1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallVector.h"
74 #include "llvm/ADT/Statistic.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/ADT/Twine.h"
77 #include "llvm/ADT/iterator_range.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/BasicAliasAnalysis.h"
80 #include "llvm/Analysis/BlockFrequencyInfo.h"
81 #include "llvm/Analysis/CFG.h"
82 #include "llvm/Analysis/CodeMetrics.h"
83 #include "llvm/Analysis/DemandedBits.h"
84 #include "llvm/Analysis/GlobalsModRef.h"
85 #include "llvm/Analysis/LoopAccessAnalysis.h"
86 #include "llvm/Analysis/LoopAnalysisManager.h"
87 #include "llvm/Analysis/LoopInfo.h"
88 #include "llvm/Analysis/LoopIterator.h"
89 #include "llvm/Analysis/MemorySSA.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/Type.h"
120 #include "llvm/IR/Use.h"
121 #include "llvm/IR/User.h"
122 #include "llvm/IR/Value.h"
123 #include "llvm/IR/ValueHandle.h"
124 #include "llvm/IR/Verifier.h"
125 #include "llvm/InitializePasses.h"
126 #include "llvm/Pass.h"
127 #include "llvm/Support/Casting.h"
128 #include "llvm/Support/CommandLine.h"
129 #include "llvm/Support/Compiler.h"
130 #include "llvm/Support/Debug.h"
131 #include "llvm/Support/ErrorHandling.h"
132 #include "llvm/Support/InstructionCost.h"
133 #include "llvm/Support/MathExtras.h"
134 #include "llvm/Support/raw_ostream.h"
135 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
136 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
137 #include "llvm/Transforms/Utils/LoopSimplify.h"
138 #include "llvm/Transforms/Utils/LoopUtils.h"
139 #include "llvm/Transforms/Utils/LoopVersioning.h"
140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
141 #include "llvm/Transforms/Utils/SizeOpts.h"
142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
143 #include <algorithm>
144 #include <cassert>
145 #include <cstdint>
146 #include <cstdlib>
147 #include <functional>
148 #include <iterator>
149 #include <limits>
150 #include <memory>
151 #include <string>
152 #include <tuple>
153 #include <utility>
154 
155 using namespace llvm;
156 
157 #define LV_NAME "loop-vectorize"
158 #define DEBUG_TYPE LV_NAME
159 
160 #ifndef NDEBUG
161 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
162 #endif
163 
164 /// @{
165 /// Metadata attribute names
166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
167 const char LLVMLoopVectorizeFollowupVectorized[] =
168     "llvm.loop.vectorize.followup_vectorized";
169 const char LLVMLoopVectorizeFollowupEpilogue[] =
170     "llvm.loop.vectorize.followup_epilogue";
171 /// @}
172 
173 STATISTIC(LoopsVectorized, "Number of loops vectorized");
174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
176 
177 static cl::opt<bool> EnableEpilogueVectorization(
178     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
179     cl::desc("Enable vectorization of epilogue loops."));
180 
181 static cl::opt<unsigned> EpilogueVectorizationForceVF(
182     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
183     cl::desc("When epilogue vectorization is enabled, and a value greater than "
184              "1 is specified, forces the given VF for all applicable epilogue "
185              "loops."));
186 
187 static cl::opt<unsigned> EpilogueVectorizationMinVF(
188     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
189     cl::desc("Only loops with vectorization factor equal to or larger than "
190              "the specified value are considered for epilogue vectorization."));
191 
192 /// Loops with a known constant trip count below this number are vectorized only
193 /// if no scalar iteration overheads are incurred.
194 static cl::opt<unsigned> TinyTripCountVectorThreshold(
195     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
196     cl::desc("Loops with a constant trip count that is smaller than this "
197              "value are vectorized only if no scalar iteration overheads "
198              "are incurred."));
199 
200 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
201     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
202     cl::desc("The maximum allowed number of runtime memory checks with a "
203              "vectorize(enable) pragma."));
204 
205 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
206 // that predication is preferred, and this lists all options. I.e., the
207 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
208 // and predicate the instructions accordingly. If tail-folding fails, there are
209 // different fallback strategies depending on these values:
210 namespace PreferPredicateTy {
211   enum Option {
212     ScalarEpilogue = 0,
213     PredicateElseScalarEpilogue,
214     PredicateOrDontVectorize
215   };
216 } // namespace PreferPredicateTy
217 
218 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
219     "prefer-predicate-over-epilogue",
220     cl::init(PreferPredicateTy::ScalarEpilogue),
221     cl::Hidden,
222     cl::desc("Tail-folding and predication preferences over creating a scalar "
223              "epilogue loop."),
224     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
225                          "scalar-epilogue",
226                          "Don't tail-predicate loops, create scalar epilogue"),
227               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
228                          "predicate-else-scalar-epilogue",
229                          "prefer tail-folding, create scalar epilogue if tail "
230                          "folding fails."),
231               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
232                          "predicate-dont-vectorize",
233                          "prefers tail-folding, don't attempt vectorization if "
234                          "tail-folding fails.")));
235 
236 static cl::opt<bool> MaximizeBandwidth(
237     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
238     cl::desc("Maximize bandwidth when selecting vectorization factor which "
239              "will be determined by the smallest type in loop."));
240 
241 static cl::opt<bool> EnableInterleavedMemAccesses(
242     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
243     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
244 
245 /// An interleave-group may need masking if it resides in a block that needs
246 /// predication, or in order to mask away gaps.
247 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
248     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
249     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
250 
251 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
252     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
253     cl::desc("We don't interleave loops with a estimated constant trip count "
254              "below this number"));
255 
256 static cl::opt<unsigned> ForceTargetNumScalarRegs(
257     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
258     cl::desc("A flag that overrides the target's number of scalar registers."));
259 
260 static cl::opt<unsigned> ForceTargetNumVectorRegs(
261     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
262     cl::desc("A flag that overrides the target's number of vector registers."));
263 
264 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
265     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
266     cl::desc("A flag that overrides the target's max interleave factor for "
267              "scalar loops."));
268 
269 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
270     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
271     cl::desc("A flag that overrides the target's max interleave factor for "
272              "vectorized loops."));
273 
274 static cl::opt<unsigned> ForceTargetInstructionCost(
275     "force-target-instruction-cost", cl::init(0), cl::Hidden,
276     cl::desc("A flag that overrides the target's expected cost for "
277              "an instruction to a single constant value. Mostly "
278              "useful for getting consistent testing."));
279 
280 static cl::opt<bool> ForceTargetSupportsScalableVectors(
281     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
282     cl::desc(
283         "Pretend that scalable vectors are supported, even if the target does "
284         "not support them. This flag should only be used for testing."));
285 
286 static cl::opt<unsigned> SmallLoopCost(
287     "small-loop-cost", cl::init(20), cl::Hidden,
288     cl::desc(
289         "The cost of a loop that is considered 'small' by the interleaver."));
290 
291 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
292     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
293     cl::desc("Enable the use of the block frequency analysis to access PGO "
294              "heuristics minimizing code growth in cold regions and being more "
295              "aggressive in hot regions."));
296 
297 // Runtime interleave loops for load/store throughput.
298 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
299     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
300     cl::desc(
301         "Enable runtime interleaving until load/store ports are saturated"));
302 
303 /// Interleave small loops with scalar reductions.
304 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
305     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
306     cl::desc("Enable interleaving for loops with small iteration counts that "
307              "contain scalar reductions to expose ILP."));
308 
309 /// The number of stores in a loop that are allowed to need predication.
310 static cl::opt<unsigned> NumberOfStoresToPredicate(
311     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
312     cl::desc("Max number of stores to be predicated behind an if."));
313 
314 static cl::opt<bool> EnableIndVarRegisterHeur(
315     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
316     cl::desc("Count the induction variable only once when interleaving"));
317 
318 static cl::opt<bool> EnableCondStoresVectorization(
319     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
320     cl::desc("Enable if predication of stores during vectorization."));
321 
322 static cl::opt<unsigned> MaxNestedScalarReductionIC(
323     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
324     cl::desc("The maximum interleave count to use when interleaving a scalar "
325              "reduction in a nested loop."));
326 
327 static cl::opt<bool>
328     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
329                            cl::Hidden,
330                            cl::desc("Prefer in-loop vector reductions, "
331                                     "overriding the targets preference."));
332 
333 cl::opt<bool> EnableStrictReductions(
334     "enable-strict-reductions", cl::init(false), cl::Hidden,
335     cl::desc("Enable the vectorisation of loops with in-order (strict) "
336              "FP reductions"));
337 
338 static cl::opt<bool> PreferPredicatedReductionSelect(
339     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
340     cl::desc(
341         "Prefer predicating a reduction operation over an after loop select."));
342 
343 cl::opt<bool> EnableVPlanNativePath(
344     "enable-vplan-native-path", cl::init(false), cl::Hidden,
345     cl::desc("Enable VPlan-native vectorization path with "
346              "support for outer loop vectorization."));
347 
348 // FIXME: Remove this switch once we have divergence analysis. Currently we
349 // assume divergent non-backedge branches when this switch is true.
350 cl::opt<bool> EnableVPlanPredication(
351     "enable-vplan-predication", cl::init(false), cl::Hidden,
352     cl::desc("Enable VPlan-native vectorization path predicator with "
353              "support for outer loop vectorization."));
354 
355 // This flag enables the stress testing of the VPlan H-CFG construction in the
356 // VPlan-native vectorization path. It must be used in conjuction with
357 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
358 // verification of the H-CFGs built.
359 static cl::opt<bool> VPlanBuildStressTest(
360     "vplan-build-stress-test", cl::init(false), cl::Hidden,
361     cl::desc(
362         "Build VPlan for every supported loop nest in the function and bail "
363         "out right after the build (stress test the VPlan H-CFG construction "
364         "in the VPlan-native vectorization path)."));
365 
366 cl::opt<bool> llvm::EnableLoopInterleaving(
367     "interleave-loops", cl::init(true), cl::Hidden,
368     cl::desc("Enable loop interleaving in Loop vectorization passes"));
369 cl::opt<bool> llvm::EnableLoopVectorization(
370     "vectorize-loops", cl::init(true), cl::Hidden,
371     cl::desc("Run the Loop vectorization passes"));
372 
373 cl::opt<bool> PrintVPlansInDotFormat(
374     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
375     cl::desc("Use dot format instead of plain text when dumping VPlans"));
376 
377 /// A helper function that returns the type of loaded or stored value.
378 static Type *getMemInstValueType(Value *I) {
379   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
380          "Expected Load or Store instruction");
381   if (auto *LI = dyn_cast<LoadInst>(I))
382     return LI->getType();
383   return cast<StoreInst>(I)->getValueOperand()->getType();
384 }
385 
386 /// A helper function that returns true if the given type is irregular. The
387 /// type is irregular if its allocated size doesn't equal the store size of an
388 /// element of the corresponding vector type.
389 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
390   // Determine if an array of N elements of type Ty is "bitcast compatible"
391   // with a <N x Ty> vector.
392   // This is only true if there is no padding between the array elements.
393   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
394 }
395 
396 /// A helper function that returns the reciprocal of the block probability of
397 /// predicated blocks. If we return X, we are assuming the predicated block
398 /// will execute once for every X iterations of the loop header.
399 ///
400 /// TODO: We should use actual block probability here, if available. Currently,
401 ///       we always assume predicated blocks have a 50% chance of executing.
402 static unsigned getReciprocalPredBlockProb() { return 2; }
403 
404 /// A helper function that returns an integer or floating-point constant with
405 /// value C.
406 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
407   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
408                            : ConstantFP::get(Ty, C);
409 }
410 
411 /// Returns "best known" trip count for the specified loop \p L as defined by
412 /// the following procedure:
413 ///   1) Returns exact trip count if it is known.
414 ///   2) Returns expected trip count according to profile data if any.
415 ///   3) Returns upper bound estimate if it is known.
416 ///   4) Returns None if all of the above failed.
417 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
418   // Check if exact trip count is known.
419   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
420     return ExpectedTC;
421 
422   // Check if there is an expected trip count available from profile data.
423   if (LoopVectorizeWithBlockFrequency)
424     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
425       return EstimatedTC;
426 
427   // Check if upper bound estimate is known.
428   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
429     return ExpectedTC;
430 
431   return None;
432 }
433 
434 // Forward declare GeneratedRTChecks.
435 class GeneratedRTChecks;
436 
437 namespace llvm {
438 
439 /// InnerLoopVectorizer vectorizes loops which contain only one basic
440 /// block to a specified vectorization factor (VF).
441 /// This class performs the widening of scalars into vectors, or multiple
442 /// scalars. This class also implements the following features:
443 /// * It inserts an epilogue loop for handling loops that don't have iteration
444 ///   counts that are known to be a multiple of the vectorization factor.
445 /// * It handles the code generation for reduction variables.
446 /// * Scalarization (implementation using scalars) of un-vectorizable
447 ///   instructions.
448 /// InnerLoopVectorizer does not perform any vectorization-legality
449 /// checks, and relies on the caller to check for the different legality
450 /// aspects. The InnerLoopVectorizer relies on the
451 /// LoopVectorizationLegality class to provide information about the induction
452 /// and reduction variables that were found to a given vectorization factor.
453 class InnerLoopVectorizer {
454 public:
455   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
456                       LoopInfo *LI, DominatorTree *DT,
457                       const TargetLibraryInfo *TLI,
458                       const TargetTransformInfo *TTI, AssumptionCache *AC,
459                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
460                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
461                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
462                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
463       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
464         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
465         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
466         PSI(PSI), RTChecks(RTChecks) {
467     // Query this against the original loop and save it here because the profile
468     // of the original loop header may change as the transformation happens.
469     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
470         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
471   }
472 
473   virtual ~InnerLoopVectorizer() = default;
474 
475   /// Create a new empty loop that will contain vectorized instructions later
476   /// on, while the old loop will be used as the scalar remainder. Control flow
477   /// is generated around the vectorized (and scalar epilogue) loops consisting
478   /// of various checks and bypasses. Return the pre-header block of the new
479   /// loop.
480   /// In the case of epilogue vectorization, this function is overriden to
481   /// handle the more complex control flow around the loops.
482   virtual BasicBlock *createVectorizedLoopSkeleton();
483 
484   /// Widen a single instruction within the innermost loop.
485   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
486                         VPTransformState &State);
487 
488   /// Widen a single call instruction within the innermost loop.
489   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
490                             VPTransformState &State);
491 
492   /// Widen a single select instruction within the innermost loop.
493   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
494                               bool InvariantCond, VPTransformState &State);
495 
496   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
497   void fixVectorizedLoop(VPTransformState &State);
498 
499   // Return true if any runtime check is added.
500   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
501 
502   /// A type for vectorized values in the new loop. Each value from the
503   /// original loop, when vectorized, is represented by UF vector values in the
504   /// new unrolled loop, where UF is the unroll factor.
505   using VectorParts = SmallVector<Value *, 2>;
506 
507   /// Vectorize a single GetElementPtrInst based on information gathered and
508   /// decisions taken during planning.
509   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
510                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
511                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
512 
513   /// Vectorize a single PHINode in a block. This method handles the induction
514   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
515   /// arbitrary length vectors.
516   void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc,
517                            VPValue *StartV, VPValue *Def,
518                            VPTransformState &State);
519 
520   /// A helper function to scalarize a single Instruction in the innermost loop.
521   /// Generates a sequence of scalar instances for each lane between \p MinLane
522   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
523   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
524   /// Instr's operands.
525   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
526                             const VPIteration &Instance, bool IfPredicateInstr,
527                             VPTransformState &State);
528 
529   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
530   /// is provided, the integer induction variable will first be truncated to
531   /// the corresponding type.
532   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
533                              VPValue *Def, VPValue *CastDef,
534                              VPTransformState &State);
535 
536   /// Construct the vector value of a scalarized value \p V one lane at a time.
537   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
538                                  VPTransformState &State);
539 
540   /// Try to vectorize interleaved access group \p Group with the base address
541   /// given in \p Addr, optionally masking the vector operations if \p
542   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
543   /// values in the vectorized loop.
544   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
545                                 ArrayRef<VPValue *> VPDefs,
546                                 VPTransformState &State, VPValue *Addr,
547                                 ArrayRef<VPValue *> StoredValues,
548                                 VPValue *BlockInMask = nullptr);
549 
550   /// Vectorize Load and Store instructions with the base address given in \p
551   /// Addr, optionally masking the vector operations if \p BlockInMask is
552   /// non-null. Use \p State to translate given VPValues to IR values in the
553   /// vectorized loop.
554   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
555                                   VPValue *Def, VPValue *Addr,
556                                   VPValue *StoredValue, VPValue *BlockInMask);
557 
558   /// Set the debug location in the builder using the debug location in
559   /// the instruction.
560   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
561 
562   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
563   void fixNonInductionPHIs(VPTransformState &State);
564 
565   /// Create a broadcast instruction. This method generates a broadcast
566   /// instruction (shuffle) for loop invariant values and for the induction
567   /// value. If this is the induction variable then we extend it to N, N+1, ...
568   /// this is needed because each iteration in the loop corresponds to a SIMD
569   /// element.
570   virtual Value *getBroadcastInstrs(Value *V);
571 
572 protected:
573   friend class LoopVectorizationPlanner;
574 
575   /// A small list of PHINodes.
576   using PhiVector = SmallVector<PHINode *, 4>;
577 
578   /// A type for scalarized values in the new loop. Each value from the
579   /// original loop, when scalarized, is represented by UF x VF scalar values
580   /// in the new unrolled loop, where UF is the unroll factor and VF is the
581   /// vectorization factor.
582   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
583 
584   /// Set up the values of the IVs correctly when exiting the vector loop.
585   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
586                     Value *CountRoundDown, Value *EndValue,
587                     BasicBlock *MiddleBlock);
588 
589   /// Create a new induction variable inside L.
590   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
591                                    Value *Step, Instruction *DL);
592 
593   /// Handle all cross-iteration phis in the header.
594   void fixCrossIterationPHIs(VPTransformState &State);
595 
596   /// Fix a first-order recurrence. This is the second phase of vectorizing
597   /// this phi node.
598   void fixFirstOrderRecurrence(PHINode *Phi, VPTransformState &State);
599 
600   /// Fix a reduction cross-iteration phi. This is the second phase of
601   /// vectorizing this phi node.
602   void fixReduction(PHINode *Phi, VPTransformState &State);
603 
604   /// Clear NSW/NUW flags from reduction instructions if necessary.
605   void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc,
606                                VPTransformState &State);
607 
608   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
609   /// means we need to add the appropriate incoming value from the middle
610   /// block as exiting edges from the scalar epilogue loop (if present) are
611   /// already in place, and we exit the vector loop exclusively to the middle
612   /// block.
613   void fixLCSSAPHIs(VPTransformState &State);
614 
615   /// Iteratively sink the scalarized operands of a predicated instruction into
616   /// the block that was created for it.
617   void sinkScalarOperands(Instruction *PredInst);
618 
619   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
620   /// represented as.
621   void truncateToMinimalBitwidths(VPTransformState &State);
622 
623   /// This function adds
624   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
625   /// to each vector element of Val. The sequence starts at StartIndex.
626   /// \p Opcode is relevant for FP induction variable.
627   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
628                                Instruction::BinaryOps Opcode =
629                                Instruction::BinaryOpsEnd);
630 
631   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
632   /// variable on which to base the steps, \p Step is the size of the step, and
633   /// \p EntryVal is the value from the original loop that maps to the steps.
634   /// Note that \p EntryVal doesn't have to be an induction variable - it
635   /// can also be a truncate instruction.
636   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
637                         const InductionDescriptor &ID, VPValue *Def,
638                         VPValue *CastDef, VPTransformState &State);
639 
640   /// Create a vector induction phi node based on an existing scalar one. \p
641   /// EntryVal is the value from the original loop that maps to the vector phi
642   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
643   /// truncate instruction, instead of widening the original IV, we widen a
644   /// version of the IV truncated to \p EntryVal's type.
645   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
646                                        Value *Step, Value *Start,
647                                        Instruction *EntryVal, VPValue *Def,
648                                        VPValue *CastDef,
649                                        VPTransformState &State);
650 
651   /// Returns true if an instruction \p I should be scalarized instead of
652   /// vectorized for the chosen vectorization factor.
653   bool shouldScalarizeInstruction(Instruction *I) const;
654 
655   /// Returns true if we should generate a scalar version of \p IV.
656   bool needsScalarInduction(Instruction *IV) const;
657 
658   /// If there is a cast involved in the induction variable \p ID, which should
659   /// be ignored in the vectorized loop body, this function records the
660   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
661   /// cast. We had already proved that the casted Phi is equal to the uncasted
662   /// Phi in the vectorized loop (under a runtime guard), and therefore
663   /// there is no need to vectorize the cast - the same value can be used in the
664   /// vector loop for both the Phi and the cast.
665   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
666   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
667   ///
668   /// \p EntryVal is the value from the original loop that maps to the vector
669   /// phi node and is used to distinguish what is the IV currently being
670   /// processed - original one (if \p EntryVal is a phi corresponding to the
671   /// original IV) or the "newly-created" one based on the proof mentioned above
672   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
673   /// latter case \p EntryVal is a TruncInst and we must not record anything for
674   /// that IV, but it's error-prone to expect callers of this routine to care
675   /// about that, hence this explicit parameter.
676   void recordVectorLoopValueForInductionCast(
677       const InductionDescriptor &ID, const Instruction *EntryVal,
678       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
679       unsigned Part, unsigned Lane = UINT_MAX);
680 
681   /// Generate a shuffle sequence that will reverse the vector Vec.
682   virtual Value *reverseVector(Value *Vec);
683 
684   /// Returns (and creates if needed) the original loop trip count.
685   Value *getOrCreateTripCount(Loop *NewLoop);
686 
687   /// Returns (and creates if needed) the trip count of the widened loop.
688   Value *getOrCreateVectorTripCount(Loop *NewLoop);
689 
690   /// Returns a bitcasted value to the requested vector type.
691   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
692   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
693                                 const DataLayout &DL);
694 
695   /// Emit a bypass check to see if the vector trip count is zero, including if
696   /// it overflows.
697   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
698 
699   /// Emit a bypass check to see if all of the SCEV assumptions we've
700   /// had to make are correct. Returns the block containing the checks or
701   /// nullptr if no checks have been added.
702   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
703 
704   /// Emit bypass checks to check any memory assumptions we may have made.
705   /// Returns the block containing the checks or nullptr if no checks have been
706   /// added.
707   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
708 
709   /// Compute the transformed value of Index at offset StartValue using step
710   /// StepValue.
711   /// For integer induction, returns StartValue + Index * StepValue.
712   /// For pointer induction, returns StartValue[Index * StepValue].
713   /// FIXME: The newly created binary instructions should contain nsw/nuw
714   /// flags, which can be found from the original scalar operations.
715   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
716                               const DataLayout &DL,
717                               const InductionDescriptor &ID) const;
718 
719   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
720   /// vector loop preheader, middle block and scalar preheader. Also
721   /// allocate a loop object for the new vector loop and return it.
722   Loop *createVectorLoopSkeleton(StringRef Prefix);
723 
724   /// Create new phi nodes for the induction variables to resume iteration count
725   /// in the scalar epilogue, from where the vectorized loop left off (given by
726   /// \p VectorTripCount).
727   /// In cases where the loop skeleton is more complicated (eg. epilogue
728   /// vectorization) and the resume values can come from an additional bypass
729   /// block, the \p AdditionalBypass pair provides information about the bypass
730   /// block and the end value on the edge from bypass to this loop.
731   void createInductionResumeValues(
732       Loop *L, Value *VectorTripCount,
733       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
734 
735   /// Complete the loop skeleton by adding debug MDs, creating appropriate
736   /// conditional branches in the middle block, preparing the builder and
737   /// running the verifier. Take in the vector loop \p L as argument, and return
738   /// the preheader of the completed vector loop.
739   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
740 
741   /// Add additional metadata to \p To that was not present on \p Orig.
742   ///
743   /// Currently this is used to add the noalias annotations based on the
744   /// inserted memchecks.  Use this for instructions that are *cloned* into the
745   /// vector loop.
746   void addNewMetadata(Instruction *To, const Instruction *Orig);
747 
748   /// Add metadata from one instruction to another.
749   ///
750   /// This includes both the original MDs from \p From and additional ones (\see
751   /// addNewMetadata).  Use this for *newly created* instructions in the vector
752   /// loop.
753   void addMetadata(Instruction *To, Instruction *From);
754 
755   /// Similar to the previous function but it adds the metadata to a
756   /// vector of instructions.
757   void addMetadata(ArrayRef<Value *> To, Instruction *From);
758 
759   /// Allow subclasses to override and print debug traces before/after vplan
760   /// execution, when trace information is requested.
761   virtual void printDebugTracesAtStart(){};
762   virtual void printDebugTracesAtEnd(){};
763 
764   /// The original loop.
765   Loop *OrigLoop;
766 
767   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
768   /// dynamic knowledge to simplify SCEV expressions and converts them to a
769   /// more usable form.
770   PredicatedScalarEvolution &PSE;
771 
772   /// Loop Info.
773   LoopInfo *LI;
774 
775   /// Dominator Tree.
776   DominatorTree *DT;
777 
778   /// Alias Analysis.
779   AAResults *AA;
780 
781   /// Target Library Info.
782   const TargetLibraryInfo *TLI;
783 
784   /// Target Transform Info.
785   const TargetTransformInfo *TTI;
786 
787   /// Assumption Cache.
788   AssumptionCache *AC;
789 
790   /// Interface to emit optimization remarks.
791   OptimizationRemarkEmitter *ORE;
792 
793   /// LoopVersioning.  It's only set up (non-null) if memchecks were
794   /// used.
795   ///
796   /// This is currently only used to add no-alias metadata based on the
797   /// memchecks.  The actually versioning is performed manually.
798   std::unique_ptr<LoopVersioning> LVer;
799 
800   /// The vectorization SIMD factor to use. Each vector will have this many
801   /// vector elements.
802   ElementCount VF;
803 
804   /// The vectorization unroll factor to use. Each scalar is vectorized to this
805   /// many different vector instructions.
806   unsigned UF;
807 
808   /// The builder that we use
809   IRBuilder<> Builder;
810 
811   // --- Vectorization state ---
812 
813   /// The vector-loop preheader.
814   BasicBlock *LoopVectorPreHeader;
815 
816   /// The scalar-loop preheader.
817   BasicBlock *LoopScalarPreHeader;
818 
819   /// Middle Block between the vector and the scalar.
820   BasicBlock *LoopMiddleBlock;
821 
822   /// The (unique) ExitBlock of the scalar loop.  Note that
823   /// there can be multiple exiting edges reaching this block.
824   BasicBlock *LoopExitBlock;
825 
826   /// The vector loop body.
827   BasicBlock *LoopVectorBody;
828 
829   /// The scalar loop body.
830   BasicBlock *LoopScalarBody;
831 
832   /// A list of all bypass blocks. The first block is the entry of the loop.
833   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
834 
835   /// The new Induction variable which was added to the new block.
836   PHINode *Induction = nullptr;
837 
838   /// The induction variable of the old basic block.
839   PHINode *OldInduction = nullptr;
840 
841   /// Store instructions that were predicated.
842   SmallVector<Instruction *, 4> PredicatedInstructions;
843 
844   /// Trip count of the original loop.
845   Value *TripCount = nullptr;
846 
847   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
848   Value *VectorTripCount = nullptr;
849 
850   /// The legality analysis.
851   LoopVectorizationLegality *Legal;
852 
853   /// The profitablity analysis.
854   LoopVectorizationCostModel *Cost;
855 
856   // Record whether runtime checks are added.
857   bool AddedSafetyChecks = false;
858 
859   // Holds the end values for each induction variable. We save the end values
860   // so we can later fix-up the external users of the induction variables.
861   DenseMap<PHINode *, Value *> IVEndValues;
862 
863   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
864   // fixed up at the end of vector code generation.
865   SmallVector<PHINode *, 8> OrigPHIsToFix;
866 
867   /// BFI and PSI are used to check for profile guided size optimizations.
868   BlockFrequencyInfo *BFI;
869   ProfileSummaryInfo *PSI;
870 
871   // Whether this loop should be optimized for size based on profile guided size
872   // optimizatios.
873   bool OptForSizeBasedOnProfile;
874 
875   /// Structure to hold information about generated runtime checks, responsible
876   /// for cleaning the checks, if vectorization turns out unprofitable.
877   GeneratedRTChecks &RTChecks;
878 };
879 
880 class InnerLoopUnroller : public InnerLoopVectorizer {
881 public:
882   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
883                     LoopInfo *LI, DominatorTree *DT,
884                     const TargetLibraryInfo *TLI,
885                     const TargetTransformInfo *TTI, AssumptionCache *AC,
886                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
887                     LoopVectorizationLegality *LVL,
888                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
889                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
890       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
891                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
892                             BFI, PSI, Check) {}
893 
894 private:
895   Value *getBroadcastInstrs(Value *V) override;
896   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
897                        Instruction::BinaryOps Opcode =
898                        Instruction::BinaryOpsEnd) override;
899   Value *reverseVector(Value *Vec) override;
900 };
901 
902 /// Encapsulate information regarding vectorization of a loop and its epilogue.
903 /// This information is meant to be updated and used across two stages of
904 /// epilogue vectorization.
905 struct EpilogueLoopVectorizationInfo {
906   ElementCount MainLoopVF = ElementCount::getFixed(0);
907   unsigned MainLoopUF = 0;
908   ElementCount EpilogueVF = ElementCount::getFixed(0);
909   unsigned EpilogueUF = 0;
910   BasicBlock *MainLoopIterationCountCheck = nullptr;
911   BasicBlock *EpilogueIterationCountCheck = nullptr;
912   BasicBlock *SCEVSafetyCheck = nullptr;
913   BasicBlock *MemSafetyCheck = nullptr;
914   Value *TripCount = nullptr;
915   Value *VectorTripCount = nullptr;
916 
917   EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF,
918                                 unsigned EUF)
919       : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF),
920         EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) {
921     assert(EUF == 1 &&
922            "A high UF for the epilogue loop is likely not beneficial.");
923   }
924 };
925 
926 /// An extension of the inner loop vectorizer that creates a skeleton for a
927 /// vectorized loop that has its epilogue (residual) also vectorized.
928 /// The idea is to run the vplan on a given loop twice, firstly to setup the
929 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
930 /// from the first step and vectorize the epilogue.  This is achieved by
931 /// deriving two concrete strategy classes from this base class and invoking
932 /// them in succession from the loop vectorizer planner.
933 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
934 public:
935   InnerLoopAndEpilogueVectorizer(
936       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
937       DominatorTree *DT, const TargetLibraryInfo *TLI,
938       const TargetTransformInfo *TTI, AssumptionCache *AC,
939       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
940       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
941       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
942       GeneratedRTChecks &Checks)
943       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
944                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
945                             Checks),
946         EPI(EPI) {}
947 
948   // Override this function to handle the more complex control flow around the
949   // three loops.
950   BasicBlock *createVectorizedLoopSkeleton() final override {
951     return createEpilogueVectorizedLoopSkeleton();
952   }
953 
954   /// The interface for creating a vectorized skeleton using one of two
955   /// different strategies, each corresponding to one execution of the vplan
956   /// as described above.
957   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
958 
959   /// Holds and updates state information required to vectorize the main loop
960   /// and its epilogue in two separate passes. This setup helps us avoid
961   /// regenerating and recomputing runtime safety checks. It also helps us to
962   /// shorten the iteration-count-check path length for the cases where the
963   /// iteration count of the loop is so small that the main vector loop is
964   /// completely skipped.
965   EpilogueLoopVectorizationInfo &EPI;
966 };
967 
968 /// A specialized derived class of inner loop vectorizer that performs
969 /// vectorization of *main* loops in the process of vectorizing loops and their
970 /// epilogues.
971 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
972 public:
973   EpilogueVectorizerMainLoop(
974       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
975       DominatorTree *DT, const TargetLibraryInfo *TLI,
976       const TargetTransformInfo *TTI, AssumptionCache *AC,
977       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
978       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
979       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
980       GeneratedRTChecks &Check)
981       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
982                                        EPI, LVL, CM, BFI, PSI, Check) {}
983   /// Implements the interface for creating a vectorized skeleton using the
984   /// *main loop* strategy (ie the first pass of vplan execution).
985   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
986 
987 protected:
988   /// Emits an iteration count bypass check once for the main loop (when \p
989   /// ForEpilogue is false) and once for the epilogue loop (when \p
990   /// ForEpilogue is true).
991   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
992                                              bool ForEpilogue);
993   void printDebugTracesAtStart() override;
994   void printDebugTracesAtEnd() override;
995 };
996 
997 // A specialized derived class of inner loop vectorizer that performs
998 // vectorization of *epilogue* loops in the process of vectorizing loops and
999 // their epilogues.
1000 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
1001 public:
1002   EpilogueVectorizerEpilogueLoop(
1003       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
1004       DominatorTree *DT, const TargetLibraryInfo *TLI,
1005       const TargetTransformInfo *TTI, AssumptionCache *AC,
1006       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1007       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1008       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1009       GeneratedRTChecks &Checks)
1010       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1011                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1012   /// Implements the interface for creating a vectorized skeleton using the
1013   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1014   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1015 
1016 protected:
1017   /// Emits an iteration count bypass check after the main vector loop has
1018   /// finished to see if there are any iterations left to execute by either
1019   /// the vector epilogue or the scalar epilogue.
1020   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1021                                                       BasicBlock *Bypass,
1022                                                       BasicBlock *Insert);
1023   void printDebugTracesAtStart() override;
1024   void printDebugTracesAtEnd() override;
1025 };
1026 } // end namespace llvm
1027 
1028 /// Look for a meaningful debug location on the instruction or it's
1029 /// operands.
1030 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1031   if (!I)
1032     return I;
1033 
1034   DebugLoc Empty;
1035   if (I->getDebugLoc() != Empty)
1036     return I;
1037 
1038   for (Use &Op : I->operands()) {
1039     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1040       if (OpInst->getDebugLoc() != Empty)
1041         return OpInst;
1042   }
1043 
1044   return I;
1045 }
1046 
1047 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
1048   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
1049     const DILocation *DIL = Inst->getDebugLoc();
1050     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1051         !isa<DbgInfoIntrinsic>(Inst)) {
1052       assert(!VF.isScalable() && "scalable vectors not yet supported.");
1053       auto NewDIL =
1054           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1055       if (NewDIL)
1056         B.SetCurrentDebugLocation(NewDIL.getValue());
1057       else
1058         LLVM_DEBUG(dbgs()
1059                    << "Failed to create new discriminator: "
1060                    << DIL->getFilename() << " Line: " << DIL->getLine());
1061     }
1062     else
1063       B.SetCurrentDebugLocation(DIL);
1064   } else
1065     B.SetCurrentDebugLocation(DebugLoc());
1066 }
1067 
1068 /// Write a record \p DebugMsg about vectorization failure to the debug
1069 /// output stream. If \p I is passed, it is an instruction that prevents
1070 /// vectorization.
1071 #ifndef NDEBUG
1072 static void debugVectorizationFailure(const StringRef DebugMsg,
1073     Instruction *I) {
1074   dbgs() << "LV: Not vectorizing: " << DebugMsg;
1075   if (I != nullptr)
1076     dbgs() << " " << *I;
1077   else
1078     dbgs() << '.';
1079   dbgs() << '\n';
1080 }
1081 #endif
1082 
1083 /// Create an analysis remark that explains why vectorization failed
1084 ///
1085 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1086 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1087 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1088 /// the location of the remark.  \return the remark object that can be
1089 /// streamed to.
1090 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1091     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1092   Value *CodeRegion = TheLoop->getHeader();
1093   DebugLoc DL = TheLoop->getStartLoc();
1094 
1095   if (I) {
1096     CodeRegion = I->getParent();
1097     // If there is no debug location attached to the instruction, revert back to
1098     // using the loop's.
1099     if (I->getDebugLoc())
1100       DL = I->getDebugLoc();
1101   }
1102 
1103   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
1104   R << "loop not vectorized: ";
1105   return R;
1106 }
1107 
1108 /// Return a value for Step multiplied by VF.
1109 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1110   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1111   Constant *StepVal = ConstantInt::get(
1112       Step->getType(),
1113       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1114   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1115 }
1116 
1117 namespace llvm {
1118 
1119 /// Return the runtime value for VF.
1120 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1121   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1122   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1123 }
1124 
1125 void reportVectorizationFailure(const StringRef DebugMsg,
1126     const StringRef OREMsg, const StringRef ORETag,
1127     OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) {
1128   LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I));
1129   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1130   ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(),
1131                 ORETag, TheLoop, I) << OREMsg);
1132 }
1133 
1134 } // end namespace llvm
1135 
1136 #ifndef NDEBUG
1137 /// \return string containing a file name and a line # for the given loop.
1138 static std::string getDebugLocString(const Loop *L) {
1139   std::string Result;
1140   if (L) {
1141     raw_string_ostream OS(Result);
1142     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1143       LoopDbgLoc.print(OS);
1144     else
1145       // Just print the module name.
1146       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1147     OS.flush();
1148   }
1149   return Result;
1150 }
1151 #endif
1152 
1153 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1154                                          const Instruction *Orig) {
1155   // If the loop was versioned with memchecks, add the corresponding no-alias
1156   // metadata.
1157   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1158     LVer->annotateInstWithNoAlias(To, Orig);
1159 }
1160 
1161 void InnerLoopVectorizer::addMetadata(Instruction *To,
1162                                       Instruction *From) {
1163   propagateMetadata(To, From);
1164   addNewMetadata(To, From);
1165 }
1166 
1167 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1168                                       Instruction *From) {
1169   for (Value *V : To) {
1170     if (Instruction *I = dyn_cast<Instruction>(V))
1171       addMetadata(I, From);
1172   }
1173 }
1174 
1175 namespace llvm {
1176 
1177 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1178 // lowered.
1179 enum ScalarEpilogueLowering {
1180 
1181   // The default: allowing scalar epilogues.
1182   CM_ScalarEpilogueAllowed,
1183 
1184   // Vectorization with OptForSize: don't allow epilogues.
1185   CM_ScalarEpilogueNotAllowedOptSize,
1186 
1187   // A special case of vectorisation with OptForSize: loops with a very small
1188   // trip count are considered for vectorization under OptForSize, thereby
1189   // making sure the cost of their loop body is dominant, free of runtime
1190   // guards and scalar iteration overheads.
1191   CM_ScalarEpilogueNotAllowedLowTripLoop,
1192 
1193   // Loop hint predicate indicating an epilogue is undesired.
1194   CM_ScalarEpilogueNotNeededUsePredicate,
1195 
1196   // Directive indicating we must either tail fold or not vectorize
1197   CM_ScalarEpilogueNotAllowedUsePredicate
1198 };
1199 
1200 /// LoopVectorizationCostModel - estimates the expected speedups due to
1201 /// vectorization.
1202 /// In many cases vectorization is not profitable. This can happen because of
1203 /// a number of reasons. In this class we mainly attempt to predict the
1204 /// expected speedup/slowdowns due to the supported instruction set. We use the
1205 /// TargetTransformInfo to query the different backends for the cost of
1206 /// different operations.
1207 class LoopVectorizationCostModel {
1208 public:
1209   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1210                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1211                              LoopVectorizationLegality *Legal,
1212                              const TargetTransformInfo &TTI,
1213                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1214                              AssumptionCache *AC,
1215                              OptimizationRemarkEmitter *ORE, const Function *F,
1216                              const LoopVectorizeHints *Hints,
1217                              InterleavedAccessInfo &IAI)
1218       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1219         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1220         Hints(Hints), InterleaveInfo(IAI) {}
1221 
1222   /// \return An upper bound for the vectorization factor, or None if
1223   /// vectorization and interleaving should be avoided up front.
1224   Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC);
1225 
1226   /// \return True if runtime checks are required for vectorization, and false
1227   /// otherwise.
1228   bool runtimeChecksRequired();
1229 
1230   /// \return The most profitable vectorization factor and the cost of that VF.
1231   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
1232   /// then this vectorization factor will be selected if vectorization is
1233   /// possible.
1234   VectorizationFactor selectVectorizationFactor(ElementCount MaxVF);
1235   VectorizationFactor
1236   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1237                                     const LoopVectorizationPlanner &LVP);
1238 
1239   /// Setup cost-based decisions for user vectorization factor.
1240   void selectUserVectorizationFactor(ElementCount UserVF) {
1241     collectUniformsAndScalars(UserVF);
1242     collectInstsToScalarize(UserVF);
1243   }
1244 
1245   /// \return The size (in bits) of the smallest and widest types in the code
1246   /// that needs to be vectorized. We ignore values that remain scalar such as
1247   /// 64 bit loop indices.
1248   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1249 
1250   /// \return The desired interleave count.
1251   /// If interleave count has been specified by metadata it will be returned.
1252   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1253   /// are the selected vectorization factor and the cost of the selected VF.
1254   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1255 
1256   /// Memory access instruction may be vectorized in more than one way.
1257   /// Form of instruction after vectorization depends on cost.
1258   /// This function takes cost-based decisions for Load/Store instructions
1259   /// and collects them in a map. This decisions map is used for building
1260   /// the lists of loop-uniform and loop-scalar instructions.
1261   /// The calculated cost is saved with widening decision in order to
1262   /// avoid redundant calculations.
1263   void setCostBasedWideningDecision(ElementCount VF);
1264 
1265   /// A struct that represents some properties of the register usage
1266   /// of a loop.
1267   struct RegisterUsage {
1268     /// Holds the number of loop invariant values that are used in the loop.
1269     /// The key is ClassID of target-provided register class.
1270     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1271     /// Holds the maximum number of concurrent live intervals in the loop.
1272     /// The key is ClassID of target-provided register class.
1273     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1274   };
1275 
1276   /// \return Returns information about the register usages of the loop for the
1277   /// given vectorization factors.
1278   SmallVector<RegisterUsage, 8>
1279   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1280 
1281   /// Collect values we want to ignore in the cost model.
1282   void collectValuesToIgnore();
1283 
1284   /// Split reductions into those that happen in the loop, and those that happen
1285   /// outside. In loop reductions are collected into InLoopReductionChains.
1286   void collectInLoopReductions();
1287 
1288   /// \returns The smallest bitwidth each instruction can be represented with.
1289   /// The vector equivalents of these instructions should be truncated to this
1290   /// type.
1291   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1292     return MinBWs;
1293   }
1294 
1295   /// \returns True if it is more profitable to scalarize instruction \p I for
1296   /// vectorization factor \p VF.
1297   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1298     assert(VF.isVector() &&
1299            "Profitable to scalarize relevant only for VF > 1.");
1300 
1301     // Cost model is not run in the VPlan-native path - return conservative
1302     // result until this changes.
