; 4355 /// 4356 /// The latter case is safe because later checks guarantuee that there can't 4357 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 4358 /// the same variable: a header phi can only be an induction or a reduction, a 4359 /// reduction can't have a memory sink, an induction can't have a memory 4360 /// source). This is important and must not be violated (or we have to 4361 /// resort to checking for cycles through memory). 4362 /// 4363 /// * A positive constant distance assuming program order that is bigger 4364 /// than the biggest memory access. 4365 /// 4366 /// tmp = a[i] OR b[i] = x 4367 /// a[i+2] = tmp y = b[i+2]; 4368 /// 4369 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 4370 /// 4371 /// * Zero distances and all accesses have the same size. 4372 /// 4373 class MemoryDepChecker { 4374 public: 4375 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4376 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4377 4378 MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L) 4379 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0), 4380 ShouldRetryWithRuntimeCheck(false) {} 4381 4382 /// \brief Register the location (instructions are given increasing numbers) 4383 /// of a write access. 4384 void addAccess(StoreInst *SI) { 4385 Value *Ptr = SI->getPointerOperand(); 4386 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 4387 InstMap.push_back(SI); 4388 ++AccessIdx; 4389 } 4390 4391 /// \brief Register the location (instructions are given increasing numbers) 4392 /// of a write access. 4393 void addAccess(LoadInst *LI) { 4394 Value *Ptr = LI->getPointerOperand(); 4395 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 4396 InstMap.push_back(LI); 4397 ++AccessIdx; 4398 } 4399 4400 /// \brief Check whether the dependencies between the accesses are safe. 4401 /// 4402 /// Only checks sets with elements in \p CheckDeps. 4403 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4404 MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides); 4405 4406 /// \brief The maximum number of bytes of a vector register we can vectorize 4407 /// the accesses safely with. 4408 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 4409 4410 /// \brief In same cases when the dependency check fails we can still 4411 /// vectorize the loop with a dynamic array access check. 4412 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; } 4413 4414 private: 4415 ScalarEvolution *SE; 4416 const DataLayout *DL; 4417 const Loop *InnermostLoop; 4418 4419 /// \brief Maps access locations (ptr, read/write) to program order. 4420 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 4421 4422 /// \brief Memory access instructions in program order. 4423 SmallVector<Instruction *, 16> InstMap; 4424 4425 /// \brief The program order index to be used for the next instruction. 4426 unsigned AccessIdx; 4427 4428 // We can access this many bytes in parallel safely. 4429 unsigned MaxSafeDepDistBytes; 4430 4431 /// \brief If we see a non-constant dependence distance we can still try to 4432 /// vectorize this loop with runtime checks. 4433 bool ShouldRetryWithRuntimeCheck; 4434 4435 /// \brief Check whether there is a plausible dependence between the two 4436 /// accesses. 4437 /// 4438 /// Access \p A must happen before \p B in program order. The two indices 4439 /// identify the index into the program order map. 4440 /// 4441 /// This function checks whether there is a plausible dependence (or the 4442 /// absence of such can't be proved) between the two accesses. If there is a 4443 /// plausible dependence but the dependence distance is bigger than one 4444 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 4445 /// distance is smaller than any other distance encountered so far). 4446 /// Otherwise, this function returns true signaling a possible dependence. 4447 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 4448 const MemAccessInfo &B, unsigned BIdx, 4449 ValueToValueMap &Strides); 4450 4451 /// \brief Check whether the data dependence could prevent store-load 4452 /// forwarding. 4453 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 4454 }; 4455 4456 } // end anonymous namespace 4457 4458 static bool isInBoundsGep(Value *Ptr) { 4459 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 4460 return GEP->isInBounds(); 4461 return false; 4462 } 4463 4464 /// \brief Check whether the access through \p Ptr has a constant stride. 4465 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 4466 const Loop *Lp, ValueToValueMap &StridesMap) { 4467 const Type *Ty = Ptr->getType(); 4468 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 4469 4470 // Make sure that the pointer does not point to aggregate types. 4471 const PointerType *PtrTy = cast<PointerType>(Ty); 4472 if (PtrTy->getElementType()->isAggregateType()) { 4473 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr << 4474 "\n"); 4475 return 0; 4476 } 4477 4478 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 4479 4480 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4481 if (!AR) { 4482 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " 4483 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4484 return 0; 4485 } 4486 4487 // The accesss function must stride over the innermost loop. 4488 if (Lp != AR->getLoop()) { 4489 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << 4490 *Ptr << " SCEV: " << *PtrScev << "\n"); 4491 } 4492 4493 // The address calculation must not wrap. Otherwise, a dependence could be 4494 // inverted. 4495 // An inbounds getelementptr that is a AddRec with a unit stride 4496 // cannot wrap per definition. The unit stride requirement is checked later. 4497 // An getelementptr without an inbounds attribute and unit stride would have 4498 // to access the pointer value "0" which is undefined behavior in address 4499 // space 0, therefore we can also vectorize this case. 4500 bool IsInBoundsGEP = isInBoundsGep(Ptr); 4501 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 4502 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 4503 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 4504 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " 4505 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4506 return 0; 4507 } 4508 4509 // Check the step is constant. 4510 const SCEV *Step = AR->getStepRecurrence(*SE); 4511 4512 // Calculate the pointer stride and check if it is consecutive. 4513 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4514 if (!C) { 4515 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << 4516 " SCEV: " << *PtrScev << "\n"); 4517 return 0; 4518 } 4519 4520 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); 4521 const APInt &APStepVal = C->getValue()->getValue(); 4522 4523 // Huge step value - give up. 4524 if (APStepVal.getBitWidth() > 64) 4525 return 0; 4526 4527 int64_t StepVal = APStepVal.getSExtValue(); 4528 4529 // Strided access. 4530 int64_t Stride = StepVal / Size; 4531 int64_t Rem = StepVal % Size; 4532 if (Rem) 4533 return 0; 4534 4535 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 4536 // know we can't "wrap around the address space". In case of address space 4537 // zero we know that this won't happen without triggering undefined behavior. 4538 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 4539 Stride != 1 && Stride != -1) 4540 return 0; 4541 4542 return Stride; 4543 } 4544 4545 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 4546 unsigned TypeByteSize) { 4547 // If loads occur at a distance that is not a multiple of a feasible vector 4548 // factor store-load forwarding does not take place. 4549 // Positive dependences might cause troubles because vectorizing them might 4550 // prevent store-load forwarding making vectorized code run a lot slower. 4551 // a[i] = a[i-3] ^ a[i-8]; 4552 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 4553 // hence on your typical architecture store-load forwarding does not take 4554 // place. Vectorizing in such cases does not make sense. 4555 // Store-load forwarding distance. 4556 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 4557 // Maximum vector factor. 4558 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize; 4559 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 4560 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 4561 4562 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 4563 vf *= 2) { 4564 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 4565 MaxVFWithoutSLForwardIssues = (vf >>=1); 4566 break; 4567 } 4568 } 4569 4570 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 4571 DEBUG(dbgs() << "LV: Distance " << Distance << 4572 " that could cause a store-load forwarding conflict\n"); 4573 return true; 4574 } 4575 4576 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 4577 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize) 4578 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 4579 return false; 4580 } 4581 4582 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 4583 const MemAccessInfo &B, unsigned BIdx, 4584 ValueToValueMap &Strides) { 4585 assert (AIdx < BIdx && "Must pass arguments in program order"); 4586 4587 Value *APtr = A.getPointer(); 4588 Value *BPtr = B.getPointer(); 4589 bool AIsWrite = A.getInt(); 4590 bool BIsWrite = B.getInt(); 4591 4592 // Two reads are independent. 