1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 static cl::opt<bool> ForceOrderedReductions( 335 "force-ordered-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns true if the given type is irregular. The 379 /// type is irregular if its allocated size doesn't equal the store size of an 380 /// element of the corresponding vector type. 381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 382 // Determine if an array of N elements of type Ty is "bitcast compatible" 383 // with a <N x Ty> vector. 384 // This is only true if there is no padding between the array elements. 385 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 386 } 387 388 /// A helper function that returns the reciprocal of the block probability of 389 /// predicated blocks. If we return X, we are assuming the predicated block 390 /// will execute once for every X iterations of the loop header. 391 /// 392 /// TODO: We should use actual block probability here, if available. Currently, 393 /// we always assume predicated blocks have a 50% chance of executing. 394 static unsigned getReciprocalPredBlockProb() { return 2; } 395 396 /// A helper function that returns an integer or floating-point constant with 397 /// value C. 398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 399 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 400 : ConstantFP::get(Ty, C); 401 } 402 403 /// Returns "best known" trip count for the specified loop \p L as defined by 404 /// the following procedure: 405 /// 1) Returns exact trip count if it is known. 406 /// 2) Returns expected trip count according to profile data if any. 407 /// 3) Returns upper bound estimate if it is known. 408 /// 4) Returns None if all of the above failed. 409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 410 // Check if exact trip count is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 412 return ExpectedTC; 413 414 // Check if there is an expected trip count available from profile data. 415 if (LoopVectorizeWithBlockFrequency) 416 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 417 return EstimatedTC; 418 419 // Check if upper bound estimate is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 421 return ExpectedTC; 422 423 return None; 424 } 425 426 // Forward declare GeneratedRTChecks. 427 class GeneratedRTChecks; 428 429 namespace llvm { 430 431 /// InnerLoopVectorizer vectorizes loops which contain only one basic 432 /// block to a specified vectorization factor (VF). 433 /// This class performs the widening of scalars into vectors, or multiple 434 /// scalars. This class also implements the following features: 435 /// * It inserts an epilogue loop for handling loops that don't have iteration 436 /// counts that are known to be a multiple of the vectorization factor. 437 /// * It handles the code generation for reduction variables. 438 /// * Scalarization (implementation using scalars) of un-vectorizable 439 /// instructions. 440 /// InnerLoopVectorizer does not perform any vectorization-legality 441 /// checks, and relies on the caller to check for the different legality 442 /// aspects. The InnerLoopVectorizer relies on the 443 /// LoopVectorizationLegality class to provide information about the induction 444 /// and reduction variables that were found to a given vectorization factor. 445 class InnerLoopVectorizer { 446 public: 447 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 448 LoopInfo *LI, DominatorTree *DT, 449 const TargetLibraryInfo *TLI, 450 const TargetTransformInfo *TTI, AssumptionCache *AC, 451 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 452 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 453 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 454 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 455 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 456 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 457 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 458 PSI(PSI), RTChecks(RTChecks) { 459 // Query this against the original loop and save it here because the profile 460 // of the original loop header may change as the transformation happens. 461 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 462 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 463 } 464 465 virtual ~InnerLoopVectorizer() = default; 466 467 /// Create a new empty loop that will contain vectorized instructions later 468 /// on, while the old loop will be used as the scalar remainder. Control flow 469 /// is generated around the vectorized (and scalar epilogue) loops consisting 470 /// of various checks and bypasses. Return the pre-header block of the new 471 /// loop. 472 /// In the case of epilogue vectorization, this function is overriden to 473 /// handle the more complex control flow around the loops. 474 virtual BasicBlock *createVectorizedLoopSkeleton(); 475 476 /// Widen a single instruction within the innermost loop. 477 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 478 VPTransformState &State); 479 480 /// Widen a single call instruction within the innermost loop. 481 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 482 VPTransformState &State); 483 484 /// Widen a single select instruction within the innermost loop. 485 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 486 bool InvariantCond, VPTransformState &State); 487 488 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 489 void fixVectorizedLoop(VPTransformState &State); 490 491 // Return true if any runtime check is added. 492 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 493 494 /// A type for vectorized values in the new loop. Each value from the 495 /// original loop, when vectorized, is represented by UF vector values in the 496 /// new unrolled loop, where UF is the unroll factor. 497 using VectorParts = SmallVector<Value *, 2>; 498 499 /// Vectorize a single GetElementPtrInst based on information gathered and 500 /// decisions taken during planning. 501 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 502 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 503 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 504 505 /// Vectorize a single first-order recurrence or pointer induction PHINode in 506 /// a block. This method handles the induction variable canonicalization. It 507 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 508 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 509 VPTransformState &State); 510 511 /// A helper function to scalarize a single Instruction in the innermost loop. 512 /// Generates a sequence of scalar instances for each lane between \p MinLane 513 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 514 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 515 /// Instr's operands. 516 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 517 const VPIteration &Instance, bool IfPredicateInstr, 518 VPTransformState &State); 519 520 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 521 /// is provided, the integer induction variable will first be truncated to 522 /// the corresponding type. 523 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 524 VPValue *Def, VPValue *CastDef, 525 VPTransformState &State); 526 527 /// Construct the vector value of a scalarized value \p V one lane at a time. 528 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 529 VPTransformState &State); 530 531 /// Try to vectorize interleaved access group \p Group with the base address 532 /// given in \p Addr, optionally masking the vector operations if \p 533 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 534 /// values in the vectorized loop. 535 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 536 ArrayRef<VPValue *> VPDefs, 537 VPTransformState &State, VPValue *Addr, 538 ArrayRef<VPValue *> StoredValues, 539 VPValue *BlockInMask = nullptr); 540 541 /// Vectorize Load and Store instructions with the base address given in \p 542 /// Addr, optionally masking the vector operations if \p BlockInMask is 543 /// non-null. Use \p State to translate given VPValues to IR values in the 544 /// vectorized loop. 545 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 546 VPValue *Def, VPValue *Addr, 547 VPValue *StoredValue, VPValue *BlockInMask); 548 549 /// Set the debug location in the builder \p Ptr using the debug location in 550 /// \p V. If \p Ptr is None then it uses the class member's Builder. 551 void setDebugLocFromInst(const Value *V, 552 Optional<IRBuilder<> *> CustomBuilder = None); 553 554 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 555 void fixNonInductionPHIs(VPTransformState &State); 556 557 /// Returns true if the reordering of FP operations is not allowed, but we are 558 /// able to vectorize with strict in-order reductions for the given RdxDesc. 559 bool useOrderedReductions(RecurrenceDescriptor &RdxDesc); 560 561 /// Create a broadcast instruction. This method generates a broadcast 562 /// instruction (shuffle) for loop invariant values and for the induction 563 /// value. If this is the induction variable then we extend it to N, N+1, ... 564 /// this is needed because each iteration in the loop corresponds to a SIMD 565 /// element. 566 virtual Value *getBroadcastInstrs(Value *V); 567 568 protected: 569 friend class LoopVectorizationPlanner; 570 571 /// A small list of PHINodes. 572 using PhiVector = SmallVector<PHINode *, 4>; 573 574 /// A type for scalarized values in the new loop. Each value from the 575 /// original loop, when scalarized, is represented by UF x VF scalar values 576 /// in the new unrolled loop, where UF is the unroll factor and VF is the 577 /// vectorization factor. 578 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 579 580 /// Set up the values of the IVs correctly when exiting the vector loop. 581 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 582 Value *CountRoundDown, Value *EndValue, 583 BasicBlock *MiddleBlock); 584 585 /// Create a new induction variable inside L. 586 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 587 Value *Step, Instruction *DL); 588 589 /// Handle all cross-iteration phis in the header. 590 void fixCrossIterationPHIs(VPTransformState &State); 591 592 /// Create the exit value of first order recurrences in the middle block and 593 /// update their users. 594 void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State); 595 596 /// Create code for the loop exit value of the reduction. 597 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 598 599 /// Clear NSW/NUW flags from reduction instructions if necessary. 600 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 601 VPTransformState &State); 602 603 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 604 /// means we need to add the appropriate incoming value from the middle 605 /// block as exiting edges from the scalar epilogue loop (if present) are 606 /// already in place, and we exit the vector loop exclusively to the middle 607 /// block. 608 void fixLCSSAPHIs(VPTransformState &State); 609 610 /// Iteratively sink the scalarized operands of a predicated instruction into 611 /// the block that was created for it. 612 void sinkScalarOperands(Instruction *PredInst); 613 614 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 615 /// represented as. 616 void truncateToMinimalBitwidths(VPTransformState &State); 617 618 /// This function adds 619 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 620 /// to each vector element of Val. The sequence starts at StartIndex. 621 /// \p Opcode is relevant for FP induction variable. 622 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 623 Instruction::BinaryOps Opcode = 624 Instruction::BinaryOpsEnd); 625 626 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 627 /// variable on which to base the steps, \p Step is the size of the step, and 628 /// \p EntryVal is the value from the original loop that maps to the steps. 629 /// Note that \p EntryVal doesn't have to be an induction variable - it 630 /// can also be a truncate instruction. 631 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 632 const InductionDescriptor &ID, VPValue *Def, 633 VPValue *CastDef, VPTransformState &State); 634 635 /// Create a vector induction phi node based on an existing scalar one. \p 636 /// EntryVal is the value from the original loop that maps to the vector phi 637 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 638 /// truncate instruction, instead of widening the original IV, we widen a 639 /// version of the IV truncated to \p EntryVal's type. 640 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 641 Value *Step, Value *Start, 642 Instruction *EntryVal, VPValue *Def, 643 VPValue *CastDef, 644 VPTransformState &State); 645 646 /// Returns true if an instruction \p I should be scalarized instead of 647 /// vectorized for the chosen vectorization factor. 648 bool shouldScalarizeInstruction(Instruction *I) const; 649 650 /// Returns true if we should generate a scalar version of \p IV. 651 bool needsScalarInduction(Instruction *IV) const; 652 653 /// If there is a cast involved in the induction variable \p ID, which should 654 /// be ignored in the vectorized loop body, this function records the 655 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 656 /// cast. We had already proved that the casted Phi is equal to the uncasted 657 /// Phi in the vectorized loop (under a runtime guard), and therefore 658 /// there is no need to vectorize the cast - the same value can be used in the 659 /// vector loop for both the Phi and the cast. 660 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 661 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 662 /// 663 /// \p EntryVal is the value from the original loop that maps to the vector 664 /// phi node and is used to distinguish what is the IV currently being 665 /// processed - original one (if \p EntryVal is a phi corresponding to the 666 /// original IV) or the "newly-created" one based on the proof mentioned above 667 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 668 /// latter case \p EntryVal is a TruncInst and we must not record anything for 669 /// that IV, but it's error-prone to expect callers of this routine to care 670 /// about that, hence this explicit parameter. 671 void recordVectorLoopValueForInductionCast( 672 const InductionDescriptor &ID, const Instruction *EntryVal, 673 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 674 unsigned Part, unsigned Lane = UINT_MAX); 675 676 /// Generate a shuffle sequence that will reverse the vector Vec. 677 virtual Value *reverseVector(Value *Vec); 678 679 /// Returns (and creates if needed) the original loop trip count. 680 Value *getOrCreateTripCount(Loop *NewLoop); 681 682 /// Returns (and creates if needed) the trip count of the widened loop. 683 Value *getOrCreateVectorTripCount(Loop *NewLoop); 684 685 /// Returns a bitcasted value to the requested vector type. 686 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 687 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 688 const DataLayout &DL); 689 690 /// Emit a bypass check to see if the vector trip count is zero, including if 691 /// it overflows. 692 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 693 694 /// Emit a bypass check to see if all of the SCEV assumptions we've 695 /// had to make are correct. Returns the block containing the checks or 696 /// nullptr if no checks have been added. 697 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 698 699 /// Emit bypass checks to check any memory assumptions we may have made. 700 /// Returns the block containing the checks or nullptr if no checks have been 701 /// added. 702 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 703 704 /// Compute the transformed value of Index at offset StartValue using step 705 /// StepValue. 706 /// For integer induction, returns StartValue + Index * StepValue. 707 /// For pointer induction, returns StartValue[Index * StepValue]. 708 /// FIXME: The newly created binary instructions should contain nsw/nuw 709 /// flags, which can be found from the original scalar operations. 710 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 711 const DataLayout &DL, 712 const InductionDescriptor &ID) const; 713 714 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 715 /// vector loop preheader, middle block and scalar preheader. Also 716 /// allocate a loop object for the new vector loop and return it. 717 Loop *createVectorLoopSkeleton(StringRef Prefix); 718 719 /// Create new phi nodes for the induction variables to resume iteration count 720 /// in the scalar epilogue, from where the vectorized loop left off (given by 721 /// \p VectorTripCount). 722 /// In cases where the loop skeleton is more complicated (eg. epilogue 723 /// vectorization) and the resume values can come from an additional bypass 724 /// block, the \p AdditionalBypass pair provides information about the bypass 725 /// block and the end value on the edge from bypass to this loop. 726 void createInductionResumeValues( 727 Loop *L, Value *VectorTripCount, 728 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 729 730 /// Complete the loop skeleton by adding debug MDs, creating appropriate 731 /// conditional branches in the middle block, preparing the builder and 732 /// running the verifier. Take in the vector loop \p L as argument, and return 733 /// the preheader of the completed vector loop. 734 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 735 736 /// Add additional metadata to \p To that was not present on \p Orig. 737 /// 738 /// Currently this is used to add the noalias annotations based on the 739 /// inserted memchecks. Use this for instructions that are *cloned* into the 740 /// vector loop. 741 void addNewMetadata(Instruction *To, const Instruction *Orig); 742 743 /// Add metadata from one instruction to another. 744 /// 745 /// This includes both the original MDs from \p From and additional ones (\see 746 /// addNewMetadata). Use this for *newly created* instructions in the vector 747 /// loop. 748 void addMetadata(Instruction *To, Instruction *From); 749 750 /// Similar to the previous function but it adds the metadata to a 751 /// vector of instructions. 752 void addMetadata(ArrayRef<Value *> To, Instruction *From); 753 754 /// Allow subclasses to override and print debug traces before/after vplan 755 /// execution, when trace information is requested. 756 virtual void printDebugTracesAtStart(){}; 757 virtual void printDebugTracesAtEnd(){}; 758 759 /// The original loop. 760 Loop *OrigLoop; 761 762 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 763 /// dynamic knowledge to simplify SCEV expressions and converts them to a 764 /// more usable form. 765 PredicatedScalarEvolution &PSE; 766 767 /// Loop Info. 768 LoopInfo *LI; 769 770 /// Dominator Tree. 771 DominatorTree *DT; 772 773 /// Alias Analysis. 774 AAResults *AA; 775 776 /// Target Library Info. 777 const TargetLibraryInfo *TLI; 778 779 /// Target Transform Info. 780 const TargetTransformInfo *TTI; 781 782 /// Assumption Cache. 783 AssumptionCache *AC; 784 785 /// Interface to emit optimization remarks. 786 OptimizationRemarkEmitter *ORE; 787 788 /// LoopVersioning. It's only set up (non-null) if memchecks were 789 /// used. 790 /// 791 /// This is currently only used to add no-alias metadata based on the 792 /// memchecks. The actually versioning is performed manually. 793 std::unique_ptr<LoopVersioning> LVer; 794 795 /// The vectorization SIMD factor to use. Each vector will have this many 796 /// vector elements. 797 ElementCount VF; 798 799 /// The vectorization unroll factor to use. Each scalar is vectorized to this 800 /// many different vector instructions. 801 unsigned UF; 802 803 /// The builder that we use 804 IRBuilder<> Builder; 805 806 // --- Vectorization state --- 807 808 /// The vector-loop preheader. 809 BasicBlock *LoopVectorPreHeader; 810 811 /// The scalar-loop preheader. 812 BasicBlock *LoopScalarPreHeader; 813 814 /// Middle Block between the vector and the scalar. 815 BasicBlock *LoopMiddleBlock; 816 817 /// The unique ExitBlock of the scalar loop if one exists. Note that 818 /// there can be multiple exiting edges reaching this block. 819 BasicBlock *LoopExitBlock; 820 821 /// The vector loop body. 822 BasicBlock *LoopVectorBody; 823 824 /// The scalar loop body. 825 BasicBlock *LoopScalarBody; 826 827 /// A list of all bypass blocks. The first block is the entry of the loop. 828 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 829 830 /// The new Induction variable which was added to the new block. 831 PHINode *Induction = nullptr; 832 833 /// The induction variable of the old basic block. 834 PHINode *OldInduction = nullptr; 835 836 /// Store instructions that were predicated. 837 SmallVector<Instruction *, 4> PredicatedInstructions; 838 839 /// Trip count of the original loop. 840 Value *TripCount = nullptr; 841 842 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 843 Value *VectorTripCount = nullptr; 844 845 /// The legality analysis. 846 LoopVectorizationLegality *Legal; 847 848 /// The profitablity analysis. 849 LoopVectorizationCostModel *Cost; 850 851 // Record whether runtime checks are added. 852 bool AddedSafetyChecks = false; 853 854 // Holds the end values for each induction variable. We save the end values 855 // so we can later fix-up the external users of the induction variables. 856 DenseMap<PHINode *, Value *> IVEndValues; 857 858 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 859 // fixed up at the end of vector code generation. 860 SmallVector<PHINode *, 8> OrigPHIsToFix; 861 862 /// BFI and PSI are used to check for profile guided size optimizations. 863 BlockFrequencyInfo *BFI; 864 ProfileSummaryInfo *PSI; 865 866 // Whether this loop should be optimized for size based on profile guided size 867 // optimizatios. 868 bool OptForSizeBasedOnProfile; 869 870 /// Structure to hold information about generated runtime checks, responsible 871 /// for cleaning the checks, if vectorization turns out unprofitable. 872 GeneratedRTChecks &RTChecks; 873 }; 874 875 class InnerLoopUnroller : public InnerLoopVectorizer { 876 public: 877 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 878 LoopInfo *LI, DominatorTree *DT, 879 const TargetLibraryInfo *TLI, 880 const TargetTransformInfo *TTI, AssumptionCache *AC, 881 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 882 LoopVectorizationLegality *LVL, 883 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 884 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 885 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 886 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 887 BFI, PSI, Check) {} 888 889 private: 890 Value *getBroadcastInstrs(Value *V) override; 891 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 892 Instruction::BinaryOps Opcode = 893 Instruction::BinaryOpsEnd) override; 894 Value *reverseVector(Value *Vec) override; 895 }; 896 897 /// Encapsulate information regarding vectorization of a loop and its epilogue. 898 /// This information is meant to be updated and used across two stages of 899 /// epilogue vectorization. 900 struct EpilogueLoopVectorizationInfo { 901 ElementCount MainLoopVF = ElementCount::getFixed(0); 902 unsigned MainLoopUF = 0; 903 ElementCount EpilogueVF = ElementCount::getFixed(0); 904 unsigned EpilogueUF = 0; 905 BasicBlock *MainLoopIterationCountCheck = nullptr; 906 BasicBlock *EpilogueIterationCountCheck = nullptr; 907 BasicBlock *SCEVSafetyCheck = nullptr; 908 BasicBlock *MemSafetyCheck = nullptr; 909 Value *TripCount = nullptr; 910 Value *VectorTripCount = nullptr; 911 912 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 913 unsigned EUF) 914 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 915 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 916 assert(EUF == 1 && 917 "A high UF for the epilogue loop is likely not beneficial."); 918 } 919 }; 920 921 /// An extension of the inner loop vectorizer that creates a skeleton for a 922 /// vectorized loop that has its epilogue (residual) also vectorized. 923 /// The idea is to run the vplan on a given loop twice, firstly to setup the 924 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 925 /// from the first step and vectorize the epilogue. This is achieved by 926 /// deriving two concrete strategy classes from this base class and invoking 927 /// them in succession from the loop vectorizer planner. 928 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 929 public: 930 InnerLoopAndEpilogueVectorizer( 931 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 932 DominatorTree *DT, const TargetLibraryInfo *TLI, 933 const TargetTransformInfo *TTI, AssumptionCache *AC, 934 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 935 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 936 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 937 GeneratedRTChecks &Checks) 938 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 939 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 940 Checks), 941 EPI(EPI) {} 942 943 // Override this function to handle the more complex control flow around the 944 // three loops. 945 BasicBlock *createVectorizedLoopSkeleton() final override { 946 return createEpilogueVectorizedLoopSkeleton(); 947 } 948 949 /// The interface for creating a vectorized skeleton using one of two 950 /// different strategies, each corresponding to one execution of the vplan 951 /// as described above. 952 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 953 954 /// Holds and updates state information required to vectorize the main loop 955 /// and its epilogue in two separate passes. This setup helps us avoid 956 /// regenerating and recomputing runtime safety checks. It also helps us to 957 /// shorten the iteration-count-check path length for the cases where the 958 /// iteration count of the loop is so small that the main vector loop is 959 /// completely skipped. 960 EpilogueLoopVectorizationInfo &EPI; 961 }; 962 963 /// A specialized derived class of inner loop vectorizer that performs 964 /// vectorization of *main* loops in the process of vectorizing loops and their 965 /// epilogues. 966 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 967 public: 968 EpilogueVectorizerMainLoop( 969 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 970 DominatorTree *DT, const TargetLibraryInfo *TLI, 971 const TargetTransformInfo *TTI, AssumptionCache *AC, 972 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 973 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 974 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 975 GeneratedRTChecks &Check) 976 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 977 EPI, LVL, CM, BFI, PSI, Check) {} 978 /// Implements the interface for creating a vectorized skeleton using the 979 /// *main loop* strategy (ie the first pass of vplan execution). 980 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 981 982 protected: 983 /// Emits an iteration count bypass check once for the main loop (when \p 984 /// ForEpilogue is false) and once for the epilogue loop (when \p 985 /// ForEpilogue is true). 986 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 987 bool ForEpilogue); 988 void printDebugTracesAtStart() override; 989 void printDebugTracesAtEnd() override; 990 }; 991 992 // A specialized derived class of inner loop vectorizer that performs 993 // vectorization of *epilogue* loops in the process of vectorizing loops and 994 // their epilogues. 995 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 996 public: 997 EpilogueVectorizerEpilogueLoop( 998 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 999 DominatorTree *DT, const TargetLibraryInfo *TLI, 1000 const TargetTransformInfo *TTI, AssumptionCache *AC, 1001 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1002 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1003 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1004 GeneratedRTChecks &Checks) 1005 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1006 EPI, LVL, CM, BFI, PSI, Checks) {} 1007 /// Implements the interface for creating a vectorized skeleton using the 1008 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1009 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1010 1011 protected: 1012 /// Emits an iteration count bypass check after the main vector loop has 1013 /// finished to see if there are any iterations left to execute by either 1014 /// the vector epilogue or the scalar epilogue. 1015 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1016 BasicBlock *Bypass, 1017 BasicBlock *Insert); 1018 void printDebugTracesAtStart() override; 1019 void printDebugTracesAtEnd() override; 1020 }; 1021 } // end namespace llvm 1022 1023 /// Look for a meaningful debug location on the instruction or it's 1024 /// operands. 1025 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1026 if (!I) 1027 return I; 1028 1029 DebugLoc Empty; 1030 if (I->getDebugLoc() != Empty) 1031 return I; 1032 1033 for (Use &Op : I->operands()) { 1034 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1035 if (OpInst->getDebugLoc() != Empty) 1036 return OpInst; 1037 } 1038 1039 return I; 1040 } 1041 1042 void InnerLoopVectorizer::setDebugLocFromInst( 1043 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 1044 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 1045 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 1046 const DILocation *DIL = Inst->getDebugLoc(); 1047 1048 // When a FSDiscriminator is enabled, we don't need to add the multiply 1049 // factors to the discriminators. 1050 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1051 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1052 // FIXME: For scalable vectors, assume vscale=1. 1053 auto NewDIL = 1054 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1055 if (NewDIL) 1056 B->SetCurrentDebugLocation(NewDIL.getValue()); 1057 else 1058 LLVM_DEBUG(dbgs() 1059 << "Failed to create new discriminator: " 1060 << DIL->getFilename() << " Line: " << DIL->getLine()); 1061 } else 1062 B->SetCurrentDebugLocation(DIL); 1063 } else 1064 B->SetCurrentDebugLocation(DebugLoc()); 1065 } 1066 1067 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1068 /// is passed, the message relates to that particular instruction. 1069 #ifndef NDEBUG 1070 static void debugVectorizationMessage(const StringRef Prefix, 1071 const StringRef DebugMsg, 1072 Instruction *I) { 1073 dbgs() << "LV: " << Prefix << DebugMsg; 1074 if (I != nullptr) 1075 dbgs() << " " << *I; 1076 else 1077 dbgs() << '.'; 1078 dbgs() << '\n'; 1079 } 1080 #endif 1081 1082 /// Create an analysis remark that explains why vectorization failed 1083 /// 1084 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1085 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1086 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1087 /// the location of the remark. \return the remark object that can be 1088 /// streamed to. 1089 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1090 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1091 Value *CodeRegion = TheLoop->getHeader(); 1092 DebugLoc DL = TheLoop->getStartLoc(); 1093 1094 if (I) { 1095 CodeRegion = I->getParent(); 1096 // If there is no debug location attached to the instruction, revert back to 1097 // using the loop's. 1098 if (I->getDebugLoc()) 1099 DL = I->getDebugLoc(); 1100 } 1101 1102 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1103 } 1104 1105 /// Return a value for Step multiplied by VF. 1106 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1107 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1108 Constant *StepVal = ConstantInt::get( 1109 Step->getType(), 1110 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1111 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1112 } 1113 1114 namespace llvm { 1115 1116 /// Return the runtime value for VF. 1117 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1118 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1119 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1120 } 1121 1122 void reportVectorizationFailure(const StringRef DebugMsg, 1123 const StringRef OREMsg, const StringRef ORETag, 1124 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1125 Instruction *I) { 1126 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1127 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1128 ORE->emit( 1129 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1130 << "loop not vectorized: " << OREMsg); 1131 } 1132 1133 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1134 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1135 Instruction *I) { 1136 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1137 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1138 ORE->emit( 1139 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1140 << Msg); 1141 } 1142 1143 } // end namespace llvm 1144 1145 #ifndef NDEBUG 1146 /// \return string containing a file name and a line # for the given loop. 1147 static std::string getDebugLocString(const Loop *L) { 1148 std::string Result; 1149 if (L) { 1150 raw_string_ostream OS(Result); 1151 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1152 LoopDbgLoc.print(OS); 1153 else 1154 // Just print the module name. 1155 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1156 OS.flush(); 1157 } 1158 return Result; 1159 } 1160 #endif 1161 1162 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1163 const Instruction *Orig) { 1164 // If the loop was versioned with memchecks, add the corresponding no-alias 1165 // metadata. 1166 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1167 LVer->annotateInstWithNoAlias(To, Orig); 1168 } 1169 1170 void InnerLoopVectorizer::addMetadata(Instruction *To, 1171 Instruction *From) { 1172 propagateMetadata(To, From); 1173 addNewMetadata(To, From); 1174 } 1175 1176 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1177 Instruction *From) { 1178 for (Value *V : To) { 1179 if (Instruction *I = dyn_cast<Instruction>(V)) 1180 addMetadata(I, From); 1181 } 1182 } 1183 1184 namespace llvm { 1185 1186 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1187 // lowered. 1188 enum ScalarEpilogueLowering { 1189 1190 // The default: allowing scalar epilogues. 1191 CM_ScalarEpilogueAllowed, 1192 1193 // Vectorization with OptForSize: don't allow epilogues. 1194 CM_ScalarEpilogueNotAllowedOptSize, 1195 1196 // A special case of vectorisation with OptForSize: loops with a very small 1197 // trip count are considered for vectorization under OptForSize, thereby 1198 // making sure the cost of their loop body is dominant, free of runtime 1199 // guards and scalar iteration overheads. 1200 CM_ScalarEpilogueNotAllowedLowTripLoop, 1201 1202 // Loop hint predicate indicating an epilogue is undesired. 1203 CM_ScalarEpilogueNotNeededUsePredicate, 1204 1205 // Directive indicating we must either tail fold or not vectorize 1206 CM_ScalarEpilogueNotAllowedUsePredicate 1207 }; 1208 1209 /// ElementCountComparator creates a total ordering for ElementCount 1210 /// for the purposes of using it in a set structure. 1211 struct ElementCountComparator { 1212 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1213 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1214 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1215 } 1216 }; 1217 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1218 1219 /// LoopVectorizationCostModel - estimates the expected speedups due to 1220 /// vectorization. 1221 /// In many cases vectorization is not profitable. This can happen because of 1222 /// a number of reasons. In this class we mainly attempt to predict the 1223 /// expected speedup/slowdowns due to the supported instruction set. We use the 1224 /// TargetTransformInfo to query the different backends for the cost of 1225 /// different operations. 1226 class LoopVectorizationCostModel { 1227 public: 1228 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1229 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1230 LoopVectorizationLegality *Legal, 1231 const TargetTransformInfo &TTI, 1232 const TargetLibraryInfo *TLI, DemandedBits *DB, 1233 AssumptionCache *AC, 1234 OptimizationRemarkEmitter *ORE, const Function *F, 1235 const LoopVectorizeHints *Hints, 1236 InterleavedAccessInfo &IAI) 1237 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1238 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1239 Hints(Hints), InterleaveInfo(IAI) {} 1240 1241 /// \return An upper bound for the vectorization factors (both fixed and 1242 /// scalable). If the factors are 0, vectorization and interleaving should be 1243 /// avoided up front. 1244 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1245 1246 /// \return True if runtime checks are required for vectorization, and false 1247 /// otherwise. 1248 bool runtimeChecksRequired(); 1249 1250 /// \return The most profitable vectorization factor and the cost of that VF. 1251 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1252 /// then this vectorization factor will be selected if vectorization is 1253 /// possible. 1254 VectorizationFactor 1255 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1256 1257 VectorizationFactor 1258 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1259 const LoopVectorizationPlanner &LVP); 1260 1261 /// Setup cost-based decisions for user vectorization factor. 1262 /// \return true if the UserVF is a feasible VF to be chosen. 1263 bool selectUserVectorizationFactor(ElementCount UserVF) { 1264 collectUniformsAndScalars(UserVF); 1265 collectInstsToScalarize(UserVF); 1266 return expectedCost(UserVF).first.isValid(); 1267 } 1268 1269 /// \return The size (in bits) of the smallest and widest types in the code 1270 /// that needs to be vectorized. We ignore values that remain scalar such as 1271 /// 64 bit loop indices. 1272 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1273 1274 /// \return The desired interleave count. 1275 /// If interleave count has been specified by metadata it will be returned. 1276 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1277 /// are the selected vectorization factor and the cost of the selected VF. 1278 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1279 1280 /// Memory access instruction may be vectorized in more than one way. 1281 /// Form of instruction after vectorization depends on cost. 1282 /// This function takes cost-based decisions for Load/Store instructions 1283 /// and collects them in a map. This decisions map is used for building 1284 /// the lists of loop-uniform and loop-scalar instructions. 1285 /// The calculated cost is saved with widening decision in order to 1286 /// avoid redundant calculations. 1287 void setCostBasedWideningDecision(ElementCount VF); 1288 1289 /// A struct that represents some properties of the register usage 1290 /// of a loop. 1291 struct RegisterUsage { 1292 /// Holds the number of loop invariant values that are used in the loop. 1293 /// The key is ClassID of target-provided register class. 1294 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1295 /// Holds the maximum number of concurrent live intervals in the loop. 1296 /// The key is ClassID of target-provided register class. 1297 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1298 }; 1299 1300 /// \return Returns information about the register usages of the loop for the 1301 /// given vectorization factors. 1302 SmallVector<RegisterUsage, 8> 1303 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1304 1305 /// Collect values we want to ignore in the cost model. 1306 void collectValuesToIgnore(); 1307 1308 /// Collect all element types in the loop for which widening is needed. 1309 void collectElementTypesForWidening(); 1310 1311 /// Split reductions into those that happen in the loop, and those that happen 1312 /// outside. In loop reductions are collected into InLoopReductionChains. 1313 void collectInLoopReductions(); 1314 1315 /// Returns true if we should use strict in-order reductions for the given 1316 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1317 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1318 /// of FP operations. 1319 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1320 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1321 } 1322 1323 /// \returns The smallest bitwidth each instruction can be represented with. 1324 /// The vector equivalents of these instructions should be truncated to this 1325 /// type. 1326 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1327 return MinBWs; 1328 } 1329 1330 /// \returns True if it is more profitable to scalarize instruction \p I for 1331 /// vectorization factor \p VF. 1332 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1333 assert(VF.isVector() && 1334 "Profitable to scalarize relevant only for VF > 1."); 1335 1336 // Cost model is not run in the VPlan-native path - return conservative 1337 // result until this changes. 1338 if (EnableVPlanNativePath) 1339 return false; 1340 1341 auto Scalars = InstsToScalarize.find(VF); 1342 assert(Scalars != InstsToScalarize.end() && 1343 "VF not yet analyzed for scalarization profitability"); 1344 return Scalars->second.find(I) != Scalars->second.end(); 1345 } 1346 1347 /// Returns true if \p I is known to be uniform after vectorization. 1348 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1349 if (VF.isScalar()) 1350 return true; 1351 1352 // Cost model is not run in the VPlan-native path - return conservative 1353 // result until this changes. 1354 if (EnableVPlanNativePath) 1355 return false; 1356 1357 auto UniformsPerVF = Uniforms.find(VF); 1358 assert(UniformsPerVF != Uniforms.end() && 1359 "VF not yet analyzed for uniformity"); 1360 return UniformsPerVF->second.count(I); 1361 } 1362 1363 /// Returns true if \p I is known to be scalar after vectorization. 1364 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1365 if (VF.isScalar()) 1366 return true; 1367 1368 // Cost model is not run in the VPlan-native path - return conservative 1369 // result until this changes. 1370 if (EnableVPlanNativePath) 1371 return false; 1372 1373 auto ScalarsPerVF = Scalars.find(VF); 1374 assert(ScalarsPerVF != Scalars.end() && 1375 "Scalar values are not calculated for VF"); 1376 return ScalarsPerVF->second.count(I); 1377 } 1378 1379 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1380 /// for vectorization factor \p VF. 1381 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1382 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1383 !isProfitableToScalarize(I, VF) && 1384 !isScalarAfterVectorization(I, VF); 1385 } 1386 1387 /// Decision that was taken during cost calculation for memory instruction. 1388 enum InstWidening { 1389 CM_Unknown, 1390 CM_Widen, // For consecutive accesses with stride +1. 1391 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1392 CM_Interleave, 1393 CM_GatherScatter, 1394 CM_Scalarize 1395 }; 1396 1397 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1398 /// instruction \p I and vector width \p VF. 1399 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1400 InstructionCost Cost) { 1401 assert(VF.isVector() && "Expected VF >=2"); 1402 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1403 } 1404 1405 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1406 /// interleaving group \p Grp and vector width \p VF. 1407 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1408 ElementCount VF, InstWidening W, 1409 InstructionCost Cost) { 1410 assert(VF.isVector() && "Expected VF >=2"); 1411 /// Broadcast this decicion to all instructions inside the group. 1412 /// But the cost will be assigned to one instruction only. 1413 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1414 if (auto *I = Grp->getMember(i)) { 1415 if (Grp->getInsertPos() == I) 1416 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1417 else 1418 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1419 } 1420 } 1421 } 1422 1423 /// Return the cost model decision for the given instruction \p I and vector 1424 /// width \p VF. Return CM_Unknown if this instruction did not pass 1425 /// through the cost modeling. 1426 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1427 assert(VF.isVector() && "Expected VF to be a vector VF"); 1428 // Cost model is not run in the VPlan-native path - return conservative 1429 // result until this changes. 1430 if (EnableVPlanNativePath) 1431 return CM_GatherScatter; 1432 1433 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1434 auto Itr = WideningDecisions.find(InstOnVF); 1435 if (Itr == WideningDecisions.end()) 1436 return CM_Unknown; 1437 return Itr->second.first; 1438 } 1439 1440 /// Return the vectorization cost for the given instruction \p I and vector 1441 /// width \p VF. 1442 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1443 assert(VF.isVector() && "Expected VF >=2"); 1444 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1445 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1446 "The cost is not calculated"); 1447 return WideningDecisions[InstOnVF].second; 1448 } 1449 1450 /// Return True if instruction \p I is an optimizable truncate whose operand 1451 /// is an induction variable. Such a truncate will be removed by adding a new 1452 /// induction variable with the destination type. 1453 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1454 // If the instruction is not a truncate, return false. 1455 auto *Trunc = dyn_cast<TruncInst>(I); 1456 if (!Trunc) 1457 return false; 1458 1459 // Get the source and destination types of the truncate. 1460 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1461 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1462 1463 // If the truncate is free for the given types, return false. Replacing a 1464 // free truncate with an induction variable would add an induction variable 1465 // update instruction to each iteration of the loop. We exclude from this 1466 // check the primary induction variable since it will need an update 1467 // instruction regardless. 1468 Value *Op = Trunc->getOperand(0); 1469 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1470 return false; 1471 1472 // If the truncated value is not an induction variable, return false. 1473 return Legal->isInductionPhi(Op); 1474 } 1475 1476 /// Collects the instructions to scalarize for each predicated instruction in 1477 /// the loop. 1478 void collectInstsToScalarize(ElementCount VF); 1479 1480 /// Collect Uniform and Scalar values for the given \p VF. 1481 /// The sets depend on CM decision for Load/Store instructions 1482 /// that may be vectorized as interleave, gather-scatter or scalarized. 1483 void collectUniformsAndScalars(ElementCount VF) { 1484 // Do the analysis once. 1485 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1486 return; 1487 setCostBasedWideningDecision(VF); 1488 collectLoopUniforms(VF); 1489 collectLoopScalars(VF); 1490 } 1491 1492 /// Returns true if the target machine supports masked store operation 1493 /// for the given \p DataType and kind of access to \p Ptr. 1494 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1495 return Legal->isConsecutivePtr(DataType, Ptr) && 1496 TTI.isLegalMaskedStore(DataType, Alignment); 1497 } 1498 1499 /// Returns true if the target machine supports masked load operation 1500 /// for the given \p DataType and kind of access to \p Ptr. 1501 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1502 return Legal->isConsecutivePtr(DataType, Ptr) && 1503 TTI.isLegalMaskedLoad(DataType, Alignment); 1504 } 1505 1506 /// Returns true if the target machine can represent \p V as a masked gather 1507 /// or scatter operation. 1508 bool isLegalGatherOrScatter(Value *V) { 1509 bool LI = isa<LoadInst>(V); 1510 bool SI = isa<StoreInst>(V); 1511 if (!LI && !SI) 1512 return false; 1513 auto *Ty = getLoadStoreType(V); 1514 Align Align = getLoadStoreAlignment(V); 1515 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1516 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1517 } 1518 1519 /// Returns true if the target machine supports all of the reduction 1520 /// variables found for the given VF. 1521 bool canVectorizeReductions(ElementCount VF) const { 1522 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1523 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1524 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1525 })); 1526 } 1527 1528 /// Returns true if \p I is an instruction that will be scalarized with 1529 /// predication. Such instructions include conditional stores and 1530 /// instructions that may divide by zero. 1531 /// If a non-zero VF has been calculated, we check if I will be scalarized 1532 /// predication for that VF. 1533 bool isScalarWithPredication(Instruction *I) const; 1534 1535 // Returns true if \p I is an instruction that will be predicated either 1536 // through scalar predication or masked load/store or masked gather/scatter. 1537 // Superset of instructions that return true for isScalarWithPredication. 1538 bool isPredicatedInst(Instruction *I) { 1539 if (!blockNeedsPredication(I->getParent())) 1540 return false; 1541 // Loads and stores that need some form of masked operation are predicated 1542 // instructions. 1543 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1544 return Legal->isMaskRequired(I); 1545 return isScalarWithPredication(I); 1546 } 1547 1548 /// Returns true if \p I is a memory instruction with consecutive memory 1549 /// access that can be widened. 1550 bool 1551 memoryInstructionCanBeWidened(Instruction *I, 1552 ElementCount VF = ElementCount::getFixed(1)); 1553 1554 /// Returns true if \p I is a memory instruction in an interleaved-group 1555 /// of memory accesses that can be vectorized with wide vector loads/stores 1556 /// and shuffles. 1557 bool 1558 interleavedAccessCanBeWidened(Instruction *I, 1559 ElementCount VF = ElementCount::getFixed(1)); 1560 1561 /// Check if \p Instr belongs to any interleaved access group. 1562 bool isAccessInterleaved(Instruction *Instr) { 1563 return InterleaveInfo.isInterleaved(Instr); 1564 } 1565 1566 /// Get the interleaved access group that \p Instr belongs to. 1567 const InterleaveGroup<Instruction> * 1568 getInterleavedAccessGroup(Instruction *Instr) { 1569 return InterleaveInfo.getInterleaveGroup(Instr); 1570 } 1571 1572 /// Returns true if we're required to use a scalar epilogue for at least 1573 /// the final iteration of the original loop. 1574 bool requiresScalarEpilogue(ElementCount VF) const { 1575 if (!isScalarEpilogueAllowed()) 1576 return false; 1577 // If we might exit from anywhere but the latch, must run the exiting 1578 // iteration in scalar form. 1579 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1580 return true; 1581 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1582 } 1583 1584 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1585 /// loop hint annotation. 1586 bool isScalarEpilogueAllowed() const { 1587 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1588 } 1589 1590 /// Returns true if all loop blocks should be masked to fold tail loop. 1591 bool foldTailByMasking() const { return FoldTailByMasking; } 1592 1593 bool blockNeedsPredication(BasicBlock *BB) const { 1594 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1595 } 1596 1597 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1598 /// nodes to the chain of instructions representing the reductions. Uses a 1599 /// MapVector to ensure deterministic iteration order. 1600 using ReductionChainMap = 1601 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1602 1603 /// Return the chain of instructions representing an inloop reduction. 