1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 /// InnerLoopVectorizer vectorizes loops which contain only one basic
432 /// block to a specified vectorization factor (VF).
433 /// This class performs the widening of scalars into vectors, or multiple
434 /// scalars. This class also implements the following features:
435 /// * It inserts an epilogue loop for handling loops that don't have iteration
436 ///   counts that are known to be a multiple of the vectorization factor.
437 /// * It handles the code generation for reduction variables.
438 /// * Scalarization (implementation using scalars) of un-vectorizable
439 ///   instructions.
440 /// InnerLoopVectorizer does not perform any vectorization-legality
441 /// checks, and relies on the caller to check for the different legality
442 /// aspects. The InnerLoopVectorizer relies on the
443 /// LoopVectorizationLegality class to provide information about the induction
444 /// and reduction variables that were found to a given vectorization factor.
445 class InnerLoopVectorizer {
446 public:
447   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
448                       LoopInfo *LI, DominatorTree *DT,
449                       const TargetLibraryInfo *TLI,
450                       const TargetTransformInfo *TTI, AssumptionCache *AC,
451                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
452                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
453                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
454                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
455       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
456         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
457         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
458         PSI(PSI), RTChecks(RTChecks) {
459     // Query this against the original loop and save it here because the profile
460     // of the original loop header may change as the transformation happens.
461     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
462         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
463   }
464 
465   virtual ~InnerLoopVectorizer() = default;
466 
467   /// Create a new empty loop that will contain vectorized instructions later
468   /// on, while the old loop will be used as the scalar remainder. Control flow
469   /// is generated around the vectorized (and scalar epilogue) loops consisting
470   /// of various checks and bypasses. Return the pre-header block of the new
471   /// loop.
472   /// In the case of epilogue vectorization, this function is overriden to
473   /// handle the more complex control flow around the loops.
474   virtual BasicBlock *createVectorizedLoopSkeleton();
475 
476   /// Widen a single instruction within the innermost loop.
477   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
478                         VPTransformState &State);
479 
480   /// Widen a single call instruction within the innermost loop.
481   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
482                             VPTransformState &State);
483 
484   /// Widen a single select instruction within the innermost loop.
485   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
486                               bool InvariantCond, VPTransformState &State);
487 
488   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
489   void fixVectorizedLoop(VPTransformState &State);
490 
491   // Return true if any runtime check is added.
492   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
493 
494   /// A type for vectorized values in the new loop. Each value from the
495   /// original loop, when vectorized, is represented by UF vector values in the
496   /// new unrolled loop, where UF is the unroll factor.
497   using VectorParts = SmallVector<Value *, 2>;
498 
499   /// Vectorize a single GetElementPtrInst based on information gathered and
500   /// decisions taken during planning.
501   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
502                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
503                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
504 
505   /// Vectorize a single first-order recurrence or pointer induction PHINode in
506   /// a block. This method handles the induction variable canonicalization. It
507   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
508   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
509                            VPTransformState &State);
510 
511   /// A helper function to scalarize a single Instruction in the innermost loop.
512   /// Generates a sequence of scalar instances for each lane between \p MinLane
513   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
514   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
515   /// Instr's operands.
516   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
517                             const VPIteration &Instance, bool IfPredicateInstr,
518                             VPTransformState &State);
519 
520   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
521   /// is provided, the integer induction variable will first be truncated to
522   /// the corresponding type.
523   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
524                              VPValue *Def, VPValue *CastDef,
525                              VPTransformState &State);
526 
527   /// Construct the vector value of a scalarized value \p V one lane at a time.
528   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
529                                  VPTransformState &State);
530 
531   /// Try to vectorize interleaved access group \p Group with the base address
532   /// given in \p Addr, optionally masking the vector operations if \p
533   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
534   /// values in the vectorized loop.
535   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
536                                 ArrayRef<VPValue *> VPDefs,
537                                 VPTransformState &State, VPValue *Addr,
538                                 ArrayRef<VPValue *> StoredValues,
539                                 VPValue *BlockInMask = nullptr);
540 
541   /// Vectorize Load and Store instructions with the base address given in \p
542   /// Addr, optionally masking the vector operations if \p BlockInMask is
543   /// non-null. Use \p State to translate given VPValues to IR values in the
544   /// vectorized loop.