4593 if (!AIsWrite && !BIsWrite) 4594 return false; 4595 4596 // We cannot check pointers in different address spaces. 4597 if (APtr->getType()->getPointerAddressSpace() != 4598 BPtr->getType()->getPointerAddressSpace()) 4599 return true; 4600 4601 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 4602 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 4603 4604 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides); 4605 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides); 4606 4607 const SCEV *Src = AScev; 4608 const SCEV *Sink = BScev; 4609 4610 // If the induction step is negative we have to invert source and sink of the 4611 // dependence. 4612 if (StrideAPtr < 0) { 4613 //Src = BScev; 4614 //Sink = AScev; 4615 std::swap(APtr, BPtr); 4616 std::swap(Src, Sink); 4617 std::swap(AIsWrite, BIsWrite); 4618 std::swap(AIdx, BIdx); 4619 std::swap(StrideAPtr, StrideBPtr); 4620 } 4621 4622 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 4623 4624 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink 4625 << "(Induction step: " << StrideAPtr << ")\n"); 4626 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " 4627 << *InstMap[BIdx] << ": " << *Dist << "\n"); 4628 4629 // Need consecutive accesses. We don't want to vectorize 4630 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 4631 // the address space. 4632 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 4633 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 4634 return true; 4635 } 4636 4637 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 4638 if (!C) { 4639 DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n"); 4640 ShouldRetryWithRuntimeCheck = true; 4641 return true; 4642 } 4643 4644 Type *ATy = APtr->getType()->getPointerElementType(); 4645 Type *BTy = BPtr->getType()->getPointerElementType(); 4646 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 4647 4648 // Negative distances are not plausible dependencies. 4649 const APInt &Val = C->getValue()->getValue(); 4650 if (Val.isNegative()) { 4651 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 4652 if (IsTrueDataDependence && 4653 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 4654 ATy != BTy)) 4655 return true; 4656 4657 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); 4658 return false; 4659 } 4660 4661 // Write to the same location with the same size. 4662 // Could be improved to assert type sizes are the same (i32 == float, etc). 4663 if (Val == 0) { 4664 if (ATy == BTy) 4665 return false; 4666 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n"); 4667 return true; 4668 } 4669 4670 assert(Val.isStrictlyPositive() && "Expect a positive value"); 4671 4672 // Positive distance bigger than max vectorization factor. 4673 if (ATy != BTy) { 4674 DEBUG(dbgs() << 4675 "LV: ReadWrite-Write positive dependency with different types\n"); 4676 return false; 4677 } 4678 4679 unsigned Distance = (unsigned) Val.getZExtValue(); 4680 4681 // Bail out early if passed-in parameters make vectorization not feasible. 4682 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1; 4683 unsigned ForcedUnroll = VectorizationInterleave ? VectorizationInterleave : 1; 4684 4685 // The distance must be bigger than the size needed for a vectorized version 4686 // of the operation and the size of the vectorized operation must not be 4687 // bigger than the currrent maximum size. 4688 if (Distance < 2*TypeByteSize || 4689 2*TypeByteSize > MaxSafeDepDistBytes || 4690 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 4691 DEBUG(dbgs() << "LV: Failure because of Positive distance " 4692 << Val.getSExtValue() << '\n'); 4693 return true; 4694 } 4695 4696 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 4697 Distance : MaxSafeDepDistBytes; 4698 4699 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 4700 if (IsTrueDataDependence && 4701 couldPreventStoreLoadForward(Distance, TypeByteSize)) 4702 return true; 4703 4704 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << 4705 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 4706 4707 return false; 4708 } 4709 4710 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4711 MemAccessInfoSet &CheckDeps, 4712 ValueToValueMap &Strides) { 4713 4714 MaxSafeDepDistBytes = -1U; 4715 while (!CheckDeps.empty()) { 4716 MemAccessInfo CurAccess = *CheckDeps.begin(); 4717 4718 // Get the relevant memory access set. 4719 EquivalenceClasses<MemAccessInfo>::iterator I = 4720 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 4721 4722 // Check accesses within this set. 4723 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 4724 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 4725 4726 // Check every access pair. 4727 while (AI != AE) { 4728 CheckDeps.erase(*AI); 4729 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 4730 while (OI != AE) { 4731 // Check every accessing instruction pair in program order. 4732 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 4733 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 4734 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 4735 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 4736 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides)) 4737 return false; 4738 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides)) 4739 return false; 4740 } 4741 ++OI; 4742 } 4743 AI++; 4744 } 4745 } 4746 return true; 4747 } 4748 4749 bool LoopVectorizationLegality::canVectorizeMemory() { 4750 4751 typedef SmallVector<Value*, 16> ValueVector; 4752 typedef SmallPtrSet<Value*, 16> ValueSet; 4753 4754 // Holds the Load and Store *instructions*. 4755 ValueVector Loads; 4756 ValueVector Stores; 4757 4758 // Holds all the different accesses in the loop. 4759 unsigned NumReads = 0; 4760 unsigned NumReadWrites = 0; 4761 4762 PtrRtCheck.Pointers.clear(); 4763 PtrRtCheck.Need = false; 4764 4765 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4766 MemoryDepChecker DepChecker(SE, DL, TheLoop); 4767 4768 // For each block. 4769 for (Loop::block_iterator bb = TheLoop->block_begin(), 4770 be = TheLoop->block_end(); bb != be; ++bb) { 4771 4772 // Scan the BB and collect legal loads and stores. 4773 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4774 ++it) { 4775 4776 // If this is a load, save it. If this instruction can read from memory 4777 // but is not a load, then we quit. Notice that we don't handle function 4778 // calls that read or write. 4779 if (it->mayReadFromMemory()) { 4780 // Many math library functions read the rounding mode. We will only 4781 // vectorize a loop if it contains known function calls that don't set 4782 // the flag. Therefore, it is safe to ignore this read from memory. 4783 CallInst *Call = dyn_cast<CallInst>(it); 4784 if (Call && getIntrinsicIDForCall(Call, TLI)) 4785 continue; 4786 4787 LoadInst *Ld = dyn_cast<LoadInst>(it); 4788 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 4789 emitAnalysis(Report(Ld) 4790 << "read with atomic ordering or volatile read"); 4791 DEBUG(dbgs() << "LV: Found a non-simple load.\n"); 4792 return false; 4793 } 4794 NumLoads++; 4795 Loads.push_back(Ld); 4796 DepChecker.addAccess(Ld); 4797 continue; 4798 } 4799 4800 // Save 'store' instructions. Abort if other instructions write to memory. 4801 if (it->mayWriteToMemory()) { 4802 StoreInst *St = dyn_cast<StoreInst>(it); 4803 if (!St) { 4804 emitAnalysis(Report(it) << "instruction cannot be vectorized"); 4805 return false; 4806 } 4807 if (!St->isSimple() && !IsAnnotatedParallel) { 4808 emitAnalysis(Report(St) 4809 << "write with atomic ordering or volatile write"); 4810 DEBUG(dbgs() << "LV: Found a non-simple store.\n"); 4811 return false; 4812 } 4813 NumStores++; 4814 Stores.push_back(St); 4815 DepChecker.addAccess(St); 4816 } 4817 } // Next instr. 4818 } // Next block. 4819 4820 // Now we have two lists that hold the loads and the stores. 4821 // Next, we find the pointers that they use. 4822 4823 // Check if we see any stores. If there are no stores, then we don't 4824 // care if the pointers are *restrict*. 4825 if (!Stores.size()) { 4826 DEBUG(dbgs() << "LV: Found a read-only loop!\n"); 4827 return true; 4828 } 4829 4830 AccessAnalysis::DepCandidates DependentAccesses; 4831 AccessAnalysis Accesses(DL, AA, DependentAccesses); 4832 4833 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 4834 // multiple times on the same object. If the ptr is accessed twice, once 4835 // for read and once for write, it will only appear once (on the write 4836 // list). This is okay, since we are going to check for conflicts between 4837 // writes and between reads and writes, but not between reads and reads. 