1303     if (EnableVPlanNativePath)
1304       return false;
1305 
1306     auto Scalars = InstsToScalarize.find(VF);
1307     assert(Scalars != InstsToScalarize.end() &&
1308            "VF not yet analyzed for scalarization profitability");
1309     return Scalars->second.find(I) != Scalars->second.end();
1310   }
1311 
1312   /// Returns true if \p I is known to be uniform after vectorization.
1313   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1314     if (VF.isScalar())
1315       return true;
1316 
1317     // Cost model is not run in the VPlan-native path - return conservative
1318     // result until this changes.
1319     if (EnableVPlanNativePath)
1320       return false;
1321 
1322     auto UniformsPerVF = Uniforms.find(VF);
1323     assert(UniformsPerVF != Uniforms.end() &&
1324            "VF not yet analyzed for uniformity");
1325     return UniformsPerVF->second.count(I);
1326   }
1327 
1328   /// Returns true if \p I is known to be scalar after vectorization.
1329   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1330     if (VF.isScalar())
1331       return true;
1332 
1333     // Cost model is not run in the VPlan-native path - return conservative
1334     // result until this changes.
1335     if (EnableVPlanNativePath)
1336       return false;
1337 
1338     auto ScalarsPerVF = Scalars.find(VF);
1339     assert(ScalarsPerVF != Scalars.end() &&
1340            "Scalar values are not calculated for VF");
1341     return ScalarsPerVF->second.count(I);
1342   }
1343 
1344   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1345   /// for vectorization factor \p VF.
1346   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1347     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1348            !isProfitableToScalarize(I, VF) &&
1349            !isScalarAfterVectorization(I, VF);
1350   }
1351 
1352   /// Decision that was taken during cost calculation for memory instruction.
1353   enum InstWidening {
1354     CM_Unknown,
1355     CM_Widen,         // For consecutive accesses with stride +1.
1356     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1357     CM_Interleave,
1358     CM_GatherScatter,
1359     CM_Scalarize
1360   };
1361 
1362   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1363   /// instruction \p I and vector width \p VF.
1364   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1365                            InstructionCost Cost) {
1366     assert(VF.isVector() && "Expected VF >=2");
1367     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1368   }
1369 
1370   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1371   /// interleaving group \p Grp and vector width \p VF.
1372   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1373                            ElementCount VF, InstWidening W,
1374                            InstructionCost Cost) {
1375     assert(VF.isVector() && "Expected VF >=2");
1376     /// Broadcast this decicion to all instructions inside the group.
1377     /// But the cost will be assigned to one instruction only.
1378     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1379       if (auto *I = Grp->getMember(i)) {
1380         if (Grp->getInsertPos() == I)
1381           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1382         else
1383           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1384       }
1385     }
1386   }
1387 
1388   /// Return the cost model decision for the given instruction \p I and vector
1389   /// width \p VF. Return CM_Unknown if this instruction did not pass
1390   /// through the cost modeling.
1391   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1392     assert(VF.isVector() && "Expected VF to be a vector VF");
1393     // Cost model is not run in the VPlan-native path - return conservative
1394     // result until this changes.
1395     if (EnableVPlanNativePath)
1396       return CM_GatherScatter;
1397 
1398     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1399     auto Itr = WideningDecisions.find(InstOnVF);
1400     if (Itr == WideningDecisions.end())
1401       return CM_Unknown;
1402     return Itr->second.first;
1403   }
1404 
1405   /// Return the vectorization cost for the given instruction \p I and vector
1406   /// width \p VF.
1407   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1408     assert(VF.isVector() && "Expected VF >=2");
1409     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1410     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1411            "The cost is not calculated");
1412     return WideningDecisions[InstOnVF].second;
1413   }
1414 
1415   /// Return True if instruction \p I is an optimizable truncate whose operand
1416   /// is an induction variable. Such a truncate will be removed by adding a new
1417   /// induction variable with the destination type.
1418   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1419     // If the instruction is not a truncate, return false.
1420     auto *Trunc = dyn_cast<TruncInst>(I);
1421     if (!Trunc)
1422       return false;
1423 
1424     // Get the source and destination types of the truncate.
1425     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1426     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1427 
1428     // If the truncate is free for the given types, return false. Replacing a
1429     // free truncate with an induction variable would add an induction variable
1430     // update instruction to each iteration of the loop. We exclude from this
1431     // check the primary induction variable since it will need an update
1432     // instruction regardless.
1433     Value *Op = Trunc->getOperand(0);
1434     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1435       return false;
1436 
1437     // If the truncated value is not an induction variable, return false.
1438     return Legal->isInductionPhi(Op);
1439   }
1440 
1441   /// Collects the instructions to scalarize for each predicated instruction in
1442   /// the loop.
1443   void collectInstsToScalarize(ElementCount VF);
1444 
1445   /// Collect Uniform and Scalar values for the given \p VF.
1446   /// The sets depend on CM decision for Load/Store instructions
1447   /// that may be vectorized as interleave, gather-scatter or scalarized.
1448   void collectUniformsAndScalars(ElementCount VF) {
1449     // Do the analysis once.
1450     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1451       return;
1452     setCostBasedWideningDecision(VF);
1453     collectLoopUniforms(VF);
1454     collectLoopScalars(VF);
1455   }
1456 
1457   /// Returns true if the target machine supports masked store operation
1458   /// for the given \p DataType and kind of access to \p Ptr.
1459   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1460     return Legal->isConsecutivePtr(Ptr) &&
1461            TTI.isLegalMaskedStore(DataType, Alignment);
1462   }
1463 
1464   /// Returns true if the target machine supports masked load operation
1465   /// for the given \p DataType and kind of access to \p Ptr.
1466   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1467     return Legal->isConsecutivePtr(Ptr) &&
1468            TTI.isLegalMaskedLoad(DataType, Alignment);
1469   }
1470 
1471   /// Returns true if the target machine supports masked scatter operation
1472   /// for the given \p DataType.
1473   bool isLegalMaskedScatter(Type *DataType, Align Alignment) const {
1474     return TTI.isLegalMaskedScatter(DataType, Alignment);
1475   }
1476 
1477   /// Returns true if the target machine supports masked gather operation
1478   /// for the given \p DataType.
1479   bool isLegalMaskedGather(Type *DataType, Align Alignment) const {
1480     return TTI.isLegalMaskedGather(DataType, Alignment);
1481   }
1482 
1483   /// Returns true if the target machine can represent \p V as a masked gather
1484   /// or scatter operation.
1485   bool isLegalGatherOrScatter(Value *V) {
1486     bool LI = isa<LoadInst>(V);
1487     bool SI = isa<StoreInst>(V);
1488     if (!LI && !SI)
1489       return false;
1490     auto *Ty = getMemInstValueType(V);
1491     Align Align = getLoadStoreAlignment(V);
1492     return (LI && isLegalMaskedGather(Ty, Align)) ||
1493            (SI && isLegalMaskedScatter(Ty, Align));
1494   }
1495 
1496   /// Returns true if the target machine supports all of the reduction
1497   /// variables found for the given VF.
1498   bool canVectorizeReductions(ElementCount VF) {
1499     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1500       RecurrenceDescriptor RdxDesc = Reduction.second;
1501       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1502     }));
1503   }
1504 
1505   /// Returns true if \p I is an instruction that will be scalarized with
1506   /// predication. Such instructions include conditional stores and
1507   /// instructions that may divide by zero.
1508   /// If a non-zero VF has been calculated, we check if I will be scalarized
1509   /// predication for that VF.
1510   bool
1511   isScalarWithPredication(Instruction *I,
1512                           ElementCount VF = ElementCount::getFixed(1)) const;
1513 
1514   // Returns true if \p I is an instruction that will be predicated either
1515   // through scalar predication or masked load/store or masked gather/scatter.
1516   // Superset of instructions that return true for isScalarWithPredication.
1517   bool isPredicatedInst(Instruction *I) {
1518     if (!blockNeedsPredication(I->getParent()))
1519       return false;
1520     // Loads and stores that need some form of masked operation are predicated
1521     // instructions.
1522     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1523       return Legal->isMaskRequired(I);
1524     return isScalarWithPredication(I);
1525   }
1526 
1527   /// Returns true if \p I is a memory instruction with consecutive memory
1528   /// access that can be widened.
1529   bool
1530   memoryInstructionCanBeWidened(Instruction *I,
1531                                 ElementCount VF = ElementCount::getFixed(1));
1532 
1533   /// Returns true if \p I is a memory instruction in an interleaved-group
1534   /// of memory accesses that can be vectorized with wide vector loads/stores
1535   /// and shuffles.
1536   bool
1537   interleavedAccessCanBeWidened(Instruction *I,
1538                                 ElementCount VF = ElementCount::getFixed(1));
1539 
1540   /// Check if \p Instr belongs to any interleaved access group.
1541   bool isAccessInterleaved(Instruction *Instr) {
1542     return InterleaveInfo.isInterleaved(Instr);
1543   }
1544 
1545   /// Get the interleaved access group that \p Instr belongs to.
1546   const InterleaveGroup<Instruction> *
1547   getInterleavedAccessGroup(Instruction *Instr) {
1548     return InterleaveInfo.getInterleaveGroup(Instr);
1549   }
1550 
1551   /// Returns true if we're required to use a scalar epilogue for at least
1552   /// the final iteration of the original loop.
1553   bool requiresScalarEpilogue() const {
1554     if (!isScalarEpilogueAllowed())
1555       return false;
1556     // If we might exit from anywhere but the latch, must run the exiting
1557     // iteration in scalar form.
1558     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1559       return true;
1560     return InterleaveInfo.requiresScalarEpilogue();
1561   }
1562 
1563   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1564   /// loop hint annotation.
1565   bool isScalarEpilogueAllowed() const {
1566     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1567   }
1568 
1569   /// Returns true if all loop blocks should be masked to fold tail loop.
1570   bool foldTailByMasking() const { return FoldTailByMasking; }
1571 
1572   bool blockNeedsPredication(BasicBlock *BB) const {
1573     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1574   }
1575 
1576   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1577   /// nodes to the chain of instructions representing the reductions. Uses a
1578   /// MapVector to ensure deterministic iteration order.
1579   using ReductionChainMap =
1580       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1581 
1582   /// Return the chain of instructions representing an inloop reduction.
1583   const ReductionChainMap &getInLoopReductionChains() const {
1584     return InLoopReductionChains;
1585   }
1586 
1587   /// Returns true if the Phi is part of an inloop reduction.
1588   bool isInLoopReduction(PHINode *Phi) const {
1589     return InLoopReductionChains.count(Phi);
1590   }
1591 
1592   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1593   /// with factor VF.  Return the cost of the instruction, including
1594   /// scalarization overhead if it's needed.
1595   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1596 
1597   /// Estimate cost of a call instruction CI if it were vectorized with factor
1598   /// VF. Return the cost of the instruction, including scalarization overhead
1599   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1600   /// scalarized -
1601   /// i.e. either vector version isn't available, or is too expensive.
1602   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1603                                     bool &NeedToScalarize) const;
1604 
1605   /// Invalidates decisions already taken by the cost model.
1606   void invalidateCostModelingDecisions() {
1607     WideningDecisions.clear();
1608     Uniforms.clear();
1609     Scalars.clear();
1610   }
1611 
1612 private:
1613   unsigned NumPredStores = 0;
1614 
1615   /// \return An upper bound for the vectorization factor, a power-of-2 larger
1616   /// than zero. One is returned if vectorization should best be avoided due
1617   /// to cost.
1618   ElementCount computeFeasibleMaxVF(unsigned ConstTripCount,
1619                                     ElementCount UserVF);
1620 
1621   /// The vectorization cost is a combination of the cost itself and a boolean
1622   /// indicating whether any of the contributing operations will actually
1623   /// operate on
1624   /// vector values after type legalization in the backend. If this latter value
1625   /// is
1626   /// false, then all operations will be scalarized (i.e. no vectorization has
1627   /// actually taken place).
1628   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1629 
1630   /// Returns the expected execution cost. The unit of the cost does
1631   /// not matter because we use the 'cost' units to compare different
1632   /// vector widths. The cost that is returned is *not* normalized by
1633   /// the factor width.
1634   VectorizationCostTy expectedCost(ElementCount VF);
1635 
1636   /// Returns the execution time cost of an instruction for a given vector
1637   /// width. Vector width of one means scalar.
1638   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1639 
1640   /// The cost-computation logic from getInstructionCost which provides
1641   /// the vector type as an output parameter.
1642   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1643                                      Type *&VectorTy);
1644 
1645   /// Return the cost of instructions in an inloop reduction pattern, if I is
1646   /// part of that pattern.
1647   InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF,
1648                                           Type *VectorTy,
1649                                           TTI::TargetCostKind CostKind);
1650 
1651   /// Calculate vectorization cost of memory instruction \p I.
1652   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1653 
1654   /// The cost computation for scalarized memory instruction.
1655   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1656 
1657   /// The cost computation for interleaving group of memory instructions.
1658   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1659 
1660   /// The cost computation for Gather/Scatter instruction.
1661   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1662 
1663   /// The cost computation for widening instruction \p I with consecutive
1664   /// memory access.
1665   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1666 
1667   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1668   /// Load: scalar load + broadcast.
1669   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1670   /// element)
1671   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1672 
1673   /// Estimate the overhead of scalarizing an instruction. This is a
1674   /// convenience wrapper for the type-based getScalarizationOverhead API.
1675   InstructionCost getScalarizationOverhead(Instruction *I,
1676                                            ElementCount VF) const;
1677 
1678   /// Returns whether the instruction is a load or store and will be a emitted
1679   /// as a vector operation.
1680   bool isConsecutiveLoadOrStore(Instruction *I);
1681 
1682   /// Returns true if an artificially high cost for emulated masked memrefs
1683   /// should be used.
1684   bool useEmulatedMaskMemRefHack(Instruction *I);
1685 
1686   /// Map of scalar integer values to the smallest bitwidth they can be legally
1687   /// represented as. The vector equivalents of these values should be truncated
1688   /// to this type.
1689   MapVector<Instruction *, uint64_t> MinBWs;
1690 
1691   /// A type representing the costs for instructions if they were to be
1692   /// scalarized rather than vectorized. The entries are Instruction-Cost
1693   /// pairs.
1694   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1695 
1696   /// A set containing all BasicBlocks that are known to present after
1697   /// vectorization as a predicated block.
1698   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1699 
1700   /// Records whether it is allowed to have the original scalar loop execute at
1701   /// least once. This may be needed as a fallback loop in case runtime
1702   /// aliasing/dependence checks fail, or to handle the tail/remainder
1703   /// iterations when the trip count is unknown or doesn't divide by the VF,
1704   /// or as a peel-loop to handle gaps in interleave-groups.
1705   /// Under optsize and when the trip count is very small we don't allow any
1706   /// iterations to execute in the scalar loop.
1707   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1708 
1709   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1710   bool FoldTailByMasking = false;
1711 
1712   /// A map holding scalar costs for different vectorization factors. The
1713   /// presence of a cost for an instruction in the mapping indicates that the
1714   /// instruction will be scalarized when vectorizing with the associated
1715   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1716   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1717 
1718   /// Holds the instructions known to be uniform after vectorization.
1719   /// The data is collected per VF.
1720   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1721 
1722   /// Holds the instructions known to be scalar after vectorization.
1723   /// The data is collected per VF.
1724   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1725 
1726   /// Holds the instructions (address computations) that are forced to be
1727   /// scalarized.
1728   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1729 
1730   /// PHINodes of the reductions that should be expanded in-loop along with
1731   /// their associated chains of reduction operations, in program order from top
1732   /// (PHI) to bottom
1733   ReductionChainMap InLoopReductionChains;
1734 
1735   /// A Map of inloop reduction operations and their immediate chain operand.
1736   /// FIXME: This can be removed once reductions can be costed correctly in
1737   /// vplan. This was added to allow quick lookup to the inloop operations,
1738   /// without having to loop through InLoopReductionChains.
1739   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1740 
1741   /// Returns the expected difference in cost from scalarizing the expression
1742   /// feeding a predicated instruction \p PredInst. The instructions to
1743   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1744   /// non-negative return value implies the expression will be scalarized.
1745   /// Currently, only single-use chains are considered for scalarization.
1746   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1747                               ElementCount VF);
1748 
1749   /// Collect the instructions that are uniform after vectorization. An
1750   /// instruction is uniform if we represent it with a single scalar value in
1751   /// the vectorized loop corresponding to each vector iteration. Examples of
1752   /// uniform instructions include pointer operands of consecutive or
1753   /// interleaved memory accesses. Note that although uniformity implies an
1754   /// instruction will be scalar, the reverse is not true. In general, a
1755   /// scalarized instruction will be represented by VF scalar values in the
1756   /// vectorized loop, each corresponding to an iteration of the original
1757   /// scalar loop.
1758   void collectLoopUniforms(ElementCount VF);
1759 
1760   /// Collect the instructions that are scalar after vectorization. An
1761   /// instruction is scalar if it is known to be uniform or will be scalarized
1762   /// during vectorization. Non-uniform scalarized instructions will be
1763   /// represented by VF values in the vectorized loop, each corresponding to an
1764   /// iteration of the original scalar loop.
1765   void collectLoopScalars(ElementCount VF);
1766 
1767   /// Keeps cost model vectorization decision and cost for instructions.
1768   /// Right now it is used for memory instructions only.
1769   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1770                                 std::pair<InstWidening, InstructionCost>>;
1771 
1772   DecisionList WideningDecisions;
1773 
1774   /// Returns true if \p V is expected to be vectorized and it needs to be
1775   /// extracted.
1776   bool needsExtract(Value *V, ElementCount VF) const {
1777     Instruction *I = dyn_cast<Instruction>(V);
1778     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1779         TheLoop->isLoopInvariant(I))
1780       return false;
1781 
1782     // Assume we can vectorize V (and hence we need extraction) if the
1783     // scalars are not computed yet. This can happen, because it is called
1784     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1785     // the scalars are collected. That should be a safe assumption in most
1786     // cases, because we check if the operands have vectorizable types
1787     // beforehand in LoopVectorizationLegality.
1788     return Scalars.find(VF) == Scalars.end() ||
1789            !isScalarAfterVectorization(I, VF);
1790   };
1791 
1792   /// Returns a range containing only operands needing to be extracted.
1793   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1794                                                    ElementCount VF) const {
1795     return SmallVector<Value *, 4>(make_filter_range(
1796         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1797   }
1798 
1799   /// Determines if we have the infrastructure to vectorize loop \p L and its
1800   /// epilogue, assuming the main loop is vectorized by \p VF.
1801   bool isCandidateForEpilogueVectorization(const Loop &L,
1802                                            const ElementCount VF) const;
1803 
1804   /// Returns true if epilogue vectorization is considered profitable, and
1805   /// false otherwise.
1806   /// \p VF is the vectorization factor chosen for the original loop.
1807   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1808 
1809 public:
1810   /// The loop that we evaluate.
1811   Loop *TheLoop;
1812 
1813   /// Predicated scalar evolution analysis.
1814   PredicatedScalarEvolution &PSE;
1815 
1816   /// Loop Info analysis.
1817   LoopInfo *LI;
1818 
1819   /// Vectorization legality.
1820   LoopVectorizationLegality *Legal;
1821 
1822   /// Vector target information.
1823   const TargetTransformInfo &TTI;
1824 
1825   /// Target Library Info.
1826   const TargetLibraryInfo *TLI;
1827 
1828   /// Demanded bits analysis.
1829   DemandedBits *DB;
1830 
1831   /// Assumption cache.
1832   AssumptionCache *AC;
1833 
1834   /// Interface to emit optimization remarks.
1835   OptimizationRemarkEmitter *ORE;
1836 
1837   const Function *TheFunction;
1838 
1839   /// Loop Vectorize Hint.
1840   const LoopVectorizeHints *Hints;
1841 
1842   /// The interleave access information contains groups of interleaved accesses
1843   /// with the same stride and close to each other.
1844   InterleavedAccessInfo &InterleaveInfo;
1845 
1846   /// Values to ignore in the cost model.
1847   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1848 
1849   /// Values to ignore in the cost model when VF > 1.
1850   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1851 
1852   /// Profitable vector factors.
1853   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1854 };
1855 } // end namespace llvm
1856 
1857 /// Helper struct to manage generating runtime checks for vectorization.
1858 ///
1859 /// The runtime checks are created up-front in temporary blocks to allow better
1860 /// estimating the cost and un-linked from the existing IR. After deciding to
1861 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1862 /// temporary blocks are completely removed.
1863 class GeneratedRTChecks {
1864   /// Basic block which contains the generated SCEV checks, if any.
1865   BasicBlock *SCEVCheckBlock = nullptr;
1866 
1867   /// The value representing the result of the generated SCEV checks. If it is
1868   /// nullptr, either no SCEV checks have been generated or they have been used.
1869   Value *SCEVCheckCond = nullptr;
1870 
1871   /// Basic block which contains the generated memory runtime checks, if any.
1872   BasicBlock *MemCheckBlock = nullptr;
1873 
1874   /// The value representing the result of the generated memory runtime checks.
1875   /// If it is nullptr, either no memory runtime checks have been generated or
1876   /// they have been used.
1877   Instruction *MemRuntimeCheckCond = nullptr;
1878 
1879   DominatorTree *DT;
1880   LoopInfo *LI;
1881 
1882   SCEVExpander SCEVExp;
1883   SCEVExpander MemCheckExp;
1884 
1885 public:
1886   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1887                     const DataLayout &DL)
1888       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1889         MemCheckExp(SE, DL, "scev.check") {}
1890 
1891   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1892   /// accurately estimate the cost of the runtime checks. The blocks are
1893   /// un-linked from the IR and is added back during vector code generation. If
1894   /// there is no vector code generation, the check blocks are removed
1895   /// completely.
1896   void Create(Loop *L, const LoopAccessInfo &LAI,
1897               const SCEVUnionPredicate &UnionPred) {
1898 
1899     BasicBlock *LoopHeader = L->getHeader();
1900     BasicBlock *Preheader = L->getLoopPreheader();
1901 
1902     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1903     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1904     // may be used by SCEVExpander. The blocks will be un-linked from their
1905     // predecessors and removed from LI & DT at the end of the function.
1906     if (!UnionPred.isAlwaysTrue()) {
1907       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1908                                   nullptr, "vector.scevcheck");
1909 
1910       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1911           &UnionPred, SCEVCheckBlock->getTerminator());
1912     }
1913 
1914     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1915     if (RtPtrChecking.Need) {
1916       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1917       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1918                                  "vector.memcheck");
1919 
1920       std::tie(std::ignore, MemRuntimeCheckCond) =
1921           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1922                            RtPtrChecking.getChecks(), MemCheckExp);
1923       assert(MemRuntimeCheckCond &&
1924              "no RT checks generated although RtPtrChecking "
1925              "claimed checks are required");
1926     }
1927 
1928     if (!MemCheckBlock && !SCEVCheckBlock)
1929       return;
1930 
1931     // Unhook the temporary block with the checks, update various places
1932     // accordingly.
1933     if (SCEVCheckBlock)
1934       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1935     if (MemCheckBlock)
1936       MemCheckBlock->replaceAllUsesWith(Preheader);
1937 
1938     if (SCEVCheckBlock) {
1939       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1940       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1941       Preheader->getTerminator()->eraseFromParent();
1942     }
1943     if (MemCheckBlock) {
1944       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1945       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1946       Preheader->getTerminator()->eraseFromParent();
1947     }
1948 
1949     DT->changeImmediateDominator(LoopHeader, Preheader);
1950     if (MemCheckBlock) {
1951       DT->eraseNode(MemCheckBlock);
1952       LI->removeBlock(MemCheckBlock);
1953     }
1954     if (SCEVCheckBlock) {
1955       DT->eraseNode(SCEVCheckBlock);
1956       LI->removeBlock(SCEVCheckBlock);
1957     }
1958   }
1959 
1960   /// Remove the created SCEV & memory runtime check blocks & instructions, if
1961   /// unused.
1962   ~GeneratedRTChecks() {
1963     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
1964     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
1965     if (!SCEVCheckCond)
1966       SCEVCleaner.markResultUsed();
1967 
1968     if (!MemRuntimeCheckCond)
1969       MemCheckCleaner.markResultUsed();
1970 
1971     if (MemRuntimeCheckCond) {
1972       auto &SE = *MemCheckExp.getSE();
1973       // Memory runtime check generation creates compares that use expanded
1974       // values. Remove them before running the SCEVExpanderCleaners.
1975       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
1976         if (MemCheckExp.isInsertedInstruction(&I))
1977           continue;
1978         SE.forgetValue(&I);
1979         SE.eraseValueFromMap(&I);
1980         I.eraseFromParent();
1981       }
1982     }
1983     MemCheckCleaner.cleanup();
1984     SCEVCleaner.cleanup();
1985 
1986     if (SCEVCheckCond)
1987       SCEVCheckBlock->eraseFromParent();
1988     if (MemRuntimeCheckCond)
1989       MemCheckBlock->eraseFromParent();
1990   }
1991 
1992   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
1993   /// adjusts the branches to branch to the vector preheader or \p Bypass,
1994   /// depending on the generated condition.
1995   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
1996                              BasicBlock *LoopVectorPreHeader,
1997                              BasicBlock *LoopExitBlock) {
1998     if (!SCEVCheckCond)
1999       return nullptr;
2000     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2001       if (C->isZero())
2002         return nullptr;
2003 
2004     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2005 
2006     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2007     // Create new preheader for vector loop.
2008     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2009       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2010 
2011     SCEVCheckBlock->getTerminator()->eraseFromParent();
2012     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2013     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2014                                                 SCEVCheckBlock);
2015 
2016     DT->addNewBlock(SCEVCheckBlock, Pred);
2017     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2018 
2019     ReplaceInstWithInst(
2020         SCEVCheckBlock->getTerminator(),
2021         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2022     // Mark the check as used, to prevent it from being removed during cleanup.
2023     SCEVCheckCond = nullptr;
2024     return SCEVCheckBlock;
2025   }
2026 
2027   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2028   /// the branches to branch to the vector preheader or \p Bypass, depending on
2029   /// the generated condition.
2030   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2031                                    BasicBlock *LoopVectorPreHeader) {
2032     // Check if we generated code that checks in runtime if arrays overlap.
2033     if (!MemRuntimeCheckCond)
2034       return nullptr;
2035 
2036     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2037     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2038                                                 MemCheckBlock);
2039 
2040     DT->addNewBlock(MemCheckBlock, Pred);
2041     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2042     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2043 
2044     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2045       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2046 
2047     ReplaceInstWithInst(
2048         MemCheckBlock->getTerminator(),
2049         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2050     MemCheckBlock->getTerminator()->setDebugLoc(
2051         Pred->getTerminator()->getDebugLoc());
2052 
2053     // Mark the check as used, to prevent it from being removed during cleanup.
2054     MemRuntimeCheckCond = nullptr;
2055     return MemCheckBlock;
2056   }
2057 };
2058 
2059 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2060 // vectorization. The loop needs to be annotated with #pragma omp simd
2061 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2062 // vector length information is not provided, vectorization is not considered
2063 // explicit. Interleave hints are not allowed either. These limitations will be
2064 // relaxed in the future.
2065 // Please, note that we are currently forced to abuse the pragma 'clang
2066 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2067 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2068 // provides *explicit vectorization hints* (LV can bypass legal checks and
2069 // assume that vectorization is legal). However, both hints are implemented
2070 // using the same metadata (llvm.loop.vectorize, processed by
2071 // LoopVectorizeHints). This will be fixed in the future when the native IR
2072 // representation for pragma 'omp simd' is introduced.
2073 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2074                                    OptimizationRemarkEmitter *ORE) {
2075   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2076   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2077 
2078   // Only outer loops with an explicit vectorization hint are supported.
2079   // Unannotated outer loops are ignored.
2080   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2081     return false;
2082 
2083   Function *Fn = OuterLp->getHeader()->getParent();
2084   if (!Hints.allowVectorization(Fn, OuterLp,
2085                                 true /*VectorizeOnlyWhenForced*/)) {
2086     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2087     return false;
2088   }
2089 
2090   if (Hints.getInterleave() > 1) {
2091     // TODO: Interleave support is future work.
2092     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2093                          "outer loops.\n");
2094     Hints.emitRemarkWithHints();
2095     return false;
2096   }
2097 
2098   return true;
2099 }
2100 
2101 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2102                                   OptimizationRemarkEmitter *ORE,
2103                                   SmallVectorImpl<Loop *> &V) {
2104   // Collect inner loops and outer loops without irreducible control flow. For
2105   // now, only collect outer loops that have explicit vectorization hints. If we
2106   // are stress testing the VPlan H-CFG construction, we collect the outermost
2107   // loop of every loop nest.
2108   if (L.isInnermost() || VPlanBuildStressTest ||
2109       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2110     LoopBlocksRPO RPOT(&L);
2111     RPOT.perform(LI);
2112     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2113       V.push_back(&L);
2114       // TODO: Collect inner loops inside marked outer loops in case
2115       // vectorization fails for the outer loop. Do not invoke
2116       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2117       // already known to be reducible. We can use an inherited attribute for
2118       // that.
2119       return;
2120     }
2121   }
2122   for (Loop *InnerL : L)
2123     collectSupportedLoops(*InnerL, LI, ORE, V);
2124 }
2125 
2126 namespace {
2127 
2128 /// The LoopVectorize Pass.
2129 struct LoopVectorize : public FunctionPass {
2130   /// Pass identification, replacement for typeid
2131   static char ID;
2132 
2133   LoopVectorizePass Impl;
2134 
2135   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2136                          bool VectorizeOnlyWhenForced = false)
2137       : FunctionPass(ID),
2138         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2139     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2140   }
2141 
2142   bool runOnFunction(Function &F) override {
2143     if (skipFunction(F))
2144       return false;
2145 
2146     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2147     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2148     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2149     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2150     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2151     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2152     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2153     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2154     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2155     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2156     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2157     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2158     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2159 
2160     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2161         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2162 
2163     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2164                         GetLAA, *ORE, PSI).MadeAnyChange;
2165   }
2166 
2167   void getAnalysisUsage(AnalysisUsage &AU) const override {
2168     AU.addRequired<AssumptionCacheTracker>();
2169     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2170     AU.addRequired<DominatorTreeWrapperPass>();
2171     AU.addRequired<LoopInfoWrapperPass>();
2172     AU.addRequired<ScalarEvolutionWrapperPass>();
2173     AU.addRequired<TargetTransformInfoWrapperPass>();
2174     AU.addRequired<AAResultsWrapperPass>();
2175     AU.addRequired<LoopAccessLegacyAnalysis>();
2176     AU.addRequired<DemandedBitsWrapperPass>();
2177     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2178     AU.addRequired<InjectTLIMappingsLegacy>();
2179 
2180     // We currently do not preserve loopinfo/dominator analyses with outer loop
2181     // vectorization. Until this is addressed, mark these analyses as preserved
2182     // only for non-VPlan-native path.
2183     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2184     if (!EnableVPlanNativePath) {
2185       AU.addPreserved<LoopInfoWrapperPass>();
2186       AU.addPreserved<DominatorTreeWrapperPass>();
2187     }
2188 
2189     AU.addPreserved<BasicAAWrapperPass>();
2190     AU.addPreserved<GlobalsAAWrapperPass>();
2191     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2192   }
2193 };
2194 
2195 } // end anonymous namespace
2196 
2197 //===----------------------------------------------------------------------===//
2198 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2199 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2200 //===----------------------------------------------------------------------===//
2201 
2202 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2203   // We need to place the broadcast of invariant variables outside the loop,
2204   // but only if it's proven safe to do so. Else, broadcast will be inside
2205   // vector loop body.
2206   Instruction *Instr = dyn_cast<Instruction>(V);
2207   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2208                      (!Instr ||
2209                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2210   // Place the code for broadcasting invariant variables in the new preheader.
2211   IRBuilder<>::InsertPointGuard Guard(Builder);
2212   if (SafeToHoist)
2213     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2214 
2215   // Broadcast the scalar into all locations in the vector.
2216   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2217 
2218   return Shuf;
2219 }
2220 
2221 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2222     const InductionDescriptor &II, Value *Step, Value *Start,
2223     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2224     VPTransformState &State) {
2225   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2226          "Expected either an induction phi-node or a truncate of it!");
2227 
2228   // Construct the initial value of the vector IV in the vector loop preheader
2229   auto CurrIP = Builder.saveIP();
2230   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2231   if (isa<TruncInst>(EntryVal)) {
2232     assert(Start->getType()->isIntegerTy() &&
2233            "Truncation requires an integer type");
2234     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2235     Step = Builder.CreateTrunc(Step, TruncType);
2236     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2237   }
2238   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2239   Value *SteppedStart =
2240       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2241 
2242   // We create vector phi nodes for both integer and floating-point induction
2243   // variables. Here, we determine the kind of arithmetic we will perform.
2244   Instruction::BinaryOps AddOp;
2245   Instruction::BinaryOps MulOp;
2246   if (Step->getType()->isIntegerTy()) {
2247     AddOp = Instruction::Add;
2248     MulOp = Instruction::Mul;
2249   } else {
2250     AddOp = II.getInductionOpcode();
2251     MulOp = Instruction::FMul;
2252   }
2253 
2254   // Multiply the vectorization factor by the step using integer or
2255   // floating-point arithmetic as appropriate.
2256   Type *StepType = Step->getType();
2257   if (Step->getType()->isFloatingPointTy())
2258     StepType = IntegerType::get(StepType->getContext(),
2259                                 StepType->getScalarSizeInBits());
2260   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2261   if (Step->getType()->isFloatingPointTy())
2262     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2263   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2264 
2265   // Create a vector splat to use in the induction update.
2266   //
2267   // FIXME: If the step is non-constant, we create the vector splat with
2268   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2269   //        handle a constant vector splat.
2270   Value *SplatVF = isa<Constant>(Mul)
2271                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2272                        : Builder.CreateVectorSplat(VF, Mul);
2273   Builder.restoreIP(CurrIP);
2274 
2275   // We may need to add the step a number of times, depending on the unroll
2276   // factor. The last of those goes into the PHI.
2277   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2278                                     &*LoopVectorBody->getFirstInsertionPt());
2279   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2280   Instruction *LastInduction = VecInd;
2281   for (unsigned Part = 0; Part < UF; ++Part) {
2282     State.set(Def, LastInduction, Part);
2283 
2284     if (isa<TruncInst>(EntryVal))
2285       addMetadata(LastInduction, EntryVal);
2286     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2287                                           State, Part);
2288 
2289     LastInduction = cast<Instruction>(
2290         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2291     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2292   }
2293 
2294   // Move the last step to the end of the latch block. This ensures consistent
2295   // placement of all induction updates.
2296   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2297   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2298   auto *ICmp = cast<Instruction>(Br->getCondition());
2299   LastInduction->moveBefore(ICmp);
2300   LastInduction->setName("vec.ind.next");
2301 
2302   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2303   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2304 }
2305 
2306 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2307   return Cost->isScalarAfterVectorization(I, VF) ||
2308          Cost->isProfitableToScalarize(I, VF);
2309 }
2310 
2311 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2312   if (shouldScalarizeInstruction(IV))
2313     return true;
2314   auto isScalarInst = [&](User *U) -> bool {
2315     auto *I = cast<Instruction>(U);
2316     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2317   };
2318   return llvm::any_of(IV->users(), isScalarInst);
2319 }
2320 
2321 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2322     const InductionDescriptor &ID, const Instruction *EntryVal,
2323     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2324     unsigned Part, unsigned Lane) {
2325   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2326          "Expected either an induction phi-node or a truncate of it!");
2327 
2328   // This induction variable is not the phi from the original loop but the
2329   // newly-created IV based on the proof that casted Phi is equal to the
2330   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2331   // re-uses the same InductionDescriptor that original IV uses but we don't
2332   // have to do any recording in this case - that is done when original IV is
2333   // processed.
2334   if (isa<TruncInst>(EntryVal))
2335     return;
2336 
2337   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2338   if (Casts.empty())
2339     return;
2340   // Only the first Cast instruction in the Casts vector is of interest.
2341   // The rest of the Casts (if exist) have no uses outside the
2342   // induction update chain itself.
2343   if (Lane < UINT_MAX)
2344     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2345   else
2346     State.set(CastDef, VectorLoopVal, Part);
2347 }
2348 
2349 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2350                                                 TruncInst *Trunc, VPValue *Def,
2351                                                 VPValue *CastDef,
2352                                                 VPTransformState &State) {
2353   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2354          "Primary induction variable must have an integer type");
2355 
2356   auto II = Legal->getInductionVars().find(IV);
2357   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2358 
2359   auto ID = II->second;
2360   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2361 
2362   // The value from the original loop to which we are mapping the new induction
2363   // variable.
2364   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2365 
2366   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2367 
2368   // Generate code for the induction step. Note that induction steps are
2369   // required to be loop-invariant
2370   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2371     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2372            "Induction step should be loop invariant");
2373     if (PSE.getSE()->isSCEVable(IV->getType())) {
2374       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2375       return Exp.expandCodeFor(Step, Step->getType(),
2376                                LoopVectorPreHeader->getTerminator());
2377     }
2378     return cast<SCEVUnknown>(Step)->getValue();
2379   };
2380 
2381   // The scalar value to broadcast. This is derived from the canonical
2382   // induction variable. If a truncation type is given, truncate the canonical
2383   // induction variable and step. Otherwise, derive these values from the
2384   // induction descriptor.
2385   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2386     Value *ScalarIV = Induction;
2387     if (IV != OldInduction) {
2388       ScalarIV = IV->getType()->isIntegerTy()
2389                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2390                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2391                                           IV->getType());
2392       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2393       ScalarIV->setName("offset.idx");
2394     }
2395     if (Trunc) {
2396       auto *TruncType = cast<IntegerType>(Trunc->getType());
2397       assert(Step->getType()->isIntegerTy() &&
2398              "Truncation requires an integer step");
2399       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2400       Step = Builder.CreateTrunc(Step, TruncType);
2401     }
2402     return ScalarIV;
2403   };
2404 
2405   // Create the vector values from the scalar IV, in the absence of creating a
2406   // vector IV.
2407   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2408     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2409     for (unsigned Part = 0; Part < UF; ++Part) {
2410       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2411       Value *EntryPart =
2412           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2413                         ID.getInductionOpcode());
2414       State.set(Def, EntryPart, Part);
2415       if (Trunc)
2416         addMetadata(EntryPart, Trunc);
2417       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2418                                             State, Part);
2419     }
2420   };
2421 
2422   // Fast-math-flags propagate from the original induction instruction.
2423   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2424   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2425     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2426 
2427   // Now do the actual transformations, and start with creating the step value.
2428   Value *Step = CreateStepValue(ID.getStep());
2429   if (VF.isZero() || VF.isScalar()) {
2430     Value *ScalarIV = CreateScalarIV(Step);
2431     CreateSplatIV(ScalarIV, Step);
2432     return;
2433   }
2434 
2435   // Determine if we want a scalar version of the induction variable. This is
2436   // true if the induction variable itself is not widened, or if it has at
2437   // least one user in the loop that is not widened.
2438   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2439   if (!NeedsScalarIV) {
2440     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2441                                     State);
2442     return;
2443   }
2444 
2445   // Try to create a new independent vector induction variable. If we can't
2446   // create the phi node, we will splat the scalar induction variable in each
2447   // loop iteration.
2448   if (!shouldScalarizeInstruction(EntryVal)) {
2449     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2450                                     State);
2451     Value *ScalarIV = CreateScalarIV(Step);
2452     // Create scalar steps that can be used by instructions we will later
2453     // scalarize. Note that the addition of the scalar steps will not increase
2454     // the number of instructions in the loop in the common case prior to
2455     // InstCombine. We will be trading one vector extract for each scalar step.
2456     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2457     return;
2458   }
2459 
2460   // All IV users are scalar instructions, so only emit a scalar IV, not a
2461   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2462   // predicate used by the masked loads/stores.
2463   Value *ScalarIV = CreateScalarIV(Step);
2464   if (!Cost->isScalarEpilogueAllowed())
2465     CreateSplatIV(ScalarIV, Step);
2466   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2467 }
2468 
2469 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2470                                           Instruction::BinaryOps BinOp) {
2471   // Create and check the types.
2472   auto *ValVTy = cast<VectorType>(Val->getType());
2473   ElementCount VLen = ValVTy->getElementCount();
2474 
2475   Type *STy = Val->getType()->getScalarType();
2476   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2477          "Induction Step must be an integer or FP");
2478   assert(Step->getType() == STy && "Step has wrong type");
2479 
2480   SmallVector<Constant *, 8> Indices;
2481 
2482   // Create a vector of consecutive numbers from zero to VF.
2483   VectorType *InitVecValVTy = ValVTy;
2484   Type *InitVecValSTy = STy;
2485   if (STy->isFloatingPointTy()) {
2486     InitVecValSTy =
2487         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2488     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2489   }
2490   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2491 
2492   // Add on StartIdx
2493   Value *StartIdxSplat = Builder.CreateVectorSplat(
2494       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2495   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2496 
2497   if (STy->isIntegerTy()) {
2498     Step = Builder.CreateVectorSplat(VLen, Step);
2499     assert(Step->getType() == Val->getType() && "Invalid step vec");
2500     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2501     // which can be found from the original scalar operations.
2502     Step = Builder.CreateMul(InitVec, Step);
2503     return Builder.CreateAdd(Val, Step, "induction");
2504   }
2505 
2506   // Floating point induction.
2507   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2508          "Binary Opcode should be specified for FP induction");
2509   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2510   Step = Builder.CreateVectorSplat(VLen, Step);
2511   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2512   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2513 }
2514 
2515 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2516                                            Instruction *EntryVal,
2517                                            const InductionDescriptor &ID,
2518                                            VPValue *Def, VPValue *CastDef,
2519                                            VPTransformState &State) {
2520   // We shouldn't have to build scalar steps if we aren't vectorizing.
2521   assert(VF.isVector() && "VF should be greater than one");
2522   // Get the value type and ensure it and the step have the same integer type.
2523   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2524   assert(ScalarIVTy == Step->getType() &&
2525          "Val and Step should have the same type");
2526 
2527   // We build scalar steps for both integer and floating-point induction
2528   // variables. Here, we determine the kind of arithmetic we will perform.
2529   Instruction::BinaryOps AddOp;
2530   Instruction::BinaryOps MulOp;
2531   if (ScalarIVTy->isIntegerTy()) {
2532     AddOp = Instruction::Add;
2533     MulOp = Instruction::Mul;
2534   } else {
2535     AddOp = ID.getInductionOpcode();
2536     MulOp = Instruction::FMul;
2537   }
2538 
2539   // Determine the number of scalars we need to generate for each unroll
2540   // iteration. If EntryVal is uniform, we only need to generate the first
2541   // lane. Otherwise, we generate all VF values.
2542   bool IsUniform =
2543       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2544   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2545   // Compute the scalar steps and save the results in State.