1604 const ReductionChainMap &getInLoopReductionChains() const { 1605 return InLoopReductionChains; 1606 } 1607 1608 /// Returns true if the Phi is part of an inloop reduction. 1609 bool isInLoopReduction(PHINode *Phi) const { 1610 return InLoopReductionChains.count(Phi); 1611 } 1612 1613 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1614 /// with factor VF. Return the cost of the instruction, including 1615 /// scalarization overhead if it's needed. 1616 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1617 1618 /// Estimate cost of a call instruction CI if it were vectorized with factor 1619 /// VF. Return the cost of the instruction, including scalarization overhead 1620 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1621 /// scalarized - 1622 /// i.e. either vector version isn't available, or is too expensive. 1623 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1624 bool &NeedToScalarize) const; 1625 1626 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1627 /// that of B. 1628 bool isMoreProfitable(const VectorizationFactor &A, 1629 const VectorizationFactor &B) const; 1630 1631 /// Invalidates decisions already taken by the cost model. 1632 void invalidateCostModelingDecisions() { 1633 WideningDecisions.clear(); 1634 Uniforms.clear(); 1635 Scalars.clear(); 1636 } 1637 1638 private: 1639 unsigned NumPredStores = 0; 1640 1641 /// \return An upper bound for the vectorization factors for both 1642 /// fixed and scalable vectorization, where the minimum-known number of 1643 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1644 /// disabled or unsupported, then the scalable part will be equal to 1645 /// ElementCount::getScalable(0). 1646 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1647 ElementCount UserVF); 1648 1649 /// \return the maximized element count based on the targets vector 1650 /// registers and the loop trip-count, but limited to a maximum safe VF. 1651 /// This is a helper function of computeFeasibleMaxVF. 1652 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1653 /// issue that occurred on one of the buildbots which cannot be reproduced 1654 /// without having access to the properietary compiler (see comments on 1655 /// D98509). The issue is currently under investigation and this workaround 1656 /// will be removed as soon as possible. 1657 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1658 unsigned SmallestType, 1659 unsigned WidestType, 1660 const ElementCount &MaxSafeVF); 1661 1662 /// \return the maximum legal scalable VF, based on the safe max number 1663 /// of elements. 1664 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1665 1666 /// The vectorization cost is a combination of the cost itself and a boolean 1667 /// indicating whether any of the contributing operations will actually 1668 /// operate on vector values after type legalization in the backend. If this 1669 /// latter value is false, then all operations will be scalarized (i.e. no 1670 /// vectorization has actually taken place). 1671 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1672 1673 /// Returns the expected execution cost. The unit of the cost does 1674 /// not matter because we use the 'cost' units to compare different 1675 /// vector widths. The cost that is returned is *not* normalized by 1676 /// the factor width. If \p Invalid is not nullptr, this function 1677 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1678 /// each instruction that has an Invalid cost for the given VF. 1679 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1680 VectorizationCostTy 1681 expectedCost(ElementCount VF, 1682 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1683 1684 /// Returns the execution time cost of an instruction for a given vector 1685 /// width. Vector width of one means scalar. 1686 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1687 1688 /// The cost-computation logic from getInstructionCost which provides 1689 /// the vector type as an output parameter. 1690 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1691 Type *&VectorTy); 1692 1693 /// Return the cost of instructions in an inloop reduction pattern, if I is 1694 /// part of that pattern. 1695 Optional<InstructionCost> 1696 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1697 TTI::TargetCostKind CostKind); 1698 1699 /// Calculate vectorization cost of memory instruction \p I. 1700 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1701 1702 /// The cost computation for scalarized memory instruction. 1703 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1704 1705 /// The cost computation for interleaving group of memory instructions. 1706 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1707 1708 /// The cost computation for Gather/Scatter instruction. 1709 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1710 1711 /// The cost computation for widening instruction \p I with consecutive 1712 /// memory access. 1713 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1714 1715 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1716 /// Load: scalar load + broadcast. 1717 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1718 /// element) 1719 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1720 1721 /// Estimate the overhead of scalarizing an instruction. This is a 1722 /// convenience wrapper for the type-based getScalarizationOverhead API. 1723 InstructionCost getScalarizationOverhead(Instruction *I, 1724 ElementCount VF) const; 1725 1726 /// Returns whether the instruction is a load or store and will be a emitted 1727 /// as a vector operation. 1728 bool isConsecutiveLoadOrStore(Instruction *I); 1729 1730 /// Returns true if an artificially high cost for emulated masked memrefs 1731 /// should be used. 1732 bool useEmulatedMaskMemRefHack(Instruction *I); 1733 1734 /// Map of scalar integer values to the smallest bitwidth they can be legally 1735 /// represented as. The vector equivalents of these values should be truncated 1736 /// to this type. 1737 MapVector<Instruction *, uint64_t> MinBWs; 1738 1739 /// A type representing the costs for instructions if they were to be 1740 /// scalarized rather than vectorized. The entries are Instruction-Cost 1741 /// pairs. 1742 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1743 1744 /// A set containing all BasicBlocks that are known to present after 1745 /// vectorization as a predicated block. 1746 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1747 1748 /// Records whether it is allowed to have the original scalar loop execute at 1749 /// least once. This may be needed as a fallback loop in case runtime 1750 /// aliasing/dependence checks fail, or to handle the tail/remainder 1751 /// iterations when the trip count is unknown or doesn't divide by the VF, 1752 /// or as a peel-loop to handle gaps in interleave-groups. 1753 /// Under optsize and when the trip count is very small we don't allow any 1754 /// iterations to execute in the scalar loop. 1755 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1756 1757 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1758 bool FoldTailByMasking = false; 1759 1760 /// A map holding scalar costs for different vectorization factors. The 1761 /// presence of a cost for an instruction in the mapping indicates that the 1762 /// instruction will be scalarized when vectorizing with the associated 1763 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1764 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1765 1766 /// Holds the instructions known to be uniform after vectorization. 1767 /// The data is collected per VF. 1768 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1769 1770 /// Holds the instructions known to be scalar after vectorization. 1771 /// The data is collected per VF. 1772 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1773 1774 /// Holds the instructions (address computations) that are forced to be 1775 /// scalarized. 1776 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1777 1778 /// PHINodes of the reductions that should be expanded in-loop along with 1779 /// their associated chains of reduction operations, in program order from top 1780 /// (PHI) to bottom 1781 ReductionChainMap InLoopReductionChains; 1782 1783 /// A Map of inloop reduction operations and their immediate chain operand. 1784 /// FIXME: This can be removed once reductions can be costed correctly in 1785 /// vplan. This was added to allow quick lookup to the inloop operations, 1786 /// without having to loop through InLoopReductionChains. 1787 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1788 1789 /// Returns the expected difference in cost from scalarizing the expression 1790 /// feeding a predicated instruction \p PredInst. The instructions to 1791 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1792 /// non-negative return value implies the expression will be scalarized. 1793 /// Currently, only single-use chains are considered for scalarization. 1794 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1795 ElementCount VF); 1796 1797 /// Collect the instructions that are uniform after vectorization. An 1798 /// instruction is uniform if we represent it with a single scalar value in 1799 /// the vectorized loop corresponding to each vector iteration. Examples of 1800 /// uniform instructions include pointer operands of consecutive or 1801 /// interleaved memory accesses. Note that although uniformity implies an 1802 /// instruction will be scalar, the reverse is not true. In general, a 1803 /// scalarized instruction will be represented by VF scalar values in the 1804 /// vectorized loop, each corresponding to an iteration of the original 1805 /// scalar loop. 1806 void collectLoopUniforms(ElementCount VF); 1807 1808 /// Collect the instructions that are scalar after vectorization. An 1809 /// instruction is scalar if it is known to be uniform or will be scalarized 1810 /// during vectorization. Non-uniform scalarized instructions will be 1811 /// represented by VF values in the vectorized loop, each corresponding to an 1812 /// iteration of the original scalar loop. 1813 void collectLoopScalars(ElementCount VF); 1814 1815 /// Keeps cost model vectorization decision and cost for instructions. 1816 /// Right now it is used for memory instructions only. 1817 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1818 std::pair<InstWidening, InstructionCost>>; 1819 1820 DecisionList WideningDecisions; 1821 1822 /// Returns true if \p V is expected to be vectorized and it needs to be 1823 /// extracted. 1824 bool needsExtract(Value *V, ElementCount VF) const { 1825 Instruction *I = dyn_cast<Instruction>(V); 1826 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1827 TheLoop->isLoopInvariant(I)) 1828 return false; 1829 1830 // Assume we can vectorize V (and hence we need extraction) if the 1831 // scalars are not computed yet. This can happen, because it is called 1832 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1833 // the scalars are collected. That should be a safe assumption in most 1834 // cases, because we check if the operands have vectorizable types 1835 // beforehand in LoopVectorizationLegality. 1836 return Scalars.find(VF) == Scalars.end() || 1837 !isScalarAfterVectorization(I, VF); 1838 }; 1839 1840 /// Returns a range containing only operands needing to be extracted. 1841 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1842 ElementCount VF) const { 1843 return SmallVector<Value *, 4>(make_filter_range( 1844 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1845 } 1846 1847 /// Determines if we have the infrastructure to vectorize loop \p L and its 1848 /// epilogue, assuming the main loop is vectorized by \p VF. 1849 bool isCandidateForEpilogueVectorization(const Loop &L, 1850 const ElementCount VF) const; 1851 1852 /// Returns true if epilogue vectorization is considered profitable, and 1853 /// false otherwise. 1854 /// \p VF is the vectorization factor chosen for the original loop. 1855 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1856 1857 public: 1858 /// The loop that we evaluate. 1859 Loop *TheLoop; 1860 1861 /// Predicated scalar evolution analysis. 1862 PredicatedScalarEvolution &PSE; 1863 1864 /// Loop Info analysis. 1865 LoopInfo *LI; 1866 1867 /// Vectorization legality. 1868 LoopVectorizationLegality *Legal; 1869 1870 /// Vector target information. 1871 const TargetTransformInfo &TTI; 1872 1873 /// Target Library Info. 1874 const TargetLibraryInfo *TLI; 1875 1876 /// Demanded bits analysis. 1877 DemandedBits *DB; 1878 1879 /// Assumption cache. 1880 AssumptionCache *AC; 1881 1882 /// Interface to emit optimization remarks. 1883 OptimizationRemarkEmitter *ORE; 1884 1885 const Function *TheFunction; 1886 1887 /// Loop Vectorize Hint. 1888 const LoopVectorizeHints *Hints; 1889 1890 /// The interleave access information contains groups of interleaved accesses 1891 /// with the same stride and close to each other. 1892 InterleavedAccessInfo &InterleaveInfo; 1893 1894 /// Values to ignore in the cost model. 1895 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1896 1897 /// Values to ignore in the cost model when VF > 1. 1898 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1899 1900 /// All element types found in the loop. 1901 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1902 1903 /// Profitable vector factors. 1904 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1905 }; 1906 } // end namespace llvm 1907 1908 /// Helper struct to manage generating runtime checks for vectorization. 1909 /// 1910 /// The runtime checks are created up-front in temporary blocks to allow better 1911 /// estimating the cost and un-linked from the existing IR. After deciding to 1912 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1913 /// temporary blocks are completely removed. 1914 class GeneratedRTChecks { 1915 /// Basic block which contains the generated SCEV checks, if any. 1916 BasicBlock *SCEVCheckBlock = nullptr; 1917 1918 /// The value representing the result of the generated SCEV checks. If it is 1919 /// nullptr, either no SCEV checks have been generated or they have been used. 1920 Value *SCEVCheckCond = nullptr; 1921 1922 /// Basic block which contains the generated memory runtime checks, if any. 1923 BasicBlock *MemCheckBlock = nullptr; 1924 1925 /// The value representing the result of the generated memory runtime checks. 1926 /// If it is nullptr, either no memory runtime checks have been generated or 1927 /// they have been used. 1928 Instruction *MemRuntimeCheckCond = nullptr; 1929 1930 DominatorTree *DT; 1931 LoopInfo *LI; 1932 1933 SCEVExpander SCEVExp; 1934 SCEVExpander MemCheckExp; 1935 1936 public: 1937 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1938 const DataLayout &DL) 1939 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1940 MemCheckExp(SE, DL, "scev.check") {} 1941 1942 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1943 /// accurately estimate the cost of the runtime checks. The blocks are 1944 /// un-linked from the IR and is added back during vector code generation. If 1945 /// there is no vector code generation, the check blocks are removed 1946 /// completely. 1947 void Create(Loop *L, const LoopAccessInfo &LAI, 1948 const SCEVUnionPredicate &UnionPred) { 1949 1950 BasicBlock *LoopHeader = L->getHeader(); 1951 BasicBlock *Preheader = L->getLoopPreheader(); 1952 1953 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1954 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1955 // may be used by SCEVExpander. The blocks will be un-linked from their 1956 // predecessors and removed from LI & DT at the end of the function. 1957 if (!UnionPred.isAlwaysTrue()) { 1958 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1959 nullptr, "vector.scevcheck"); 1960 1961 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1962 &UnionPred, SCEVCheckBlock->getTerminator()); 1963 } 1964 1965 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1966 if (RtPtrChecking.Need) { 1967 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1968 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1969 "vector.memcheck"); 1970 1971 std::tie(std::ignore, MemRuntimeCheckCond) = 1972 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1973 RtPtrChecking.getChecks(), MemCheckExp); 1974 assert(MemRuntimeCheckCond && 1975 "no RT checks generated although RtPtrChecking " 1976 "claimed checks are required"); 1977 } 1978 1979 if (!MemCheckBlock && !SCEVCheckBlock) 1980 return; 1981 1982 // Unhook the temporary block with the checks, update various places 1983 // accordingly. 1984 if (SCEVCheckBlock) 1985 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1986 if (MemCheckBlock) 1987 MemCheckBlock->replaceAllUsesWith(Preheader); 1988 1989 if (SCEVCheckBlock) { 1990 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1991 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1992 Preheader->getTerminator()->eraseFromParent(); 1993 } 1994 if (MemCheckBlock) { 1995 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1996 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1997 Preheader->getTerminator()->eraseFromParent(); 1998 } 1999 2000 DT->changeImmediateDominator(LoopHeader, Preheader); 2001 if (MemCheckBlock) { 2002 DT->eraseNode(MemCheckBlock); 2003 LI->removeBlock(MemCheckBlock); 2004 } 2005 if (SCEVCheckBlock) { 2006 DT->eraseNode(SCEVCheckBlock); 2007 LI->removeBlock(SCEVCheckBlock); 2008 } 2009 } 2010 2011 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2012 /// unused. 2013 ~GeneratedRTChecks() { 2014 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 2015 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 2016 if (!SCEVCheckCond) 2017 SCEVCleaner.markResultUsed(); 2018 2019 if (!MemRuntimeCheckCond) 2020 MemCheckCleaner.markResultUsed(); 2021 2022 if (MemRuntimeCheckCond) { 2023 auto &SE = *MemCheckExp.getSE(); 2024 // Memory runtime check generation creates compares that use expanded 2025 // values. Remove them before running the SCEVExpanderCleaners. 2026 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2027 if (MemCheckExp.isInsertedInstruction(&I)) 2028 continue; 2029 SE.forgetValue(&I); 2030 SE.eraseValueFromMap(&I); 2031 I.eraseFromParent(); 2032 } 2033 } 2034 MemCheckCleaner.cleanup(); 2035 SCEVCleaner.cleanup(); 2036 2037 if (SCEVCheckCond) 2038 SCEVCheckBlock->eraseFromParent(); 2039 if (MemRuntimeCheckCond) 2040 MemCheckBlock->eraseFromParent(); 2041 } 2042 2043 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2044 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2045 /// depending on the generated condition. 2046 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2047 BasicBlock *LoopVectorPreHeader, 2048 BasicBlock *LoopExitBlock) { 2049 if (!SCEVCheckCond) 2050 return nullptr; 2051 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2052 if (C->isZero()) 2053 return nullptr; 2054 2055 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2056 2057 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2058 // Create new preheader for vector loop. 2059 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2060 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2061 2062 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2063 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2064 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2065 SCEVCheckBlock); 2066 2067 DT->addNewBlock(SCEVCheckBlock, Pred); 2068 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2069 2070 ReplaceInstWithInst( 2071 SCEVCheckBlock->getTerminator(), 2072 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2073 // Mark the check as used, to prevent it from being removed during cleanup. 2074 SCEVCheckCond = nullptr; 2075 return SCEVCheckBlock; 2076 } 2077 2078 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2079 /// the branches to branch to the vector preheader or \p Bypass, depending on 2080 /// the generated condition. 2081 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2082 BasicBlock *LoopVectorPreHeader) { 2083 // Check if we generated code that checks in runtime if arrays overlap. 2084 if (!MemRuntimeCheckCond) 2085 return nullptr; 2086 2087 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2088 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2089 MemCheckBlock); 2090 2091 DT->addNewBlock(MemCheckBlock, Pred); 2092 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2093 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2094 2095 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2096 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2097 2098 ReplaceInstWithInst( 2099 MemCheckBlock->getTerminator(), 2100 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2101 MemCheckBlock->getTerminator()->setDebugLoc( 2102 Pred->getTerminator()->getDebugLoc()); 2103 2104 // Mark the check as used, to prevent it from being removed during cleanup. 2105 MemRuntimeCheckCond = nullptr; 2106 return MemCheckBlock; 2107 } 2108 }; 2109 2110 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2111 // vectorization. The loop needs to be annotated with #pragma omp simd 2112 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2113 // vector length information is not provided, vectorization is not considered 2114 // explicit. Interleave hints are not allowed either. These limitations will be 2115 // relaxed in the future. 2116 // Please, note that we are currently forced to abuse the pragma 'clang 2117 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2118 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2119 // provides *explicit vectorization hints* (LV can bypass legal checks and 2120 // assume that vectorization is legal). However, both hints are implemented 2121 // using the same metadata (llvm.loop.vectorize, processed by 2122 // LoopVectorizeHints). This will be fixed in the future when the native IR 2123 // representation for pragma 'omp simd' is introduced. 2124 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2125 OptimizationRemarkEmitter *ORE) { 2126 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2127 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2128 2129 // Only outer loops with an explicit vectorization hint are supported. 2130 // Unannotated outer loops are ignored. 2131 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2132 return false; 2133 2134 Function *Fn = OuterLp->getHeader()->getParent(); 2135 if (!Hints.allowVectorization(Fn, OuterLp, 2136 true /*VectorizeOnlyWhenForced*/)) { 2137 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2138 return false; 2139 } 2140 2141 if (Hints.getInterleave() > 1) { 2142 // TODO: Interleave support is future work. 2143 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2144 "outer loops.\n"); 2145 Hints.emitRemarkWithHints(); 2146 return false; 2147 } 2148 2149 return true; 2150 } 2151 2152 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2153 OptimizationRemarkEmitter *ORE, 2154 SmallVectorImpl<Loop *> &V) { 2155 // Collect inner loops and outer loops without irreducible control flow. For 2156 // now, only collect outer loops that have explicit vectorization hints. If we 2157 // are stress testing the VPlan H-CFG construction, we collect the outermost 2158 // loop of every loop nest. 2159 if (L.isInnermost() || VPlanBuildStressTest || 2160 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2161 LoopBlocksRPO RPOT(&L); 2162 RPOT.perform(LI); 2163 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2164 V.push_back(&L); 2165 // TODO: Collect inner loops inside marked outer loops in case 2166 // vectorization fails for the outer loop. Do not invoke 2167 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2168 // already known to be reducible. We can use an inherited attribute for 2169 // that. 2170 return; 2171 } 2172 } 2173 for (Loop *InnerL : L) 2174 collectSupportedLoops(*InnerL, LI, ORE, V); 2175 } 2176 2177 namespace { 2178 2179 /// The LoopVectorize Pass. 2180 struct LoopVectorize : public FunctionPass { 2181 /// Pass identification, replacement for typeid 2182 static char ID; 2183 2184 LoopVectorizePass Impl; 2185 2186 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2187 bool VectorizeOnlyWhenForced = false) 2188 : FunctionPass(ID), 2189 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2190 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2191 } 2192 2193 bool runOnFunction(Function &F) override { 2194 if (skipFunction(F)) 2195 return false; 2196 2197 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2198 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2199 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2200 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2201 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2202 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2203 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2204 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2205 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2206 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2207 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2208 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2209 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2210 2211 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2212 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2213 2214 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2215 GetLAA, *ORE, PSI).MadeAnyChange; 2216 } 2217 2218 void getAnalysisUsage(AnalysisUsage &AU) const override { 2219 AU.addRequired<AssumptionCacheTracker>(); 2220 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2221 AU.addRequired<DominatorTreeWrapperPass>(); 2222 AU.addRequired<LoopInfoWrapperPass>(); 2223 AU.addRequired<ScalarEvolutionWrapperPass>(); 2224 AU.addRequired<TargetTransformInfoWrapperPass>(); 2225 AU.addRequired<AAResultsWrapperPass>(); 2226 AU.addRequired<LoopAccessLegacyAnalysis>(); 2227 AU.addRequired<DemandedBitsWrapperPass>(); 2228 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2229 AU.addRequired<InjectTLIMappingsLegacy>(); 2230 2231 // We currently do not preserve loopinfo/dominator analyses with outer loop 2232 // vectorization. Until this is addressed, mark these analyses as preserved 2233 // only for non-VPlan-native path. 2234 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2235 if (!EnableVPlanNativePath) { 2236 AU.addPreserved<LoopInfoWrapperPass>(); 2237 AU.addPreserved<DominatorTreeWrapperPass>(); 2238 } 2239 2240 AU.addPreserved<BasicAAWrapperPass>(); 2241 AU.addPreserved<GlobalsAAWrapperPass>(); 2242 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2243 } 2244 }; 2245 2246 } // end anonymous namespace 2247 2248 //===----------------------------------------------------------------------===// 2249 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2250 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2251 //===----------------------------------------------------------------------===// 2252 2253 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2254 // We need to place the broadcast of invariant variables outside the loop, 2255 // but only if it's proven safe to do so. Else, broadcast will be inside 2256 // vector loop body. 2257 Instruction *Instr = dyn_cast<Instruction>(V); 2258 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2259 (!Instr || 2260 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2261 // Place the code for broadcasting invariant variables in the new preheader. 2262 IRBuilder<>::InsertPointGuard Guard(Builder); 2263 if (SafeToHoist) 2264 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2265 2266 // Broadcast the scalar into all locations in the vector. 2267 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2268 2269 return Shuf; 2270 } 2271 2272 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2273 const InductionDescriptor &II, Value *Step, Value *Start, 2274 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2275 VPTransformState &State) { 2276 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2277 "Expected either an induction phi-node or a truncate of it!"); 2278 2279 // Construct the initial value of the vector IV in the vector loop preheader 2280 auto CurrIP = Builder.saveIP(); 2281 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2282 if (isa<TruncInst>(EntryVal)) { 2283 assert(Start->getType()->isIntegerTy() && 2284 "Truncation requires an integer type"); 2285 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2286 Step = Builder.CreateTrunc(Step, TruncType); 2287 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2288 } 2289 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2290 Value *SteppedStart = 2291 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2292 2293 // We create vector phi nodes for both integer and floating-point induction 2294 // variables. Here, we determine the kind of arithmetic we will perform. 2295 Instruction::BinaryOps AddOp; 2296 Instruction::BinaryOps MulOp; 2297 if (Step->getType()->isIntegerTy()) { 2298 AddOp = Instruction::Add; 2299 MulOp = Instruction::Mul; 2300 } else { 2301 AddOp = II.getInductionOpcode(); 2302 MulOp = Instruction::FMul; 2303 } 2304 2305 // Multiply the vectorization factor by the step using integer or 2306 // floating-point arithmetic as appropriate. 2307 Type *StepType = Step->getType(); 2308 if (Step->getType()->isFloatingPointTy()) 2309 StepType = IntegerType::get(StepType->getContext(), 2310 StepType->getScalarSizeInBits()); 2311 Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2312 if (Step->getType()->isFloatingPointTy()) 2313 RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType()); 2314 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2315 2316 // Create a vector splat to use in the induction update. 2317 // 2318 // FIXME: If the step is non-constant, we create the vector splat with 2319 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2320 // handle a constant vector splat. 2321 Value *SplatVF = isa<Constant>(Mul) 2322 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2323 : Builder.CreateVectorSplat(VF, Mul); 2324 Builder.restoreIP(CurrIP); 2325 2326 // We may need to add the step a number of times, depending on the unroll 2327 // factor. The last of those goes into the PHI. 2328 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2329 &*LoopVectorBody->getFirstInsertionPt()); 2330 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2331 Instruction *LastInduction = VecInd; 2332 for (unsigned Part = 0; Part < UF; ++Part) { 2333 State.set(Def, LastInduction, Part); 2334 2335 if (isa<TruncInst>(EntryVal)) 2336 addMetadata(LastInduction, EntryVal); 2337 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2338 State, Part); 2339 2340 LastInduction = cast<Instruction>( 2341 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2342 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2343 } 2344 2345 // Move the last step to the end of the latch block. This ensures consistent 2346 // placement of all induction updates. 2347 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2348 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2349 auto *ICmp = cast<Instruction>(Br->getCondition()); 2350 LastInduction->moveBefore(ICmp); 2351 LastInduction->setName("vec.ind.next"); 2352 2353 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2354 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2355 } 2356 2357 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2358 return Cost->isScalarAfterVectorization(I, VF) || 2359 Cost->isProfitableToScalarize(I, VF); 2360 } 2361 2362 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2363 if (shouldScalarizeInstruction(IV)) 2364 return true; 2365 auto isScalarInst = [&](User *U) -> bool { 2366 auto *I = cast<Instruction>(U); 2367 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2368 }; 2369 return llvm::any_of(IV->users(), isScalarInst); 2370 } 2371 2372 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2373 const InductionDescriptor &ID, const Instruction *EntryVal, 2374 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2375 unsigned Part, unsigned Lane) { 2376 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2377 "Expected either an induction phi-node or a truncate of it!"); 2378 2379 // This induction variable is not the phi from the original loop but the 2380 // newly-created IV based on the proof that casted Phi is equal to the 2381 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2382 // re-uses the same InductionDescriptor that original IV uses but we don't 2383 // have to do any recording in this case - that is done when original IV is 2384 // processed. 2385 if (isa<TruncInst>(EntryVal)) 2386 return; 2387 2388 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2389 if (Casts.empty()) 2390 return; 2391 // Only the first Cast instruction in the Casts vector is of interest. 2392 // The rest of the Casts (if exist) have no uses outside the 2393 // induction update chain itself. 2394 if (Lane < UINT_MAX) 2395 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2396 else 2397 State.set(CastDef, VectorLoopVal, Part); 2398 } 2399 2400 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2401 TruncInst *Trunc, VPValue *Def, 2402 VPValue *CastDef, 2403 VPTransformState &State) { 2404 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2405 "Primary induction variable must have an integer type"); 2406 2407 auto II = Legal->getInductionVars().find(IV); 2408 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2409 2410 auto ID = II->second; 2411 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2412 2413 // The value from the original loop to which we are mapping the new induction 2414 // variable. 2415 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2416 2417 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2418 2419 // Generate code for the induction step. Note that induction steps are 2420 // required to be loop-invariant 2421 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2422 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2423 "Induction step should be loop invariant"); 2424 if (PSE.getSE()->isSCEVable(IV->getType())) { 2425 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2426 return Exp.expandCodeFor(Step, Step->getType(), 2427 LoopVectorPreHeader->getTerminator()); 2428 } 2429 return cast<SCEVUnknown>(Step)->getValue(); 2430 }; 2431 2432 // The scalar value to broadcast. This is derived from the canonical 2433 // induction variable. If a truncation type is given, truncate the canonical 2434 // induction variable and step. Otherwise, derive these values from the 2435 // induction descriptor. 2436 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2437 Value *ScalarIV = Induction; 2438 if (IV != OldInduction) { 2439 ScalarIV = IV->getType()->isIntegerTy() 2440 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2441 : Builder.CreateCast(Instruction::SIToFP, Induction, 2442 IV->getType()); 2443 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2444 ScalarIV->setName("offset.idx"); 2445 } 2446 if (Trunc) { 2447 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2448 assert(Step->getType()->isIntegerTy() && 2449 "Truncation requires an integer step"); 2450 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2451 Step = Builder.CreateTrunc(Step, TruncType); 2452 } 2453 return ScalarIV; 2454 }; 2455 2456 // Create the vector values from the scalar IV, in the absence of creating a 2457 // vector IV. 2458 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2459 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2460 for (unsigned Part = 0; Part < UF; ++Part) { 2461 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2462 Value *EntryPart = 2463 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2464 ID.getInductionOpcode()); 2465 State.set(Def, EntryPart, Part); 2466 if (Trunc) 2467 addMetadata(EntryPart, Trunc); 2468 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2469 State, Part); 2470 } 2471 }; 2472 2473 // Fast-math-flags propagate from the original induction instruction. 2474 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2475 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2476 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2477 2478 // Now do the actual transformations, and start with creating the step value. 2479 Value *Step = CreateStepValue(ID.getStep()); 2480 if (VF.isZero() || VF.isScalar()) { 2481 Value *ScalarIV = CreateScalarIV(Step); 2482 CreateSplatIV(ScalarIV, Step); 2483 return; 2484 } 2485 2486 // Determine if we want a scalar version of the induction variable. This is 2487 // true if the induction variable itself is not widened, or if it has at 2488 // least one user in the loop that is not widened. 2489 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2490 if (!NeedsScalarIV) { 2491 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2492 State); 2493 return; 2494 } 2495 2496 // Try to create a new independent vector induction variable. If we can't 2497 // create the phi node, we will splat the scalar induction variable in each 2498 // loop iteration. 2499 if (!shouldScalarizeInstruction(EntryVal)) { 2500 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2501 State); 2502 Value *ScalarIV = CreateScalarIV(Step); 2503 // Create scalar steps that can be used by instructions we will later 2504 // scalarize. Note that the addition of the scalar steps will not increase 2505 // the number of instructions in the loop in the common case prior to 2506 // InstCombine. We will be trading one vector extract for each scalar step. 2507 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2508 return; 2509 } 2510 2511 // All IV users are scalar instructions, so only emit a scalar IV, not a 2512 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2513 // predicate used by the masked loads/stores. 2514 Value *ScalarIV = CreateScalarIV(Step); 2515 if (!Cost->isScalarEpilogueAllowed()) 2516 CreateSplatIV(ScalarIV, Step); 2517 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2518 } 2519 2520 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2521 Instruction::BinaryOps BinOp) { 2522 // Create and check the types. 2523 auto *ValVTy = cast<VectorType>(Val->getType()); 2524 ElementCount VLen = ValVTy->getElementCount(); 2525 2526 Type *STy = Val->getType()->getScalarType(); 2527 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2528 "Induction Step must be an integer or FP"); 2529 assert(Step->getType() == STy && "Step has wrong type"); 2530 2531 SmallVector<Constant *, 8> Indices; 2532 2533 // Create a vector of consecutive numbers from zero to VF. 2534 VectorType *InitVecValVTy = ValVTy; 2535 Type *InitVecValSTy = STy; 2536 if (STy->isFloatingPointTy()) { 2537 InitVecValSTy = 2538 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2539 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2540 } 2541 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2542 2543 // Add on StartIdx 2544 Value *StartIdxSplat = Builder.CreateVectorSplat( 2545 VLen, ConstantInt::get(InitVecValSTy, StartIdx)); 2546 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2547 2548 if (STy->isIntegerTy()) { 2549 Step = Builder.CreateVectorSplat(VLen, Step); 2550 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2551 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2552 // which can be found from the original scalar operations. 2553 Step = Builder.CreateMul(InitVec, Step); 2554 return Builder.CreateAdd(Val, Step, "induction"); 2555 } 2556 2557 // Floating point induction. 2558 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2559 "Binary Opcode should be specified for FP induction"); 2560 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2561 Step = Builder.CreateVectorSplat(VLen, Step); 2562 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2563 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2564 } 2565 2566 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2567 Instruction *EntryVal, 2568 const InductionDescriptor &ID, 2569 VPValue *Def, VPValue *CastDef, 2570 VPTransformState &State) { 2571 // We shouldn't have to build scalar steps if we aren't vectorizing. 2572 assert(VF.isVector() && "VF should be greater than one"); 2573 // Get the value type and ensure it and the step have the same integer type. 2574 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2575 assert(ScalarIVTy == Step->getType() && 2576 "Val and Step should have the same type"); 2577 2578 // We build scalar steps for both integer and floating-point induction 2579 // variables. Here, we determine the kind of arithmetic we will perform. 2580 Instruction::BinaryOps AddOp; 2581 Instruction::BinaryOps MulOp; 2582 if (ScalarIVTy->isIntegerTy()) { 2583 AddOp = Instruction::Add; 2584 MulOp = Instruction::Mul; 2585 } else { 2586 AddOp = ID.getInductionOpcode(); 2587 MulOp = Instruction::FMul; 2588 } 2589 2590 // Determine the number of scalars we need to generate for each unroll 2591 // iteration. If EntryVal is uniform, we only need to generate the first 2592 // lane. Otherwise, we generate all VF values. 2593 bool IsUniform = 2594 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2595 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2596 // Compute the scalar steps and save the results in State. 2597 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2598 ScalarIVTy->getScalarSizeInBits()); 2599 Type *VecIVTy = nullptr; 2600 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2601 if (!IsUniform && VF.isScalable()) { 2602 VecIVTy = VectorType::get(ScalarIVTy, VF); 2603 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2604 SplatStep = Builder.CreateVectorSplat(VF, Step); 2605 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2606 } 2607 2608 for (unsigned Part = 0; Part < UF; ++Part) { 2609 Value *StartIdx0 = 2610 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2611 2612 if (!IsUniform && VF.isScalable()) { 2613 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2614 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2615 if (ScalarIVTy->isFloatingPointTy()) 2616 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2617 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2618 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2619 State.set(Def, Add, Part); 2620 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2621 Part); 2622 // It's useful to record the lane values too for the known minimum number 2623 // of elements so we do those below. This improves the code quality when 2624 // trying to extract the first element, for example. 2625 } 2626 2627 if (ScalarIVTy->isFloatingPointTy()) 2628 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2629 2630 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2631 Value *StartIdx = Builder.CreateBinOp( 2632 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2633 // The step returned by `createStepForVF` is a runtime-evaluated value 2634 // when VF is scalable. Otherwise, it should be folded into a Constant. 2635 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2636 "Expected StartIdx to be folded to a constant when VF is not " 2637 "scalable"); 2638 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2639 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2640 State.set(Def, Add, VPIteration(Part, Lane)); 2641 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2642 Part, Lane); 2643 } 2644 } 2645 } 2646 2647 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2648 const VPIteration &Instance, 2649 VPTransformState &State) { 2650 Value *ScalarInst = State.get(Def, Instance); 2651 Value *VectorValue = State.get(Def, Instance.Part); 2652 VectorValue = Builder.CreateInsertElement( 2653 VectorValue, ScalarInst, 2654 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2655 State.set(Def, VectorValue, Instance.Part); 2656 } 2657 2658 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2659 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2660 return Builder.CreateVectorReverse(Vec, "reverse"); 2661 } 2662 2663 // Return whether we allow using masked interleave-groups (for dealing with 2664 // strided loads/stores that reside in predicated blocks, or for dealing 2665 // with gaps). 2666 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2667 // If an override option has been passed in for interleaved accesses, use it. 2668 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2669 return EnableMaskedInterleavedMemAccesses; 2670 2671 return TTI.enableMaskedInterleavedAccessVectorization(); 2672 } 2673 2674 // Try to vectorize the interleave group that \p Instr belongs to. 2675 // 2676 // E.g. Translate following interleaved load group (factor = 3): 2677 // for (i = 0; i < N; i+=3) { 2678 // R = Pic[i]; // Member of index 0 2679 // G = Pic[i+1]; // Member of index 1 2680 // B = Pic[i+2]; // Member of index 2 2681 // ... // do something to R, G, B 2682 // } 2683 // To: 2684 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2685 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2686 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2687 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2688 // 2689 // Or translate following interleaved store group (factor = 3): 2690 // for (i = 0; i < N; i+=3) { 2691 // ... do something to R, G, B 2692 // Pic[i] = R; // Member of index 0 2693 // Pic[i+1] = G; // Member of index 1 2694 // Pic[i+2] = B; // Member of index 2 2695 // } 2696 // To: 2697 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2698 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2699 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2700 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2701 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2702 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2703 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2704 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2705 VPValue *BlockInMask) { 2706 Instruction *Instr = Group->getInsertPos(); 2707 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2708 2709 // Prepare for the vector type of the interleaved load/store. 2710 Type *ScalarTy = getLoadStoreType(Instr); 2711 unsigned InterleaveFactor = Group->getFactor(); 2712 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2713 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2714 2715 // Prepare for the new pointers. 2716 SmallVector<Value *, 2> AddrParts; 2717 unsigned Index = Group->getIndex(Instr); 2718 2719 // TODO: extend the masked interleaved-group support to reversed access. 2720 assert((!BlockInMask || !Group->isReverse()) && 2721 "Reversed masked interleave-group not supported."); 2722 2723 // If the group is reverse, adjust the index to refer to the last vector lane 2724 // instead of the first. We adjust the index from the first vector lane, 2725 // rather than directly getting the pointer for lane VF - 1, because the 2726 // pointer operand of the interleaved access is supposed to be uniform. For 2727 // uniform instructions, we're only required to generate a value for the 2728 // first vector lane in each unroll iteration. 2729 if (Group->isReverse()) 2730 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2731 2732 for (unsigned Part = 0; Part < UF; Part++) { 2733 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2734 setDebugLocFromInst(AddrPart); 2735 2736 // Notice current instruction could be any index. Need to adjust the address 2737 // to the member of index 0. 2738 // 2739 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2740 // b = A[i]; // Member of index 0 2741 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2742 // 2743 // E.g. A[i+1] = a; // Member of index 1 2744 // A[i] = b; // Member of index 0 2745 // A[i+2] = c; // Member of index 2 (Current instruction) 2746 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2747 2748 bool InBounds = false; 2749 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2750 InBounds = gep->isInBounds(); 2751 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2752 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2753 2754 // Cast to the vector pointer type. 2755 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2756 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2757 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2758 } 2759 2760 setDebugLocFromInst(Instr); 2761 Value *PoisonVec = PoisonValue::get(VecTy); 2762 2763 Value *MaskForGaps = nullptr; 2764 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2765 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2766 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2767 } 2768 2769 // Vectorize the interleaved load group. 2770 if (isa<LoadInst>(Instr)) { 2771 // For each unroll part, create a wide load for the group. 2772 SmallVector<Value *, 2> NewLoads; 2773 for (unsigned Part = 0; Part < UF; Part++) { 2774 Instruction *NewLoad; 2775 if (BlockInMask || MaskForGaps) { 2776 assert(useMaskedInterleavedAccesses(*TTI) && 2777 "masked interleaved groups are not allowed."); 2778 Value *GroupMask = MaskForGaps; 2779 if (BlockInMask) { 2780 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2781 Value *ShuffledMask = Builder.CreateShuffleVector( 2782 BlockInMaskPart, 2783 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2784 "interleaved.mask"); 2785 GroupMask = MaskForGaps 2786 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2787 MaskForGaps) 2788 : ShuffledMask; 2789 } 2790 NewLoad = 2791 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2792 GroupMask, PoisonVec, "wide.masked.vec"); 2793 } 2794 else 2795 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2796 Group->getAlign(), "wide.vec"); 2797 Group->addMetadata(NewLoad); 2798 NewLoads.push_back(NewLoad); 2799 } 2800 2801 // For each member in the group, shuffle out the appropriate data from the 2802 // wide loads. 2803 unsigned J = 0; 2804 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2805 Instruction *Member = Group->getMember(I); 2806 2807 // Skip the gaps in the group. 2808 if (!Member) 2809 continue; 2810 2811 auto StrideMask = 2812 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2813 for (unsigned Part = 0; Part < UF; Part++) { 2814 Value *StridedVec = Builder.CreateShuffleVector( 2815 NewLoads[Part], StrideMask, "strided.vec"); 2816 2817 // If this member has different type, cast the result type. 2818 if (Member->getType() != ScalarTy) { 2819 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2820 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2821 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2822 } 2823 2824 if (Group->isReverse()) 2825 StridedVec = reverseVector(StridedVec); 2826 2827 State.set(VPDefs[J], StridedVec, Part); 2828 } 2829 ++J; 2830 } 2831 return; 2832 } 2833 2834 // The sub vector type for current instruction. 2835 auto *SubVT = VectorType::get(ScalarTy, VF); 2836 2837 // Vectorize the interleaved store group. 2838 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2839 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2840 "masked interleaved groups are not allowed."); 2841 assert((!MaskForGaps || !VF.isScalable()) && 2842 "masking gaps for scalable vectors is not yet supported."); 2843 for (unsigned Part = 0; Part < UF; Part++) { 2844 // Collect the stored vector from each member. 2845 SmallVector<Value *, 4> StoredVecs; 2846 for (unsigned i = 0; i < InterleaveFactor; i++) { 2847 assert((Group->getMember(i) || MaskForGaps) && 2848 "Fail to get a member from an interleaved store group"); 2849 Instruction *Member = Group->getMember(i); 2850 2851 // Skip the gaps in the group. 