4838 ValueSet Seen; 4839 4840 ValueVector::iterator I, IE; 4841 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 4842 StoreInst *ST = cast<StoreInst>(*I); 4843 Value* Ptr = ST->getPointerOperand(); 4844 4845 if (isUniform(Ptr)) { 4846 emitAnalysis( 4847 Report(ST) 4848 << "write to a loop invariant address could not be vectorized"); 4849 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4850 return false; 4851 } 4852 4853 // If we did *not* see this pointer before, insert it to the read-write 4854 // list. At this phase it is only a 'write' list. 4855 if (Seen.insert(Ptr).second) { 4856 ++NumReadWrites; 4857 4858 AliasAnalysis::Location Loc = AA->getLocation(ST); 4859 // The TBAA metadata could have a control dependency on the predication 4860 // condition, so we cannot rely on it when determining whether or not we 4861 // need runtime pointer checks. 4862 if (blockNeedsPredication(ST->getParent())) 4863 Loc.AATags.TBAA = nullptr; 4864 4865 Accesses.addStore(Loc); 4866 } 4867 } 4868 4869 if (IsAnnotatedParallel) { 4870 DEBUG(dbgs() 4871 << "LV: A loop annotated parallel, ignore memory dependency " 4872 << "checks.\n"); 4873 return true; 4874 } 4875 4876 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 4877 LoadInst *LD = cast<LoadInst>(*I); 4878 Value* Ptr = LD->getPointerOperand(); 4879 // If we did *not* see this pointer before, insert it to the 4880 // read list. If we *did* see it before, then it is already in 4881 // the read-write list. This allows us to vectorize expressions 4882 // such as A[i] += x; Because the address of A[i] is a read-write 4883 // pointer. This only works if the index of A[i] is consecutive. 4884 // If the address of i is unknown (for example A[B[i]]) then we may 4885 // read a few words, modify, and write a few words, and some of the 4886 // words may be written to the same address. 4887 bool IsReadOnlyPtr = false; 4888 if (Seen.insert(Ptr).second || 4889 !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) { 4890 ++NumReads; 4891 IsReadOnlyPtr = true; 4892 } 4893 4894 AliasAnalysis::Location Loc = AA->getLocation(LD); 4895 // The TBAA metadata could have a control dependency on the predication 4896 // condition, so we cannot rely on it when determining whether or not we 4897 // need runtime pointer checks. 4898 if (blockNeedsPredication(LD->getParent())) 4899 Loc.AATags.TBAA = nullptr; 4900 4901 Accesses.addLoad(Loc, IsReadOnlyPtr); 4902 } 4903 4904 // If we write (or read-write) to a single destination and there are no 4905 // other reads in this loop then is it safe to vectorize. 4906 if (NumReadWrites == 1 && NumReads == 0) { 4907 DEBUG(dbgs() << "LV: Found a write-only loop!\n"); 4908 return true; 4909 } 4910 4911 // Build dependence sets and check whether we need a runtime pointer bounds 4912 // check. 4913 Accesses.buildDependenceSets(); 4914 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 4915 4916 // Find pointers with computable bounds. We are going to use this information 4917 // to place a runtime bound check. 4918 unsigned NumComparisons = 0; 4919 bool CanDoRT = false; 4920 if (NeedRTCheck) 4921 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, 4922 Strides); 4923 4924 DEBUG(dbgs() << "LV: We need to do " << NumComparisons << 4925 " pointer comparisons.\n"); 4926 4927 // If we only have one set of dependences to check pointers among we don't 4928 // need a runtime check. 4929 if (NumComparisons == 0 && NeedRTCheck) 4930 NeedRTCheck = false; 4931 4932 // Check that we did not collect too many pointers or found an unsizeable 4933 // pointer. 4934 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4935 PtrRtCheck.reset(); 4936 CanDoRT = false; 4937 } 4938 4939 if (CanDoRT) { 4940 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); 4941 } 4942 4943 if (NeedRTCheck && !CanDoRT) { 4944 emitAnalysis(Report() << "cannot identify array bounds"); 4945 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << 4946 "the array bounds.\n"); 4947 PtrRtCheck.reset(); 4948 return false; 4949 } 4950 4951 PtrRtCheck.Need = NeedRTCheck; 4952 4953 bool CanVecMem = true; 4954 if (Accesses.isDependencyCheckNeeded()) { 4955 DEBUG(dbgs() << "LV: Checking memory dependencies\n"); 4956 CanVecMem = DepChecker.areDepsSafe( 4957 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 4958 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 4959 4960 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 4961 DEBUG(dbgs() << "LV: Retrying with memory checks\n"); 4962 NeedRTCheck = true; 4963 4964 // Clear the dependency checks. We assume they are not needed. 4965 Accesses.resetDepChecks(); 4966 4967 PtrRtCheck.reset(); 4968 PtrRtCheck.Need = true; 4969 4970 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, 4971 TheLoop, Strides, true); 4972 // Check that we did not collect too many pointers or found an unsizeable 4973 // pointer. 4974 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4975 if (!CanDoRT && NumComparisons > 0) 4976 emitAnalysis(Report() 4977 << "cannot check memory dependencies at runtime"); 4978 else 4979 emitAnalysis(Report() 4980 << NumComparisons << " exceeds limit of " 4981 << RuntimeMemoryCheckThreshold 4982 << " dependent memory operations checked at runtime"); 4983 DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n"); 4984 PtrRtCheck.reset(); 4985 return false; 4986 } 4987 4988 CanVecMem = true; 4989 } 4990 } 4991 4992 if (!CanVecMem) 4993 emitAnalysis(Report() << "unsafe dependent memory operations in loop"); 4994 4995 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") << 4996 " need a runtime memory check.\n"); 4997 4998 return CanVecMem; 4999 } 5000 5001 static bool hasMultipleUsesOf(Instruction *I, 5002 SmallPtrSetImpl<Instruction *> &Insts) { 5003 unsigned NumUses = 0; 5004 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 5005 if (Insts.count(dyn_cast<Instruction>(*Use))) 5006 ++NumUses; 5007 if (NumUses > 1) 5008 return true; 5009 } 5010 5011 return false; 5012 } 5013 5014 static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) { 5015 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 5016 if (!Set.count(dyn_cast<Instruction>(*Use))) 5017 return false; 5018 return true; 5019 } 5020 5021 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 5022 ReductionKind Kind) { 5023 if (Phi->getNumIncomingValues() != 2) 5024 return false; 5025 5026 // Reduction variables are only found in the loop header block. 5027 if (Phi->getParent() != TheLoop->getHeader()) 5028 return false; 5029 5030 // Obtain the reduction start value from the value that comes from the loop 5031 // preheader. 5032 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 5033 5034 // ExitInstruction is the single value which is used outside the loop. 5035 // We only allow for a single reduction value to be used outside the loop. 5036 // This includes users of the reduction, variables (which form a cycle 5037 // which ends in the phi node). 5038 Instruction *ExitInstruction = nullptr; 5039 // Indicates that we found a reduction operation in our scan. 5040 bool FoundReduxOp = false; 5041 5042 // We start with the PHI node and scan for all of the users of this 5043 // instruction. All users must be instructions that can be used as reduction 5044 // variables (such as ADD). We must have a single out-of-block user. The cycle 5045 // must include the original PHI. 5046 bool FoundStartPHI = false; 5047 5048 // To recognize min/max patterns formed by a icmp select sequence, we store 5049 // the number of instruction we saw from the recognized min/max pattern, 5050 // to make sure we only see exactly the two instructions. 5051 unsigned NumCmpSelectPatternInst = 0; 5052 ReductionInstDesc ReduxDesc(false, nullptr); 5053 5054 SmallPtrSet<Instruction *, 8> VisitedInsts; 5055 SmallVector<Instruction *, 8> Worklist; 5056 Worklist.push_back(Phi); 5057 VisitedInsts.insert(Phi); 5058 5059 // A value in the reduction can be used: 5060 // - By the reduction: 5061 // - Reduction operation: 5062 // - One use of reduction value (safe). 5063 // - Multiple use of reduction value (not safe). 5064 // - PHI: 5065 // - All uses of the PHI must be the reduction (safe). 5066 // - Otherwise, not safe. 5067 // - By one instruction outside of the loop (safe). 5068 // - By further instructions outside of the loop (not safe). 5069 // - By an instruction that is not part of the reduction (not safe). 5070 // This is either: 5071 // * An instruction type other than PHI or the reduction operation. 5072 // * A PHI in the header other than the initial PHI. 5073 while (!Worklist.empty()) { 5074 Instruction *Cur = Worklist.back(); 5075 Worklist.pop_back(); 5076 5077 // No Users. 5078 // If the instruction has no users then this is a broken chain and can't be 5079 // a reduction variable. 5080 if (Cur->use_empty()) 5081 return false; 5082 5083 bool IsAPhi = isa<PHINode>(Cur); 5084 5085 // A header PHI use other than the original PHI. 5086 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 5087 return false; 5088 5089 // Reductions of instructions such as Div, and Sub is only possible if the 5090 // LHS is the reduction variable. 5091 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 5092 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 5093 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 5094 return false; 5095 5096 // Any reduction instruction must be of one of the allowed kinds. 