2546   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2547                                      ScalarIVTy->getScalarSizeInBits());
2548   Type *VecIVTy = nullptr;
2549   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2550   if (!IsUniform && VF.isScalable()) {
2551     VecIVTy = VectorType::get(ScalarIVTy, VF);
2552     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2553     SplatStep = Builder.CreateVectorSplat(VF, Step);
2554     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2555   }
2556 
2557   for (unsigned Part = 0; Part < UF; ++Part) {
2558     Value *StartIdx0 =
2559         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2560 
2561     if (!IsUniform && VF.isScalable()) {
2562       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2563       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2564       if (ScalarIVTy->isFloatingPointTy())
2565         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2566       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2567       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2568       State.set(Def, Add, Part);
2569       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2570                                             Part);
2571       // It's useful to record the lane values too for the known minimum number
2572       // of elements so we do those below. This improves the code quality when
2573       // trying to extract the first element, for example.
2574     }
2575 
2576     if (ScalarIVTy->isFloatingPointTy())
2577       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2578 
2579     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2580       Value *StartIdx = Builder.CreateBinOp(
2581           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2582       // The step returned by `createStepForVF` is a runtime-evaluated value
2583       // when VF is scalable. Otherwise, it should be folded into a Constant.
2584       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2585              "Expected StartIdx to be folded to a constant when VF is not "
2586              "scalable");
2587       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2588       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2589       State.set(Def, Add, VPIteration(Part, Lane));
2590       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2591                                             Part, Lane);
2592     }
2593   }
2594 }
2595 
2596 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2597                                                     const VPIteration &Instance,
2598                                                     VPTransformState &State) {
2599   Value *ScalarInst = State.get(Def, Instance);
2600   Value *VectorValue = State.get(Def, Instance.Part);
2601   VectorValue = Builder.CreateInsertElement(
2602       VectorValue, ScalarInst,
2603       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2604   State.set(Def, VectorValue, Instance.Part);
2605 }
2606 
2607 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2608   assert(Vec->getType()->isVectorTy() && "Invalid type");
2609   return Builder.CreateVectorReverse(Vec, "reverse");
2610 }
2611 
2612 // Return whether we allow using masked interleave-groups (for dealing with
2613 // strided loads/stores that reside in predicated blocks, or for dealing
2614 // with gaps).
2615 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2616   // If an override option has been passed in for interleaved accesses, use it.
2617   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2618     return EnableMaskedInterleavedMemAccesses;
2619 
2620   return TTI.enableMaskedInterleavedAccessVectorization();
2621 }
2622 
2623 // Try to vectorize the interleave group that \p Instr belongs to.
2624 //
2625 // E.g. Translate following interleaved load group (factor = 3):
2626 //   for (i = 0; i < N; i+=3) {
2627 //     R = Pic[i];             // Member of index 0
2628 //     G = Pic[i+1];           // Member of index 1
2629 //     B = Pic[i+2];           // Member of index 2
2630 //     ... // do something to R, G, B
2631 //   }
2632 // To:
2633 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2634 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2635 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2636 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2637 //
2638 // Or translate following interleaved store group (factor = 3):
2639 //   for (i = 0; i < N; i+=3) {
2640 //     ... do something to R, G, B
2641 //     Pic[i]   = R;           // Member of index 0
2642 //     Pic[i+1] = G;           // Member of index 1
2643 //     Pic[i+2] = B;           // Member of index 2
2644 //   }
2645 // To:
2646 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2647 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2648 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2649 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2650 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2651 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2652     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2653     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2654     VPValue *BlockInMask) {
2655   Instruction *Instr = Group->getInsertPos();
2656   const DataLayout &DL = Instr->getModule()->getDataLayout();
2657 
2658   // Prepare for the vector type of the interleaved load/store.
2659   Type *ScalarTy = getMemInstValueType(Instr);
2660   unsigned InterleaveFactor = Group->getFactor();
2661   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2662   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2663 
2664   // Prepare for the new pointers.
2665   SmallVector<Value *, 2> AddrParts;
2666   unsigned Index = Group->getIndex(Instr);
2667 
2668   // TODO: extend the masked interleaved-group support to reversed access.
2669   assert((!BlockInMask || !Group->isReverse()) &&
2670          "Reversed masked interleave-group not supported.");
2671 
2672   // If the group is reverse, adjust the index to refer to the last vector lane
2673   // instead of the first. We adjust the index from the first vector lane,
2674   // rather than directly getting the pointer for lane VF - 1, because the
2675   // pointer operand of the interleaved access is supposed to be uniform. For
2676   // uniform instructions, we're only required to generate a value for the
2677   // first vector lane in each unroll iteration.
2678   assert(!VF.isScalable() &&
2679          "scalable vector reverse operation is not implemented");
2680   if (Group->isReverse())
2681     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2682 
2683   for (unsigned Part = 0; Part < UF; Part++) {
2684     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2685     setDebugLocFromInst(Builder, AddrPart);
2686 
2687     // Notice current instruction could be any index. Need to adjust the address
2688     // to the member of index 0.
2689     //
2690     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2691     //       b = A[i];       // Member of index 0
2692     // Current pointer is pointed to A[i+1], adjust it to A[i].
2693     //
2694     // E.g.  A[i+1] = a;     // Member of index 1
2695     //       A[i]   = b;     // Member of index 0
2696     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2697     // Current pointer is pointed to A[i+2], adjust it to A[i].
2698 
2699     bool InBounds = false;
2700     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2701       InBounds = gep->isInBounds();
2702     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2703     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2704 
2705     // Cast to the vector pointer type.
2706     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2707     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2708     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2709   }
2710 
2711   setDebugLocFromInst(Builder, Instr);
2712   Value *PoisonVec = PoisonValue::get(VecTy);
2713 
2714   Value *MaskForGaps = nullptr;
2715   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2716     assert(!VF.isScalable() && "scalable vectors not yet supported.");
2717     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2718     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2719   }
2720 
2721   // Vectorize the interleaved load group.
2722   if (isa<LoadInst>(Instr)) {
2723     // For each unroll part, create a wide load for the group.
2724     SmallVector<Value *, 2> NewLoads;
2725     for (unsigned Part = 0; Part < UF; Part++) {
2726       Instruction *NewLoad;
2727       if (BlockInMask || MaskForGaps) {
2728         assert(useMaskedInterleavedAccesses(*TTI) &&
2729                "masked interleaved groups are not allowed.");
2730         Value *GroupMask = MaskForGaps;
2731         if (BlockInMask) {
2732           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2733           assert(!VF.isScalable() && "scalable vectors not yet supported.");
2734           Value *ShuffledMask = Builder.CreateShuffleVector(
2735               BlockInMaskPart,
2736               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2737               "interleaved.mask");
2738           GroupMask = MaskForGaps
2739                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2740                                                 MaskForGaps)
2741                           : ShuffledMask;
2742         }
2743         NewLoad =
2744             Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(),
2745                                      GroupMask, PoisonVec, "wide.masked.vec");
2746       }
2747       else
2748         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2749                                             Group->getAlign(), "wide.vec");
2750       Group->addMetadata(NewLoad);
2751       NewLoads.push_back(NewLoad);
2752     }
2753 
2754     // For each member in the group, shuffle out the appropriate data from the
2755     // wide loads.
2756     unsigned J = 0;
2757     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2758       Instruction *Member = Group->getMember(I);
2759 
2760       // Skip the gaps in the group.
2761       if (!Member)
2762         continue;
2763 
2764       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2765       auto StrideMask =
2766           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2767       for (unsigned Part = 0; Part < UF; Part++) {
2768         Value *StridedVec = Builder.CreateShuffleVector(
2769             NewLoads[Part], StrideMask, "strided.vec");
2770 
2771         // If this member has different type, cast the result type.
2772         if (Member->getType() != ScalarTy) {
2773           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2774           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2775           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2776         }
2777 
2778         if (Group->isReverse())
2779           StridedVec = reverseVector(StridedVec);
2780 
2781         State.set(VPDefs[J], StridedVec, Part);
2782       }
2783       ++J;
2784     }
2785     return;
2786   }
2787 
2788   // The sub vector type for current instruction.
2789   assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2790   auto *SubVT = VectorType::get(ScalarTy, VF);
2791 
2792   // Vectorize the interleaved store group.
2793   for (unsigned Part = 0; Part < UF; Part++) {
2794     // Collect the stored vector from each member.
2795     SmallVector<Value *, 4> StoredVecs;
2796     for (unsigned i = 0; i < InterleaveFactor; i++) {
2797       // Interleaved store group doesn't allow a gap, so each index has a member
2798       assert(Group->getMember(i) && "Fail to get a member from an interleaved store group");
2799 
2800       Value *StoredVec = State.get(StoredValues[i], Part);
2801 
2802       if (Group->isReverse())
2803         StoredVec = reverseVector(StoredVec);
2804 
2805       // If this member has different type, cast it to a unified type.
2806 
2807       if (StoredVec->getType() != SubVT)
2808         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2809 
2810       StoredVecs.push_back(StoredVec);
2811     }
2812 
2813     // Concatenate all vectors into a wide vector.
2814     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2815 
2816     // Interleave the elements in the wide vector.
2817     assert(!VF.isScalable() && "scalable vectors not yet supported.");
2818     Value *IVec = Builder.CreateShuffleVector(
2819         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2820         "interleaved.vec");
2821 
2822     Instruction *NewStoreInstr;
2823     if (BlockInMask) {
2824       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2825       Value *ShuffledMask = Builder.CreateShuffleVector(
2826           BlockInMaskPart,
2827           createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2828           "interleaved.mask");
2829       NewStoreInstr = Builder.CreateMaskedStore(
2830           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2831     }
2832     else
2833       NewStoreInstr =
2834           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2835 
2836     Group->addMetadata(NewStoreInstr);
2837   }
2838 }
2839 
2840 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2841     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2842     VPValue *StoredValue, VPValue *BlockInMask) {
2843   // Attempt to issue a wide load.
2844   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2845   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2846 
2847   assert((LI || SI) && "Invalid Load/Store instruction");
2848   assert((!SI || StoredValue) && "No stored value provided for widened store");
2849   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2850 
2851   LoopVectorizationCostModel::InstWidening Decision =
2852       Cost->getWideningDecision(Instr, VF);
2853   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2854           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2855           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2856          "CM decision is not to widen the memory instruction");
2857 
2858   Type *ScalarDataTy = getMemInstValueType(Instr);
2859 
2860   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2861   const Align Alignment = getLoadStoreAlignment(Instr);
2862 
2863   // Determine if the pointer operand of the access is either consecutive or
2864   // reverse consecutive.
2865   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2866   bool ConsecutiveStride =
2867       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2868   bool CreateGatherScatter =
2869       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2870 
2871   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2872   // gather/scatter. Otherwise Decision should have been to Scalarize.
2873   assert((ConsecutiveStride || CreateGatherScatter) &&
2874          "The instruction should be scalarized");
2875   (void)ConsecutiveStride;
2876 
2877   VectorParts BlockInMaskParts(UF);
2878   bool isMaskRequired = BlockInMask;
2879   if (isMaskRequired)
2880     for (unsigned Part = 0; Part < UF; ++Part)
2881       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2882 
2883   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2884     // Calculate the pointer for the specific unroll-part.
2885     GetElementPtrInst *PartPtr = nullptr;
2886 
2887     bool InBounds = false;
2888     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2889       InBounds = gep->isInBounds();
2890     if (Reverse) {
2891       // If the address is consecutive but reversed, then the
2892       // wide store needs to start at the last vector element.
2893       // RunTimeVF =  VScale * VF.getKnownMinValue()
2894       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2895       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2896       // NumElt = -Part * RunTimeVF
2897       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2898       // LastLane = 1 - RunTimeVF
2899       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2900       PartPtr =
2901           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2902       PartPtr->setIsInBounds(InBounds);
2903       PartPtr = cast<GetElementPtrInst>(
2904           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2905       PartPtr->setIsInBounds(InBounds);
2906       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2907         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2908     } else {
2909       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2910       PartPtr = cast<GetElementPtrInst>(
2911           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2912       PartPtr->setIsInBounds(InBounds);
2913     }
2914 
2915     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2916     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2917   };
2918 
2919   // Handle Stores:
2920   if (SI) {
2921     setDebugLocFromInst(Builder, SI);
2922 
2923     for (unsigned Part = 0; Part < UF; ++Part) {
2924       Instruction *NewSI = nullptr;
2925       Value *StoredVal = State.get(StoredValue, Part);
2926       if (CreateGatherScatter) {
2927         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2928         Value *VectorGep = State.get(Addr, Part);
2929         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2930                                             MaskPart);
2931       } else {
2932         if (Reverse) {
2933           // If we store to reverse consecutive memory locations, then we need
2934           // to reverse the order of elements in the stored value.
2935           StoredVal = reverseVector(StoredVal);
2936           // We don't want to update the value in the map as it might be used in
2937           // another expression. So don't call resetVectorValue(StoredVal).
2938         }
2939         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2940         if (isMaskRequired)
2941           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2942                                             BlockInMaskParts[Part]);
2943         else
2944           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2945       }
2946       addMetadata(NewSI, SI);
2947     }
2948     return;
2949   }
2950 
2951   // Handle loads.
2952   assert(LI && "Must have a load instruction");
2953   setDebugLocFromInst(Builder, LI);
2954   for (unsigned Part = 0; Part < UF; ++Part) {
2955     Value *NewLI;
2956     if (CreateGatherScatter) {
2957       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2958       Value *VectorGep = State.get(Addr, Part);
2959       NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
2960                                          nullptr, "wide.masked.gather");
2961       addMetadata(NewLI, LI);
2962     } else {
2963       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2964       if (isMaskRequired)
2965         NewLI = Builder.CreateMaskedLoad(
2966             VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy),
2967             "wide.masked.load");
2968       else
2969         NewLI =
2970             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
2971 
2972       // Add metadata to the load, but setVectorValue to the reverse shuffle.
2973       addMetadata(NewLI, LI);
2974       if (Reverse)
2975         NewLI = reverseVector(NewLI);
2976     }
2977 
2978     State.set(Def, NewLI, Part);
2979   }
2980 }
2981 
2982 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
2983                                                VPUser &User,
2984                                                const VPIteration &Instance,
2985                                                bool IfPredicateInstr,
2986                                                VPTransformState &State) {
2987   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2988 
2989   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2990   // the first lane and part.
2991   if (isa<NoAliasScopeDeclInst>(Instr))
2992     if (!Instance.isFirstIteration())
2993       return;
2994 
2995   setDebugLocFromInst(Builder, Instr);
2996 
2997   // Does this instruction return a value ?
2998   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2999 
3000   Instruction *Cloned = Instr->clone();
3001   if (!IsVoidRetTy)
3002     Cloned->setName(Instr->getName() + ".cloned");
3003 
3004   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3005                                Builder.GetInsertPoint());
3006   // Replace the operands of the cloned instructions with their scalar
3007   // equivalents in the new loop.
3008   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3009     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3010     auto InputInstance = Instance;
3011     if (!Operand || !OrigLoop->contains(Operand) ||
3012         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3013       InputInstance.Lane = VPLane::getFirstLane();
3014     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3015     Cloned->setOperand(op, NewOp);
3016   }
3017   addNewMetadata(Cloned, Instr);
3018 
3019   // Place the cloned scalar in the new loop.
3020   Builder.Insert(Cloned);
3021 
3022   State.set(Def, Cloned, Instance);
3023 
3024   // If we just cloned a new assumption, add it the assumption cache.
3025   if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
3026     if (II->getIntrinsicID() == Intrinsic::assume)
3027       AC->registerAssumption(II);
3028 
3029   // End if-block.
3030   if (IfPredicateInstr)
3031     PredicatedInstructions.push_back(Cloned);
3032 }
3033 
3034 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3035                                                       Value *End, Value *Step,
3036                                                       Instruction *DL) {
3037   BasicBlock *Header = L->getHeader();
3038   BasicBlock *Latch = L->getLoopLatch();
3039   // As we're just creating this loop, it's possible no latch exists
3040   // yet. If so, use the header as this will be a single block loop.
3041   if (!Latch)
3042     Latch = Header;
3043 
3044   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
3045   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3046   setDebugLocFromInst(Builder, OldInst);
3047   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
3048 
3049   Builder.SetInsertPoint(Latch->getTerminator());
3050   setDebugLocFromInst(Builder, OldInst);
3051 
3052   // Create i+1 and fill the PHINode.
3053   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
3054   Induction->addIncoming(Start, L->getLoopPreheader());
3055   Induction->addIncoming(Next, Latch);
3056   // Create the compare.
3057   Value *ICmp = Builder.CreateICmpEQ(Next, End);
3058   Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3059 
3060   // Now we have two terminators. Remove the old one from the block.
3061   Latch->getTerminator()->eraseFromParent();
3062 
3063   return Induction;
3064 }
3065 
3066 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3067   if (TripCount)
3068     return TripCount;
3069 
3070   assert(L && "Create Trip Count for null loop.");
3071   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3072   // Find the loop boundaries.
3073   ScalarEvolution *SE = PSE.getSE();
3074   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3075   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3076          "Invalid loop count");
3077 
3078   Type *IdxTy = Legal->getWidestInductionType();
3079   assert(IdxTy && "No type for induction");
3080 
3081   // The exit count might have the type of i64 while the phi is i32. This can
3082   // happen if we have an induction variable that is sign extended before the
3083   // compare. The only way that we get a backedge taken count is that the
3084   // induction variable was signed and as such will not overflow. In such a case
3085   // truncation is legal.
3086   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3087       IdxTy->getPrimitiveSizeInBits())
3088     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3089   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3090 
3091   // Get the total trip count from the count by adding 1.
3092   const SCEV *ExitCount = SE->getAddExpr(
3093       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3094 
3095   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3096 
3097   // Expand the trip count and place the new instructions in the preheader.
3098   // Notice that the pre-header does not change, only the loop body.
3099   SCEVExpander Exp(*SE, DL, "induction");
3100 
3101   // Count holds the overall loop count (N).
3102   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3103                                 L->getLoopPreheader()->getTerminator());
3104 
3105   if (TripCount->getType()->isPointerTy())
3106     TripCount =
3107         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3108                                     L->getLoopPreheader()->getTerminator());
3109 
3110   return TripCount;
3111 }
3112 
3113 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3114   if (VectorTripCount)
3115     return VectorTripCount;
3116 
3117   Value *TC = getOrCreateTripCount(L);
3118   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3119 
3120   Type *Ty = TC->getType();
3121   // This is where we can make the step a runtime constant.
3122   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3123 
3124   // If the tail is to be folded by masking, round the number of iterations N
3125   // up to a multiple of Step instead of rounding down. This is done by first
3126   // adding Step-1 and then rounding down. Note that it's ok if this addition
3127   // overflows: the vector induction variable will eventually wrap to zero given
3128   // that it starts at zero and its Step is a power of two; the loop will then
3129   // exit, with the last early-exit vector comparison also producing all-true.
3130   if (Cost->foldTailByMasking()) {
3131     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3132            "VF*UF must be a power of 2 when folding tail by masking");
3133     assert(!VF.isScalable() &&
3134            "Tail folding not yet supported for scalable vectors");
3135     TC = Builder.CreateAdd(
3136         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3137   }
3138 
3139   // Now we need to generate the expression for the part of the loop that the
3140   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3141   // iterations are not required for correctness, or N - Step, otherwise. Step
3142   // is equal to the vectorization factor (number of SIMD elements) times the
3143   // unroll factor (number of SIMD instructions).
3144   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3145 
3146   // There are two cases where we need to ensure (at least) the last iteration
3147   // runs in the scalar remainder loop. Thus, if the step evenly divides
3148   // the trip count, we set the remainder to be equal to the step. If the step
3149   // does not evenly divide the trip count, no adjustment is necessary since
3150   // there will already be scalar iterations. Note that the minimum iterations
3151   // check ensures that N >= Step. The cases are:
3152   // 1) If there is a non-reversed interleaved group that may speculatively
3153   //    access memory out-of-bounds.
3154   // 2) If any instruction may follow a conditionally taken exit. That is, if
3155   //    the loop contains multiple exiting blocks, or a single exiting block
3156   //    which is not the latch.
3157   if (VF.isVector() && Cost->requiresScalarEpilogue()) {
3158     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3159     R = Builder.CreateSelect(IsZero, Step, R);
3160   }
3161 
3162   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3163 
3164   return VectorTripCount;
3165 }
3166 
3167 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3168                                                    const DataLayout &DL) {
3169   // Verify that V is a vector type with same number of elements as DstVTy.
3170   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3171   unsigned VF = DstFVTy->getNumElements();
3172   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3173   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3174   Type *SrcElemTy = SrcVecTy->getElementType();
3175   Type *DstElemTy = DstFVTy->getElementType();
3176   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3177          "Vector elements must have same size");
3178 
3179   // Do a direct cast if element types are castable.
3180   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3181     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3182   }
3183   // V cannot be directly casted to desired vector type.
3184   // May happen when V is a floating point vector but DstVTy is a vector of
3185   // pointers or vice-versa. Handle this using a two-step bitcast using an
3186   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3187   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3188          "Only one type should be a pointer type");
3189   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3190          "Only one type should be a floating point type");
3191   Type *IntTy =
3192       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3193   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3194   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3195   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3196 }
3197 
3198 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3199                                                          BasicBlock *Bypass) {
3200   Value *Count = getOrCreateTripCount(L);
3201   // Reuse existing vector loop preheader for TC checks.
3202   // Note that new preheader block is generated for vector loop.
3203   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3204   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3205 
3206   // Generate code to check if the loop's trip count is less than VF * UF, or
3207   // equal to it in case a scalar epilogue is required; this implies that the
3208   // vector trip count is zero. This check also covers the case where adding one
3209   // to the backedge-taken count overflowed leading to an incorrect trip count
3210   // of zero. In this case we will also jump to the scalar loop.
3211   auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
3212                                           : ICmpInst::ICMP_ULT;
3213 
3214   // If tail is to be folded, vector loop takes care of all iterations.
3215   Value *CheckMinIters = Builder.getFalse();
3216   if (!Cost->foldTailByMasking()) {
3217     Value *Step =
3218         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3219     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3220   }
3221   // Create new preheader for vector loop.
3222   LoopVectorPreHeader =
3223       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3224                  "vector.ph");
3225 
3226   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3227                                DT->getNode(Bypass)->getIDom()) &&
3228          "TC check is expected to dominate Bypass");
3229 
3230   // Update dominator for Bypass & LoopExit.
3231   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3232   DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3233 
3234   ReplaceInstWithInst(
3235       TCCheckBlock->getTerminator(),
3236       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3237   LoopBypassBlocks.push_back(TCCheckBlock);
3238 }
3239 
3240 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3241 
3242   BasicBlock *const SCEVCheckBlock =
3243       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3244   if (!SCEVCheckBlock)
3245     return nullptr;
3246 
3247   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3248            (OptForSizeBasedOnProfile &&
3249             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3250          "Cannot SCEV check stride or overflow when optimizing for size");
3251 
3252 
3253   // Update dominator only if this is first RT check.
3254   if (LoopBypassBlocks.empty()) {
3255     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3256     DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3257   }
3258 
3259   LoopBypassBlocks.push_back(SCEVCheckBlock);
3260   AddedSafetyChecks = true;
3261   return SCEVCheckBlock;
3262 }
3263 
3264 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3265                                                       BasicBlock *Bypass) {
3266   // VPlan-native path does not do any analysis for runtime checks currently.
3267   if (EnableVPlanNativePath)
3268     return nullptr;
3269 
3270   BasicBlock *const MemCheckBlock =
3271       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3272 
3273   // Check if we generated code that checks in runtime if arrays overlap. We put
3274   // the checks into a separate block to make the more common case of few
3275   // elements faster.
3276   if (!MemCheckBlock)
3277     return nullptr;
3278 
3279   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3280     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3281            "Cannot emit memory checks when optimizing for size, unless forced "
3282            "to vectorize.");
3283     ORE->emit([&]() {
3284       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3285                                         L->getStartLoc(), L->getHeader())
3286              << "Code-size may be reduced by not forcing "
3287                 "vectorization, or by source-code modifications "
3288                 "eliminating the need for runtime checks "
3289                 "(e.g., adding 'restrict').";
3290     });
3291   }
3292 
3293   LoopBypassBlocks.push_back(MemCheckBlock);
3294 
3295   AddedSafetyChecks = true;
3296 
3297   // We currently don't use LoopVersioning for the actual loop cloning but we
3298   // still use it to add the noalias metadata.
3299   LVer = std::make_unique<LoopVersioning>(
3300       *Legal->getLAI(),
3301       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3302       DT, PSE.getSE());
3303   LVer->prepareNoAliasMetadata();
3304   return MemCheckBlock;
3305 }
3306 
3307 Value *InnerLoopVectorizer::emitTransformedIndex(
3308     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3309     const InductionDescriptor &ID) const {
3310 
3311   SCEVExpander Exp(*SE, DL, "induction");
3312   auto Step = ID.getStep();
3313   auto StartValue = ID.getStartValue();
3314   assert(Index->getType() == Step->getType() &&
3315          "Index type does not match StepValue type");
3316 
3317   // Note: the IR at this point is broken. We cannot use SE to create any new
3318   // SCEV and then expand it, hoping that SCEV's simplification will give us
3319   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3320   // lead to various SCEV crashes. So all we can do is to use builder and rely
3321   // on InstCombine for future simplifications. Here we handle some trivial
3322   // cases only.
3323   auto CreateAdd = [&B](Value *X, Value *Y) {
3324     assert(X->getType() == Y->getType() && "Types don't match!");
3325     if (auto *CX = dyn_cast<ConstantInt>(X))
3326       if (CX->isZero())
3327         return Y;
3328     if (auto *CY = dyn_cast<ConstantInt>(Y))
3329       if (CY->isZero())
3330         return X;
3331     return B.CreateAdd(X, Y);
3332   };
3333 
3334   auto CreateMul = [&B](Value *X, Value *Y) {
3335     assert(X->getType() == Y->getType() && "Types don't match!");
3336     if (auto *CX = dyn_cast<ConstantInt>(X))
3337       if (CX->isOne())
3338         return Y;
3339     if (auto *CY = dyn_cast<ConstantInt>(Y))
3340       if (CY->isOne())
3341         return X;
3342     return B.CreateMul(X, Y);
3343   };
3344 
3345   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3346   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3347   // the DomTree is not kept up-to-date for additional blocks generated in the
3348   // vector loop. By using the header as insertion point, we guarantee that the
3349   // expanded instructions dominate all their uses.
3350   auto GetInsertPoint = [this, &B]() {
3351     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3352     if (InsertBB != LoopVectorBody &&
3353         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3354       return LoopVectorBody->getTerminator();
3355     return &*B.GetInsertPoint();
3356   };
3357 
3358   switch (ID.getKind()) {
3359   case InductionDescriptor::IK_IntInduction: {
3360     assert(Index->getType() == StartValue->getType() &&
3361            "Index type does not match StartValue type");
3362     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3363       return B.CreateSub(StartValue, Index);
3364     auto *Offset = CreateMul(
3365         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3366     return CreateAdd(StartValue, Offset);
3367   }
3368   case InductionDescriptor::IK_PtrInduction: {
3369     assert(isa<SCEVConstant>(Step) &&
3370            "Expected constant step for pointer induction");
3371     return B.CreateGEP(
3372         StartValue->getType()->getPointerElementType(), StartValue,
3373         CreateMul(Index,
3374                   Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())));
3375   }
3376   case InductionDescriptor::IK_FpInduction: {
3377     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3378     auto InductionBinOp = ID.getInductionBinOp();
3379     assert(InductionBinOp &&
3380            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3381             InductionBinOp->getOpcode() == Instruction::FSub) &&
3382            "Original bin op should be defined for FP induction");
3383 
3384     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3385     Value *MulExp = B.CreateFMul(StepValue, Index);
3386     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3387                          "induction");
3388   }
3389   case InductionDescriptor::IK_NoInduction:
3390     return nullptr;
3391   }
3392   llvm_unreachable("invalid enum");
3393 }
3394 
3395 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3396   LoopScalarBody = OrigLoop->getHeader();
3397   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3398   LoopExitBlock = OrigLoop->getUniqueExitBlock();
3399   assert(LoopExitBlock && "Must have an exit block");
3400   assert(LoopVectorPreHeader && "Invalid loop structure");
3401 
3402   LoopMiddleBlock =
3403       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3404                  LI, nullptr, Twine(Prefix) + "middle.block");
3405   LoopScalarPreHeader =
3406       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3407                  nullptr, Twine(Prefix) + "scalar.ph");
3408 
3409   // Set up branch from middle block to the exit and scalar preheader blocks.
3410   // completeLoopSkeleton will update the condition to use an iteration check,
3411   // if required to decide whether to execute the remainder.
3412   BranchInst *BrInst =
3413       BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue());
3414   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3415   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3416   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3417 
3418   // We intentionally don't let SplitBlock to update LoopInfo since
3419   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3420   // LoopVectorBody is explicitly added to the correct place few lines later.
3421   LoopVectorBody =
3422       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3423                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3424 
3425   // Update dominator for loop exit.
3426   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3427 
3428   // Create and register the new vector loop.
3429   Loop *Lp = LI->AllocateLoop();
3430   Loop *ParentLoop = OrigLoop->getParentLoop();
3431 
3432   // Insert the new loop into the loop nest and register the new basic blocks
3433   // before calling any utilities such as SCEV that require valid LoopInfo.
3434   if (ParentLoop) {
3435     ParentLoop->addChildLoop(Lp);
3436   } else {
3437     LI->addTopLevelLoop(Lp);
3438   }
3439   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3440   return Lp;
3441 }
3442 
3443 void InnerLoopVectorizer::createInductionResumeValues(
3444     Loop *L, Value *VectorTripCount,
3445     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3446   assert(VectorTripCount && L && "Expected valid arguments");
3447   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3448           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3449          "Inconsistent information about additional bypass.");
3450   // We are going to resume the execution of the scalar loop.
3451   // Go over all of the induction variables that we found and fix the
3452   // PHIs that are left in the scalar version of the loop.
3453   // The starting values of PHI nodes depend on the counter of the last
3454   // iteration in the vectorized loop.
3455   // If we come from a bypass edge then we need to start from the original
3456   // start value.
3457   for (auto &InductionEntry : Legal->getInductionVars()) {
3458     PHINode *OrigPhi = InductionEntry.first;
3459     InductionDescriptor II = InductionEntry.second;
3460 
3461     // Create phi nodes to merge from the  backedge-taken check block.
3462     PHINode *BCResumeVal =
3463         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3464                         LoopScalarPreHeader->getTerminator());
3465     // Copy original phi DL over to the new one.
3466     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3467     Value *&EndValue = IVEndValues[OrigPhi];
3468     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3469     if (OrigPhi == OldInduction) {
3470       // We know what the end value is.
3471       EndValue = VectorTripCount;
3472     } else {
3473       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3474 
3475       // Fast-math-flags propagate from the original induction instruction.
3476       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3477         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3478 
3479       Type *StepType = II.getStep()->getType();
3480       Instruction::CastOps CastOp =
3481           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3482       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3483       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3484       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3485       EndValue->setName("ind.end");
3486 
3487       // Compute the end value for the additional bypass (if applicable).
3488       if (AdditionalBypass.first) {
3489         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3490         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3491                                          StepType, true);
3492         CRD =
3493             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3494         EndValueFromAdditionalBypass =
3495             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3496         EndValueFromAdditionalBypass->setName("ind.end");
3497       }
3498     }
3499     // The new PHI merges the original incoming value, in case of a bypass,
3500     // or the value at the end of the vectorized loop.
3501     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3502 
3503     // Fix the scalar body counter (PHI node).
3504     // The old induction's phi node in the scalar body needs the truncated
3505     // value.
3506     for (BasicBlock *BB : LoopBypassBlocks)
3507       BCResumeVal->addIncoming(II.getStartValue(), BB);
3508 
3509     if (AdditionalBypass.first)
3510       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3511                                             EndValueFromAdditionalBypass);
3512 
3513     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3514   }
3515 }
3516 
3517 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3518                                                       MDNode *OrigLoopID) {
3519   assert(L && "Expected valid loop.");
3520 
3521   // The trip counts should be cached by now.
3522   Value *Count = getOrCreateTripCount(L);
3523   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3524 
3525   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3526 
3527   // Add a check in the middle block to see if we have completed
3528   // all of the iterations in the first vector loop.
3529   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3530   // If tail is to be folded, we know we don't need to run the remainder.
3531   if (!Cost->foldTailByMasking()) {
3532     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3533                                         Count, VectorTripCount, "cmp.n",
3534                                         LoopMiddleBlock->getTerminator());
3535 
3536     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3537     // of the corresponding compare because they may have ended up with
3538     // different line numbers and we want to avoid awkward line stepping while
3539     // debugging. Eg. if the compare has got a line number inside the loop.
3540     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3541     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3542   }
3543 
3544   // Get ready to start creating new instructions into the vectorized body.
3545   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3546          "Inconsistent vector loop preheader");
3547   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3548 
3549   Optional<MDNode *> VectorizedLoopID =
3550       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3551                                       LLVMLoopVectorizeFollowupVectorized});
3552   if (VectorizedLoopID.hasValue()) {
3553     L->setLoopID(VectorizedLoopID.getValue());
3554 
3555     // Do not setAlreadyVectorized if loop attributes have been defined
3556     // explicitly.
3557     return LoopVectorPreHeader;
3558   }
3559 
3560   // Keep all loop hints from the original loop on the vector loop (we'll
3561   // replace the vectorizer-specific hints below).
3562   if (MDNode *LID = OrigLoop->getLoopID())
3563     L->setLoopID(LID);
3564 
3565   LoopVectorizeHints Hints(L, true, *ORE);
3566   Hints.setAlreadyVectorized();
3567 
3568 #ifdef EXPENSIVE_CHECKS
3569   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3570   LI->verify(*DT);
3571 #endif
3572 
3573   return LoopVectorPreHeader;
3574 }
3575 
3576 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3577   /*
3578    In this function we generate a new loop. The new loop will contain
3579    the vectorized instructions while the old loop will continue to run the
3580    scalar remainder.
3581 
3582        [ ] <-- loop iteration number check.
3583     /   |
3584    /    v
3585   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3586   |  /  |
3587   | /   v
3588   ||   [ ]     <-- vector pre header.
3589   |/    |
3590   |     v
3591   |    [  ] \
3592   |    [  ]_|   <-- vector loop.
3593   |     |
3594   |     v
3595   |   -[ ]   <--- middle-block.
3596   |  /  |
3597   | /   v
3598   -|- >[ ]     <--- new preheader.
3599    |    |
3600    |    v
3601    |   [ ] \
3602    |   [ ]_|   <-- old scalar loop to handle remainder.
3603     \   |
3604      \  v
3605       >[ ]     <-- exit block.
3606    ...
3607    */
3608 
3609   // Get the metadata of the original loop before it gets modified.
3610   MDNode *OrigLoopID = OrigLoop->getLoopID();
3611 
3612   // Create an empty vector loop, and prepare basic blocks for the runtime
3613   // checks.
3614   Loop *Lp = createVectorLoopSkeleton("");
3615 
3616   // Now, compare the new count to zero. If it is zero skip the vector loop and
3617   // jump to the scalar loop. This check also covers the case where the
3618   // backedge-taken count is uint##_max: adding one to it will overflow leading
3619   // to an incorrect trip count of zero. In this (rare) case we will also jump
3620   // to the scalar loop.
3621   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3622 
3623   // Generate the code to check any assumptions that we've made for SCEV
3624   // expressions.
3625   emitSCEVChecks(Lp, LoopScalarPreHeader);
3626 
3627   // Generate the code that checks in runtime if arrays overlap. We put the
3628   // checks into a separate block to make the more common case of few elements
3629   // faster.
3630   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3631 
3632   // Some loops have a single integer induction variable, while other loops
3633   // don't. One example is c++ iterators that often have multiple pointer
3634   // induction variables. In the code below we also support a case where we
3635   // don't have a single induction variable.
3636   //
3637   // We try to obtain an induction variable from the original loop as hard
3638   // as possible. However if we don't find one that:
3639   //   - is an integer
3640   //   - counts from zero, stepping by one
3641   //   - is the size of the widest induction variable type
3642   // then we create a new one.
3643   OldInduction = Legal->getPrimaryInduction();
3644   Type *IdxTy = Legal->getWidestInductionType();
3645   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3646   // The loop step is equal to the vectorization factor (num of SIMD elements)
3647   // times the unroll factor (num of SIMD instructions).
3648   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3649   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3650   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3651   Induction =
3652       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3653                               getDebugLocFromInstOrOperands(OldInduction));
3654 
3655   // Emit phis for the new starting index of the scalar loop.
3656   createInductionResumeValues(Lp, CountRoundDown);
3657 
3658   return completeLoopSkeleton(Lp, OrigLoopID);
3659 }
3660 
3661 // Fix up external users of the induction variable. At this point, we are
3662 // in LCSSA form, with all external PHIs that use the IV having one input value,
3663 // coming from the remainder loop. We need those PHIs to also have a correct
3664 // value for the IV when arriving directly from the middle block.
3665 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3666                                        const InductionDescriptor &II,
3667                                        Value *CountRoundDown, Value *EndValue,
3668                                        BasicBlock *MiddleBlock) {
3669   // There are two kinds of external IV usages - those that use the value
3670   // computed in the last iteration (the PHI) and those that use the penultimate
3671   // value (the value that feeds into the phi from the loop latch).
3672   // We allow both, but they, obviously, have different values.
3673 
3674   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3675 
3676   DenseMap<Value *, Value *> MissingVals;
3677 
3678   // An external user of the last iteration's value should see the value that
3679   // the remainder loop uses to initialize its own IV.
3680   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3681   for (User *U : PostInc->users()) {
3682     Instruction *UI = cast<Instruction>(U);
3683     if (!OrigLoop->contains(UI)) {
3684       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3685       MissingVals[UI] = EndValue;
3686     }
3687   }
3688 
3689   // An external user of the penultimate value need to see EndValue - Step.
3690   // The simplest way to get this is to recompute it from the constituent SCEVs,
3691   // that is Start + (Step * (CRD - 1)).
3692   for (User *U : OrigPhi->users()) {
3693     auto *UI = cast<Instruction>(U);
3694     if (!OrigLoop->contains(UI)) {
3695       const DataLayout &DL =
3696           OrigLoop->getHeader()->getModule()->getDataLayout();
3697       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3698 
3699       IRBuilder<> B(MiddleBlock->getTerminator());
3700 
3701       // Fast-math-flags propagate from the original induction instruction.
3702       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3703         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3704 
3705       Value *CountMinusOne = B.CreateSub(
3706           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3707       Value *CMO =
3708           !II.getStep()->getType()->isIntegerTy()
3709               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3710                              II.getStep()->getType())
3711               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3712       CMO->setName("cast.cmo");
3713       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3714       Escape->setName("ind.escape");
3715       MissingVals[UI] = Escape;
3716     }
3717   }
3718 
3719   for (auto &I : MissingVals) {
3720     PHINode *PHI = cast<PHINode>(I.first);
3721     // One corner case we have to handle is two IVs "chasing" each-other,
3722     // that is %IV2 = phi [...], [ %IV1, %latch ]
3723     // In this case, if IV1 has an external use, we need to avoid adding both
3724     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3725     // don't already have an incoming value for the middle block.
3726     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3727       PHI->addIncoming(I.second, MiddleBlock);
3728   }
3729 }
3730 
3731 namespace {
3732 
3733 struct CSEDenseMapInfo {
3734   static bool canHandle(const Instruction *I) {
3735     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3736            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3737   }
3738 
3739   static inline Instruction *getEmptyKey() {
3740     return DenseMapInfo<Instruction *>::getEmptyKey();
3741   }
3742 
3743   static inline Instruction *getTombstoneKey() {
3744     return DenseMapInfo<Instruction *>::getTombstoneKey();
3745   }
3746 
3747   static unsigned getHashValue(const Instruction *I) {
3748     assert(canHandle(I) && "Unknown instruction!");
3749     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3750                                                            I->value_op_end()));
3751   }
3752 
3753   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3754     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3755         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3756       return LHS == RHS;
3757     return LHS->isIdenticalTo(RHS);
3758   }
3759 };
3760 
3761 } // end anonymous namespace
3762 
3763 ///Perform cse of induction variable instructions.
3764 static void cse(BasicBlock *BB) {
3765   // Perform simple cse.
3766   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3767   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3768     Instruction *In = &*I++;
3769 
3770     if (!CSEDenseMapInfo::canHandle(In))
3771       continue;
3772 
3773     // Check if we can replace this instruction with any of the
3774     // visited instructions.
3775     if (Instruction *V = CSEMap.lookup(In)) {
3776       In->replaceAllUsesWith(V);
3777       In->eraseFromParent();
3778       continue;
3779     }
3780 
3781     CSEMap[In] = In;
3782   }
3783 }
3784 
3785 InstructionCost
3786 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3787                                               bool &NeedToScalarize) const {
3788   Function *F = CI->getCalledFunction();
3789   Type *ScalarRetTy = CI->getType();
3790   SmallVector<Type *, 4> Tys, ScalarTys;
3791   for (auto &ArgOp : CI->arg_operands())
3792     ScalarTys.push_back(ArgOp->getType());
3793 
3794   // Estimate cost of scalarized vector call. The source operands are assumed
3795   // to be vectors, so we need to extract individual elements from there,
3796   // execute VF scalar calls, and then gather the result into the vector return
3797   // value.
3798   InstructionCost ScalarCallCost =
3799       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3800   if (VF.isScalar())
3801     return ScalarCallCost;
3802 
3803   // Compute corresponding vector type for return value and arguments.
3804   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3805   for (Type *ScalarTy : ScalarTys)
3806     Tys.push_back(ToVectorTy(ScalarTy, VF));
3807 
3808   // Compute costs of unpacking argument values for the scalar calls and
3809   // packing the return values to a vector.
3810   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3811 
3812   InstructionCost Cost =
3813       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3814 
3815   // If we can't emit a vector call for this function, then the currently found
3816   // cost is the cost we need to return.
3817   NeedToScalarize = true;
3818   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3819   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3820 
3821   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3822     return Cost;
3823 
3824   // If the corresponding vector cost is cheaper, return its cost.
3825   InstructionCost VectorCallCost =
3826       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3827   if (VectorCallCost < Cost) {
3828     NeedToScalarize = false;
3829     Cost = VectorCallCost;
3830   }
3831   return Cost;
3832 }
3833 
3834 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3835   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3836     return Elt;
3837   return VectorType::get(Elt, VF);
3838 }
3839 
3840 InstructionCost
3841 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3842                                                    ElementCount VF) const {
3843   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3844   assert(ID && "Expected intrinsic call!");
3845   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3846   FastMathFlags FMF;
3847   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3848     FMF = FPMO->getFastMathFlags();
3849 
3850   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3851   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3852   SmallVector<Type *> ParamTys;
3853   std::transform(FTy->param_begin(), FTy->param_end(),
3854                  std::back_inserter(ParamTys),
3855                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3856 
3857   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3858                                     dyn_cast<IntrinsicInst>(CI));
3859   return TTI.getIntrinsicInstrCost(CostAttrs,
3860                                    TargetTransformInfo::TCK_RecipThroughput);
3861 }
3862 
3863 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3864   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3865   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3866   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3867 }
3868 
3869 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3870   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3871   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3872   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3873 }
3874 
3875 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3876   // For every instruction `I` in MinBWs, truncate the operands, create a
3877   // truncated version of `I` and reextend its result. InstCombine runs
3878   // later and will remove any ext/trunc pairs.