2852 if (!Member) { 2853 Value *Undef = PoisonValue::get(SubVT); 2854 StoredVecs.push_back(Undef); 2855 continue; 2856 } 2857 2858 Value *StoredVec = State.get(StoredValues[i], Part); 2859 2860 if (Group->isReverse()) 2861 StoredVec = reverseVector(StoredVec); 2862 2863 // If this member has different type, cast it to a unified type. 2864 2865 if (StoredVec->getType() != SubVT) 2866 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2867 2868 StoredVecs.push_back(StoredVec); 2869 } 2870 2871 // Concatenate all vectors into a wide vector. 2872 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2873 2874 // Interleave the elements in the wide vector. 2875 Value *IVec = Builder.CreateShuffleVector( 2876 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2877 "interleaved.vec"); 2878 2879 Instruction *NewStoreInstr; 2880 if (BlockInMask || MaskForGaps) { 2881 Value *GroupMask = MaskForGaps; 2882 if (BlockInMask) { 2883 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2884 Value *ShuffledMask = Builder.CreateShuffleVector( 2885 BlockInMaskPart, 2886 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2887 "interleaved.mask"); 2888 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2889 ShuffledMask, MaskForGaps) 2890 : ShuffledMask; 2891 } 2892 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2893 Group->getAlign(), GroupMask); 2894 } else 2895 NewStoreInstr = 2896 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2897 2898 Group->addMetadata(NewStoreInstr); 2899 } 2900 } 2901 2902 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2903 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2904 VPValue *StoredValue, VPValue *BlockInMask) { 2905 // Attempt to issue a wide load. 2906 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2907 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2908 2909 assert((LI || SI) && "Invalid Load/Store instruction"); 2910 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2911 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2912 2913 LoopVectorizationCostModel::InstWidening Decision = 2914 Cost->getWideningDecision(Instr, VF); 2915 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2916 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2917 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2918 "CM decision is not to widen the memory instruction"); 2919 2920 Type *ScalarDataTy = getLoadStoreType(Instr); 2921 2922 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2923 const Align Alignment = getLoadStoreAlignment(Instr); 2924 2925 // Determine if the pointer operand of the access is either consecutive or 2926 // reverse consecutive. 2927 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2928 bool ConsecutiveStride = 2929 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2930 bool CreateGatherScatter = 2931 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2932 2933 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2934 // gather/scatter. Otherwise Decision should have been to Scalarize. 2935 assert((ConsecutiveStride || CreateGatherScatter) && 2936 "The instruction should be scalarized"); 2937 (void)ConsecutiveStride; 2938 2939 VectorParts BlockInMaskParts(UF); 2940 bool isMaskRequired = BlockInMask; 2941 if (isMaskRequired) 2942 for (unsigned Part = 0; Part < UF; ++Part) 2943 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2944 2945 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2946 // Calculate the pointer for the specific unroll-part. 2947 GetElementPtrInst *PartPtr = nullptr; 2948 2949 bool InBounds = false; 2950 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2951 InBounds = gep->isInBounds(); 2952 if (Reverse) { 2953 // If the address is consecutive but reversed, then the 2954 // wide store needs to start at the last vector element. 2955 // RunTimeVF = VScale * VF.getKnownMinValue() 2956 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 2957 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF); 2958 // NumElt = -Part * RunTimeVF 2959 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 2960 // LastLane = 1 - RunTimeVF 2961 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 2962 PartPtr = 2963 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 2964 PartPtr->setIsInBounds(InBounds); 2965 PartPtr = cast<GetElementPtrInst>( 2966 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 2967 PartPtr->setIsInBounds(InBounds); 2968 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2969 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2970 } else { 2971 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2972 PartPtr = cast<GetElementPtrInst>( 2973 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2974 PartPtr->setIsInBounds(InBounds); 2975 } 2976 2977 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2978 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2979 }; 2980 2981 // Handle Stores: 2982 if (SI) { 2983 setDebugLocFromInst(SI); 2984 2985 for (unsigned Part = 0; Part < UF; ++Part) { 2986 Instruction *NewSI = nullptr; 2987 Value *StoredVal = State.get(StoredValue, Part); 2988 if (CreateGatherScatter) { 2989 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2990 Value *VectorGep = State.get(Addr, Part); 2991 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2992 MaskPart); 2993 } else { 2994 if (Reverse) { 2995 // If we store to reverse consecutive memory locations, then we need 2996 // to reverse the order of elements in the stored value. 2997 StoredVal = reverseVector(StoredVal); 2998 // We don't want to update the value in the map as it might be used in 2999 // another expression. So don't call resetVectorValue(StoredVal). 3000 } 3001 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 3002 if (isMaskRequired) 3003 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3004 BlockInMaskParts[Part]); 3005 else 3006 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3007 } 3008 addMetadata(NewSI, SI); 3009 } 3010 return; 3011 } 3012 3013 // Handle loads. 3014 assert(LI && "Must have a load instruction"); 3015 setDebugLocFromInst(LI); 3016 for (unsigned Part = 0; Part < UF; ++Part) { 3017 Value *NewLI; 3018 if (CreateGatherScatter) { 3019 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 3020 Value *VectorGep = State.get(Addr, Part); 3021 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 3022 nullptr, "wide.masked.gather"); 3023 addMetadata(NewLI, LI); 3024 } else { 3025 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 3026 if (isMaskRequired) 3027 NewLI = Builder.CreateMaskedLoad( 3028 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 3029 PoisonValue::get(DataTy), "wide.masked.load"); 3030 else 3031 NewLI = 3032 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 3033 3034 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3035 addMetadata(NewLI, LI); 3036 if (Reverse) 3037 NewLI = reverseVector(NewLI); 3038 } 3039 3040 State.set(Def, NewLI, Part); 3041 } 3042 } 3043 3044 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 3045 VPUser &User, 3046 const VPIteration &Instance, 3047 bool IfPredicateInstr, 3048 VPTransformState &State) { 3049 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3050 3051 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3052 // the first lane and part. 3053 if (isa<NoAliasScopeDeclInst>(Instr)) 3054 if (!Instance.isFirstIteration()) 3055 return; 3056 3057 setDebugLocFromInst(Instr); 3058 3059 // Does this instruction return a value ? 3060 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3061 3062 Instruction *Cloned = Instr->clone(); 3063 if (!IsVoidRetTy) 3064 Cloned->setName(Instr->getName() + ".cloned"); 3065 3066 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3067 Builder.GetInsertPoint()); 3068 // Replace the operands of the cloned instructions with their scalar 3069 // equivalents in the new loop. 3070 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 3071 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 3072 auto InputInstance = Instance; 3073 if (!Operand || !OrigLoop->contains(Operand) || 3074 (Cost->isUniformAfterVectorization(Operand, State.VF))) 3075 InputInstance.Lane = VPLane::getFirstLane(); 3076 auto *NewOp = State.get(User.getOperand(op), InputInstance); 3077 Cloned->setOperand(op, NewOp); 3078 } 3079 addNewMetadata(Cloned, Instr); 3080 3081 // Place the cloned scalar in the new loop. 3082 Builder.Insert(Cloned); 3083 3084 State.set(Def, Cloned, Instance); 3085 3086 // If we just cloned a new assumption, add it the assumption cache. 3087 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3088 AC->registerAssumption(II); 3089 3090 // End if-block. 3091 if (IfPredicateInstr) 3092 PredicatedInstructions.push_back(Cloned); 3093 } 3094 3095 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3096 Value *End, Value *Step, 3097 Instruction *DL) { 3098 BasicBlock *Header = L->getHeader(); 3099 BasicBlock *Latch = L->getLoopLatch(); 3100 // As we're just creating this loop, it's possible no latch exists 3101 // yet. If so, use the header as this will be a single block loop. 3102 if (!Latch) 3103 Latch = Header; 3104 3105 IRBuilder<> B(&*Header->getFirstInsertionPt()); 3106 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3107 setDebugLocFromInst(OldInst, &B); 3108 auto *Induction = B.CreatePHI(Start->getType(), 2, "index"); 3109 3110 B.SetInsertPoint(Latch->getTerminator()); 3111 setDebugLocFromInst(OldInst, &B); 3112 3113 // Create i+1 and fill the PHINode. 3114 // 3115 // If the tail is not folded, we know that End - Start >= Step (either 3116 // statically or through the minimum iteration checks). We also know that both 3117 // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV + 3118 // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned 3119 // overflows and we can mark the induction increment as NUW. 3120 Value *Next = B.CreateAdd(Induction, Step, "index.next", 3121 /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false); 3122 Induction->addIncoming(Start, L->getLoopPreheader()); 3123 Induction->addIncoming(Next, Latch); 3124 // Create the compare. 3125 Value *ICmp = B.CreateICmpEQ(Next, End); 3126 B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3127 3128 // Now we have two terminators. Remove the old one from the block. 3129 Latch->getTerminator()->eraseFromParent(); 3130 3131 return Induction; 3132 } 3133 3134 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3135 if (TripCount) 3136 return TripCount; 3137 3138 assert(L && "Create Trip Count for null loop."); 3139 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3140 // Find the loop boundaries. 3141 ScalarEvolution *SE = PSE.getSE(); 3142 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3143 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3144 "Invalid loop count"); 3145 3146 Type *IdxTy = Legal->getWidestInductionType(); 3147 assert(IdxTy && "No type for induction"); 3148 3149 // The exit count might have the type of i64 while the phi is i32. This can 3150 // happen if we have an induction variable that is sign extended before the 3151 // compare. The only way that we get a backedge taken count is that the 3152 // induction variable was signed and as such will not overflow. In such a case 3153 // truncation is legal. 3154 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3155 IdxTy->getPrimitiveSizeInBits()) 3156 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3157 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3158 3159 // Get the total trip count from the count by adding 1. 3160 const SCEV *ExitCount = SE->getAddExpr( 3161 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3162 3163 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3164 3165 // Expand the trip count and place the new instructions in the preheader. 3166 // Notice that the pre-header does not change, only the loop body. 3167 SCEVExpander Exp(*SE, DL, "induction"); 3168 3169 // Count holds the overall loop count (N). 3170 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3171 L->getLoopPreheader()->getTerminator()); 3172 3173 if (TripCount->getType()->isPointerTy()) 3174 TripCount = 3175 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3176 L->getLoopPreheader()->getTerminator()); 3177 3178 return TripCount; 3179 } 3180 3181 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3182 if (VectorTripCount) 3183 return VectorTripCount; 3184 3185 Value *TC = getOrCreateTripCount(L); 3186 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3187 3188 Type *Ty = TC->getType(); 3189 // This is where we can make the step a runtime constant. 3190 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3191 3192 // If the tail is to be folded by masking, round the number of iterations N 3193 // up to a multiple of Step instead of rounding down. This is done by first 3194 // adding Step-1 and then rounding down. Note that it's ok if this addition 3195 // overflows: the vector induction variable will eventually wrap to zero given 3196 // that it starts at zero and its Step is a power of two; the loop will then 3197 // exit, with the last early-exit vector comparison also producing all-true. 3198 if (Cost->foldTailByMasking()) { 3199 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3200 "VF*UF must be a power of 2 when folding tail by masking"); 3201 assert(!VF.isScalable() && 3202 "Tail folding not yet supported for scalable vectors"); 3203 TC = Builder.CreateAdd( 3204 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3205 } 3206 3207 // Now we need to generate the expression for the part of the loop that the 3208 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3209 // iterations are not required for correctness, or N - Step, otherwise. Step 3210 // is equal to the vectorization factor (number of SIMD elements) times the 3211 // unroll factor (number of SIMD instructions). 3212 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3213 3214 // There are cases where we *must* run at least one iteration in the remainder 3215 // loop. See the cost model for when this can happen. If the step evenly 3216 // divides the trip count, we set the remainder to be equal to the step. If 3217 // the step does not evenly divide the trip count, no adjustment is necessary 3218 // since there will already be scalar iterations. Note that the minimum 3219 // iterations check ensures that N >= Step. 3220 if (Cost->requiresScalarEpilogue(VF)) { 3221 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3222 R = Builder.CreateSelect(IsZero, Step, R); 3223 } 3224 3225 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3226 3227 return VectorTripCount; 3228 } 3229 3230 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3231 const DataLayout &DL) { 3232 // Verify that V is a vector type with same number of elements as DstVTy. 3233 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3234 unsigned VF = DstFVTy->getNumElements(); 3235 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3236 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3237 Type *SrcElemTy = SrcVecTy->getElementType(); 3238 Type *DstElemTy = DstFVTy->getElementType(); 3239 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3240 "Vector elements must have same size"); 3241 3242 // Do a direct cast if element types are castable. 3243 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3244 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3245 } 3246 // V cannot be directly casted to desired vector type. 3247 // May happen when V is a floating point vector but DstVTy is a vector of 3248 // pointers or vice-versa. Handle this using a two-step bitcast using an 3249 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3250 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3251 "Only one type should be a pointer type"); 3252 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3253 "Only one type should be a floating point type"); 3254 Type *IntTy = 3255 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3256 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3257 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3258 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3259 } 3260 3261 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3262 BasicBlock *Bypass) { 3263 Value *Count = getOrCreateTripCount(L); 3264 // Reuse existing vector loop preheader for TC checks. 3265 // Note that new preheader block is generated for vector loop. 3266 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3267 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3268 3269 // Generate code to check if the loop's trip count is less than VF * UF, or 3270 // equal to it in case a scalar epilogue is required; this implies that the 3271 // vector trip count is zero. This check also covers the case where adding one 3272 // to the backedge-taken count overflowed leading to an incorrect trip count 3273 // of zero. In this case we will also jump to the scalar loop. 3274 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3275 : ICmpInst::ICMP_ULT; 3276 3277 // If tail is to be folded, vector loop takes care of all iterations. 3278 Value *CheckMinIters = Builder.getFalse(); 3279 if (!Cost->foldTailByMasking()) { 3280 Value *Step = 3281 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3282 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3283 } 3284 // Create new preheader for vector loop. 3285 LoopVectorPreHeader = 3286 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3287 "vector.ph"); 3288 3289 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3290 DT->getNode(Bypass)->getIDom()) && 3291 "TC check is expected to dominate Bypass"); 3292 3293 // Update dominator for Bypass & LoopExit (if needed). 3294 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3295 if (!Cost->requiresScalarEpilogue(VF)) 3296 // If there is an epilogue which must run, there's no edge from the 3297 // middle block to exit blocks and thus no need to update the immediate 3298 // dominator of the exit blocks. 3299 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3300 3301 ReplaceInstWithInst( 3302 TCCheckBlock->getTerminator(), 3303 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3304 LoopBypassBlocks.push_back(TCCheckBlock); 3305 } 3306 3307 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3308 3309 BasicBlock *const SCEVCheckBlock = 3310 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3311 if (!SCEVCheckBlock) 3312 return nullptr; 3313 3314 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3315 (OptForSizeBasedOnProfile && 3316 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3317 "Cannot SCEV check stride or overflow when optimizing for size"); 3318 3319 3320 // Update dominator only if this is first RT check. 3321 if (LoopBypassBlocks.empty()) { 3322 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3323 if (!Cost->requiresScalarEpilogue(VF)) 3324 // If there is an epilogue which must run, there's no edge from the 3325 // middle block to exit blocks and thus no need to update the immediate 3326 // dominator of the exit blocks. 3327 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3328 } 3329 3330 LoopBypassBlocks.push_back(SCEVCheckBlock); 3331 AddedSafetyChecks = true; 3332 return SCEVCheckBlock; 3333 } 3334 3335 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3336 BasicBlock *Bypass) { 3337 // VPlan-native path does not do any analysis for runtime checks currently. 3338 if (EnableVPlanNativePath) 3339 return nullptr; 3340 3341 BasicBlock *const MemCheckBlock = 3342 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3343 3344 // Check if we generated code that checks in runtime if arrays overlap. We put 3345 // the checks into a separate block to make the more common case of few 3346 // elements faster. 3347 if (!MemCheckBlock) 3348 return nullptr; 3349 3350 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3351 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3352 "Cannot emit memory checks when optimizing for size, unless forced " 3353 "to vectorize."); 3354 ORE->emit([&]() { 3355 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3356 L->getStartLoc(), L->getHeader()) 3357 << "Code-size may be reduced by not forcing " 3358 "vectorization, or by source-code modifications " 3359 "eliminating the need for runtime checks " 3360 "(e.g., adding 'restrict')."; 3361 }); 3362 } 3363 3364 LoopBypassBlocks.push_back(MemCheckBlock); 3365 3366 AddedSafetyChecks = true; 3367 3368 // We currently don't use LoopVersioning for the actual loop cloning but we 3369 // still use it to add the noalias metadata. 3370 LVer = std::make_unique<LoopVersioning>( 3371 *Legal->getLAI(), 3372 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3373 DT, PSE.getSE()); 3374 LVer->prepareNoAliasMetadata(); 3375 return MemCheckBlock; 3376 } 3377 3378 Value *InnerLoopVectorizer::emitTransformedIndex( 3379 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3380 const InductionDescriptor &ID) const { 3381 3382 SCEVExpander Exp(*SE, DL, "induction"); 3383 auto Step = ID.getStep(); 3384 auto StartValue = ID.getStartValue(); 3385 assert(Index->getType()->getScalarType() == Step->getType() && 3386 "Index scalar type does not match StepValue type"); 3387 3388 // Note: the IR at this point is broken. We cannot use SE to create any new 3389 // SCEV and then expand it, hoping that SCEV's simplification will give us 3390 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3391 // lead to various SCEV crashes. So all we can do is to use builder and rely 3392 // on InstCombine for future simplifications. Here we handle some trivial 3393 // cases only. 3394 auto CreateAdd = [&B](Value *X, Value *Y) { 3395 assert(X->getType() == Y->getType() && "Types don't match!"); 3396 if (auto *CX = dyn_cast<ConstantInt>(X)) 3397 if (CX->isZero()) 3398 return Y; 3399 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3400 if (CY->isZero()) 3401 return X; 3402 return B.CreateAdd(X, Y); 3403 }; 3404 3405 // We allow X to be a vector type, in which case Y will potentially be 3406 // splatted into a vector with the same element count. 3407 auto CreateMul = [&B](Value *X, Value *Y) { 3408 assert(X->getType()->getScalarType() == Y->getType() && 3409 "Types don't match!"); 3410 if (auto *CX = dyn_cast<ConstantInt>(X)) 3411 if (CX->isOne()) 3412 return Y; 3413 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3414 if (CY->isOne()) 3415 return X; 3416 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3417 if (XVTy && !isa<VectorType>(Y->getType())) 3418 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3419 return B.CreateMul(X, Y); 3420 }; 3421 3422 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3423 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3424 // the DomTree is not kept up-to-date for additional blocks generated in the 3425 // vector loop. By using the header as insertion point, we guarantee that the 3426 // expanded instructions dominate all their uses. 3427 auto GetInsertPoint = [this, &B]() { 3428 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3429 if (InsertBB != LoopVectorBody && 3430 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3431 return LoopVectorBody->getTerminator(); 3432 return &*B.GetInsertPoint(); 3433 }; 3434 3435 switch (ID.getKind()) { 3436 case InductionDescriptor::IK_IntInduction: { 3437 assert(!isa<VectorType>(Index->getType()) && 3438 "Vector indices not supported for integer inductions yet"); 3439 assert(Index->getType() == StartValue->getType() && 3440 "Index type does not match StartValue type"); 3441 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3442 return B.CreateSub(StartValue, Index); 3443 auto *Offset = CreateMul( 3444 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3445 return CreateAdd(StartValue, Offset); 3446 } 3447 case InductionDescriptor::IK_PtrInduction: { 3448 assert(isa<SCEVConstant>(Step) && 3449 "Expected constant step for pointer induction"); 3450 return B.CreateGEP( 3451 ID.getElementType(), StartValue, 3452 CreateMul(Index, 3453 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3454 GetInsertPoint()))); 3455 } 3456 case InductionDescriptor::IK_FpInduction: { 3457 assert(!isa<VectorType>(Index->getType()) && 3458 "Vector indices not supported for FP inductions yet"); 3459 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3460 auto InductionBinOp = ID.getInductionBinOp(); 3461 assert(InductionBinOp && 3462 (InductionBinOp->getOpcode() == Instruction::FAdd || 3463 InductionBinOp->getOpcode() == Instruction::FSub) && 3464 "Original bin op should be defined for FP induction"); 3465 3466 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3467 Value *MulExp = B.CreateFMul(StepValue, Index); 3468 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3469 "induction"); 3470 } 3471 case InductionDescriptor::IK_NoInduction: 3472 return nullptr; 3473 } 3474 llvm_unreachable("invalid enum"); 3475 } 3476 3477 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3478 LoopScalarBody = OrigLoop->getHeader(); 3479 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3480 assert(LoopVectorPreHeader && "Invalid loop structure"); 3481 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3482 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3483 "multiple exit loop without required epilogue?"); 3484 3485 LoopMiddleBlock = 3486 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3487 LI, nullptr, Twine(Prefix) + "middle.block"); 3488 LoopScalarPreHeader = 3489 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3490 nullptr, Twine(Prefix) + "scalar.ph"); 3491 3492 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3493 3494 // Set up the middle block terminator. Two cases: 3495 // 1) If we know that we must execute the scalar epilogue, emit an 3496 // unconditional branch. 3497 // 2) Otherwise, we must have a single unique exit block (due to how we 3498 // implement the multiple exit case). In this case, set up a conditonal 3499 // branch from the middle block to the loop scalar preheader, and the 3500 // exit block. completeLoopSkeleton will update the condition to use an 3501 // iteration check, if required to decide whether to execute the remainder. 3502 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3503 BranchInst::Create(LoopScalarPreHeader) : 3504 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3505 Builder.getTrue()); 3506 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3507 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3508 3509 // We intentionally don't let SplitBlock to update LoopInfo since 3510 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3511 // LoopVectorBody is explicitly added to the correct place few lines later. 3512 LoopVectorBody = 3513 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3514 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3515 3516 // Update dominator for loop exit. 3517 if (!Cost->requiresScalarEpilogue(VF)) 3518 // If there is an epilogue which must run, there's no edge from the 3519 // middle block to exit blocks and thus no need to update the immediate 3520 // dominator of the exit blocks. 3521 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3522 3523 // Create and register the new vector loop. 3524 Loop *Lp = LI->AllocateLoop(); 3525 Loop *ParentLoop = OrigLoop->getParentLoop(); 3526 3527 // Insert the new loop into the loop nest and register the new basic blocks 3528 // before calling any utilities such as SCEV that require valid LoopInfo. 3529 if (ParentLoop) { 3530 ParentLoop->addChildLoop(Lp); 3531 } else { 3532 LI->addTopLevelLoop(Lp); 3533 } 3534 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3535 return Lp; 3536 } 3537 3538 void InnerLoopVectorizer::createInductionResumeValues( 3539 Loop *L, Value *VectorTripCount, 3540 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3541 assert(VectorTripCount && L && "Expected valid arguments"); 3542 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3543 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3544 "Inconsistent information about additional bypass."); 3545 // We are going to resume the execution of the scalar loop. 3546 // Go over all of the induction variables that we found and fix the 3547 // PHIs that are left in the scalar version of the loop. 3548 // The starting values of PHI nodes depend on the counter of the last 3549 // iteration in the vectorized loop. 3550 // If we come from a bypass edge then we need to start from the original 3551 // start value. 3552 for (auto &InductionEntry : Legal->getInductionVars()) { 3553 PHINode *OrigPhi = InductionEntry.first; 3554 InductionDescriptor II = InductionEntry.second; 3555 3556 // Create phi nodes to merge from the backedge-taken check block. 3557 PHINode *BCResumeVal = 3558 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3559 LoopScalarPreHeader->getTerminator()); 3560 // Copy original phi DL over to the new one. 3561 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3562 Value *&EndValue = IVEndValues[OrigPhi]; 3563 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3564 if (OrigPhi == OldInduction) { 3565 // We know what the end value is. 3566 EndValue = VectorTripCount; 3567 } else { 3568 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3569 3570 // Fast-math-flags propagate from the original induction instruction. 3571 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3572 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3573 3574 Type *StepType = II.getStep()->getType(); 3575 Instruction::CastOps CastOp = 3576 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3577 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3578 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3579 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3580 EndValue->setName("ind.end"); 3581 3582 // Compute the end value for the additional bypass (if applicable). 3583 if (AdditionalBypass.first) { 3584 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3585 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3586 StepType, true); 3587 CRD = 3588 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3589 EndValueFromAdditionalBypass = 3590 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3591 EndValueFromAdditionalBypass->setName("ind.end"); 3592 } 3593 } 3594 // The new PHI merges the original incoming value, in case of a bypass, 3595 // or the value at the end of the vectorized loop. 3596 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3597 3598 // Fix the scalar body counter (PHI node). 3599 // The old induction's phi node in the scalar body needs the truncated 3600 // value. 3601 for (BasicBlock *BB : LoopBypassBlocks) 3602 BCResumeVal->addIncoming(II.getStartValue(), BB); 3603 3604 if (AdditionalBypass.first) 3605 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3606 EndValueFromAdditionalBypass); 3607 3608 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3609 } 3610 } 3611 3612 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3613 MDNode *OrigLoopID) { 3614 assert(L && "Expected valid loop."); 3615 3616 // The trip counts should be cached by now. 3617 Value *Count = getOrCreateTripCount(L); 3618 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3619 3620 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3621 3622 // Add a check in the middle block to see if we have completed 3623 // all of the iterations in the first vector loop. Three cases: 3624 // 1) If we require a scalar epilogue, there is no conditional branch as 3625 // we unconditionally branch to the scalar preheader. Do nothing. 3626 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3627 // Thus if tail is to be folded, we know we don't need to run the 3628 // remainder and we can use the previous value for the condition (true). 3629 // 3) Otherwise, construct a runtime check. 3630 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3631 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3632 Count, VectorTripCount, "cmp.n", 3633 LoopMiddleBlock->getTerminator()); 3634 3635 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3636 // of the corresponding compare because they may have ended up with 3637 // different line numbers and we want to avoid awkward line stepping while 3638 // debugging. Eg. if the compare has got a line number inside the loop. 3639 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3640 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3641 } 3642 3643 // Get ready to start creating new instructions into the vectorized body. 3644 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3645 "Inconsistent vector loop preheader"); 3646 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3647 3648 Optional<MDNode *> VectorizedLoopID = 3649 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3650 LLVMLoopVectorizeFollowupVectorized}); 3651 if (VectorizedLoopID.hasValue()) { 3652 L->setLoopID(VectorizedLoopID.getValue()); 3653 3654 // Do not setAlreadyVectorized if loop attributes have been defined 3655 // explicitly. 3656 return LoopVectorPreHeader; 3657 } 3658 3659 // Keep all loop hints from the original loop on the vector loop (we'll 3660 // replace the vectorizer-specific hints below). 3661 if (MDNode *LID = OrigLoop->getLoopID()) 3662 L->setLoopID(LID); 3663 3664 LoopVectorizeHints Hints(L, true, *ORE); 3665 Hints.setAlreadyVectorized(); 3666 3667 #ifdef EXPENSIVE_CHECKS 3668 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3669 LI->verify(*DT); 3670 #endif 3671 3672 return LoopVectorPreHeader; 3673 } 3674 3675 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3676 /* 3677 In this function we generate a new loop. The new loop will contain 3678 the vectorized instructions while the old loop will continue to run the 3679 scalar remainder. 3680 3681 [ ] <-- loop iteration number check. 3682 / | 3683 / v 3684 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3685 | / | 3686 | / v 3687 || [ ] <-- vector pre header. 3688 |/ | 3689 | v 3690 | [ ] \ 3691 | [ ]_| <-- vector loop. 3692 | | 3693 | v 3694 \ -[ ] <--- middle-block. 3695 \/ | 3696 /\ v 3697 | ->[ ] <--- new preheader. 3698 | | 3699 (opt) v <-- edge from middle to exit iff epilogue is not required. 3700 | [ ] \ 3701 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3702 \ | 3703 \ v 3704 >[ ] <-- exit block(s). 3705 ... 3706 */ 3707 3708 // Get the metadata of the original loop before it gets modified. 3709 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3710 3711 // Workaround! Compute the trip count of the original loop and cache it 3712 // before we start modifying the CFG. This code has a systemic problem 3713 // wherein it tries to run analysis over partially constructed IR; this is 3714 // wrong, and not simply for SCEV. The trip count of the original loop 3715 // simply happens to be prone to hitting this in practice. In theory, we 3716 // can hit the same issue for any SCEV, or ValueTracking query done during 3717 // mutation. See PR49900. 3718 getOrCreateTripCount(OrigLoop); 3719 3720 // Create an empty vector loop, and prepare basic blocks for the runtime 3721 // checks. 3722 Loop *Lp = createVectorLoopSkeleton(""); 3723 3724 // Now, compare the new count to zero. If it is zero skip the vector loop and 3725 // jump to the scalar loop. This check also covers the case where the 3726 // backedge-taken count is uint##_max: adding one to it will overflow leading 3727 // to an incorrect trip count of zero. In this (rare) case we will also jump 3728 // to the scalar loop. 3729 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3730 3731 // Generate the code to check any assumptions that we've made for SCEV 3732 // expressions. 3733 emitSCEVChecks(Lp, LoopScalarPreHeader); 3734 3735 // Generate the code that checks in runtime if arrays overlap. We put the 3736 // checks into a separate block to make the more common case of few elements 3737 // faster. 3738 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3739 3740 // Some loops have a single integer induction variable, while other loops 3741 // don't. One example is c++ iterators that often have multiple pointer 3742 // induction variables. In the code below we also support a case where we 3743 // don't have a single induction variable. 3744 // 3745 // We try to obtain an induction variable from the original loop as hard 3746 // as possible. However if we don't find one that: 3747 // - is an integer 3748 // - counts from zero, stepping by one 3749 // - is the size of the widest induction variable type 3750 // then we create a new one. 3751 OldInduction = Legal->getPrimaryInduction(); 3752 Type *IdxTy = Legal->getWidestInductionType(); 3753 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3754 // The loop step is equal to the vectorization factor (num of SIMD elements) 3755 // times the unroll factor (num of SIMD instructions). 3756 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3757 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3758 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3759 Induction = 3760 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3761 getDebugLocFromInstOrOperands(OldInduction)); 3762 3763 // Emit phis for the new starting index of the scalar loop. 3764 createInductionResumeValues(Lp, CountRoundDown); 3765 3766 return completeLoopSkeleton(Lp, OrigLoopID); 3767 } 3768 3769 // Fix up external users of the induction variable. At this point, we are 3770 // in LCSSA form, with all external PHIs that use the IV having one input value, 3771 // coming from the remainder loop. We need those PHIs to also have a correct 3772 // value for the IV when arriving directly from the middle block. 3773 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3774 const InductionDescriptor &II, 3775 Value *CountRoundDown, Value *EndValue, 3776 BasicBlock *MiddleBlock) { 3777 // There are two kinds of external IV usages - those that use the value 3778 // computed in the last iteration (the PHI) and those that use the penultimate 3779 // value (the value that feeds into the phi from the loop latch). 3780 // We allow both, but they, obviously, have different values. 3781 3782 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3783 3784 DenseMap<Value *, Value *> MissingVals; 3785 3786 // An external user of the last iteration's value should see the value that 3787 // the remainder loop uses to initialize its own IV. 3788 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3789 for (User *U : PostInc->users()) { 3790 Instruction *UI = cast<Instruction>(U); 3791 if (!OrigLoop->contains(UI)) { 3792 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3793 MissingVals[UI] = EndValue; 3794 } 3795 } 3796 3797 // An external user of the penultimate value need to see EndValue - Step. 3798 // The simplest way to get this is to recompute it from the constituent SCEVs, 3799 // that is Start + (Step * (CRD - 1)). 3800 for (User *U : OrigPhi->users()) { 3801 auto *UI = cast<Instruction>(U); 3802 if (!OrigLoop->contains(UI)) { 3803 const DataLayout &DL = 3804 OrigLoop->getHeader()->getModule()->getDataLayout(); 3805 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3806 3807 IRBuilder<> B(MiddleBlock->getTerminator()); 3808 3809 // Fast-math-flags propagate from the original induction instruction. 3810 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3811 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3812 3813 Value *CountMinusOne = B.CreateSub( 3814 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3815 Value *CMO = 3816 !II.getStep()->getType()->isIntegerTy() 3817 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3818 II.getStep()->getType()) 3819 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3820 CMO->setName("cast.cmo"); 3821 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3822 Escape->setName("ind.escape"); 3823 MissingVals[UI] = Escape; 3824 } 3825 } 3826 3827 for (auto &I : MissingVals) { 3828 PHINode *PHI = cast<PHINode>(I.first); 3829 // One corner case we have to handle is two IVs "chasing" each-other, 3830 // that is %IV2 = phi [...], [ %IV1, %latch ] 3831 // In this case, if IV1 has an external use, we need to avoid adding both 3832 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3833 // don't already have an incoming value for the middle block. 3834 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3835 PHI->addIncoming(I.second, MiddleBlock); 3836 } 3837 } 3838 3839 namespace { 3840 3841 struct CSEDenseMapInfo { 3842 static bool canHandle(const Instruction *I) { 3843 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3844 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3845 } 3846 3847 static inline Instruction *getEmptyKey() { 3848 return DenseMapInfo<Instruction *>::getEmptyKey(); 3849 } 3850 3851 static inline Instruction *getTombstoneKey() { 3852 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3853 } 3854 3855 static unsigned getHashValue(const Instruction *I) { 3856 assert(canHandle(I) && "Unknown instruction!"); 3857 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3858 I->value_op_end())); 3859 } 3860 3861 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3862 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3863 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3864 return LHS == RHS; 3865 return LHS->isIdenticalTo(RHS); 3866 } 3867 }; 3868 3869 } // end anonymous namespace 3870 3871 ///Perform cse of induction variable instructions. 3872 static void cse(BasicBlock *BB) { 3873 // Perform simple cse. 3874 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3875 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3876 Instruction *In = &*I++; 3877 3878 if (!CSEDenseMapInfo::canHandle(In)) 3879 continue; 3880 3881 // Check if we can replace this instruction with any of the 3882 // visited instructions. 3883 if (Instruction *V = CSEMap.lookup(In)) { 3884 In->replaceAllUsesWith(V); 3885 In->eraseFromParent(); 3886 continue; 3887 } 3888 3889 CSEMap[In] = In; 3890 } 3891 } 3892 3893 InstructionCost 3894 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3895 bool &NeedToScalarize) const { 3896 Function *F = CI->getCalledFunction(); 3897 Type *ScalarRetTy = CI->getType(); 3898 SmallVector<Type *, 4> Tys, ScalarTys; 3899 for (auto &ArgOp : CI->arg_operands()) 3900 ScalarTys.push_back(ArgOp->getType()); 3901 3902 // Estimate cost of scalarized vector call. The source operands are assumed 3903 // to be vectors, so we need to extract individual elements from there, 3904 // execute VF scalar calls, and then gather the result into the vector return 3905 // value. 3906 InstructionCost ScalarCallCost = 3907 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3908 if (VF.isScalar()) 3909 return ScalarCallCost; 3910 3911 // Compute corresponding vector type for return value and arguments. 3912 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3913 for (Type *ScalarTy : ScalarTys) 3914 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3915 3916 // Compute costs of unpacking argument values for the scalar calls and 3917 // packing the return values to a vector. 3918 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3919 3920 InstructionCost Cost = 3921 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3922 3923 // If we can't emit a vector call for this function, then the currently found 3924 // cost is the cost we need to return. 3925 NeedToScalarize = true; 3926 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3927 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3928 3929 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3930 return Cost; 3931 3932 // If the corresponding vector cost is cheaper, return its cost. 3933 InstructionCost VectorCallCost = 3934 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3935 if (VectorCallCost < Cost) { 3936 NeedToScalarize = false; 3937 Cost = VectorCallCost; 3938 } 3939 return Cost; 3940 } 3941 3942 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3943 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3944 return Elt; 3945 return VectorType::get(Elt, VF); 3946 } 3947 3948 InstructionCost 3949 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3950 ElementCount VF) const { 3951 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3952 assert(ID && "Expected intrinsic call!"); 3953 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3954 FastMathFlags FMF; 3955 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3956 FMF = FPMO->getFastMathFlags(); 3957 3958 SmallVector<const Value *> Arguments(CI->args()); 3959 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3960 SmallVector<Type *> ParamTys; 3961 std::transform(FTy->param_begin(), FTy->param_end(), 3962 std::back_inserter(ParamTys), 3963 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3964 3965 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3966 dyn_cast<IntrinsicInst>(CI)); 3967 return TTI.getIntrinsicInstrCost(CostAttrs, 3968 TargetTransformInfo::TCK_RecipThroughput); 3969 } 3970 3971 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3972 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3973 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3974 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3975 } 3976 3977 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3978 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3979 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3980 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3981 } 3982 3983 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3984 // For every instruction `I` in MinBWs, truncate the operands, create a 3985 // truncated version of `I` and reextend its result. InstCombine runs 3986 // later and will remove any ext/trunc pairs. 3987 SmallPtrSet<Value *, 4> Erased; 3988 for (const auto &KV : Cost->getMinimalBitwidths()) { 3989 // If the value wasn't vectorized, we must maintain the original scalar 3990 // type. The absence of the value from State indicates that it 3991 // wasn't vectorized. 3992 // FIXME: Should not rely on getVPValue at this point. 3993 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3994 if (!State.hasAnyVectorValue(Def)) 3995 continue; 3996 for (unsigned Part = 0; Part < UF; ++Part) { 3997 Value *I = State.get(Def, Part); 3998 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3999 continue; 4000 Type *OriginalTy = I->getType(); 4001 Type *ScalarTruncatedTy = 4002 IntegerType::get(OriginalTy->getContext(), KV.second); 4003 auto *TruncatedTy = VectorType::get( 4004 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 4005 if (TruncatedTy == OriginalTy) 4006 continue; 4007 4008 IRBuilder<> B(cast<Instruction>(I)); 4009 auto ShrinkOperand = [&](Value *V) -> Value * { 4010 if (auto *ZI = dyn_cast<ZExtInst>(V)) 4011 if (ZI->getSrcTy() == TruncatedTy) 4012 return ZI->getOperand(0); 4013 return B.CreateZExtOrTrunc(V, TruncatedTy); 4014 }; 4015 4016 // The actual instruction modification depends on the instruction type, 4017 // unfortunately. 4018 Value *NewI = nullptr; 4019 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4020 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 4021 ShrinkOperand(BO->getOperand(1))); 4022 4023 // Any wrapping introduced by shrinking this operation shouldn't be 4024 // considered undefined behavior. So, we can't unconditionally copy 4025 // arithmetic wrapping flags to NewI. 4026 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 4027 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 4028 NewI = 4029 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 4030 ShrinkOperand(CI->getOperand(1))); 4031 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 4032 NewI = B.CreateSelect(SI->getCondition(), 4033 ShrinkOperand(SI->getTrueValue()), 4034 ShrinkOperand(SI->getFalseValue())); 4035 } else if (auto *CI = dyn_cast<CastInst>(I)) { 4036 switch (CI->getOpcode()) { 4037 default: 4038 llvm_unreachable("Unhandled cast!"); 4039 case Instruction::Trunc: 4040 NewI = ShrinkOperand(CI->getOperand(0)); 4041 break; 4042 case Instruction::SExt: 4043 NewI = B.CreateSExtOrTrunc( 4044 CI->getOperand(0), 4045 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4046 break; 4047 case Instruction::ZExt: 4048 NewI = B.CreateZExtOrTrunc( 4049 CI->getOperand(0), 4050 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4051 break; 4052 } 4053 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 4054 auto Elements0 = 4055 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 4056 auto *O0 = B.CreateZExtOrTrunc( 4057 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 4058 auto Elements1 = 4059 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 4060 auto *O1 = B.CreateZExtOrTrunc( 4061 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 4062 4063 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 4064 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 4065 // Don't do anything with the operands, just extend the result. 4066 continue; 4067 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4068 auto Elements = 4069 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 4070 auto *O0 = B.CreateZExtOrTrunc( 4071 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4072 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4073 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4074 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4075 auto Elements = 4076 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 4077 auto *O0 = B.CreateZExtOrTrunc( 4078 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4079 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4080 } else { 4081 // If we don't know what to do, be conservative and don't do anything. 4082 continue; 4083 } 4084 4085 // Lastly, extend the result. 4086 NewI->takeName(cast<Instruction>(I)); 4087 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4088 I->replaceAllUsesWith(Res); 4089 cast<Instruction>(I)->eraseFromParent(); 4090 Erased.insert(I); 4091 State.reset(Def, Res, Part); 4092 } 4093 } 4094 4095 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4096 for (const auto &KV : Cost->getMinimalBitwidths()) { 4097 // If the value wasn't vectorized, we must maintain the original scalar 4098 // type. The absence of the value from State indicates that it 4099 // wasn't vectorized. 4100 // FIXME: Should not rely on getVPValue at this point. 4101 VPValue *Def = State.Plan->getVPValue(KV.first, true); 4102 if (!State.hasAnyVectorValue(Def)) 4103 continue; 4104 for (unsigned Part = 0; Part < UF; ++Part) { 4105 Value *I = State.get(Def, Part); 4106 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4107 if (Inst && Inst->use_empty()) { 4108 Value *NewI = Inst->getOperand(0); 4109 Inst->eraseFromParent(); 4110 State.reset(Def, NewI, Part); 4111 } 4112 } 4113 } 4114 } 4115 4116 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4117 // Insert truncates and extends for any truncated instructions as hints to 4118 // InstCombine. 4119 if (VF.isVector()) 4120 truncateToMinimalBitwidths(State); 4121 4122 // Fix widened non-induction PHIs by setting up the PHI operands. 4123 if (OrigPHIsToFix.size()) { 4124 assert(EnableVPlanNativePath && 4125 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4126 fixNonInductionPHIs(State); 4127 } 4128 4129 // At this point every instruction in the original loop is widened to a 4130 // vector form. Now we need to fix the recurrences in the loop. These PHI 4131 // nodes are currently empty because we did not want to introduce cycles. 4132 // This is the second stage of vectorizing recurrences. 4133 fixCrossIterationPHIs(State); 4134 4135 // Forget the original basic block. 4136 PSE.getSE()->forgetLoop(OrigLoop); 4137 4138 // If we inserted an edge from the middle block to the unique exit block, 4139 // update uses outside the loop (phis) to account for the newly inserted 4140 // edge. 4141 if (!Cost->requiresScalarEpilogue(VF)) { 4142 // Fix-up external users of the induction variables. 