5097 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 5098 if (!ReduxDesc.IsReduction) 5099 return false; 5100 5101 // A reduction operation must only have one use of the reduction value. 5102 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 5103 hasMultipleUsesOf(Cur, VisitedInsts)) 5104 return false; 5105 5106 // All inputs to a PHI node must be a reduction value. 5107 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 5108 return false; 5109 5110 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 5111 isa<SelectInst>(Cur))) 5112 ++NumCmpSelectPatternInst; 5113 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 5114 isa<SelectInst>(Cur))) 5115 ++NumCmpSelectPatternInst; 5116 5117 // Check whether we found a reduction operator. 5118 FoundReduxOp |= !IsAPhi; 5119 5120 // Process users of current instruction. Push non-PHI nodes after PHI nodes 5121 // onto the stack. This way we are going to have seen all inputs to PHI 5122 // nodes once we get to them. 5123 SmallVector<Instruction *, 8> NonPHIs; 5124 SmallVector<Instruction *, 8> PHIs; 5125 for (User *U : Cur->users()) { 5126 Instruction *UI = cast<Instruction>(U); 5127 5128 // Check if we found the exit user. 5129 BasicBlock *Parent = UI->getParent(); 5130 if (!TheLoop->contains(Parent)) { 5131 // Exit if you find multiple outside users or if the header phi node is 5132 // being used. In this case the user uses the value of the previous 5133 // iteration, in which case we would loose "VF-1" iterations of the 5134 // reduction operation if we vectorize. 5135 if (ExitInstruction != nullptr || Cur == Phi) 5136 return false; 5137 5138 // The instruction used by an outside user must be the last instruction 5139 // before we feed back to the reduction phi. Otherwise, we loose VF-1 5140 // operations on the value. 5141 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 5142 return false; 5143 5144 ExitInstruction = Cur; 5145 continue; 5146 } 5147 5148 // Process instructions only once (termination). Each reduction cycle 5149 // value must only be used once, except by phi nodes and min/max 5150 // reductions which are represented as a cmp followed by a select. 5151 ReductionInstDesc IgnoredVal(false, nullptr); 5152 if (VisitedInsts.insert(UI).second) { 5153 if (isa<PHINode>(UI)) 5154 PHIs.push_back(UI); 5155 else 5156 NonPHIs.push_back(UI); 5157 } else if (!isa<PHINode>(UI) && 5158 ((!isa<FCmpInst>(UI) && 5159 !isa<ICmpInst>(UI) && 5160 !isa<SelectInst>(UI)) || 5161 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction)) 5162 return false; 5163 5164 // Remember that we completed the cycle. 5165 if (UI == Phi) 5166 FoundStartPHI = true; 5167 } 5168 Worklist.append(PHIs.begin(), PHIs.end()); 5169 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 5170 } 5171 5172 // This means we have seen one but not the other instruction of the 5173 // pattern or more than just a select and cmp. 5174 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 5175 NumCmpSelectPatternInst != 2) 5176 return false; 5177 5178 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 5179 return false; 5180 5181 // We found a reduction var if we have reached the original phi node and we 5182 // only have a single instruction with out-of-loop users. 5183 5184 // This instruction is allowed to have out-of-loop users. 5185 AllowedExit.insert(ExitInstruction); 5186 5187 // Save the description of this reduction variable. 5188 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 5189 ReduxDesc.MinMaxKind); 5190 Reductions[Phi] = RD; 5191 // We've ended the cycle. This is a reduction variable if we have an 5192 // outside user and it has a binary op. 5193 5194 return true; 5195 } 5196 5197 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 5198 /// pattern corresponding to a min(X, Y) or max(X, Y). 5199 LoopVectorizationLegality::ReductionInstDesc 5200 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 5201 ReductionInstDesc &Prev) { 5202 5203 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 5204 "Expect a select instruction"); 5205 Instruction *Cmp = nullptr; 5206 SelectInst *Select = nullptr; 5207 5208 // We must handle the select(cmp()) as a single instruction. Advance to the 5209 // select. 5210 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 5211 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 5212 return ReductionInstDesc(false, I); 5213 return ReductionInstDesc(Select, Prev.MinMaxKind); 5214 } 5215 5216 // Only handle single use cases for now. 5217 if (!(Select = dyn_cast<SelectInst>(I))) 5218 return ReductionInstDesc(false, I); 5219 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 5220 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 5221 return ReductionInstDesc(false, I); 5222 if (!Cmp->hasOneUse()) 5223 return ReductionInstDesc(false, I); 5224 5225 Value *CmpLeft; 5226 Value *CmpRight; 5227 5228 // Look for a min/max pattern. 5229 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5230 return ReductionInstDesc(Select, MRK_UIntMin); 5231 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5232 return ReductionInstDesc(Select, MRK_UIntMax); 5233 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5234 return ReductionInstDesc(Select, MRK_SIntMax); 5235 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5236 return ReductionInstDesc(Select, MRK_SIntMin); 5237 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5238 return ReductionInstDesc(Select, MRK_FloatMin); 5239 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5240 return ReductionInstDesc(Select, MRK_FloatMax); 5241 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5242 return ReductionInstDesc(Select, MRK_FloatMin); 5243 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5244 return ReductionInstDesc(Select, MRK_FloatMax); 5245 5246 return ReductionInstDesc(false, I); 5247 } 5248 5249 LoopVectorizationLegality::ReductionInstDesc 5250 LoopVectorizationLegality::isReductionInstr(Instruction *I, 5251 ReductionKind Kind, 5252 ReductionInstDesc &Prev) { 5253 bool FP = I->getType()->isFloatingPointTy(); 5254 bool FastMath = FP && I->hasUnsafeAlgebra(); 5255 switch (I->getOpcode()) { 5256 default: 5257 return ReductionInstDesc(false, I); 5258 case Instruction::PHI: 5259 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 5260 Kind != RK_FloatMinMax)) 5261 return ReductionInstDesc(false, I); 5262 return ReductionInstDesc(I, Prev.MinMaxKind); 5263 case Instruction::Sub: 5264 case Instruction::Add: 5265 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 5266 case Instruction::Mul: 5267 return ReductionInstDesc(Kind == RK_IntegerMult, I); 5268 case Instruction::And: 5269 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 5270 case Instruction::Or: 5271 return ReductionInstDesc(Kind == RK_IntegerOr, I); 5272 case Instruction::Xor: 5273 return ReductionInstDesc(Kind == RK_IntegerXor, I); 5274 case Instruction::FMul: 5275 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 5276 case Instruction::FSub: 5277 case Instruction::FAdd: 5278 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 5279 case Instruction::FCmp: 5280 case Instruction::ICmp: 5281 case Instruction::Select: 5282 if (Kind != RK_IntegerMinMax && 5283 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 5284 return ReductionInstDesc(false, I); 5285 return isMinMaxSelectCmpPattern(I, Prev); 5286 } 5287 } 5288 5289 LoopVectorizationLegality::InductionKind 5290 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { 5291 Type *PhiTy = Phi->getType(); 5292 // We only handle integer and pointer inductions variables. 5293 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 5294 return IK_NoInduction; 5295 5296 // Check that the PHI is consecutive. 5297 const SCEV *PhiScev = SE->getSCEV(Phi); 5298 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 5299 if (!AR) { 5300 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 5301 return IK_NoInduction; 5302 } 5303 const SCEV *Step = AR->getStepRecurrence(*SE); 5304 5305 // Integer inductions need to have a stride of one. 5306 if (PhiTy->isIntegerTy()) { 5307 if (Step->isOne()) 5308 return IK_IntInduction; 5309 if (Step->isAllOnesValue()) 5310 return IK_ReverseIntInduction; 5311 return IK_NoInduction; 5312 } 5313 5314 // Calculate the pointer stride and check if it is consecutive. 5315 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5316 if (!C) 5317 return IK_NoInduction; 5318 5319 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 5320 Type *PointerElementType = PhiTy->getPointerElementType(); 5321 // The pointer stride cannot be determined if the pointer element type is not 5322 // sized. 5323 if (!PointerElementType->isSized()) 5324 return IK_NoInduction; 5325 5326 uint64_t Size = DL->getTypeAllocSize(PointerElementType); 5327 if (C->getValue()->equalsInt(Size)) 5328 return IK_PtrInduction; 5329 else if (C->getValue()->equalsInt(0 - Size)) 5330 return IK_ReversePtrInduction; 5331 5332 return IK_NoInduction; 5333 } 5334 5335 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5336 Value *In0 = const_cast<Value*>(V); 5337 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5338 if (!PN) 5339 return false; 5340 5341 return Inductions.count(PN); 5342 } 5343 5344 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5345 assert(TheLoop->contains(BB) && "Unknown block used"); 5346 5347 // Blocks that do not dominate the latch need predication. 