3879   SmallPtrSet<Value *, 4> Erased;
3880   for (const auto &KV : Cost->getMinimalBitwidths()) {
3881     // If the value wasn't vectorized, we must maintain the original scalar
3882     // type. The absence of the value from State indicates that it
3883     // wasn't vectorized.
3884     VPValue *Def = State.Plan->getVPValue(KV.first);
3885     if (!State.hasAnyVectorValue(Def))
3886       continue;
3887     for (unsigned Part = 0; Part < UF; ++Part) {
3888       Value *I = State.get(Def, Part);
3889       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3890         continue;
3891       Type *OriginalTy = I->getType();
3892       Type *ScalarTruncatedTy =
3893           IntegerType::get(OriginalTy->getContext(), KV.second);
3894       auto *TruncatedTy = FixedVectorType::get(
3895           ScalarTruncatedTy,
3896           cast<FixedVectorType>(OriginalTy)->getNumElements());
3897       if (TruncatedTy == OriginalTy)
3898         continue;
3899 
3900       IRBuilder<> B(cast<Instruction>(I));
3901       auto ShrinkOperand = [&](Value *V) -> Value * {
3902         if (auto *ZI = dyn_cast<ZExtInst>(V))
3903           if (ZI->getSrcTy() == TruncatedTy)
3904             return ZI->getOperand(0);
3905         return B.CreateZExtOrTrunc(V, TruncatedTy);
3906       };
3907 
3908       // The actual instruction modification depends on the instruction type,
3909       // unfortunately.
3910       Value *NewI = nullptr;
3911       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3912         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3913                              ShrinkOperand(BO->getOperand(1)));
3914 
3915         // Any wrapping introduced by shrinking this operation shouldn't be
3916         // considered undefined behavior. So, we can't unconditionally copy
3917         // arithmetic wrapping flags to NewI.
3918         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3919       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3920         NewI =
3921             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3922                          ShrinkOperand(CI->getOperand(1)));
3923       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3924         NewI = B.CreateSelect(SI->getCondition(),
3925                               ShrinkOperand(SI->getTrueValue()),
3926                               ShrinkOperand(SI->getFalseValue()));
3927       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3928         switch (CI->getOpcode()) {
3929         default:
3930           llvm_unreachable("Unhandled cast!");
3931         case Instruction::Trunc:
3932           NewI = ShrinkOperand(CI->getOperand(0));
3933           break;
3934         case Instruction::SExt:
3935           NewI = B.CreateSExtOrTrunc(
3936               CI->getOperand(0),
3937               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3938           break;
3939         case Instruction::ZExt:
3940           NewI = B.CreateZExtOrTrunc(
3941               CI->getOperand(0),
3942               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3943           break;
3944         }
3945       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3946         auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType())
3947                              ->getNumElements();
3948         auto *O0 = B.CreateZExtOrTrunc(
3949             SI->getOperand(0),
3950             FixedVectorType::get(ScalarTruncatedTy, Elements0));
3951         auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType())
3952                              ->getNumElements();
3953         auto *O1 = B.CreateZExtOrTrunc(
3954             SI->getOperand(1),
3955             FixedVectorType::get(ScalarTruncatedTy, Elements1));
3956 
3957         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3958       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3959         // Don't do anything with the operands, just extend the result.
3960         continue;
3961       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3962         auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType())
3963                             ->getNumElements();
3964         auto *O0 = B.CreateZExtOrTrunc(
3965             IE->getOperand(0),
3966             FixedVectorType::get(ScalarTruncatedTy, Elements));
3967         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3968         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3969       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3970         auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType())
3971                             ->getNumElements();
3972         auto *O0 = B.CreateZExtOrTrunc(
3973             EE->getOperand(0),
3974             FixedVectorType::get(ScalarTruncatedTy, Elements));
3975         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3976       } else {
3977         // If we don't know what to do, be conservative and don't do anything.
3978         continue;
3979       }
3980 
3981       // Lastly, extend the result.
3982       NewI->takeName(cast<Instruction>(I));
3983       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3984       I->replaceAllUsesWith(Res);
3985       cast<Instruction>(I)->eraseFromParent();
3986       Erased.insert(I);
3987       State.reset(Def, Res, Part);
3988     }
3989   }
3990 
3991   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3992   for (const auto &KV : Cost->getMinimalBitwidths()) {
3993     // If the value wasn't vectorized, we must maintain the original scalar
3994     // type. The absence of the value from State indicates that it
3995     // wasn't vectorized.
3996     VPValue *Def = State.Plan->getVPValue(KV.first);
3997     if (!State.hasAnyVectorValue(Def))
3998       continue;
3999     for (unsigned Part = 0; Part < UF; ++Part) {
4000       Value *I = State.get(Def, Part);
4001       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4002       if (Inst && Inst->use_empty()) {
4003         Value *NewI = Inst->getOperand(0);
4004         Inst->eraseFromParent();
4005         State.reset(Def, NewI, Part);
4006       }
4007     }
4008   }
4009 }
4010 
4011 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4012   // Insert truncates and extends for any truncated instructions as hints to
4013   // InstCombine.
4014   if (VF.isVector())
4015     truncateToMinimalBitwidths(State);
4016 
4017   // Fix widened non-induction PHIs by setting up the PHI operands.
4018   if (OrigPHIsToFix.size()) {
4019     assert(EnableVPlanNativePath &&
4020            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4021     fixNonInductionPHIs(State);
4022   }
4023 
4024   // At this point every instruction in the original loop is widened to a
4025   // vector form. Now we need to fix the recurrences in the loop. These PHI
4026   // nodes are currently empty because we did not want to introduce cycles.
4027   // This is the second stage of vectorizing recurrences.
4028   fixCrossIterationPHIs(State);
4029 
4030   // Forget the original basic block.
4031   PSE.getSE()->forgetLoop(OrigLoop);
4032 
4033   // Fix-up external users of the induction variables.
4034   for (auto &Entry : Legal->getInductionVars())
4035     fixupIVUsers(Entry.first, Entry.second,
4036                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4037                  IVEndValues[Entry.first], LoopMiddleBlock);
4038 
4039   fixLCSSAPHIs(State);
4040   for (Instruction *PI : PredicatedInstructions)
4041     sinkScalarOperands(&*PI);
4042 
4043   // Remove redundant induction instructions.
4044   cse(LoopVectorBody);
4045 
4046   // Set/update profile weights for the vector and remainder loops as original
4047   // loop iterations are now distributed among them. Note that original loop
4048   // represented by LoopScalarBody becomes remainder loop after vectorization.
4049   //
4050   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4051   // end up getting slightly roughened result but that should be OK since
4052   // profile is not inherently precise anyway. Note also possible bypass of
4053   // vector code caused by legality checks is ignored, assigning all the weight
4054   // to the vector loop, optimistically.
4055   //
4056   // For scalable vectorization we can't know at compile time how many iterations
4057   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4058   // vscale of '1'.
4059   setProfileInfoAfterUnrolling(
4060       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4061       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4062 }
4063 
4064 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4065   // In order to support recurrences we need to be able to vectorize Phi nodes.
4066   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4067   // stage #2: We now need to fix the recurrences by adding incoming edges to
4068   // the currently empty PHI nodes. At this point every instruction in the
4069   // original loop is widened to a vector form so we can use them to construct
4070   // the incoming edges.
4071   for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
4072     // Handle first-order recurrences and reductions that need to be fixed.
4073     if (Legal->isFirstOrderRecurrence(&Phi))
4074       fixFirstOrderRecurrence(&Phi, State);
4075     else if (Legal->isReductionVariable(&Phi))
4076       fixReduction(&Phi, State);
4077   }
4078 }
4079 
4080 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi,
4081                                                   VPTransformState &State) {
4082   // This is the second phase of vectorizing first-order recurrences. An
4083   // overview of the transformation is described below. Suppose we have the
4084   // following loop.
4085   //
4086   //   for (int i = 0; i < n; ++i)
4087   //     b[i] = a[i] - a[i - 1];
4088   //
4089   // There is a first-order recurrence on "a". For this loop, the shorthand
4090   // scalar IR looks like:
4091   //
4092   //   scalar.ph:
4093   //     s_init = a[-1]
4094   //     br scalar.body
4095   //
4096   //   scalar.body:
4097   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4098   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4099   //     s2 = a[i]
4100   //     b[i] = s2 - s1
4101   //     br cond, scalar.body, ...
4102   //
4103   // In this example, s1 is a recurrence because it's value depends on the
4104   // previous iteration. In the first phase of vectorization, we created a
4105   // temporary value for s1. We now complete the vectorization and produce the
4106   // shorthand vector IR shown below (for VF = 4, UF = 1).
4107   //
4108   //   vector.ph:
4109   //     v_init = vector(..., ..., ..., a[-1])
4110   //     br vector.body
4111   //
4112   //   vector.body
4113   //     i = phi [0, vector.ph], [i+4, vector.body]
4114   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4115   //     v2 = a[i, i+1, i+2, i+3];
4116   //     v3 = vector(v1(3), v2(0, 1, 2))
4117   //     b[i, i+1, i+2, i+3] = v2 - v3
4118   //     br cond, vector.body, middle.block
4119   //
4120   //   middle.block:
4121   //     x = v2(3)
4122   //     br scalar.ph
4123   //
4124   //   scalar.ph:
4125   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4126   //     br scalar.body
4127   //
4128   // After execution completes the vector loop, we extract the next value of
4129   // the recurrence (x) to use as the initial value in the scalar loop.
4130 
4131   // Get the original loop preheader and single loop latch.
4132   auto *Preheader = OrigLoop->getLoopPreheader();
4133   auto *Latch = OrigLoop->getLoopLatch();
4134 
4135   // Get the initial and previous values of the scalar recurrence.
4136   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
4137   auto *Previous = Phi->getIncomingValueForBlock(Latch);
4138 
4139   // Create a vector from the initial value.
4140   auto *VectorInit = ScalarInit;
4141   if (VF.isVector()) {
4142     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4143     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
4144     VectorInit = Builder.CreateInsertElement(
4145         PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
4146         Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init");
4147   }
4148 
4149   VPValue *PhiDef = State.Plan->getVPValue(Phi);
4150   VPValue *PreviousDef = State.Plan->getVPValue(Previous);
4151   // We constructed a temporary phi node in the first phase of vectorization.
4152   // This phi node will eventually be deleted.
4153   Builder.SetInsertPoint(cast<Instruction>(State.get(PhiDef, 0)));
4154 
4155   // Create a phi node for the new recurrence. The current value will either be
4156   // the initial value inserted into a vector or loop-varying vector value.
4157   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
4158   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
4159 
4160   // Get the vectorized previous value of the last part UF - 1. It appears last
4161   // among all unrolled iterations, due to the order of their construction.
4162   Value *PreviousLastPart = State.get(PreviousDef, UF - 1);
4163 
4164   // Find and set the insertion point after the previous value if it is an
4165   // instruction.
4166   BasicBlock::iterator InsertPt;
4167   // Note that the previous value may have been constant-folded so it is not
4168   // guaranteed to be an instruction in the vector loop.
4169   // FIXME: Loop invariant values do not form recurrences. We should deal with
4170   //        them earlier.
4171   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart))
4172     InsertPt = LoopVectorBody->getFirstInsertionPt();
4173   else {
4174     Instruction *PreviousInst = cast<Instruction>(PreviousLastPart);
4175     if (isa<PHINode>(PreviousLastPart))
4176       // If the previous value is a phi node, we should insert after all the phi
4177       // nodes in the block containing the PHI to avoid breaking basic block
4178       // verification. Note that the basic block may be different to
4179       // LoopVectorBody, in case we predicate the loop.
4180       InsertPt = PreviousInst->getParent()->getFirstInsertionPt();
4181     else
4182       InsertPt = ++PreviousInst->getIterator();
4183   }
4184   Builder.SetInsertPoint(&*InsertPt);
4185 
4186   // We will construct a vector for the recurrence by combining the values for
4187   // the current and previous iterations. This is the required shuffle mask.
4188   assert(!VF.isScalable());
4189   SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue());
4190   ShuffleMask[0] = VF.getKnownMinValue() - 1;
4191   for (unsigned I = 1; I < VF.getKnownMinValue(); ++I)
4192     ShuffleMask[I] = I + VF.getKnownMinValue() - 1;
4193 
4194   // The vector from which to take the initial value for the current iteration
4195   // (actual or unrolled). Initially, this is the vector phi node.
4196   Value *Incoming = VecPhi;
4197 
4198   // Shuffle the current and previous vector and update the vector parts.
4199   for (unsigned Part = 0; Part < UF; ++Part) {
4200     Value *PreviousPart = State.get(PreviousDef, Part);
4201     Value *PhiPart = State.get(PhiDef, Part);
4202     auto *Shuffle =
4203         VF.isVector()
4204             ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask)
4205             : Incoming;
4206     PhiPart->replaceAllUsesWith(Shuffle);
4207     cast<Instruction>(PhiPart)->eraseFromParent();
4208     State.reset(PhiDef, Shuffle, Part);
4209     Incoming = PreviousPart;
4210   }
4211 
4212   // Fix the latch value of the new recurrence in the vector loop.
4213   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4214 
4215   // Extract the last vector element in the middle block. This will be the
4216   // initial value for the recurrence when jumping to the scalar loop.
4217   auto *ExtractForScalar = Incoming;
4218   if (VF.isVector()) {
4219     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4220     ExtractForScalar = Builder.CreateExtractElement(
4221         ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1),
4222         "vector.recur.extract");
4223   }
4224   // Extract the second last element in the middle block if the
4225   // Phi is used outside the loop. We need to extract the phi itself
4226   // and not the last element (the phi update in the current iteration). This
4227   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4228   // when the scalar loop is not run at all.
4229   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4230   if (VF.isVector())
4231     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4232         Incoming, Builder.getInt32(VF.getKnownMinValue() - 2),
4233         "vector.recur.extract.for.phi");
4234   // When loop is unrolled without vectorizing, initialize
4235   // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
4236   // `Incoming`. This is analogous to the vectorized case above: extracting the
4237   // second last element when VF > 1.
4238   else if (UF > 1)
4239     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4240 
4241   // Fix the initial value of the original recurrence in the scalar loop.
4242   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4243   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4244   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4245     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4246     Start->addIncoming(Incoming, BB);
4247   }
4248 
4249   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4250   Phi->setName("scalar.recur");
4251 
4252   // Finally, fix users of the recurrence outside the loop. The users will need
4253   // either the last value of the scalar recurrence or the last value of the
4254   // vector recurrence we extracted in the middle block. Since the loop is in
4255   // LCSSA form, we just need to find all the phi nodes for the original scalar
4256   // recurrence in the exit block, and then add an edge for the middle block.
4257   // Note that LCSSA does not imply single entry when the original scalar loop
4258   // had multiple exiting edges (as we always run the last iteration in the
4259   // scalar epilogue); in that case, the exiting path through middle will be
4260   // dynamically dead and the value picked for the phi doesn't matter.
4261   for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4262     if (any_of(LCSSAPhi.incoming_values(),
4263                [Phi](Value *V) { return V == Phi; }))
4264       LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4265 }
4266 
4267 static bool useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4268   return EnableStrictReductions && RdxDesc.isOrdered();
4269 }
4270 
4271 void InnerLoopVectorizer::fixReduction(PHINode *Phi, VPTransformState &State) {
4272   // Get it's reduction variable descriptor.
4273   assert(Legal->isReductionVariable(Phi) &&
4274          "Unable to find the reduction variable");
4275   RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi];
4276 
4277   RecurKind RK = RdxDesc.getRecurrenceKind();
4278   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4279   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4280   setDebugLocFromInst(Builder, ReductionStartValue);
4281   bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi);
4282 
4283   VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst);
4284   // This is the vector-clone of the value that leaves the loop.
4285   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4286 
4287   // Wrap flags are in general invalid after vectorization, clear them.
4288   clearReductionWrapFlags(RdxDesc, State);
4289 
4290   // Fix the vector-loop phi.
4291 
4292   // Reductions do not have to start at zero. They can start with
4293   // any loop invariant values.
4294   BasicBlock *Latch = OrigLoop->getLoopLatch();
4295   Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
4296 
4297   for (unsigned Part = 0; Part < UF; ++Part) {
4298     Value *VecRdxPhi = State.get(State.Plan->getVPValue(Phi), Part);
4299     Value *Val = State.get(State.Plan->getVPValue(LoopVal), Part);
4300     if (IsInLoopReductionPhi && useOrderedReductions(RdxDesc) &&
4301         State.VF.isVector())
4302       Val = State.get(State.Plan->getVPValue(LoopVal), UF - 1);
4303     cast<PHINode>(VecRdxPhi)
4304       ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4305   }
4306 
4307   // Before each round, move the insertion point right between
4308   // the PHIs and the values we are going to write.
4309   // This allows us to write both PHINodes and the extractelement
4310   // instructions.
4311   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4312 
4313   setDebugLocFromInst(Builder, LoopExitInst);
4314 
4315   Type *PhiTy = Phi->getType();
4316   // If tail is folded by masking, the vector value to leave the loop should be
4317   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4318   // instead of the former. For an inloop reduction the reduction will already
4319   // be predicated, and does not need to be handled here.
4320   if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) {
4321     for (unsigned Part = 0; Part < UF; ++Part) {
4322       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4323       Value *Sel = nullptr;
4324       for (User *U : VecLoopExitInst->users()) {
4325         if (isa<SelectInst>(U)) {
4326           assert(!Sel && "Reduction exit feeding two selects");
4327           Sel = U;
4328         } else
4329           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4330       }
4331       assert(Sel && "Reduction exit feeds no select");
4332       State.reset(LoopExitInstDef, Sel, Part);
4333 
4334       // If the target can create a predicated operator for the reduction at no
4335       // extra cost in the loop (for example a predicated vadd), it can be
4336       // cheaper for the select to remain in the loop than be sunk out of it,
4337       // and so use the select value for the phi instead of the old
4338       // LoopExitValue.
4339       if (PreferPredicatedReductionSelect ||
4340           TTI->preferPredicatedReductionSelect(
4341               RdxDesc.getOpcode(), PhiTy,
4342               TargetTransformInfo::ReductionFlags())) {
4343         auto *VecRdxPhi =
4344             cast<PHINode>(State.get(State.Plan->getVPValue(Phi), Part));
4345         VecRdxPhi->setIncomingValueForBlock(
4346             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4347       }
4348     }
4349   }
4350 
4351   // If the vector reduction can be performed in a smaller type, we truncate
4352   // then extend the loop exit value to enable InstCombine to evaluate the
4353   // entire expression in the smaller type.
4354   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4355     assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!");
4356     assert(!VF.isScalable() && "scalable vectors not yet supported.");
4357     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4358     Builder.SetInsertPoint(
4359         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4360     VectorParts RdxParts(UF);
4361     for (unsigned Part = 0; Part < UF; ++Part) {
4362       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4363       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4364       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4365                                         : Builder.CreateZExt(Trunc, VecTy);
4366       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4367            UI != RdxParts[Part]->user_end();)
4368         if (*UI != Trunc) {
4369           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4370           RdxParts[Part] = Extnd;
4371         } else {
4372           ++UI;
4373         }
4374     }
4375     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4376     for (unsigned Part = 0; Part < UF; ++Part) {
4377       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4378       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4379     }
4380   }
4381 
4382   // Reduce all of the unrolled parts into a single vector.
4383   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4384   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4385 
4386   // The middle block terminator has already been assigned a DebugLoc here (the
4387   // OrigLoop's single latch terminator). We want the whole middle block to
4388   // appear to execute on this line because: (a) it is all compiler generated,
4389   // (b) these instructions are always executed after evaluating the latch
4390   // conditional branch, and (c) other passes may add new predecessors which
4391   // terminate on this line. This is the easiest way to ensure we don't
4392   // accidentally cause an extra step back into the loop while debugging.
4393   setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator());
4394   if (IsInLoopReductionPhi && useOrderedReductions(RdxDesc))
4395     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4396   else {
4397     // Floating-point operations should have some FMF to enable the reduction.
4398     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4399     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4400     for (unsigned Part = 1; Part < UF; ++Part) {
4401       Value *RdxPart = State.get(LoopExitInstDef, Part);
4402       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4403         ReducedPartRdx = Builder.CreateBinOp(
4404             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4405       } else {
4406         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4407       }
4408     }
4409   }
4410 
4411   // Create the reduction after the loop. Note that inloop reductions create the
4412   // target reduction in the loop using a Reduction recipe.
4413   if (VF.isVector() && !IsInLoopReductionPhi) {
4414     ReducedPartRdx =
4415         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4416     // If the reduction can be performed in a smaller type, we need to extend
4417     // the reduction to the wider type before we branch to the original loop.
4418     if (PhiTy != RdxDesc.getRecurrenceType())
4419       ReducedPartRdx = RdxDesc.isSigned()
4420                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4421                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4422   }
4423 
4424   // Create a phi node that merges control-flow from the backedge-taken check
4425   // block and the middle block.
4426   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4427                                         LoopScalarPreHeader->getTerminator());
4428   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4429     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4430   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4431 
4432   // Now, we need to fix the users of the reduction variable
4433   // inside and outside of the scalar remainder loop.
4434 
4435   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4436   // in the exit blocks.  See comment on analogous loop in
4437   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4438   for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4439     if (any_of(LCSSAPhi.incoming_values(),
4440                [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4441       LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4442 
4443   // Fix the scalar loop reduction variable with the incoming reduction sum
4444   // from the vector body and from the backedge value.
4445   int IncomingEdgeBlockIdx =
4446     Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4447   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4448   // Pick the other block.
4449   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4450   Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4451   Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4452 }
4453 
4454 void InnerLoopVectorizer::clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc,
4455                                                   VPTransformState &State) {
4456   RecurKind RK = RdxDesc.getRecurrenceKind();
4457   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4458     return;
4459 
4460   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4461   assert(LoopExitInstr && "null loop exit instruction");
4462   SmallVector<Instruction *, 8> Worklist;
4463   SmallPtrSet<Instruction *, 8> Visited;
4464   Worklist.push_back(LoopExitInstr);
4465   Visited.insert(LoopExitInstr);
4466 
4467   while (!Worklist.empty()) {
4468     Instruction *Cur = Worklist.pop_back_val();
4469     if (isa<OverflowingBinaryOperator>(Cur))
4470       for (unsigned Part = 0; Part < UF; ++Part) {
4471         Value *V = State.get(State.Plan->getVPValue(Cur), Part);
4472         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4473       }
4474 
4475     for (User *U : Cur->users()) {
4476       Instruction *UI = cast<Instruction>(U);
4477       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4478           Visited.insert(UI).second)
4479         Worklist.push_back(UI);
4480     }
4481   }
4482 }
4483 
4484 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4485   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4486     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4487       // Some phis were already hand updated by the reduction and recurrence
4488       // code above, leave them alone.
4489       continue;
4490 
4491     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4492     // Non-instruction incoming values will have only one value.
4493 
4494     VPLane Lane = VPLane::getFirstLane();
4495     if (isa<Instruction>(IncomingValue) &&
4496         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4497                                            VF))
4498       Lane = VPLane::getLastLaneForVF(VF);
4499 
4500     // Can be a loop invariant incoming value or the last scalar value to be
4501     // extracted from the vectorized loop.
4502     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4503     Value *lastIncomingValue =
4504         OrigLoop->isLoopInvariant(IncomingValue)
4505             ? IncomingValue
4506             : State.get(State.Plan->getVPValue(IncomingValue),
4507                         VPIteration(UF - 1, Lane));
4508     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4509   }
4510 }
4511 
4512 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4513   // The basic block and loop containing the predicated instruction.
4514   auto *PredBB = PredInst->getParent();
4515   auto *VectorLoop = LI->getLoopFor(PredBB);
4516 
4517   // Initialize a worklist with the operands of the predicated instruction.
4518   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4519 
4520   // Holds instructions that we need to analyze again. An instruction may be
4521   // reanalyzed if we don't yet know if we can sink it or not.
4522   SmallVector<Instruction *, 8> InstsToReanalyze;
4523 
4524   // Returns true if a given use occurs in the predicated block. Phi nodes use
4525   // their operands in their corresponding predecessor blocks.
4526   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4527     auto *I = cast<Instruction>(U.getUser());
4528     BasicBlock *BB = I->getParent();
4529     if (auto *Phi = dyn_cast<PHINode>(I))
4530       BB = Phi->getIncomingBlock(
4531           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4532     return BB == PredBB;
4533   };
4534 
4535   // Iteratively sink the scalarized operands of the predicated instruction
4536   // into the block we created for it. When an instruction is sunk, it's
4537   // operands are then added to the worklist. The algorithm ends after one pass
4538   // through the worklist doesn't sink a single instruction.
4539   bool Changed;
4540   do {
4541     // Add the instructions that need to be reanalyzed to the worklist, and
4542     // reset the changed indicator.
4543     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4544     InstsToReanalyze.clear();
4545     Changed = false;
4546 
4547     while (!Worklist.empty()) {
4548       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4549 
4550       // We can't sink an instruction if it is a phi node, is already in the
4551       // predicated block, is not in the loop, or may have side effects.
4552       if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4553           !VectorLoop->contains(I) || I->mayHaveSideEffects())
4554         continue;
4555 
4556       // It's legal to sink the instruction if all its uses occur in the
4557       // predicated block. Otherwise, there's nothing to do yet, and we may
4558       // need to reanalyze the instruction.
4559       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4560         InstsToReanalyze.push_back(I);
4561         continue;
4562       }
4563 
4564       // Move the instruction to the beginning of the predicated block, and add
4565       // it's operands to the worklist.
4566       I->moveBefore(&*PredBB->getFirstInsertionPt());
4567       Worklist.insert(I->op_begin(), I->op_end());
4568 
4569       // The sinking may have enabled other instructions to be sunk, so we will
4570       // need to iterate.
4571       Changed = true;
4572     }
4573   } while (Changed);
4574 }
4575 
4576 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4577   for (PHINode *OrigPhi : OrigPHIsToFix) {
4578     VPWidenPHIRecipe *VPPhi =
4579         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4580     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4581     // Make sure the builder has a valid insert point.
4582     Builder.SetInsertPoint(NewPhi);
4583     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4584       VPValue *Inc = VPPhi->getIncomingValue(i);
4585       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4586       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4587     }
4588   }
4589 }
4590 
4591 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4592                                    VPUser &Operands, unsigned UF,
4593                                    ElementCount VF, bool IsPtrLoopInvariant,
4594                                    SmallBitVector &IsIndexLoopInvariant,
4595                                    VPTransformState &State) {
4596   // Construct a vector GEP by widening the operands of the scalar GEP as
4597   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4598   // results in a vector of pointers when at least one operand of the GEP
4599   // is vector-typed. Thus, to keep the representation compact, we only use
4600   // vector-typed operands for loop-varying values.
4601 
4602   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4603     // If we are vectorizing, but the GEP has only loop-invariant operands,
4604     // the GEP we build (by only using vector-typed operands for
4605     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4606     // produce a vector of pointers, we need to either arbitrarily pick an
4607     // operand to broadcast, or broadcast a clone of the original GEP.
4608     // Here, we broadcast a clone of the original.
4609     //
4610     // TODO: If at some point we decide to scalarize instructions having
4611     //       loop-invariant operands, this special case will no longer be
4612     //       required. We would add the scalarization decision to
4613     //       collectLoopScalars() and teach getVectorValue() to broadcast
4614     //       the lane-zero scalar value.
4615     auto *Clone = Builder.Insert(GEP->clone());
4616     for (unsigned Part = 0; Part < UF; ++Part) {
4617       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4618       State.set(VPDef, EntryPart, Part);
4619       addMetadata(EntryPart, GEP);
4620     }
4621   } else {
4622     // If the GEP has at least one loop-varying operand, we are sure to
4623     // produce a vector of pointers. But if we are only unrolling, we want
4624     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4625     // produce with the code below will be scalar (if VF == 1) or vector
4626     // (otherwise). Note that for the unroll-only case, we still maintain
4627     // values in the vector mapping with initVector, as we do for other
4628     // instructions.
4629     for (unsigned Part = 0; Part < UF; ++Part) {
4630       // The pointer operand of the new GEP. If it's loop-invariant, we
4631       // won't broadcast it.
4632       auto *Ptr = IsPtrLoopInvariant
4633                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4634                       : State.get(Operands.getOperand(0), Part);
4635 
4636       // Collect all the indices for the new GEP. If any index is
4637       // loop-invariant, we won't broadcast it.
4638       SmallVector<Value *, 4> Indices;
4639       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4640         VPValue *Operand = Operands.getOperand(I);
4641         if (IsIndexLoopInvariant[I - 1])
4642           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4643         else
4644           Indices.push_back(State.get(Operand, Part));
4645       }
4646 
4647       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4648       // but it should be a vector, otherwise.
4649       auto *NewGEP =
4650           GEP->isInBounds()
4651               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4652                                           Indices)
4653               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4654       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4655              "NewGEP is not a pointer vector");
4656       State.set(VPDef, NewGEP, Part);
4657       addMetadata(NewGEP, GEP);
4658     }
4659   }
4660 }
4661 
4662 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4663                                               RecurrenceDescriptor *RdxDesc,
4664                                               VPValue *StartVPV, VPValue *Def,
4665                                               VPTransformState &State) {
4666   PHINode *P = cast<PHINode>(PN);
4667   if (EnableVPlanNativePath) {
4668     // Currently we enter here in the VPlan-native path for non-induction
4669     // PHIs where all control flow is uniform. We simply widen these PHIs.
4670     // Create a vector phi with no operands - the vector phi operands will be
4671     // set at the end of vector code generation.
4672     Type *VecTy = (State.VF.isScalar())
4673                       ? PN->getType()
4674                       : VectorType::get(PN->getType(), State.VF);
4675     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4676     State.set(Def, VecPhi, 0);
4677     OrigPHIsToFix.push_back(P);
4678 
4679     return;
4680   }
4681 
4682   assert(PN->getParent() == OrigLoop->getHeader() &&
4683          "Non-header phis should have been handled elsewhere");
4684 
4685   Value *StartV = StartVPV ? StartVPV->getLiveInIRValue() : nullptr;
4686   // In order to support recurrences we need to be able to vectorize Phi nodes.
4687   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4688   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4689   // this value when we vectorize all of the instructions that use the PHI.
4690   if (RdxDesc || Legal->isFirstOrderRecurrence(P)) {
4691     Value *Iden = nullptr;
4692     bool ScalarPHI =
4693         (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN));
4694     Type *VecTy =
4695         ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF);
4696 
4697     if (RdxDesc) {
4698       assert(Legal->isReductionVariable(P) && StartV &&
4699              "RdxDesc should only be set for reduction variables; in that case "
4700              "a StartV is also required");
4701       RecurKind RK = RdxDesc->getRecurrenceKind();
4702       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) {
4703         // MinMax reduction have the start value as their identify.
4704         if (ScalarPHI) {
4705           Iden = StartV;
4706         } else {
4707           IRBuilderBase::InsertPointGuard IPBuilder(Builder);
4708           Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4709           StartV = Iden =
4710               Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
4711         }
4712       } else {
4713         Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity(
4714             RK, VecTy->getScalarType(), RdxDesc->getFastMathFlags());
4715         Iden = IdenC;
4716 
4717         if (!ScalarPHI) {
4718           Iden = ConstantVector::getSplat(State.VF, IdenC);
4719           IRBuilderBase::InsertPointGuard IPBuilder(Builder);
4720           Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4721           Constant *Zero = Builder.getInt32(0);
4722           StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
4723         }
4724       }
4725     }
4726 
4727     for (unsigned Part = 0; Part < State.UF; ++Part) {
4728       // This is phase one of vectorizing PHIs.
4729       Value *EntryPart = PHINode::Create(
4730           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4731       State.set(Def, EntryPart, Part);
4732       if (StartV) {
4733         // Make sure to add the reduction start value only to the
4734         // first unroll part.
4735         Value *StartVal = (Part == 0) ? StartV : Iden;
4736         cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader);
4737       }
4738     }
4739     return;
4740   }
4741 
4742   assert(!Legal->isReductionVariable(P) &&
4743          "reductions should be handled above");
4744 
4745   setDebugLocFromInst(Builder, P);
4746 
4747   // This PHINode must be an induction variable.
4748   // Make sure that we know about it.
4749   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4750 
4751   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4752   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4753 
4754   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4755   // which can be found from the original scalar operations.
4756   switch (II.getKind()) {
4757   case InductionDescriptor::IK_NoInduction:
4758     llvm_unreachable("Unknown induction");
4759   case InductionDescriptor::IK_IntInduction:
4760   case InductionDescriptor::IK_FpInduction:
4761     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4762   case InductionDescriptor::IK_PtrInduction: {
4763     // Handle the pointer induction variable case.
4764     assert(P->getType()->isPointerTy() && "Unexpected type.");
4765     assert(!VF.isScalable() && "Currently unsupported for scalable vectors");
4766 
4767     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4768       // This is the normalized GEP that starts counting at zero.
4769       Value *PtrInd =
4770           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4771       // Determine the number of scalars we need to generate for each unroll
4772       // iteration. If the instruction is uniform, we only need to generate the
4773       // first lane. Otherwise, we generate all VF values.
4774       unsigned Lanes = Cost->isUniformAfterVectorization(P, State.VF)
4775                            ? 1
4776                            : State.VF.getKnownMinValue();
4777       for (unsigned Part = 0; Part < UF; ++Part) {
4778         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4779           Constant *Idx = ConstantInt::get(
4780               PtrInd->getType(), Lane + Part * State.VF.getKnownMinValue());
4781           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4782           Value *SclrGep =
4783               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4784           SclrGep->setName("next.gep");
4785           State.set(Def, SclrGep, VPIteration(Part, Lane));
4786         }
4787       }
4788       return;
4789     }
4790     assert(isa<SCEVConstant>(II.getStep()) &&
4791            "Induction step not a SCEV constant!");
4792     Type *PhiType = II.getStep()->getType();
4793 
4794     // Build a pointer phi
4795     Value *ScalarStartValue = II.getStartValue();
4796     Type *ScStValueType = ScalarStartValue->getType();
4797     PHINode *NewPointerPhi =
4798         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4799     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4800 
4801     // A pointer induction, performed by using a gep
4802     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4803     Instruction *InductionLoc = LoopLatch->getTerminator();
4804     const SCEV *ScalarStep = II.getStep();
4805     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4806     Value *ScalarStepValue =
4807         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4808     Value *InductionGEP = GetElementPtrInst::Create(
4809         ScStValueType->getPointerElementType(), NewPointerPhi,
4810         Builder.CreateMul(
4811             ScalarStepValue,
4812             ConstantInt::get(PhiType, State.VF.getKnownMinValue() * State.UF)),
4813         "ptr.ind", InductionLoc);
4814     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4815 
4816     // Create UF many actual address geps that use the pointer
4817     // phi as base and a vectorized version of the step value
4818     // (<step*0, ..., step*N>) as offset.
4819     for (unsigned Part = 0; Part < State.UF; ++Part) {
4820       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4821       Value *StartOffset =
4822           ConstantInt::get(VecPhiType, Part * State.VF.getKnownMinValue());
4823       // Create a vector of consecutive numbers from zero to VF.
4824       StartOffset =
4825           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4826 
4827       Value *GEP = Builder.CreateGEP(
4828           ScStValueType->getPointerElementType(), NewPointerPhi,
4829           Builder.CreateMul(StartOffset,
4830                             Builder.CreateVectorSplat(
4831                                 State.VF.getKnownMinValue(), ScalarStepValue),
4832                             "vector.gep"));
4833       State.set(Def, GEP, Part);
4834     }
4835   }
4836   }
4837 }
4838 
4839 /// A helper function for checking whether an integer division-related
4840 /// instruction may divide by zero (in which case it must be predicated if
4841 /// executed conditionally in the scalar code).
4842 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4843 /// Non-zero divisors that are non compile-time constants will not be
4844 /// converted into multiplication, so we will still end up scalarizing
4845 /// the division, but can do so w/o predication.
4846 static bool mayDivideByZero(Instruction &I) {
4847   assert((I.getOpcode() == Instruction::UDiv ||
4848           I.getOpcode() == Instruction::SDiv ||
4849           I.getOpcode() == Instruction::URem ||
4850           I.getOpcode() == Instruction::SRem) &&
4851          "Unexpected instruction");
4852   Value *Divisor = I.getOperand(1);
4853   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4854   return !CInt || CInt->isZero();
4855 }
4856 
4857 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4858                                            VPUser &User,
4859                                            VPTransformState &State) {
4860   switch (I.getOpcode()) {
4861   case Instruction::Call:
4862   case Instruction::Br:
4863   case Instruction::PHI:
4864   case Instruction::GetElementPtr:
4865   case Instruction::Select:
4866     llvm_unreachable("This instruction is handled by a different recipe.");
4867   case Instruction::UDiv:
4868   case Instruction::SDiv:
4869   case Instruction::SRem:
4870   case Instruction::URem:
4871   case Instruction::Add:
4872   case Instruction::FAdd:
4873   case Instruction::Sub:
4874   case Instruction::FSub:
4875   case Instruction::FNeg:
4876   case Instruction::Mul:
4877   case Instruction::FMul:
4878   case Instruction::FDiv:
4879   case Instruction::FRem:
4880   case Instruction::Shl:
4881   case Instruction::LShr:
4882   case Instruction::AShr:
4883   case Instruction::And:
4884   case Instruction::Or:
4885   case Instruction::Xor: {
4886     // Just widen unops and binops.
4887     setDebugLocFromInst(Builder, &I);
4888 
4889     for (unsigned Part = 0; Part < UF; ++Part) {
4890       SmallVector<Value *, 2> Ops;
4891       for (VPValue *VPOp : User.operands())
4892         Ops.push_back(State.get(VPOp, Part));
4893 
4894       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4895 
4896       if (auto *VecOp = dyn_cast<Instruction>(V))
4897         VecOp->copyIRFlags(&I);
4898 
4899       // Use this vector value for all users of the original instruction.
4900       State.set(Def, V, Part);
4901       addMetadata(V, &I);
4902     }
4903 
4904     break;
4905   }
4906   case Instruction::ICmp:
4907   case Instruction::FCmp: {
4908     // Widen compares. Generate vector compares.
4909     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4910     auto *Cmp = cast<CmpInst>(&I);
4911     setDebugLocFromInst(Builder, Cmp);
4912     for (unsigned Part = 0; Part < UF; ++Part) {
4913       Value *A = State.get(User.getOperand(0), Part);
4914       Value *B = State.get(User.getOperand(1), Part);
4915       Value *C = nullptr;
4916       if (FCmp) {
4917         // Propagate fast math flags.
4918         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4919         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4920         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4921       } else {
4922         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4923       }
4924       State.set(Def, C, Part);
4925       addMetadata(C, &I);
4926     }
4927 
4928     break;
4929   }
4930 
4931   case Instruction::ZExt:
4932   case Instruction::SExt:
4933   case Instruction::FPToUI:
4934   case Instruction::FPToSI:
4935   case Instruction::FPExt:
4936   case Instruction::PtrToInt:
4937   case Instruction::IntToPtr:
4938   case Instruction::SIToFP:
4939   case Instruction::UIToFP:
4940   case Instruction::Trunc:
4941   case Instruction::FPTrunc:
4942   case Instruction::BitCast: {
4943     auto *CI = cast<CastInst>(&I);
4944     setDebugLocFromInst(Builder, CI);
4945 
4946     /// Vectorize casts.
4947     Type *DestTy =
4948         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4949 
4950     for (unsigned Part = 0; Part < UF; ++Part) {
4951       Value *A = State.get(User.getOperand(0), Part);
4952       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4953       State.set(Def, Cast, Part);
4954       addMetadata(Cast, &I);
4955     }
4956     break;
4957   }
4958   default:
4959     // This instruction is not vectorized by simple widening.
4960     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4961     llvm_unreachable("Unhandled instruction!");
4962   } // end of switch.
4963 }
4964 
4965 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4966                                                VPUser &ArgOperands,
4967                                                VPTransformState &State) {
4968   assert(!isa<DbgInfoIntrinsic>(I) &&
4969          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4970   setDebugLocFromInst(Builder, &I);
4971 
4972   Module *M = I.getParent()->getParent()->getParent();
4973   auto *CI = cast<CallInst>(&I);
4974 
4975   SmallVector<Type *, 4> Tys;
4976   for (Value *ArgOperand : CI->arg_operands())
4977     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4978 
4979   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4980 
4981   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4982   // version of the instruction.
4983   // Is it beneficial to perform intrinsic call compared to lib call?
4984   bool NeedToScalarize = false;
4985   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4986   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4987   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4988   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4989          "Instruction should be scalarized elsewhere.");
4990   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4991          "Either the intrinsic cost or vector call cost must be valid");
4992 
4993   for (unsigned Part = 0; Part < UF; ++Part) {
4994     SmallVector<Value *, 4> Args;
4995     for (auto &I : enumerate(ArgOperands.operands())) {
4996       // Some intrinsics have a scalar argument - don't replace it with a
4997       // vector.
4998       Value *Arg;
4999       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5000         Arg = State.get(I.value(), Part);
5001       else
5002         Arg = State.get(I.value(), VPIteration(0, 0));
5003       Args.push_back(Arg);
5004     }
5005 
5006     Function *VectorF;
5007     if (UseVectorIntrinsic) {
5008       // Use vector version of the intrinsic.
5009       Type *TysForDecl[] = {CI->getType()};
5010       if (VF.isVector())
5011         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5012       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5013       assert(VectorF && "Can't retrieve vector intrinsic.");
5014     } else {
5015       // Use vector version of the function call.
5016       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5017 #ifndef NDEBUG
5018       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5019              "Can't create vector function.");
5020 #endif
5021         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5022     }
5023       SmallVector<OperandBundleDef, 1> OpBundles;
5024       CI->getOperandBundlesAsDefs(OpBundles);
5025       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5026 
5027       if (isa<FPMathOperator>(V))
5028         V->copyFastMathFlags(CI);
5029 
5030       State.set(Def, V, Part);
5031       addMetadata(V, &I);
5032   }
5033 }
5034 
5035 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5036                                                  VPUser &Operands,
5037                                                  bool InvariantCond,
5038                                                  VPTransformState &State) {
5039   setDebugLocFromInst(Builder, &I);
5040 
5041   // The condition can be loop invariant  but still defined inside the
5042   // loop. This means that we can't just use the original 'cond' value.