4143 for (auto &Entry : Legal->getInductionVars()) 4144 fixupIVUsers(Entry.first, Entry.second, 4145 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4146 IVEndValues[Entry.first], LoopMiddleBlock); 4147 4148 fixLCSSAPHIs(State); 4149 } 4150 4151 for (Instruction *PI : PredicatedInstructions) 4152 sinkScalarOperands(&*PI); 4153 4154 // Remove redundant induction instructions. 4155 cse(LoopVectorBody); 4156 4157 // Set/update profile weights for the vector and remainder loops as original 4158 // loop iterations are now distributed among them. Note that original loop 4159 // represented by LoopScalarBody becomes remainder loop after vectorization. 4160 // 4161 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4162 // end up getting slightly roughened result but that should be OK since 4163 // profile is not inherently precise anyway. Note also possible bypass of 4164 // vector code caused by legality checks is ignored, assigning all the weight 4165 // to the vector loop, optimistically. 4166 // 4167 // For scalable vectorization we can't know at compile time how many iterations 4168 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4169 // vscale of '1'. 4170 setProfileInfoAfterUnrolling( 4171 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4172 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4173 } 4174 4175 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4176 // In order to support recurrences we need to be able to vectorize Phi nodes. 4177 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4178 // stage #2: We now need to fix the recurrences by adding incoming edges to 4179 // the currently empty PHI nodes. At this point every instruction in the 4180 // original loop is widened to a vector form so we can use them to construct 4181 // the incoming edges. 4182 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4183 for (VPRecipeBase &R : Header->phis()) { 4184 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 4185 fixReduction(ReductionPhi, State); 4186 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 4187 fixFirstOrderRecurrence(FOR, State); 4188 } 4189 } 4190 4191 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, 4192 VPTransformState &State) { 4193 // This is the second phase of vectorizing first-order recurrences. An 4194 // overview of the transformation is described below. Suppose we have the 4195 // following loop. 4196 // 4197 // for (int i = 0; i < n; ++i) 4198 // b[i] = a[i] - a[i - 1]; 4199 // 4200 // There is a first-order recurrence on "a". For this loop, the shorthand 4201 // scalar IR looks like: 4202 // 4203 // scalar.ph: 4204 // s_init = a[-1] 4205 // br scalar.body 4206 // 4207 // scalar.body: 4208 // i = phi [0, scalar.ph], [i+1, scalar.body] 4209 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4210 // s2 = a[i] 4211 // b[i] = s2 - s1 4212 // br cond, scalar.body, ... 4213 // 4214 // In this example, s1 is a recurrence because it's value depends on the 4215 // previous iteration. In the first phase of vectorization, we created a 4216 // vector phi v1 for s1. We now complete the vectorization and produce the 4217 // shorthand vector IR shown below (for VF = 4, UF = 1). 4218 // 4219 // vector.ph: 4220 // v_init = vector(..., ..., ..., a[-1]) 4221 // br vector.body 4222 // 4223 // vector.body 4224 // i = phi [0, vector.ph], [i+4, vector.body] 4225 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4226 // v2 = a[i, i+1, i+2, i+3]; 4227 // v3 = vector(v1(3), v2(0, 1, 2)) 4228 // b[i, i+1, i+2, i+3] = v2 - v3 4229 // br cond, vector.body, middle.block 4230 // 4231 // middle.block: 4232 // x = v2(3) 4233 // br scalar.ph 4234 // 4235 // scalar.ph: 4236 // s_init = phi [x, middle.block], [a[-1], otherwise] 4237 // br scalar.body 4238 // 4239 // After execution completes the vector loop, we extract the next value of 4240 // the recurrence (x) to use as the initial value in the scalar loop. 4241 4242 // Extract the last vector element in the middle block. This will be the 4243 // initial value for the recurrence when jumping to the scalar loop. 4244 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4245 Value *Incoming = State.get(PreviousDef, UF - 1); 4246 auto *ExtractForScalar = Incoming; 4247 auto *IdxTy = Builder.getInt32Ty(); 4248 if (VF.isVector()) { 4249 auto *One = ConstantInt::get(IdxTy, 1); 4250 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4251 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4252 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4253 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4254 "vector.recur.extract"); 4255 } 4256 // Extract the second last element in the middle block if the 4257 // Phi is used outside the loop. We need to extract the phi itself 4258 // and not the last element (the phi update in the current iteration). This 4259 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4260 // when the scalar loop is not run at all. 4261 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4262 if (VF.isVector()) { 4263 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4264 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4265 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4266 Incoming, Idx, "vector.recur.extract.for.phi"); 4267 } else if (UF > 1) 4268 // When loop is unrolled without vectorizing, initialize 4269 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4270 // of `Incoming`. This is analogous to the vectorized case above: extracting 4271 // the second last element when VF > 1. 4272 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4273 4274 // Fix the initial value of the original recurrence in the scalar loop. 4275 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4276 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4277 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4278 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4279 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4280 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4281 Start->addIncoming(Incoming, BB); 4282 } 4283 4284 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4285 Phi->setName("scalar.recur"); 4286 4287 // Finally, fix users of the recurrence outside the loop. The users will need 4288 // either the last value of the scalar recurrence or the last value of the 4289 // vector recurrence we extracted in the middle block. Since the loop is in 4290 // LCSSA form, we just need to find all the phi nodes for the original scalar 4291 // recurrence in the exit block, and then add an edge for the middle block. 4292 // Note that LCSSA does not imply single entry when the original scalar loop 4293 // had multiple exiting edges (as we always run the last iteration in the 4294 // scalar epilogue); in that case, there is no edge from middle to exit and 4295 // and thus no phis which needed updated. 4296 if (!Cost->requiresScalarEpilogue(VF)) 4297 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4298 if (any_of(LCSSAPhi.incoming_values(), 4299 [Phi](Value *V) { return V == Phi; })) 4300 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4301 } 4302 4303 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4304 VPTransformState &State) { 4305 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4306 // Get it's reduction variable descriptor. 4307 assert(Legal->isReductionVariable(OrigPhi) && 4308 "Unable to find the reduction variable"); 4309 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4310 4311 RecurKind RK = RdxDesc.getRecurrenceKind(); 4312 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4313 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4314 setDebugLocFromInst(ReductionStartValue); 4315 4316 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 4317 // This is the vector-clone of the value that leaves the loop. 4318 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4319 4320 // Wrap flags are in general invalid after vectorization, clear them. 4321 clearReductionWrapFlags(RdxDesc, State); 4322 4323 // Before each round, move the insertion point right between 4324 // the PHIs and the values we are going to write. 4325 // This allows us to write both PHINodes and the extractelement 4326 // instructions. 4327 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4328 4329 setDebugLocFromInst(LoopExitInst); 4330 4331 Type *PhiTy = OrigPhi->getType(); 4332 // If tail is folded by masking, the vector value to leave the loop should be 4333 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4334 // instead of the former. For an inloop reduction the reduction will already 4335 // be predicated, and does not need to be handled here. 4336 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4337 for (unsigned Part = 0; Part < UF; ++Part) { 4338 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4339 Value *Sel = nullptr; 4340 for (User *U : VecLoopExitInst->users()) { 4341 if (isa<SelectInst>(U)) { 4342 assert(!Sel && "Reduction exit feeding two selects"); 4343 Sel = U; 4344 } else 4345 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4346 } 4347 assert(Sel && "Reduction exit feeds no select"); 4348 State.reset(LoopExitInstDef, Sel, Part); 4349 4350 // If the target can create a predicated operator for the reduction at no 4351 // extra cost in the loop (for example a predicated vadd), it can be 4352 // cheaper for the select to remain in the loop than be sunk out of it, 4353 // and so use the select value for the phi instead of the old 4354 // LoopExitValue. 4355 if (PreferPredicatedReductionSelect || 4356 TTI->preferPredicatedReductionSelect( 4357 RdxDesc.getOpcode(), PhiTy, 4358 TargetTransformInfo::ReductionFlags())) { 4359 auto *VecRdxPhi = 4360 cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part)); 4361 VecRdxPhi->setIncomingValueForBlock( 4362 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4363 } 4364 } 4365 } 4366 4367 // If the vector reduction can be performed in a smaller type, we truncate 4368 // then extend the loop exit value to enable InstCombine to evaluate the 4369 // entire expression in the smaller type. 4370 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4371 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4372 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4373 Builder.SetInsertPoint( 4374 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4375 VectorParts RdxParts(UF); 4376 for (unsigned Part = 0; Part < UF; ++Part) { 4377 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4378 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4379 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4380 : Builder.CreateZExt(Trunc, VecTy); 4381 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4382 UI != RdxParts[Part]->user_end();) 4383 if (*UI != Trunc) { 4384 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4385 RdxParts[Part] = Extnd; 4386 } else { 4387 ++UI; 4388 } 4389 } 4390 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4391 for (unsigned Part = 0; Part < UF; ++Part) { 4392 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4393 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4394 } 4395 } 4396 4397 // Reduce all of the unrolled parts into a single vector. 4398 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4399 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4400 4401 // The middle block terminator has already been assigned a DebugLoc here (the 4402 // OrigLoop's single latch terminator). We want the whole middle block to 4403 // appear to execute on this line because: (a) it is all compiler generated, 4404 // (b) these instructions are always executed after evaluating the latch 4405 // conditional branch, and (c) other passes may add new predecessors which 4406 // terminate on this line. This is the easiest way to ensure we don't 4407 // accidentally cause an extra step back into the loop while debugging. 4408 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4409 if (PhiR->isOrdered()) 4410 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4411 else { 4412 // Floating-point operations should have some FMF to enable the reduction. 4413 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4414 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4415 for (unsigned Part = 1; Part < UF; ++Part) { 4416 Value *RdxPart = State.get(LoopExitInstDef, Part); 4417 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4418 ReducedPartRdx = Builder.CreateBinOp( 4419 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4420 } else { 4421 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4422 } 4423 } 4424 } 4425 4426 // Create the reduction after the loop. Note that inloop reductions create the 4427 // target reduction in the loop using a Reduction recipe. 4428 if (VF.isVector() && !PhiR->isInLoop()) { 4429 ReducedPartRdx = 4430 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4431 // If the reduction can be performed in a smaller type, we need to extend 4432 // the reduction to the wider type before we branch to the original loop. 4433 if (PhiTy != RdxDesc.getRecurrenceType()) 4434 ReducedPartRdx = RdxDesc.isSigned() 4435 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4436 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4437 } 4438 4439 // Create a phi node that merges control-flow from the backedge-taken check 4440 // block and the middle block. 4441 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4442 LoopScalarPreHeader->getTerminator()); 4443 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4444 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4445 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4446 4447 // Now, we need to fix the users of the reduction variable 4448 // inside and outside of the scalar remainder loop. 4449 4450 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4451 // in the exit blocks. See comment on analogous loop in 4452 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4453 if (!Cost->requiresScalarEpilogue(VF)) 4454 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4455 if (any_of(LCSSAPhi.incoming_values(), 4456 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4457 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4458 4459 // Fix the scalar loop reduction variable with the incoming reduction sum 4460 // from the vector body and from the backedge value. 4461 int IncomingEdgeBlockIdx = 4462 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4463 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4464 // Pick the other block. 4465 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4466 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4467 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4468 } 4469 4470 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4471 VPTransformState &State) { 4472 RecurKind RK = RdxDesc.getRecurrenceKind(); 4473 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4474 return; 4475 4476 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4477 assert(LoopExitInstr && "null loop exit instruction"); 4478 SmallVector<Instruction *, 8> Worklist; 4479 SmallPtrSet<Instruction *, 8> Visited; 4480 Worklist.push_back(LoopExitInstr); 4481 Visited.insert(LoopExitInstr); 4482 4483 while (!Worklist.empty()) { 4484 Instruction *Cur = Worklist.pop_back_val(); 4485 if (isa<OverflowingBinaryOperator>(Cur)) 4486 for (unsigned Part = 0; Part < UF; ++Part) { 4487 // FIXME: Should not rely on getVPValue at this point. 4488 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4489 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4490 } 4491 4492 for (User *U : Cur->users()) { 4493 Instruction *UI = cast<Instruction>(U); 4494 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4495 Visited.insert(UI).second) 4496 Worklist.push_back(UI); 4497 } 4498 } 4499 } 4500 4501 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4502 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4503 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4504 // Some phis were already hand updated by the reduction and recurrence 4505 // code above, leave them alone. 4506 continue; 4507 4508 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4509 // Non-instruction incoming values will have only one value. 4510 4511 VPLane Lane = VPLane::getFirstLane(); 4512 if (isa<Instruction>(IncomingValue) && 4513 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4514 VF)) 4515 Lane = VPLane::getLastLaneForVF(VF); 4516 4517 // Can be a loop invariant incoming value or the last scalar value to be 4518 // extracted from the vectorized loop. 4519 // FIXME: Should not rely on getVPValue at this point. 4520 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4521 Value *lastIncomingValue = 4522 OrigLoop->isLoopInvariant(IncomingValue) 4523 ? IncomingValue 4524 : State.get(State.Plan->getVPValue(IncomingValue, true), 4525 VPIteration(UF - 1, Lane)); 4526 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4527 } 4528 } 4529 4530 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4531 // The basic block and loop containing the predicated instruction. 4532 auto *PredBB = PredInst->getParent(); 4533 auto *VectorLoop = LI->getLoopFor(PredBB); 4534 4535 // Initialize a worklist with the operands of the predicated instruction. 4536 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4537 4538 // Holds instructions that we need to analyze again. An instruction may be 4539 // reanalyzed if we don't yet know if we can sink it or not. 4540 SmallVector<Instruction *, 8> InstsToReanalyze; 4541 4542 // Returns true if a given use occurs in the predicated block. Phi nodes use 4543 // their operands in their corresponding predecessor blocks. 4544 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4545 auto *I = cast<Instruction>(U.getUser()); 4546 BasicBlock *BB = I->getParent(); 4547 if (auto *Phi = dyn_cast<PHINode>(I)) 4548 BB = Phi->getIncomingBlock( 4549 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4550 return BB == PredBB; 4551 }; 4552 4553 // Iteratively sink the scalarized operands of the predicated instruction 4554 // into the block we created for it. When an instruction is sunk, it's 4555 // operands are then added to the worklist. The algorithm ends after one pass 4556 // through the worklist doesn't sink a single instruction. 4557 bool Changed; 4558 do { 4559 // Add the instructions that need to be reanalyzed to the worklist, and 4560 // reset the changed indicator. 4561 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4562 InstsToReanalyze.clear(); 4563 Changed = false; 4564 4565 while (!Worklist.empty()) { 4566 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4567 4568 // We can't sink an instruction if it is a phi node, is not in the loop, 4569 // or may have side effects. 4570 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4571 I->mayHaveSideEffects()) 4572 continue; 4573 4574 // If the instruction is already in PredBB, check if we can sink its 4575 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4576 // sinking the scalar instruction I, hence it appears in PredBB; but it 4577 // may have failed to sink I's operands (recursively), which we try 4578 // (again) here. 4579 if (I->getParent() == PredBB) { 4580 Worklist.insert(I->op_begin(), I->op_end()); 4581 continue; 4582 } 4583 4584 // It's legal to sink the instruction if all its uses occur in the 4585 // predicated block. Otherwise, there's nothing to do yet, and we may 4586 // need to reanalyze the instruction. 4587 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4588 InstsToReanalyze.push_back(I); 4589 continue; 4590 } 4591 4592 // Move the instruction to the beginning of the predicated block, and add 4593 // it's operands to the worklist. 4594 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4595 Worklist.insert(I->op_begin(), I->op_end()); 4596 4597 // The sinking may have enabled other instructions to be sunk, so we will 4598 // need to iterate. 4599 Changed = true; 4600 } 4601 } while (Changed); 4602 } 4603 4604 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4605 for (PHINode *OrigPhi : OrigPHIsToFix) { 4606 VPWidenPHIRecipe *VPPhi = 4607 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4608 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4609 // Make sure the builder has a valid insert point. 4610 Builder.SetInsertPoint(NewPhi); 4611 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4612 VPValue *Inc = VPPhi->getIncomingValue(i); 4613 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4614 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4615 } 4616 } 4617 } 4618 4619 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4620 return Cost->useOrderedReductions(RdxDesc); 4621 } 4622 4623 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4624 VPUser &Operands, unsigned UF, 4625 ElementCount VF, bool IsPtrLoopInvariant, 4626 SmallBitVector &IsIndexLoopInvariant, 4627 VPTransformState &State) { 4628 // Construct a vector GEP by widening the operands of the scalar GEP as 4629 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4630 // results in a vector of pointers when at least one operand of the GEP 4631 // is vector-typed. Thus, to keep the representation compact, we only use 4632 // vector-typed operands for loop-varying values. 4633 4634 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4635 // If we are vectorizing, but the GEP has only loop-invariant operands, 4636 // the GEP we build (by only using vector-typed operands for 4637 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4638 // produce a vector of pointers, we need to either arbitrarily pick an 4639 // operand to broadcast, or broadcast a clone of the original GEP. 4640 // Here, we broadcast a clone of the original. 4641 // 4642 // TODO: If at some point we decide to scalarize instructions having 4643 // loop-invariant operands, this special case will no longer be 4644 // required. We would add the scalarization decision to 4645 // collectLoopScalars() and teach getVectorValue() to broadcast 4646 // the lane-zero scalar value. 4647 auto *Clone = Builder.Insert(GEP->clone()); 4648 for (unsigned Part = 0; Part < UF; ++Part) { 4649 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4650 State.set(VPDef, EntryPart, Part); 4651 addMetadata(EntryPart, GEP); 4652 } 4653 } else { 4654 // If the GEP has at least one loop-varying operand, we are sure to 4655 // produce a vector of pointers. But if we are only unrolling, we want 4656 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4657 // produce with the code below will be scalar (if VF == 1) or vector 4658 // (otherwise). Note that for the unroll-only case, we still maintain 4659 // values in the vector mapping with initVector, as we do for other 4660 // instructions. 4661 for (unsigned Part = 0; Part < UF; ++Part) { 4662 // The pointer operand of the new GEP. If it's loop-invariant, we 4663 // won't broadcast it. 4664 auto *Ptr = IsPtrLoopInvariant 4665 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4666 : State.get(Operands.getOperand(0), Part); 4667 4668 // Collect all the indices for the new GEP. If any index is 4669 // loop-invariant, we won't broadcast it. 4670 SmallVector<Value *, 4> Indices; 4671 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4672 VPValue *Operand = Operands.getOperand(I); 4673 if (IsIndexLoopInvariant[I - 1]) 4674 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4675 else 4676 Indices.push_back(State.get(Operand, Part)); 4677 } 4678 4679 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4680 // but it should be a vector, otherwise. 4681 auto *NewGEP = 4682 GEP->isInBounds() 4683 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4684 Indices) 4685 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4686 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4687 "NewGEP is not a pointer vector"); 4688 State.set(VPDef, NewGEP, Part); 4689 addMetadata(NewGEP, GEP); 4690 } 4691 } 4692 } 4693 4694 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4695 VPWidenPHIRecipe *PhiR, 4696 VPTransformState &State) { 4697 PHINode *P = cast<PHINode>(PN); 4698 if (EnableVPlanNativePath) { 4699 // Currently we enter here in the VPlan-native path for non-induction 4700 // PHIs where all control flow is uniform. We simply widen these PHIs. 4701 // Create a vector phi with no operands - the vector phi operands will be 4702 // set at the end of vector code generation. 4703 Type *VecTy = (State.VF.isScalar()) 4704 ? PN->getType() 4705 : VectorType::get(PN->getType(), State.VF); 4706 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4707 State.set(PhiR, VecPhi, 0); 4708 OrigPHIsToFix.push_back(P); 4709 4710 return; 4711 } 4712 4713 assert(PN->getParent() == OrigLoop->getHeader() && 4714 "Non-header phis should have been handled elsewhere"); 4715 4716 // In order to support recurrences we need to be able to vectorize Phi nodes. 4717 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4718 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4719 // this value when we vectorize all of the instructions that use the PHI. 4720 4721 assert(!Legal->isReductionVariable(P) && 4722 "reductions should be handled elsewhere"); 4723 4724 setDebugLocFromInst(P); 4725 4726 // This PHINode must be an induction variable. 4727 // Make sure that we know about it. 4728 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4729 4730 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4731 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4732 4733 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4734 // which can be found from the original scalar operations. 4735 switch (II.getKind()) { 4736 case InductionDescriptor::IK_NoInduction: 4737 llvm_unreachable("Unknown induction"); 4738 case InductionDescriptor::IK_IntInduction: 4739 case InductionDescriptor::IK_FpInduction: 4740 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4741 case InductionDescriptor::IK_PtrInduction: { 4742 // Handle the pointer induction variable case. 4743 assert(P->getType()->isPointerTy() && "Unexpected type."); 4744 4745 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4746 // This is the normalized GEP that starts counting at zero. 4747 Value *PtrInd = 4748 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4749 // Determine the number of scalars we need to generate for each unroll 4750 // iteration. If the instruction is uniform, we only need to generate the 4751 // first lane. Otherwise, we generate all VF values. 4752 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4753 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 4754 4755 bool NeedsVectorIndex = !IsUniform && VF.isScalable(); 4756 Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr; 4757 if (NeedsVectorIndex) { 4758 Type *VecIVTy = VectorType::get(PtrInd->getType(), VF); 4759 UnitStepVec = Builder.CreateStepVector(VecIVTy); 4760 PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd); 4761 } 4762 4763 for (unsigned Part = 0; Part < UF; ++Part) { 4764 Value *PartStart = createStepForVF( 4765 Builder, ConstantInt::get(PtrInd->getType(), Part), VF); 4766 4767 if (NeedsVectorIndex) { 4768 // Here we cache the whole vector, which means we can support the 4769 // extraction of any lane. However, in some cases the extractelement 4770 // instruction that is generated for scalar uses of this vector (e.g. 4771 // a load instruction) is not folded away. Therefore we still 4772 // calculate values for the first n lanes to avoid redundant moves 4773 // (when extracting the 0th element) and to produce scalar code (i.e. 4774 // additional add/gep instructions instead of expensive extractelement 4775 // instructions) when extracting higher-order elements. 4776 Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart); 4777 Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec); 4778 Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices); 4779 Value *SclrGep = 4780 emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II); 4781 SclrGep->setName("next.gep"); 4782 State.set(PhiR, SclrGep, Part); 4783 } 4784 4785 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4786 Value *Idx = Builder.CreateAdd( 4787 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4788 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4789 Value *SclrGep = 4790 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4791 SclrGep->setName("next.gep"); 4792 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4793 } 4794 } 4795 return; 4796 } 4797 assert(isa<SCEVConstant>(II.getStep()) && 4798 "Induction step not a SCEV constant!"); 4799 Type *PhiType = II.getStep()->getType(); 4800 4801 // Build a pointer phi 4802 Value *ScalarStartValue = II.getStartValue(); 4803 Type *ScStValueType = ScalarStartValue->getType(); 4804 PHINode *NewPointerPhi = 4805 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4806 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4807 4808 // A pointer induction, performed by using a gep 4809 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4810 Instruction *InductionLoc = LoopLatch->getTerminator(); 4811 const SCEV *ScalarStep = II.getStep(); 4812 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4813 Value *ScalarStepValue = 4814 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4815 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4816 Value *NumUnrolledElems = 4817 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4818 Value *InductionGEP = GetElementPtrInst::Create( 4819 II.getElementType(), NewPointerPhi, 4820 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4821 InductionLoc); 4822 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4823 4824 // Create UF many actual address geps that use the pointer 4825 // phi as base and a vectorized version of the step value 4826 // (<step*0, ..., step*N>) as offset. 4827 for (unsigned Part = 0; Part < State.UF; ++Part) { 4828 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4829 Value *StartOffsetScalar = 4830 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4831 Value *StartOffset = 4832 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4833 // Create a vector of consecutive numbers from zero to VF. 4834 StartOffset = 4835 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4836 4837 Value *GEP = Builder.CreateGEP( 4838 II.getElementType(), NewPointerPhi, 4839 Builder.CreateMul( 4840 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4841 "vector.gep")); 4842 State.set(PhiR, GEP, Part); 4843 } 4844 } 4845 } 4846 } 4847 4848 /// A helper function for checking whether an integer division-related 4849 /// instruction may divide by zero (in which case it must be predicated if 4850 /// executed conditionally in the scalar code). 4851 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4852 /// Non-zero divisors that are non compile-time constants will not be 4853 /// converted into multiplication, so we will still end up scalarizing 4854 /// the division, but can do so w/o predication. 4855 static bool mayDivideByZero(Instruction &I) { 4856 assert((I.getOpcode() == Instruction::UDiv || 4857 I.getOpcode() == Instruction::SDiv || 4858 I.getOpcode() == Instruction::URem || 4859 I.getOpcode() == Instruction::SRem) && 4860 "Unexpected instruction"); 4861 Value *Divisor = I.getOperand(1); 4862 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4863 return !CInt || CInt->isZero(); 4864 } 4865 4866 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4867 VPUser &User, 4868 VPTransformState &State) { 4869 switch (I.getOpcode()) { 4870 case Instruction::Call: 4871 case Instruction::Br: 4872 case Instruction::PHI: 4873 case Instruction::GetElementPtr: 4874 case Instruction::Select: 4875 llvm_unreachable("This instruction is handled by a different recipe."); 4876 case Instruction::UDiv: 4877 case Instruction::SDiv: 4878 case Instruction::SRem: 4879 case Instruction::URem: 4880 case Instruction::Add: 4881 case Instruction::FAdd: 4882 case Instruction::Sub: 4883 case Instruction::FSub: 4884 case Instruction::FNeg: 4885 case Instruction::Mul: 4886 case Instruction::FMul: 4887 case Instruction::FDiv: 4888 case Instruction::FRem: 4889 case Instruction::Shl: 4890 case Instruction::LShr: 4891 case Instruction::AShr: 4892 case Instruction::And: 4893 case Instruction::Or: 4894 case Instruction::Xor: { 4895 // Just widen unops and binops. 4896 setDebugLocFromInst(&I); 4897 4898 for (unsigned Part = 0; Part < UF; ++Part) { 4899 SmallVector<Value *, 2> Ops; 4900 for (VPValue *VPOp : User.operands()) 4901 Ops.push_back(State.get(VPOp, Part)); 4902 4903 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4904 4905 if (auto *VecOp = dyn_cast<Instruction>(V)) 4906 VecOp->copyIRFlags(&I); 4907 4908 // Use this vector value for all users of the original instruction. 4909 State.set(Def, V, Part); 4910 addMetadata(V, &I); 4911 } 4912 4913 break; 4914 } 4915 case Instruction::ICmp: 4916 case Instruction::FCmp: { 4917 // Widen compares. Generate vector compares. 4918 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4919 auto *Cmp = cast<CmpInst>(&I); 4920 setDebugLocFromInst(Cmp); 4921 for (unsigned Part = 0; Part < UF; ++Part) { 4922 Value *A = State.get(User.getOperand(0), Part); 4923 Value *B = State.get(User.getOperand(1), Part); 4924 Value *C = nullptr; 4925 if (FCmp) { 4926 // Propagate fast math flags. 4927 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4928 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4929 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4930 } else { 4931 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4932 } 4933 State.set(Def, C, Part); 4934 addMetadata(C, &I); 4935 } 4936 4937 break; 4938 } 4939 4940 case Instruction::ZExt: 4941 case Instruction::SExt: 4942 case Instruction::FPToUI: 4943 case Instruction::FPToSI: 4944 case Instruction::FPExt: 4945 case Instruction::PtrToInt: 4946 case Instruction::IntToPtr: 4947 case Instruction::SIToFP: 4948 case Instruction::UIToFP: 4949 case Instruction::Trunc: 4950 case Instruction::FPTrunc: 4951 case Instruction::BitCast: { 4952 auto *CI = cast<CastInst>(&I); 4953 setDebugLocFromInst(CI); 4954 4955 /// Vectorize casts. 4956 Type *DestTy = 4957 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4958 4959 for (unsigned Part = 0; Part < UF; ++Part) { 4960 Value *A = State.get(User.getOperand(0), Part); 4961 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4962 State.set(Def, Cast, Part); 4963 addMetadata(Cast, &I); 4964 } 4965 break; 4966 } 4967 default: 4968 // This instruction is not vectorized by simple widening. 4969 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4970 llvm_unreachable("Unhandled instruction!"); 4971 } // end of switch. 4972 } 4973 4974 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4975 VPUser &ArgOperands, 4976 VPTransformState &State) { 4977 assert(!isa<DbgInfoIntrinsic>(I) && 4978 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4979 setDebugLocFromInst(&I); 4980 4981 Module *M = I.getParent()->getParent()->getParent(); 4982 auto *CI = cast<CallInst>(&I); 4983 4984 SmallVector<Type *, 4> Tys; 4985 for (Value *ArgOperand : CI->arg_operands()) 4986 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4987 4988 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4989 4990 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4991 // version of the instruction. 4992 // Is it beneficial to perform intrinsic call compared to lib call? 4993 bool NeedToScalarize = false; 4994 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4995 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4996 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4997 assert((UseVectorIntrinsic || !NeedToScalarize) && 4998 "Instruction should be scalarized elsewhere."); 4999 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 5000 "Either the intrinsic cost or vector call cost must be valid"); 5001 5002 for (unsigned Part = 0; Part < UF; ++Part) { 5003 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 5004 SmallVector<Value *, 4> Args; 5005 for (auto &I : enumerate(ArgOperands.operands())) { 5006 // Some intrinsics have a scalar argument - don't replace it with a 5007 // vector. 5008 Value *Arg; 5009 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 5010 Arg = State.get(I.value(), Part); 5011 else { 5012 Arg = State.get(I.value(), VPIteration(0, 0)); 5013 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 5014 TysForDecl.push_back(Arg->getType()); 5015 } 5016 Args.push_back(Arg); 5017 } 5018 5019 Function *VectorF; 5020 if (UseVectorIntrinsic) { 5021 // Use vector version of the intrinsic. 5022 if (VF.isVector()) 5023 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5024 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5025 assert(VectorF && "Can't retrieve vector intrinsic."); 5026 } else { 5027 // Use vector version of the function call. 5028 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 5029 #ifndef NDEBUG 5030 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 5031 "Can't create vector function."); 5032 #endif 5033 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 5034 } 5035 SmallVector<OperandBundleDef, 1> OpBundles; 5036 CI->getOperandBundlesAsDefs(OpBundles); 5037 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5038 5039 if (isa<FPMathOperator>(V)) 5040 V->copyFastMathFlags(CI); 5041 5042 State.set(Def, V, Part); 5043 addMetadata(V, &I); 5044 } 5045 } 5046 5047 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5048 VPUser &Operands, 5049 bool InvariantCond, 5050 VPTransformState &State) { 5051 setDebugLocFromInst(&I); 5052 5053 // The condition can be loop invariant but still defined inside the 5054 // loop. This means that we can't just use the original 'cond' value. 5055 // We have to take the 'vectorized' value and pick the first lane. 5056 // Instcombine will make this a no-op. 5057 auto *InvarCond = InvariantCond 5058 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5059 : nullptr; 5060 5061 for (unsigned Part = 0; Part < UF; ++Part) { 5062 Value *Cond = 5063 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5064 Value *Op0 = State.get(Operands.getOperand(1), Part); 5065 Value *Op1 = State.get(Operands.getOperand(2), Part); 5066 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5067 State.set(VPDef, Sel, Part); 5068 addMetadata(Sel, &I); 5069 } 5070 } 5071 5072 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5073 // We should not collect Scalars more than once per VF. Right now, this 5074 // function is called from collectUniformsAndScalars(), which already does 5075 // this check. Collecting Scalars for VF=1 does not make any sense. 5076 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5077 "This function should not be visited twice for the same VF"); 5078 5079 SmallSetVector<Instruction *, 8> Worklist; 5080 5081 // These sets are used to seed the analysis with pointers used by memory 5082 // accesses that will remain scalar. 5083 SmallSetVector<Instruction *, 8> ScalarPtrs; 5084 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5085 auto *Latch = TheLoop->getLoopLatch(); 5086 5087 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5088 // The pointer operands of loads and stores will be scalar as long as the 5089 // memory access is not a gather or scatter operation. The value operand of a 5090 // store will remain scalar if the store is scalarized. 5091 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5092 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5093 assert(WideningDecision != CM_Unknown && 5094 "Widening decision should be ready at this moment"); 5095 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5096 if (Ptr == Store->getValueOperand()) 5097 return WideningDecision == CM_Scalarize; 5098 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5099 "Ptr is neither a value or pointer operand"); 5100 return WideningDecision != CM_GatherScatter; 5101 }; 5102 5103 // A helper that returns true if the given value is a bitcast or 5104 // getelementptr instruction contained in the loop. 5105 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5106 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5107 isa<GetElementPtrInst>(V)) && 5108 !TheLoop->isLoopInvariant(V); 5109 }; 5110 5111 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5112 if (!isa<PHINode>(Ptr) || 5113 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5114 return false; 5115 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5116 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5117 return false; 5118 return isScalarUse(MemAccess, Ptr); 5119 }; 5120 5121 // A helper that evaluates a memory access's use of a pointer. If the 5122 // pointer is actually the pointer induction of a loop, it is being 5123 // inserted into Worklist. If the use will be a scalar use, and the 5124 // pointer is only used by memory accesses, we place the pointer in 5125 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5126 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5127 if (isScalarPtrInduction(MemAccess, Ptr)) { 5128 Worklist.insert(cast<Instruction>(Ptr)); 5129 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5130 << "\n"); 5131 5132 Instruction *Update = cast<Instruction>( 5133 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5134 ScalarPtrs.insert(Update); 5135 return; 5136 } 5137 // We only care about bitcast and getelementptr instructions contained in 5138 // the loop. 5139 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5140 return; 5141 5142 // If the pointer has already been identified as scalar (e.g., if it was 5143 // also identified as uniform), there's nothing to do. 5144 auto *I = cast<Instruction>(Ptr); 5145 if (Worklist.count(I)) 5146 return; 5147 5148 // If the use of the pointer will be a scalar use, and all users of the 5149 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5150 // place the pointer in PossibleNonScalarPtrs. 5151 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5152 return isa<LoadInst>(U) || isa<StoreInst>(U); 5153 })) 5154 ScalarPtrs.insert(I); 5155 else 5156 PossibleNonScalarPtrs.insert(I); 5157 }; 5158 5159 // We seed the scalars analysis with three classes of instructions: (1) 5160 // instructions marked uniform-after-vectorization and (2) bitcast, 5161 // getelementptr and (pointer) phi instructions used by memory accesses 5162 // requiring a scalar use. 5163 // 5164 // (1) Add to the worklist all instructions that have been identified as 5165 // uniform-after-vectorization. 5166 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5167 5168 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5169 // memory accesses requiring a scalar use. The pointer operands of loads and 5170 // stores will be scalar as long as the memory accesses is not a gather or 5171 // scatter operation. The value operand of a store will remain scalar if the 5172 // store is scalarized. 5173 for (auto *BB : TheLoop->blocks()) 5174 for (auto &I : *BB) { 5175 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5176 evaluatePtrUse(Load, Load->getPointerOperand()); 5177 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5178 evaluatePtrUse(Store, Store->getPointerOperand()); 5179 evaluatePtrUse(Store, Store->getValueOperand()); 5180 } 5181 } 5182 for (auto *I : ScalarPtrs) 5183 if (!PossibleNonScalarPtrs.count(I)) { 5184 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5185 Worklist.insert(I); 5186 } 5187 5188 // Insert the forced scalars. 5189 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5190 // induction variable when the PHI user is scalarized. 5191 auto ForcedScalar = ForcedScalars.find(VF); 5192 if (ForcedScalar != ForcedScalars.end()) 5193 for (auto *I : ForcedScalar->second) 5194 Worklist.insert(I); 5195 5196 // Expand the worklist by looking through any bitcasts and getelementptr 5197 // instructions we've already identified as scalar. This is similar to the 5198 // expansion step in collectLoopUniforms(); however, here we're only 5199 // expanding to include additional bitcasts and getelementptr instructions. 5200 unsigned Idx = 0; 5201 while (Idx != Worklist.size()) { 5202 Instruction *Dst = Worklist[Idx++]; 5203 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5204 continue; 5205 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5206 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5207 auto *J = cast<Instruction>(U); 5208 return !TheLoop->contains(J) || Worklist.count(J) || 5209 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5210 isScalarUse(J, Src)); 5211 })) { 5212 Worklist.insert(Src); 5213 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5214 } 5215 } 5216 5217 // An induction variable will remain scalar if all users of the induction 5218 // variable and induction variable update remain scalar. 5219 for (auto &Induction : Legal->getInductionVars()) { 5220 auto *Ind = Induction.first; 5221 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5222 5223 // If tail-folding is applied, the primary induction variable will be used 5224 // to feed a vector compare. 5225 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5226 continue; 5227 5228 // Determine if all users of the induction variable are scalar after 5229 // vectorization. 5230 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5231 auto *I = cast<Instruction>(U); 5232 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5233 }); 5234 if (!ScalarInd) 5235 continue; 5236 5237 // Determine if all users of the induction variable update instruction are 5238 // scalar after vectorization. 5239 auto ScalarIndUpdate = 5240 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5241 auto *I = cast<Instruction>(U); 5242 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5243 }); 5244 if (!ScalarIndUpdate) 5245 continue; 5246 5247 // The induction variable and its update instruction will remain scalar. 5248 Worklist.insert(Ind); 5249 Worklist.insert(IndUpdate); 5250 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5251 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5252 << "\n"); 5253 } 5254 5255 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5256 } 5257 5258 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const { 5259 if (!blockNeedsPredication(I->getParent())) 5260 return false; 5261 switch(I->getOpcode()) { 5262 default: 5263 break; 5264 case Instruction::Load: 5265 case Instruction::Store: { 5266 if (!Legal->isMaskRequired(I)) 5267 return false; 5268 auto *Ptr = getLoadStorePointerOperand(I); 5269 auto *Ty = getLoadStoreType(I); 5270 const Align Alignment = getLoadStoreAlignment(I); 5271 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5272 TTI.isLegalMaskedGather(Ty, Alignment)) 5273 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5274 TTI.isLegalMaskedScatter(Ty, Alignment)); 5275 } 5276 case Instruction::UDiv: 5277 case Instruction::SDiv: 5278 case Instruction::SRem: 5279 case Instruction::URem: 5280 return mayDivideByZero(*I); 5281 } 5282 return false; 5283 } 5284 5285 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5286 Instruction *I, ElementCount VF) { 5287 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5288 assert(getWideningDecision(I, VF) == CM_Unknown && 5289 "Decision should not be set yet."); 5290 auto *Group = getInterleavedAccessGroup(I); 5291 assert(Group && "Must have a group."); 5292 5293 // If the instruction's allocated size doesn't equal it's type size, it 5294 // requires padding and will be scalarized. 5295 auto &DL = I->getModule()->getDataLayout(); 5296 auto *ScalarTy = getLoadStoreType(I); 5297 if (hasIrregularType(ScalarTy, DL)) 5298 return false; 5299 5300 // Check if masking is required. 5301 // A Group may need masking for one of two reasons: it resides in a block that 5302 // needs predication, or it was decided to use masking to deal with gaps 5303 // (either a gap at the end of a load-access that may result in a speculative 5304 // load, or any gaps in a store-access). 5305 bool PredicatedAccessRequiresMasking = 5306 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5307 bool LoadAccessWithGapsRequiresEpilogMasking = 5308 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 5309 !isScalarEpilogueAllowed(); 5310 bool StoreAccessWithGapsRequiresMasking = 5311 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 5312 if (!PredicatedAccessRequiresMasking && 5313 !LoadAccessWithGapsRequiresEpilogMasking && 5314 !StoreAccessWithGapsRequiresMasking) 5315 return true; 5316 5317 // If masked interleaving is required, we expect that the user/target had 5318 // enabled it, because otherwise it either wouldn't have been created or 5319 // it should have been invalidated by the CostModel. 5320 assert(useMaskedInterleavedAccesses(TTI) && 5321 "Masked interleave-groups for predicated accesses are not enabled."); 5322 5323 auto *Ty = getLoadStoreType(I); 5324 const Align Alignment = getLoadStoreAlignment(I); 5325 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5326 : TTI.isLegalMaskedStore(Ty, Alignment); 5327 } 5328 5329 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5330 Instruction *I, ElementCount VF) { 5331 // Get and ensure we have a valid memory instruction. 5332 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 5333 5334 auto *Ptr = getLoadStorePointerOperand(I); 5335 auto *ScalarTy = getLoadStoreType(I); 5336 5337 // In order to be widened, the pointer should be consecutive, first of all. 5338 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 5339 return false; 5340 5341 // If the instruction is a store located in a predicated block, it will be 5342 // scalarized. 5343 if (isScalarWithPredication(I)) 5344 return false; 5345 5346 // If the instruction's allocated size doesn't equal it's type size, it 5347 // requires padding and will be scalarized. 5348 auto &DL = I->getModule()->getDataLayout(); 5349 if (hasIrregularType(ScalarTy, DL)) 5350 return false; 5351 5352 return true; 5353 } 5354 5355 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5356 // We should not collect Uniforms more than once per VF. Right now, 5357 // this function is called from collectUniformsAndScalars(), which 5358 // already does this check. Collecting Uniforms for VF=1 does not make any 5359 // sense. 5360 5361 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5362 "This function should not be visited twice for the same VF"); 5363 5364 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5365 // not analyze again. Uniforms.count(VF) will return 1. 5366 Uniforms[VF].clear(); 5367 5368 // We now know that the loop is vectorizable! 5369 // Collect instructions inside the loop that will remain uniform after 5370 // vectorization. 5371 5372 // Global values, params and instructions outside of current loop are out of 5373 // scope. 5374 auto isOutOfScope = [&](Value *V) -> bool { 5375 Instruction *I = dyn_cast<Instruction>(V); 5376 return (!I || !TheLoop->contains(I)); 5377 }; 5378 5379 SetVector<Instruction *> Worklist; 5380 BasicBlock *Latch = TheLoop->getLoopLatch(); 5381 5382 // Instructions that are scalar with predication must not be considered 5383 // uniform after vectorization, because that would create an erroneous 5384 // replicating region where only a single instance out of VF should be formed. 5385 // TODO: optimize such seldom cases if found important, see PR40816. 5386 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5387 if (isOutOfScope(I)) { 5388 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5389 << *I << "\n"); 5390 return; 5391 } 5392 if (isScalarWithPredication(I)) { 5393 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5394 << *I << "\n"); 5395 return; 5396 } 5397 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5398 Worklist.insert(I); 5399 }; 5400 5401 // Start with the conditional branch. If the branch condition is an 5402 // instruction contained in the loop that is only used by the branch, it is 5403 // uniform. 