5348 BasicBlock* Latch = TheLoop->getLoopLatch(); 5349 return !DT->dominates(BB, Latch); 5350 } 5351 5352 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 5353 SmallPtrSetImpl<Value *> &SafePtrs) { 5354 5355 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5356 // Check that we don't have a constant expression that can trap as operand. 5357 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 5358 OI != OE; ++OI) { 5359 if (Constant *C = dyn_cast<Constant>(*OI)) 5360 if (C->canTrap()) 5361 return false; 5362 } 5363 // We might be able to hoist the load. 5364 if (it->mayReadFromMemory()) { 5365 LoadInst *LI = dyn_cast<LoadInst>(it); 5366 if (!LI) 5367 return false; 5368 if (!SafePtrs.count(LI->getPointerOperand())) { 5369 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) { 5370 MaskedOp.insert(LI); 5371 continue; 5372 } 5373 return false; 5374 } 5375 } 5376 5377 // We don't predicate stores at the moment. 5378 if (it->mayWriteToMemory()) { 5379 StoreInst *SI = dyn_cast<StoreInst>(it); 5380 // We only support predication of stores in basic blocks with one 5381 // predecessor. 5382 if (!SI) 5383 return false; 5384 5385 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5386 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5387 5388 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5389 !isSinglePredecessor) { 5390 // Build a masked store if it is legal for the target, otherwise scalarize 5391 // the block. 5392 bool isLegalMaskedOp = 5393 isLegalMaskedStore(SI->getValueOperand()->getType(), 5394 SI->getPointerOperand()); 5395 if (isLegalMaskedOp) { 5396 --NumPredStores; 5397 MaskedOp.insert(SI); 5398 continue; 5399 } 5400 return false; 5401 } 5402 } 5403 if (it->mayThrow()) 5404 return false; 5405 5406 // The instructions below can trap. 5407 switch (it->getOpcode()) { 5408 default: continue; 5409 case Instruction::UDiv: 5410 case Instruction::SDiv: 5411 case Instruction::URem: 5412 case Instruction::SRem: 5413 return false; 5414 } 5415 } 5416 5417 return true; 5418 } 5419 5420 LoopVectorizationCostModel::VectorizationFactor 5421 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5422 // Width 1 means no vectorize 5423 VectorizationFactor Factor = { 1U, 0U }; 5424 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 5425 emitAnalysis(Report() << "runtime pointer checks needed. Enable vectorization of this loop with '#pragma clang loop vectorize(enable)' when compiling with -Os"); 5426 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 5427 return Factor; 5428 } 5429 5430 if (!EnableCondStoresVectorization && Legal->NumPredStores) { 5431 emitAnalysis(Report() << "store that is conditionally executed prevents vectorization"); 5432 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5433 return Factor; 5434 } 5435 5436 // Find the trip count. 5437 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 5438 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5439 5440 unsigned WidestType = getWidestType(); 5441 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5442 unsigned MaxSafeDepDist = -1U; 5443 if (Legal->getMaxSafeDepDistBytes() != -1U) 5444 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5445 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 5446 WidestRegister : MaxSafeDepDist); 5447 unsigned MaxVectorSize = WidestRegister / WidestType; 5448 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 5449 DEBUG(dbgs() << "LV: The Widest register is: " 5450 << WidestRegister << " bits.\n"); 5451 5452 if (MaxVectorSize == 0) { 5453 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5454 MaxVectorSize = 1; 5455 } 5456 5457 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 5458 " into one vector!"); 5459 5460 unsigned VF = MaxVectorSize; 5461 5462 // If we optimize the program for size, avoid creating the tail loop. 5463 if (OptForSize) { 5464 // If we are unable to calculate the trip count then don't try to vectorize. 5465 if (TC < 2) { 5466 emitAnalysis(Report() << "unable to calculate the loop count due to complex control flow"); 5467 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5468 return Factor; 5469 } 5470 5471 // Find the maximum SIMD width that can fit within the trip count. 5472 VF = TC % MaxVectorSize; 5473 5474 if (VF == 0) 5475 VF = MaxVectorSize; 5476 5477 // If the trip count that we found modulo the vectorization factor is not 5478 // zero then we require a tail. 5479 if (VF < 2) { 5480 emitAnalysis(Report() << "cannot optimize for size and vectorize at the " 5481 "same time. Enable vectorization of this loop " 5482 "with '#pragma clang loop vectorize(enable)' " 5483 "when compiling with -Os"); 5484 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5485 return Factor; 5486 } 5487 } 5488 5489 int UserVF = Hints->getWidth(); 5490 if (UserVF != 0) { 5491 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5492 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5493 5494 Factor.Width = UserVF; 5495 return Factor; 5496 } 5497 5498 float Cost = expectedCost(1); 5499 #ifndef NDEBUG 5500 const float ScalarCost = Cost; 5501 #endif /* NDEBUG */ 5502 unsigned Width = 1; 5503 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5504 5505 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5506 // Ignore scalar width, because the user explicitly wants vectorization. 5507 if (ForceVectorization && VF > 1) { 5508 Width = 2; 5509 Cost = expectedCost(Width) / (float)Width; 5510 } 5511 5512 for (unsigned i=2; i <= VF; i*=2) { 5513 // Notice that the vector loop needs to be executed less times, so 5514 // we need to divide the cost of the vector loops by the width of 5515 // the vector elements. 5516 float VectorCost = expectedCost(i) / (float)i; 5517 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 5518 (int)VectorCost << ".\n"); 5519 if (VectorCost < Cost) { 5520 Cost = VectorCost; 5521 Width = i; 5522 } 5523 } 5524 5525 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5526 << "LV: Vectorization seems to be not beneficial, " 5527 << "but was forced by a user.\n"); 5528 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 5529 Factor.Width = Width; 5530 Factor.Cost = Width * Cost; 5531 return Factor; 5532 } 5533 5534 unsigned LoopVectorizationCostModel::getWidestType() { 5535 unsigned MaxWidth = 8; 5536 5537 // For each block. 5538 for (Loop::block_iterator bb = TheLoop->block_begin(), 5539 be = TheLoop->block_end(); bb != be; ++bb) { 5540 BasicBlock *BB = *bb; 5541 5542 // For each instruction in the loop. 5543 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5544 Type *T = it->getType(); 5545 5546 // Ignore ephemeral values. 5547 if (EphValues.count(it)) 5548 continue; 5549 5550 // Only examine Loads, Stores and PHINodes. 5551 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5552 continue; 5553 5554 // Examine PHI nodes that are reduction variables. 5555 if (PHINode *PN = dyn_cast<PHINode>(it)) 5556 if (!Legal->getReductionVars()->count(PN)) 5557 continue; 5558 5559 // Examine the stored values. 5560 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5561 T = ST->getValueOperand()->getType(); 5562 5563 // Ignore loaded pointer types and stored pointer types that are not 5564 // consecutive. However, we do want to take consecutive stores/loads of 5565 // pointer vectors into account. 5566 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 5567 continue; 5568 5569 MaxWidth = std::max(MaxWidth, 5570 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 5571 } 5572 } 5573 5574 return MaxWidth; 5575 } 5576 5577 unsigned 5578 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 5579 unsigned VF, 5580 unsigned LoopCost) { 5581 5582 // -- The unroll heuristics -- 5583 // We unroll the loop in order to expose ILP and reduce the loop overhead. 5584 // There are many micro-architectural considerations that we can't predict 5585 // at this level. For example, frontend pressure (on decode or fetch) due to 5586 // code size, or the number and capabilities of the execution ports. 5587 // 5588 // We use the following heuristics to select the unroll factor: 5589 // 1. If the code has reductions, then we unroll in order to break the cross 5590 // iteration dependency. 5591 // 2. If the loop is really small, then we unroll in order to reduce the loop 5592 // overhead. 5593 // 3. We don't unroll if we think that we will spill registers to memory due 5594 // to the increased register pressure. 5595 5596 // Use the user preference, unless 'auto' is selected. 5597 int UserUF = Hints->getInterleave(); 5598 if (UserUF != 0) 5599 return UserUF; 5600 5601 // When we optimize for size, we don't unroll. 5602 if (OptForSize) 5603 return 1; 5604 5605 // We used the distance for the unroll factor. 