5043   // We have to take the 'vectorized' value and pick the first lane.
5044   // Instcombine will make this a no-op.
5045   auto *InvarCond = InvariantCond
5046                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5047                         : nullptr;
5048 
5049   for (unsigned Part = 0; Part < UF; ++Part) {
5050     Value *Cond =
5051         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5052     Value *Op0 = State.get(Operands.getOperand(1), Part);
5053     Value *Op1 = State.get(Operands.getOperand(2), Part);
5054     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5055     State.set(VPDef, Sel, Part);
5056     addMetadata(Sel, &I);
5057   }
5058 }
5059 
5060 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5061   // We should not collect Scalars more than once per VF. Right now, this
5062   // function is called from collectUniformsAndScalars(), which already does
5063   // this check. Collecting Scalars for VF=1 does not make any sense.
5064   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5065          "This function should not be visited twice for the same VF");
5066 
5067   SmallSetVector<Instruction *, 8> Worklist;
5068 
5069   // These sets are used to seed the analysis with pointers used by memory
5070   // accesses that will remain scalar.
5071   SmallSetVector<Instruction *, 8> ScalarPtrs;
5072   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5073   auto *Latch = TheLoop->getLoopLatch();
5074 
5075   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5076   // The pointer operands of loads and stores will be scalar as long as the
5077   // memory access is not a gather or scatter operation. The value operand of a
5078   // store will remain scalar if the store is scalarized.
5079   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5080     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5081     assert(WideningDecision != CM_Unknown &&
5082            "Widening decision should be ready at this moment");
5083     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5084       if (Ptr == Store->getValueOperand())
5085         return WideningDecision == CM_Scalarize;
5086     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5087            "Ptr is neither a value or pointer operand");
5088     return WideningDecision != CM_GatherScatter;
5089   };
5090 
5091   // A helper that returns true if the given value is a bitcast or
5092   // getelementptr instruction contained in the loop.
5093   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5094     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5095             isa<GetElementPtrInst>(V)) &&
5096            !TheLoop->isLoopInvariant(V);
5097   };
5098 
5099   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5100     if (!isa<PHINode>(Ptr) ||
5101         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5102       return false;
5103     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5104     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5105       return false;
5106     return isScalarUse(MemAccess, Ptr);
5107   };
5108 
5109   // A helper that evaluates a memory access's use of a pointer. If the
5110   // pointer is actually the pointer induction of a loop, it is being
5111   // inserted into Worklist. If the use will be a scalar use, and the
5112   // pointer is only used by memory accesses, we place the pointer in
5113   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5114   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5115     if (isScalarPtrInduction(MemAccess, Ptr)) {
5116       Worklist.insert(cast<Instruction>(Ptr));
5117       Instruction *Update = cast<Instruction>(
5118           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5119       Worklist.insert(Update);
5120       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5121                         << "\n");
5122       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update
5123                         << "\n");
5124       return;
5125     }
5126     // We only care about bitcast and getelementptr instructions contained in
5127     // the loop.
5128     if (!isLoopVaryingBitCastOrGEP(Ptr))
5129       return;
5130 
5131     // If the pointer has already been identified as scalar (e.g., if it was
5132     // also identified as uniform), there's nothing to do.
5133     auto *I = cast<Instruction>(Ptr);
5134     if (Worklist.count(I))
5135       return;
5136 
5137     // If the use of the pointer will be a scalar use, and all users of the
5138     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5139     // place the pointer in PossibleNonScalarPtrs.
5140     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5141           return isa<LoadInst>(U) || isa<StoreInst>(U);
5142         }))
5143       ScalarPtrs.insert(I);
5144     else
5145       PossibleNonScalarPtrs.insert(I);
5146   };
5147 
5148   // We seed the scalars analysis with three classes of instructions: (1)
5149   // instructions marked uniform-after-vectorization and (2) bitcast,
5150   // getelementptr and (pointer) phi instructions used by memory accesses
5151   // requiring a scalar use.
5152   //
5153   // (1) Add to the worklist all instructions that have been identified as
5154   // uniform-after-vectorization.
5155   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5156 
5157   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5158   // memory accesses requiring a scalar use. The pointer operands of loads and
5159   // stores will be scalar as long as the memory accesses is not a gather or
5160   // scatter operation. The value operand of a store will remain scalar if the
5161   // store is scalarized.
5162   for (auto *BB : TheLoop->blocks())
5163     for (auto &I : *BB) {
5164       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5165         evaluatePtrUse(Load, Load->getPointerOperand());
5166       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5167         evaluatePtrUse(Store, Store->getPointerOperand());
5168         evaluatePtrUse(Store, Store->getValueOperand());
5169       }
5170     }
5171   for (auto *I : ScalarPtrs)
5172     if (!PossibleNonScalarPtrs.count(I)) {
5173       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5174       Worklist.insert(I);
5175     }
5176 
5177   // Insert the forced scalars.
5178   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5179   // induction variable when the PHI user is scalarized.
5180   auto ForcedScalar = ForcedScalars.find(VF);
5181   if (ForcedScalar != ForcedScalars.end())
5182     for (auto *I : ForcedScalar->second)
5183       Worklist.insert(I);
5184 
5185   // Expand the worklist by looking through any bitcasts and getelementptr
5186   // instructions we've already identified as scalar. This is similar to the
5187   // expansion step in collectLoopUniforms(); however, here we're only
5188   // expanding to include additional bitcasts and getelementptr instructions.
5189   unsigned Idx = 0;
5190   while (Idx != Worklist.size()) {
5191     Instruction *Dst = Worklist[Idx++];
5192     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5193       continue;
5194     auto *Src = cast<Instruction>(Dst->getOperand(0));
5195     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5196           auto *J = cast<Instruction>(U);
5197           return !TheLoop->contains(J) || Worklist.count(J) ||
5198                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5199                   isScalarUse(J, Src));
5200         })) {
5201       Worklist.insert(Src);
5202       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5203     }
5204   }
5205 
5206   // An induction variable will remain scalar if all users of the induction
5207   // variable and induction variable update remain scalar.
5208   for (auto &Induction : Legal->getInductionVars()) {
5209     auto *Ind = Induction.first;
5210     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5211 
5212     // If tail-folding is applied, the primary induction variable will be used
5213     // to feed a vector compare.
5214     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5215       continue;
5216 
5217     // Determine if all users of the induction variable are scalar after
5218     // vectorization.
5219     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5220       auto *I = cast<Instruction>(U);
5221       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5222     });
5223     if (!ScalarInd)
5224       continue;
5225 
5226     // Determine if all users of the induction variable update instruction are
5227     // scalar after vectorization.
5228     auto ScalarIndUpdate =
5229         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5230           auto *I = cast<Instruction>(U);
5231           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5232         });
5233     if (!ScalarIndUpdate)
5234       continue;
5235 
5236     // The induction variable and its update instruction will remain scalar.
5237     Worklist.insert(Ind);
5238     Worklist.insert(IndUpdate);
5239     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5240     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5241                       << "\n");
5242   }
5243 
5244   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5245 }
5246 
5247 bool LoopVectorizationCostModel::isScalarWithPredication(
5248     Instruction *I, ElementCount VF) const {
5249   if (!blockNeedsPredication(I->getParent()))
5250     return false;
5251   switch(I->getOpcode()) {
5252   default:
5253     break;
5254   case Instruction::Load:
5255   case Instruction::Store: {
5256     if (!Legal->isMaskRequired(I))
5257       return false;
5258     auto *Ptr = getLoadStorePointerOperand(I);
5259     auto *Ty = getMemInstValueType(I);
5260     // We have already decided how to vectorize this instruction, get that
5261     // result.
5262     if (VF.isVector()) {
5263       InstWidening WideningDecision = getWideningDecision(I, VF);
5264       assert(WideningDecision != CM_Unknown &&
5265              "Widening decision should be ready at this moment");
5266       return WideningDecision == CM_Scalarize;
5267     }
5268     const Align Alignment = getLoadStoreAlignment(I);
5269     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5270                                 isLegalMaskedGather(Ty, Alignment))
5271                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5272                                 isLegalMaskedScatter(Ty, Alignment));
5273   }
5274   case Instruction::UDiv:
5275   case Instruction::SDiv:
5276   case Instruction::SRem:
5277   case Instruction::URem:
5278     return mayDivideByZero(*I);
5279   }
5280   return false;
5281 }
5282 
5283 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5284     Instruction *I, ElementCount VF) {
5285   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5286   assert(getWideningDecision(I, VF) == CM_Unknown &&
5287          "Decision should not be set yet.");
5288   auto *Group = getInterleavedAccessGroup(I);
5289   assert(Group && "Must have a group.");
5290 
5291   // If the instruction's allocated size doesn't equal it's type size, it
5292   // requires padding and will be scalarized.
5293   auto &DL = I->getModule()->getDataLayout();
5294   auto *ScalarTy = getMemInstValueType(I);
5295   if (hasIrregularType(ScalarTy, DL))
5296     return false;
5297 
5298   // Check if masking is required.
5299   // A Group may need masking for one of two reasons: it resides in a block that
5300   // needs predication, or it was decided to use masking to deal with gaps.
5301   bool PredicatedAccessRequiresMasking =
5302       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5303   bool AccessWithGapsRequiresMasking =
5304       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5305   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
5306     return true;
5307 
5308   // If masked interleaving is required, we expect that the user/target had
5309   // enabled it, because otherwise it either wouldn't have been created or
5310   // it should have been invalidated by the CostModel.
5311   assert(useMaskedInterleavedAccesses(TTI) &&
5312          "Masked interleave-groups for predicated accesses are not enabled.");
5313 
5314   auto *Ty = getMemInstValueType(I);
5315   const Align Alignment = getLoadStoreAlignment(I);
5316   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5317                           : TTI.isLegalMaskedStore(Ty, Alignment);
5318 }
5319 
5320 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5321     Instruction *I, ElementCount VF) {
5322   // Get and ensure we have a valid memory instruction.
5323   LoadInst *LI = dyn_cast<LoadInst>(I);
5324   StoreInst *SI = dyn_cast<StoreInst>(I);
5325   assert((LI || SI) && "Invalid memory instruction");
5326 
5327   auto *Ptr = getLoadStorePointerOperand(I);
5328 
5329   // In order to be widened, the pointer should be consecutive, first of all.
5330   if (!Legal->isConsecutivePtr(Ptr))
5331     return false;
5332 
5333   // If the instruction is a store located in a predicated block, it will be
5334   // scalarized.
5335   if (isScalarWithPredication(I))
5336     return false;
5337 
5338   // If the instruction's allocated size doesn't equal it's type size, it
5339   // requires padding and will be scalarized.
5340   auto &DL = I->getModule()->getDataLayout();
5341   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5342   if (hasIrregularType(ScalarTy, DL))
5343     return false;
5344 
5345   return true;
5346 }
5347 
5348 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5349   // We should not collect Uniforms more than once per VF. Right now,
5350   // this function is called from collectUniformsAndScalars(), which
5351   // already does this check. Collecting Uniforms for VF=1 does not make any
5352   // sense.
5353 
5354   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5355          "This function should not be visited twice for the same VF");
5356 
5357   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5358   // not analyze again.  Uniforms.count(VF) will return 1.
5359   Uniforms[VF].clear();
5360 
5361   // We now know that the loop is vectorizable!
5362   // Collect instructions inside the loop that will remain uniform after
5363   // vectorization.
5364 
5365   // Global values, params and instructions outside of current loop are out of
5366   // scope.
5367   auto isOutOfScope = [&](Value *V) -> bool {
5368     Instruction *I = dyn_cast<Instruction>(V);
5369     return (!I || !TheLoop->contains(I));
5370   };
5371 
5372   SetVector<Instruction *> Worklist;
5373   BasicBlock *Latch = TheLoop->getLoopLatch();
5374 
5375   // Instructions that are scalar with predication must not be considered
5376   // uniform after vectorization, because that would create an erroneous
5377   // replicating region where only a single instance out of VF should be formed.
5378   // TODO: optimize such seldom cases if found important, see PR40816.
5379   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5380     if (isOutOfScope(I)) {
5381       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5382                         << *I << "\n");
5383       return;
5384     }
5385     if (isScalarWithPredication(I, VF)) {
5386       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5387                         << *I << "\n");
5388       return;
5389     }
5390     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5391     Worklist.insert(I);
5392   };
5393 
5394   // Start with the conditional branch. If the branch condition is an
5395   // instruction contained in the loop that is only used by the branch, it is
5396   // uniform.
5397   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5398   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5399     addToWorklistIfAllowed(Cmp);
5400 
5401   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5402     InstWidening WideningDecision = getWideningDecision(I, VF);
5403     assert(WideningDecision != CM_Unknown &&
5404            "Widening decision should be ready at this moment");
5405 
5406     // A uniform memory op is itself uniform.  We exclude uniform stores
5407     // here as they demand the last lane, not the first one.
5408     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5409       assert(WideningDecision == CM_Scalarize);
5410       return true;
5411     }
5412 
5413     return (WideningDecision == CM_Widen ||
5414             WideningDecision == CM_Widen_Reverse ||
5415             WideningDecision == CM_Interleave);
5416   };
5417 
5418 
5419   // Returns true if Ptr is the pointer operand of a memory access instruction
5420   // I, and I is known to not require scalarization.
5421   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5422     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5423   };
5424 
5425   // Holds a list of values which are known to have at least one uniform use.
5426   // Note that there may be other uses which aren't uniform.  A "uniform use"
5427   // here is something which only demands lane 0 of the unrolled iterations;
5428   // it does not imply that all lanes produce the same value (e.g. this is not
5429   // the usual meaning of uniform)
5430   SetVector<Value *> HasUniformUse;
5431 
5432   // Scan the loop for instructions which are either a) known to have only
5433   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5434   for (auto *BB : TheLoop->blocks())
5435     for (auto &I : *BB) {
5436       // If there's no pointer operand, there's nothing to do.
5437       auto *Ptr = getLoadStorePointerOperand(&I);
5438       if (!Ptr)
5439         continue;
5440 
5441       // A uniform memory op is itself uniform.  We exclude uniform stores
5442       // here as they demand the last lane, not the first one.
5443       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5444         addToWorklistIfAllowed(&I);
5445 
5446       if (isUniformDecision(&I, VF)) {
5447         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5448         HasUniformUse.insert(Ptr);
5449       }
5450     }
5451 
5452   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5453   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5454   // disallows uses outside the loop as well.
5455   for (auto *V : HasUniformUse) {
5456     if (isOutOfScope(V))
5457       continue;
5458     auto *I = cast<Instruction>(V);
5459     auto UsersAreMemAccesses =
5460       llvm::all_of(I->users(), [&](User *U) -> bool {
5461         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5462       });
5463     if (UsersAreMemAccesses)
5464       addToWorklistIfAllowed(I);
5465   }
5466 
5467   // Expand Worklist in topological order: whenever a new instruction
5468   // is added , its users should be already inside Worklist.  It ensures
5469   // a uniform instruction will only be used by uniform instructions.
5470   unsigned idx = 0;
5471   while (idx != Worklist.size()) {
5472     Instruction *I = Worklist[idx++];
5473 
5474     for (auto OV : I->operand_values()) {
5475       // isOutOfScope operands cannot be uniform instructions.
5476       if (isOutOfScope(OV))
5477         continue;
5478       // First order recurrence Phi's should typically be considered
5479       // non-uniform.
5480       auto *OP = dyn_cast<PHINode>(OV);
5481       if (OP && Legal->isFirstOrderRecurrence(OP))
5482         continue;
5483       // If all the users of the operand are uniform, then add the
5484       // operand into the uniform worklist.
5485       auto *OI = cast<Instruction>(OV);
5486       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5487             auto *J = cast<Instruction>(U);
5488             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5489           }))
5490         addToWorklistIfAllowed(OI);
5491     }
5492   }
5493 
5494   // For an instruction to be added into Worklist above, all its users inside
5495   // the loop should also be in Worklist. However, this condition cannot be
5496   // true for phi nodes that form a cyclic dependence. We must process phi
5497   // nodes separately. An induction variable will remain uniform if all users
5498   // of the induction variable and induction variable update remain uniform.
5499   // The code below handles both pointer and non-pointer induction variables.
5500   for (auto &Induction : Legal->getInductionVars()) {
5501     auto *Ind = Induction.first;
5502     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5503 
5504     // Determine if all users of the induction variable are uniform after
5505     // vectorization.
5506     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5507       auto *I = cast<Instruction>(U);
5508       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5509              isVectorizedMemAccessUse(I, Ind);
5510     });
5511     if (!UniformInd)
5512       continue;
5513 
5514     // Determine if all users of the induction variable update instruction are
5515     // uniform after vectorization.
5516     auto UniformIndUpdate =
5517         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5518           auto *I = cast<Instruction>(U);
5519           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5520                  isVectorizedMemAccessUse(I, IndUpdate);
5521         });
5522     if (!UniformIndUpdate)
5523       continue;
5524 
5525     // The induction variable and its update instruction will remain uniform.
5526     addToWorklistIfAllowed(Ind);
5527     addToWorklistIfAllowed(IndUpdate);
5528   }
5529 
5530   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5531 }
5532 
5533 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5534   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5535 
5536   if (Legal->getRuntimePointerChecking()->Need) {
5537     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5538         "runtime pointer checks needed. Enable vectorization of this "
5539         "loop with '#pragma clang loop vectorize(enable)' when "
5540         "compiling with -Os/-Oz",
5541         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5542     return true;
5543   }
5544 
5545   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5546     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5547         "runtime SCEV checks needed. Enable vectorization of this "
5548         "loop with '#pragma clang loop vectorize(enable)' when "
5549         "compiling with -Os/-Oz",
5550         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5551     return true;
5552   }
5553 
5554   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5555   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5556     reportVectorizationFailure("Runtime stride check for small trip count",
5557         "runtime stride == 1 checks needed. Enable vectorization of "
5558         "this loop without such check by compiling with -Os/-Oz",
5559         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5560     return true;
5561   }
5562 
5563   return false;
5564 }
5565 
5566 Optional<ElementCount>
5567 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5568   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5569     // TODO: It may by useful to do since it's still likely to be dynamically
5570     // uniform if the target can skip.
5571     reportVectorizationFailure(
5572         "Not inserting runtime ptr check for divergent target",
5573         "runtime pointer checks needed. Not enabled for divergent target",
5574         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5575     return None;
5576   }
5577 
5578   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5579   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5580   if (TC == 1) {
5581     reportVectorizationFailure("Single iteration (non) loop",
5582         "loop trip count is one, irrelevant for vectorization",
5583         "SingleIterationLoop", ORE, TheLoop);
5584     return None;
5585   }
5586 
5587   switch (ScalarEpilogueStatus) {
5588   case CM_ScalarEpilogueAllowed:
5589     return computeFeasibleMaxVF(TC, UserVF);
5590   case CM_ScalarEpilogueNotAllowedUsePredicate:
5591     LLVM_FALLTHROUGH;
5592   case CM_ScalarEpilogueNotNeededUsePredicate:
5593     LLVM_DEBUG(
5594         dbgs() << "LV: vector predicate hint/switch found.\n"
5595                << "LV: Not allowing scalar epilogue, creating predicated "
5596                << "vector loop.\n");
5597     break;
5598   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5599     // fallthrough as a special case of OptForSize
5600   case CM_ScalarEpilogueNotAllowedOptSize:
5601     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5602       LLVM_DEBUG(
5603           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5604     else
5605       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5606                         << "count.\n");
5607 
5608     // Bail if runtime checks are required, which are not good when optimising
5609     // for size.
5610     if (runtimeChecksRequired())
5611       return None;
5612 
5613     break;
5614   }
5615 
5616   // The only loops we can vectorize without a scalar epilogue, are loops with
5617   // a bottom-test and a single exiting block. We'd have to handle the fact
5618   // that not every instruction executes on the last iteration.  This will
5619   // require a lane mask which varies through the vector loop body.  (TODO)
5620   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5621     // If there was a tail-folding hint/switch, but we can't fold the tail by
5622     // masking, fallback to a vectorization with a scalar epilogue.
5623     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5624       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5625                            "scalar epilogue instead.\n");
5626       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5627       return computeFeasibleMaxVF(TC, UserVF);
5628     }
5629     return None;
5630   }
5631 
5632   // Now try the tail folding
5633 
5634   // Invalidate interleave groups that require an epilogue if we can't mask
5635   // the interleave-group.
5636   if (!useMaskedInterleavedAccesses(TTI)) {
5637     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5638            "No decisions should have been taken at this point");
5639     // Note: There is no need to invalidate any cost modeling decisions here, as
5640     // non where taken so far.
5641     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5642   }
5643 
5644   ElementCount MaxVF = computeFeasibleMaxVF(TC, UserVF);
5645   assert(!MaxVF.isScalable() &&
5646          "Scalable vectors do not yet support tail folding");
5647   assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) &&
5648          "MaxVF must be a power of 2");
5649   unsigned MaxVFtimesIC =
5650       UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue();
5651   // Avoid tail folding if the trip count is known to be a multiple of any VF we
5652   // chose.
5653   ScalarEvolution *SE = PSE.getSE();
5654   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5655   const SCEV *ExitCount = SE->getAddExpr(
5656       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5657   const SCEV *Rem = SE->getURemExpr(
5658       SE->applyLoopGuards(ExitCount, TheLoop),
5659       SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5660   if (Rem->isZero()) {
5661     // Accept MaxVF if we do not have a tail.
5662     LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5663     return MaxVF;
5664   }
5665 
5666   // If we don't know the precise trip count, or if the trip count that we
5667   // found modulo the vectorization factor is not zero, try to fold the tail
5668   // by masking.
5669   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5670   if (Legal->prepareToFoldTailByMasking()) {
5671     FoldTailByMasking = true;
5672     return MaxVF;
5673   }
5674 
5675   // If there was a tail-folding hint/switch, but we can't fold the tail by
5676   // masking, fallback to a vectorization with a scalar epilogue.
5677   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5678     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5679                          "scalar epilogue instead.\n");
5680     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5681     return MaxVF;
5682   }
5683 
5684   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5685     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5686     return None;
5687   }
5688 
5689   if (TC == 0) {
5690     reportVectorizationFailure(
5691         "Unable to calculate the loop count due to complex control flow",
5692         "unable to calculate the loop count due to complex control flow",
5693         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5694     return None;
5695   }
5696 
5697   reportVectorizationFailure(
5698       "Cannot optimize for size and vectorize at the same time.",
5699       "cannot optimize for size and vectorize at the same time. "
5700       "Enable vectorization of this loop with '#pragma clang loop "
5701       "vectorize(enable)' when compiling with -Os/-Oz",
5702       "NoTailLoopWithOptForSize", ORE, TheLoop);
5703   return None;
5704 }
5705 
5706 ElementCount
5707 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5708                                                  ElementCount UserVF) {
5709   bool IgnoreScalableUserVF = UserVF.isScalable() &&
5710                               !TTI.supportsScalableVectors() &&
5711                               !ForceTargetSupportsScalableVectors;
5712   if (IgnoreScalableUserVF) {
5713     LLVM_DEBUG(
5714         dbgs() << "LV: Ignoring VF=" << UserVF
5715                << " because target does not support scalable vectors.\n");
5716     ORE->emit([&]() {
5717       return OptimizationRemarkAnalysis(DEBUG_TYPE, "IgnoreScalableUserVF",
5718                                         TheLoop->getStartLoc(),
5719                                         TheLoop->getHeader())
5720              << "Ignoring VF=" << ore::NV("UserVF", UserVF)
5721              << " because target does not support scalable vectors.";
5722     });
5723   }
5724 
5725   // Beyond this point two scenarios are handled. If UserVF isn't specified
5726   // then a suitable VF is chosen. If UserVF is specified and there are
5727   // dependencies, check if it's legal. However, if a UserVF is specified and
5728   // there are no dependencies, then there's nothing to do.
5729   if (UserVF.isNonZero() && !IgnoreScalableUserVF) {
5730     if (!canVectorizeReductions(UserVF)) {
5731       reportVectorizationFailure(
5732           "LV: Scalable vectorization not supported for the reduction "
5733           "operations found in this loop. Using fixed-width "
5734           "vectorization instead.",
5735           "Scalable vectorization not supported for the reduction operations "
5736           "found in this loop. Using fixed-width vectorization instead.",
5737           "ScalableVFUnfeasible", ORE, TheLoop);
5738       return computeFeasibleMaxVF(
5739           ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue()));
5740     }
5741 
5742     if (Legal->isSafeForAnyVectorWidth())
5743       return UserVF;
5744   }
5745 
5746   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5747   unsigned SmallestType, WidestType;
5748   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5749   unsigned WidestRegister =
5750       TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
5751           .getFixedSize();
5752 
5753   // Get the maximum safe dependence distance in bits computed by LAA.
5754   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5755   // the memory accesses that is most restrictive (involved in the smallest
5756   // dependence distance).
5757   unsigned MaxSafeVectorWidthInBits = Legal->getMaxSafeVectorWidthInBits();
5758 
5759   // If the user vectorization factor is legally unsafe, clamp it to a safe
5760   // value. Otherwise, return as is.
5761   if (UserVF.isNonZero() && !IgnoreScalableUserVF) {
5762     unsigned MaxSafeElements =
5763         PowerOf2Floor(MaxSafeVectorWidthInBits / WidestType);
5764     ElementCount MaxSafeVF = ElementCount::getFixed(MaxSafeElements);
5765 
5766     if (UserVF.isScalable()) {
5767       Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5768 
5769       // Scale VF by vscale before checking if it's safe.
5770       MaxSafeVF = ElementCount::getScalable(
5771           MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5772 
5773       if (MaxSafeVF.isZero()) {
5774         // The dependence distance is too small to use scalable vectors,
5775         // fallback on fixed.
5776         LLVM_DEBUG(
5777             dbgs()
5778             << "LV: Max legal vector width too small, scalable vectorization "
5779                "unfeasible. Using fixed-width vectorization instead.\n");
5780         ORE->emit([&]() {
5781           return OptimizationRemarkAnalysis(DEBUG_TYPE, "ScalableVFUnfeasible",
5782                                             TheLoop->getStartLoc(),
5783                                             TheLoop->getHeader())
5784                  << "Max legal vector width too small, scalable vectorization "
5785                  << "unfeasible. Using fixed-width vectorization instead.";
5786         });
5787         return computeFeasibleMaxVF(
5788             ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue()));
5789       }
5790     }
5791 
5792     LLVM_DEBUG(dbgs() << "LV: The max safe VF is: " << MaxSafeVF << ".\n");
5793 
5794     if (ElementCount::isKnownLE(UserVF, MaxSafeVF))
5795       return UserVF;
5796 
5797     LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5798                       << " is unsafe, clamping to max safe VF=" << MaxSafeVF
5799                       << ".\n");
5800     ORE->emit([&]() {
5801       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5802                                         TheLoop->getStartLoc(),
5803                                         TheLoop->getHeader())
5804              << "User-specified vectorization factor "
5805              << ore::NV("UserVectorizationFactor", UserVF)
5806              << " is unsafe, clamping to maximum safe vectorization factor "
5807              << ore::NV("VectorizationFactor", MaxSafeVF);
5808     });
5809     return MaxSafeVF;
5810   }
5811 
5812   WidestRegister = std::min(WidestRegister, MaxSafeVectorWidthInBits);
5813 
5814   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5815   // Note that both WidestRegister and WidestType may not be a powers of 2.
5816   auto MaxVectorSize =
5817       ElementCount::getFixed(PowerOf2Floor(WidestRegister / WidestType));
5818 
5819   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5820                     << " / " << WidestType << " bits.\n");
5821   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5822                     << WidestRegister << " bits.\n");
5823 
5824   assert(MaxVectorSize.getFixedValue() <= WidestRegister &&
5825          "Did not expect to pack so many elements"
5826          " into one vector!");
5827   if (MaxVectorSize.getFixedValue() == 0) {
5828     LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5829     return ElementCount::getFixed(1);
5830   } else if (ConstTripCount && ConstTripCount < MaxVectorSize.getFixedValue() &&
5831              isPowerOf2_32(ConstTripCount)) {
5832     // We need to clamp the VF to be the ConstTripCount. There is no point in
5833     // choosing a higher viable VF as done in the loop below.
5834     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5835                       << ConstTripCount << "\n");
5836     return ElementCount::getFixed(ConstTripCount);
5837   }
5838 
5839   ElementCount MaxVF = MaxVectorSize;
5840   if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) ||
5841       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5842     // Collect all viable vectorization factors larger than the default MaxVF
5843     // (i.e. MaxVectorSize).
5844     SmallVector<ElementCount, 8> VFs;
5845     auto MaxVectorSizeMaxBW =
5846         ElementCount::getFixed(WidestRegister / SmallestType);
5847     for (ElementCount VS = MaxVectorSize * 2;
5848          ElementCount::isKnownLE(VS, MaxVectorSizeMaxBW); VS *= 2)
5849       VFs.push_back(VS);
5850 
5851     // For each VF calculate its register usage.
5852     auto RUs = calculateRegisterUsage(VFs);
5853 
5854     // Select the largest VF which doesn't require more registers than existing
5855     // ones.
5856     for (int i = RUs.size() - 1; i >= 0; --i) {
5857       bool Selected = true;
5858       for (auto &pair : RUs[i].MaxLocalUsers) {
5859         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5860         if (pair.second > TargetNumRegisters)
5861           Selected = false;
5862       }
5863       if (Selected) {
5864         MaxVF = VFs[i];
5865         break;
5866       }
5867     }
5868     if (ElementCount MinVF =
5869             TTI.getMinimumVF(SmallestType, /*IsScalable=*/false)) {
5870       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5871         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5872                           << ") with target's minimum: " << MinVF << '\n');
5873         MaxVF = MinVF;
5874       }
5875     }
5876   }
5877   return MaxVF;
5878 }
5879 
5880 VectorizationFactor
5881 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) {
5882   // FIXME: This can be fixed for scalable vectors later, because at this stage
5883   // the LoopVectorizer will only consider vectorizing a loop with scalable
5884   // vectors when the loop has a hint to enable vectorization for a given VF.
5885   assert(!MaxVF.isScalable() && "scalable vectors not yet supported");
5886 
5887   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5888   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5889   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5890 
5891   auto Width = ElementCount::getFixed(1);
5892   const float ScalarCost = *ExpectedCost.getValue();
5893   float Cost = ScalarCost;
5894 
5895   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5896   if (ForceVectorization && MaxVF.isVector()) {
5897     // Ignore scalar width, because the user explicitly wants vectorization.
5898     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5899     // evaluation.
5900     Cost = std::numeric_limits<float>::max();
5901   }
5902 
5903   for (auto i = ElementCount::getFixed(2); ElementCount::isKnownLE(i, MaxVF);
5904        i *= 2) {
5905     // Notice that the vector loop needs to be executed less times, so
5906     // we need to divide the cost of the vector loops by the width of
5907     // the vector elements.
5908     VectorizationCostTy C = expectedCost(i);
5909     assert(C.first.isValid() && "Unexpected invalid cost for vector loop");
5910     float VectorCost = *C.first.getValue() / (float)i.getFixedValue();
5911     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5912                       << " costs: " << (int)VectorCost << ".\n");
5913     if (!C.second && !ForceVectorization) {
5914       LLVM_DEBUG(
5915           dbgs() << "LV: Not considering vector loop of width " << i
5916                  << " because it will not generate any vector instructions.\n");
5917       continue;
5918     }
5919 
5920     // If profitable add it to ProfitableVF list.
5921     if (VectorCost < ScalarCost) {
5922       ProfitableVFs.push_back(VectorizationFactor(
5923           {i, (unsigned)VectorCost}));
5924     }
5925 
5926     if (VectorCost < Cost) {
5927       Cost = VectorCost;
5928       Width = i;
5929     }
5930   }
5931 
5932   if (!EnableCondStoresVectorization && NumPredStores) {
5933     reportVectorizationFailure("There are conditional stores.",
5934         "store that is conditionally executed prevents vectorization",
5935         "ConditionalStore", ORE, TheLoop);
5936     Width = ElementCount::getFixed(1);
5937     Cost = ScalarCost;
5938   }
5939 
5940   LLVM_DEBUG(if (ForceVectorization && !Width.isScalar() && Cost >= ScalarCost) dbgs()
5941              << "LV: Vectorization seems to be not beneficial, "
5942              << "but was forced by a user.\n");
5943   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
5944   VectorizationFactor Factor = {Width,
5945                                 (unsigned)(Width.getKnownMinValue() * Cost)};
5946   return Factor;
5947 }
5948 
5949 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5950     const Loop &L, ElementCount VF) const {
5951   // Cross iteration phis such as reductions need special handling and are
5952   // currently unsupported.
5953   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
5954         return Legal->isFirstOrderRecurrence(&Phi) ||
5955                Legal->isReductionVariable(&Phi);
5956       }))
5957     return false;
5958 
5959   // Phis with uses outside of the loop require special handling and are
5960   // currently unsupported.
5961   for (auto &Entry : Legal->getInductionVars()) {
5962     // Look for uses of the value of the induction at the last iteration.
5963     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5964     for (User *U : PostInc->users())
5965       if (!L.contains(cast<Instruction>(U)))
5966         return false;
5967     // Look for uses of penultimate value of the induction.
5968     for (User *U : Entry.first->users())
5969       if (!L.contains(cast<Instruction>(U)))
5970         return false;
5971   }
5972 
5973   // Induction variables that are widened require special handling that is
5974   // currently not supported.
5975   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5976         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5977                  this->isProfitableToScalarize(Entry.first, VF));
5978       }))
5979     return false;
5980 
5981   return true;
5982 }
5983 
5984 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5985     const ElementCount VF) const {
5986   // FIXME: We need a much better cost-model to take different parameters such
5987   // as register pressure, code size increase and cost of extra branches into
5988   // account. For now we apply a very crude heuristic and only consider loops
5989   // with vectorization factors larger than a certain value.
5990   // We also consider epilogue vectorization unprofitable for targets that don't
5991   // consider interleaving beneficial (eg. MVE).
5992   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5993     return false;
5994   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
5995     return true;
5996   return false;
5997 }
5998 
5999 VectorizationFactor
6000 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6001     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6002   VectorizationFactor Result = VectorizationFactor::Disabled();
6003   if (!EnableEpilogueVectorization) {
6004     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6005     return Result;
6006   }
6007 
6008   if (!isScalarEpilogueAllowed()) {
6009     LLVM_DEBUG(
6010         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6011                   "allowed.\n";);
6012     return Result;
6013   }
6014 
6015   // FIXME: This can be fixed for scalable vectors later, because at this stage
6016   // the LoopVectorizer will only consider vectorizing a loop with scalable
6017   // vectors when the loop has a hint to enable vectorization for a given VF.
6018   if (MainLoopVF.isScalable()) {
6019     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6020                          "yet supported.\n");
6021     return Result;
6022   }
6023 
6024   // Not really a cost consideration, but check for unsupported cases here to
6025   // simplify the logic.
6026   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6027     LLVM_DEBUG(
6028         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6029                   "not a supported candidate.\n";);
6030     return Result;
6031   }
6032 
6033   if (EpilogueVectorizationForceVF > 1) {
6034     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6035     if (LVP.hasPlanWithVFs(
6036             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
6037       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
6038     else {
6039       LLVM_DEBUG(
6040           dbgs()
6041               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6042       return Result;
6043     }
6044   }
6045 
6046   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6047       TheLoop->getHeader()->getParent()->hasMinSize()) {
6048     LLVM_DEBUG(
6049         dbgs()
6050             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6051     return Result;
6052   }
6053 
6054   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6055     return Result;
6056 
6057   for (auto &NextVF : ProfitableVFs)
6058     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6059         (Result.Width.getFixedValue() == 1 || NextVF.Cost < Result.Cost) &&
6060         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6061       Result = NextVF;
6062 
6063   if (Result != VectorizationFactor::Disabled())
6064     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6065                       << Result.Width.getFixedValue() << "\n";);
6066   return Result;
6067 }
6068 
6069 std::pair<unsigned, unsigned>
6070 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6071   unsigned MinWidth = -1U;
6072   unsigned MaxWidth = 8;
6073   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6074 
6075   // For each block.
6076   for (BasicBlock *BB : TheLoop->blocks()) {
6077     // For each instruction in the loop.
6078     for (Instruction &I : BB->instructionsWithoutDebug()) {
6079       Type *T = I.getType();
6080 
6081       // Skip ignored values.
6082       if (ValuesToIgnore.count(&I))
6083         continue;
6084 
6085       // Only examine Loads, Stores and PHINodes.
6086       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6087         continue;
6088 
6089       // Examine PHI nodes that are reduction variables. Update the type to
6090       // account for the recurrence type.
6091       if (auto *PN = dyn_cast<PHINode>(&I)) {
6092         if (!Legal->isReductionVariable(PN))
6093           continue;
6094         RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN];
6095         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6096             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6097                                       RdxDesc.getRecurrenceType(),
6098                                       TargetTransformInfo::ReductionFlags()))
6099           continue;
6100         T = RdxDesc.getRecurrenceType();
6101       }
6102 
6103       // Examine the stored values.
6104       if (auto *ST = dyn_cast<StoreInst>(&I))
6105         T = ST->getValueOperand()->getType();
6106 
6107       // Ignore loaded pointer types and stored pointer types that are not
6108       // vectorizable.
6109       //
6110       // FIXME: The check here attempts to predict whether a load or store will
6111       //        be vectorized. We only know this for certain after a VF has
6112       //        been selected. Here, we assume that if an access can be
6113       //        vectorized, it will be. We should also look at extending this
6114       //        optimization to non-pointer types.
6115       //
6116       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6117           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6118         continue;
6119 
6120       MinWidth = std::min(MinWidth,
6121                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6122       MaxWidth = std::max(MaxWidth,
6123                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6124     }
6125   }
6126 
6127   return {MinWidth, MaxWidth};
6128 }
6129 
6130 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6131                                                            unsigned LoopCost) {
6132   // -- The interleave heuristics --
6133   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6134   // There are many micro-architectural considerations that we can't predict
6135   // at this level. For example, frontend pressure (on decode or fetch) due to
6136   // code size, or the number and capabilities of the execution ports.
6137   //
6138   // We use the following heuristics to select the interleave count:
6139   // 1. If the code has reductions, then we interleave to break the cross
6140   // iteration dependency.
6141   // 2. If the loop is really small, then we interleave to reduce the loop
6142   // overhead.
6143   // 3. We don't interleave if we think that we will spill registers to memory
6144   // due to the increased register pressure.
6145 
6146   if (!isScalarEpilogueAllowed())
6147     return 1;
6148 
6149   // We used the distance for the interleave count.
6150   if (Legal->getMaxSafeDepDistBytes() != -1U)
6151     return 1;
6152 
6153   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6154   const bool HasReductions = !Legal->getReductionVars().empty();
6155   // Do not interleave loops with a relatively small known or estimated trip
6156   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6157   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6158   // because with the above conditions interleaving can expose ILP and break
6159   // cross iteration dependences for reductions.
6160   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6161       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6162     return 1;
6163 
6164   RegisterUsage R = calculateRegisterUsage({VF})[0];
6165   // We divide by these constants so assume that we have at least one
6166   // instruction that uses at least one register.
6167   for (auto& pair : R.MaxLocalUsers) {
6168     pair.second = std::max(pair.second, 1U);
6169   }
6170 
6171   // We calculate the interleave count using the following formula.
6172   // Subtract the number of loop invariants from the number of available
6173   // registers. These registers are used by all of the interleaved instances.
6174   // Next, divide the remaining registers by the number of registers that is
6175   // required by the loop, in order to estimate how many parallel instances
6176   // fit without causing spills. All of this is rounded down if necessary to be
6177   // a power of two. We want power of two interleave count to simplify any
6178   // addressing operations or alignment considerations.
6179   // We also want power of two interleave counts to ensure that the induction
6180   // variable of the vector loop wraps to zero, when tail is folded by masking;
6181   // this currently happens when OptForSize, in which case IC is set to 1 above.
6182   unsigned IC = UINT_MAX;
6183 
6184   for (auto& pair : R.MaxLocalUsers) {
6185     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6186     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6187                       << " registers of "
6188                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6189     if (VF.isScalar()) {
6190       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6191         TargetNumRegisters = ForceTargetNumScalarRegs;
6192     } else {
6193       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6194         TargetNumRegisters = ForceTargetNumVectorRegs;
6195     }
6196     unsigned MaxLocalUsers = pair.second;
6197     unsigned LoopInvariantRegs = 0;
6198     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6199       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6200 
6201     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6202     // Don't count the induction variable as interleaved.
6203     if (EnableIndVarRegisterHeur) {
6204       TmpIC =
6205           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6206                         std::max(1U, (MaxLocalUsers - 1)));
6207     }
6208 
6209     IC = std::min(IC, TmpIC);
6210   }
6211 
6212   // Clamp the interleave ranges to reasonable counts.
6213   unsigned MaxInterleaveCount =
6214       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6215 
6216   // Check if the user has overridden the max.
6217   if (VF.isScalar()) {
6218     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6219       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6220   } else {
6221     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6222       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6223   }
6224 
6225   // If trip count is known or estimated compile time constant, limit the
6226   // interleave count to be less than the trip count divided by VF, provided it
6227   // is at least 1.
6228   //
6229   // For scalable vectors we can't know if interleaving is beneficial. It may
6230   // not be beneficial for small loops if none of the lanes in the second vector
6231   // iterations is enabled. However, for larger loops, there is likely to be a
6232   // similar benefit as for fixed-width vectors. For now, we choose to leave
6233   // the InterleaveCount as if vscale is '1', although if some information about
6234   // the vector is known (e.g. min vector size), we can make a better decision.
6235   if (BestKnownTC) {
6236     MaxInterleaveCount =
6237         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6238     // Make sure MaxInterleaveCount is greater than 0.
6239     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6240   }
6241 
6242   assert(MaxInterleaveCount > 0 &&
6243          "Maximum interleave count must be greater than 0");
6244 
6245   // Clamp the calculated IC to be between the 1 and the max interleave count
6246   // that the target and trip count allows.
6247   if (IC > MaxInterleaveCount)
6248     IC = MaxInterleaveCount;
6249   else
6250     // Make sure IC is greater than 0.
6251     IC = std::max(1u, IC);
6252 
6253   assert(IC > 0 && "Interleave count must be greater than 0.");
6254 
6255   // If we did not calculate the cost for VF (because the user selected the VF)
6256   // then we calculate the cost of VF here.
6257   if (LoopCost == 0) {
6258     assert(expectedCost(VF).first.isValid() && "Expected a valid cost");
6259     LoopCost = *expectedCost(VF).first.getValue();
6260   }
6261 
6262   assert(LoopCost && "Non-zero loop cost expected");
6263 
6264   // Interleave if we vectorized this loop and there is a reduction that could
6265   // benefit from interleaving.