5404 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5405 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5406 addToWorklistIfAllowed(Cmp); 5407 5408 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5409 InstWidening WideningDecision = getWideningDecision(I, VF); 5410 assert(WideningDecision != CM_Unknown && 5411 "Widening decision should be ready at this moment"); 5412 5413 // A uniform memory op is itself uniform. We exclude uniform stores 5414 // here as they demand the last lane, not the first one. 5415 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5416 assert(WideningDecision == CM_Scalarize); 5417 return true; 5418 } 5419 5420 return (WideningDecision == CM_Widen || 5421 WideningDecision == CM_Widen_Reverse || 5422 WideningDecision == CM_Interleave); 5423 }; 5424 5425 5426 // Returns true if Ptr is the pointer operand of a memory access instruction 5427 // I, and I is known to not require scalarization. 5428 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5429 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5430 }; 5431 5432 // Holds a list of values which are known to have at least one uniform use. 5433 // Note that there may be other uses which aren't uniform. A "uniform use" 5434 // here is something which only demands lane 0 of the unrolled iterations; 5435 // it does not imply that all lanes produce the same value (e.g. this is not 5436 // the usual meaning of uniform) 5437 SetVector<Value *> HasUniformUse; 5438 5439 // Scan the loop for instructions which are either a) known to have only 5440 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5441 for (auto *BB : TheLoop->blocks()) 5442 for (auto &I : *BB) { 5443 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 5444 switch (II->getIntrinsicID()) { 5445 case Intrinsic::sideeffect: 5446 case Intrinsic::experimental_noalias_scope_decl: 5447 case Intrinsic::assume: 5448 case Intrinsic::lifetime_start: 5449 case Intrinsic::lifetime_end: 5450 if (TheLoop->hasLoopInvariantOperands(&I)) 5451 addToWorklistIfAllowed(&I); 5452 break; 5453 default: 5454 break; 5455 } 5456 } 5457 5458 // ExtractValue instructions must be uniform, because the operands are 5459 // known to be loop-invariant. 5460 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 5461 assert(isOutOfScope(EVI->getAggregateOperand()) && 5462 "Expected aggregate value to be loop invariant"); 5463 addToWorklistIfAllowed(EVI); 5464 continue; 5465 } 5466 5467 // If there's no pointer operand, there's nothing to do. 5468 auto *Ptr = getLoadStorePointerOperand(&I); 5469 if (!Ptr) 5470 continue; 5471 5472 // A uniform memory op is itself uniform. We exclude uniform stores 5473 // here as they demand the last lane, not the first one. 5474 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5475 addToWorklistIfAllowed(&I); 5476 5477 if (isUniformDecision(&I, VF)) { 5478 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5479 HasUniformUse.insert(Ptr); 5480 } 5481 } 5482 5483 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5484 // demanding) users. Since loops are assumed to be in LCSSA form, this 5485 // disallows uses outside the loop as well. 5486 for (auto *V : HasUniformUse) { 5487 if (isOutOfScope(V)) 5488 continue; 5489 auto *I = cast<Instruction>(V); 5490 auto UsersAreMemAccesses = 5491 llvm::all_of(I->users(), [&](User *U) -> bool { 5492 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5493 }); 5494 if (UsersAreMemAccesses) 5495 addToWorklistIfAllowed(I); 5496 } 5497 5498 // Expand Worklist in topological order: whenever a new instruction 5499 // is added , its users should be already inside Worklist. It ensures 5500 // a uniform instruction will only be used by uniform instructions. 5501 unsigned idx = 0; 5502 while (idx != Worklist.size()) { 5503 Instruction *I = Worklist[idx++]; 5504 5505 for (auto OV : I->operand_values()) { 5506 // isOutOfScope operands cannot be uniform instructions. 5507 if (isOutOfScope(OV)) 5508 continue; 5509 // First order recurrence Phi's should typically be considered 5510 // non-uniform. 5511 auto *OP = dyn_cast<PHINode>(OV); 5512 if (OP && Legal->isFirstOrderRecurrence(OP)) 5513 continue; 5514 // If all the users of the operand are uniform, then add the 5515 // operand into the uniform worklist. 5516 auto *OI = cast<Instruction>(OV); 5517 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5518 auto *J = cast<Instruction>(U); 5519 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5520 })) 5521 addToWorklistIfAllowed(OI); 5522 } 5523 } 5524 5525 // For an instruction to be added into Worklist above, all its users inside 5526 // the loop should also be in Worklist. However, this condition cannot be 5527 // true for phi nodes that form a cyclic dependence. We must process phi 5528 // nodes separately. An induction variable will remain uniform if all users 5529 // of the induction variable and induction variable update remain uniform. 5530 // The code below handles both pointer and non-pointer induction variables. 5531 for (auto &Induction : Legal->getInductionVars()) { 5532 auto *Ind = Induction.first; 5533 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5534 5535 // Determine if all users of the induction variable are uniform after 5536 // vectorization. 5537 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5538 auto *I = cast<Instruction>(U); 5539 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5540 isVectorizedMemAccessUse(I, Ind); 5541 }); 5542 if (!UniformInd) 5543 continue; 5544 5545 // Determine if all users of the induction variable update instruction are 5546 // uniform after vectorization. 5547 auto UniformIndUpdate = 5548 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5549 auto *I = cast<Instruction>(U); 5550 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5551 isVectorizedMemAccessUse(I, IndUpdate); 5552 }); 5553 if (!UniformIndUpdate) 5554 continue; 5555 5556 // The induction variable and its update instruction will remain uniform. 5557 addToWorklistIfAllowed(Ind); 5558 addToWorklistIfAllowed(IndUpdate); 5559 } 5560 5561 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5562 } 5563 5564 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5565 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5566 5567 if (Legal->getRuntimePointerChecking()->Need) { 5568 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5569 "runtime pointer checks needed. Enable vectorization of this " 5570 "loop with '#pragma clang loop vectorize(enable)' when " 5571 "compiling with -Os/-Oz", 5572 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5573 return true; 5574 } 5575 5576 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5577 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5578 "runtime SCEV checks needed. Enable vectorization of this " 5579 "loop with '#pragma clang loop vectorize(enable)' when " 5580 "compiling with -Os/-Oz", 5581 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5582 return true; 5583 } 5584 5585 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5586 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5587 reportVectorizationFailure("Runtime stride check for small trip count", 5588 "runtime stride == 1 checks needed. Enable vectorization of " 5589 "this loop without such check by compiling with -Os/-Oz", 5590 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5591 return true; 5592 } 5593 5594 return false; 5595 } 5596 5597 ElementCount 5598 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5599 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 5600 return ElementCount::getScalable(0); 5601 5602 if (Hints->isScalableVectorizationDisabled()) { 5603 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5604 "ScalableVectorizationDisabled", ORE, TheLoop); 5605 return ElementCount::getScalable(0); 5606 } 5607 5608 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5609 5610 auto MaxScalableVF = ElementCount::getScalable( 5611 std::numeric_limits<ElementCount::ScalarTy>::max()); 5612 5613 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5614 // FIXME: While for scalable vectors this is currently sufficient, this should 5615 // be replaced by a more detailed mechanism that filters out specific VFs, 5616 // instead of invalidating vectorization for a whole set of VFs based on the 5617 // MaxVF. 5618 5619 // Disable scalable vectorization if the loop contains unsupported reductions. 5620 if (!canVectorizeReductions(MaxScalableVF)) { 5621 reportVectorizationInfo( 5622 "Scalable vectorization not supported for the reduction " 5623 "operations found in this loop.", 5624 "ScalableVFUnfeasible", ORE, TheLoop); 5625 return ElementCount::getScalable(0); 5626 } 5627 5628 // Disable scalable vectorization if the loop contains any instructions 5629 // with element types not supported for scalable vectors. 5630 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5631 return !Ty->isVoidTy() && 5632 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5633 })) { 5634 reportVectorizationInfo("Scalable vectorization is not supported " 5635 "for all element types found in this loop.", 5636 "ScalableVFUnfeasible", ORE, TheLoop); 5637 return ElementCount::getScalable(0); 5638 } 5639 5640 if (Legal->isSafeForAnyVectorWidth()) 5641 return MaxScalableVF; 5642 5643 // Limit MaxScalableVF by the maximum safe dependence distance. 5644 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5645 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5646 unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange) 5647 .getVScaleRangeArgs() 5648 .second; 5649 if (VScaleMax > 0) 5650 MaxVScale = VScaleMax; 5651 } 5652 MaxScalableVF = ElementCount::getScalable( 5653 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5654 if (!MaxScalableVF) 5655 reportVectorizationInfo( 5656 "Max legal vector width too small, scalable vectorization " 5657 "unfeasible.", 5658 "ScalableVFUnfeasible", ORE, TheLoop); 5659 5660 return MaxScalableVF; 5661 } 5662 5663 FixedScalableVFPair 5664 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5665 ElementCount UserVF) { 5666 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5667 unsigned SmallestType, WidestType; 5668 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5669 5670 // Get the maximum safe dependence distance in bits computed by LAA. 5671 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5672 // the memory accesses that is most restrictive (involved in the smallest 5673 // dependence distance). 5674 unsigned MaxSafeElements = 5675 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5676 5677 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5678 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5679 5680 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5681 << ".\n"); 5682 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5683 << ".\n"); 5684 5685 // First analyze the UserVF, fall back if the UserVF should be ignored. 5686 if (UserVF) { 5687 auto MaxSafeUserVF = 5688 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5689 5690 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5691 // If `VF=vscale x N` is safe, then so is `VF=N` 5692 if (UserVF.isScalable()) 5693 return FixedScalableVFPair( 5694 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5695 else 5696 return UserVF; 5697 } 5698 5699 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5700 5701 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5702 // is better to ignore the hint and let the compiler choose a suitable VF. 5703 if (!UserVF.isScalable()) { 5704 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5705 << " is unsafe, clamping to max safe VF=" 5706 << MaxSafeFixedVF << ".\n"); 5707 ORE->emit([&]() { 5708 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5709 TheLoop->getStartLoc(), 5710 TheLoop->getHeader()) 5711 << "User-specified vectorization factor " 5712 << ore::NV("UserVectorizationFactor", UserVF) 5713 << " is unsafe, clamping to maximum safe vectorization factor " 5714 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5715 }); 5716 return MaxSafeFixedVF; 5717 } 5718 5719 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5720 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5721 << " is ignored because scalable vectors are not " 5722 "available.\n"); 5723 ORE->emit([&]() { 5724 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5725 TheLoop->getStartLoc(), 5726 TheLoop->getHeader()) 5727 << "User-specified vectorization factor " 5728 << ore::NV("UserVectorizationFactor", UserVF) 5729 << " is ignored because the target does not support scalable " 5730 "vectors. The compiler will pick a more suitable value."; 5731 }); 5732 } else { 5733 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5734 << " is unsafe. Ignoring scalable UserVF.\n"); 5735 ORE->emit([&]() { 5736 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5737 TheLoop->getStartLoc(), 5738 TheLoop->getHeader()) 5739 << "User-specified vectorization factor " 5740 << ore::NV("UserVectorizationFactor", UserVF) 5741 << " is unsafe. Ignoring the hint to let the compiler pick a " 5742 "more suitable value."; 5743 }); 5744 } 5745 } 5746 5747 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5748 << " / " << WidestType << " bits.\n"); 5749 5750 FixedScalableVFPair Result(ElementCount::getFixed(1), 5751 ElementCount::getScalable(0)); 5752 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5753 WidestType, MaxSafeFixedVF)) 5754 Result.FixedVF = MaxVF; 5755 5756 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5757 WidestType, MaxSafeScalableVF)) 5758 if (MaxVF.isScalable()) { 5759 Result.ScalableVF = MaxVF; 5760 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5761 << "\n"); 5762 } 5763 5764 return Result; 5765 } 5766 5767 FixedScalableVFPair 5768 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5769 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5770 // TODO: It may by useful to do since it's still likely to be dynamically 5771 // uniform if the target can skip. 5772 reportVectorizationFailure( 5773 "Not inserting runtime ptr check for divergent target", 5774 "runtime pointer checks needed. Not enabled for divergent target", 5775 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5776 return FixedScalableVFPair::getNone(); 5777 } 5778 5779 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5780 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5781 if (TC == 1) { 5782 reportVectorizationFailure("Single iteration (non) loop", 5783 "loop trip count is one, irrelevant for vectorization", 5784 "SingleIterationLoop", ORE, TheLoop); 5785 return FixedScalableVFPair::getNone(); 5786 } 5787 5788 switch (ScalarEpilogueStatus) { 5789 case CM_ScalarEpilogueAllowed: 5790 return computeFeasibleMaxVF(TC, UserVF); 5791 case CM_ScalarEpilogueNotAllowedUsePredicate: 5792 LLVM_FALLTHROUGH; 5793 case CM_ScalarEpilogueNotNeededUsePredicate: 5794 LLVM_DEBUG( 5795 dbgs() << "LV: vector predicate hint/switch found.\n" 5796 << "LV: Not allowing scalar epilogue, creating predicated " 5797 << "vector loop.\n"); 5798 break; 5799 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5800 // fallthrough as a special case of OptForSize 5801 case CM_ScalarEpilogueNotAllowedOptSize: 5802 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5803 LLVM_DEBUG( 5804 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5805 else 5806 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5807 << "count.\n"); 5808 5809 // Bail if runtime checks are required, which are not good when optimising 5810 // for size. 5811 if (runtimeChecksRequired()) 5812 return FixedScalableVFPair::getNone(); 5813 5814 break; 5815 } 5816 5817 // The only loops we can vectorize without a scalar epilogue, are loops with 5818 // a bottom-test and a single exiting block. We'd have to handle the fact 5819 // that not every instruction executes on the last iteration. This will 5820 // require a lane mask which varies through the vector loop body. (TODO) 5821 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5822 // If there was a tail-folding hint/switch, but we can't fold the tail by 5823 // masking, fallback to a vectorization with a scalar epilogue. 5824 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5825 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5826 "scalar epilogue instead.\n"); 5827 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5828 return computeFeasibleMaxVF(TC, UserVF); 5829 } 5830 return FixedScalableVFPair::getNone(); 5831 } 5832 5833 // Now try the tail folding 5834 5835 // Invalidate interleave groups that require an epilogue if we can't mask 5836 // the interleave-group. 5837 if (!useMaskedInterleavedAccesses(TTI)) { 5838 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5839 "No decisions should have been taken at this point"); 5840 // Note: There is no need to invalidate any cost modeling decisions here, as 5841 // non where taken so far. 5842 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5843 } 5844 5845 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF); 5846 // Avoid tail folding if the trip count is known to be a multiple of any VF 5847 // we chose. 5848 // FIXME: The condition below pessimises the case for fixed-width vectors, 5849 // when scalable VFs are also candidates for vectorization. 5850 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5851 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5852 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5853 "MaxFixedVF must be a power of 2"); 5854 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5855 : MaxFixedVF.getFixedValue(); 5856 ScalarEvolution *SE = PSE.getSE(); 5857 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5858 const SCEV *ExitCount = SE->getAddExpr( 5859 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5860 const SCEV *Rem = SE->getURemExpr( 5861 SE->applyLoopGuards(ExitCount, TheLoop), 5862 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5863 if (Rem->isZero()) { 5864 // Accept MaxFixedVF if we do not have a tail. 5865 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5866 return MaxFactors; 5867 } 5868 } 5869 5870 // For scalable vectors, don't use tail folding as this is currently not yet 5871 // supported. The code is likely to have ended up here if the tripcount is 5872 // low, in which case it makes sense not to use scalable vectors. 5873 if (MaxFactors.ScalableVF.isVector()) 5874 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5875 5876 // If we don't know the precise trip count, or if the trip count that we 5877 // found modulo the vectorization factor is not zero, try to fold the tail 5878 // by masking. 5879 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5880 if (Legal->prepareToFoldTailByMasking()) { 5881 FoldTailByMasking = true; 5882 return MaxFactors; 5883 } 5884 5885 // If there was a tail-folding hint/switch, but we can't fold the tail by 5886 // masking, fallback to a vectorization with a scalar epilogue. 5887 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5888 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5889 "scalar epilogue instead.\n"); 5890 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5891 return MaxFactors; 5892 } 5893 5894 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5895 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5896 return FixedScalableVFPair::getNone(); 5897 } 5898 5899 if (TC == 0) { 5900 reportVectorizationFailure( 5901 "Unable to calculate the loop count due to complex control flow", 5902 "unable to calculate the loop count due to complex control flow", 5903 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5904 return FixedScalableVFPair::getNone(); 5905 } 5906 5907 reportVectorizationFailure( 5908 "Cannot optimize for size and vectorize at the same time.", 5909 "cannot optimize for size and vectorize at the same time. " 5910 "Enable vectorization of this loop with '#pragma clang loop " 5911 "vectorize(enable)' when compiling with -Os/-Oz", 5912 "NoTailLoopWithOptForSize", ORE, TheLoop); 5913 return FixedScalableVFPair::getNone(); 5914 } 5915 5916 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5917 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5918 const ElementCount &MaxSafeVF) { 5919 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5920 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5921 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5922 : TargetTransformInfo::RGK_FixedWidthVector); 5923 5924 // Convenience function to return the minimum of two ElementCounts. 5925 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5926 assert((LHS.isScalable() == RHS.isScalable()) && 5927 "Scalable flags must match"); 5928 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5929 }; 5930 5931 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5932 // Note that both WidestRegister and WidestType may not be a powers of 2. 5933 auto MaxVectorElementCount = ElementCount::get( 5934 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5935 ComputeScalableMaxVF); 5936 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5937 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5938 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5939 5940 if (!MaxVectorElementCount) { 5941 LLVM_DEBUG(dbgs() << "LV: The target has no " 5942 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5943 << " vector registers.\n"); 5944 return ElementCount::getFixed(1); 5945 } 5946 5947 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5948 if (ConstTripCount && 5949 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5950 isPowerOf2_32(ConstTripCount)) { 5951 // We need to clamp the VF to be the ConstTripCount. There is no point in 5952 // choosing a higher viable VF as done in the loop below. If 5953 // MaxVectorElementCount is scalable, we only fall back on a fixed VF when 5954 // the TC is less than or equal to the known number of lanes. 5955 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5956 << ConstTripCount << "\n"); 5957 return TripCountEC; 5958 } 5959 5960 ElementCount MaxVF = MaxVectorElementCount; 5961 if (TTI.shouldMaximizeVectorBandwidth() || 5962 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5963 auto MaxVectorElementCountMaxBW = ElementCount::get( 5964 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5965 ComputeScalableMaxVF); 5966 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5967 5968 // Collect all viable vectorization factors larger than the default MaxVF 5969 // (i.e. MaxVectorElementCount). 5970 SmallVector<ElementCount, 8> VFs; 5971 for (ElementCount VS = MaxVectorElementCount * 2; 5972 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5973 VFs.push_back(VS); 5974 5975 // For each VF calculate its register usage. 5976 auto RUs = calculateRegisterUsage(VFs); 5977 5978 // Select the largest VF which doesn't require more registers than existing 5979 // ones. 5980 for (int i = RUs.size() - 1; i >= 0; --i) { 5981 bool Selected = true; 5982 for (auto &pair : RUs[i].MaxLocalUsers) { 5983 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5984 if (pair.second > TargetNumRegisters) 5985 Selected = false; 5986 } 5987 if (Selected) { 5988 MaxVF = VFs[i]; 5989 break; 5990 } 5991 } 5992 if (ElementCount MinVF = 5993 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5994 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5995 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5996 << ") with target's minimum: " << MinVF << '\n'); 5997 MaxVF = MinVF; 5998 } 5999 } 6000 } 6001 return MaxVF; 6002 } 6003 6004 bool LoopVectorizationCostModel::isMoreProfitable( 6005 const VectorizationFactor &A, const VectorizationFactor &B) const { 6006 InstructionCost CostA = A.Cost; 6007 InstructionCost CostB = B.Cost; 6008 6009 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 6010 6011 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 6012 MaxTripCount) { 6013 // If we are folding the tail and the trip count is a known (possibly small) 6014 // constant, the trip count will be rounded up to an integer number of 6015 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 6016 // which we compare directly. When not folding the tail, the total cost will 6017 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 6018 // approximated with the per-lane cost below instead of using the tripcount 6019 // as here. 6020 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 6021 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 6022 return RTCostA < RTCostB; 6023 } 6024 6025 // When set to preferred, for now assume vscale may be larger than 1, so 6026 // that scalable vectorization is slightly favorable over fixed-width 6027 // vectorization. 6028 if (Hints->isScalableVectorizationPreferred()) 6029 if (A.Width.isScalable() && !B.Width.isScalable()) 6030 return (CostA * B.Width.getKnownMinValue()) <= 6031 (CostB * A.Width.getKnownMinValue()); 6032 6033 // To avoid the need for FP division: 6034 // (CostA / A.Width) < (CostB / B.Width) 6035 // <=> (CostA * B.Width) < (CostB * A.Width) 6036 return (CostA * B.Width.getKnownMinValue()) < 6037 (CostB * A.Width.getKnownMinValue()); 6038 } 6039 6040 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 6041 const ElementCountSet &VFCandidates) { 6042 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 6043 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 6044 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 6045 assert(VFCandidates.count(ElementCount::getFixed(1)) && 6046 "Expected Scalar VF to be a candidate"); 6047 6048 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 6049 VectorizationFactor ChosenFactor = ScalarCost; 6050 6051 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6052 if (ForceVectorization && VFCandidates.size() > 1) { 6053 // Ignore scalar width, because the user explicitly wants vectorization. 6054 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 6055 // evaluation. 6056 ChosenFactor.Cost = InstructionCost::getMax(); 6057 } 6058 6059 SmallVector<InstructionVFPair> InvalidCosts; 6060 for (const auto &i : VFCandidates) { 6061 // The cost for scalar VF=1 is already calculated, so ignore it. 6062 if (i.isScalar()) 6063 continue; 6064 6065 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 6066 VectorizationFactor Candidate(i, C.first); 6067 LLVM_DEBUG( 6068 dbgs() << "LV: Vector loop of width " << i << " costs: " 6069 << (Candidate.Cost / Candidate.Width.getKnownMinValue()) 6070 << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "") 6071 << ".\n"); 6072 6073 if (!C.second && !ForceVectorization) { 6074 LLVM_DEBUG( 6075 dbgs() << "LV: Not considering vector loop of width " << i 6076 << " because it will not generate any vector instructions.\n"); 6077 continue; 6078 } 6079 6080 // If profitable add it to ProfitableVF list. 6081 if (isMoreProfitable(Candidate, ScalarCost)) 6082 ProfitableVFs.push_back(Candidate); 6083 6084 if (isMoreProfitable(Candidate, ChosenFactor)) 6085 ChosenFactor = Candidate; 6086 } 6087 6088 // Emit a report of VFs with invalid costs in the loop. 6089 if (!InvalidCosts.empty()) { 6090 // Group the remarks per instruction, keeping the instruction order from 6091 // InvalidCosts. 6092 std::map<Instruction *, unsigned> Numbering; 6093 unsigned I = 0; 6094 for (auto &Pair : InvalidCosts) 6095 if (!Numbering.count(Pair.first)) 6096 Numbering[Pair.first] = I++; 6097 6098 // Sort the list, first on instruction(number) then on VF. 6099 llvm::sort(InvalidCosts, 6100 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 6101 if (Numbering[A.first] != Numbering[B.first]) 6102 return Numbering[A.first] < Numbering[B.first]; 6103 ElementCountComparator ECC; 6104 return ECC(A.second, B.second); 6105 }); 6106 6107 // For a list of ordered instruction-vf pairs: 6108 // [(load, vf1), (load, vf2), (store, vf1)] 6109 // Group the instructions together to emit separate remarks for: 6110 // load (vf1, vf2) 6111 // store (vf1) 6112 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 6113 auto Subset = ArrayRef<InstructionVFPair>(); 6114 do { 6115 if (Subset.empty()) 6116 Subset = Tail.take_front(1); 6117 6118 Instruction *I = Subset.front().first; 6119 6120 // If the next instruction is different, or if there are no other pairs, 6121 // emit a remark for the collated subset. e.g. 6122 // [(load, vf1), (load, vf2))] 6123 // to emit: 6124 // remark: invalid costs for 'load' at VF=(vf, vf2) 6125 if (Subset == Tail || Tail[Subset.size()].first != I) { 6126 std::string OutString; 6127 raw_string_ostream OS(OutString); 6128 assert(!Subset.empty() && "Unexpected empty range"); 6129 OS << "Instruction with invalid costs prevented vectorization at VF=("; 6130 for (auto &Pair : Subset) 6131 OS << (Pair.second == Subset.front().second ? "" : ", ") 6132 << Pair.second; 6133 OS << "):"; 6134 if (auto *CI = dyn_cast<CallInst>(I)) 6135 OS << " call to " << CI->getCalledFunction()->getName(); 6136 else 6137 OS << " " << I->getOpcodeName(); 6138 OS.flush(); 6139 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 6140 Tail = Tail.drop_front(Subset.size()); 6141 Subset = {}; 6142 } else 6143 // Grow the subset by one element 6144 Subset = Tail.take_front(Subset.size() + 1); 6145 } while (!Tail.empty()); 6146 } 6147 6148 if (!EnableCondStoresVectorization && NumPredStores) { 6149 reportVectorizationFailure("There are conditional stores.", 6150 "store that is conditionally executed prevents vectorization", 6151 "ConditionalStore", ORE, TheLoop); 6152 ChosenFactor = ScalarCost; 6153 } 6154 6155 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 6156 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 6157 << "LV: Vectorization seems to be not beneficial, " 6158 << "but was forced by a user.\n"); 6159 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 6160 return ChosenFactor; 6161 } 6162 6163 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 6164 const Loop &L, ElementCount VF) const { 6165 // Cross iteration phis such as reductions need special handling and are 6166 // currently unsupported. 6167 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 6168 return Legal->isFirstOrderRecurrence(&Phi) || 6169 Legal->isReductionVariable(&Phi); 6170 })) 6171 return false; 6172 6173 // Phis with uses outside of the loop require special handling and are 6174 // currently unsupported. 6175 for (auto &Entry : Legal->getInductionVars()) { 6176 // Look for uses of the value of the induction at the last iteration. 6177 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 6178 for (User *U : PostInc->users()) 6179 if (!L.contains(cast<Instruction>(U))) 6180 return false; 6181 // Look for uses of penultimate value of the induction. 6182 for (User *U : Entry.first->users()) 6183 if (!L.contains(cast<Instruction>(U))) 6184 return false; 6185 } 6186 6187 // Induction variables that are widened require special handling that is 6188 // currently not supported. 6189 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 6190 return !(this->isScalarAfterVectorization(Entry.first, VF) || 6191 this->isProfitableToScalarize(Entry.first, VF)); 6192 })) 6193 return false; 6194 6195 // Epilogue vectorization code has not been auditted to ensure it handles 6196 // non-latch exits properly. It may be fine, but it needs auditted and 6197 // tested. 6198 if (L.getExitingBlock() != L.getLoopLatch()) 6199 return false; 6200 6201 return true; 6202 } 6203 6204 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 6205 const ElementCount VF) const { 6206 // FIXME: We need a much better cost-model to take different parameters such 6207 // as register pressure, code size increase and cost of extra branches into 6208 // account. For now we apply a very crude heuristic and only consider loops 6209 // with vectorization factors larger than a certain value. 6210 // We also consider epilogue vectorization unprofitable for targets that don't 6211 // consider interleaving beneficial (eg. MVE). 6212 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 6213 return false; 6214 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 6215 return true; 6216 return false; 6217 } 6218 6219 VectorizationFactor 6220 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 6221 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 6222 VectorizationFactor Result = VectorizationFactor::Disabled(); 6223 if (!EnableEpilogueVectorization) { 6224 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 6225 return Result; 6226 } 6227 6228 if (!isScalarEpilogueAllowed()) { 6229 LLVM_DEBUG( 6230 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 6231 "allowed.\n";); 6232 return Result; 6233 } 6234 6235 // FIXME: This can be fixed for scalable vectors later, because at this stage 6236 // the LoopVectorizer will only consider vectorizing a loop with scalable 6237 // vectors when the loop has a hint to enable vectorization for a given VF. 6238 if (MainLoopVF.isScalable()) { 6239 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 6240 "yet supported.\n"); 6241 return Result; 6242 } 6243 6244 // Not really a cost consideration, but check for unsupported cases here to 6245 // simplify the logic. 6246 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 6247 LLVM_DEBUG( 6248 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 6249 "not a supported candidate.\n";); 6250 return Result; 6251 } 6252 6253 if (EpilogueVectorizationForceVF > 1) { 6254 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 6255 if (LVP.hasPlanWithVFs( 6256 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 6257 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 6258 else { 6259 LLVM_DEBUG( 6260 dbgs() 6261 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 6262 return Result; 6263 } 6264 } 6265 6266 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6267 TheLoop->getHeader()->getParent()->hasMinSize()) { 6268 LLVM_DEBUG( 6269 dbgs() 6270 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6271 return Result; 6272 } 6273 6274 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6275 return Result; 6276 6277 for (auto &NextVF : ProfitableVFs) 6278 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6279 (Result.Width.getFixedValue() == 1 || 6280 isMoreProfitable(NextVF, Result)) && 6281 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6282 Result = NextVF; 6283 6284 if (Result != VectorizationFactor::Disabled()) 6285 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6286 << Result.Width.getFixedValue() << "\n";); 6287 return Result; 6288 } 6289 6290 std::pair<unsigned, unsigned> 6291 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6292 unsigned MinWidth = -1U; 6293 unsigned MaxWidth = 8; 6294 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6295 for (Type *T : ElementTypesInLoop) { 6296 MinWidth = std::min<unsigned>( 6297 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6298 MaxWidth = std::max<unsigned>( 6299 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6300 } 6301 return {MinWidth, MaxWidth}; 6302 } 6303 6304 void LoopVectorizationCostModel::collectElementTypesForWidening() { 6305 ElementTypesInLoop.clear(); 6306 // For each block. 6307 for (BasicBlock *BB : TheLoop->blocks()) { 6308 // For each instruction in the loop. 6309 for (Instruction &I : BB->instructionsWithoutDebug()) { 6310 Type *T = I.getType(); 6311 6312 // Skip ignored values. 6313 if (ValuesToIgnore.count(&I)) 6314 continue; 6315 6316 // Only examine Loads, Stores and PHINodes. 6317 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6318 continue; 6319 6320 // Examine PHI nodes that are reduction variables. Update the type to 6321 // account for the recurrence type. 6322 if (auto *PN = dyn_cast<PHINode>(&I)) { 6323 if (!Legal->isReductionVariable(PN)) 6324 continue; 6325 const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN]; 6326 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6327 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6328 RdxDesc.getRecurrenceType(), 6329 TargetTransformInfo::ReductionFlags())) 6330 continue; 6331 T = RdxDesc.getRecurrenceType(); 6332 } 6333 6334 // Examine the stored values. 6335 if (auto *ST = dyn_cast<StoreInst>(&I)) 6336 T = ST->getValueOperand()->getType(); 6337 6338 // Ignore loaded pointer types and stored pointer types that are not 6339 // vectorizable. 6340 // 6341 // FIXME: The check here attempts to predict whether a load or store will 6342 // be vectorized. We only know this for certain after a VF has 6343 // been selected. Here, we assume that if an access can be 6344 // vectorized, it will be. We should also look at extending this 6345 // optimization to non-pointer types. 6346 // 6347 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6348 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6349 continue; 6350 6351 ElementTypesInLoop.insert(T); 6352 } 6353 } 6354 } 6355 6356 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6357 unsigned LoopCost) { 6358 // -- The interleave heuristics -- 6359 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6360 // There are many micro-architectural considerations that we can't predict 6361 // at this level. For example, frontend pressure (on decode or fetch) due to 6362 // code size, or the number and capabilities of the execution ports. 6363 // 6364 // We use the following heuristics to select the interleave count: 6365 // 1. If the code has reductions, then we interleave to break the cross 6366 // iteration dependency. 6367 // 2. If the loop is really small, then we interleave to reduce the loop 6368 // overhead. 6369 // 3. We don't interleave if we think that we will spill registers to memory 6370 // due to the increased register pressure. 6371 6372 if (!isScalarEpilogueAllowed()) 6373 return 1; 6374 6375 // We used the distance for the interleave count. 6376 if (Legal->getMaxSafeDepDistBytes() != -1U) 6377 return 1; 6378 6379 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6380 const bool HasReductions = !Legal->getReductionVars().empty(); 6381 // Do not interleave loops with a relatively small known or estimated trip 6382 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6383 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6384 // because with the above conditions interleaving can expose ILP and break 6385 // cross iteration dependences for reductions. 6386 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6387 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6388 return 1; 6389 6390 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6391 // We divide by these constants so assume that we have at least one 6392 // instruction that uses at least one register. 6393 for (auto& pair : R.MaxLocalUsers) { 6394 pair.second = std::max(pair.second, 1U); 6395 } 6396 6397 // We calculate the interleave count using the following formula. 6398 // Subtract the number of loop invariants from the number of available 6399 // registers. These registers are used by all of the interleaved instances. 6400 // Next, divide the remaining registers by the number of registers that is 6401 // required by the loop, in order to estimate how many parallel instances 6402 // fit without causing spills. All of this is rounded down if necessary to be 6403 // a power of two. We want power of two interleave count to simplify any 6404 // addressing operations or alignment considerations. 6405 // We also want power of two interleave counts to ensure that the induction 6406 // variable of the vector loop wraps to zero, when tail is folded by masking; 6407 // this currently happens when OptForSize, in which case IC is set to 1 above. 6408 unsigned IC = UINT_MAX; 6409 6410 for (auto& pair : R.MaxLocalUsers) { 6411 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6412 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6413 << " registers of " 6414 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6415 if (VF.isScalar()) { 6416 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6417 TargetNumRegisters = ForceTargetNumScalarRegs; 6418 } else { 6419 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6420 TargetNumRegisters = ForceTargetNumVectorRegs; 6421 } 6422 unsigned MaxLocalUsers = pair.second; 6423 unsigned LoopInvariantRegs = 0; 6424 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6425 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6426 6427 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6428 // Don't count the induction variable as interleaved. 6429 if (EnableIndVarRegisterHeur) { 6430 TmpIC = 6431 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6432 std::max(1U, (MaxLocalUsers - 1))); 6433 } 6434 6435 IC = std::min(IC, TmpIC); 6436 } 6437 6438 // Clamp the interleave ranges to reasonable counts. 6439 unsigned MaxInterleaveCount = 6440 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6441 6442 // Check if the user has overridden the max. 6443 if (VF.isScalar()) { 6444 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6445 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6446 } else { 6447 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6448 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6449 } 6450 6451 // If trip count is known or estimated compile time constant, limit the 6452 // interleave count to be less than the trip count divided by VF, provided it 6453 // is at least 1. 6454 // 6455 // For scalable vectors we can't know if interleaving is beneficial. It may 6456 // not be beneficial for small loops if none of the lanes in the second vector 6457 // iterations is enabled. However, for larger loops, there is likely to be a 6458 // similar benefit as for fixed-width vectors. For now, we choose to leave 6459 // the InterleaveCount as if vscale is '1', although if some information about 6460 // the vector is known (e.g. min vector size), we can make a better decision. 6461 if (BestKnownTC) { 6462 MaxInterleaveCount = 6463 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6464 // Make sure MaxInterleaveCount is greater than 0. 6465 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6466 } 6467 6468 assert(MaxInterleaveCount > 0 && 6469 "Maximum interleave count must be greater than 0"); 6470 6471 // Clamp the calculated IC to be between the 1 and the max interleave count 6472 // that the target and trip count allows. 6473 if (IC > MaxInterleaveCount) 6474 IC = MaxInterleaveCount; 6475 else 6476 // Make sure IC is greater than 0. 6477 IC = std::max(1u, IC); 6478 6479 assert(IC > 0 && "Interleave count must be greater than 0."); 6480 6481 // If we did not calculate the cost for VF (because the user selected the VF) 6482 // then we calculate the cost of VF here. 6483 if (LoopCost == 0) { 6484 InstructionCost C = expectedCost(VF).first; 6485 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6486 LoopCost = *C.getValue(); 6487 } 6488 6489 assert(LoopCost && "Non-zero loop cost expected"); 6490 6491 // Interleave if we vectorized this loop and there is a reduction that could 6492 // benefit from interleaving. 6493 if (VF.isVector() && HasReductions) { 6494 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6495 return IC; 6496 } 6497 6498 // Note that if we've already vectorized the loop we will have done the 6499 // runtime check and so interleaving won't require further checks. 6500 bool InterleavingRequiresRuntimePointerCheck = 6501 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6502 6503 // We want to interleave small loops in order to reduce the loop overhead and 6504 // potentially expose ILP opportunities. 6505 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6506 << "LV: IC is " << IC << '\n' 6507 << "LV: VF is " << VF << '\n'); 6508 const bool AggressivelyInterleaveReductions = 6509 TTI.enableAggressiveInterleaving(HasReductions); 6510 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6511 // We assume that the cost overhead is 1 and we use the cost model 6512 // to estimate the cost of the loop and interleave until the cost of the 6513 // loop overhead is about 5% of the cost of the loop. 6514 unsigned SmallIC = 6515 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6516 6517 // Interleave until store/load ports (estimated by max interleave count) are 6518 // saturated. 6519 unsigned NumStores = Legal->getNumStores(); 6520 unsigned NumLoads = Legal->getNumLoads(); 6521 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6522 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6523 6524 // If we have a scalar reduction (vector reductions are already dealt with 6525 // by this point), we can increase the critical path length if the loop 6526 // we're interleaving is inside another loop. For tree-wise reductions 6527 // set the limit to 2, and for ordered reductions it's best to disable 6528 // interleaving entirely. 6529 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6530 bool HasOrderedReductions = 6531 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6532 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6533 return RdxDesc.isOrdered(); 6534 }); 6535 if (HasOrderedReductions) { 6536 LLVM_DEBUG( 6537 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6538 return 1; 6539 } 6540 6541 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6542 SmallIC = std::min(SmallIC, F); 6543 StoresIC = std::min(StoresIC, F); 6544 LoadsIC = std::min(LoadsIC, F); 6545 } 6546 6547 if (EnableLoadStoreRuntimeInterleave && 6548 std::max(StoresIC, LoadsIC) > SmallIC) { 6549 LLVM_DEBUG( 6550 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6551 return std::max(StoresIC, LoadsIC); 6552 } 6553 6554 // If there are scalar reductions and TTI has enabled aggressive 6555 // interleaving for reductions, we will interleave to expose ILP. 6556 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6557 AggressivelyInterleaveReductions) { 6558 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6559 // Interleave no less than SmallIC but not as aggressive as the normal IC 6560 // to satisfy the rare situation when resources are too limited. 6561 return std::max(IC / 2, SmallIC); 6562 } else { 6563 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6564 return SmallIC; 6565 } 6566 } 6567 6568 // Interleave if this is a large loop (small loops are already dealt with by 6569 // this point) that could benefit from interleaving. 6570 if (AggressivelyInterleaveReductions) { 6571 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6572 return IC; 6573 } 6574 6575 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6576 return 1; 6577 } 6578 6579 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6580 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6581 // This function calculates the register usage by measuring the highest number 6582 // of values that are alive at a single location. Obviously, this is a very 6583 // rough estimation. We scan the loop in a topological order in order and 6584 // assign a number to each instruction. We use RPO to ensure that defs are 6585 // met before their users. We assume that each instruction that has in-loop 6586 // users starts an interval. We record every time that an in-loop value is 6587 // used, so we have a list of the first and last occurrences of each 6588 // instruction. Next, we transpose this data structure into a multi map that 6589 // holds the list of intervals that *end* at a specific location. This multi 6590 // map allows us to perform a linear search. We scan the instructions linearly 6591 // and record each time that a new interval starts, by placing it in a set. 6592 // If we find this value in the multi-map then we remove it from the set. 6593 // The max register usage is the maximum size of the set. 6594 // We also search for instructions that are defined outside the loop, but are 6595 // used inside the loop. We need this number separately from the max-interval 6596 // usage number because when we unroll, loop-invariant values do not take 6597 // more register. 6598 LoopBlocksDFS DFS(TheLoop); 6599 DFS.perform(LI); 6600 6601 RegisterUsage RU; 6602 6603 // Each 'key' in the map opens a new interval. The values 6604 // of the map are the index of the 'last seen' usage of the 6605 // instruction that is the key. 6606 using IntervalMap = DenseMap<Instruction *, unsigned>; 6607 6608 // Maps instruction to its index. 6609 SmallVector<Instruction *, 64> IdxToInstr; 6610 // Marks the end of each interval. 6611 IntervalMap EndPoint; 6612 // Saves the list of instruction indices that are used in the loop. 6613 SmallPtrSet<Instruction *, 8> Ends; 6614 // Saves the list of values that are used in the loop but are 6615 // defined outside the loop, such as arguments and constants. 6616 SmallPtrSet<Value *, 8> LoopInvariants; 6617 6618 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6619 for (Instruction &I : BB->instructionsWithoutDebug()) { 6620 IdxToInstr.push_back(&I); 6621 6622 // Save the end location of each USE. 6623 for (Value *U : I.operands()) { 6624 auto *Instr = dyn_cast<Instruction>(U); 6625 6626 // Ignore non-instruction values such as arguments, constants, etc. 6627 if (!Instr) 6628 continue; 6629 6630 // If this instruction is outside the loop then record it and continue. 6631 if (!TheLoop->contains(Instr)) { 6632 LoopInvariants.insert(Instr); 6633 continue; 6634 } 6635 6636 // Overwrite previous end points. 6637 EndPoint[Instr] = IdxToInstr.size(); 6638 Ends.insert(Instr); 6639 } 6640 } 6641 } 6642 6643 // Saves the list of intervals that end with the index in 'key'. 6644 using InstrList = SmallVector<Instruction *, 2>; 6645 DenseMap<unsigned, InstrList> TransposeEnds; 6646 6647 // Transpose the EndPoints to a list of values that end at each index. 6648 for (auto &Interval : EndPoint) 6649 TransposeEnds[Interval.second].push_back(Interval.first); 6650 6651 SmallPtrSet<Instruction *, 8> OpenIntervals; 6652 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6653 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6654 6655 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6656 6657 // A lambda that gets the register usage for the given type and VF. 6658 const auto &TTICapture = TTI; 6659 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6660 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6661 return 0; 6662 InstructionCost::CostType RegUsage = 6663 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6664 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6665 "Nonsensical values for register usage."); 6666 return RegUsage; 6667 }; 6668 6669 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6670 Instruction *I = IdxToInstr[i]; 6671 6672 // Remove all of the instructions that end at this location. 6673 InstrList &List = TransposeEnds[i]; 6674 for (Instruction *ToRemove : List) 6675 OpenIntervals.erase(ToRemove); 6676 6677 // Ignore instructions that are never used within the loop. 6678 if (!Ends.count(I)) 6679 continue; 6680 6681 // Skip ignored values. 6682 if (ValuesToIgnore.count(I)) 6683 continue; 6684 6685 // For each VF find the maximum usage of registers. 6686 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6687 // Count the number of live intervals. 6688 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6689 6690 if (VFs[j].isScalar()) { 6691 for (auto Inst : OpenIntervals) { 6692 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6693 if (RegUsage.find(ClassID) == RegUsage.end()) 6694 RegUsage[ClassID] = 1; 6695 else 6696 RegUsage[ClassID] += 1; 6697 } 6698 } else { 6699 collectUniformsAndScalars(VFs[j]); 6700 for (auto Inst : OpenIntervals) { 6701 // Skip ignored values for VF > 1. 