5606 if (Legal->getMaxSafeDepDistBytes() != -1U) 5607 return 1; 5608 5609 // Do not unroll loops with a relatively small trip count. 5610 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 5611 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 5612 return 1; 5613 5614 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5615 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 5616 " registers\n"); 5617 5618 if (VF == 1) { 5619 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5620 TargetNumRegisters = ForceTargetNumScalarRegs; 5621 } else { 5622 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5623 TargetNumRegisters = ForceTargetNumVectorRegs; 5624 } 5625 5626 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 5627 // We divide by these constants so assume that we have at least one 5628 // instruction that uses at least one register. 5629 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5630 R.NumInstructions = std::max(R.NumInstructions, 1U); 5631 5632 // We calculate the unroll factor using the following formula. 5633 // Subtract the number of loop invariants from the number of available 5634 // registers. These registers are used by all of the unrolled instances. 5635 // Next, divide the remaining registers by the number of registers that is 5636 // required by the loop, in order to estimate how many parallel instances 5637 // fit without causing spills. All of this is rounded down if necessary to be 5638 // a power of two. We want power of two unroll factors to simplify any 5639 // addressing operations or alignment considerations. 5640 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5641 R.MaxLocalUsers); 5642 5643 // Don't count the induction variable as unrolled. 5644 if (EnableIndVarRegisterHeur) 5645 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5646 std::max(1U, (R.MaxLocalUsers - 1))); 5647 5648 // Clamp the unroll factor ranges to reasonable factors. 5649 unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor(); 5650 5651 // Check if the user has overridden the unroll max. 5652 if (VF == 1) { 5653 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5654 MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor; 5655 } else { 5656 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5657 MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor; 5658 } 5659 5660 // If we did not calculate the cost for VF (because the user selected the VF) 5661 // then we calculate the cost of VF here. 5662 if (LoopCost == 0) 5663 LoopCost = expectedCost(VF); 5664 5665 // Clamp the calculated UF to be between the 1 and the max unroll factor 5666 // that the target allows. 5667 if (UF > MaxInterleaveSize) 5668 UF = MaxInterleaveSize; 5669 else if (UF < 1) 5670 UF = 1; 5671 5672 // Unroll if we vectorized this loop and there is a reduction that could 5673 // benefit from unrolling. 5674 if (VF > 1 && Legal->getReductionVars()->size()) { 5675 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 5676 return UF; 5677 } 5678 5679 // Note that if we've already vectorized the loop we will have done the 5680 // runtime check and so unrolling won't require further checks. 5681 bool UnrollingRequiresRuntimePointerCheck = 5682 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 5683 5684 // We want to unroll small loops in order to reduce the loop overhead and 5685 // potentially expose ILP opportunities. 5686 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5687 if (!UnrollingRequiresRuntimePointerCheck && 5688 LoopCost < SmallLoopCost) { 5689 // We assume that the cost overhead is 1 and we use the cost model 5690 // to estimate the cost of the loop and unroll until the cost of the 5691 // loop overhead is about 5% of the cost of the loop. 5692 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5693 5694 // Unroll until store/load ports (estimated by max unroll factor) are 5695 // saturated. 5696 unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1); 5697 unsigned LoadsUF = UF / (Legal->NumLoads ? Legal->NumLoads : 1); 5698 5699 // If we have a scalar reduction (vector reductions are already dealt with 5700 // by this point), we can increase the critical path length if the loop 5701 // we're unrolling is inside another loop. Limit, by default to 2, so the 5702 // critical path only gets increased by one reduction operation. 5703 if (Legal->getReductionVars()->size() && 5704 TheLoop->getLoopDepth() > 1) { 5705 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF); 5706 SmallUF = std::min(SmallUF, F); 5707 StoresUF = std::min(StoresUF, F); 5708 LoadsUF = std::min(LoadsUF, F); 5709 } 5710 5711 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 5712 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 5713 return std::max(StoresUF, LoadsUF); 5714 } 5715 5716 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 5717 return SmallUF; 5718 } 5719 5720 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 5721 return 1; 5722 } 5723 5724 LoopVectorizationCostModel::RegisterUsage 5725 LoopVectorizationCostModel::calculateRegisterUsage() { 5726 // This function calculates the register usage by measuring the highest number 5727 // of values that are alive at a single location. Obviously, this is a very 5728 // rough estimation. We scan the loop in a topological order in order and 5729 // assign a number to each instruction. We use RPO to ensure that defs are 5730 // met before their users. We assume that each instruction that has in-loop 5731 // users starts an interval. We record every time that an in-loop value is 5732 // used, so we have a list of the first and last occurrences of each 5733 // instruction. Next, we transpose this data structure into a multi map that 5734 // holds the list of intervals that *end* at a specific location. This multi 5735 // map allows us to perform a linear search. We scan the instructions linearly 5736 // and record each time that a new interval starts, by placing it in a set. 5737 // If we find this value in the multi-map then we remove it from the set. 5738 // The max register usage is the maximum size of the set. 5739 // We also search for instructions that are defined outside the loop, but are 5740 // used inside the loop. We need this number separately from the max-interval 5741 // usage number because when we unroll, loop-invariant values do not take 5742 // more register. 5743 LoopBlocksDFS DFS(TheLoop); 5744 DFS.perform(LI); 5745 5746 RegisterUsage R; 5747 R.NumInstructions = 0; 5748 5749 // Each 'key' in the map opens a new interval. The values 5750 // of the map are the index of the 'last seen' usage of the 5751 // instruction that is the key. 5752 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5753 // Maps instruction to its index. 5754 DenseMap<unsigned, Instruction*> IdxToInstr; 5755 // Marks the end of each interval. 5756 IntervalMap EndPoint; 5757 // Saves the list of instruction indices that are used in the loop. 5758 SmallSet<Instruction*, 8> Ends; 5759 // Saves the list of values that are used in the loop but are 5760 // defined outside the loop, such as arguments and constants. 5761 SmallPtrSet<Value*, 8> LoopInvariants; 5762 5763 unsigned Index = 0; 5764 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5765 be = DFS.endRPO(); bb != be; ++bb) { 5766 R.NumInstructions += (*bb)->size(); 5767 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 5768 ++it) { 5769 Instruction *I = it; 5770 IdxToInstr[Index++] = I; 5771 5772 // Save the end location of each USE. 5773 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 5774 Value *U = I->getOperand(i); 5775 Instruction *Instr = dyn_cast<Instruction>(U); 5776 5777 // Ignore non-instruction values such as arguments, constants, etc. 5778 if (!Instr) continue; 5779 5780 // If this instruction is outside the loop then record it and continue. 5781 if (!TheLoop->contains(Instr)) { 5782 LoopInvariants.insert(Instr); 5783 continue; 5784 } 5785 5786 // Overwrite previous end points. 5787 EndPoint[Instr] = Index; 5788 Ends.insert(Instr); 5789 } 5790 } 5791 } 5792 5793 // Saves the list of intervals that end with the index in 'key'. 5794 typedef SmallVector<Instruction*, 2> InstrList; 5795 DenseMap<unsigned, InstrList> TransposeEnds; 5796 5797 // Transpose the EndPoints to a list of values that end at each index. 5798 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5799 it != e; ++it) 5800 TransposeEnds[it->second].push_back(it->first); 5801 5802 SmallSet<Instruction*, 8> OpenIntervals; 5803 unsigned MaxUsage = 0; 5804 5805 5806 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5807 for (unsigned int i = 0; i < Index; ++i) { 5808 Instruction *I = IdxToInstr[i]; 5809 // Ignore instructions that are never used within the loop. 5810 if (!Ends.count(I)) continue; 5811 5812 // Ignore ephemeral values. 5813 if (EphValues.count(I)) 5814 continue; 5815 5816 // Remove all of the instructions that end at this location. 5817 InstrList &List = TransposeEnds[i]; 5818 for (unsigned int j=0, e = List.size(); j < e; ++j) 5819 OpenIntervals.erase(List[j]); 5820 5821 // Count the number of live interals. 