6266   if (VF.isVector() && HasReductions) {
6267     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6268     return IC;
6269   }
6270 
6271   // Note that if we've already vectorized the loop we will have done the
6272   // runtime check and so interleaving won't require further checks.
6273   bool InterleavingRequiresRuntimePointerCheck =
6274       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6275 
6276   // We want to interleave small loops in order to reduce the loop overhead and
6277   // potentially expose ILP opportunities.
6278   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6279                     << "LV: IC is " << IC << '\n'
6280                     << "LV: VF is " << VF << '\n');
6281   const bool AggressivelyInterleaveReductions =
6282       TTI.enableAggressiveInterleaving(HasReductions);
6283   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6284     // We assume that the cost overhead is 1 and we use the cost model
6285     // to estimate the cost of the loop and interleave until the cost of the
6286     // loop overhead is about 5% of the cost of the loop.
6287     unsigned SmallIC =
6288         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6289 
6290     // Interleave until store/load ports (estimated by max interleave count) are
6291     // saturated.
6292     unsigned NumStores = Legal->getNumStores();
6293     unsigned NumLoads = Legal->getNumLoads();
6294     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6295     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6296 
6297     // If we have a scalar reduction (vector reductions are already dealt with
6298     // by this point), we can increase the critical path length if the loop
6299     // we're interleaving is inside another loop. Limit, by default to 2, so the
6300     // critical path only gets increased by one reduction operation.
6301     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6302       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6303       SmallIC = std::min(SmallIC, F);
6304       StoresIC = std::min(StoresIC, F);
6305       LoadsIC = std::min(LoadsIC, F);
6306     }
6307 
6308     if (EnableLoadStoreRuntimeInterleave &&
6309         std::max(StoresIC, LoadsIC) > SmallIC) {
6310       LLVM_DEBUG(
6311           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6312       return std::max(StoresIC, LoadsIC);
6313     }
6314 
6315     // If there are scalar reductions and TTI has enabled aggressive
6316     // interleaving for reductions, we will interleave to expose ILP.
6317     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6318         AggressivelyInterleaveReductions) {
6319       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6320       // Interleave no less than SmallIC but not as aggressive as the normal IC
6321       // to satisfy the rare situation when resources are too limited.
6322       return std::max(IC / 2, SmallIC);
6323     } else {
6324       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6325       return SmallIC;
6326     }
6327   }
6328 
6329   // Interleave if this is a large loop (small loops are already dealt with by
6330   // this point) that could benefit from interleaving.
6331   if (AggressivelyInterleaveReductions) {
6332     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6333     return IC;
6334   }
6335 
6336   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6337   return 1;
6338 }
6339 
6340 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6341 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6342   // This function calculates the register usage by measuring the highest number
6343   // of values that are alive at a single location. Obviously, this is a very
6344   // rough estimation. We scan the loop in a topological order in order and
6345   // assign a number to each instruction. We use RPO to ensure that defs are
6346   // met before their users. We assume that each instruction that has in-loop
6347   // users starts an interval. We record every time that an in-loop value is
6348   // used, so we have a list of the first and last occurrences of each
6349   // instruction. Next, we transpose this data structure into a multi map that
6350   // holds the list of intervals that *end* at a specific location. This multi
6351   // map allows us to perform a linear search. We scan the instructions linearly
6352   // and record each time that a new interval starts, by placing it in a set.
6353   // If we find this value in the multi-map then we remove it from the set.
6354   // The max register usage is the maximum size of the set.
6355   // We also search for instructions that are defined outside the loop, but are
6356   // used inside the loop. We need this number separately from the max-interval
6357   // usage number because when we unroll, loop-invariant values do not take
6358   // more register.
6359   LoopBlocksDFS DFS(TheLoop);
6360   DFS.perform(LI);
6361 
6362   RegisterUsage RU;
6363 
6364   // Each 'key' in the map opens a new interval. The values
6365   // of the map are the index of the 'last seen' usage of the
6366   // instruction that is the key.
6367   using IntervalMap = DenseMap<Instruction *, unsigned>;
6368 
6369   // Maps instruction to its index.
6370   SmallVector<Instruction *, 64> IdxToInstr;
6371   // Marks the end of each interval.
6372   IntervalMap EndPoint;
6373   // Saves the list of instruction indices that are used in the loop.
6374   SmallPtrSet<Instruction *, 8> Ends;
6375   // Saves the list of values that are used in the loop but are
6376   // defined outside the loop, such as arguments and constants.
6377   SmallPtrSet<Value *, 8> LoopInvariants;
6378 
6379   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6380     for (Instruction &I : BB->instructionsWithoutDebug()) {
6381       IdxToInstr.push_back(&I);
6382 
6383       // Save the end location of each USE.
6384       for (Value *U : I.operands()) {
6385         auto *Instr = dyn_cast<Instruction>(U);
6386 
6387         // Ignore non-instruction values such as arguments, constants, etc.
6388         if (!Instr)
6389           continue;
6390 
6391         // If this instruction is outside the loop then record it and continue.
6392         if (!TheLoop->contains(Instr)) {
6393           LoopInvariants.insert(Instr);
6394           continue;
6395         }
6396 
6397         // Overwrite previous end points.
6398         EndPoint[Instr] = IdxToInstr.size();
6399         Ends.insert(Instr);
6400       }
6401     }
6402   }
6403 
6404   // Saves the list of intervals that end with the index in 'key'.
6405   using InstrList = SmallVector<Instruction *, 2>;
6406   DenseMap<unsigned, InstrList> TransposeEnds;
6407 
6408   // Transpose the EndPoints to a list of values that end at each index.
6409   for (auto &Interval : EndPoint)
6410     TransposeEnds[Interval.second].push_back(Interval.first);
6411 
6412   SmallPtrSet<Instruction *, 8> OpenIntervals;
6413   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6414   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6415 
6416   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6417 
6418   // A lambda that gets the register usage for the given type and VF.
6419   const auto &TTICapture = TTI;
6420   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) {
6421     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6422       return 0U;
6423     return TTICapture.getRegUsageForType(VectorType::get(Ty, VF));
6424   };
6425 
6426   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6427     Instruction *I = IdxToInstr[i];
6428 
6429     // Remove all of the instructions that end at this location.
6430     InstrList &List = TransposeEnds[i];
6431     for (Instruction *ToRemove : List)
6432       OpenIntervals.erase(ToRemove);
6433 
6434     // Ignore instructions that are never used within the loop.
6435     if (!Ends.count(I))
6436       continue;
6437 
6438     // Skip ignored values.
6439     if (ValuesToIgnore.count(I))
6440       continue;
6441 
6442     // For each VF find the maximum usage of registers.
6443     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6444       // Count the number of live intervals.
6445       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6446 
6447       if (VFs[j].isScalar()) {
6448         for (auto Inst : OpenIntervals) {
6449           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6450           if (RegUsage.find(ClassID) == RegUsage.end())
6451             RegUsage[ClassID] = 1;
6452           else
6453             RegUsage[ClassID] += 1;
6454         }
6455       } else {
6456         collectUniformsAndScalars(VFs[j]);
6457         for (auto Inst : OpenIntervals) {
6458           // Skip ignored values for VF > 1.
6459           if (VecValuesToIgnore.count(Inst))
6460             continue;
6461           if (isScalarAfterVectorization(Inst, VFs[j])) {
6462             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6463             if (RegUsage.find(ClassID) == RegUsage.end())
6464               RegUsage[ClassID] = 1;
6465             else
6466               RegUsage[ClassID] += 1;
6467           } else {
6468             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6469             if (RegUsage.find(ClassID) == RegUsage.end())
6470               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6471             else
6472               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6473           }
6474         }
6475       }
6476 
6477       for (auto& pair : RegUsage) {
6478         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6479           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6480         else
6481           MaxUsages[j][pair.first] = pair.second;
6482       }
6483     }
6484 
6485     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6486                       << OpenIntervals.size() << '\n');
6487 
6488     // Add the current instruction to the list of open intervals.
6489     OpenIntervals.insert(I);
6490   }
6491 
6492   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6493     SmallMapVector<unsigned, unsigned, 4> Invariant;
6494 
6495     for (auto Inst : LoopInvariants) {
6496       unsigned Usage =
6497           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6498       unsigned ClassID =
6499           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6500       if (Invariant.find(ClassID) == Invariant.end())
6501         Invariant[ClassID] = Usage;
6502       else
6503         Invariant[ClassID] += Usage;
6504     }
6505 
6506     LLVM_DEBUG({
6507       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6508       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6509              << " item\n";
6510       for (const auto &pair : MaxUsages[i]) {
6511         dbgs() << "LV(REG): RegisterClass: "
6512                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6513                << " registers\n";
6514       }
6515       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6516              << " item\n";
6517       for (const auto &pair : Invariant) {
6518         dbgs() << "LV(REG): RegisterClass: "
6519                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6520                << " registers\n";
6521       }
6522     });
6523 
6524     RU.LoopInvariantRegs = Invariant;
6525     RU.MaxLocalUsers = MaxUsages[i];
6526     RUs[i] = RU;
6527   }
6528 
6529   return RUs;
6530 }
6531 
6532 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6533   // TODO: Cost model for emulated masked load/store is completely
6534   // broken. This hack guides the cost model to use an artificially
6535   // high enough value to practically disable vectorization with such
6536   // operations, except where previously deployed legality hack allowed
6537   // using very low cost values. This is to avoid regressions coming simply
6538   // from moving "masked load/store" check from legality to cost model.
6539   // Masked Load/Gather emulation was previously never allowed.
6540   // Limited number of Masked Store/Scatter emulation was allowed.
6541   assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction");
6542   return isa<LoadInst>(I) ||
6543          (isa<StoreInst>(I) &&
6544           NumPredStores > NumberOfStoresToPredicate);
6545 }
6546 
6547 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6548   // If we aren't vectorizing the loop, or if we've already collected the
6549   // instructions to scalarize, there's nothing to do. Collection may already
6550   // have occurred if we have a user-selected VF and are now computing the
6551   // expected cost for interleaving.
6552   if (VF.isScalar() || VF.isZero() ||
6553       InstsToScalarize.find(VF) != InstsToScalarize.end())
6554     return;
6555 
6556   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6557   // not profitable to scalarize any instructions, the presence of VF in the
6558   // map will indicate that we've analyzed it already.
6559   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6560 
6561   // Find all the instructions that are scalar with predication in the loop and
6562   // determine if it would be better to not if-convert the blocks they are in.
6563   // If so, we also record the instructions to scalarize.
6564   for (BasicBlock *BB : TheLoop->blocks()) {
6565     if (!blockNeedsPredication(BB))
6566       continue;
6567     for (Instruction &I : *BB)
6568       if (isScalarWithPredication(&I)) {
6569         ScalarCostsTy ScalarCosts;
6570         // Do not apply discount logic if hacked cost is needed
6571         // for emulated masked memrefs.
6572         if (!useEmulatedMaskMemRefHack(&I) &&
6573             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6574           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6575         // Remember that BB will remain after vectorization.
6576         PredicatedBBsAfterVectorization.insert(BB);
6577       }
6578   }
6579 }
6580 
6581 int LoopVectorizationCostModel::computePredInstDiscount(
6582     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6583   assert(!isUniformAfterVectorization(PredInst, VF) &&
6584          "Instruction marked uniform-after-vectorization will be predicated");
6585 
6586   // Initialize the discount to zero, meaning that the scalar version and the
6587   // vector version cost the same.
6588   InstructionCost Discount = 0;
6589 
6590   // Holds instructions to analyze. The instructions we visit are mapped in
6591   // ScalarCosts. Those instructions are the ones that would be scalarized if
6592   // we find that the scalar version costs less.
6593   SmallVector<Instruction *, 8> Worklist;
6594 
6595   // Returns true if the given instruction can be scalarized.
6596   auto canBeScalarized = [&](Instruction *I) -> bool {
6597     // We only attempt to scalarize instructions forming a single-use chain
6598     // from the original predicated block that would otherwise be vectorized.
6599     // Although not strictly necessary, we give up on instructions we know will
6600     // already be scalar to avoid traversing chains that are unlikely to be
6601     // beneficial.
6602     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6603         isScalarAfterVectorization(I, VF))
6604       return false;
6605 
6606     // If the instruction is scalar with predication, it will be analyzed
6607     // separately. We ignore it within the context of PredInst.
6608     if (isScalarWithPredication(I))
6609       return false;
6610 
6611     // If any of the instruction's operands are uniform after vectorization,
6612     // the instruction cannot be scalarized. This prevents, for example, a
6613     // masked load from being scalarized.
6614     //
6615     // We assume we will only emit a value for lane zero of an instruction
6616     // marked uniform after vectorization, rather than VF identical values.
6617     // Thus, if we scalarize an instruction that uses a uniform, we would
6618     // create uses of values corresponding to the lanes we aren't emitting code
6619     // for. This behavior can be changed by allowing getScalarValue to clone
6620     // the lane zero values for uniforms rather than asserting.
6621     for (Use &U : I->operands())
6622       if (auto *J = dyn_cast<Instruction>(U.get()))
6623         if (isUniformAfterVectorization(J, VF))
6624           return false;
6625 
6626     // Otherwise, we can scalarize the instruction.
6627     return true;
6628   };
6629 
6630   // Compute the expected cost discount from scalarizing the entire expression
6631   // feeding the predicated instruction. We currently only consider expressions
6632   // that are single-use instruction chains.
6633   Worklist.push_back(PredInst);
6634   while (!Worklist.empty()) {
6635     Instruction *I = Worklist.pop_back_val();
6636 
6637     // If we've already analyzed the instruction, there's nothing to do.
6638     if (ScalarCosts.find(I) != ScalarCosts.end())
6639       continue;
6640 
6641     // Compute the cost of the vector instruction. Note that this cost already
6642     // includes the scalarization overhead of the predicated instruction.
6643     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6644 
6645     // Compute the cost of the scalarized instruction. This cost is the cost of
6646     // the instruction as if it wasn't if-converted and instead remained in the
6647     // predicated block. We will scale this cost by block probability after
6648     // computing the scalarization overhead.
6649     assert(!VF.isScalable() && "scalable vectors not yet supported.");
6650     InstructionCost ScalarCost =
6651         VF.getKnownMinValue() *
6652         getInstructionCost(I, ElementCount::getFixed(1)).first;
6653 
6654     // Compute the scalarization overhead of needed insertelement instructions
6655     // and phi nodes.
6656     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6657       ScalarCost += TTI.getScalarizationOverhead(
6658           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6659           APInt::getAllOnesValue(VF.getKnownMinValue()), true, false);
6660       assert(!VF.isScalable() && "scalable vectors not yet supported.");
6661       ScalarCost +=
6662           VF.getKnownMinValue() *
6663           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6664     }
6665 
6666     // Compute the scalarization overhead of needed extractelement
6667     // instructions. For each of the instruction's operands, if the operand can
6668     // be scalarized, add it to the worklist; otherwise, account for the
6669     // overhead.
6670     for (Use &U : I->operands())
6671       if (auto *J = dyn_cast<Instruction>(U.get())) {
6672         assert(VectorType::isValidElementType(J->getType()) &&
6673                "Instruction has non-scalar type");
6674         if (canBeScalarized(J))
6675           Worklist.push_back(J);
6676         else if (needsExtract(J, VF)) {
6677           assert(!VF.isScalable() && "scalable vectors not yet supported.");
6678           ScalarCost += TTI.getScalarizationOverhead(
6679               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6680               APInt::getAllOnesValue(VF.getKnownMinValue()), false, true);
6681         }
6682       }
6683 
6684     // Scale the total scalar cost by block probability.
6685     ScalarCost /= getReciprocalPredBlockProb();
6686 
6687     // Compute the discount. A non-negative discount means the vector version
6688     // of the instruction costs more, and scalarizing would be beneficial.
6689     Discount += VectorCost - ScalarCost;
6690     ScalarCosts[I] = ScalarCost;
6691   }
6692 
6693   return *Discount.getValue();
6694 }
6695 
6696 LoopVectorizationCostModel::VectorizationCostTy
6697 LoopVectorizationCostModel::expectedCost(ElementCount VF) {
6698   VectorizationCostTy Cost;
6699 
6700   // For each block.
6701   for (BasicBlock *BB : TheLoop->blocks()) {
6702     VectorizationCostTy BlockCost;
6703 
6704     // For each instruction in the old loop.
6705     for (Instruction &I : BB->instructionsWithoutDebug()) {
6706       // Skip ignored values.
6707       if (ValuesToIgnore.count(&I) ||
6708           (VF.isVector() && VecValuesToIgnore.count(&I)))
6709         continue;
6710 
6711       VectorizationCostTy C = getInstructionCost(&I, VF);
6712 
6713       // Check if we should override the cost.
6714       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
6715         C.first = InstructionCost(ForceTargetInstructionCost);
6716 
6717       BlockCost.first += C.first;
6718       BlockCost.second |= C.second;
6719       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6720                         << " for VF " << VF << " For instruction: " << I
6721                         << '\n');
6722     }
6723 
6724     // If we are vectorizing a predicated block, it will have been
6725     // if-converted. This means that the block's instructions (aside from
6726     // stores and instructions that may divide by zero) will now be
6727     // unconditionally executed. For the scalar case, we may not always execute
6728     // the predicated block, if it is an if-else block. Thus, scale the block's
6729     // cost by the probability of executing it. blockNeedsPredication from
6730     // Legal is used so as to not include all blocks in tail folded loops.
6731     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6732       BlockCost.first /= getReciprocalPredBlockProb();
6733 
6734     Cost.first += BlockCost.first;
6735     Cost.second |= BlockCost.second;
6736   }
6737 
6738   return Cost;
6739 }
6740 
6741 /// Gets Address Access SCEV after verifying that the access pattern
6742 /// is loop invariant except the induction variable dependence.
6743 ///
6744 /// This SCEV can be sent to the Target in order to estimate the address
6745 /// calculation cost.
6746 static const SCEV *getAddressAccessSCEV(
6747               Value *Ptr,
6748               LoopVectorizationLegality *Legal,
6749               PredicatedScalarEvolution &PSE,
6750               const Loop *TheLoop) {
6751 
6752   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6753   if (!Gep)
6754     return nullptr;
6755 
6756   // We are looking for a gep with all loop invariant indices except for one
6757   // which should be an induction variable.
6758   auto SE = PSE.getSE();
6759   unsigned NumOperands = Gep->getNumOperands();
6760   for (unsigned i = 1; i < NumOperands; ++i) {
6761     Value *Opd = Gep->getOperand(i);
6762     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6763         !Legal->isInductionVariable(Opd))
6764       return nullptr;
6765   }
6766 
6767   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6768   return PSE.getSCEV(Ptr);
6769 }
6770 
6771 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6772   return Legal->hasStride(I->getOperand(0)) ||
6773          Legal->hasStride(I->getOperand(1));
6774 }
6775 
6776 InstructionCost
6777 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6778                                                         ElementCount VF) {
6779   assert(VF.isVector() &&
6780          "Scalarization cost of instruction implies vectorization.");
6781   assert(!VF.isScalable() && "scalable vectors not yet supported.");
6782   Type *ValTy = getMemInstValueType(I);
6783   auto SE = PSE.getSE();
6784 
6785   unsigned AS = getLoadStoreAddressSpace(I);
6786   Value *Ptr = getLoadStorePointerOperand(I);
6787   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6788 
6789   // Figure out whether the access is strided and get the stride value
6790   // if it's known in compile time
6791   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6792 
6793   // Get the cost of the scalar memory instruction and address computation.
6794   InstructionCost Cost =
6795       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6796 
6797   // Don't pass *I here, since it is scalar but will actually be part of a
6798   // vectorized loop where the user of it is a vectorized instruction.
6799   const Align Alignment = getLoadStoreAlignment(I);
6800   Cost += VF.getKnownMinValue() *
6801           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6802                               AS, TTI::TCK_RecipThroughput);
6803 
6804   // Get the overhead of the extractelement and insertelement instructions
6805   // we might create due to scalarization.
6806   Cost += getScalarizationOverhead(I, VF);
6807 
6808   // If we have a predicated load/store, it will need extra i1 extracts and
6809   // conditional branches, but may not be executed for each vector lane. Scale
6810   // the cost by the probability of executing the predicated block.
6811   if (isPredicatedInst(I)) {
6812     Cost /= getReciprocalPredBlockProb();
6813 
6814     // Add the cost of an i1 extract and a branch
6815     auto *Vec_i1Ty =
6816         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6817     Cost += TTI.getScalarizationOverhead(
6818         Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
6819         /*Insert=*/false, /*Extract=*/true);
6820     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6821 
6822     if (useEmulatedMaskMemRefHack(I))
6823       // Artificially setting to a high enough value to practically disable
6824       // vectorization with such operations.
6825       Cost = 3000000;
6826   }
6827 
6828   return Cost;
6829 }
6830 
6831 InstructionCost
6832 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6833                                                     ElementCount VF) {
6834   Type *ValTy = getMemInstValueType(I);
6835   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6836   Value *Ptr = getLoadStorePointerOperand(I);
6837   unsigned AS = getLoadStoreAddressSpace(I);
6838   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
6839   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6840 
6841   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6842          "Stride should be 1 or -1 for consecutive memory access");
6843   const Align Alignment = getLoadStoreAlignment(I);
6844   InstructionCost Cost = 0;
6845   if (Legal->isMaskRequired(I))
6846     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6847                                       CostKind);
6848   else
6849     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6850                                 CostKind, I);
6851 
6852   bool Reverse = ConsecutiveStride < 0;
6853   if (Reverse)
6854     Cost +=
6855         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6856   return Cost;
6857 }
6858 
6859 InstructionCost
6860 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6861                                                 ElementCount VF) {
6862   assert(Legal->isUniformMemOp(*I));
6863 
6864   Type *ValTy = getMemInstValueType(I);
6865   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6866   const Align Alignment = getLoadStoreAlignment(I);
6867   unsigned AS = getLoadStoreAddressSpace(I);
6868   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6869   if (isa<LoadInst>(I)) {
6870     return TTI.getAddressComputationCost(ValTy) +
6871            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6872                                CostKind) +
6873            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6874   }
6875   StoreInst *SI = cast<StoreInst>(I);
6876 
6877   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6878   return TTI.getAddressComputationCost(ValTy) +
6879          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6880                              CostKind) +
6881          (isLoopInvariantStoreValue
6882               ? 0
6883               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6884                                        VF.getKnownMinValue() - 1));
6885 }
6886 
6887 InstructionCost
6888 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6889                                                  ElementCount VF) {
6890   Type *ValTy = getMemInstValueType(I);
6891   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6892   const Align Alignment = getLoadStoreAlignment(I);
6893   const Value *Ptr = getLoadStorePointerOperand(I);
6894 
6895   return TTI.getAddressComputationCost(VectorTy) +
6896          TTI.getGatherScatterOpCost(
6897              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6898              TargetTransformInfo::TCK_RecipThroughput, I);
6899 }
6900 
6901 InstructionCost
6902 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6903                                                    ElementCount VF) {
6904   // TODO: Once we have support for interleaving with scalable vectors
6905   // we can calculate the cost properly here.
6906   if (VF.isScalable())
6907     return InstructionCost::getInvalid();
6908 
6909   Type *ValTy = getMemInstValueType(I);
6910   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6911   unsigned AS = getLoadStoreAddressSpace(I);
6912 
6913   auto Group = getInterleavedAccessGroup(I);
6914   assert(Group && "Fail to get an interleaved access group.");
6915 
6916   unsigned InterleaveFactor = Group->getFactor();
6917   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6918 
6919   // Holds the indices of existing members in an interleaved load group.
6920   // An interleaved store group doesn't need this as it doesn't allow gaps.
6921   SmallVector<unsigned, 4> Indices;
6922   if (isa<LoadInst>(I)) {
6923     for (unsigned i = 0; i < InterleaveFactor; i++)
6924       if (Group->getMember(i))
6925         Indices.push_back(i);
6926   }
6927 
6928   // Calculate the cost of the whole interleaved group.
6929   bool UseMaskForGaps =
6930       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
6931   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6932       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6933       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6934 
6935   if (Group->isReverse()) {
6936     // TODO: Add support for reversed masked interleaved access.
6937     assert(!Legal->isMaskRequired(I) &&
6938            "Reverse masked interleaved access not supported.");
6939     Cost +=
6940         Group->getNumMembers() *
6941         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6942   }
6943   return Cost;
6944 }
6945 
6946 InstructionCost LoopVectorizationCostModel::getReductionPatternCost(
6947     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6948   // Early exit for no inloop reductions
6949   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6950     return InstructionCost::getInvalid();
6951   auto *VectorTy = cast<VectorType>(Ty);
6952 
6953   // We are looking for a pattern of, and finding the minimal acceptable cost:
6954   //  reduce(mul(ext(A), ext(B))) or
6955   //  reduce(mul(A, B)) or
6956   //  reduce(ext(A)) or
6957   //  reduce(A).
6958   // The basic idea is that we walk down the tree to do that, finding the root
6959   // reduction instruction in InLoopReductionImmediateChains. From there we find
6960   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6961   // of the components. If the reduction cost is lower then we return it for the
6962   // reduction instruction and 0 for the other instructions in the pattern. If
6963   // it is not we return an invalid cost specifying the orignal cost method
6964   // should be used.
6965   Instruction *RetI = I;
6966   if ((RetI->getOpcode() == Instruction::SExt ||
6967        RetI->getOpcode() == Instruction::ZExt)) {
6968     if (!RetI->hasOneUser())
6969       return InstructionCost::getInvalid();
6970     RetI = RetI->user_back();
6971   }
6972   if (RetI->getOpcode() == Instruction::Mul &&
6973       RetI->user_back()->getOpcode() == Instruction::Add) {
6974     if (!RetI->hasOneUser())
6975       return InstructionCost::getInvalid();
6976     RetI = RetI->user_back();
6977   }
6978 
6979   // Test if the found instruction is a reduction, and if not return an invalid
6980   // cost specifying the parent to use the original cost modelling.
6981   if (!InLoopReductionImmediateChains.count(RetI))
6982     return InstructionCost::getInvalid();
6983 
6984   // Find the reduction this chain is a part of and calculate the basic cost of
6985   // the reduction on its own.
6986   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6987   Instruction *ReductionPhi = LastChain;
6988   while (!isa<PHINode>(ReductionPhi))
6989     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6990 
6991   RecurrenceDescriptor RdxDesc =
6992       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
6993   unsigned BaseCost = TTI.getArithmeticReductionCost(RdxDesc.getOpcode(),
6994                                                      VectorTy, false, CostKind);
6995 
6996   // Get the operand that was not the reduction chain and match it to one of the
6997   // patterns, returning the better cost if it is found.
6998   Instruction *RedOp = RetI->getOperand(1) == LastChain
6999                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7000                            : dyn_cast<Instruction>(RetI->getOperand(1));
7001 
7002   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7003 
7004   if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) &&
7005       !TheLoop->isLoopInvariant(RedOp)) {
7006     bool IsUnsigned = isa<ZExtInst>(RedOp);
7007     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7008     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7009         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7010         CostKind);
7011 
7012     unsigned ExtCost =
7013         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7014                              TTI::CastContextHint::None, CostKind, RedOp);
7015     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7016       return I == RetI ? *RedCost.getValue() : 0;
7017   } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) {
7018     Instruction *Mul = RedOp;
7019     Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0));
7020     Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1));
7021     if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) &&
7022         Op0->getOpcode() == Op1->getOpcode() &&
7023         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7024         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7025       bool IsUnsigned = isa<ZExtInst>(Op0);
7026       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7027       // reduce(mul(ext, ext))
7028       unsigned ExtCost =
7029           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7030                                TTI::CastContextHint::None, CostKind, Op0);
7031       InstructionCost MulCost =
7032           TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind);
7033 
7034       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7035           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7036           CostKind);
7037 
7038       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7039         return I == RetI ? *RedCost.getValue() : 0;
7040     } else {
7041       InstructionCost MulCost =
7042           TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind);
7043 
7044       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7045           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7046           CostKind);
7047 
7048       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7049         return I == RetI ? *RedCost.getValue() : 0;
7050     }
7051   }
7052 
7053   return I == RetI ? BaseCost : InstructionCost::getInvalid();
7054 }
7055 
7056 InstructionCost
7057 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7058                                                      ElementCount VF) {
7059   // Calculate scalar cost only. Vectorization cost should be ready at this
7060   // moment.
7061   if (VF.isScalar()) {
7062     Type *ValTy = getMemInstValueType(I);
7063     const Align Alignment = getLoadStoreAlignment(I);
7064     unsigned AS = getLoadStoreAddressSpace(I);
7065 
7066     return TTI.getAddressComputationCost(ValTy) +
7067            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7068                                TTI::TCK_RecipThroughput, I);
7069   }
7070   return getWideningCost(I, VF);
7071 }
7072 
7073 LoopVectorizationCostModel::VectorizationCostTy
7074 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7075                                                ElementCount VF) {
7076   // If we know that this instruction will remain uniform, check the cost of
7077   // the scalar version.
7078   if (isUniformAfterVectorization(I, VF))
7079     VF = ElementCount::getFixed(1);
7080 
7081   if (VF.isVector() && isProfitableToScalarize(I, VF))
7082     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7083 
7084   // Forced scalars do not have any scalarization overhead.
7085   auto ForcedScalar = ForcedScalars.find(VF);
7086   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7087     auto InstSet = ForcedScalar->second;
7088     if (InstSet.count(I))
7089       return VectorizationCostTy(
7090           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7091            VF.getKnownMinValue()),
7092           false);
7093   }
7094 
7095   Type *VectorTy;
7096   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7097 
7098   bool TypeNotScalarized =
7099       VF.isVector() && VectorTy->isVectorTy() &&
7100       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7101   return VectorizationCostTy(C, TypeNotScalarized);
7102 }
7103 
7104 InstructionCost
7105 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7106                                                      ElementCount VF) const {
7107 
7108   if (VF.isScalable())
7109     return InstructionCost::getInvalid();
7110 
7111   if (VF.isScalar())
7112     return 0;
7113 
7114   InstructionCost Cost = 0;
7115   Type *RetTy = ToVectorTy(I->getType(), VF);
7116   if (!RetTy->isVoidTy() &&
7117       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7118     Cost += TTI.getScalarizationOverhead(
7119         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()),
7120         true, false);
7121 
7122   // Some targets keep addresses scalar.
7123   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7124     return Cost;
7125 
7126   // Some targets support efficient element stores.
7127   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7128     return Cost;
7129 
7130   // Collect operands to consider.
7131   CallInst *CI = dyn_cast<CallInst>(I);
7132   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
7133 
7134   // Skip operands that do not require extraction/scalarization and do not incur
7135   // any overhead.
7136   SmallVector<Type *> Tys;
7137   for (auto *V : filterExtractingOperands(Ops, VF))
7138     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7139   return Cost + TTI.getOperandsScalarizationOverhead(
7140                     filterExtractingOperands(Ops, VF), Tys);
7141 }
7142 
7143 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7144   if (VF.isScalar())
7145     return;
7146   NumPredStores = 0;
7147   for (BasicBlock *BB : TheLoop->blocks()) {
7148     // For each instruction in the old loop.
7149     for (Instruction &I : *BB) {
7150       Value *Ptr =  getLoadStorePointerOperand(&I);
7151       if (!Ptr)
7152         continue;
7153 
7154       // TODO: We should generate better code and update the cost model for
7155       // predicated uniform stores. Today they are treated as any other
7156       // predicated store (see added test cases in
7157       // invariant-store-vectorization.ll).
7158       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7159         NumPredStores++;
7160 
7161       if (Legal->isUniformMemOp(I)) {
7162         // TODO: Avoid replicating loads and stores instead of
7163         // relying on instcombine to remove them.
7164         // Load: Scalar load + broadcast
7165         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7166         InstructionCost Cost = getUniformMemOpCost(&I, VF);
7167         setWideningDecision(&I, VF, CM_Scalarize, Cost);
7168         continue;
7169       }
7170 
7171       // We assume that widening is the best solution when possible.
7172       if (memoryInstructionCanBeWidened(&I, VF)) {
7173         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7174         int ConsecutiveStride =
7175                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
7176         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7177                "Expected consecutive stride.");
7178         InstWidening Decision =
7179             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7180         setWideningDecision(&I, VF, Decision, Cost);
7181         continue;
7182       }
7183 
7184       // Choose between Interleaving, Gather/Scatter or Scalarization.
7185       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7186       unsigned NumAccesses = 1;
7187       if (isAccessInterleaved(&I)) {
7188         auto Group = getInterleavedAccessGroup(&I);
7189         assert(Group && "Fail to get an interleaved access group.");
7190 
7191         // Make one decision for the whole group.
7192         if (getWideningDecision(&I, VF) != CM_Unknown)
7193           continue;
7194 
7195         NumAccesses = Group->getNumMembers();
7196         if (interleavedAccessCanBeWidened(&I, VF))
7197           InterleaveCost = getInterleaveGroupCost(&I, VF);
7198       }
7199 
7200       InstructionCost GatherScatterCost =
7201           isLegalGatherOrScatter(&I)
7202               ? getGatherScatterCost(&I, VF) * NumAccesses
7203               : InstructionCost::getInvalid();
7204 
7205       InstructionCost ScalarizationCost =
7206           !VF.isScalable() ? getMemInstScalarizationCost(&I, VF) * NumAccesses
7207                            : InstructionCost::getInvalid();
7208 
7209       // Choose better solution for the current VF,
7210       // write down this decision and use it during vectorization.
7211       InstructionCost Cost;
7212       InstWidening Decision;
7213       if (InterleaveCost <= GatherScatterCost &&
7214           InterleaveCost < ScalarizationCost) {
7215         Decision = CM_Interleave;
7216         Cost = InterleaveCost;
7217       } else if (GatherScatterCost < ScalarizationCost) {
7218         Decision = CM_GatherScatter;
7219         Cost = GatherScatterCost;
7220       } else {
7221         assert(!VF.isScalable() &&
7222                "We cannot yet scalarise for scalable vectors");
7223         Decision = CM_Scalarize;
7224         Cost = ScalarizationCost;
7225       }
7226       // If the instructions belongs to an interleave group, the whole group
7227       // receives the same decision. The whole group receives the cost, but
7228       // the cost will actually be assigned to one instruction.
7229       if (auto Group = getInterleavedAccessGroup(&I))
7230         setWideningDecision(Group, VF, Decision, Cost);
7231       else
7232         setWideningDecision(&I, VF, Decision, Cost);
7233     }
7234   }
7235 
7236   // Make sure that any load of address and any other address computation
7237   // remains scalar unless there is gather/scatter support. This avoids
7238   // inevitable extracts into address registers, and also has the benefit of
7239   // activating LSR more, since that pass can't optimize vectorized
7240   // addresses.
7241   if (TTI.prefersVectorizedAddressing())
7242     return;
7243 
7244   // Start with all scalar pointer uses.
7245   SmallPtrSet<Instruction *, 8> AddrDefs;
7246   for (BasicBlock *BB : TheLoop->blocks())
7247     for (Instruction &I : *BB) {
7248       Instruction *PtrDef =
7249         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7250       if (PtrDef && TheLoop->contains(PtrDef) &&
7251           getWideningDecision(&I, VF) != CM_GatherScatter)
7252         AddrDefs.insert(PtrDef);
7253     }
7254 
7255   // Add all instructions used to generate the addresses.
7256   SmallVector<Instruction *, 4> Worklist;
7257   append_range(Worklist, AddrDefs);
7258   while (!Worklist.empty()) {
7259     Instruction *I = Worklist.pop_back_val();
7260     for (auto &Op : I->operands())
7261       if (auto *InstOp = dyn_cast<Instruction>(Op))
7262         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7263             AddrDefs.insert(InstOp).second)
7264           Worklist.push_back(InstOp);
7265   }
7266 
7267   for (auto *I : AddrDefs) {
7268     if (isa<LoadInst>(I)) {
7269       // Setting the desired widening decision should ideally be handled in
7270       // by cost functions, but since this involves the task of finding out
7271       // if the loaded register is involved in an address computation, it is
7272       // instead changed here when we know this is the case.
7273       InstWidening Decision = getWideningDecision(I, VF);
7274       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7275         // Scalarize a widened load of address.
7276         setWideningDecision(
7277             I, VF, CM_Scalarize,
7278             (VF.getKnownMinValue() *
7279              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7280       else if (auto Group = getInterleavedAccessGroup(I)) {
7281         // Scalarize an interleave group of address loads.
7282         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7283           if (Instruction *Member = Group->getMember(I))
7284             setWideningDecision(
7285                 Member, VF, CM_Scalarize,
7286                 (VF.getKnownMinValue() *
7287                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7288         }
7289       }
7290     } else
7291       // Make sure I gets scalarized and a cost estimate without
7292       // scalarization overhead.
7293       ForcedScalars[VF].insert(I);
7294   }
7295 }
7296 
7297 InstructionCost
7298 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7299                                                Type *&VectorTy) {
7300   Type *RetTy = I->getType();
7301   if (canTruncateToMinimalBitwidth(I, VF))
7302     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7303   VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
7304   auto SE = PSE.getSE();
7305   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7306 
7307   // TODO: We need to estimate the cost of intrinsic calls.
7308   switch (I->getOpcode()) {
7309   case Instruction::GetElementPtr:
7310     // We mark this instruction as zero-cost because the cost of GEPs in
7311     // vectorized code depends on whether the corresponding memory instruction
7312     // is scalarized or not. Therefore, we handle GEPs with the memory
7313     // instruction cost.
7314     return 0;
7315   case Instruction::Br: {
7316     // In cases of scalarized and predicated instructions, there will be VF
7317     // predicated blocks in the vectorized loop. Each branch around these
7318     // blocks requires also an extract of its vector compare i1 element.
7319     bool ScalarPredicatedBB = false;
7320     BranchInst *BI = cast<BranchInst>(I);
7321     if (VF.isVector() && BI->isConditional() &&
7322         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7323          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7324       ScalarPredicatedBB = true;
7325 
7326     if (ScalarPredicatedBB) {
7327       // Return cost for branches around scalarized and predicated blocks.
7328       assert(!VF.isScalable() && "scalable vectors not yet supported.");
7329       auto *Vec_i1Ty =
7330           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7331       return (TTI.getScalarizationOverhead(
7332                   Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
7333                   false, true) +
7334               (TTI.getCFInstrCost(Instruction::Br, CostKind) *
7335                VF.getKnownMinValue()));
7336     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7337       // The back-edge branch will remain, as will all scalar branches.
7338       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7339     else
7340       // This branch will be eliminated by if-conversion.
7341       return 0;
7342     // Note: We currently assume zero cost for an unconditional branch inside
7343     // a predicated block since it will become a fall-through, although we
7344     // may decide in the future to call TTI for all branches.
7345   }
7346   case Instruction::PHI: {
7347     auto *Phi = cast<PHINode>(I);
7348 
7349     // First-order recurrences are replaced by vector shuffles inside the loop.
7350     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7351     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7352       return TTI.getShuffleCost(
7353           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7354           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7355 
7356     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7357     // converted into select instructions. We require N - 1 selects per phi
7358     // node, where N is the number of incoming values.
7359     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7360       return (Phi->getNumIncomingValues() - 1) *
7361              TTI.getCmpSelInstrCost(
7362                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7363                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7364                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7365 
7366     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7367   }
7368   case Instruction::UDiv:
7369   case Instruction::SDiv:
7370   case Instruction::URem:
7371   case Instruction::SRem:
7372     // If we have a predicated instruction, it may not be executed for each
7373     // vector lane. Get the scalarization cost and scale this amount by the
7374     // probability of executing the predicated block. If the instruction is not
7375     // predicated, we fall through to the next case.
7376     if (VF.isVector() && isScalarWithPredication(I)) {
7377       InstructionCost Cost = 0;
7378 
7379       // These instructions have a non-void type, so account for the phi nodes
7380       // that we will create. This cost is likely to be zero. The phi node
7381       // cost, if any, should be scaled by the block probability because it
7382       // models a copy at the end of each predicated block.
7383       Cost += VF.getKnownMinValue() *
7384               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7385 
7386       // The cost of the non-predicated instruction.
7387       Cost += VF.getKnownMinValue() *
7388               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7389 
7390       // The cost of insertelement and extractelement instructions needed for
7391       // scalarization.
7392       Cost += getScalarizationOverhead(I, VF);
7393 
7394       // Scale the cost by the probability of executing the predicated blocks.
7395       // This assumes the predicated block for each vector lane is equally
7396       // likely.
7397       return Cost / getReciprocalPredBlockProb();
7398     }
7399     LLVM_FALLTHROUGH;
7400   case Instruction::Add:
7401   case Instruction::FAdd:
7402   case Instruction::Sub:
7403   case Instruction::FSub:
7404   case Instruction::Mul:
7405   case Instruction::FMul:
7406   case Instruction::FDiv:
7407   case Instruction::FRem:
7408   case Instruction::Shl:
7409   case Instruction::LShr:
7410   case Instruction::AShr:
7411   case Instruction::And:
7412   case Instruction::Or:
7413   case Instruction::Xor: {
7414     // Since we will replace the stride by 1 the multiplication should go away.
7415     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7416       return 0;
7417 
7418     // Detect reduction patterns
7419     InstructionCost RedCost;
7420     if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7421             .isValid())
7422       return RedCost;
7423 
7424     // Certain instructions can be cheaper to vectorize if they have a constant
7425     // second vector operand. One example of this are shifts on x86.
7426     Value *Op2 = I->getOperand(1);
7427     TargetTransformInfo::OperandValueProperties Op2VP;
7428     TargetTransformInfo::OperandValueKind Op2VK =
7429         TTI.getOperandInfo(Op2, Op2VP);
7430     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7431       Op2VK = TargetTransformInfo::OK_UniformValue;
7432 
7433     SmallVector<const Value *, 4> Operands(I->operand_values());
7434     unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
7435     return N * TTI.getArithmeticInstrCost(
7436                    I->getOpcode(), VectorTy, CostKind,
7437                    TargetTransformInfo::OK_AnyValue,
7438                    Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7439   }
7440   case Instruction::FNeg: {
7441     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
7442     unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1;
7443     return N * TTI.getArithmeticInstrCost(
7444                    I->getOpcode(), VectorTy, CostKind,
7445                    TargetTransformInfo::OK_AnyValue,
7446                    TargetTransformInfo::OK_AnyValue,
7447                    TargetTransformInfo::OP_None, TargetTransformInfo::OP_None,
7448                    I->getOperand(0), I);
7449   }
7450   case Instruction::Select: {
7451     SelectInst *SI = cast<SelectInst>(I);
7452     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7453     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7454     Type *CondTy = SI->getCondition()->getType();
7455     if (!ScalarCond)
7456       CondTy = VectorType::get(CondTy, VF);
7457     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7458                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7459   }
7460   case Instruction::ICmp:
7461   case Instruction::FCmp: {
7462     Type *ValTy = I->getOperand(0)->getType();
7463     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7464     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7465       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7466     VectorTy = ToVectorTy(ValTy, VF);
7467     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7468                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7469   }
7470   case Instruction::Store:
7471   case Instruction::Load: {
7472     ElementCount Width = VF;
7473     if (Width.isVector()) {
7474       InstWidening Decision = getWideningDecision(I, Width);
7475       assert(Decision != CM_Unknown &&
7476              "CM decision should be taken at this point");
7477       if (Decision == CM_Scalarize)
7478         Width = ElementCount::getFixed(1);
7479     }
7480     VectorTy = ToVectorTy(getMemInstValueType(I), Width);
7481     return getMemoryInstructionCost(I, VF);
7482   }
7483   case Instruction::ZExt:
7484   case Instruction::SExt:
7485   case Instruction::FPToUI:
7486   case Instruction::FPToSI:
7487   case Instruction::FPExt:
7488   case Instruction::PtrToInt:
7489   case Instruction::IntToPtr:
7490   case Instruction::SIToFP:
7491   case Instruction::UIToFP:
7492   case Instruction::Trunc:
7493   case Instruction::FPTrunc:
7494   case Instruction::BitCast: {
7495     // Computes the CastContextHint from a Load/Store instruction.