6702 if (VecValuesToIgnore.count(Inst)) 6703 continue; 6704 if (isScalarAfterVectorization(Inst, VFs[j])) { 6705 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6706 if (RegUsage.find(ClassID) == RegUsage.end()) 6707 RegUsage[ClassID] = 1; 6708 else 6709 RegUsage[ClassID] += 1; 6710 } else { 6711 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6712 if (RegUsage.find(ClassID) == RegUsage.end()) 6713 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6714 else 6715 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6716 } 6717 } 6718 } 6719 6720 for (auto& pair : RegUsage) { 6721 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6722 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6723 else 6724 MaxUsages[j][pair.first] = pair.second; 6725 } 6726 } 6727 6728 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6729 << OpenIntervals.size() << '\n'); 6730 6731 // Add the current instruction to the list of open intervals. 6732 OpenIntervals.insert(I); 6733 } 6734 6735 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6736 SmallMapVector<unsigned, unsigned, 4> Invariant; 6737 6738 for (auto Inst : LoopInvariants) { 6739 unsigned Usage = 6740 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6741 unsigned ClassID = 6742 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6743 if (Invariant.find(ClassID) == Invariant.end()) 6744 Invariant[ClassID] = Usage; 6745 else 6746 Invariant[ClassID] += Usage; 6747 } 6748 6749 LLVM_DEBUG({ 6750 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6751 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6752 << " item\n"; 6753 for (const auto &pair : MaxUsages[i]) { 6754 dbgs() << "LV(REG): RegisterClass: " 6755 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6756 << " registers\n"; 6757 } 6758 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6759 << " item\n"; 6760 for (const auto &pair : Invariant) { 6761 dbgs() << "LV(REG): RegisterClass: " 6762 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6763 << " registers\n"; 6764 } 6765 }); 6766 6767 RU.LoopInvariantRegs = Invariant; 6768 RU.MaxLocalUsers = MaxUsages[i]; 6769 RUs[i] = RU; 6770 } 6771 6772 return RUs; 6773 } 6774 6775 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6776 // TODO: Cost model for emulated masked load/store is completely 6777 // broken. This hack guides the cost model to use an artificially 6778 // high enough value to practically disable vectorization with such 6779 // operations, except where previously deployed legality hack allowed 6780 // using very low cost values. This is to avoid regressions coming simply 6781 // from moving "masked load/store" check from legality to cost model. 6782 // Masked Load/Gather emulation was previously never allowed. 6783 // Limited number of Masked Store/Scatter emulation was allowed. 6784 assert(isPredicatedInst(I) && 6785 "Expecting a scalar emulated instruction"); 6786 return isa<LoadInst>(I) || 6787 (isa<StoreInst>(I) && 6788 NumPredStores > NumberOfStoresToPredicate); 6789 } 6790 6791 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6792 // If we aren't vectorizing the loop, or if we've already collected the 6793 // instructions to scalarize, there's nothing to do. Collection may already 6794 // have occurred if we have a user-selected VF and are now computing the 6795 // expected cost for interleaving. 6796 if (VF.isScalar() || VF.isZero() || 6797 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6798 return; 6799 6800 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6801 // not profitable to scalarize any instructions, the presence of VF in the 6802 // map will indicate that we've analyzed it already. 6803 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6804 6805 // Find all the instructions that are scalar with predication in the loop and 6806 // determine if it would be better to not if-convert the blocks they are in. 6807 // If so, we also record the instructions to scalarize. 6808 for (BasicBlock *BB : TheLoop->blocks()) { 6809 if (!blockNeedsPredication(BB)) 6810 continue; 6811 for (Instruction &I : *BB) 6812 if (isScalarWithPredication(&I)) { 6813 ScalarCostsTy ScalarCosts; 6814 // Do not apply discount if scalable, because that would lead to 6815 // invalid scalarization costs. 6816 // Do not apply discount logic if hacked cost is needed 6817 // for emulated masked memrefs. 6818 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) && 6819 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6820 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6821 // Remember that BB will remain after vectorization. 6822 PredicatedBBsAfterVectorization.insert(BB); 6823 } 6824 } 6825 } 6826 6827 int LoopVectorizationCostModel::computePredInstDiscount( 6828 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6829 assert(!isUniformAfterVectorization(PredInst, VF) && 6830 "Instruction marked uniform-after-vectorization will be predicated"); 6831 6832 // Initialize the discount to zero, meaning that the scalar version and the 6833 // vector version cost the same. 6834 InstructionCost Discount = 0; 6835 6836 // Holds instructions to analyze. The instructions we visit are mapped in 6837 // ScalarCosts. Those instructions are the ones that would be scalarized if 6838 // we find that the scalar version costs less. 6839 SmallVector<Instruction *, 8> Worklist; 6840 6841 // Returns true if the given instruction can be scalarized. 6842 auto canBeScalarized = [&](Instruction *I) -> bool { 6843 // We only attempt to scalarize instructions forming a single-use chain 6844 // from the original predicated block that would otherwise be vectorized. 6845 // Although not strictly necessary, we give up on instructions we know will 6846 // already be scalar to avoid traversing chains that are unlikely to be 6847 // beneficial. 6848 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6849 isScalarAfterVectorization(I, VF)) 6850 return false; 6851 6852 // If the instruction is scalar with predication, it will be analyzed 6853 // separately. We ignore it within the context of PredInst. 6854 if (isScalarWithPredication(I)) 6855 return false; 6856 6857 // If any of the instruction's operands are uniform after vectorization, 6858 // the instruction cannot be scalarized. This prevents, for example, a 6859 // masked load from being scalarized. 6860 // 6861 // We assume we will only emit a value for lane zero of an instruction 6862 // marked uniform after vectorization, rather than VF identical values. 6863 // Thus, if we scalarize an instruction that uses a uniform, we would 6864 // create uses of values corresponding to the lanes we aren't emitting code 6865 // for. This behavior can be changed by allowing getScalarValue to clone 6866 // the lane zero values for uniforms rather than asserting. 6867 for (Use &U : I->operands()) 6868 if (auto *J = dyn_cast<Instruction>(U.get())) 6869 if (isUniformAfterVectorization(J, VF)) 6870 return false; 6871 6872 // Otherwise, we can scalarize the instruction. 6873 return true; 6874 }; 6875 6876 // Compute the expected cost discount from scalarizing the entire expression 6877 // feeding the predicated instruction. We currently only consider expressions 6878 // that are single-use instruction chains. 6879 Worklist.push_back(PredInst); 6880 while (!Worklist.empty()) { 6881 Instruction *I = Worklist.pop_back_val(); 6882 6883 // If we've already analyzed the instruction, there's nothing to do. 6884 if (ScalarCosts.find(I) != ScalarCosts.end()) 6885 continue; 6886 6887 // Compute the cost of the vector instruction. Note that this cost already 6888 // includes the scalarization overhead of the predicated instruction. 6889 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6890 6891 // Compute the cost of the scalarized instruction. This cost is the cost of 6892 // the instruction as if it wasn't if-converted and instead remained in the 6893 // predicated block. We will scale this cost by block probability after 6894 // computing the scalarization overhead. 6895 InstructionCost ScalarCost = 6896 VF.getFixedValue() * 6897 getInstructionCost(I, ElementCount::getFixed(1)).first; 6898 6899 // Compute the scalarization overhead of needed insertelement instructions 6900 // and phi nodes. 6901 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6902 ScalarCost += TTI.getScalarizationOverhead( 6903 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6904 APInt::getAllOnes(VF.getFixedValue()), true, false); 6905 ScalarCost += 6906 VF.getFixedValue() * 6907 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6908 } 6909 6910 // Compute the scalarization overhead of needed extractelement 6911 // instructions. For each of the instruction's operands, if the operand can 6912 // be scalarized, add it to the worklist; otherwise, account for the 6913 // overhead. 6914 for (Use &U : I->operands()) 6915 if (auto *J = dyn_cast<Instruction>(U.get())) { 6916 assert(VectorType::isValidElementType(J->getType()) && 6917 "Instruction has non-scalar type"); 6918 if (canBeScalarized(J)) 6919 Worklist.push_back(J); 6920 else if (needsExtract(J, VF)) { 6921 ScalarCost += TTI.getScalarizationOverhead( 6922 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6923 APInt::getAllOnes(VF.getFixedValue()), false, true); 6924 } 6925 } 6926 6927 // Scale the total scalar cost by block probability. 6928 ScalarCost /= getReciprocalPredBlockProb(); 6929 6930 // Compute the discount. A non-negative discount means the vector version 6931 // of the instruction costs more, and scalarizing would be beneficial. 6932 Discount += VectorCost - ScalarCost; 6933 ScalarCosts[I] = ScalarCost; 6934 } 6935 6936 return *Discount.getValue(); 6937 } 6938 6939 LoopVectorizationCostModel::VectorizationCostTy 6940 LoopVectorizationCostModel::expectedCost( 6941 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6942 VectorizationCostTy Cost; 6943 6944 // For each block. 6945 for (BasicBlock *BB : TheLoop->blocks()) { 6946 VectorizationCostTy BlockCost; 6947 6948 // For each instruction in the old loop. 6949 for (Instruction &I : BB->instructionsWithoutDebug()) { 6950 // Skip ignored values. 6951 if (ValuesToIgnore.count(&I) || 6952 (VF.isVector() && VecValuesToIgnore.count(&I))) 6953 continue; 6954 6955 VectorizationCostTy C = getInstructionCost(&I, VF); 6956 6957 // Check if we should override the cost. 6958 if (C.first.isValid() && 6959 ForceTargetInstructionCost.getNumOccurrences() > 0) 6960 C.first = InstructionCost(ForceTargetInstructionCost); 6961 6962 // Keep a list of instructions with invalid costs. 6963 if (Invalid && !C.first.isValid()) 6964 Invalid->emplace_back(&I, VF); 6965 6966 BlockCost.first += C.first; 6967 BlockCost.second |= C.second; 6968 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6969 << " for VF " << VF << " For instruction: " << I 6970 << '\n'); 6971 } 6972 6973 // If we are vectorizing a predicated block, it will have been 6974 // if-converted. This means that the block's instructions (aside from 6975 // stores and instructions that may divide by zero) will now be 6976 // unconditionally executed. For the scalar case, we may not always execute 6977 // the predicated block, if it is an if-else block. Thus, scale the block's 6978 // cost by the probability of executing it. blockNeedsPredication from 6979 // Legal is used so as to not include all blocks in tail folded loops. 6980 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6981 BlockCost.first /= getReciprocalPredBlockProb(); 6982 6983 Cost.first += BlockCost.first; 6984 Cost.second |= BlockCost.second; 6985 } 6986 6987 return Cost; 6988 } 6989 6990 /// Gets Address Access SCEV after verifying that the access pattern 6991 /// is loop invariant except the induction variable dependence. 6992 /// 6993 /// This SCEV can be sent to the Target in order to estimate the address 6994 /// calculation cost. 6995 static const SCEV *getAddressAccessSCEV( 6996 Value *Ptr, 6997 LoopVectorizationLegality *Legal, 6998 PredicatedScalarEvolution &PSE, 6999 const Loop *TheLoop) { 7000 7001 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 7002 if (!Gep) 7003 return nullptr; 7004 7005 // We are looking for a gep with all loop invariant indices except for one 7006 // which should be an induction variable. 7007 auto SE = PSE.getSE(); 7008 unsigned NumOperands = Gep->getNumOperands(); 7009 for (unsigned i = 1; i < NumOperands; ++i) { 7010 Value *Opd = Gep->getOperand(i); 7011 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 7012 !Legal->isInductionVariable(Opd)) 7013 return nullptr; 7014 } 7015 7016 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 7017 return PSE.getSCEV(Ptr); 7018 } 7019 7020 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 7021 return Legal->hasStride(I->getOperand(0)) || 7022 Legal->hasStride(I->getOperand(1)); 7023 } 7024 7025 InstructionCost 7026 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7027 ElementCount VF) { 7028 assert(VF.isVector() && 7029 "Scalarization cost of instruction implies vectorization."); 7030 if (VF.isScalable()) 7031 return InstructionCost::getInvalid(); 7032 7033 Type *ValTy = getLoadStoreType(I); 7034 auto SE = PSE.getSE(); 7035 7036 unsigned AS = getLoadStoreAddressSpace(I); 7037 Value *Ptr = getLoadStorePointerOperand(I); 7038 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7039 7040 // Figure out whether the access is strided and get the stride value 7041 // if it's known in compile time 7042 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 7043 7044 // Get the cost of the scalar memory instruction and address computation. 7045 InstructionCost Cost = 7046 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7047 7048 // Don't pass *I here, since it is scalar but will actually be part of a 7049 // vectorized loop where the user of it is a vectorized instruction. 7050 const Align Alignment = getLoadStoreAlignment(I); 7051 Cost += VF.getKnownMinValue() * 7052 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7053 AS, TTI::TCK_RecipThroughput); 7054 7055 // Get the overhead of the extractelement and insertelement instructions 7056 // we might create due to scalarization. 7057 Cost += getScalarizationOverhead(I, VF); 7058 7059 // If we have a predicated load/store, it will need extra i1 extracts and 7060 // conditional branches, but may not be executed for each vector lane. Scale 7061 // the cost by the probability of executing the predicated block. 7062 if (isPredicatedInst(I)) { 7063 Cost /= getReciprocalPredBlockProb(); 7064 7065 // Add the cost of an i1 extract and a branch 7066 auto *Vec_i1Ty = 7067 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 7068 Cost += TTI.getScalarizationOverhead( 7069 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 7070 /*Insert=*/false, /*Extract=*/true); 7071 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 7072 7073 if (useEmulatedMaskMemRefHack(I)) 7074 // Artificially setting to a high enough value to practically disable 7075 // vectorization with such operations. 7076 Cost = 3000000; 7077 } 7078 7079 return Cost; 7080 } 7081 7082 InstructionCost 7083 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7084 ElementCount VF) { 7085 Type *ValTy = getLoadStoreType(I); 7086 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7087 Value *Ptr = getLoadStorePointerOperand(I); 7088 unsigned AS = getLoadStoreAddressSpace(I); 7089 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 7090 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7091 7092 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7093 "Stride should be 1 or -1 for consecutive memory access"); 7094 const Align Alignment = getLoadStoreAlignment(I); 7095 InstructionCost Cost = 0; 7096 if (Legal->isMaskRequired(I)) 7097 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7098 CostKind); 7099 else 7100 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7101 CostKind, I); 7102 7103 bool Reverse = ConsecutiveStride < 0; 7104 if (Reverse) 7105 Cost += 7106 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7107 return Cost; 7108 } 7109 7110 InstructionCost 7111 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7112 ElementCount VF) { 7113 assert(Legal->isUniformMemOp(*I)); 7114 7115 Type *ValTy = getLoadStoreType(I); 7116 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7117 const Align Alignment = getLoadStoreAlignment(I); 7118 unsigned AS = getLoadStoreAddressSpace(I); 7119 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7120 if (isa<LoadInst>(I)) { 7121 return TTI.getAddressComputationCost(ValTy) + 7122 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 7123 CostKind) + 7124 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7125 } 7126 StoreInst *SI = cast<StoreInst>(I); 7127 7128 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 7129 return TTI.getAddressComputationCost(ValTy) + 7130 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 7131 CostKind) + 7132 (isLoopInvariantStoreValue 7133 ? 0 7134 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 7135 VF.getKnownMinValue() - 1)); 7136 } 7137 7138 InstructionCost 7139 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7140 ElementCount VF) { 7141 Type *ValTy = getLoadStoreType(I); 7142 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7143 const Align Alignment = getLoadStoreAlignment(I); 7144 const Value *Ptr = getLoadStorePointerOperand(I); 7145 7146 return TTI.getAddressComputationCost(VectorTy) + 7147 TTI.getGatherScatterOpCost( 7148 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 7149 TargetTransformInfo::TCK_RecipThroughput, I); 7150 } 7151 7152 InstructionCost 7153 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7154 ElementCount VF) { 7155 // TODO: Once we have support for interleaving with scalable vectors 7156 // we can calculate the cost properly here. 7157 if (VF.isScalable()) 7158 return InstructionCost::getInvalid(); 7159 7160 Type *ValTy = getLoadStoreType(I); 7161 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7162 unsigned AS = getLoadStoreAddressSpace(I); 7163 7164 auto Group = getInterleavedAccessGroup(I); 7165 assert(Group && "Fail to get an interleaved access group."); 7166 7167 unsigned InterleaveFactor = Group->getFactor(); 7168 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7169 7170 // Holds the indices of existing members in the interleaved group. 7171 SmallVector<unsigned, 4> Indices; 7172 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 7173 if (Group->getMember(IF)) 7174 Indices.push_back(IF); 7175 7176 // Calculate the cost of the whole interleaved group. 7177 bool UseMaskForGaps = 7178 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 7179 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 7180 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 7181 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 7182 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 7183 7184 if (Group->isReverse()) { 7185 // TODO: Add support for reversed masked interleaved access. 7186 assert(!Legal->isMaskRequired(I) && 7187 "Reverse masked interleaved access not supported."); 7188 Cost += 7189 Group->getNumMembers() * 7190 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7191 } 7192 return Cost; 7193 } 7194 7195 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 7196 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 7197 using namespace llvm::PatternMatch; 7198 // Early exit for no inloop reductions 7199 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 7200 return None; 7201 auto *VectorTy = cast<VectorType>(Ty); 7202 7203 // We are looking for a pattern of, and finding the minimal acceptable cost: 7204 // reduce(mul(ext(A), ext(B))) or 7205 // reduce(mul(A, B)) or 7206 // reduce(ext(A)) or 7207 // reduce(A). 7208 // The basic idea is that we walk down the tree to do that, finding the root 7209 // reduction instruction in InLoopReductionImmediateChains. From there we find 7210 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 7211 // of the components. If the reduction cost is lower then we return it for the 7212 // reduction instruction and 0 for the other instructions in the pattern. If 7213 // it is not we return an invalid cost specifying the orignal cost method 7214 // should be used. 7215 Instruction *RetI = I; 7216 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 7217 if (!RetI->hasOneUser()) 7218 return None; 7219 RetI = RetI->user_back(); 7220 } 7221 if (match(RetI, m_Mul(m_Value(), m_Value())) && 7222 RetI->user_back()->getOpcode() == Instruction::Add) { 7223 if (!RetI->hasOneUser()) 7224 return None; 7225 RetI = RetI->user_back(); 7226 } 7227 7228 // Test if the found instruction is a reduction, and if not return an invalid 7229 // cost specifying the parent to use the original cost modelling. 7230 if (!InLoopReductionImmediateChains.count(RetI)) 7231 return None; 7232 7233 // Find the reduction this chain is a part of and calculate the basic cost of 7234 // the reduction on its own. 7235 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 7236 Instruction *ReductionPhi = LastChain; 7237 while (!isa<PHINode>(ReductionPhi)) 7238 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 7239 7240 const RecurrenceDescriptor &RdxDesc = 7241 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 7242 7243 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 7244 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 7245 7246 // If we're using ordered reductions then we can just return the base cost 7247 // here, since getArithmeticReductionCost calculates the full ordered 7248 // reduction cost when FP reassociation is not allowed. 7249 if (useOrderedReductions(RdxDesc)) 7250 return BaseCost; 7251 7252 // Get the operand that was not the reduction chain and match it to one of the 7253 // patterns, returning the better cost if it is found. 7254 Instruction *RedOp = RetI->getOperand(1) == LastChain 7255 ? dyn_cast<Instruction>(RetI->getOperand(0)) 7256 : dyn_cast<Instruction>(RetI->getOperand(1)); 7257 7258 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7259 7260 Instruction *Op0, *Op1; 7261 if (RedOp && 7262 match(RedOp, 7263 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 7264 match(Op0, m_ZExtOrSExt(m_Value())) && 7265 Op0->getOpcode() == Op1->getOpcode() && 7266 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7267 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 7268 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 7269 7270 // Matched reduce(ext(mul(ext(A), ext(B))) 7271 // Note that the extend opcodes need to all match, or if A==B they will have 7272 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 7273 // which is equally fine. 7274 bool IsUnsigned = isa<ZExtInst>(Op0); 7275 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7276 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 7277 7278 InstructionCost ExtCost = 7279 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 7280 TTI::CastContextHint::None, CostKind, Op0); 7281 InstructionCost MulCost = 7282 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 7283 InstructionCost Ext2Cost = 7284 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 7285 TTI::CastContextHint::None, CostKind, RedOp); 7286 7287 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7288 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7289 CostKind); 7290 7291 if (RedCost.isValid() && 7292 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 7293 return I == RetI ? RedCost : 0; 7294 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 7295 !TheLoop->isLoopInvariant(RedOp)) { 7296 // Matched reduce(ext(A)) 7297 bool IsUnsigned = isa<ZExtInst>(RedOp); 7298 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7299 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7300 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7301 CostKind); 7302 7303 InstructionCost ExtCost = 7304 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7305 TTI::CastContextHint::None, CostKind, RedOp); 7306 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7307 return I == RetI ? RedCost : 0; 7308 } else if (RedOp && 7309 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 7310 if (match(Op0, m_ZExtOrSExt(m_Value())) && 7311 Op0->getOpcode() == Op1->getOpcode() && 7312 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7313 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7314 bool IsUnsigned = isa<ZExtInst>(Op0); 7315 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7316 // Matched reduce(mul(ext, ext)) 7317 InstructionCost ExtCost = 7318 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7319 TTI::CastContextHint::None, CostKind, Op0); 7320 InstructionCost MulCost = 7321 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7322 7323 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7324 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7325 CostKind); 7326 7327 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7328 return I == RetI ? RedCost : 0; 7329 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 7330 // Matched reduce(mul()) 7331 InstructionCost MulCost = 7332 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7333 7334 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7335 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7336 CostKind); 7337 7338 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7339 return I == RetI ? RedCost : 0; 7340 } 7341 } 7342 7343 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7344 } 7345 7346 InstructionCost 7347 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7348 ElementCount VF) { 7349 // Calculate scalar cost only. Vectorization cost should be ready at this 7350 // moment. 7351 if (VF.isScalar()) { 7352 Type *ValTy = getLoadStoreType(I); 7353 const Align Alignment = getLoadStoreAlignment(I); 7354 unsigned AS = getLoadStoreAddressSpace(I); 7355 7356 return TTI.getAddressComputationCost(ValTy) + 7357 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7358 TTI::TCK_RecipThroughput, I); 7359 } 7360 return getWideningCost(I, VF); 7361 } 7362 7363 LoopVectorizationCostModel::VectorizationCostTy 7364 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7365 ElementCount VF) { 7366 // If we know that this instruction will remain uniform, check the cost of 7367 // the scalar version. 7368 if (isUniformAfterVectorization(I, VF)) 7369 VF = ElementCount::getFixed(1); 7370 7371 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7372 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7373 7374 // Forced scalars do not have any scalarization overhead. 7375 auto ForcedScalar = ForcedScalars.find(VF); 7376 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7377 auto InstSet = ForcedScalar->second; 7378 if (InstSet.count(I)) 7379 return VectorizationCostTy( 7380 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7381 VF.getKnownMinValue()), 7382 false); 7383 } 7384 7385 Type *VectorTy; 7386 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7387 7388 bool TypeNotScalarized = 7389 VF.isVector() && VectorTy->isVectorTy() && 7390 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7391 return VectorizationCostTy(C, TypeNotScalarized); 7392 } 7393 7394 InstructionCost 7395 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7396 ElementCount VF) const { 7397 7398 // There is no mechanism yet to create a scalable scalarization loop, 7399 // so this is currently Invalid. 7400 if (VF.isScalable()) 7401 return InstructionCost::getInvalid(); 7402 7403 if (VF.isScalar()) 7404 return 0; 7405 7406 InstructionCost Cost = 0; 7407 Type *RetTy = ToVectorTy(I->getType(), VF); 7408 if (!RetTy->isVoidTy() && 7409 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7410 Cost += TTI.getScalarizationOverhead( 7411 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 7412 false); 7413 7414 // Some targets keep addresses scalar. 7415 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7416 return Cost; 7417 7418 // Some targets support efficient element stores. 7419 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7420 return Cost; 7421 7422 // Collect operands to consider. 7423 CallInst *CI = dyn_cast<CallInst>(I); 7424 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 7425 7426 // Skip operands that do not require extraction/scalarization and do not incur 7427 // any overhead. 7428 SmallVector<Type *> Tys; 7429 for (auto *V : filterExtractingOperands(Ops, VF)) 7430 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7431 return Cost + TTI.getOperandsScalarizationOverhead( 7432 filterExtractingOperands(Ops, VF), Tys); 7433 } 7434 7435 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7436 if (VF.isScalar()) 7437 return; 7438 NumPredStores = 0; 7439 for (BasicBlock *BB : TheLoop->blocks()) { 7440 // For each instruction in the old loop. 7441 for (Instruction &I : *BB) { 7442 Value *Ptr = getLoadStorePointerOperand(&I); 7443 if (!Ptr) 7444 continue; 7445 7446 // TODO: We should generate better code and update the cost model for 7447 // predicated uniform stores. Today they are treated as any other 7448 // predicated store (see added test cases in 7449 // invariant-store-vectorization.ll). 7450 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7451 NumPredStores++; 7452 7453 if (Legal->isUniformMemOp(I)) { 7454 // TODO: Avoid replicating loads and stores instead of 7455 // relying on instcombine to remove them. 7456 // Load: Scalar load + broadcast 7457 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7458 InstructionCost Cost; 7459 if (isa<StoreInst>(&I) && VF.isScalable() && 7460 isLegalGatherOrScatter(&I)) { 7461 Cost = getGatherScatterCost(&I, VF); 7462 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7463 } else { 7464 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7465 "Cannot yet scalarize uniform stores"); 7466 Cost = getUniformMemOpCost(&I, VF); 7467 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7468 } 7469 continue; 7470 } 7471 7472 // We assume that widening is the best solution when possible. 7473 if (memoryInstructionCanBeWidened(&I, VF)) { 7474 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7475 int ConsecutiveStride = Legal->isConsecutivePtr( 7476 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 7477 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7478 "Expected consecutive stride."); 7479 InstWidening Decision = 7480 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7481 setWideningDecision(&I, VF, Decision, Cost); 7482 continue; 7483 } 7484 7485 // Choose between Interleaving, Gather/Scatter or Scalarization. 7486 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7487 unsigned NumAccesses = 1; 7488 if (isAccessInterleaved(&I)) { 7489 auto Group = getInterleavedAccessGroup(&I); 7490 assert(Group && "Fail to get an interleaved access group."); 7491 7492 // Make one decision for the whole group. 7493 if (getWideningDecision(&I, VF) != CM_Unknown) 7494 continue; 7495 7496 NumAccesses = Group->getNumMembers(); 7497 if (interleavedAccessCanBeWidened(&I, VF)) 7498 InterleaveCost = getInterleaveGroupCost(&I, VF); 7499 } 7500 7501 InstructionCost GatherScatterCost = 7502 isLegalGatherOrScatter(&I) 7503 ? getGatherScatterCost(&I, VF) * NumAccesses 7504 : InstructionCost::getInvalid(); 7505 7506 InstructionCost ScalarizationCost = 7507 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7508 7509 // Choose better solution for the current VF, 7510 // write down this decision and use it during vectorization. 7511 InstructionCost Cost; 7512 InstWidening Decision; 7513 if (InterleaveCost <= GatherScatterCost && 7514 InterleaveCost < ScalarizationCost) { 7515 Decision = CM_Interleave; 7516 Cost = InterleaveCost; 7517 } else if (GatherScatterCost < ScalarizationCost) { 7518 Decision = CM_GatherScatter; 7519 Cost = GatherScatterCost; 7520 } else { 7521 Decision = CM_Scalarize; 7522 Cost = ScalarizationCost; 7523 } 7524 // If the instructions belongs to an interleave group, the whole group 7525 // receives the same decision. The whole group receives the cost, but 7526 // the cost will actually be assigned to one instruction. 7527 if (auto Group = getInterleavedAccessGroup(&I)) 7528 setWideningDecision(Group, VF, Decision, Cost); 7529 else 7530 setWideningDecision(&I, VF, Decision, Cost); 7531 } 7532 } 7533 7534 // Make sure that any load of address and any other address computation 7535 // remains scalar unless there is gather/scatter support. This avoids 7536 // inevitable extracts into address registers, and also has the benefit of 7537 // activating LSR more, since that pass can't optimize vectorized 7538 // addresses. 7539 if (TTI.prefersVectorizedAddressing()) 7540 return; 7541 7542 // Start with all scalar pointer uses. 7543 SmallPtrSet<Instruction *, 8> AddrDefs; 7544 for (BasicBlock *BB : TheLoop->blocks()) 7545 for (Instruction &I : *BB) { 7546 Instruction *PtrDef = 7547 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7548 if (PtrDef && TheLoop->contains(PtrDef) && 7549 getWideningDecision(&I, VF) != CM_GatherScatter) 7550 AddrDefs.insert(PtrDef); 7551 } 7552 7553 // Add all instructions used to generate the addresses. 7554 SmallVector<Instruction *, 4> Worklist; 7555 append_range(Worklist, AddrDefs); 7556 while (!Worklist.empty()) { 7557 Instruction *I = Worklist.pop_back_val(); 7558 for (auto &Op : I->operands()) 7559 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7560 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7561 AddrDefs.insert(InstOp).second) 7562 Worklist.push_back(InstOp); 7563 } 7564 7565 for (auto *I : AddrDefs) { 7566 if (isa<LoadInst>(I)) { 7567 // Setting the desired widening decision should ideally be handled in 7568 // by cost functions, but since this involves the task of finding out 7569 // if the loaded register is involved in an address computation, it is 7570 // instead changed here when we know this is the case. 7571 InstWidening Decision = getWideningDecision(I, VF); 7572 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7573 // Scalarize a widened load of address. 7574 setWideningDecision( 7575 I, VF, CM_Scalarize, 7576 (VF.getKnownMinValue() * 7577 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7578 else if (auto Group = getInterleavedAccessGroup(I)) { 7579 // Scalarize an interleave group of address loads. 7580 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7581 if (Instruction *Member = Group->getMember(I)) 7582 setWideningDecision( 7583 Member, VF, CM_Scalarize, 7584 (VF.getKnownMinValue() * 7585 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7586 } 7587 } 7588 } else 7589 // Make sure I gets scalarized and a cost estimate without 7590 // scalarization overhead. 7591 ForcedScalars[VF].insert(I); 7592 } 7593 } 7594 7595 InstructionCost 7596 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7597 Type *&VectorTy) { 7598 Type *RetTy = I->getType(); 7599 if (canTruncateToMinimalBitwidth(I, VF)) 7600 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7601 auto SE = PSE.getSE(); 7602 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7603 7604 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7605 ElementCount VF) -> bool { 7606 if (VF.isScalar()) 7607 return true; 7608 7609 auto Scalarized = InstsToScalarize.find(VF); 7610 assert(Scalarized != InstsToScalarize.end() && 7611 "VF not yet analyzed for scalarization profitability"); 7612 return !Scalarized->second.count(I) && 7613 llvm::all_of(I->users(), [&](User *U) { 7614 auto *UI = cast<Instruction>(U); 7615 return !Scalarized->second.count(UI); 7616 }); 7617 }; 7618 (void) hasSingleCopyAfterVectorization; 7619 7620 if (isScalarAfterVectorization(I, VF)) { 7621 // With the exception of GEPs and PHIs, after scalarization there should 7622 // only be one copy of the instruction generated in the loop. This is 7623 // because the VF is either 1, or any instructions that need scalarizing 7624 // have already been dealt with by the the time we get here. As a result, 7625 // it means we don't have to multiply the instruction cost by VF. 7626 assert(I->getOpcode() == Instruction::GetElementPtr || 7627 I->getOpcode() == Instruction::PHI || 7628 (I->getOpcode() == Instruction::BitCast && 7629 I->getType()->isPointerTy()) || 7630 hasSingleCopyAfterVectorization(I, VF)); 7631 VectorTy = RetTy; 7632 } else 7633 VectorTy = ToVectorTy(RetTy, VF); 7634 7635 // TODO: We need to estimate the cost of intrinsic calls. 7636 switch (I->getOpcode()) { 7637 case Instruction::GetElementPtr: 7638 // We mark this instruction as zero-cost because the cost of GEPs in 7639 // vectorized code depends on whether the corresponding memory instruction 7640 // is scalarized or not. Therefore, we handle GEPs with the memory 7641 // instruction cost. 7642 return 0; 7643 case Instruction::Br: { 7644 // In cases of scalarized and predicated instructions, there will be VF 7645 // predicated blocks in the vectorized loop. Each branch around these 7646 // blocks requires also an extract of its vector compare i1 element. 7647 bool ScalarPredicatedBB = false; 7648 BranchInst *BI = cast<BranchInst>(I); 7649 if (VF.isVector() && BI->isConditional() && 7650 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7651 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7652 ScalarPredicatedBB = true; 7653 7654 if (ScalarPredicatedBB) { 7655 // Not possible to scalarize scalable vector with predicated instructions. 7656 if (VF.isScalable()) 7657 return InstructionCost::getInvalid(); 7658 // Return cost for branches around scalarized and predicated blocks. 7659 auto *Vec_i1Ty = 7660 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7661 return ( 7662 TTI.getScalarizationOverhead( 7663 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7664 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7665 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7666 // The back-edge branch will remain, as will all scalar branches. 7667 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7668 else 7669 // This branch will be eliminated by if-conversion. 7670 return 0; 7671 // Note: We currently assume zero cost for an unconditional branch inside 7672 // a predicated block since it will become a fall-through, although we 7673 // may decide in the future to call TTI for all branches. 7674 } 7675 case Instruction::PHI: { 7676 auto *Phi = cast<PHINode>(I); 7677 7678 // First-order recurrences are replaced by vector shuffles inside the loop. 7679 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7680 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7681 return TTI.getShuffleCost( 7682 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7683 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7684 7685 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7686 // converted into select instructions. We require N - 1 selects per phi 7687 // node, where N is the number of incoming values. 7688 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7689 return (Phi->getNumIncomingValues() - 1) * 7690 TTI.getCmpSelInstrCost( 7691 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7692 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7693 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7694 7695 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7696 } 7697 case Instruction::UDiv: 7698 case Instruction::SDiv: 7699 case Instruction::URem: 7700 case Instruction::SRem: 7701 // If we have a predicated instruction, it may not be executed for each 7702 // vector lane. Get the scalarization cost and scale this amount by the 7703 // probability of executing the predicated block. If the instruction is not 7704 // predicated, we fall through to the next case. 7705 if (VF.isVector() && isScalarWithPredication(I)) { 7706 InstructionCost Cost = 0; 7707 7708 // These instructions have a non-void type, so account for the phi nodes 7709 // that we will create. This cost is likely to be zero. The phi node 7710 // cost, if any, should be scaled by the block probability because it 7711 // models a copy at the end of each predicated block. 7712 Cost += VF.getKnownMinValue() * 7713 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7714 7715 // The cost of the non-predicated instruction. 7716 Cost += VF.getKnownMinValue() * 7717 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7718 7719 // The cost of insertelement and extractelement instructions needed for 7720 // scalarization. 7721 Cost += getScalarizationOverhead(I, VF); 7722 7723 // Scale the cost by the probability of executing the predicated blocks. 7724 // This assumes the predicated block for each vector lane is equally 7725 // likely. 7726 return Cost / getReciprocalPredBlockProb(); 7727 } 7728 LLVM_FALLTHROUGH; 7729 case Instruction::Add: 7730 case Instruction::FAdd: 7731 case Instruction::Sub: 7732 case Instruction::FSub: 7733 case Instruction::Mul: 7734 case Instruction::FMul: 7735 case Instruction::FDiv: 7736 case Instruction::FRem: 7737 case Instruction::Shl: 7738 case Instruction::LShr: 7739 case Instruction::AShr: 7740 case Instruction::And: 7741 case Instruction::Or: 7742 case Instruction::Xor: { 7743 // Since we will replace the stride by 1 the multiplication should go away. 7744 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7745 return 0; 7746 7747 // Detect reduction patterns 7748 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7749 return *RedCost; 7750 7751 // Certain instructions can be cheaper to vectorize if they have a constant 7752 // second vector operand. One example of this are shifts on x86. 7753 Value *Op2 = I->getOperand(1); 7754 TargetTransformInfo::OperandValueProperties Op2VP; 7755 TargetTransformInfo::OperandValueKind Op2VK = 7756 TTI.getOperandInfo(Op2, Op2VP); 7757 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7758 Op2VK = TargetTransformInfo::OK_UniformValue; 7759 7760 SmallVector<const Value *, 4> Operands(I->operand_values()); 7761 return TTI.getArithmeticInstrCost( 7762 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7763 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7764 } 7765 case Instruction::FNeg: { 7766 return TTI.getArithmeticInstrCost( 7767 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7768 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7769 TargetTransformInfo::OP_None, I->getOperand(0), I); 7770 } 7771 case Instruction::Select: { 7772 SelectInst *SI = cast<SelectInst>(I); 7773 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7774 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7775 7776 const Value *Op0, *Op1; 7777 using namespace llvm::PatternMatch; 7778 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7779 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7780 // select x, y, false --> x & y 7781 // select x, true, y --> x | y 7782 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7783 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7784 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7785 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7786 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7787 Op1->getType()->getScalarSizeInBits() == 1); 7788 7789 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7790 return TTI.getArithmeticInstrCost( 7791 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7792 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7793 } 7794 7795 Type *CondTy = SI->getCondition()->getType(); 7796 if (!ScalarCond) 7797 CondTy = VectorType::get(CondTy, VF); 7798 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7799 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7800 } 7801 case Instruction::ICmp: 7802 case Instruction::FCmp: { 7803 Type *ValTy = I->getOperand(0)->getType(); 7804 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7805 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7806 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7807 VectorTy = ToVectorTy(ValTy, VF); 7808 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7809 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7810 } 7811 case Instruction::Store: 7812 case Instruction::Load: { 7813 ElementCount Width = VF; 7814 if (Width.isVector()) { 7815 InstWidening Decision = getWideningDecision(I, Width); 7816 assert(Decision != CM_Unknown && 7817 "CM decision should be taken at this point"); 7818 if (Decision == CM_Scalarize) 7819 Width = ElementCount::getFixed(1); 7820 } 7821 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7822 return getMemoryInstructionCost(I, VF); 7823 } 7824 case Instruction::BitCast: 7825 if (I->getType()->isPointerTy()) 7826 return 0; 7827 LLVM_FALLTHROUGH; 7828 case Instruction::ZExt: 7829 case Instruction::SExt: 7830 case Instruction::FPToUI: 7831 case Instruction::FPToSI: 7832 case Instruction::FPExt: 7833 case Instruction::PtrToInt: 7834 case Instruction::IntToPtr: 7835 case Instruction::SIToFP: 7836 case Instruction::UIToFP: 7837 case Instruction::Trunc: 7838 case Instruction::FPTrunc: { 7839 // Computes the CastContextHint from a Load/Store instruction. 7840 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7841 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7842 "Expected a load or a store!"); 7843 7844 if (VF.isScalar() || !TheLoop->contains(I)) 7845 return TTI::CastContextHint::Normal; 7846 7847 switch (getWideningDecision(I, VF)) { 7848 case LoopVectorizationCostModel::CM_GatherScatter: 7849 return TTI::CastContextHint::GatherScatter; 7850 case LoopVectorizationCostModel::CM_Interleave: 7851 return TTI::CastContextHint::Interleave; 7852 case LoopVectorizationCostModel::CM_Scalarize: 7853 case LoopVectorizationCostModel::CM_Widen: 7854 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7855 : TTI::CastContextHint::Normal; 7856 case LoopVectorizationCostModel::CM_Widen_Reverse: 7857 return TTI::CastContextHint::Reversed; 7858 case LoopVectorizationCostModel::CM_Unknown: 7859 llvm_unreachable("Instr did not go through cost modelling?"); 7860 } 7861 7862 llvm_unreachable("Unhandled case!"); 7863 }; 7864 7865 unsigned Opcode = I->getOpcode(); 7866 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7867 // For Trunc, the context is the only user, which must be a StoreInst. 7868 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7869 if (I->hasOneUse()) 7870 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7871 CCH = ComputeCCH(Store); 7872 } 7873 // For Z/Sext, the context is the operand, which must be a LoadInst. 7874 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7875 Opcode == Instruction::FPExt) { 7876 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7877 CCH = ComputeCCH(Load); 7878 } 7879 7880 // We optimize the truncation of induction variables having constant 7881 // integer steps. The cost of these truncations is the same as the scalar 7882 // operation. 7883 if (isOptimizableIVTruncate(I, VF)) { 7884 auto *Trunc = cast<TruncInst>(I); 7885 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7886 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7887 } 7888 7889 // Detect reduction patterns 7890 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7891 return *RedCost; 7892 7893 Type *SrcScalarTy = I->getOperand(0)->getType(); 7894 Type *SrcVecTy = 7895 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7896 if (canTruncateToMinimalBitwidth(I, VF)) { 7897 // This cast is going to be shrunk. This may remove the cast or it might 7898 // turn it into slightly different cast. For example, if MinBW == 16, 7899 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7900 // 7901 // Calculate the modified src and dest types. 7902 Type *MinVecTy = VectorTy; 7903 if (Opcode == Instruction::Trunc) { 7904 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7905 VectorTy = 7906 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7907 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7908 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7909 VectorTy = 7910 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7911 } 7912 } 7913 7914 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7915 } 7916 case Instruction::Call: { 7917 bool NeedToScalarize; 7918 CallInst *CI = cast<CallInst>(I); 7919 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7920 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7921 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7922 return std::min(CallCost, IntrinsicCost); 7923 } 7924 return CallCost; 7925 } 7926 case Instruction::ExtractValue: 7927 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7928 case Instruction::Alloca: 7929 // We cannot easily widen alloca to a scalable alloca, as 7930 // the result would need to be a vector of pointers. 7931 if (VF.isScalable()) 7932 return InstructionCost::getInvalid(); 7933 LLVM_FALLTHROUGH; 7934 default: 7935 // This opcode is unknown. Assume that it is the same as 'mul'. 7936 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7937 } // end of switch. 7938 } 7939 7940 char LoopVectorize::ID = 0; 7941 7942 static const char lv_name[] = "Loop Vectorization"; 7943 7944 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7945 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7946 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7947 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7948 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7949 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7950 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7951 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7952 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7953 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7954 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7955 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7956 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7957 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7958 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7959 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7960 7961 namespace llvm { 7962 7963 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7964 7965 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7966 bool VectorizeOnlyWhenForced) { 7967 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7968 } 7969 7970 } // end namespace llvm 7971 7972 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7973 // Check if the pointer operand of a load or store instruction is 7974 // consecutive. 7975 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7976 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7977 return false; 7978 } 7979 7980 void LoopVectorizationCostModel::collectValuesToIgnore() { 7981 // Ignore ephemeral values. 7982 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7983 7984 // Ignore type-promoting instructions we identified during reduction 7985 // detection. 7986 for (auto &Reduction : Legal->getReductionVars()) { 7987 RecurrenceDescriptor &RedDes = Reduction.second; 7988 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7989 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7990 } 7991 // Ignore type-casting instructions we identified during induction 7992 // detection. 7993 for (auto &Induction : Legal->getInductionVars()) { 7994 InductionDescriptor &IndDes = Induction.second; 7995 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7996 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7997 } 7998 } 7999 8000 void LoopVectorizationCostModel::collectInLoopReductions() { 8001 for (auto &Reduction : Legal->getReductionVars()) { 8002 PHINode *Phi = Reduction.first; 8003 RecurrenceDescriptor &RdxDesc = Reduction.second; 8004 8005 // We don't collect reductions that are type promoted (yet). 