5822 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 5823 5824 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 5825 OpenIntervals.size() << '\n'); 5826 5827 // Add the current instruction to the list of open intervals. 5828 OpenIntervals.insert(I); 5829 } 5830 5831 unsigned Invariant = LoopInvariants.size(); 5832 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 5833 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5834 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 5835 5836 R.LoopInvariantRegs = Invariant; 5837 R.MaxLocalUsers = MaxUsage; 5838 return R; 5839 } 5840 5841 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5842 unsigned Cost = 0; 5843 5844 // For each block. 5845 for (Loop::block_iterator bb = TheLoop->block_begin(), 5846 be = TheLoop->block_end(); bb != be; ++bb) { 5847 unsigned BlockCost = 0; 5848 BasicBlock *BB = *bb; 5849 5850 // For each instruction in the old loop. 5851 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5852 // Skip dbg intrinsics. 5853 if (isa<DbgInfoIntrinsic>(it)) 5854 continue; 5855 5856 // Ignore ephemeral values. 5857 if (EphValues.count(it)) 5858 continue; 5859 5860 unsigned C = getInstructionCost(it, VF); 5861 5862 // Check if we should override the cost. 5863 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5864 C = ForceTargetInstructionCost; 5865 5866 BlockCost += C; 5867 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5868 VF << " For instruction: " << *it << '\n'); 5869 } 5870 5871 // We assume that if-converted blocks have a 50% chance of being executed. 5872 // When the code is scalar then some of the blocks are avoided due to CF. 5873 // When the code is vectorized we execute all code paths. 5874 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5875 BlockCost /= 2; 5876 5877 Cost += BlockCost; 5878 } 5879 5880 return Cost; 5881 } 5882 5883 /// \brief Check whether the address computation for a non-consecutive memory 5884 /// access looks like an unlikely candidate for being merged into the indexing 5885 /// mode. 5886 /// 5887 /// We look for a GEP which has one index that is an induction variable and all 5888 /// other indices are loop invariant. If the stride of this access is also 5889 /// within a small bound we decide that this address computation can likely be 5890 /// merged into the addressing mode. 5891 /// In all other cases, we identify the address computation as complex. 5892 static bool isLikelyComplexAddressComputation(Value *Ptr, 5893 LoopVectorizationLegality *Legal, 5894 ScalarEvolution *SE, 5895 const Loop *TheLoop) { 5896 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5897 if (!Gep) 5898 return true; 5899 5900 // We are looking for a gep with all loop invariant indices except for one 5901 // which should be an induction variable. 5902 unsigned NumOperands = Gep->getNumOperands(); 5903 for (unsigned i = 1; i < NumOperands; ++i) { 5904 Value *Opd = Gep->getOperand(i); 5905 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5906 !Legal->isInductionVariable(Opd)) 5907 return true; 5908 } 5909 5910 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5911 // can likely be merged into the address computation. 5912 unsigned MaxMergeDistance = 64; 5913 5914 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5915 if (!AddRec) 5916 return true; 5917 5918 // Check the step is constant. 5919 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5920 // Calculate the pointer stride and check if it is consecutive. 5921 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5922 if (!C) 5923 return true; 5924 5925 const APInt &APStepVal = C->getValue()->getValue(); 5926 5927 // Huge step value - give up. 5928 if (APStepVal.getBitWidth() > 64) 5929 return true; 5930 5931 int64_t StepVal = APStepVal.getSExtValue(); 5932 5933 return StepVal > MaxMergeDistance; 5934 } 5935 5936 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5937 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 5938 return true; 5939 return false; 5940 } 5941 5942 unsigned 5943 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5944 // If we know that this instruction will remain uniform, check the cost of 5945 // the scalar version. 5946 if (Legal->isUniformAfterVectorization(I)) 5947 VF = 1; 5948 5949 Type *RetTy = I->getType(); 5950 Type *VectorTy = ToVectorTy(RetTy, VF); 5951 5952 // TODO: We need to estimate the cost of intrinsic calls. 5953 switch (I->getOpcode()) { 5954 case Instruction::GetElementPtr: 5955 // We mark this instruction as zero-cost because the cost of GEPs in 5956 // vectorized code depends on whether the corresponding memory instruction 5957 // is scalarized or not. Therefore, we handle GEPs with the memory 5958 // instruction cost. 5959 return 0; 5960 case Instruction::Br: { 5961 return TTI.getCFInstrCost(I->getOpcode()); 5962 } 5963 case Instruction::PHI: 5964 //TODO: IF-converted IFs become selects. 5965 return 0; 5966 case Instruction::Add: 5967 case Instruction::FAdd: 5968 case Instruction::Sub: 5969 case Instruction::FSub: 5970 case Instruction::Mul: 5971 case Instruction::FMul: 5972 case Instruction::UDiv: 5973 case Instruction::SDiv: 5974 case Instruction::FDiv: 5975 case Instruction::URem: 5976 case Instruction::SRem: 5977 case Instruction::FRem: 5978 case Instruction::Shl: 5979 case Instruction::LShr: 5980 case Instruction::AShr: 5981 case Instruction::And: 5982 case Instruction::Or: 5983 case Instruction::Xor: { 5984 // Since we will replace the stride by 1 the multiplication should go away. 5985 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5986 return 0; 5987 // Certain instructions can be cheaper to vectorize if they have a constant 5988 // second vector operand. One example of this are shifts on x86. 5989 TargetTransformInfo::OperandValueKind Op1VK = 5990 TargetTransformInfo::OK_AnyValue; 5991 TargetTransformInfo::OperandValueKind Op2VK = 5992 TargetTransformInfo::OK_AnyValue; 5993 TargetTransformInfo::OperandValueProperties Op1VP = 5994 TargetTransformInfo::OP_None; 5995 TargetTransformInfo::OperandValueProperties Op2VP = 5996 TargetTransformInfo::OP_None; 5997 Value *Op2 = I->getOperand(1); 5998 5999 // Check for a splat of a constant or for a non uniform vector of constants. 6000 if (isa<ConstantInt>(Op2)) { 6001 ConstantInt *CInt = cast<ConstantInt>(Op2); 6002 if (CInt && CInt->getValue().isPowerOf2()) 6003 Op2VP = TargetTransformInfo::OP_PowerOf2; 6004 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6005 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 6006 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6007 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 6008 if (SplatValue) { 6009 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 6010 if (CInt && CInt->getValue().isPowerOf2()) 6011 Op2VP = TargetTransformInfo::OP_PowerOf2; 6012 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6013 } 6014 } 6015 6016 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 6017 Op1VP, Op2VP); 6018 } 6019 case Instruction::Select: { 6020 SelectInst *SI = cast<SelectInst>(I); 6021 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6022 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6023 Type *CondTy = SI->getCondition()->getType(); 6024 if (!ScalarCond) 6025 CondTy = VectorType::get(CondTy, VF); 6026 6027 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 6028 } 6029 case Instruction::ICmp: 6030 case Instruction::FCmp: { 6031 Type *ValTy = I->getOperand(0)->getType(); 6032 VectorTy = ToVectorTy(ValTy, VF); 6033 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 6034 } 6035 case Instruction::Store: 6036 case Instruction::Load: { 6037 StoreInst *SI = dyn_cast<StoreInst>(I); 6038 LoadInst *LI = dyn_cast<LoadInst>(I); 6039 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 6040 LI->getType()); 6041 VectorTy = ToVectorTy(ValTy, VF); 6042 6043 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 6044 unsigned AS = SI ? SI->getPointerAddressSpace() : 6045 LI->getPointerAddressSpace(); 6046 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 6047 // We add the cost of address computation here instead of with the gep 6048 // instruction because only here we know whether the operation is 6049 // scalarized. 6050 if (VF == 1) 6051 return TTI.getAddressComputationCost(VectorTy) + 6052 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6053 6054 // Scalarized loads/stores. 6055 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6056 bool Reverse = ConsecutiveStride < 0; 6057 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 6058 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 6059 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 6060 bool IsComplexComputation = 6061 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 6062 unsigned Cost = 0; 6063 // The cost of extracting from the value vector and pointer vector. 6064 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6065 for (unsigned i = 0; i < VF; ++i) { 6066 // The cost of extracting the pointer operand. 6067 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 6068 // In case of STORE, the cost of ExtractElement from the vector. 