7496     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7497       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7498              "Expected a load or a store!");
7499 
7500       if (VF.isScalar() || !TheLoop->contains(I))
7501         return TTI::CastContextHint::Normal;
7502 
7503       switch (getWideningDecision(I, VF)) {
7504       case LoopVectorizationCostModel::CM_GatherScatter:
7505         return TTI::CastContextHint::GatherScatter;
7506       case LoopVectorizationCostModel::CM_Interleave:
7507         return TTI::CastContextHint::Interleave;
7508       case LoopVectorizationCostModel::CM_Scalarize:
7509       case LoopVectorizationCostModel::CM_Widen:
7510         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7511                                         : TTI::CastContextHint::Normal;
7512       case LoopVectorizationCostModel::CM_Widen_Reverse:
7513         return TTI::CastContextHint::Reversed;
7514       case LoopVectorizationCostModel::CM_Unknown:
7515         llvm_unreachable("Instr did not go through cost modelling?");
7516       }
7517 
7518       llvm_unreachable("Unhandled case!");
7519     };
7520 
7521     unsigned Opcode = I->getOpcode();
7522     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7523     // For Trunc, the context is the only user, which must be a StoreInst.
7524     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7525       if (I->hasOneUse())
7526         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7527           CCH = ComputeCCH(Store);
7528     }
7529     // For Z/Sext, the context is the operand, which must be a LoadInst.
7530     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7531              Opcode == Instruction::FPExt) {
7532       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7533         CCH = ComputeCCH(Load);
7534     }
7535 
7536     // We optimize the truncation of induction variables having constant
7537     // integer steps. The cost of these truncations is the same as the scalar
7538     // operation.
7539     if (isOptimizableIVTruncate(I, VF)) {
7540       auto *Trunc = cast<TruncInst>(I);
7541       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7542                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7543     }
7544 
7545     // Detect reduction patterns
7546     InstructionCost RedCost;
7547     if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7548             .isValid())
7549       return RedCost;
7550 
7551     Type *SrcScalarTy = I->getOperand(0)->getType();
7552     Type *SrcVecTy =
7553         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7554     if (canTruncateToMinimalBitwidth(I, VF)) {
7555       // This cast is going to be shrunk. This may remove the cast or it might
7556       // turn it into slightly different cast. For example, if MinBW == 16,
7557       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7558       //
7559       // Calculate the modified src and dest types.
7560       Type *MinVecTy = VectorTy;
7561       if (Opcode == Instruction::Trunc) {
7562         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7563         VectorTy =
7564             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7565       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7566         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7567         VectorTy =
7568             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7569       }
7570     }
7571 
7572     unsigned N;
7573     if (isScalarAfterVectorization(I, VF)) {
7574       assert(!VF.isScalable() && "VF is assumed to be non scalable");
7575       N = VF.getKnownMinValue();
7576     } else
7577       N = 1;
7578     return N *
7579            TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7580   }
7581   case Instruction::Call: {
7582     bool NeedToScalarize;
7583     CallInst *CI = cast<CallInst>(I);
7584     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7585     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7586       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7587       return std::min(CallCost, IntrinsicCost);
7588     }
7589     return CallCost;
7590   }
7591   case Instruction::ExtractValue:
7592     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7593   default:
7594     // The cost of executing VF copies of the scalar instruction. This opcode
7595     // is unknown. Assume that it is the same as 'mul'.
7596     return VF.getKnownMinValue() * TTI.getArithmeticInstrCost(
7597                                        Instruction::Mul, VectorTy, CostKind) +
7598            getScalarizationOverhead(I, VF);
7599   } // end of switch.
7600 }
7601 
7602 char LoopVectorize::ID = 0;
7603 
7604 static const char lv_name[] = "Loop Vectorization";
7605 
7606 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7607 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7608 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7609 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7610 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7611 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7612 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7613 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7614 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7615 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7616 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7617 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7618 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7619 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7620 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7621 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7622 
7623 namespace llvm {
7624 
7625 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7626 
7627 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7628                               bool VectorizeOnlyWhenForced) {
7629   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7630 }
7631 
7632 } // end namespace llvm
7633 
7634 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7635   // Check if the pointer operand of a load or store instruction is
7636   // consecutive.
7637   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7638     return Legal->isConsecutivePtr(Ptr);
7639   return false;
7640 }
7641 
7642 void LoopVectorizationCostModel::collectValuesToIgnore() {
7643   // Ignore ephemeral values.
7644   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7645 
7646   // Ignore type-promoting instructions we identified during reduction
7647   // detection.
7648   for (auto &Reduction : Legal->getReductionVars()) {
7649     RecurrenceDescriptor &RedDes = Reduction.second;
7650     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7651     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7652   }
7653   // Ignore type-casting instructions we identified during induction
7654   // detection.
7655   for (auto &Induction : Legal->getInductionVars()) {
7656     InductionDescriptor &IndDes = Induction.second;
7657     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7658     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7659   }
7660 }
7661 
7662 void LoopVectorizationCostModel::collectInLoopReductions() {
7663   for (auto &Reduction : Legal->getReductionVars()) {
7664     PHINode *Phi = Reduction.first;
7665     RecurrenceDescriptor &RdxDesc = Reduction.second;
7666 
7667     // We don't collect reductions that are type promoted (yet).
7668     if (RdxDesc.getRecurrenceType() != Phi->getType())
7669       continue;
7670 
7671     // If the target would prefer this reduction to happen "in-loop", then we
7672     // want to record it as such.
7673     unsigned Opcode = RdxDesc.getOpcode();
7674     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7675         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7676                                    TargetTransformInfo::ReductionFlags()))
7677       continue;
7678 
7679     // Check that we can correctly put the reductions into the loop, by
7680     // finding the chain of operations that leads from the phi to the loop
7681     // exit value.
7682     SmallVector<Instruction *, 4> ReductionOperations =
7683         RdxDesc.getReductionOpChain(Phi, TheLoop);
7684     bool InLoop = !ReductionOperations.empty();
7685     if (InLoop) {
7686       InLoopReductionChains[Phi] = ReductionOperations;
7687       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7688       Instruction *LastChain = Phi;
7689       for (auto *I : ReductionOperations) {
7690         InLoopReductionImmediateChains[I] = LastChain;
7691         LastChain = I;
7692       }
7693     }
7694     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7695                       << " reduction for phi: " << *Phi << "\n");
7696   }
7697 }
7698 
7699 // TODO: we could return a pair of values that specify the max VF and
7700 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7701 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7702 // doesn't have a cost model that can choose which plan to execute if
7703 // more than one is generated.
7704 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7705                                  LoopVectorizationCostModel &CM) {
7706   unsigned WidestType;
7707   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7708   return WidestVectorRegBits / WidestType;
7709 }
7710 
7711 VectorizationFactor
7712 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7713   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7714   ElementCount VF = UserVF;
7715   // Outer loop handling: They may require CFG and instruction level
7716   // transformations before even evaluating whether vectorization is profitable.
7717   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7718   // the vectorization pipeline.
7719   if (!OrigLoop->isInnermost()) {
7720     // If the user doesn't provide a vectorization factor, determine a
7721     // reasonable one.
7722     if (UserVF.isZero()) {
7723       VF = ElementCount::getFixed(determineVPlanVF(
7724           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7725               .getFixedSize(),
7726           CM));
7727       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7728 
7729       // Make sure we have a VF > 1 for stress testing.
7730       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7731         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7732                           << "overriding computed VF.\n");
7733         VF = ElementCount::getFixed(4);
7734       }
7735     }
7736     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7737     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7738            "VF needs to be a power of two");
7739     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7740                       << "VF " << VF << " to build VPlans.\n");
7741     buildVPlans(VF, VF);
7742 
7743     // For VPlan build stress testing, we bail out after VPlan construction.
7744     if (VPlanBuildStressTest)
7745       return VectorizationFactor::Disabled();
7746 
7747     return {VF, 0 /*Cost*/};
7748   }
7749 
7750   LLVM_DEBUG(
7751       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7752                 "VPlan-native path.\n");
7753   return VectorizationFactor::Disabled();
7754 }
7755 
7756 Optional<VectorizationFactor>
7757 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7758   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7759   Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC);
7760   if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved.
7761     return None;
7762 
7763   // Invalidate interleave groups if all blocks of loop will be predicated.
7764   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
7765       !useMaskedInterleavedAccesses(*TTI)) {
7766     LLVM_DEBUG(
7767         dbgs()
7768         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7769            "which requires masked-interleaved support.\n");
7770     if (CM.InterleaveInfo.invalidateGroups())
7771       // Invalidating interleave groups also requires invalidating all decisions
7772       // based on them, which includes widening decisions and uniform and scalar
7773       // values.
7774       CM.invalidateCostModelingDecisions();
7775   }
7776 
7777   ElementCount MaxVF = MaybeMaxVF.getValue();
7778   assert(MaxVF.isNonZero() && "MaxVF is zero.");
7779 
7780   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxVF);
7781   if (!UserVF.isZero() &&
7782       (UserVFIsLegal || (UserVF.isScalable() && MaxVF.isScalable()))) {
7783     // FIXME: MaxVF is temporarily used inplace of UserVF for illegal scalable
7784     // VFs here, this should be reverted to only use legal UserVFs once the
7785     // loop below supports scalable VFs.
7786     ElementCount VF = UserVFIsLegal ? UserVF : MaxVF;
7787     LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max")
7788                       << " VF " << VF << ".\n");
7789     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7790            "VF needs to be a power of two");
7791     // Collect the instructions (and their associated costs) that will be more
7792     // profitable to scalarize.
7793     CM.selectUserVectorizationFactor(VF);
7794     CM.collectInLoopReductions();
7795     buildVPlansWithVPRecipes(VF, VF);
7796     LLVM_DEBUG(printPlans(dbgs()));
7797     return {{VF, 0}};
7798   }
7799 
7800   assert(!MaxVF.isScalable() &&
7801          "Scalable vectors not yet supported beyond this point");
7802 
7803   for (ElementCount VF = ElementCount::getFixed(1);
7804        ElementCount::isKnownLE(VF, MaxVF); VF *= 2) {
7805     // Collect Uniform and Scalar instructions after vectorization with VF.
7806     CM.collectUniformsAndScalars(VF);
7807 
7808     // Collect the instructions (and their associated costs) that will be more
7809     // profitable to scalarize.
7810     if (VF.isVector())
7811       CM.collectInstsToScalarize(VF);
7812   }
7813 
7814   CM.collectInLoopReductions();
7815 
7816   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF);
7817   LLVM_DEBUG(printPlans(dbgs()));
7818   if (MaxVF.isScalar())
7819     return VectorizationFactor::Disabled();
7820 
7821   // Select the optimal vectorization factor.
7822   auto SelectedVF = CM.selectVectorizationFactor(MaxVF);
7823 
7824   // Check if it is profitable to vectorize with runtime checks.
7825   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7826   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
7827     bool PragmaThresholdReached =
7828         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7829     bool ThresholdReached =
7830         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
7831     if ((ThresholdReached && !Hints.allowReordering()) ||
7832         PragmaThresholdReached) {
7833       ORE->emit([&]() {
7834         return OptimizationRemarkAnalysisAliasing(
7835                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
7836                    OrigLoop->getHeader())
7837                << "loop not vectorized: cannot prove it is safe to reorder "
7838                   "memory operations";
7839       });
7840       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
7841       Hints.emitRemarkWithHints();
7842       return VectorizationFactor::Disabled();
7843     }
7844   }
7845   return SelectedVF;
7846 }
7847 
7848 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
7849   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
7850                     << '\n');
7851   BestVF = VF;
7852   BestUF = UF;
7853 
7854   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
7855     return !Plan->hasVF(VF);
7856   });
7857   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
7858 }
7859 
7860 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
7861                                            DominatorTree *DT) {
7862   // Perform the actual loop transformation.
7863 
7864   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7865   assert(BestVF.hasValue() && "Vectorization Factor is missing");
7866   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
7867 
7868   VPTransformState State{
7869       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
7870   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7871   State.TripCount = ILV.getOrCreateTripCount(nullptr);
7872   State.CanonicalIV = ILV.Induction;
7873 
7874   ILV.printDebugTracesAtStart();
7875 
7876   //===------------------------------------------------===//
7877   //
7878   // Notice: any optimization or new instruction that go
7879   // into the code below should also be implemented in
7880   // the cost-model.
7881   //
7882   //===------------------------------------------------===//
7883 
7884   // 2. Copy and widen instructions from the old loop into the new loop.
7885   VPlans.front()->execute(&State);
7886 
7887   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7888   //    predication, updating analyses.
7889   ILV.fixVectorizedLoop(State);
7890 
7891   ILV.printDebugTracesAtEnd();
7892 }
7893 
7894 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7895 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7896   for (const auto &Plan : VPlans)
7897     if (PrintVPlansInDotFormat)
7898       Plan->printDOT(O);
7899     else
7900       Plan->print(O);
7901 }
7902 #endif
7903 
7904 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7905     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7906 
7907   // We create new control-flow for the vectorized loop, so the original exit
7908   // conditions will be dead after vectorization if it's only used by the
7909   // terminator
7910   SmallVector<BasicBlock*> ExitingBlocks;
7911   OrigLoop->getExitingBlocks(ExitingBlocks);
7912   for (auto *BB : ExitingBlocks) {
7913     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7914     if (!Cmp || !Cmp->hasOneUse())
7915       continue;
7916 
7917     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7918     if (!DeadInstructions.insert(Cmp).second)
7919       continue;
7920 
7921     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7922     // TODO: can recurse through operands in general
7923     for (Value *Op : Cmp->operands()) {
7924       if (isa<TruncInst>(Op) && Op->hasOneUse())
7925           DeadInstructions.insert(cast<Instruction>(Op));
7926     }
7927   }
7928 
7929   // We create new "steps" for induction variable updates to which the original
7930   // induction variables map. An original update instruction will be dead if
7931   // all its users except the induction variable are dead.
7932   auto *Latch = OrigLoop->getLoopLatch();
7933   for (auto &Induction : Legal->getInductionVars()) {
7934     PHINode *Ind = Induction.first;
7935     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7936 
7937     // If the tail is to be folded by masking, the primary induction variable,
7938     // if exists, isn't dead: it will be used for masking. Don't kill it.
7939     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
7940       continue;
7941 
7942     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7943           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7944         }))
7945       DeadInstructions.insert(IndUpdate);
7946 
7947     // We record as "Dead" also the type-casting instructions we had identified
7948     // during induction analysis. We don't need any handling for them in the
7949     // vectorized loop because we have proven that, under a proper runtime
7950     // test guarding the vectorized loop, the value of the phi, and the casted
7951     // value of the phi, are the same. The last instruction in this casting chain
7952     // will get its scalar/vector/widened def from the scalar/vector/widened def
7953     // of the respective phi node. Any other casts in the induction def-use chain
7954     // have no other uses outside the phi update chain, and will be ignored.
7955     InductionDescriptor &IndDes = Induction.second;
7956     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7957     DeadInstructions.insert(Casts.begin(), Casts.end());
7958   }
7959 }
7960 
7961 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
7962 
7963 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7964 
7965 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
7966                                         Instruction::BinaryOps BinOp) {
7967   // When unrolling and the VF is 1, we only need to add a simple scalar.
7968   Type *Ty = Val->getType();
7969   assert(!Ty->isVectorTy() && "Val must be a scalar");
7970 
7971   if (Ty->isFloatingPointTy()) {
7972     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
7973 
7974     // Floating-point operations inherit FMF via the builder's flags.
7975     Value *MulOp = Builder.CreateFMul(C, Step);
7976     return Builder.CreateBinOp(BinOp, Val, MulOp);
7977   }
7978   Constant *C = ConstantInt::get(Ty, StartIdx);
7979   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
7980 }
7981 
7982 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7983   SmallVector<Metadata *, 4> MDs;
7984   // Reserve first location for self reference to the LoopID metadata node.
7985   MDs.push_back(nullptr);
7986   bool IsUnrollMetadata = false;
7987   MDNode *LoopID = L->getLoopID();
7988   if (LoopID) {
7989     // First find existing loop unrolling disable metadata.
7990     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7991       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7992       if (MD) {
7993         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7994         IsUnrollMetadata =
7995             S && S->getString().startswith("llvm.loop.unroll.disable");
7996       }
7997       MDs.push_back(LoopID->getOperand(i));
7998     }
7999   }
8000 
8001   if (!IsUnrollMetadata) {
8002     // Add runtime unroll disable metadata.
8003     LLVMContext &Context = L->getHeader()->getContext();
8004     SmallVector<Metadata *, 1> DisableOperands;
8005     DisableOperands.push_back(
8006         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8007     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8008     MDs.push_back(DisableNode);
8009     MDNode *NewLoopID = MDNode::get(Context, MDs);
8010     // Set operand 0 to refer to the loop id itself.
8011     NewLoopID->replaceOperandWith(0, NewLoopID);
8012     L->setLoopID(NewLoopID);
8013   }
8014 }
8015 
8016 //===--------------------------------------------------------------------===//
8017 // EpilogueVectorizerMainLoop
8018 //===--------------------------------------------------------------------===//
8019 
8020 /// This function is partially responsible for generating the control flow
8021 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8022 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8023   MDNode *OrigLoopID = OrigLoop->getLoopID();
8024   Loop *Lp = createVectorLoopSkeleton("");
8025 
8026   // Generate the code to check the minimum iteration count of the vector
8027   // epilogue (see below).
8028   EPI.EpilogueIterationCountCheck =
8029       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8030   EPI.EpilogueIterationCountCheck->setName("iter.check");
8031 
8032   // Generate the code to check any assumptions that we've made for SCEV
8033   // expressions.
8034   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8035 
8036   // Generate the code that checks at runtime if arrays overlap. We put the
8037   // checks into a separate block to make the more common case of few elements
8038   // faster.
8039   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8040 
8041   // Generate the iteration count check for the main loop, *after* the check
8042   // for the epilogue loop, so that the path-length is shorter for the case
8043   // that goes directly through the vector epilogue. The longer-path length for
8044   // the main loop is compensated for, by the gain from vectorizing the larger
8045   // trip count. Note: the branch will get updated later on when we vectorize
8046   // the epilogue.
8047   EPI.MainLoopIterationCountCheck =
8048       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8049 
8050   // Generate the induction variable.
8051   OldInduction = Legal->getPrimaryInduction();
8052   Type *IdxTy = Legal->getWidestInductionType();
8053   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8054   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8055   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8056   EPI.VectorTripCount = CountRoundDown;
8057   Induction =
8058       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8059                               getDebugLocFromInstOrOperands(OldInduction));
8060 
8061   // Skip induction resume value creation here because they will be created in
8062   // the second pass. If we created them here, they wouldn't be used anyway,
8063   // because the vplan in the second pass still contains the inductions from the
8064   // original loop.
8065 
8066   return completeLoopSkeleton(Lp, OrigLoopID);
8067 }
8068 
8069 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8070   LLVM_DEBUG({
8071     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8072            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8073            << ", Main Loop UF:" << EPI.MainLoopUF
8074            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8075            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8076   });
8077 }
8078 
8079 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8080   DEBUG_WITH_TYPE(VerboseDebug, {
8081     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8082   });
8083 }
8084 
8085 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8086     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8087   assert(L && "Expected valid Loop.");
8088   assert(Bypass && "Expected valid bypass basic block.");
8089   unsigned VFactor =
8090       ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue();
8091   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8092   Value *Count = getOrCreateTripCount(L);
8093   // Reuse existing vector loop preheader for TC checks.
8094   // Note that new preheader block is generated for vector loop.
8095   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8096   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8097 
8098   // Generate code to check if the loop's trip count is less than VF * UF of the
8099   // main vector loop.
8100   auto P =
8101       Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8102 
8103   Value *CheckMinIters = Builder.CreateICmp(
8104       P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor),
8105       "min.iters.check");
8106 
8107   if (!ForEpilogue)
8108     TCCheckBlock->setName("vector.main.loop.iter.check");
8109 
8110   // Create new preheader for vector loop.
8111   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8112                                    DT, LI, nullptr, "vector.ph");
8113 
8114   if (ForEpilogue) {
8115     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8116                                  DT->getNode(Bypass)->getIDom()) &&
8117            "TC check is expected to dominate Bypass");
8118 
8119     // Update dominator for Bypass & LoopExit.
8120     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8121     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8122 
8123     LoopBypassBlocks.push_back(TCCheckBlock);
8124 
8125     // Save the trip count so we don't have to regenerate it in the
8126     // vec.epilog.iter.check. This is safe to do because the trip count
8127     // generated here dominates the vector epilog iter check.
8128     EPI.TripCount = Count;
8129   }
8130 
8131   ReplaceInstWithInst(
8132       TCCheckBlock->getTerminator(),
8133       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8134 
8135   return TCCheckBlock;
8136 }
8137 
8138 //===--------------------------------------------------------------------===//
8139 // EpilogueVectorizerEpilogueLoop
8140 //===--------------------------------------------------------------------===//
8141 
8142 /// This function is partially responsible for generating the control flow
8143 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8144 BasicBlock *
8145 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8146   MDNode *OrigLoopID = OrigLoop->getLoopID();
8147   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8148 
8149   // Now, compare the remaining count and if there aren't enough iterations to
8150   // execute the vectorized epilogue skip to the scalar part.
8151   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8152   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8153   LoopVectorPreHeader =
8154       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8155                  LI, nullptr, "vec.epilog.ph");
8156   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8157                                           VecEpilogueIterationCountCheck);
8158 
8159   // Adjust the control flow taking the state info from the main loop
8160   // vectorization into account.
8161   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8162          "expected this to be saved from the previous pass.");
8163   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8164       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8165 
8166   DT->changeImmediateDominator(LoopVectorPreHeader,
8167                                EPI.MainLoopIterationCountCheck);
8168 
8169   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8170       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8171 
8172   if (EPI.SCEVSafetyCheck)
8173     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8174         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8175   if (EPI.MemSafetyCheck)
8176     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8177         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8178 
8179   DT->changeImmediateDominator(
8180       VecEpilogueIterationCountCheck,
8181       VecEpilogueIterationCountCheck->getSinglePredecessor());
8182 
8183   DT->changeImmediateDominator(LoopScalarPreHeader,
8184                                EPI.EpilogueIterationCountCheck);
8185   DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck);
8186 
8187   // Keep track of bypass blocks, as they feed start values to the induction
8188   // phis in the scalar loop preheader.
8189   if (EPI.SCEVSafetyCheck)
8190     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8191   if (EPI.MemSafetyCheck)
8192     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8193   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8194 
8195   // Generate a resume induction for the vector epilogue and put it in the
8196   // vector epilogue preheader
8197   Type *IdxTy = Legal->getWidestInductionType();
8198   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8199                                          LoopVectorPreHeader->getFirstNonPHI());
8200   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8201   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8202                            EPI.MainLoopIterationCountCheck);
8203 
8204   // Generate the induction variable.
8205   OldInduction = Legal->getPrimaryInduction();
8206   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8207   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8208   Value *StartIdx = EPResumeVal;
8209   Induction =
8210       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8211                               getDebugLocFromInstOrOperands(OldInduction));
8212 
8213   // Generate induction resume values. These variables save the new starting
8214   // indexes for the scalar loop. They are used to test if there are any tail
8215   // iterations left once the vector loop has completed.
8216   // Note that when the vectorized epilogue is skipped due to iteration count
8217   // check, then the resume value for the induction variable comes from
8218   // the trip count of the main vector loop, hence passing the AdditionalBypass
8219   // argument.
8220   createInductionResumeValues(Lp, CountRoundDown,
8221                               {VecEpilogueIterationCountCheck,
8222                                EPI.VectorTripCount} /* AdditionalBypass */);
8223 
8224   AddRuntimeUnrollDisableMetaData(Lp);
8225   return completeLoopSkeleton(Lp, OrigLoopID);
8226 }
8227 
8228 BasicBlock *
8229 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8230     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8231 
8232   assert(EPI.TripCount &&
8233          "Expected trip count to have been safed in the first pass.");
8234   assert(
8235       (!isa<Instruction>(EPI.TripCount) ||
8236        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8237       "saved trip count does not dominate insertion point.");
8238   Value *TC = EPI.TripCount;
8239   IRBuilder<> Builder(Insert->getTerminator());
8240   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8241 
8242   // Generate code to check if the loop's trip count is less than VF * UF of the
8243   // vector epilogue loop.
8244   auto P =
8245       Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8246 
8247   Value *CheckMinIters = Builder.CreateICmp(
8248       P, Count,
8249       ConstantInt::get(Count->getType(),
8250                        EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF),
8251       "min.epilog.iters.check");
8252 
8253   ReplaceInstWithInst(
8254       Insert->getTerminator(),
8255       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8256 
8257   LoopBypassBlocks.push_back(Insert);
8258   return Insert;
8259 }
8260 
8261 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8262   LLVM_DEBUG({
8263     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8264            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8265            << ", Main Loop UF:" << EPI.MainLoopUF
8266            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8267            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8268   });
8269 }
8270 
8271 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8272   DEBUG_WITH_TYPE(VerboseDebug, {
8273     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8274   });
8275 }
8276 
8277 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8278     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8279   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8280   bool PredicateAtRangeStart = Predicate(Range.Start);
8281 
8282   for (ElementCount TmpVF = Range.Start * 2;
8283        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8284     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8285       Range.End = TmpVF;
8286       break;
8287     }
8288 
8289   return PredicateAtRangeStart;
8290 }
8291 
8292 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8293 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8294 /// of VF's starting at a given VF and extending it as much as possible. Each
8295 /// vectorization decision can potentially shorten this sub-range during
8296 /// buildVPlan().
8297 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8298                                            ElementCount MaxVF) {
8299   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8300   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8301     VFRange SubRange = {VF, MaxVFPlusOne};
8302     VPlans.push_back(buildVPlan(SubRange));
8303     VF = SubRange.End;
8304   }
8305 }
8306 
8307 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8308                                          VPlanPtr &Plan) {
8309   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8310 
8311   // Look for cached value.
8312   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8313   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8314   if (ECEntryIt != EdgeMaskCache.end())
8315     return ECEntryIt->second;
8316 
8317   VPValue *SrcMask = createBlockInMask(Src, Plan);
8318 
8319   // The terminator has to be a branch inst!
8320   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8321   assert(BI && "Unexpected terminator found");
8322 
8323   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8324     return EdgeMaskCache[Edge] = SrcMask;
8325 
8326   // If source is an exiting block, we know the exit edge is dynamically dead
8327   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8328   // adding uses of an otherwise potentially dead instruction.
8329   if (OrigLoop->isLoopExiting(Src))
8330     return EdgeMaskCache[Edge] = SrcMask;
8331 
8332   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8333   assert(EdgeMask && "No Edge Mask found for condition");
8334 
8335   if (BI->getSuccessor(0) != Dst)
8336     EdgeMask = Builder.createNot(EdgeMask);
8337 
8338   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8339     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8340     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8341     // The select version does not introduce new UB if SrcMask is false and
8342     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8343     VPValue *False = Plan->getOrAddVPValue(
8344         ConstantInt::getFalse(BI->getCondition()->getType()));
8345     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8346   }
8347 
8348   return EdgeMaskCache[Edge] = EdgeMask;
8349 }
8350 
8351 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8352   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8353 
8354   // Look for cached value.
8355   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8356   if (BCEntryIt != BlockMaskCache.end())
8357     return BCEntryIt->second;
8358 
8359   // All-one mask is modelled as no-mask following the convention for masked
8360   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8361   VPValue *BlockMask = nullptr;
8362 
8363   if (OrigLoop->getHeader() == BB) {
8364     if (!CM.blockNeedsPredication(BB))
8365       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8366 
8367     // Create the block in mask as the first non-phi instruction in the block.
8368     VPBuilder::InsertPointGuard Guard(Builder);
8369     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8370     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8371 
8372     // Introduce the early-exit compare IV <= BTC to form header block mask.
8373     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8374     // Start by constructing the desired canonical IV.
8375     VPValue *IV = nullptr;
8376     if (Legal->getPrimaryInduction())
8377       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8378     else {
8379       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8380       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8381       IV = IVRecipe->getVPValue();
8382     }
8383     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8384     bool TailFolded = !CM.isScalarEpilogueAllowed();
8385 
8386     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8387       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8388       // as a second argument, we only pass the IV here and extract the
8389       // tripcount from the transform state where codegen of the VP instructions
8390       // happen.
8391       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8392     } else {
8393       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8394     }
8395     return BlockMaskCache[BB] = BlockMask;
8396   }
8397 
8398   // This is the block mask. We OR all incoming edges.
8399   for (auto *Predecessor : predecessors(BB)) {
8400     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8401     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8402       return BlockMaskCache[BB] = EdgeMask;
8403 
8404     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8405       BlockMask = EdgeMask;
8406       continue;
8407     }
8408 
8409     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8410   }
8411 
8412   return BlockMaskCache[BB] = BlockMask;
8413 }
8414 
8415 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8416                                                 ArrayRef<VPValue *> Operands,
8417                                                 VFRange &Range,
8418                                                 VPlanPtr &Plan) {
8419   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8420          "Must be called with either a load or store");
8421 
8422   auto willWiden = [&](ElementCount VF) -> bool {
8423     if (VF.isScalar())
8424       return false;
8425     LoopVectorizationCostModel::InstWidening Decision =
8426         CM.getWideningDecision(I, VF);
8427     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8428            "CM decision should be taken at this point.");
8429     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8430       return true;
8431     if (CM.isScalarAfterVectorization(I, VF) ||
8432         CM.isProfitableToScalarize(I, VF))
8433       return false;
8434     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8435   };
8436 
8437   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8438     return nullptr;
8439 
8440   VPValue *Mask = nullptr;
8441   if (Legal->isMaskRequired(I))
8442     Mask = createBlockInMask(I->getParent(), Plan);
8443 
8444   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8445     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8446 
8447   StoreInst *Store = cast<StoreInst>(I);
8448   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8449                                             Mask);
8450 }
8451 
8452 VPWidenIntOrFpInductionRecipe *
8453 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8454                                            ArrayRef<VPValue *> Operands) const {
8455   // Check if this is an integer or fp induction. If so, build the recipe that
8456   // produces its scalar and vector values.
8457   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8458   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8459       II.getKind() == InductionDescriptor::IK_FpInduction) {
8460     assert(II.getStartValue() ==
8461            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8462     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8463     return new VPWidenIntOrFpInductionRecipe(
8464         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8465   }
8466 
8467   return nullptr;
8468 }
8469 
8470 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8471     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8472     VPlan &Plan) const {
8473   // Optimize the special case where the source is a constant integer
8474   // induction variable. Notice that we can only optimize the 'trunc' case
8475   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8476   // (c) other casts depend on pointer size.
8477 
8478   // Determine whether \p K is a truncation based on an induction variable that
8479   // can be optimized.
8480   auto isOptimizableIVTruncate =
8481       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8482     return [=](ElementCount VF) -> bool {
8483       return CM.isOptimizableIVTruncate(K, VF);
8484     };
8485   };
8486 
8487   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8488           isOptimizableIVTruncate(I), Range)) {
8489 
8490     InductionDescriptor II =
8491         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8492     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8493     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8494                                              Start, nullptr, I);
8495   }
8496   return nullptr;
8497 }
8498 
8499 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8500                                                 ArrayRef<VPValue *> Operands,
8501                                                 VPlanPtr &Plan) {
8502   // If all incoming values are equal, the incoming VPValue can be used directly
8503   // instead of creating a new VPBlendRecipe.
8504   VPValue *FirstIncoming = Operands[0];
8505   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8506         return FirstIncoming == Inc;
8507       })) {
8508     return Operands[0];
8509   }
8510 
8511   // We know that all PHIs in non-header blocks are converted into selects, so
8512   // we don't have to worry about the insertion order and we can just use the
8513   // builder. At this point we generate the predication tree. There may be
8514   // duplications since this is a simple recursive scan, but future
8515   // optimizations will clean it up.
8516   SmallVector<VPValue *, 2> OperandsWithMask;
8517   unsigned NumIncoming = Phi->getNumIncomingValues();
8518 
8519   for (unsigned In = 0; In < NumIncoming; In++) {
8520     VPValue *EdgeMask =
8521       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8522     assert((EdgeMask || NumIncoming == 1) &&
8523            "Multiple predecessors with one having a full mask");
8524     OperandsWithMask.push_back(Operands[In]);
8525     if (EdgeMask)
8526       OperandsWithMask.push_back(EdgeMask);
8527   }
8528   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8529 }
8530 
8531 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8532                                                    ArrayRef<VPValue *> Operands,
8533                                                    VFRange &Range) const {
8534 
8535   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8536       [this, CI](ElementCount VF) {
8537         return CM.isScalarWithPredication(CI, VF);
8538       },
8539       Range);
8540 
8541   if (IsPredicated)
8542     return nullptr;
8543 
8544   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8545   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8546              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8547              ID == Intrinsic::pseudoprobe ||
8548              ID == Intrinsic::experimental_noalias_scope_decl))
8549     return nullptr;
8550 
8551   auto willWiden = [&](ElementCount VF) -> bool {
8552     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8553     // The following case may be scalarized depending on the VF.
8554     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8555     // version of the instruction.
8556     // Is it beneficial to perform intrinsic call compared to lib call?
8557     bool NeedToScalarize = false;
8558     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8559     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8560     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8561     assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
8562            "Either the intrinsic cost or vector call cost must be valid");
8563     return UseVectorIntrinsic || !NeedToScalarize;
8564   };
8565 
8566   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8567     return nullptr;
8568 
8569   ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands());
8570   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8571 }
8572 
8573 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8574   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8575          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8576   // Instruction should be widened, unless it is scalar after vectorization,
8577   // scalarization is profitable or it is predicated.
8578   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8579     return CM.isScalarAfterVectorization(I, VF) ||
8580            CM.isProfitableToScalarize(I, VF) ||
8581            CM.isScalarWithPredication(I, VF);
8582   };
8583   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8584                                                              Range);
8585 }
8586 
8587 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8588                                            ArrayRef<VPValue *> Operands) const {
8589   auto IsVectorizableOpcode = [](unsigned Opcode) {
8590     switch (Opcode) {
8591     case Instruction::Add:
8592     case Instruction::And:
8593     case Instruction::AShr:
8594     case Instruction::BitCast:
8595     case Instruction::FAdd:
8596     case Instruction::FCmp:
8597     case Instruction::FDiv:
8598     case Instruction::FMul:
8599     case Instruction::FNeg:
8600     case Instruction::FPExt:
8601     case Instruction::FPToSI:
8602     case Instruction::FPToUI:
8603     case Instruction::FPTrunc:
8604     case Instruction::FRem:
8605     case Instruction::FSub:
8606     case Instruction::ICmp:
8607     case Instruction::IntToPtr:
8608     case Instruction::LShr:
8609     case Instruction::Mul:
8610     case Instruction::Or:
8611     case Instruction::PtrToInt:
8612     case Instruction::SDiv:
8613     case Instruction::Select:
8614     case Instruction::SExt:
8615     case Instruction::Shl:
8616     case Instruction::SIToFP:
8617     case Instruction::SRem:
8618     case Instruction::Sub:
8619     case Instruction::Trunc:
8620     case Instruction::UDiv:
8621     case Instruction::UIToFP:
8622     case Instruction::URem:
8623     case Instruction::Xor:
8624     case Instruction::ZExt:
8625       return true;
8626     }
8627     return false;
8628   };
8629 
8630   if (!IsVectorizableOpcode(I->getOpcode()))
8631     return nullptr;
8632 
8633   // Success: widen this instruction.
8634   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8635 }
8636 
8637 VPBasicBlock *VPRecipeBuilder::handleReplication(
8638     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8639     VPlanPtr &Plan) {
8640   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8641       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8642       Range);
8643 
8644   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8645       [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); },
8646       Range);
8647 
8648   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8649                                        IsUniform, IsPredicated);
8650   setRecipe(I, Recipe);
8651   Plan->addVPValue(I, Recipe);
8652 
8653   // Find if I uses a predicated instruction. If so, it will use its scalar
8654   // value. Avoid hoisting the insert-element which packs the scalar value into
8655   // a vector value, as that happens iff all users use the vector value.
8656   for (VPValue *Op : Recipe->operands()) {
8657     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8658     if (!PredR)
8659       continue;
8660     auto *RepR =
8661         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8662     assert(RepR->isPredicated() &&
8663            "expected Replicate recipe to be predicated");
8664     RepR->setAlsoPack(false);
8665   }
8666 
8667   // Finalize the recipe for Instr, first if it is not predicated.
8668   if (!IsPredicated) {
8669     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8670     VPBB->appendRecipe(Recipe);
8671     return VPBB;
8672   }
8673   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8674   assert(VPBB->getSuccessors().empty() &&
8675          "VPBB has successors when handling predicated replication.");
8676   // Record predicated instructions for above packing optimizations.
8677   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8678   VPBlockUtils::insertBlockAfter(Region, VPBB);
8679   auto *RegSucc = new VPBasicBlock();
8680   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8681   return RegSucc;
8682 }
8683 
8684 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8685                                                       VPRecipeBase *PredRecipe,
8686                                                       VPlanPtr &Plan) {
8687   // Instructions marked for predication are replicated and placed under an
8688   // if-then construct to prevent side-effects.
8689 
8690   // Generate recipes to compute the block mask for this region.
8691   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8692 
8693   // Build the triangular if-then region.
8694   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8695   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8696   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8697   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8698   auto *PHIRecipe = Instr->getType()->isVoidTy()
8699                         ? nullptr
8700                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8701   if (PHIRecipe) {
8702     Plan->removeVPValueFor(Instr);
8703     Plan->addVPValue(Instr, PHIRecipe);
8704   }
8705   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8706   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8707   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8708 
8709   // Note: first set Entry as region entry and then connect successors starting
8710   // from it in order, to propagate the "parent" of each VPBasicBlock.
8711   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8712   VPBlockUtils::connectBlocks(Pred, Exit);
8713 
8714   return Region;
8715 }
8716 
8717 VPRecipeOrVPValueTy
8718 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8719                                         ArrayRef<VPValue *> Operands,
8720                                         VFRange &Range, VPlanPtr &Plan) {
8721   // First, check for specific widening recipes that deal with calls, memory
8722   // operations, inductions and Phi nodes.
8723   if (auto *CI = dyn_cast<CallInst>(Instr))
8724     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8725 
8726   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8727     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8728 
8729   VPRecipeBase *Recipe;
8730   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8731     if (Phi->getParent() != OrigLoop->getHeader())
8732       return tryToBlend(Phi, Operands, Plan);
8733     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
8734       return toVPRecipeResult(Recipe);
8735 
8736     if (Legal->isReductionVariable(Phi)) {
8737       RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
8738       assert(RdxDesc.getRecurrenceStartValue() ==
8739              Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8740       VPValue *StartV = Operands[0];
8741       return toVPRecipeResult(new VPWidenPHIRecipe(Phi, RdxDesc, *StartV));
8742     }
8743 
8744     return toVPRecipeResult(new VPWidenPHIRecipe(Phi));
8745   }
8746 
8747   if (isa<TruncInst>(Instr) &&
8748       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8749                                                Range, *Plan)))
8750     return toVPRecipeResult(Recipe);
8751 
8752   if (!shouldWiden(Instr, Range))
8753     return nullptr;
8754 
8755   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8756     return toVPRecipeResult(new VPWidenGEPRecipe(
8757         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8758 
8759   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8760     bool InvariantCond =
8761         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8762     return toVPRecipeResult(new VPWidenSelectRecipe(
8763         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8764   }
8765 
8766   return toVPRecipeResult(tryToWiden(Instr, Operands));
8767 }
8768 
8769 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8770                                                         ElementCount MaxVF) {
8771   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8772 
8773   // Collect instructions from the original loop that will become trivially dead
8774   // in the vectorized loop. We don't need to vectorize these instructions. For
8775   // example, original induction update instructions can become dead because we
8776   // separately emit induction "steps" when generating code for the new loop.
8777   // Similarly, we create a new latch condition when setting up the structure
8778   // of the new loop, so the old one can become dead.
8779   SmallPtrSet<Instruction *, 4> DeadInstructions;
8780   collectTriviallyDeadInstructions(DeadInstructions);
8781 
8782   // Add assume instructions we need to drop to DeadInstructions, to prevent
8783   // them from being added to the VPlan.
8784   // TODO: We only need to drop assumes in blocks that get flattend. If the
8785   // control flow is preserved, we should keep them.
8786   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8787   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8788 
8789   DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8790   // Dead instructions do not need sinking. Remove them from SinkAfter.
8791   for (Instruction *I : DeadInstructions)
8792     SinkAfter.erase(I);
8793 
8794   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8795   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8796     VFRange SubRange = {VF, MaxVFPlusOne};
8797     VPlans.push_back(
8798         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8799     VF = SubRange.End;
8800   }
8801 }
8802 
8803 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8804     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8805     const DenseMap<Instruction *, Instruction *> &SinkAfter) {
8806 
8807   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8808 
8809   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8810 
8811   // ---------------------------------------------------------------------------
8812   // Pre-construction: record ingredients whose recipes we'll need to further
8813   // process after constructing the initial VPlan.
8814   // ---------------------------------------------------------------------------
8815 
8816   // Mark instructions we'll need to sink later and their targets as
8817   // ingredients whose recipe we'll need to record.
8818   for (auto &Entry : SinkAfter) {
8819     RecipeBuilder.recordRecipeOf(Entry.first);
8820     RecipeBuilder.recordRecipeOf(Entry.second);
8821   }
8822   for (auto &Reduction : CM.getInLoopReductionChains()) {
8823     PHINode *Phi = Reduction.first;
8824     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
8825     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8826 
8827     RecipeBuilder.recordRecipeOf(Phi);
8828     for (auto &R : ReductionOperations) {
8829       RecipeBuilder.recordRecipeOf(R);
8830       // For min/max reducitons, where we have a pair of icmp/select, we also
8831       // need to record the ICmp recipe, so it can be removed later.