8006 if (RdxDesc.getRecurrenceType() != Phi->getType()) 8007 continue; 8008 8009 // If the target would prefer this reduction to happen "in-loop", then we 8010 // want to record it as such. 8011 unsigned Opcode = RdxDesc.getOpcode(); 8012 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 8013 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 8014 TargetTransformInfo::ReductionFlags())) 8015 continue; 8016 8017 // Check that we can correctly put the reductions into the loop, by 8018 // finding the chain of operations that leads from the phi to the loop 8019 // exit value. 8020 SmallVector<Instruction *, 4> ReductionOperations = 8021 RdxDesc.getReductionOpChain(Phi, TheLoop); 8022 bool InLoop = !ReductionOperations.empty(); 8023 if (InLoop) { 8024 InLoopReductionChains[Phi] = ReductionOperations; 8025 // Add the elements to InLoopReductionImmediateChains for cost modelling. 8026 Instruction *LastChain = Phi; 8027 for (auto *I : ReductionOperations) { 8028 InLoopReductionImmediateChains[I] = LastChain; 8029 LastChain = I; 8030 } 8031 } 8032 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 8033 << " reduction for phi: " << *Phi << "\n"); 8034 } 8035 } 8036 8037 // TODO: we could return a pair of values that specify the max VF and 8038 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 8039 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 8040 // doesn't have a cost model that can choose which plan to execute if 8041 // more than one is generated. 8042 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 8043 LoopVectorizationCostModel &CM) { 8044 unsigned WidestType; 8045 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 8046 return WidestVectorRegBits / WidestType; 8047 } 8048 8049 VectorizationFactor 8050 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 8051 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 8052 ElementCount VF = UserVF; 8053 // Outer loop handling: They may require CFG and instruction level 8054 // transformations before even evaluating whether vectorization is profitable. 8055 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 8056 // the vectorization pipeline. 8057 if (!OrigLoop->isInnermost()) { 8058 // If the user doesn't provide a vectorization factor, determine a 8059 // reasonable one. 8060 if (UserVF.isZero()) { 8061 VF = ElementCount::getFixed(determineVPlanVF( 8062 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 8063 .getFixedSize(), 8064 CM)); 8065 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 8066 8067 // Make sure we have a VF > 1 for stress testing. 8068 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 8069 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 8070 << "overriding computed VF.\n"); 8071 VF = ElementCount::getFixed(4); 8072 } 8073 } 8074 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 8075 assert(isPowerOf2_32(VF.getKnownMinValue()) && 8076 "VF needs to be a power of two"); 8077 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 8078 << "VF " << VF << " to build VPlans.\n"); 8079 buildVPlans(VF, VF); 8080 8081 // For VPlan build stress testing, we bail out after VPlan construction. 8082 if (VPlanBuildStressTest) 8083 return VectorizationFactor::Disabled(); 8084 8085 return {VF, 0 /*Cost*/}; 8086 } 8087 8088 LLVM_DEBUG( 8089 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 8090 "VPlan-native path.\n"); 8091 return VectorizationFactor::Disabled(); 8092 } 8093 8094 Optional<VectorizationFactor> 8095 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 8096 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8097 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 8098 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 8099 return None; 8100 8101 // Invalidate interleave groups if all blocks of loop will be predicated. 8102 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 8103 !useMaskedInterleavedAccesses(*TTI)) { 8104 LLVM_DEBUG( 8105 dbgs() 8106 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 8107 "which requires masked-interleaved support.\n"); 8108 if (CM.InterleaveInfo.invalidateGroups()) 8109 // Invalidating interleave groups also requires invalidating all decisions 8110 // based on them, which includes widening decisions and uniform and scalar 8111 // values. 8112 CM.invalidateCostModelingDecisions(); 8113 } 8114 8115 ElementCount MaxUserVF = 8116 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 8117 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 8118 if (!UserVF.isZero() && UserVFIsLegal) { 8119 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 8120 "VF needs to be a power of two"); 8121 // Collect the instructions (and their associated costs) that will be more 8122 // profitable to scalarize. 8123 if (CM.selectUserVectorizationFactor(UserVF)) { 8124 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 8125 CM.collectInLoopReductions(); 8126 buildVPlansWithVPRecipes(UserVF, UserVF); 8127 LLVM_DEBUG(printPlans(dbgs())); 8128 return {{UserVF, 0}}; 8129 } else 8130 reportVectorizationInfo("UserVF ignored because of invalid costs.", 8131 "InvalidCost", ORE, OrigLoop); 8132 } 8133 8134 // Populate the set of Vectorization Factor Candidates. 8135 ElementCountSet VFCandidates; 8136 for (auto VF = ElementCount::getFixed(1); 8137 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 8138 VFCandidates.insert(VF); 8139 for (auto VF = ElementCount::getScalable(1); 8140 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 8141 VFCandidates.insert(VF); 8142 8143 for (const auto &VF : VFCandidates) { 8144 // Collect Uniform and Scalar instructions after vectorization with VF. 8145 CM.collectUniformsAndScalars(VF); 8146 8147 // Collect the instructions (and their associated costs) that will be more 8148 // profitable to scalarize. 8149 if (VF.isVector()) 8150 CM.collectInstsToScalarize(VF); 8151 } 8152 8153 CM.collectInLoopReductions(); 8154 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 8155 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 8156 8157 LLVM_DEBUG(printPlans(dbgs())); 8158 if (!MaxFactors.hasVector()) 8159 return VectorizationFactor::Disabled(); 8160 8161 // Select the optimal vectorization factor. 8162 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 8163 8164 // Check if it is profitable to vectorize with runtime checks. 8165 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 8166 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 8167 bool PragmaThresholdReached = 8168 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 8169 bool ThresholdReached = 8170 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 8171 if ((ThresholdReached && !Hints.allowReordering()) || 8172 PragmaThresholdReached) { 8173 ORE->emit([&]() { 8174 return OptimizationRemarkAnalysisAliasing( 8175 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 8176 OrigLoop->getHeader()) 8177 << "loop not vectorized: cannot prove it is safe to reorder " 8178 "memory operations"; 8179 }); 8180 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 8181 Hints.emitRemarkWithHints(); 8182 return VectorizationFactor::Disabled(); 8183 } 8184 } 8185 return SelectedVF; 8186 } 8187 8188 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 8189 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 8190 << '\n'); 8191 BestVF = VF; 8192 BestUF = UF; 8193 8194 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 8195 return !Plan->hasVF(VF); 8196 }); 8197 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 8198 } 8199 8200 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 8201 DominatorTree *DT) { 8202 // Perform the actual loop transformation. 8203 8204 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 8205 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 8206 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 8207 8208 VPTransformState State{ 8209 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 8210 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 8211 State.TripCount = ILV.getOrCreateTripCount(nullptr); 8212 State.CanonicalIV = ILV.Induction; 8213 8214 ILV.printDebugTracesAtStart(); 8215 8216 //===------------------------------------------------===// 8217 // 8218 // Notice: any optimization or new instruction that go 8219 // into the code below should also be implemented in 8220 // the cost-model. 8221 // 8222 //===------------------------------------------------===// 8223 8224 // 2. Copy and widen instructions from the old loop into the new loop. 8225 VPlans.front()->execute(&State); 8226 8227 // 3. Fix the vectorized code: take care of header phi's, live-outs, 8228 // predication, updating analyses. 8229 ILV.fixVectorizedLoop(State); 8230 8231 ILV.printDebugTracesAtEnd(); 8232 } 8233 8234 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8235 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8236 for (const auto &Plan : VPlans) 8237 if (PrintVPlansInDotFormat) 8238 Plan->printDOT(O); 8239 else 8240 Plan->print(O); 8241 } 8242 #endif 8243 8244 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8245 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8246 8247 // We create new control-flow for the vectorized loop, so the original exit 8248 // conditions will be dead after vectorization if it's only used by the 8249 // terminator 8250 SmallVector<BasicBlock*> ExitingBlocks; 8251 OrigLoop->getExitingBlocks(ExitingBlocks); 8252 for (auto *BB : ExitingBlocks) { 8253 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8254 if (!Cmp || !Cmp->hasOneUse()) 8255 continue; 8256 8257 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8258 if (!DeadInstructions.insert(Cmp).second) 8259 continue; 8260 8261 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8262 // TODO: can recurse through operands in general 8263 for (Value *Op : Cmp->operands()) { 8264 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8265 DeadInstructions.insert(cast<Instruction>(Op)); 8266 } 8267 } 8268 8269 // We create new "steps" for induction variable updates to which the original 8270 // induction variables map. An original update instruction will be dead if 8271 // all its users except the induction variable are dead. 8272 auto *Latch = OrigLoop->getLoopLatch(); 8273 for (auto &Induction : Legal->getInductionVars()) { 8274 PHINode *Ind = Induction.first; 8275 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8276 8277 // If the tail is to be folded by masking, the primary induction variable, 8278 // if exists, isn't dead: it will be used for masking. Don't kill it. 8279 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8280 continue; 8281 8282 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8283 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8284 })) 8285 DeadInstructions.insert(IndUpdate); 8286 8287 // We record as "Dead" also the type-casting instructions we had identified 8288 // during induction analysis. We don't need any handling for them in the 8289 // vectorized loop because we have proven that, under a proper runtime 8290 // test guarding the vectorized loop, the value of the phi, and the casted 8291 // value of the phi, are the same. The last instruction in this casting chain 8292 // will get its scalar/vector/widened def from the scalar/vector/widened def 8293 // of the respective phi node. Any other casts in the induction def-use chain 8294 // have no other uses outside the phi update chain, and will be ignored. 8295 InductionDescriptor &IndDes = Induction.second; 8296 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8297 DeadInstructions.insert(Casts.begin(), Casts.end()); 8298 } 8299 } 8300 8301 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 8302 8303 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8304 8305 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 8306 Instruction::BinaryOps BinOp) { 8307 // When unrolling and the VF is 1, we only need to add a simple scalar. 8308 Type *Ty = Val->getType(); 8309 assert(!Ty->isVectorTy() && "Val must be a scalar"); 8310 8311 if (Ty->isFloatingPointTy()) { 8312 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 8313 8314 // Floating-point operations inherit FMF via the builder's flags. 8315 Value *MulOp = Builder.CreateFMul(C, Step); 8316 return Builder.CreateBinOp(BinOp, Val, MulOp); 8317 } 8318 Constant *C = ConstantInt::get(Ty, StartIdx); 8319 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 8320 } 8321 8322 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8323 SmallVector<Metadata *, 4> MDs; 8324 // Reserve first location for self reference to the LoopID metadata node. 8325 MDs.push_back(nullptr); 8326 bool IsUnrollMetadata = false; 8327 MDNode *LoopID = L->getLoopID(); 8328 if (LoopID) { 8329 // First find existing loop unrolling disable metadata. 8330 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8331 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8332 if (MD) { 8333 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8334 IsUnrollMetadata = 8335 S && S->getString().startswith("llvm.loop.unroll.disable"); 8336 } 8337 MDs.push_back(LoopID->getOperand(i)); 8338 } 8339 } 8340 8341 if (!IsUnrollMetadata) { 8342 // Add runtime unroll disable metadata. 8343 LLVMContext &Context = L->getHeader()->getContext(); 8344 SmallVector<Metadata *, 1> DisableOperands; 8345 DisableOperands.push_back( 8346 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8347 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8348 MDs.push_back(DisableNode); 8349 MDNode *NewLoopID = MDNode::get(Context, MDs); 8350 // Set operand 0 to refer to the loop id itself. 8351 NewLoopID->replaceOperandWith(0, NewLoopID); 8352 L->setLoopID(NewLoopID); 8353 } 8354 } 8355 8356 //===--------------------------------------------------------------------===// 8357 // EpilogueVectorizerMainLoop 8358 //===--------------------------------------------------------------------===// 8359 8360 /// This function is partially responsible for generating the control flow 8361 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8362 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8363 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8364 Loop *Lp = createVectorLoopSkeleton(""); 8365 8366 // Generate the code to check the minimum iteration count of the vector 8367 // epilogue (see below). 8368 EPI.EpilogueIterationCountCheck = 8369 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8370 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8371 8372 // Generate the code to check any assumptions that we've made for SCEV 8373 // expressions. 8374 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8375 8376 // Generate the code that checks at runtime if arrays overlap. We put the 8377 // checks into a separate block to make the more common case of few elements 8378 // faster. 8379 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8380 8381 // Generate the iteration count check for the main loop, *after* the check 8382 // for the epilogue loop, so that the path-length is shorter for the case 8383 // that goes directly through the vector epilogue. The longer-path length for 8384 // the main loop is compensated for, by the gain from vectorizing the larger 8385 // trip count. Note: the branch will get updated later on when we vectorize 8386 // the epilogue. 8387 EPI.MainLoopIterationCountCheck = 8388 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8389 8390 // Generate the induction variable. 8391 OldInduction = Legal->getPrimaryInduction(); 8392 Type *IdxTy = Legal->getWidestInductionType(); 8393 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8394 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8395 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8396 EPI.VectorTripCount = CountRoundDown; 8397 Induction = 8398 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8399 getDebugLocFromInstOrOperands(OldInduction)); 8400 8401 // Skip induction resume value creation here because they will be created in 8402 // the second pass. If we created them here, they wouldn't be used anyway, 8403 // because the vplan in the second pass still contains the inductions from the 8404 // original loop. 8405 8406 return completeLoopSkeleton(Lp, OrigLoopID); 8407 } 8408 8409 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8410 LLVM_DEBUG({ 8411 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8412 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8413 << ", Main Loop UF:" << EPI.MainLoopUF 8414 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8415 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8416 }); 8417 } 8418 8419 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8420 DEBUG_WITH_TYPE(VerboseDebug, { 8421 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8422 }); 8423 } 8424 8425 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8426 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8427 assert(L && "Expected valid Loop."); 8428 assert(Bypass && "Expected valid bypass basic block."); 8429 unsigned VFactor = 8430 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 8431 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8432 Value *Count = getOrCreateTripCount(L); 8433 // Reuse existing vector loop preheader for TC checks. 8434 // Note that new preheader block is generated for vector loop. 8435 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8436 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8437 8438 // Generate code to check if the loop's trip count is less than VF * UF of the 8439 // main vector loop. 8440 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8441 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8442 8443 Value *CheckMinIters = Builder.CreateICmp( 8444 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 8445 "min.iters.check"); 8446 8447 if (!ForEpilogue) 8448 TCCheckBlock->setName("vector.main.loop.iter.check"); 8449 8450 // Create new preheader for vector loop. 8451 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8452 DT, LI, nullptr, "vector.ph"); 8453 8454 if (ForEpilogue) { 8455 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8456 DT->getNode(Bypass)->getIDom()) && 8457 "TC check is expected to dominate Bypass"); 8458 8459 // Update dominator for Bypass & LoopExit. 8460 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8461 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8462 // For loops with multiple exits, there's no edge from the middle block 8463 // to exit blocks (as the epilogue must run) and thus no need to update 8464 // the immediate dominator of the exit blocks. 8465 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8466 8467 LoopBypassBlocks.push_back(TCCheckBlock); 8468 8469 // Save the trip count so we don't have to regenerate it in the 8470 // vec.epilog.iter.check. This is safe to do because the trip count 8471 // generated here dominates the vector epilog iter check. 8472 EPI.TripCount = Count; 8473 } 8474 8475 ReplaceInstWithInst( 8476 TCCheckBlock->getTerminator(), 8477 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8478 8479 return TCCheckBlock; 8480 } 8481 8482 //===--------------------------------------------------------------------===// 8483 // EpilogueVectorizerEpilogueLoop 8484 //===--------------------------------------------------------------------===// 8485 8486 /// This function is partially responsible for generating the control flow 8487 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8488 BasicBlock * 8489 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8490 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8491 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8492 8493 // Now, compare the remaining count and if there aren't enough iterations to 8494 // execute the vectorized epilogue skip to the scalar part. 8495 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8496 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8497 LoopVectorPreHeader = 8498 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8499 LI, nullptr, "vec.epilog.ph"); 8500 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8501 VecEpilogueIterationCountCheck); 8502 8503 // Adjust the control flow taking the state info from the main loop 8504 // vectorization into account. 8505 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8506 "expected this to be saved from the previous pass."); 8507 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8508 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8509 8510 DT->changeImmediateDominator(LoopVectorPreHeader, 8511 EPI.MainLoopIterationCountCheck); 8512 8513 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8514 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8515 8516 if (EPI.SCEVSafetyCheck) 8517 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8518 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8519 if (EPI.MemSafetyCheck) 8520 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8521 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8522 8523 DT->changeImmediateDominator( 8524 VecEpilogueIterationCountCheck, 8525 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8526 8527 DT->changeImmediateDominator(LoopScalarPreHeader, 8528 EPI.EpilogueIterationCountCheck); 8529 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8530 // If there is an epilogue which must run, there's no edge from the 8531 // middle block to exit blocks and thus no need to update the immediate 8532 // dominator of the exit blocks. 8533 DT->changeImmediateDominator(LoopExitBlock, 8534 EPI.EpilogueIterationCountCheck); 8535 8536 // Keep track of bypass blocks, as they feed start values to the induction 8537 // phis in the scalar loop preheader. 8538 if (EPI.SCEVSafetyCheck) 8539 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8540 if (EPI.MemSafetyCheck) 8541 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8542 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8543 8544 // Generate a resume induction for the vector epilogue and put it in the 8545 // vector epilogue preheader 8546 Type *IdxTy = Legal->getWidestInductionType(); 8547 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8548 LoopVectorPreHeader->getFirstNonPHI()); 8549 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8550 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8551 EPI.MainLoopIterationCountCheck); 8552 8553 // Generate the induction variable. 8554 OldInduction = Legal->getPrimaryInduction(); 8555 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8556 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8557 Value *StartIdx = EPResumeVal; 8558 Induction = 8559 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8560 getDebugLocFromInstOrOperands(OldInduction)); 8561 8562 // Generate induction resume values. These variables save the new starting 8563 // indexes for the scalar loop. They are used to test if there are any tail 8564 // iterations left once the vector loop has completed. 8565 // Note that when the vectorized epilogue is skipped due to iteration count 8566 // check, then the resume value for the induction variable comes from 8567 // the trip count of the main vector loop, hence passing the AdditionalBypass 8568 // argument. 8569 createInductionResumeValues(Lp, CountRoundDown, 8570 {VecEpilogueIterationCountCheck, 8571 EPI.VectorTripCount} /* AdditionalBypass */); 8572 8573 AddRuntimeUnrollDisableMetaData(Lp); 8574 return completeLoopSkeleton(Lp, OrigLoopID); 8575 } 8576 8577 BasicBlock * 8578 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8579 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8580 8581 assert(EPI.TripCount && 8582 "Expected trip count to have been safed in the first pass."); 8583 assert( 8584 (!isa<Instruction>(EPI.TripCount) || 8585 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8586 "saved trip count does not dominate insertion point."); 8587 Value *TC = EPI.TripCount; 8588 IRBuilder<> Builder(Insert->getTerminator()); 8589 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8590 8591 // Generate code to check if the loop's trip count is less than VF * UF of the 8592 // vector epilogue loop. 8593 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8594 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8595 8596 Value *CheckMinIters = Builder.CreateICmp( 8597 P, Count, 8598 ConstantInt::get(Count->getType(), 8599 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 8600 "min.epilog.iters.check"); 8601 8602 ReplaceInstWithInst( 8603 Insert->getTerminator(), 8604 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8605 8606 LoopBypassBlocks.push_back(Insert); 8607 return Insert; 8608 } 8609 8610 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8611 LLVM_DEBUG({ 8612 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8613 << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8614 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8615 }); 8616 } 8617 8618 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8619 DEBUG_WITH_TYPE(VerboseDebug, { 8620 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8621 }); 8622 } 8623 8624 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8625 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8626 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8627 bool PredicateAtRangeStart = Predicate(Range.Start); 8628 8629 for (ElementCount TmpVF = Range.Start * 2; 8630 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8631 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8632 Range.End = TmpVF; 8633 break; 8634 } 8635 8636 return PredicateAtRangeStart; 8637 } 8638 8639 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8640 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8641 /// of VF's starting at a given VF and extending it as much as possible. Each 8642 /// vectorization decision can potentially shorten this sub-range during 8643 /// buildVPlan(). 8644 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8645 ElementCount MaxVF) { 8646 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8647 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8648 VFRange SubRange = {VF, MaxVFPlusOne}; 8649 VPlans.push_back(buildVPlan(SubRange)); 8650 VF = SubRange.End; 8651 } 8652 } 8653 8654 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8655 VPlanPtr &Plan) { 8656 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8657 8658 // Look for cached value. 8659 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8660 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8661 if (ECEntryIt != EdgeMaskCache.end()) 8662 return ECEntryIt->second; 8663 8664 VPValue *SrcMask = createBlockInMask(Src, Plan); 8665 8666 // The terminator has to be a branch inst! 8667 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8668 assert(BI && "Unexpected terminator found"); 8669 8670 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8671 return EdgeMaskCache[Edge] = SrcMask; 8672 8673 // If source is an exiting block, we know the exit edge is dynamically dead 8674 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8675 // adding uses of an otherwise potentially dead instruction. 8676 if (OrigLoop->isLoopExiting(Src)) 8677 return EdgeMaskCache[Edge] = SrcMask; 8678 8679 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8680 assert(EdgeMask && "No Edge Mask found for condition"); 8681 8682 if (BI->getSuccessor(0) != Dst) 8683 EdgeMask = Builder.createNot(EdgeMask); 8684 8685 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8686 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8687 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8688 // The select version does not introduce new UB if SrcMask is false and 8689 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8690 VPValue *False = Plan->getOrAddVPValue( 8691 ConstantInt::getFalse(BI->getCondition()->getType())); 8692 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8693 } 8694 8695 return EdgeMaskCache[Edge] = EdgeMask; 8696 } 8697 8698 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8699 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8700 8701 // Look for cached value. 8702 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8703 if (BCEntryIt != BlockMaskCache.end()) 8704 return BCEntryIt->second; 8705 8706 // All-one mask is modelled as no-mask following the convention for masked 8707 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8708 VPValue *BlockMask = nullptr; 8709 8710 if (OrigLoop->getHeader() == BB) { 8711 if (!CM.blockNeedsPredication(BB)) 8712 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8713 8714 // Create the block in mask as the first non-phi instruction in the block. 8715 VPBuilder::InsertPointGuard Guard(Builder); 8716 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8717 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8718 8719 // Introduce the early-exit compare IV <= BTC to form header block mask. 8720 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8721 // Start by constructing the desired canonical IV. 8722 VPValue *IV = nullptr; 8723 if (Legal->getPrimaryInduction()) 8724 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8725 else { 8726 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8727 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8728 IV = IVRecipe->getVPSingleValue(); 8729 } 8730 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8731 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8732 8733 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8734 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8735 // as a second argument, we only pass the IV here and extract the 8736 // tripcount from the transform state where codegen of the VP instructions 8737 // happen. 8738 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8739 } else { 8740 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8741 } 8742 return BlockMaskCache[BB] = BlockMask; 8743 } 8744 8745 // This is the block mask. We OR all incoming edges. 8746 for (auto *Predecessor : predecessors(BB)) { 8747 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8748 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8749 return BlockMaskCache[BB] = EdgeMask; 8750 8751 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8752 BlockMask = EdgeMask; 8753 continue; 8754 } 8755 8756 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8757 } 8758 8759 return BlockMaskCache[BB] = BlockMask; 8760 } 8761 8762 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8763 ArrayRef<VPValue *> Operands, 8764 VFRange &Range, 8765 VPlanPtr &Plan) { 8766 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8767 "Must be called with either a load or store"); 8768 8769 auto willWiden = [&](ElementCount VF) -> bool { 8770 if (VF.isScalar()) 8771 return false; 8772 LoopVectorizationCostModel::InstWidening Decision = 8773 CM.getWideningDecision(I, VF); 8774 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8775 "CM decision should be taken at this point."); 8776 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8777 return true; 8778 if (CM.isScalarAfterVectorization(I, VF) || 8779 CM.isProfitableToScalarize(I, VF)) 8780 return false; 8781 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8782 }; 8783 8784 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8785 return nullptr; 8786 8787 VPValue *Mask = nullptr; 8788 if (Legal->isMaskRequired(I)) 8789 Mask = createBlockInMask(I->getParent(), Plan); 8790 8791 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8792 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask); 8793 8794 StoreInst *Store = cast<StoreInst>(I); 8795 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8796 Mask); 8797 } 8798 8799 VPWidenIntOrFpInductionRecipe * 8800 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8801 ArrayRef<VPValue *> Operands) const { 8802 // Check if this is an integer or fp induction. If so, build the recipe that 8803 // produces its scalar and vector values. 8804 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8805 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8806 II.getKind() == InductionDescriptor::IK_FpInduction) { 8807 assert(II.getStartValue() == 8808 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8809 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8810 return new VPWidenIntOrFpInductionRecipe( 8811 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8812 } 8813 8814 return nullptr; 8815 } 8816 8817 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8818 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8819 VPlan &Plan) const { 8820 // Optimize the special case where the source is a constant integer 8821 // induction variable. Notice that we can only optimize the 'trunc' case 8822 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8823 // (c) other casts depend on pointer size. 8824 8825 // Determine whether \p K is a truncation based on an induction variable that 8826 // can be optimized. 8827 auto isOptimizableIVTruncate = 8828 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8829 return [=](ElementCount VF) -> bool { 8830 return CM.isOptimizableIVTruncate(K, VF); 8831 }; 8832 }; 8833 8834 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8835 isOptimizableIVTruncate(I), Range)) { 8836 8837 InductionDescriptor II = 8838 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8839 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8840 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8841 Start, nullptr, I); 8842 } 8843 return nullptr; 8844 } 8845 8846 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8847 ArrayRef<VPValue *> Operands, 8848 VPlanPtr &Plan) { 8849 // If all incoming values are equal, the incoming VPValue can be used directly 8850 // instead of creating a new VPBlendRecipe. 8851 VPValue *FirstIncoming = Operands[0]; 8852 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8853 return FirstIncoming == Inc; 8854 })) { 8855 return Operands[0]; 8856 } 8857 8858 // We know that all PHIs in non-header blocks are converted into selects, so 8859 // we don't have to worry about the insertion order and we can just use the 8860 // builder. At this point we generate the predication tree. There may be 8861 // duplications since this is a simple recursive scan, but future 8862 // optimizations will clean it up. 8863 SmallVector<VPValue *, 2> OperandsWithMask; 8864 unsigned NumIncoming = Phi->getNumIncomingValues(); 8865 8866 for (unsigned In = 0; In < NumIncoming; In++) { 8867 VPValue *EdgeMask = 8868 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8869 assert((EdgeMask || NumIncoming == 1) && 8870 "Multiple predecessors with one having a full mask"); 8871 OperandsWithMask.push_back(Operands[In]); 8872 if (EdgeMask) 8873 OperandsWithMask.push_back(EdgeMask); 8874 } 8875 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8876 } 8877 8878 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8879 ArrayRef<VPValue *> Operands, 8880 VFRange &Range) const { 8881 8882 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8883 [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); }, 8884 Range); 8885 8886 if (IsPredicated) 8887 return nullptr; 8888 8889 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8890 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8891 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8892 ID == Intrinsic::pseudoprobe || 8893 ID == Intrinsic::experimental_noalias_scope_decl)) 8894 return nullptr; 8895 8896 auto willWiden = [&](ElementCount VF) -> bool { 8897 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8898 // The following case may be scalarized depending on the VF. 8899 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8900 // version of the instruction. 8901 // Is it beneficial to perform intrinsic call compared to lib call? 8902 bool NeedToScalarize = false; 8903 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8904 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8905 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8906 return UseVectorIntrinsic || !NeedToScalarize; 8907 }; 8908 8909 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8910 return nullptr; 8911 8912 ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands()); 8913 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8914 } 8915 8916 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8917 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8918 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8919 // Instruction should be widened, unless it is scalar after vectorization, 8920 // scalarization is profitable or it is predicated. 8921 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8922 return CM.isScalarAfterVectorization(I, VF) || 8923 CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I); 8924 }; 8925 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8926 Range); 8927 } 8928 8929 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8930 ArrayRef<VPValue *> Operands) const { 8931 auto IsVectorizableOpcode = [](unsigned Opcode) { 8932 switch (Opcode) { 8933 case Instruction::Add: 8934 case Instruction::And: 8935 case Instruction::AShr: 8936 case Instruction::BitCast: 8937 case Instruction::FAdd: 8938 case Instruction::FCmp: 8939 case Instruction::FDiv: 8940 case Instruction::FMul: 8941 case Instruction::FNeg: 8942 case Instruction::FPExt: 8943 case Instruction::FPToSI: 8944 case Instruction::FPToUI: 8945 case Instruction::FPTrunc: 8946 case Instruction::FRem: 8947 case Instruction::FSub: 8948 case Instruction::ICmp: 8949 case Instruction::IntToPtr: 8950 case Instruction::LShr: 8951 case Instruction::Mul: 8952 case Instruction::Or: 8953 case Instruction::PtrToInt: 8954 case Instruction::SDiv: 8955 case Instruction::Select: 8956 case Instruction::SExt: 8957 case Instruction::Shl: 8958 case Instruction::SIToFP: 8959 case Instruction::SRem: 8960 case Instruction::Sub: 8961 case Instruction::Trunc: 8962 case Instruction::UDiv: 8963 case Instruction::UIToFP: 8964 case Instruction::URem: 8965 case Instruction::Xor: 8966 case Instruction::ZExt: 8967 return true; 8968 } 8969 return false; 8970 }; 8971 8972 if (!IsVectorizableOpcode(I->getOpcode())) 8973 return nullptr; 8974 8975 // Success: widen this instruction. 8976 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8977 } 8978 8979 void VPRecipeBuilder::fixHeaderPhis() { 8980 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8981 for (VPWidenPHIRecipe *R : PhisToFix) { 8982 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8983 VPRecipeBase *IncR = 8984 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8985 R->addOperand(IncR->getVPSingleValue()); 8986 } 8987 } 8988 8989 VPBasicBlock *VPRecipeBuilder::handleReplication( 8990 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8991 VPlanPtr &Plan) { 8992 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8993 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8994 Range); 8995 8996 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8997 [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range); 8998 8999 // Even if the instruction is not marked as uniform, there are certain 9000 // intrinsic calls that can be effectively treated as such, so we check for 9001 // them here. Conservatively, we only do this for scalable vectors, since 9002 // for fixed-width VFs we can always fall back on full scalarization. 9003 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 9004 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 9005 case Intrinsic::assume: 9006 case Intrinsic::lifetime_start: 9007 case Intrinsic::lifetime_end: 9008 // For scalable vectors if one of the operands is variant then we still 9009 // want to mark as uniform, which will generate one instruction for just 9010 // the first lane of the vector. We can't scalarize the call in the same 9011 // way as for fixed-width vectors because we don't know how many lanes 9012 // there are. 9013 // 9014 // The reasons for doing it this way for scalable vectors are: 9015 // 1. For the assume intrinsic generating the instruction for the first 9016 // lane is still be better than not generating any at all. For 9017 // example, the input may be a splat across all lanes. 9018 // 2. For the lifetime start/end intrinsics the pointer operand only 9019 // does anything useful when the input comes from a stack object, 9020 // which suggests it should always be uniform. For non-stack objects 9021 // the effect is to poison the object, which still allows us to 9022 // remove the call. 9023 IsUniform = true; 9024 break; 9025 default: 9026 break; 9027 } 9028 } 9029 9030 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 9031 IsUniform, IsPredicated); 9032 setRecipe(I, Recipe); 9033 Plan->addVPValue(I, Recipe); 9034 9035 // Find if I uses a predicated instruction. If so, it will use its scalar 9036 // value. Avoid hoisting the insert-element which packs the scalar value into 9037 // a vector value, as that happens iff all users use the vector value. 9038 for (VPValue *Op : Recipe->operands()) { 9039 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 9040 if (!PredR) 9041 continue; 9042 auto *RepR = 9043 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 9044 assert(RepR->isPredicated() && 9045 "expected Replicate recipe to be predicated"); 9046 RepR->setAlsoPack(false); 9047 } 9048 9049 // Finalize the recipe for Instr, first if it is not predicated. 9050 if (!IsPredicated) { 9051 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 9052 VPBB->appendRecipe(Recipe); 9053 return VPBB; 9054 } 9055 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 9056 assert(VPBB->getSuccessors().empty() && 9057 "VPBB has successors when handling predicated replication."); 9058 // Record predicated instructions for above packing optimizations. 9059 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 9060 VPBlockUtils::insertBlockAfter(Region, VPBB); 9061 auto *RegSucc = new VPBasicBlock(); 9062 VPBlockUtils::insertBlockAfter(RegSucc, Region); 9063 return RegSucc; 9064 } 9065 9066 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 9067 VPRecipeBase *PredRecipe, 9068 VPlanPtr &Plan) { 9069 // Instructions marked for predication are replicated and placed under an 9070 // if-then construct to prevent side-effects. 9071 9072 // Generate recipes to compute the block mask for this region. 9073 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 9074 9075 // Build the triangular if-then region. 9076 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 9077 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 9078 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 9079 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 9080 auto *PHIRecipe = Instr->getType()->isVoidTy() 9081 ? nullptr 9082 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 9083 if (PHIRecipe) { 9084 Plan->removeVPValueFor(Instr); 9085 Plan->addVPValue(Instr, PHIRecipe); 9086 } 9087 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 9088 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 9089 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 9090 9091 // Note: first set Entry as region entry and then connect successors starting 9092 // from it in order, to propagate the "parent" of each VPBasicBlock. 9093 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 9094 VPBlockUtils::connectBlocks(Pred, Exit); 9095 9096 return Region; 9097 } 9098 9099 VPRecipeOrVPValueTy 9100 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 9101 ArrayRef<VPValue *> Operands, 9102 VFRange &Range, VPlanPtr &Plan) { 9103 // First, check for specific widening recipes that deal with calls, memory 9104 // operations, inductions and Phi nodes. 9105 if (auto *CI = dyn_cast<CallInst>(Instr)) 9106 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 9107 9108 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 9109 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 9110 9111 VPRecipeBase *Recipe; 9112 if (auto Phi = dyn_cast<PHINode>(Instr)) { 9113 if (Phi->getParent() != OrigLoop->getHeader()) 9114 return tryToBlend(Phi, Operands, Plan); 9115 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 9116 return toVPRecipeResult(Recipe); 9117 9118 VPWidenPHIRecipe *PhiRecipe = nullptr; 9119 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 9120 VPValue *StartV = Operands[0]; 9121 if (Legal->isReductionVariable(Phi)) { 9122 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9123 assert(RdxDesc.getRecurrenceStartValue() == 9124 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 9125 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 9126 CM.isInLoopReduction(Phi), 9127 CM.useOrderedReductions(RdxDesc)); 9128 } else { 9129 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 9130 } 9131 9132 // Record the incoming value from the backedge, so we can add the incoming 9133 // value from the backedge after all recipes have been created. 9134 recordRecipeOf(cast<Instruction>( 9135 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 9136 PhisToFix.push_back(PhiRecipe); 9137 } else { 9138 // TODO: record start and backedge value for remaining pointer induction 9139 // phis. 9140 assert(Phi->getType()->isPointerTy() && 9141 "only pointer phis should be handled here"); 9142 PhiRecipe = new VPWidenPHIRecipe(Phi); 9143 } 9144 9145 return toVPRecipeResult(PhiRecipe); 9146 } 9147 9148 if (isa<TruncInst>(Instr) && 9149 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 9150 Range, *Plan))) 9151 return toVPRecipeResult(Recipe); 9152 9153 if (!shouldWiden(Instr, Range)) 9154 return nullptr; 9155 9156 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 9157 return toVPRecipeResult(new VPWidenGEPRecipe( 9158 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 9159 9160 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 9161 bool InvariantCond = 9162 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 9163 return toVPRecipeResult(new VPWidenSelectRecipe( 9164 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 9165 } 9166 9167 return toVPRecipeResult(tryToWiden(Instr, Operands)); 9168 } 9169 9170 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 9171 ElementCount MaxVF) { 9172 assert(OrigLoop->isInnermost() && "Inner loop expected."); 9173 9174 // Collect instructions from the original loop that will become trivially dead 9175 // in the vectorized loop. We don't need to vectorize these instructions. For 9176 // example, original induction update instructions can become dead because we 9177 // separately emit induction "steps" when generating code for the new loop. 9178 // Similarly, we create a new latch condition when setting up the structure 9179 // of the new loop, so the old one can become dead. 9180 SmallPtrSet<Instruction *, 4> DeadInstructions; 9181 collectTriviallyDeadInstructions(DeadInstructions); 9182 9183 // Add assume instructions we need to drop to DeadInstructions, to prevent 9184 // them from being added to the VPlan. 9185 // TODO: We only need to drop assumes in blocks that get flattend. If the 9186 // control flow is preserved, we should keep them. 9187 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 9188 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 9189 9190 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 9191 // Dead instructions do not need sinking. Remove them from SinkAfter. 9192 for (Instruction *I : DeadInstructions) 9193 SinkAfter.erase(I); 9194 9195 // Cannot sink instructions after dead instructions (there won't be any 9196 // recipes for them). Instead, find the first non-dead previous instruction. 9197 for (auto &P : Legal->getSinkAfter()) { 9198 Instruction *SinkTarget = P.second; 9199 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 9200 (void)FirstInst; 9201 while (DeadInstructions.contains(SinkTarget)) { 9202 assert( 9203 SinkTarget != FirstInst && 9204 "Must find a live instruction (at least the one feeding the " 9205 "first-order recurrence PHI) before reaching beginning of the block"); 9206 SinkTarget = SinkTarget->getPrevNode(); 9207 assert(SinkTarget != P.first && 9208 "sink source equals target, no sinking required"); 9209 } 9210 P.second = SinkTarget; 9211 } 9212 9213 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 9214 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 9215 VFRange SubRange = {VF, MaxVFPlusOne}; 9216 VPlans.push_back( 9217 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 9218 VF = SubRange.End; 9219 } 9220 } 9221 9222 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9223 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9224 const MapVector<Instruction *, Instruction *> &SinkAfter) { 9225 9226 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9227 9228 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9229 9230 // --------------------------------------------------------------------------- 9231 // Pre-construction: record ingredients whose recipes we'll need to further 9232 // process after constructing the initial VPlan. 9233 // --------------------------------------------------------------------------- 9234 9235 // Mark instructions we'll need to sink later and their targets as 9236 // ingredients whose recipe we'll need to record. 9237 for (auto &Entry : SinkAfter) { 9238 RecipeBuilder.recordRecipeOf(Entry.first); 9239 RecipeBuilder.recordRecipeOf(Entry.second); 9240 } 9241 for (auto &Reduction : CM.getInLoopReductionChains()) { 9242 PHINode *Phi = Reduction.first; 9243 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 9244 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9245 9246 RecipeBuilder.recordRecipeOf(Phi); 9247 for (auto &R : ReductionOperations) { 9248 RecipeBuilder.recordRecipeOf(R); 9249 // For min/max reducitons, where we have a pair of icmp/select, we also 9250 // need to record the ICmp recipe, so it can be removed later. 9251 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9252 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9253 } 9254 } 9255 9256 // For each interleave group which is relevant for this (possibly trimmed) 9257 // Range, add it to the set of groups to be later applied to the VPlan and add 9258 // placeholders for its members' Recipes which we'll be replacing with a 9259 // single VPInterleaveRecipe. 9260 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9261 auto applyIG = [IG, this](ElementCount VF) -> bool { 9262 return (VF.isVector() && // Query is illegal for VF == 1 9263 CM.getWideningDecision(IG->getInsertPos(), VF) == 9264 LoopVectorizationCostModel::CM_Interleave); 9265 }; 9266 if (!getDecisionAndClampRange(applyIG, Range)) 9267 continue; 9268 InterleaveGroups.insert(IG); 9269 for (unsigned i = 0; i < IG->getFactor(); i++) 9270 if (Instruction *Member = IG->getMember(i)) 9271 RecipeBuilder.recordRecipeOf(Member); 9272 }; 9273 9274 // --------------------------------------------------------------------------- 9275 // Build initial VPlan: Scan the body of the loop in a topological order to 9276 // visit each basic block after having visited its predecessor basic blocks. 9277 // --------------------------------------------------------------------------- 9278 9279 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 9280 auto Plan = std::make_unique<VPlan>(); 9281 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 9282 Plan->setEntry(VPBB); 9283 9284 // Scan the body of the loop in a topological order to visit each basic block 9285 // after having visited its predecessor basic blocks. 9286 LoopBlocksDFS DFS(OrigLoop); 9287 DFS.perform(LI); 9288 9289 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9290 // Relevant instructions from basic block BB will be grouped into VPRecipe 9291 // ingredients and fill a new VPBasicBlock. 9292 unsigned VPBBsForBB = 0; 9293 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 9294 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 9295 VPBB = FirstVPBBForBB; 9296 Builder.setInsertPoint(VPBB); 9297 9298 // Introduce each ingredient into VPlan. 