6069 // In case of LOAD, the cost of InsertElement into the returned 6070 // vector. 6071 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 6072 Instruction::InsertElement, 6073 VectorTy, i); 6074 } 6075 6076 // The cost of the scalar loads/stores. 6077 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 6078 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6079 Alignment, AS); 6080 return Cost; 6081 } 6082 6083 // Wide load/stores. 6084 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 6085 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6086 6087 if (Reverse) 6088 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 6089 VectorTy, 0); 6090 return Cost; 6091 } 6092 case Instruction::ZExt: 6093 case Instruction::SExt: 6094 case Instruction::FPToUI: 6095 case Instruction::FPToSI: 6096 case Instruction::FPExt: 6097 case Instruction::PtrToInt: 6098 case Instruction::IntToPtr: 6099 case Instruction::SIToFP: 6100 case Instruction::UIToFP: 6101 case Instruction::Trunc: 6102 case Instruction::FPTrunc: 6103 case Instruction::BitCast: { 6104 // We optimize the truncation of induction variable. 6105 // The cost of these is the same as the scalar operation. 6106 if (I->getOpcode() == Instruction::Trunc && 6107 Legal->isInductionVariable(I->getOperand(0))) 6108 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6109 I->getOperand(0)->getType()); 6110 6111 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 6112 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6113 } 6114 case Instruction::Call: { 6115 CallInst *CI = cast<CallInst>(I); 6116 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 6117 assert(ID && "Not an intrinsic call!"); 6118 Type *RetTy = ToVectorTy(CI->getType(), VF); 6119 SmallVector<Type*, 4> Tys; 6120 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 6121 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 6122 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 6123 } 6124 default: { 6125 // We are scalarizing the instruction. Return the cost of the scalar 6126 // instruction, plus the cost of insert and extract into vector 6127 // elements, times the vector width. 6128 unsigned Cost = 0; 6129 6130 if (!RetTy->isVoidTy() && VF != 1) { 6131 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 6132 VectorTy); 6133 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 6134 VectorTy); 6135 6136 // The cost of inserting the results plus extracting each one of the 6137 // operands. 6138 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 6139 } 6140 6141 // The cost of executing VF copies of the scalar instruction. This opcode 6142 // is unknown. Assume that it is the same as 'mul'. 6143 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 6144 return Cost; 6145 } 6146 }// end of switch. 6147 } 6148 6149 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { 6150 if (Scalar->isVoidTy() || VF == 1) 6151 return Scalar; 6152 return VectorType::get(Scalar, VF); 6153 } 6154 6155 char LoopVectorize::ID = 0; 6156 static const char lv_name[] = "Loop Vectorization"; 6157 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6158 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 6159 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 6160 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6161 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 6162 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6163 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 6164 INITIALIZE_PASS_DEPENDENCY(LCSSA) 6165 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6166 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6167 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6168 6169 namespace llvm { 6170 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6171 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6172 } 6173 } 6174 6175 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6176 // Check for a store. 6177 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 6178 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 6179 6180 // Check for a load. 6181 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 6182 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 6183 6184 return false; 6185 } 6186 6187 6188 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6189 bool IfPredicateStore) { 6190 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6191 // Holds vector parameters or scalars, in case of uniform vals. 6192 SmallVector<VectorParts, 4> Params; 6193 6194 setDebugLocFromInst(Builder, Instr); 6195 6196 // Find all of the vectorized parameters. 6197 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6198 Value *SrcOp = Instr->getOperand(op); 6199 6200 // If we are accessing the old induction variable, use the new one. 6201 if (SrcOp == OldInduction) { 6202 Params.push_back(getVectorValue(SrcOp)); 6203 continue; 6204 } 6205 6206 // Try using previously calculated values. 6207 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 6208 6209 // If the src is an instruction that appeared earlier in the basic block 6210 // then it should already be vectorized. 6211 if (SrcInst && OrigLoop->contains(SrcInst)) { 6212 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 6213 // The parameter is a vector value from earlier. 6214 Params.push_back(WidenMap.get(SrcInst)); 6215 } else { 6216 // The parameter is a scalar from outside the loop. Maybe even a constant. 6217 VectorParts Scalars; 6218 Scalars.append(UF, SrcOp); 6219 Params.push_back(Scalars); 6220 } 6221 } 6222 6223 assert(Params.size() == Instr->getNumOperands() && 6224 "Invalid number of operands"); 6225 6226 // Does this instruction return a value ? 6227 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6228 6229 Value *UndefVec = IsVoidRetTy ? nullptr : 6230 UndefValue::get(Instr->getType()); 6231 // Create a new entry in the WidenMap and initialize it to Undef or Null. 6232 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 6233 6234 Instruction *InsertPt = Builder.GetInsertPoint(); 6235 BasicBlock *IfBlock = Builder.GetInsertBlock(); 6236 BasicBlock *CondBlock = nullptr; 6237 6238 VectorParts Cond; 6239 Loop *VectorLp = nullptr; 6240 if (IfPredicateStore) { 6241 assert(Instr->getParent()->getSinglePredecessor() && 6242 "Only support single predecessor blocks"); 6243 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6244 Instr->getParent()); 6245 VectorLp = LI->getLoopFor(IfBlock); 6246 assert(VectorLp && "Must have a loop for this block"); 6247 } 6248 6249 // For each vector unroll 'part': 6250 for (unsigned Part = 0; Part < UF; ++Part) { 6251 // For each scalar that we create: 6252 6253 // Start an "if (pred) a[i] = ..." block. 6254 Value *Cmp = nullptr; 6255 if (IfPredicateStore) { 6256 if (Cond[Part]->getType()->isVectorTy()) 6257 Cond[Part] = 6258 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6259 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6260 ConstantInt::get(Cond[Part]->getType(), 1)); 6261 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 6262 LoopVectorBody.push_back(CondBlock); 6263 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 6264 // Update Builder with newly created basic block. 6265 Builder.SetInsertPoint(InsertPt); 6266 } 6267 6268 Instruction *Cloned = Instr->clone(); 6269 if (!IsVoidRetTy) 6270 Cloned->setName(Instr->getName() + ".cloned"); 6271 // Replace the operands of the cloned instructions with extracted scalars. 6272 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6273 Value *Op = Params[op][Part]; 6274 Cloned->setOperand(op, Op); 6275 } 6276 6277 // Place the cloned scalar in the new loop. 6278 Builder.Insert(Cloned); 6279 6280 // If the original scalar returns a value we need to place it in a vector 6281 // so that future users will be able to use it. 6282 if (!IsVoidRetTy) 6283 VecResults[Part] = Cloned; 6284 6285 // End if-block. 6286 if (IfPredicateStore) { 6287 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 6288 LoopVectorBody.push_back(NewIfBlock); 6289 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 6290 Builder.SetInsertPoint(InsertPt); 6291 Instruction *OldBr = IfBlock->getTerminator(); 6292 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 6293 OldBr->eraseFromParent(); 6294 IfBlock = NewIfBlock; 6295 } 6296 } 6297 } 6298 6299 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6300 StoreInst *SI = dyn_cast<StoreInst>(Instr); 6301 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6302 6303 return scalarizeInstruction(Instr, IfPredicateStore); 6304 } 6305 6306 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 6307 return Vec; 6308 } 6309 6310 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 6311 return V; 6312 } 6313 6314 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx, 6315 bool Negate) { 6316 // When unrolling and the VF is 1, we only need to add a simple scalar. 6317 Type *ITy = Val->getType(); 6318 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6319 Constant *C = ConstantInt::get(ITy, StartIdx, Negate); 6320 return Builder.CreateAdd(Val, C, "induction"); 6321 } 6322