8832       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8833         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8834     }
8835   }
8836 
8837   // For each interleave group which is relevant for this (possibly trimmed)
8838   // Range, add it to the set of groups to be later applied to the VPlan and add
8839   // placeholders for its members' Recipes which we'll be replacing with a
8840   // single VPInterleaveRecipe.
8841   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8842     auto applyIG = [IG, this](ElementCount VF) -> bool {
8843       return (VF.isVector() && // Query is illegal for VF == 1
8844               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8845                   LoopVectorizationCostModel::CM_Interleave);
8846     };
8847     if (!getDecisionAndClampRange(applyIG, Range))
8848       continue;
8849     InterleaveGroups.insert(IG);
8850     for (unsigned i = 0; i < IG->getFactor(); i++)
8851       if (Instruction *Member = IG->getMember(i))
8852         RecipeBuilder.recordRecipeOf(Member);
8853   };
8854 
8855   // ---------------------------------------------------------------------------
8856   // Build initial VPlan: Scan the body of the loop in a topological order to
8857   // visit each basic block after having visited its predecessor basic blocks.
8858   // ---------------------------------------------------------------------------
8859 
8860   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
8861   auto Plan = std::make_unique<VPlan>();
8862   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
8863   Plan->setEntry(VPBB);
8864 
8865   // Scan the body of the loop in a topological order to visit each basic block
8866   // after having visited its predecessor basic blocks.
8867   LoopBlocksDFS DFS(OrigLoop);
8868   DFS.perform(LI);
8869 
8870   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8871     // Relevant instructions from basic block BB will be grouped into VPRecipe
8872     // ingredients and fill a new VPBasicBlock.
8873     unsigned VPBBsForBB = 0;
8874     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
8875     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
8876     VPBB = FirstVPBBForBB;
8877     Builder.setInsertPoint(VPBB);
8878 
8879     // Introduce each ingredient into VPlan.
8880     // TODO: Model and preserve debug instrinsics in VPlan.
8881     for (Instruction &I : BB->instructionsWithoutDebug()) {
8882       Instruction *Instr = &I;
8883 
8884       // First filter out irrelevant instructions, to ensure no recipes are
8885       // built for them.
8886       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
8887         continue;
8888 
8889       SmallVector<VPValue *, 4> Operands;
8890       auto *Phi = dyn_cast<PHINode>(Instr);
8891       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
8892         Operands.push_back(Plan->getOrAddVPValue(
8893             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
8894       } else {
8895         auto OpRange = Plan->mapToVPValues(Instr->operands());
8896         Operands = {OpRange.begin(), OpRange.end()};
8897       }
8898       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
8899               Instr, Operands, Range, Plan)) {
8900         // If Instr can be simplified to an existing VPValue, use it.
8901         if (RecipeOrValue.is<VPValue *>()) {
8902           Plan->addVPValue(Instr, RecipeOrValue.get<VPValue *>());
8903           continue;
8904         }
8905         // Otherwise, add the new recipe.
8906         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
8907         for (auto *Def : Recipe->definedValues()) {
8908           auto *UV = Def->getUnderlyingValue();
8909           Plan->addVPValue(UV, Def);
8910         }
8911 
8912         RecipeBuilder.setRecipe(Instr, Recipe);
8913         VPBB->appendRecipe(Recipe);
8914         continue;
8915       }
8916 
8917       // Otherwise, if all widening options failed, Instruction is to be
8918       // replicated. This may create a successor for VPBB.
8919       VPBasicBlock *NextVPBB =
8920           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
8921       if (NextVPBB != VPBB) {
8922         VPBB = NextVPBB;
8923         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8924                                     : "");
8925       }
8926     }
8927   }
8928 
8929   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
8930   // may also be empty, such as the last one VPBB, reflecting original
8931   // basic-blocks with no recipes.
8932   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
8933   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
8934   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
8935   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
8936   delete PreEntry;
8937 
8938   // ---------------------------------------------------------------------------
8939   // Transform initial VPlan: Apply previously taken decisions, in order, to
8940   // bring the VPlan to its final state.
8941   // ---------------------------------------------------------------------------
8942 
8943   // Apply Sink-After legal constraints.
8944   for (auto &Entry : SinkAfter) {
8945     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
8946     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
8947     // If the target is in a replication region, make sure to move Sink to the
8948     // block after it, not into the replication region itself.
8949     if (auto *Region =
8950             dyn_cast_or_null<VPRegionBlock>(Target->getParent()->getParent())) {
8951       if (Region->isReplicator()) {
8952         assert(Region->getNumSuccessors() == 1 && "Expected SESE region!");
8953         VPBasicBlock *NextBlock =
8954             cast<VPBasicBlock>(Region->getSuccessors().front());
8955         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
8956         continue;
8957       }
8958     }
8959     Sink->moveAfter(Target);
8960   }
8961 
8962   // Interleave memory: for each Interleave Group we marked earlier as relevant
8963   // for this VPlan, replace the Recipes widening its memory instructions with a
8964   // single VPInterleaveRecipe at its insertion point.
8965   for (auto IG : InterleaveGroups) {
8966     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
8967         RecipeBuilder.getRecipe(IG->getInsertPos()));
8968     SmallVector<VPValue *, 4> StoredValues;
8969     for (unsigned i = 0; i < IG->getFactor(); ++i)
8970       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i)))
8971         StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0)));
8972 
8973     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
8974                                         Recipe->getMask());
8975     VPIG->insertBefore(Recipe);
8976     unsigned J = 0;
8977     for (unsigned i = 0; i < IG->getFactor(); ++i)
8978       if (Instruction *Member = IG->getMember(i)) {
8979         if (!Member->getType()->isVoidTy()) {
8980           VPValue *OriginalV = Plan->getVPValue(Member);
8981           Plan->removeVPValueFor(Member);
8982           Plan->addVPValue(Member, VPIG->getVPValue(J));
8983           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
8984           J++;
8985         }
8986         RecipeBuilder.getRecipe(Member)->eraseFromParent();
8987       }
8988   }
8989 
8990   // Adjust the recipes for any inloop reductions.
8991   if (Range.Start.isVector())
8992     adjustRecipesForInLoopReductions(Plan, RecipeBuilder);
8993 
8994   // Finally, if tail is folded by masking, introduce selects between the phi
8995   // and the live-out instruction of each reduction, at the end of the latch.
8996   if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) {
8997     Builder.setInsertPoint(VPBB);
8998     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
8999     for (auto &Reduction : Legal->getReductionVars()) {
9000       if (CM.isInLoopReduction(Reduction.first))
9001         continue;
9002       VPValue *Phi = Plan->getOrAddVPValue(Reduction.first);
9003       VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr());
9004       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
9005     }
9006   }
9007 
9008   std::string PlanName;
9009   raw_string_ostream RSO(PlanName);
9010   ElementCount VF = Range.Start;
9011   Plan->addVF(VF);
9012   RSO << "Initial VPlan for VF={" << VF;
9013   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9014     Plan->addVF(VF);
9015     RSO << "," << VF;
9016   }
9017   RSO << "},UF>=1";
9018   RSO.flush();
9019   Plan->setName(PlanName);
9020 
9021   return Plan;
9022 }
9023 
9024 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9025   // Outer loop handling: They may require CFG and instruction level
9026   // transformations before even evaluating whether vectorization is profitable.
9027   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9028   // the vectorization pipeline.
9029   assert(!OrigLoop->isInnermost());
9030   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9031 
9032   // Create new empty VPlan
9033   auto Plan = std::make_unique<VPlan>();
9034 
9035   // Build hierarchical CFG
9036   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9037   HCFGBuilder.buildHierarchicalCFG();
9038 
9039   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9040        VF *= 2)
9041     Plan->addVF(VF);
9042 
9043   if (EnableVPlanPredication) {
9044     VPlanPredicator VPP(*Plan);
9045     VPP.predicate();
9046 
9047     // Avoid running transformation to recipes until masked code generation in
9048     // VPlan-native path is in place.
9049     return Plan;
9050   }
9051 
9052   SmallPtrSet<Instruction *, 1> DeadInstructions;
9053   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9054                                              Legal->getInductionVars(),
9055                                              DeadInstructions, *PSE.getSE());
9056   return Plan;
9057 }
9058 
9059 // Adjust the recipes for any inloop reductions. The chain of instructions
9060 // leading from the loop exit instr to the phi need to be converted to
9061 // reductions, with one operand being vector and the other being the scalar
9062 // reduction chain.
9063 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions(
9064     VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) {
9065   for (auto &Reduction : CM.getInLoopReductionChains()) {
9066     PHINode *Phi = Reduction.first;
9067     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9068     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9069 
9070     // ReductionOperations are orders top-down from the phi's use to the
9071     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9072     // which of the two operands will remain scalar and which will be reduced.
9073     // For minmax the chain will be the select instructions.
9074     Instruction *Chain = Phi;
9075     for (Instruction *R : ReductionOperations) {
9076       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9077       RecurKind Kind = RdxDesc.getRecurrenceKind();
9078 
9079       VPValue *ChainOp = Plan->getVPValue(Chain);
9080       unsigned FirstOpId;
9081       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9082         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9083                "Expected to replace a VPWidenSelectSC");
9084         FirstOpId = 1;
9085       } else {
9086         assert(isa<VPWidenRecipe>(WidenRecipe) &&
9087                "Expected to replace a VPWidenSC");
9088         FirstOpId = 0;
9089       }
9090       unsigned VecOpId =
9091           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9092       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9093 
9094       auto *CondOp = CM.foldTailByMasking()
9095                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9096                          : nullptr;
9097       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9098           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9099       WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe);
9100       Plan->removeVPValueFor(R);
9101       Plan->addVPValue(R, RedRecipe);
9102       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9103       WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe);
9104       WidenRecipe->eraseFromParent();
9105 
9106       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9107         VPRecipeBase *CompareRecipe =
9108             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9109         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9110                "Expected to replace a VPWidenSC");
9111         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9112                "Expected no remaining users");
9113         CompareRecipe->eraseFromParent();
9114       }
9115       Chain = R;
9116     }
9117   }
9118 }
9119 
9120 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9121 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9122                                VPSlotTracker &SlotTracker) const {
9123   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9124   IG->getInsertPos()->printAsOperand(O, false);
9125   O << ", ";
9126   getAddr()->printAsOperand(O, SlotTracker);
9127   VPValue *Mask = getMask();
9128   if (Mask) {
9129     O << ", ";
9130     Mask->printAsOperand(O, SlotTracker);
9131   }
9132   for (unsigned i = 0; i < IG->getFactor(); ++i)
9133     if (Instruction *I = IG->getMember(i))
9134       O << "\n" << Indent << "  " << VPlanIngredient(I) << " " << i;
9135 }
9136 #endif
9137 
9138 void VPWidenCallRecipe::execute(VPTransformState &State) {
9139   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9140                                   *this, State);
9141 }
9142 
9143 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9144   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9145                                     this, *this, InvariantCond, State);
9146 }
9147 
9148 void VPWidenRecipe::execute(VPTransformState &State) {
9149   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9150 }
9151 
9152 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9153   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9154                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9155                       IsIndexLoopInvariant, State);
9156 }
9157 
9158 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9159   assert(!State.Instance && "Int or FP induction being replicated.");
9160   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9161                                    getTruncInst(), getVPValue(0),
9162                                    getCastValue(), State);
9163 }
9164 
9165 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9166   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc,
9167                                  getStartValue(), this, State);
9168 }
9169 
9170 void VPBlendRecipe::execute(VPTransformState &State) {
9171   State.ILV->setDebugLocFromInst(State.Builder, Phi);
9172   // We know that all PHIs in non-header blocks are converted into
9173   // selects, so we don't have to worry about the insertion order and we
9174   // can just use the builder.
9175   // At this point we generate the predication tree. There may be
9176   // duplications since this is a simple recursive scan, but future
9177   // optimizations will clean it up.
9178 
9179   unsigned NumIncoming = getNumIncomingValues();
9180 
9181   // Generate a sequence of selects of the form:
9182   // SELECT(Mask3, In3,
9183   //        SELECT(Mask2, In2,
9184   //               SELECT(Mask1, In1,
9185   //                      In0)))
9186   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9187   // are essentially undef are taken from In0.
9188   InnerLoopVectorizer::VectorParts Entry(State.UF);
9189   for (unsigned In = 0; In < NumIncoming; ++In) {
9190     for (unsigned Part = 0; Part < State.UF; ++Part) {
9191       // We might have single edge PHIs (blocks) - use an identity
9192       // 'select' for the first PHI operand.
9193       Value *In0 = State.get(getIncomingValue(In), Part);
9194       if (In == 0)
9195         Entry[Part] = In0; // Initialize with the first incoming value.
9196       else {
9197         // Select between the current value and the previous incoming edge
9198         // based on the incoming mask.
9199         Value *Cond = State.get(getMask(In), Part);
9200         Entry[Part] =
9201             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9202       }
9203     }
9204   }
9205   for (unsigned Part = 0; Part < State.UF; ++Part)
9206     State.set(this, Entry[Part], Part);
9207 }
9208 
9209 void VPInterleaveRecipe::execute(VPTransformState &State) {
9210   assert(!State.Instance && "Interleave group being replicated.");
9211   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9212                                       getStoredValues(), getMask());
9213 }
9214 
9215 void VPReductionRecipe::execute(VPTransformState &State) {
9216   assert(!State.Instance && "Reduction being replicated.");
9217   Value *PrevInChain = State.get(getChainOp(), 0);
9218   for (unsigned Part = 0; Part < State.UF; ++Part) {
9219     RecurKind Kind = RdxDesc->getRecurrenceKind();
9220     bool IsOrdered = useOrderedReductions(*RdxDesc);
9221     Value *NewVecOp = State.get(getVecOp(), Part);
9222     if (VPValue *Cond = getCondOp()) {
9223       Value *NewCond = State.get(Cond, Part);
9224       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9225       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9226           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9227       Constant *IdenVec =
9228           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9229       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9230       NewVecOp = Select;
9231     }
9232     Value *NewRed;
9233     Value *NextInChain;
9234     if (IsOrdered) {
9235       NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9236                                       PrevInChain);
9237       PrevInChain = NewRed;
9238     } else {
9239       PrevInChain = State.get(getChainOp(), Part);
9240       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9241     }
9242     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9243       NextInChain =
9244           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9245                          NewRed, PrevInChain);
9246     } else if (IsOrdered)
9247       NextInChain = NewRed;
9248     else {
9249       NextInChain = State.Builder.CreateBinOp(
9250           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9251           PrevInChain);
9252     }
9253     State.set(this, NextInChain, Part);
9254   }
9255 }
9256 
9257 void VPReplicateRecipe::execute(VPTransformState &State) {
9258   if (State.Instance) { // Generate a single instance.
9259     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9260     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9261                                     *State.Instance, IsPredicated, State);
9262     // Insert scalar instance packing it into a vector.
9263     if (AlsoPack && State.VF.isVector()) {
9264       // If we're constructing lane 0, initialize to start from poison.
9265       if (State.Instance->Lane.isFirstLane()) {
9266         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9267         Value *Poison = PoisonValue::get(
9268             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9269         State.set(this, Poison, State.Instance->Part);
9270       }
9271       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9272     }
9273     return;
9274   }
9275 
9276   // Generate scalar instances for all VF lanes of all UF parts, unless the
9277   // instruction is uniform inwhich case generate only the first lane for each
9278   // of the UF parts.
9279   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9280   assert((!State.VF.isScalable() || IsUniform) &&
9281          "Can't scalarize a scalable vector");
9282   for (unsigned Part = 0; Part < State.UF; ++Part)
9283     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9284       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9285                                       VPIteration(Part, Lane), IsPredicated,
9286                                       State);
9287 }
9288 
9289 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9290   assert(State.Instance && "Branch on Mask works only on single instance.");
9291 
9292   unsigned Part = State.Instance->Part;
9293   unsigned Lane = State.Instance->Lane.getKnownLane();
9294 
9295   Value *ConditionBit = nullptr;
9296   VPValue *BlockInMask = getMask();
9297   if (BlockInMask) {
9298     ConditionBit = State.get(BlockInMask, Part);
9299     if (ConditionBit->getType()->isVectorTy())
9300       ConditionBit = State.Builder.CreateExtractElement(
9301           ConditionBit, State.Builder.getInt32(Lane));
9302   } else // Block in mask is all-one.
9303     ConditionBit = State.Builder.getTrue();
9304 
9305   // Replace the temporary unreachable terminator with a new conditional branch,
9306   // whose two destinations will be set later when they are created.
9307   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9308   assert(isa<UnreachableInst>(CurrentTerminator) &&
9309          "Expected to replace unreachable terminator with conditional branch.");
9310   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9311   CondBr->setSuccessor(0, nullptr);
9312   ReplaceInstWithInst(CurrentTerminator, CondBr);
9313 }
9314 
9315 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9316   assert(State.Instance && "Predicated instruction PHI works per instance.");
9317   Instruction *ScalarPredInst =
9318       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9319   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9320   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9321   assert(PredicatingBB && "Predicated block has no single predecessor.");
9322   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9323          "operand must be VPReplicateRecipe");
9324 
9325   // By current pack/unpack logic we need to generate only a single phi node: if
9326   // a vector value for the predicated instruction exists at this point it means
9327   // the instruction has vector users only, and a phi for the vector value is
9328   // needed. In this case the recipe of the predicated instruction is marked to
9329   // also do that packing, thereby "hoisting" the insert-element sequence.
9330   // Otherwise, a phi node for the scalar value is needed.
9331   unsigned Part = State.Instance->Part;
9332   if (State.hasVectorValue(getOperand(0), Part)) {
9333     Value *VectorValue = State.get(getOperand(0), Part);
9334     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9335     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9336     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9337     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9338     if (State.hasVectorValue(this, Part))
9339       State.reset(this, VPhi, Part);
9340     else
9341       State.set(this, VPhi, Part);
9342     // NOTE: Currently we need to update the value of the operand, so the next
9343     // predicated iteration inserts its generated value in the correct vector.
9344     State.reset(getOperand(0), VPhi, Part);
9345   } else {
9346     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9347     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9348     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9349                      PredicatingBB);
9350     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9351     if (State.hasScalarValue(this, *State.Instance))
9352       State.reset(this, Phi, *State.Instance);
9353     else
9354       State.set(this, Phi, *State.Instance);
9355     // NOTE: Currently we need to update the value of the operand, so the next
9356     // predicated iteration inserts its generated value in the correct vector.
9357     State.reset(getOperand(0), Phi, *State.Instance);
9358   }
9359 }
9360 
9361 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9362   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9363   State.ILV->vectorizeMemoryInstruction(&Ingredient, State,
9364                                         StoredValue ? nullptr : getVPValue(),
9365                                         getAddr(), StoredValue, getMask());
9366 }
9367 
9368 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9369 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9370 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9371 // for predication.
9372 static ScalarEpilogueLowering getScalarEpilogueLowering(
9373     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9374     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9375     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9376     LoopVectorizationLegality &LVL) {
9377   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9378   // don't look at hints or options, and don't request a scalar epilogue.
9379   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9380   // LoopAccessInfo (due to code dependency and not being able to reliably get
9381   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9382   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9383   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9384   // back to the old way and vectorize with versioning when forced. See D81345.)
9385   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9386                                                       PGSOQueryType::IRPass) &&
9387                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9388     return CM_ScalarEpilogueNotAllowedOptSize;
9389 
9390   // 2) If set, obey the directives
9391   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9392     switch (PreferPredicateOverEpilogue) {
9393     case PreferPredicateTy::ScalarEpilogue:
9394       return CM_ScalarEpilogueAllowed;
9395     case PreferPredicateTy::PredicateElseScalarEpilogue:
9396       return CM_ScalarEpilogueNotNeededUsePredicate;
9397     case PreferPredicateTy::PredicateOrDontVectorize:
9398       return CM_ScalarEpilogueNotAllowedUsePredicate;
9399     };
9400   }
9401 
9402   // 3) If set, obey the hints
9403   switch (Hints.getPredicate()) {
9404   case LoopVectorizeHints::FK_Enabled:
9405     return CM_ScalarEpilogueNotNeededUsePredicate;
9406   case LoopVectorizeHints::FK_Disabled:
9407     return CM_ScalarEpilogueAllowed;
9408   };
9409 
9410   // 4) if the TTI hook indicates this is profitable, request predication.
9411   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9412                                        LVL.getLAI()))
9413     return CM_ScalarEpilogueNotNeededUsePredicate;
9414 
9415   return CM_ScalarEpilogueAllowed;
9416 }
9417 
9418 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9419   // If Values have been set for this Def return the one relevant for \p Part.
9420   if (hasVectorValue(Def, Part))
9421     return Data.PerPartOutput[Def][Part];
9422 
9423   if (!hasScalarValue(Def, {Part, 0})) {
9424     Value *IRV = Def->getLiveInIRValue();
9425     Value *B = ILV->getBroadcastInstrs(IRV);
9426     set(Def, B, Part);
9427     return B;
9428   }
9429 
9430   Value *ScalarValue = get(Def, {Part, 0});
9431   // If we aren't vectorizing, we can just copy the scalar map values over
9432   // to the vector map.
9433   if (VF.isScalar()) {
9434     set(Def, ScalarValue, Part);
9435     return ScalarValue;
9436   }
9437 
9438   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9439   bool IsUniform = RepR && RepR->isUniform();
9440 
9441   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9442   // Check if there is a scalar value for the selected lane.
9443   if (!hasScalarValue(Def, {Part, LastLane})) {
9444     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9445     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9446            "unexpected recipe found to be invariant");
9447     IsUniform = true;
9448     LastLane = 0;
9449   }
9450 
9451   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9452 
9453   // Set the insert point after the last scalarized instruction. This
9454   // ensures the insertelement sequence will directly follow the scalar
9455   // definitions.
9456   auto OldIP = Builder.saveIP();
9457   auto NewIP = std::next(BasicBlock::iterator(LastInst));
9458   Builder.SetInsertPoint(&*NewIP);
9459 
9460   // However, if we are vectorizing, we need to construct the vector values.
9461   // If the value is known to be uniform after vectorization, we can just
9462   // broadcast the scalar value corresponding to lane zero for each unroll
9463   // iteration. Otherwise, we construct the vector values using
9464   // insertelement instructions. Since the resulting vectors are stored in
9465   // State, we will only generate the insertelements once.
9466   Value *VectorValue = nullptr;
9467   if (IsUniform) {
9468     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9469     set(Def, VectorValue, Part);
9470   } else {
9471     // Initialize packing with insertelements to start from undef.
9472     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9473     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
9474     set(Def, Undef, Part);
9475     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
9476       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
9477     VectorValue = get(Def, Part);
9478   }
9479   Builder.restoreIP(OldIP);
9480   return VectorValue;
9481 }
9482 
9483 // Process the loop in the VPlan-native vectorization path. This path builds
9484 // VPlan upfront in the vectorization pipeline, which allows to apply
9485 // VPlan-to-VPlan transformations from the very beginning without modifying the
9486 // input LLVM IR.
9487 static bool processLoopInVPlanNativePath(
9488     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
9489     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
9490     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
9491     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
9492     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
9493     LoopVectorizationRequirements &Requirements) {
9494 
9495   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
9496     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9497     return false;
9498   }
9499   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9500   Function *F = L->getHeader()->getParent();
9501   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9502 
9503   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9504       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
9505 
9506   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9507                                 &Hints, IAI);
9508   // Use the planner for outer loop vectorization.
9509   // TODO: CM is not used at this point inside the planner. Turn CM into an
9510   // optional argument if we don't need it in the future.
9511   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
9512                                Requirements, ORE);
9513 
9514   // Get user vectorization factor.
9515   ElementCount UserVF = Hints.getWidth();
9516 
9517   // Plan how to best vectorize, return the best VF and its cost.
9518   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9519 
9520   // If we are stress testing VPlan builds, do not attempt to generate vector
9521   // code. Masked vector code generation support will follow soon.
9522   // Also, do not attempt to vectorize if no vector code will be produced.
9523   if (VPlanBuildStressTest || EnableVPlanPredication ||
9524       VectorizationFactor::Disabled() == VF)
9525     return false;
9526 
9527   LVP.setBestPlan(VF.Width, 1);
9528 
9529   {
9530     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
9531                              F->getParent()->getDataLayout());
9532     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
9533                            &CM, BFI, PSI, Checks);
9534     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9535                       << L->getHeader()->getParent()->getName() << "\"\n");
9536     LVP.executePlan(LB, DT);
9537   }
9538 
9539   // Mark the loop as already vectorized to avoid vectorizing again.
9540   Hints.setAlreadyVectorized();
9541   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9542   return true;
9543 }
9544 
9545 // Emit a remark if there are stores to floats that required a floating point
9546 // extension. If the vectorized loop was generated with floating point there
9547 // will be a performance penalty from the conversion overhead and the change in
9548 // the vector width.
9549 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
9550   SmallVector<Instruction *, 4> Worklist;
9551   for (BasicBlock *BB : L->getBlocks()) {
9552     for (Instruction &Inst : *BB) {
9553       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9554         if (S->getValueOperand()->getType()->isFloatTy())
9555           Worklist.push_back(S);
9556       }
9557     }
9558   }
9559 
9560   // Traverse the floating point stores upwards searching, for floating point
9561   // conversions.
9562   SmallPtrSet<const Instruction *, 4> Visited;
9563   SmallPtrSet<const Instruction *, 4> EmittedRemark;
9564   while (!Worklist.empty()) {
9565     auto *I = Worklist.pop_back_val();
9566     if (!L->contains(I))
9567       continue;
9568     if (!Visited.insert(I).second)
9569       continue;
9570 
9571     // Emit a remark if the floating point store required a floating
9572     // point conversion.
9573     // TODO: More work could be done to identify the root cause such as a
9574     // constant or a function return type and point the user to it.
9575     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9576       ORE->emit([&]() {
9577         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9578                                           I->getDebugLoc(), L->getHeader())
9579                << "floating point conversion changes vector width. "
9580                << "Mixed floating point precision requires an up/down "
9581                << "cast that will negatively impact performance.";
9582       });
9583 
9584     for (Use &Op : I->operands())
9585       if (auto *OpI = dyn_cast<Instruction>(Op))
9586         Worklist.push_back(OpI);
9587   }
9588 }
9589 
9590 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
9591     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9592                                !EnableLoopInterleaving),
9593       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9594                               !EnableLoopVectorization) {}
9595 
9596 bool LoopVectorizePass::processLoop(Loop *L) {
9597   assert((EnableVPlanNativePath || L->isInnermost()) &&
9598          "VPlan-native path is not enabled. Only process inner loops.");
9599 
9600 #ifndef NDEBUG
9601   const std::string DebugLocStr = getDebugLocString(L);
9602 #endif /* NDEBUG */
9603 
9604   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
9605                     << L->getHeader()->getParent()->getName() << "\" from "
9606                     << DebugLocStr << "\n");
9607 
9608   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
9609 
9610   LLVM_DEBUG(
9611       dbgs() << "LV: Loop hints:"
9612              << " force="
9613              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
9614                      ? "disabled"
9615                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
9616                             ? "enabled"
9617                             : "?"))
9618              << " width=" << Hints.getWidth()
9619              << " unroll=" << Hints.getInterleave() << "\n");
9620 
9621   // Function containing loop
9622   Function *F = L->getHeader()->getParent();
9623 
9624   // Looking at the diagnostic output is the only way to determine if a loop
9625   // was vectorized (other than looking at the IR or machine code), so it
9626   // is important to generate an optimization remark for each loop. Most of
9627   // these messages are generated as OptimizationRemarkAnalysis. Remarks
9628   // generated as OptimizationRemark and OptimizationRemarkMissed are
9629   // less verbose reporting vectorized loops and unvectorized loops that may
9630   // benefit from vectorization, respectively.
9631 
9632   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
9633     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
9634     return false;
9635   }
9636 
9637   PredicatedScalarEvolution PSE(*SE, *L);
9638 
9639   // Check if it is legal to vectorize the loop.
9640   LoopVectorizationRequirements Requirements;
9641   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
9642                                 &Requirements, &Hints, DB, AC, BFI, PSI);
9643   if (!LVL.canVectorize(EnableVPlanNativePath)) {
9644     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
9645     Hints.emitRemarkWithHints();
9646     return false;
9647   }
9648 
9649   // Check the function attributes and profiles to find out if this function
9650   // should be optimized for size.
9651   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9652       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
9653 
9654   // Entrance to the VPlan-native vectorization path. Outer loops are processed
9655   // here. They may require CFG and instruction level transformations before
9656   // even evaluating whether vectorization is profitable. Since we cannot modify
9657   // the incoming IR, we need to build VPlan upfront in the vectorization
9658   // pipeline.
9659   if (!L->isInnermost())
9660     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
9661                                         ORE, BFI, PSI, Hints, Requirements);
9662 
9663   assert(L->isInnermost() && "Inner loop expected.");
9664 
9665   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
9666   // count by optimizing for size, to minimize overheads.
9667   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
9668   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
9669     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
9670                       << "This loop is worth vectorizing only if no scalar "
9671                       << "iteration overheads are incurred.");
9672     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
9673       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
9674     else {
9675       LLVM_DEBUG(dbgs() << "\n");
9676       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
9677     }
9678   }
9679 
9680   // Check the function attributes to see if implicit floats are allowed.
9681   // FIXME: This check doesn't seem possibly correct -- what if the loop is
9682   // an integer loop and the vector instructions selected are purely integer
9683   // vector instructions?
9684   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9685     reportVectorizationFailure(
9686         "Can't vectorize when the NoImplicitFloat attribute is used",
9687         "loop not vectorized due to NoImplicitFloat attribute",
9688         "NoImplicitFloat", ORE, L);
9689     Hints.emitRemarkWithHints();
9690     return false;
9691   }
9692 
9693   // Check if the target supports potentially unsafe FP vectorization.
9694   // FIXME: Add a check for the type of safety issue (denormal, signaling)
9695   // for the target we're vectorizing for, to make sure none of the
9696   // additional fp-math flags can help.
9697   if (Hints.isPotentiallyUnsafe() &&
9698       TTI->isFPVectorizationPotentiallyUnsafe()) {
9699     reportVectorizationFailure(
9700         "Potentially unsafe FP op prevents vectorization",
9701         "loop not vectorized due to unsafe FP support.",
9702         "UnsafeFP", ORE, L);
9703     Hints.emitRemarkWithHints();
9704     return false;
9705   }
9706 
9707   if (!Requirements.canVectorizeFPMath(Hints)) {
9708     ORE->emit([&]() {
9709       auto *ExactFPMathInst = Requirements.getExactFPInst();
9710       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
9711                                                  ExactFPMathInst->getDebugLoc(),
9712                                                  ExactFPMathInst->getParent())
9713              << "loop not vectorized: cannot prove it is safe to reorder "
9714                 "floating-point operations";
9715     });
9716     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
9717                          "reorder floating-point operations\n");
9718     Hints.emitRemarkWithHints();
9719     return false;
9720   }
9721 
9722   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
9723   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
9724 
9725   // If an override option has been passed in for interleaved accesses, use it.
9726   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
9727     UseInterleaved = EnableInterleavedMemAccesses;
9728 
9729   // Analyze interleaved memory accesses.
9730   if (UseInterleaved) {
9731     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
9732   }
9733 
9734   // Use the cost model.
9735   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
9736                                 F, &Hints, IAI);
9737   CM.collectValuesToIgnore();
9738 
9739   // Use the planner for vectorization.
9740   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
9741                                Requirements, ORE);
9742 
9743   // Get user vectorization factor and interleave count.
9744   ElementCount UserVF = Hints.getWidth();
9745   unsigned UserIC = Hints.getInterleave();
9746 
9747   // Plan how to best vectorize, return the best VF and its cost.
9748   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
9749 
9750   VectorizationFactor VF = VectorizationFactor::Disabled();
9751   unsigned IC = 1;
9752 
9753   if (MaybeVF) {
9754     VF = *MaybeVF;
9755     // Select the interleave count.
9756     IC = CM.selectInterleaveCount(VF.Width, VF.Cost);
9757   }
9758 
9759   // Identify the diagnostic messages that should be produced.
9760   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
9761   bool VectorizeLoop = true, InterleaveLoop = true;
9762   if (VF.Width.isScalar()) {
9763     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
9764     VecDiagMsg = std::make_pair(
9765         "VectorizationNotBeneficial",
9766         "the cost-model indicates that vectorization is not beneficial");
9767     VectorizeLoop = false;
9768   }
9769 
9770   if (!MaybeVF && UserIC > 1) {
9771     // Tell the user interleaving was avoided up-front, despite being explicitly
9772     // requested.
9773     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
9774                          "interleaving should be avoided up front\n");
9775     IntDiagMsg = std::make_pair(
9776         "InterleavingAvoided",
9777         "Ignoring UserIC, because interleaving was avoided up front");
9778     InterleaveLoop = false;
9779   } else if (IC == 1 && UserIC <= 1) {
9780     // Tell the user interleaving is not beneficial.
9781     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
9782     IntDiagMsg = std::make_pair(
9783         "InterleavingNotBeneficial",
9784         "the cost-model indicates that interleaving is not beneficial");
9785     InterleaveLoop = false;
9786     if (UserIC == 1) {
9787       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
9788       IntDiagMsg.second +=
9789           " and is explicitly disabled or interleave count is set to 1";
9790     }
9791   } else if (IC > 1 && UserIC == 1) {
9792     // Tell the user interleaving is beneficial, but it explicitly disabled.
9793     LLVM_DEBUG(
9794         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
9795     IntDiagMsg = std::make_pair(
9796         "InterleavingBeneficialButDisabled",
9797         "the cost-model indicates that interleaving is beneficial "
9798         "but is explicitly disabled or interleave count is set to 1");
9799     InterleaveLoop = false;
9800   }
9801 
9802   // Override IC if user provided an interleave count.
9803   IC = UserIC > 0 ? UserIC : IC;
9804 
9805   // Emit diagnostic messages, if any.
9806   const char *VAPassName = Hints.vectorizeAnalysisPassName();
9807   if (!VectorizeLoop && !InterleaveLoop) {
9808     // Do not vectorize or interleaving the loop.
9809     ORE->emit([&]() {
9810       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
9811                                       L->getStartLoc(), L->getHeader())
9812              << VecDiagMsg.second;
9813     });
9814     ORE->emit([&]() {
9815       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
9816                                       L->getStartLoc(), L->getHeader())
9817              << IntDiagMsg.second;
9818     });
9819     return false;
9820   } else if (!VectorizeLoop && InterleaveLoop) {
9821     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
9822     ORE->emit([&]() {
9823       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
9824                                         L->getStartLoc(), L->getHeader())
9825              << VecDiagMsg.second;
9826     });
9827   } else if (VectorizeLoop && !InterleaveLoop) {
9828     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
9829                       << ") in " << DebugLocStr << '\n');
9830     ORE->emit([&]() {
9831       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
9832                                         L->getStartLoc(), L->getHeader())
9833              << IntDiagMsg.second;
9834     });
9835   } else if (VectorizeLoop && InterleaveLoop) {
9836     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
9837                       << ") in " << DebugLocStr << '\n');
9838     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
9839   }
9840 
9841   bool DisableRuntimeUnroll = false;
9842   MDNode *OrigLoopID = L->getLoopID();
9843   {
9844     // Optimistically generate runtime checks. Drop them if they turn out to not
9845     // be profitable. Limit the scope of Checks, so the cleanup happens
9846     // immediately after vector codegeneration is done.
9847     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
9848                              F->getParent()->getDataLayout());
9849     if (!VF.Width.isScalar() || IC > 1)
9850       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
9851     LVP.setBestPlan(VF.Width, IC);
9852 
9853     using namespace ore;
9854     if (!VectorizeLoop) {
9855       assert(IC > 1 && "interleave count should not be 1 or 0");
9856       // If we decided that it is not legal to vectorize the loop, then
9857       // interleave it.
9858       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
9859                                  &CM, BFI, PSI, Checks);
9860       LVP.executePlan(Unroller, DT);
9861 
9862       ORE->emit([&]() {
9863         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
9864                                   L->getHeader())
9865                << "interleaved loop (interleaved count: "
9866                << NV("InterleaveCount", IC) << ")";
9867       });
9868     } else {
9869       // If we decided that it is *legal* to vectorize the loop, then do it.
9870 
9871       // Consider vectorizing the epilogue too if it's profitable.
9872       VectorizationFactor EpilogueVF =
9873           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
9874       if (EpilogueVF.Width.isVector()) {
9875 
9876         // The first pass vectorizes the main loop and creates a scalar epilogue
9877         // to be vectorized by executing the plan (potentially with a different
9878         // factor) again shortly afterwards.
9879         EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC,
9880                                           EpilogueVF.Width.getKnownMinValue(),
9881                                           1);
9882         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
9883                                            EPI, &LVL, &CM, BFI, PSI, Checks);
9884 
9885         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
9886         LVP.executePlan(MainILV, DT);
9887         ++LoopsVectorized;
9888 
9889         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
9890         formLCSSARecursively(*L, *DT, LI, SE);
9891 
9892         // Second pass vectorizes the epilogue and adjusts the control flow
9893         // edges from the first pass.
9894         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
9895         EPI.MainLoopVF = EPI.EpilogueVF;
9896         EPI.MainLoopUF = EPI.EpilogueUF;
9897         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
9898                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
9899                                                  Checks);
9900         LVP.executePlan(EpilogILV, DT);
9901         ++LoopsEpilogueVectorized;
9902 
9903         if (!MainILV.areSafetyChecksAdded())
9904           DisableRuntimeUnroll = true;
9905       } else {
9906         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
9907                                &LVL, &CM, BFI, PSI, Checks);
9908         LVP.executePlan(LB, DT);
9909         ++LoopsVectorized;
9910 
9911         // Add metadata to disable runtime unrolling a scalar loop when there
9912         // are no runtime checks about strides and memory. A scalar loop that is
9913         // rarely used is not worth unrolling.
9914         if (!LB.areSafetyChecksAdded())
9915           DisableRuntimeUnroll = true;
9916       }
9917       // Report the vectorization decision.
9918       ORE->emit([&]() {
9919         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
9920                                   L->getHeader())
9921                << "vectorized loop (vectorization width: "
9922                << NV("VectorizationFactor", VF.Width)
9923                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
9924       });
9925     }
9926 
9927     if (ORE->allowExtraAnalysis(LV_NAME))
9928       checkMixedPrecision(L, ORE);
9929   }
9930 
9931   Optional<MDNode *> RemainderLoopID =
9932       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
9933                                       LLVMLoopVectorizeFollowupEpilogue});
9934   if (RemainderLoopID.hasValue()) {
9935     L->setLoopID(RemainderLoopID.getValue());
9936   } else {
9937     if (DisableRuntimeUnroll)
9938       AddRuntimeUnrollDisableMetaData(L);
9939 
9940     // Mark the loop as already vectorized to avoid vectorizing again.
9941     Hints.setAlreadyVectorized();
9942   }
9943 
9944   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9945   return true;
9946 }
9947 
9948 LoopVectorizeResult LoopVectorizePass::runImpl(
9949     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
9950     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
9951     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
9952     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
9953     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
9954   SE = &SE_;
9955   LI = &LI_;
9956   TTI = &TTI_;
9957   DT = &DT_;
9958   BFI = &BFI_;
9959   TLI = TLI_;
9960   AA = &AA_;
9961   AC = &AC_;
9962   GetLAA = &GetLAA_;
9963   DB = &DB_;
9964   ORE = &ORE_;
9965   PSI = PSI_;
9966 
9967   // Don't attempt if
9968   // 1. the target claims to have no vector registers, and
9969   // 2. interleaving won't help ILP.
9970   //
9971   // The second condition is necessary because, even if the target has no
9972   // vector registers, loop vectorization may still enable scalar
9973   // interleaving.
9974   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
9975       TTI->getMaxInterleaveFactor(1) < 2)
9976     return LoopVectorizeResult(false, false);
9977 
9978   bool Changed = false, CFGChanged = false;
9979 
9980   // The vectorizer requires loops to be in simplified form.
9981   // Since simplification may add new inner loops, it has to run before the
9982   // legality and profitability checks. This means running the loop vectorizer
9983   // will simplify all loops, regardless of whether anything end up being
9984   // vectorized.
9985   for (auto &L : *LI)
9986     Changed |= CFGChanged |=
9987         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
9988 
9989   // Build up a worklist of inner-loops to vectorize. This is necessary as
9990   // the act of vectorizing or partially unrolling a loop creates new loops
9991   // and can invalidate iterators across the loops.
9992   SmallVector<Loop *, 8> Worklist;
9993 
9994   for (Loop *L : *LI)
9995     collectSupportedLoops(*L, LI, ORE, Worklist);
9996 
9997   LoopsAnalyzed += Worklist.size();
9998 
9999   // Now walk the identified inner loops.
10000   while (!Worklist.empty()) {
10001     Loop *L = Worklist.pop_back_val();
10002 
10003     // For the inner loops we actually process, form LCSSA to simplify the
10004     // transform.
10005     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10006 
10007     Changed |= CFGChanged |= processLoop(L);
10008   }
10009 
10010   // Process each loop nest in the function.
10011   return LoopVectorizeResult(Changed, CFGChanged);
10012 }
10013 
10014 PreservedAnalyses LoopVectorizePass::run(Function &F,
10015                                          FunctionAnalysisManager &AM) {
10016     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10017     auto &LI = AM.getResult<LoopAnalysis>(F);
10018     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10019     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10020     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10021     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10022     auto &AA = AM.getResult<AAManager>(F);
10023     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10024     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10025     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10026     MemorySSA *MSSA = EnableMSSALoopDependency
10027                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
10028                           : nullptr;
10029 
10030     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10031     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10032         [&](Loop &L) -> const LoopAccessInfo & {
10033       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
10034                                         TLI, TTI, nullptr, MSSA};
10035       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10036     };
10037     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10038     ProfileSummaryInfo *PSI =
10039         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10040     LoopVectorizeResult Result =
10041         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10042     if (!Result.MadeAnyChange)
10043       return PreservedAnalyses::all();
10044     PreservedAnalyses PA;
10045 
10046     // We currently do not preserve loopinfo/dominator analyses with outer loop
10047     // vectorization. Until this is addressed, mark these analyses as preserved
10048     // only for non-VPlan-native path.
10049     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10050     if (!EnableVPlanNativePath) {
10051       PA.preserve<LoopAnalysis>();
10052       PA.preserve<DominatorTreeAnalysis>();
10053     }
10054     PA.preserve<BasicAA>();
10055     PA.preserve<GlobalsAA>();
10056     if (!Result.MadeCFGChange)
10057       PA.preserveSet<CFGAnalyses>();
10058     return PA;
10059 }
10060