9299 // TODO: Model and preserve debug instrinsics in VPlan. 9300 for (Instruction &I : BB->instructionsWithoutDebug()) { 9301 Instruction *Instr = &I; 9302 9303 // First filter out irrelevant instructions, to ensure no recipes are 9304 // built for them. 9305 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9306 continue; 9307 9308 SmallVector<VPValue *, 4> Operands; 9309 auto *Phi = dyn_cast<PHINode>(Instr); 9310 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9311 Operands.push_back(Plan->getOrAddVPValue( 9312 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9313 } else { 9314 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9315 Operands = {OpRange.begin(), OpRange.end()}; 9316 } 9317 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9318 Instr, Operands, Range, Plan)) { 9319 // If Instr can be simplified to an existing VPValue, use it. 9320 if (RecipeOrValue.is<VPValue *>()) { 9321 auto *VPV = RecipeOrValue.get<VPValue *>(); 9322 Plan->addVPValue(Instr, VPV); 9323 // If the re-used value is a recipe, register the recipe for the 9324 // instruction, in case the recipe for Instr needs to be recorded. 9325 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9326 RecipeBuilder.setRecipe(Instr, R); 9327 continue; 9328 } 9329 // Otherwise, add the new recipe. 9330 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9331 for (auto *Def : Recipe->definedValues()) { 9332 auto *UV = Def->getUnderlyingValue(); 9333 Plan->addVPValue(UV, Def); 9334 } 9335 9336 RecipeBuilder.setRecipe(Instr, Recipe); 9337 VPBB->appendRecipe(Recipe); 9338 continue; 9339 } 9340 9341 // Otherwise, if all widening options failed, Instruction is to be 9342 // replicated. This may create a successor for VPBB. 9343 VPBasicBlock *NextVPBB = 9344 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9345 if (NextVPBB != VPBB) { 9346 VPBB = NextVPBB; 9347 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9348 : ""); 9349 } 9350 } 9351 } 9352 9353 RecipeBuilder.fixHeaderPhis(); 9354 9355 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 9356 // may also be empty, such as the last one VPBB, reflecting original 9357 // basic-blocks with no recipes. 9358 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 9359 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 9360 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 9361 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 9362 delete PreEntry; 9363 9364 // --------------------------------------------------------------------------- 9365 // Transform initial VPlan: Apply previously taken decisions, in order, to 9366 // bring the VPlan to its final state. 9367 // --------------------------------------------------------------------------- 9368 9369 // Apply Sink-After legal constraints. 9370 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9371 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9372 if (Region && Region->isReplicator()) { 9373 assert(Region->getNumSuccessors() == 1 && 9374 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9375 assert(R->getParent()->size() == 1 && 9376 "A recipe in an original replicator region must be the only " 9377 "recipe in its block"); 9378 return Region; 9379 } 9380 return nullptr; 9381 }; 9382 for (auto &Entry : SinkAfter) { 9383 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9384 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9385 9386 auto *TargetRegion = GetReplicateRegion(Target); 9387 auto *SinkRegion = GetReplicateRegion(Sink); 9388 if (!SinkRegion) { 9389 // If the sink source is not a replicate region, sink the recipe directly. 9390 if (TargetRegion) { 9391 // The target is in a replication region, make sure to move Sink to 9392 // the block after it, not into the replication region itself. 9393 VPBasicBlock *NextBlock = 9394 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9395 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9396 } else 9397 Sink->moveAfter(Target); 9398 continue; 9399 } 9400 9401 // The sink source is in a replicate region. Unhook the region from the CFG. 9402 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9403 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9404 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9405 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9406 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9407 9408 if (TargetRegion) { 9409 // The target recipe is also in a replicate region, move the sink region 9410 // after the target region. 9411 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9412 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9413 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9414 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9415 } else { 9416 // The sink source is in a replicate region, we need to move the whole 9417 // replicate region, which should only contain a single recipe in the 9418 // main block. 9419 auto *SplitBlock = 9420 Target->getParent()->splitAt(std::next(Target->getIterator())); 9421 9422 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9423 9424 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9425 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9426 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9427 if (VPBB == SplitPred) 9428 VPBB = SplitBlock; 9429 } 9430 } 9431 9432 // Adjust the recipes for any inloop reductions. 9433 adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start); 9434 9435 // Introduce a recipe to combine the incoming and previous values of a 9436 // first-order recurrence. 9437 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9438 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9439 if (!RecurPhi) 9440 continue; 9441 9442 auto *RecurSplice = cast<VPInstruction>( 9443 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9444 {RecurPhi, RecurPhi->getBackedgeValue()})); 9445 9446 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9447 if (auto *Region = GetReplicateRegion(PrevRecipe)) { 9448 VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9449 RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi()); 9450 } else 9451 RecurSplice->moveAfter(PrevRecipe); 9452 RecurPhi->replaceAllUsesWith(RecurSplice); 9453 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9454 // all users. 9455 RecurSplice->setOperand(0, RecurPhi); 9456 } 9457 9458 // Interleave memory: for each Interleave Group we marked earlier as relevant 9459 // for this VPlan, replace the Recipes widening its memory instructions with a 9460 // single VPInterleaveRecipe at its insertion point. 9461 for (auto IG : InterleaveGroups) { 9462 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9463 RecipeBuilder.getRecipe(IG->getInsertPos())); 9464 SmallVector<VPValue *, 4> StoredValues; 9465 for (unsigned i = 0; i < IG->getFactor(); ++i) 9466 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9467 auto *StoreR = 9468 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9469 StoredValues.push_back(StoreR->getStoredValue()); 9470 } 9471 9472 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9473 Recipe->getMask()); 9474 VPIG->insertBefore(Recipe); 9475 unsigned J = 0; 9476 for (unsigned i = 0; i < IG->getFactor(); ++i) 9477 if (Instruction *Member = IG->getMember(i)) { 9478 if (!Member->getType()->isVoidTy()) { 9479 VPValue *OriginalV = Plan->getVPValue(Member); 9480 Plan->removeVPValueFor(Member); 9481 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9482 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9483 J++; 9484 } 9485 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9486 } 9487 } 9488 9489 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9490 // in ways that accessing values using original IR values is incorrect. 9491 Plan->disableValue2VPValue(); 9492 9493 VPlanTransforms::sinkScalarOperands(*Plan); 9494 VPlanTransforms::mergeReplicateRegions(*Plan); 9495 9496 std::string PlanName; 9497 raw_string_ostream RSO(PlanName); 9498 ElementCount VF = Range.Start; 9499 Plan->addVF(VF); 9500 RSO << "Initial VPlan for VF={" << VF; 9501 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9502 Plan->addVF(VF); 9503 RSO << "," << VF; 9504 } 9505 RSO << "},UF>=1"; 9506 RSO.flush(); 9507 Plan->setName(PlanName); 9508 9509 return Plan; 9510 } 9511 9512 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9513 // Outer loop handling: They may require CFG and instruction level 9514 // transformations before even evaluating whether vectorization is profitable. 9515 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9516 // the vectorization pipeline. 9517 assert(!OrigLoop->isInnermost()); 9518 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9519 9520 // Create new empty VPlan 9521 auto Plan = std::make_unique<VPlan>(); 9522 9523 // Build hierarchical CFG 9524 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9525 HCFGBuilder.buildHierarchicalCFG(); 9526 9527 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9528 VF *= 2) 9529 Plan->addVF(VF); 9530 9531 if (EnableVPlanPredication) { 9532 VPlanPredicator VPP(*Plan); 9533 VPP.predicate(); 9534 9535 // Avoid running transformation to recipes until masked code generation in 9536 // VPlan-native path is in place. 9537 return Plan; 9538 } 9539 9540 SmallPtrSet<Instruction *, 1> DeadInstructions; 9541 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9542 Legal->getInductionVars(), 9543 DeadInstructions, *PSE.getSE()); 9544 return Plan; 9545 } 9546 9547 // Adjust the recipes for reductions. For in-loop reductions the chain of 9548 // instructions leading from the loop exit instr to the phi need to be converted 9549 // to reductions, with one operand being vector and the other being the scalar 9550 // reduction chain. For other reductions, a select is introduced between the phi 9551 // and live-out recipes when folding the tail. 9552 void LoopVectorizationPlanner::adjustRecipesForReductions( 9553 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9554 ElementCount MinVF) { 9555 for (auto &Reduction : CM.getInLoopReductionChains()) { 9556 PHINode *Phi = Reduction.first; 9557 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9558 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9559 9560 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9561 continue; 9562 9563 // ReductionOperations are orders top-down from the phi's use to the 9564 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9565 // which of the two operands will remain scalar and which will be reduced. 9566 // For minmax the chain will be the select instructions. 9567 Instruction *Chain = Phi; 9568 for (Instruction *R : ReductionOperations) { 9569 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9570 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9571 9572 VPValue *ChainOp = Plan->getVPValue(Chain); 9573 unsigned FirstOpId; 9574 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9575 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9576 "Expected to replace a VPWidenSelectSC"); 9577 FirstOpId = 1; 9578 } else { 9579 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) && 9580 "Expected to replace a VPWidenSC"); 9581 FirstOpId = 0; 9582 } 9583 unsigned VecOpId = 9584 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9585 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9586 9587 auto *CondOp = CM.foldTailByMasking() 9588 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9589 : nullptr; 9590 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 9591 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9592 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9593 Plan->removeVPValueFor(R); 9594 Plan->addVPValue(R, RedRecipe); 9595 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9596 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9597 WidenRecipe->eraseFromParent(); 9598 9599 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9600 VPRecipeBase *CompareRecipe = 9601 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9602 assert(isa<VPWidenRecipe>(CompareRecipe) && 9603 "Expected to replace a VPWidenSC"); 9604 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9605 "Expected no remaining users"); 9606 CompareRecipe->eraseFromParent(); 9607 } 9608 Chain = R; 9609 } 9610 } 9611 9612 // If tail is folded by masking, introduce selects between the phi 9613 // and the live-out instruction of each reduction, at the end of the latch. 9614 if (CM.foldTailByMasking()) { 9615 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9616 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9617 if (!PhiR || PhiR->isInLoop()) 9618 continue; 9619 Builder.setInsertPoint(LatchVPBB); 9620 VPValue *Cond = 9621 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9622 VPValue *Red = PhiR->getBackedgeValue(); 9623 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9624 } 9625 } 9626 } 9627 9628 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9629 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9630 VPSlotTracker &SlotTracker) const { 9631 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9632 IG->getInsertPos()->printAsOperand(O, false); 9633 O << ", "; 9634 getAddr()->printAsOperand(O, SlotTracker); 9635 VPValue *Mask = getMask(); 9636 if (Mask) { 9637 O << ", "; 9638 Mask->printAsOperand(O, SlotTracker); 9639 } 9640 9641 unsigned OpIdx = 0; 9642 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9643 if (!IG->getMember(i)) 9644 continue; 9645 if (getNumStoreOperands() > 0) { 9646 O << "\n" << Indent << " store "; 9647 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9648 O << " to index " << i; 9649 } else { 9650 O << "\n" << Indent << " "; 9651 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9652 O << " = load from index " << i; 9653 } 9654 ++OpIdx; 9655 } 9656 } 9657 #endif 9658 9659 void VPWidenCallRecipe::execute(VPTransformState &State) { 9660 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9661 *this, State); 9662 } 9663 9664 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9665 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9666 this, *this, InvariantCond, State); 9667 } 9668 9669 void VPWidenRecipe::execute(VPTransformState &State) { 9670 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9671 } 9672 9673 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9674 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9675 *this, State.UF, State.VF, IsPtrLoopInvariant, 9676 IsIndexLoopInvariant, State); 9677 } 9678 9679 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9680 assert(!State.Instance && "Int or FP induction being replicated."); 9681 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9682 getTruncInst(), getVPValue(0), 9683 getCastValue(), State); 9684 } 9685 9686 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9687 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9688 State); 9689 } 9690 9691 void VPBlendRecipe::execute(VPTransformState &State) { 9692 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9693 // We know that all PHIs in non-header blocks are converted into 9694 // selects, so we don't have to worry about the insertion order and we 9695 // can just use the builder. 9696 // At this point we generate the predication tree. There may be 9697 // duplications since this is a simple recursive scan, but future 9698 // optimizations will clean it up. 9699 9700 unsigned NumIncoming = getNumIncomingValues(); 9701 9702 // Generate a sequence of selects of the form: 9703 // SELECT(Mask3, In3, 9704 // SELECT(Mask2, In2, 9705 // SELECT(Mask1, In1, 9706 // In0))) 9707 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9708 // are essentially undef are taken from In0. 9709 InnerLoopVectorizer::VectorParts Entry(State.UF); 9710 for (unsigned In = 0; In < NumIncoming; ++In) { 9711 for (unsigned Part = 0; Part < State.UF; ++Part) { 9712 // We might have single edge PHIs (blocks) - use an identity 9713 // 'select' for the first PHI operand. 9714 Value *In0 = State.get(getIncomingValue(In), Part); 9715 if (In == 0) 9716 Entry[Part] = In0; // Initialize with the first incoming value. 9717 else { 9718 // Select between the current value and the previous incoming edge 9719 // based on the incoming mask. 9720 Value *Cond = State.get(getMask(In), Part); 9721 Entry[Part] = 9722 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9723 } 9724 } 9725 } 9726 for (unsigned Part = 0; Part < State.UF; ++Part) 9727 State.set(this, Entry[Part], Part); 9728 } 9729 9730 void VPInterleaveRecipe::execute(VPTransformState &State) { 9731 assert(!State.Instance && "Interleave group being replicated."); 9732 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9733 getStoredValues(), getMask()); 9734 } 9735 9736 void VPReductionRecipe::execute(VPTransformState &State) { 9737 assert(!State.Instance && "Reduction being replicated."); 9738 Value *PrevInChain = State.get(getChainOp(), 0); 9739 for (unsigned Part = 0; Part < State.UF; ++Part) { 9740 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9741 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9742 Value *NewVecOp = State.get(getVecOp(), Part); 9743 if (VPValue *Cond = getCondOp()) { 9744 Value *NewCond = State.get(Cond, Part); 9745 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9746 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 9747 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9748 Constant *IdenVec = 9749 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 9750 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9751 NewVecOp = Select; 9752 } 9753 Value *NewRed; 9754 Value *NextInChain; 9755 if (IsOrdered) { 9756 if (State.VF.isVector()) 9757 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9758 PrevInChain); 9759 else 9760 NewRed = State.Builder.CreateBinOp( 9761 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), 9762 PrevInChain, NewVecOp); 9763 PrevInChain = NewRed; 9764 } else { 9765 PrevInChain = State.get(getChainOp(), Part); 9766 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9767 } 9768 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9769 NextInChain = 9770 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9771 NewRed, PrevInChain); 9772 } else if (IsOrdered) 9773 NextInChain = NewRed; 9774 else { 9775 NextInChain = State.Builder.CreateBinOp( 9776 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9777 PrevInChain); 9778 } 9779 State.set(this, NextInChain, Part); 9780 } 9781 } 9782 9783 void VPReplicateRecipe::execute(VPTransformState &State) { 9784 if (State.Instance) { // Generate a single instance. 9785 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9786 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9787 *State.Instance, IsPredicated, State); 9788 // Insert scalar instance packing it into a vector. 9789 if (AlsoPack && State.VF.isVector()) { 9790 // If we're constructing lane 0, initialize to start from poison. 9791 if (State.Instance->Lane.isFirstLane()) { 9792 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9793 Value *Poison = PoisonValue::get( 9794 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9795 State.set(this, Poison, State.Instance->Part); 9796 } 9797 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9798 } 9799 return; 9800 } 9801 9802 // Generate scalar instances for all VF lanes of all UF parts, unless the 9803 // instruction is uniform inwhich case generate only the first lane for each 9804 // of the UF parts. 9805 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9806 assert((!State.VF.isScalable() || IsUniform) && 9807 "Can't scalarize a scalable vector"); 9808 for (unsigned Part = 0; Part < State.UF; ++Part) 9809 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9810 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9811 VPIteration(Part, Lane), IsPredicated, 9812 State); 9813 } 9814 9815 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9816 assert(State.Instance && "Branch on Mask works only on single instance."); 9817 9818 unsigned Part = State.Instance->Part; 9819 unsigned Lane = State.Instance->Lane.getKnownLane(); 9820 9821 Value *ConditionBit = nullptr; 9822 VPValue *BlockInMask = getMask(); 9823 if (BlockInMask) { 9824 ConditionBit = State.get(BlockInMask, Part); 9825 if (ConditionBit->getType()->isVectorTy()) 9826 ConditionBit = State.Builder.CreateExtractElement( 9827 ConditionBit, State.Builder.getInt32(Lane)); 9828 } else // Block in mask is all-one. 9829 ConditionBit = State.Builder.getTrue(); 9830 9831 // Replace the temporary unreachable terminator with a new conditional branch, 9832 // whose two destinations will be set later when they are created. 9833 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9834 assert(isa<UnreachableInst>(CurrentTerminator) && 9835 "Expected to replace unreachable terminator with conditional branch."); 9836 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9837 CondBr->setSuccessor(0, nullptr); 9838 ReplaceInstWithInst(CurrentTerminator, CondBr); 9839 } 9840 9841 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9842 assert(State.Instance && "Predicated instruction PHI works per instance."); 9843 Instruction *ScalarPredInst = 9844 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9845 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9846 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9847 assert(PredicatingBB && "Predicated block has no single predecessor."); 9848 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9849 "operand must be VPReplicateRecipe"); 9850 9851 // By current pack/unpack logic we need to generate only a single phi node: if 9852 // a vector value for the predicated instruction exists at this point it means 9853 // the instruction has vector users only, and a phi for the vector value is 9854 // needed. In this case the recipe of the predicated instruction is marked to 9855 // also do that packing, thereby "hoisting" the insert-element sequence. 9856 // Otherwise, a phi node for the scalar value is needed. 9857 unsigned Part = State.Instance->Part; 9858 if (State.hasVectorValue(getOperand(0), Part)) { 9859 Value *VectorValue = State.get(getOperand(0), Part); 9860 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9861 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9862 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9863 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9864 if (State.hasVectorValue(this, Part)) 9865 State.reset(this, VPhi, Part); 9866 else 9867 State.set(this, VPhi, Part); 9868 // NOTE: Currently we need to update the value of the operand, so the next 9869 // predicated iteration inserts its generated value in the correct vector. 9870 State.reset(getOperand(0), VPhi, Part); 9871 } else { 9872 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9873 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9874 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9875 PredicatingBB); 9876 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9877 if (State.hasScalarValue(this, *State.Instance)) 9878 State.reset(this, Phi, *State.Instance); 9879 else 9880 State.set(this, Phi, *State.Instance); 9881 // NOTE: Currently we need to update the value of the operand, so the next 9882 // predicated iteration inserts its generated value in the correct vector. 9883 State.reset(getOperand(0), Phi, *State.Instance); 9884 } 9885 } 9886 9887 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9888 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9889 State.ILV->vectorizeMemoryInstruction( 9890 &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(), 9891 StoredValue, getMask()); 9892 } 9893 9894 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9895 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9896 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9897 // for predication. 9898 static ScalarEpilogueLowering getScalarEpilogueLowering( 9899 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9900 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9901 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9902 LoopVectorizationLegality &LVL) { 9903 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9904 // don't look at hints or options, and don't request a scalar epilogue. 9905 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9906 // LoopAccessInfo (due to code dependency and not being able to reliably get 9907 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9908 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9909 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9910 // back to the old way and vectorize with versioning when forced. See D81345.) 9911 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9912 PGSOQueryType::IRPass) && 9913 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9914 return CM_ScalarEpilogueNotAllowedOptSize; 9915 9916 // 2) If set, obey the directives 9917 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9918 switch (PreferPredicateOverEpilogue) { 9919 case PreferPredicateTy::ScalarEpilogue: 9920 return CM_ScalarEpilogueAllowed; 9921 case PreferPredicateTy::PredicateElseScalarEpilogue: 9922 return CM_ScalarEpilogueNotNeededUsePredicate; 9923 case PreferPredicateTy::PredicateOrDontVectorize: 9924 return CM_ScalarEpilogueNotAllowedUsePredicate; 9925 }; 9926 } 9927 9928 // 3) If set, obey the hints 9929 switch (Hints.getPredicate()) { 9930 case LoopVectorizeHints::FK_Enabled: 9931 return CM_ScalarEpilogueNotNeededUsePredicate; 9932 case LoopVectorizeHints::FK_Disabled: 9933 return CM_ScalarEpilogueAllowed; 9934 }; 9935 9936 // 4) if the TTI hook indicates this is profitable, request predication. 9937 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9938 LVL.getLAI())) 9939 return CM_ScalarEpilogueNotNeededUsePredicate; 9940 9941 return CM_ScalarEpilogueAllowed; 9942 } 9943 9944 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9945 // If Values have been set for this Def return the one relevant for \p Part. 9946 if (hasVectorValue(Def, Part)) 9947 return Data.PerPartOutput[Def][Part]; 9948 9949 if (!hasScalarValue(Def, {Part, 0})) { 9950 Value *IRV = Def->getLiveInIRValue(); 9951 Value *B = ILV->getBroadcastInstrs(IRV); 9952 set(Def, B, Part); 9953 return B; 9954 } 9955 9956 Value *ScalarValue = get(Def, {Part, 0}); 9957 // If we aren't vectorizing, we can just copy the scalar map values over 9958 // to the vector map. 9959 if (VF.isScalar()) { 9960 set(Def, ScalarValue, Part); 9961 return ScalarValue; 9962 } 9963 9964 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9965 bool IsUniform = RepR && RepR->isUniform(); 9966 9967 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9968 // Check if there is a scalar value for the selected lane. 9969 if (!hasScalarValue(Def, {Part, LastLane})) { 9970 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9971 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 9972 "unexpected recipe found to be invariant"); 9973 IsUniform = true; 9974 LastLane = 0; 9975 } 9976 9977 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9978 // Set the insert point after the last scalarized instruction or after the 9979 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 9980 // will directly follow the scalar definitions. 9981 auto OldIP = Builder.saveIP(); 9982 auto NewIP = 9983 isa<PHINode>(LastInst) 9984 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 9985 : std::next(BasicBlock::iterator(LastInst)); 9986 Builder.SetInsertPoint(&*NewIP); 9987 9988 // However, if we are vectorizing, we need to construct the vector values. 9989 // If the value is known to be uniform after vectorization, we can just 9990 // broadcast the scalar value corresponding to lane zero for each unroll 9991 // iteration. Otherwise, we construct the vector values using 9992 // insertelement instructions. Since the resulting vectors are stored in 9993 // State, we will only generate the insertelements once. 9994 Value *VectorValue = nullptr; 9995 if (IsUniform) { 9996 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9997 set(Def, VectorValue, Part); 9998 } else { 9999 // Initialize packing with insertelements to start from undef. 10000 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10001 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10002 set(Def, Undef, Part); 10003 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10004 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10005 VectorValue = get(Def, Part); 10006 } 10007 Builder.restoreIP(OldIP); 10008 return VectorValue; 10009 } 10010 10011 // Process the loop in the VPlan-native vectorization path. This path builds 10012 // VPlan upfront in the vectorization pipeline, which allows to apply 10013 // VPlan-to-VPlan transformations from the very beginning without modifying the 10014 // input LLVM IR. 10015 static bool processLoopInVPlanNativePath( 10016 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10017 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10018 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10019 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10020 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10021 LoopVectorizationRequirements &Requirements) { 10022 10023 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10024 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10025 return false; 10026 } 10027 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10028 Function *F = L->getHeader()->getParent(); 10029 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10030 10031 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10032 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10033 10034 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10035 &Hints, IAI); 10036 // Use the planner for outer loop vectorization. 10037 // TODO: CM is not used at this point inside the planner. Turn CM into an 10038 // optional argument if we don't need it in the future. 10039 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10040 Requirements, ORE); 10041 10042 // Get user vectorization factor. 10043 ElementCount UserVF = Hints.getWidth(); 10044 10045 CM.collectElementTypesForWidening(); 10046 10047 // Plan how to best vectorize, return the best VF and its cost. 10048 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10049 10050 // If we are stress testing VPlan builds, do not attempt to generate vector 10051 // code. Masked vector code generation support will follow soon. 10052 // Also, do not attempt to vectorize if no vector code will be produced. 10053 if (VPlanBuildStressTest || EnableVPlanPredication || 10054 VectorizationFactor::Disabled() == VF) 10055 return false; 10056 10057 LVP.setBestPlan(VF.Width, 1); 10058 10059 { 10060 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10061 F->getParent()->getDataLayout()); 10062 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10063 &CM, BFI, PSI, Checks); 10064 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10065 << L->getHeader()->getParent()->getName() << "\"\n"); 10066 LVP.executePlan(LB, DT); 10067 } 10068 10069 // Mark the loop as already vectorized to avoid vectorizing again. 10070 Hints.setAlreadyVectorized(); 10071 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10072 return true; 10073 } 10074 10075 // Emit a remark if there are stores to floats that required a floating point 10076 // extension. If the vectorized loop was generated with floating point there 10077 // will be a performance penalty from the conversion overhead and the change in 10078 // the vector width. 10079 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10080 SmallVector<Instruction *, 4> Worklist; 10081 for (BasicBlock *BB : L->getBlocks()) { 10082 for (Instruction &Inst : *BB) { 10083 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10084 if (S->getValueOperand()->getType()->isFloatTy()) 10085 Worklist.push_back(S); 10086 } 10087 } 10088 } 10089 10090 // Traverse the floating point stores upwards searching, for floating point 10091 // conversions. 10092 SmallPtrSet<const Instruction *, 4> Visited; 10093 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10094 while (!Worklist.empty()) { 10095 auto *I = Worklist.pop_back_val(); 10096 if (!L->contains(I)) 10097 continue; 10098 if (!Visited.insert(I).second) 10099 continue; 10100 10101 // Emit a remark if the floating point store required a floating 10102 // point conversion. 10103 // TODO: More work could be done to identify the root cause such as a 10104 // constant or a function return type and point the user to it. 10105 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10106 ORE->emit([&]() { 10107 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10108 I->getDebugLoc(), L->getHeader()) 10109 << "floating point conversion changes vector width. " 10110 << "Mixed floating point precision requires an up/down " 10111 << "cast that will negatively impact performance."; 10112 }); 10113 10114 for (Use &Op : I->operands()) 10115 if (auto *OpI = dyn_cast<Instruction>(Op)) 10116 Worklist.push_back(OpI); 10117 } 10118 } 10119 10120 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10121 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10122 !EnableLoopInterleaving), 10123 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10124 !EnableLoopVectorization) {} 10125 10126 bool LoopVectorizePass::processLoop(Loop *L) { 10127 assert((EnableVPlanNativePath || L->isInnermost()) && 10128 "VPlan-native path is not enabled. Only process inner loops."); 10129 10130 #ifndef NDEBUG 10131 const std::string DebugLocStr = getDebugLocString(L); 10132 #endif /* NDEBUG */ 10133 10134 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10135 << L->getHeader()->getParent()->getName() << "\" from " 10136 << DebugLocStr << "\n"); 10137 10138 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 10139 10140 LLVM_DEBUG( 10141 dbgs() << "LV: Loop hints:" 10142 << " force=" 10143 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10144 ? "disabled" 10145 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10146 ? "enabled" 10147 : "?")) 10148 << " width=" << Hints.getWidth() 10149 << " interleave=" << Hints.getInterleave() << "\n"); 10150 10151 // Function containing loop 10152 Function *F = L->getHeader()->getParent(); 10153 10154 // Looking at the diagnostic output is the only way to determine if a loop 10155 // was vectorized (other than looking at the IR or machine code), so it 10156 // is important to generate an optimization remark for each loop. Most of 10157 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10158 // generated as OptimizationRemark and OptimizationRemarkMissed are 10159 // less verbose reporting vectorized loops and unvectorized loops that may 10160 // benefit from vectorization, respectively. 10161 10162 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10163 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10164 return false; 10165 } 10166 10167 PredicatedScalarEvolution PSE(*SE, *L); 10168 10169 // Check if it is legal to vectorize the loop. 10170 LoopVectorizationRequirements Requirements; 10171 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10172 &Requirements, &Hints, DB, AC, BFI, PSI); 10173 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10174 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10175 Hints.emitRemarkWithHints(); 10176 return false; 10177 } 10178 10179 // Check the function attributes and profiles to find out if this function 10180 // should be optimized for size. 10181 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10182 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10183 10184 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10185 // here. They may require CFG and instruction level transformations before 10186 // even evaluating whether vectorization is profitable. Since we cannot modify 10187 // the incoming IR, we need to build VPlan upfront in the vectorization 10188 // pipeline. 10189 if (!L->isInnermost()) 10190 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10191 ORE, BFI, PSI, Hints, Requirements); 10192 10193 assert(L->isInnermost() && "Inner loop expected."); 10194 10195 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10196 // count by optimizing for size, to minimize overheads. 10197 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10198 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10199 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10200 << "This loop is worth vectorizing only if no scalar " 10201 << "iteration overheads are incurred."); 10202 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10203 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10204 else { 10205 LLVM_DEBUG(dbgs() << "\n"); 10206 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10207 } 10208 } 10209 10210 // Check the function attributes to see if implicit floats are allowed. 10211 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10212 // an integer loop and the vector instructions selected are purely integer 10213 // vector instructions? 10214 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10215 reportVectorizationFailure( 10216 "Can't vectorize when the NoImplicitFloat attribute is used", 10217 "loop not vectorized due to NoImplicitFloat attribute", 10218 "NoImplicitFloat", ORE, L); 10219 Hints.emitRemarkWithHints(); 10220 return false; 10221 } 10222 10223 // Check if the target supports potentially unsafe FP vectorization. 10224 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10225 // for the target we're vectorizing for, to make sure none of the 10226 // additional fp-math flags can help. 10227 if (Hints.isPotentiallyUnsafe() && 10228 TTI->isFPVectorizationPotentiallyUnsafe()) { 10229 reportVectorizationFailure( 10230 "Potentially unsafe FP op prevents vectorization", 10231 "loop not vectorized due to unsafe FP support.", 10232 "UnsafeFP", ORE, L); 10233 Hints.emitRemarkWithHints(); 10234 return false; 10235 } 10236 10237 bool AllowOrderedReductions; 10238 // If the flag is set, use that instead and override the TTI behaviour. 10239 if (ForceOrderedReductions.getNumOccurrences() > 0) 10240 AllowOrderedReductions = ForceOrderedReductions; 10241 else 10242 AllowOrderedReductions = TTI->enableOrderedReductions(); 10243 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10244 ORE->emit([&]() { 10245 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10246 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10247 ExactFPMathInst->getDebugLoc(), 10248 ExactFPMathInst->getParent()) 10249 << "loop not vectorized: cannot prove it is safe to reorder " 10250 "floating-point operations"; 10251 }); 10252 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10253 "reorder floating-point operations\n"); 10254 Hints.emitRemarkWithHints(); 10255 return false; 10256 } 10257 10258 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10259 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10260 10261 // If an override option has been passed in for interleaved accesses, use it. 10262 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10263 UseInterleaved = EnableInterleavedMemAccesses; 10264 10265 // Analyze interleaved memory accesses. 10266 if (UseInterleaved) { 10267 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10268 } 10269 10270 // Use the cost model. 10271 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10272 F, &Hints, IAI); 10273 CM.collectValuesToIgnore(); 10274 CM.collectElementTypesForWidening(); 10275 10276 // Use the planner for vectorization. 10277 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10278 Requirements, ORE); 10279 10280 // Get user vectorization factor and interleave count. 10281 ElementCount UserVF = Hints.getWidth(); 10282 unsigned UserIC = Hints.getInterleave(); 10283 10284 // Plan how to best vectorize, return the best VF and its cost. 10285 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10286 10287 VectorizationFactor VF = VectorizationFactor::Disabled(); 10288 unsigned IC = 1; 10289 10290 if (MaybeVF) { 10291 VF = *MaybeVF; 10292 // Select the interleave count. 10293 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10294 } 10295 10296 // Identify the diagnostic messages that should be produced. 10297 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10298 bool VectorizeLoop = true, InterleaveLoop = true; 10299 if (VF.Width.isScalar()) { 10300 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10301 VecDiagMsg = std::make_pair( 10302 "VectorizationNotBeneficial", 10303 "the cost-model indicates that vectorization is not beneficial"); 10304 VectorizeLoop = false; 10305 } 10306 10307 if (!MaybeVF && UserIC > 1) { 10308 // Tell the user interleaving was avoided up-front, despite being explicitly 10309 // requested. 10310 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10311 "interleaving should be avoided up front\n"); 10312 IntDiagMsg = std::make_pair( 10313 "InterleavingAvoided", 10314 "Ignoring UserIC, because interleaving was avoided up front"); 10315 InterleaveLoop = false; 10316 } else if (IC == 1 && UserIC <= 1) { 10317 // Tell the user interleaving is not beneficial. 10318 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10319 IntDiagMsg = std::make_pair( 10320 "InterleavingNotBeneficial", 10321 "the cost-model indicates that interleaving is not beneficial"); 10322 InterleaveLoop = false; 10323 if (UserIC == 1) { 10324 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10325 IntDiagMsg.second += 10326 " and is explicitly disabled or interleave count is set to 1"; 10327 } 10328 } else if (IC > 1 && UserIC == 1) { 10329 // Tell the user interleaving is beneficial, but it explicitly disabled. 10330 LLVM_DEBUG( 10331 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10332 IntDiagMsg = std::make_pair( 10333 "InterleavingBeneficialButDisabled", 10334 "the cost-model indicates that interleaving is beneficial " 10335 "but is explicitly disabled or interleave count is set to 1"); 10336 InterleaveLoop = false; 10337 } 10338 10339 // Override IC if user provided an interleave count. 10340 IC = UserIC > 0 ? UserIC : IC; 10341 10342 // Emit diagnostic messages, if any. 10343 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10344 if (!VectorizeLoop && !InterleaveLoop) { 10345 // Do not vectorize or interleaving the loop. 10346 ORE->emit([&]() { 10347 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10348 L->getStartLoc(), L->getHeader()) 10349 << VecDiagMsg.second; 10350 }); 10351 ORE->emit([&]() { 10352 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10353 L->getStartLoc(), L->getHeader()) 10354 << IntDiagMsg.second; 10355 }); 10356 return false; 10357 } else if (!VectorizeLoop && InterleaveLoop) { 10358 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10359 ORE->emit([&]() { 10360 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10361 L->getStartLoc(), L->getHeader()) 10362 << VecDiagMsg.second; 10363 }); 10364 } else if (VectorizeLoop && !InterleaveLoop) { 10365 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10366 << ") in " << DebugLocStr << '\n'); 10367 ORE->emit([&]() { 10368 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10369 L->getStartLoc(), L->getHeader()) 10370 << IntDiagMsg.second; 10371 }); 10372 } else if (VectorizeLoop && InterleaveLoop) { 10373 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10374 << ") in " << DebugLocStr << '\n'); 10375 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10376 } 10377 10378 bool DisableRuntimeUnroll = false; 10379 MDNode *OrigLoopID = L->getLoopID(); 10380 { 10381 // Optimistically generate runtime checks. Drop them if they turn out to not 10382 // be profitable. Limit the scope of Checks, so the cleanup happens 10383 // immediately after vector codegeneration is done. 10384 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10385 F->getParent()->getDataLayout()); 10386 if (!VF.Width.isScalar() || IC > 1) 10387 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10388 LVP.setBestPlan(VF.Width, IC); 10389 10390 using namespace ore; 10391 if (!VectorizeLoop) { 10392 assert(IC > 1 && "interleave count should not be 1 or 0"); 10393 // If we decided that it is not legal to vectorize the loop, then 10394 // interleave it. 10395 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10396 &CM, BFI, PSI, Checks); 10397 LVP.executePlan(Unroller, DT); 10398 10399 ORE->emit([&]() { 10400 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10401 L->getHeader()) 10402 << "interleaved loop (interleaved count: " 10403 << NV("InterleaveCount", IC) << ")"; 10404 }); 10405 } else { 10406 // If we decided that it is *legal* to vectorize the loop, then do it. 10407 10408 // Consider vectorizing the epilogue too if it's profitable. 10409 VectorizationFactor EpilogueVF = 10410 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10411 if (EpilogueVF.Width.isVector()) { 10412 10413 // The first pass vectorizes the main loop and creates a scalar epilogue 10414 // to be vectorized by executing the plan (potentially with a different 10415 // factor) again shortly afterwards. 10416 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 10417 EpilogueVF.Width.getKnownMinValue(), 10418 1); 10419 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10420 EPI, &LVL, &CM, BFI, PSI, Checks); 10421 10422 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 10423 LVP.executePlan(MainILV, DT); 10424 ++LoopsVectorized; 10425 10426 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10427 formLCSSARecursively(*L, *DT, LI, SE); 10428 10429 // Second pass vectorizes the epilogue and adjusts the control flow 10430 // edges from the first pass. 10431 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 10432 EPI.MainLoopVF = EPI.EpilogueVF; 10433 EPI.MainLoopUF = EPI.EpilogueUF; 10434 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10435 ORE, EPI, &LVL, &CM, BFI, PSI, 10436 Checks); 10437 LVP.executePlan(EpilogILV, DT); 10438 ++LoopsEpilogueVectorized; 10439 10440 if (!MainILV.areSafetyChecksAdded()) 10441 DisableRuntimeUnroll = true; 10442 } else { 10443 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10444 &LVL, &CM, BFI, PSI, Checks); 10445 LVP.executePlan(LB, DT); 10446 ++LoopsVectorized; 10447 10448 // Add metadata to disable runtime unrolling a scalar loop when there 10449 // are no runtime checks about strides and memory. A scalar loop that is 10450 // rarely used is not worth unrolling. 10451 if (!LB.areSafetyChecksAdded()) 10452 DisableRuntimeUnroll = true; 10453 } 10454 // Report the vectorization decision. 10455 ORE->emit([&]() { 10456 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10457 L->getHeader()) 10458 << "vectorized loop (vectorization width: " 10459 << NV("VectorizationFactor", VF.Width) 10460 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10461 }); 10462 } 10463 10464 if (ORE->allowExtraAnalysis(LV_NAME)) 10465 checkMixedPrecision(L, ORE); 10466 } 10467 10468 Optional<MDNode *> RemainderLoopID = 10469 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10470 LLVMLoopVectorizeFollowupEpilogue}); 10471 if (RemainderLoopID.hasValue()) { 10472 L->setLoopID(RemainderLoopID.getValue()); 10473 } else { 10474 if (DisableRuntimeUnroll) 10475 AddRuntimeUnrollDisableMetaData(L); 10476 10477 // Mark the loop as already vectorized to avoid vectorizing again. 10478 Hints.setAlreadyVectorized(); 10479 } 10480 10481 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10482 return true; 10483 } 10484 10485 LoopVectorizeResult LoopVectorizePass::runImpl( 10486 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10487 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10488 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10489 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10490 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10491 SE = &SE_; 10492 LI = &LI_; 10493 TTI = &TTI_; 10494 DT = &DT_; 10495 BFI = &BFI_; 10496 TLI = TLI_; 10497 AA = &AA_; 10498 AC = &AC_; 10499 GetLAA = &GetLAA_; 10500 DB = &DB_; 10501 ORE = &ORE_; 10502 PSI = PSI_; 10503 10504 // Don't attempt if 10505 // 1. the target claims to have no vector registers, and 10506 // 2. interleaving won't help ILP. 10507 // 10508 // The second condition is necessary because, even if the target has no 10509 // vector registers, loop vectorization may still enable scalar 10510 // interleaving. 10511 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10512 TTI->getMaxInterleaveFactor(1) < 2) 10513 return LoopVectorizeResult(false, false); 10514 10515 bool Changed = false, CFGChanged = false; 10516 10517 // The vectorizer requires loops to be in simplified form. 10518 // Since simplification may add new inner loops, it has to run before the 10519 // legality and profitability checks. This means running the loop vectorizer 10520 // will simplify all loops, regardless of whether anything end up being 10521 // vectorized. 10522 for (auto &L : *LI) 10523 Changed |= CFGChanged |= 10524 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10525 10526 // Build up a worklist of inner-loops to vectorize. This is necessary as 10527 // the act of vectorizing or partially unrolling a loop creates new loops 10528 // and can invalidate iterators across the loops. 10529 SmallVector<Loop *, 8> Worklist; 10530 10531 for (Loop *L : *LI) 10532 collectSupportedLoops(*L, LI, ORE, Worklist); 10533 10534 LoopsAnalyzed += Worklist.size(); 10535 10536 // Now walk the identified inner loops. 10537 while (!Worklist.empty()) { 10538 Loop *L = Worklist.pop_back_val(); 10539 10540 // For the inner loops we actually process, form LCSSA to simplify the 10541 // transform. 10542 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10543 10544 Changed |= CFGChanged |= processLoop(L); 10545 } 10546 10547 // Process each loop nest in the function. 10548 return LoopVectorizeResult(Changed, CFGChanged); 10549 } 10550 10551 PreservedAnalyses LoopVectorizePass::run(Function &F, 10552 FunctionAnalysisManager &AM) { 10553 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10554 auto &LI = AM.getResult<LoopAnalysis>(F); 10555 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10556 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10557 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10558 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10559 auto &AA = AM.getResult<AAManager>(F); 10560 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10561 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10562 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10563 10564 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10565 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10566 [&](Loop &L) -> const LoopAccessInfo & { 10567 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10568 TLI, TTI, nullptr, nullptr}; 10569 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10570 }; 10571 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10572 ProfileSummaryInfo *PSI = 10573 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10574 LoopVectorizeResult Result = 10575 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10576 if (!Result.MadeAnyChange) 10577 return PreservedAnalyses::all(); 10578 PreservedAnalyses PA; 10579 10580 // We currently do not preserve loopinfo/dominator analyses with outer loop 10581 // vectorization. Until this is addressed, mark these analyses as preserved 10582 // only for non-VPlan-native path. 10583 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10584 if (!EnableVPlanNativePath) { 10585 PA.preserve<LoopAnalysis>(); 10586 PA.preserve<DominatorTreeAnalysis>(); 10587 } 10588 if (!Result.MadeCFGChange) 10589 PA.preserveSet<CFGAnalyses>(); 10590 return PA; 10591 } 10592