545   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
546                                   VPValue *Def, VPValue *Addr,
547                                   VPValue *StoredValue, VPValue *BlockInMask);
548 
549   /// Set the debug location in the builder \p Ptr using the debug location in
550   /// \p V. If \p Ptr is None then it uses the class member's Builder.
551   void setDebugLocFromInst(const Value *V,
552                            Optional<IRBuilder<> *> CustomBuilder = None);
553 
554   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
555   void fixNonInductionPHIs(VPTransformState &State);
556 
557   /// Returns true if the reordering of FP operations is not allowed, but we are
558   /// able to vectorize with strict in-order reductions for the given RdxDesc.
559   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
560 
561   /// Create a broadcast instruction. This method generates a broadcast
562   /// instruction (shuffle) for loop invariant values and for the induction
563   /// value. If this is the induction variable then we extend it to N, N+1, ...
564   /// this is needed because each iteration in the loop corresponds to a SIMD
565   /// element.
566   virtual Value *getBroadcastInstrs(Value *V);
567 
568 protected:
569   friend class LoopVectorizationPlanner;
570 
571   /// A small list of PHINodes.
572   using PhiVector = SmallVector<PHINode *, 4>;
573 
574   /// A type for scalarized values in the new loop. Each value from the
575   /// original loop, when scalarized, is represented by UF x VF scalar values
576   /// in the new unrolled loop, where UF is the unroll factor and VF is the
577   /// vectorization factor.
578   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
579 
580   /// Set up the values of the IVs correctly when exiting the vector loop.
581   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
582                     Value *CountRoundDown, Value *EndValue,
583                     BasicBlock *MiddleBlock);
584 
585   /// Create a new induction variable inside L.
586   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
587                                    Value *Step, Instruction *DL);
588 
589   /// Handle all cross-iteration phis in the header.
590   void fixCrossIterationPHIs(VPTransformState &State);
591 
592   /// Create the exit value of first order recurrences in the middle block and
593   /// update their users.
594   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
595 
596   /// Create code for the loop exit value of the reduction.
597   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
598 
599   /// Clear NSW/NUW flags from reduction instructions if necessary.
600   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
601                                VPTransformState &State);
602 
603   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
604   /// means we need to add the appropriate incoming value from the middle
605   /// block as exiting edges from the scalar epilogue loop (if present) are
606   /// already in place, and we exit the vector loop exclusively to the middle
607   /// block.
608   void fixLCSSAPHIs(VPTransformState &State);
609 
610   /// Iteratively sink the scalarized operands of a predicated instruction into
611   /// the block that was created for it.
612   void sinkScalarOperands(Instruction *PredInst);
613 
614   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
615   /// represented as.
616   void truncateToMinimalBitwidths(VPTransformState &State);
617 
618   /// This function adds
619   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
620   /// to each vector element of Val. The sequence starts at StartIndex.
621   /// \p Opcode is relevant for FP induction variable.
622   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
623                                Instruction::BinaryOps Opcode =
624                                Instruction::BinaryOpsEnd);
625 
626   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
627   /// variable on which to base the steps, \p Step is the size of the step, and
628   /// \p EntryVal is the value from the original loop that maps to the steps.
629   /// Note that \p EntryVal doesn't have to be an induction variable - it
630   /// can also be a truncate instruction.
631   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
632                         const InductionDescriptor &ID, VPValue *Def,
633                         VPValue *CastDef, VPTransformState &State);
634 
635   /// Create a vector induction phi node based on an existing scalar one. \p
636   /// EntryVal is the value from the original loop that maps to the vector phi
637   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
638   /// truncate instruction, instead of widening the original IV, we widen a
639   /// version of the IV truncated to \p EntryVal's type.
640   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
641                                        Value *Step, Value *Start,
642                                        Instruction *EntryVal, VPValue *Def,
643                                        VPValue *CastDef,
644                                        VPTransformState &State);
645 
646   /// Returns true if an instruction \p I should be scalarized instead of
647   /// vectorized for the chosen vectorization factor.
648   bool shouldScalarizeInstruction(Instruction *I) const;
649 
650   /// Returns true if we should generate a scalar version of \p IV.
651   bool needsScalarInduction(Instruction *IV) const;
652 
653   /// If there is a cast involved in the induction variable \p ID, which should
654   /// be ignored in the vectorized loop body, this function records the
655   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
656   /// cast. We had already proved that the casted Phi is equal to the uncasted
657   /// Phi in the vectorized loop (under a runtime guard), and therefore
658   /// there is no need to vectorize the cast - the same value can be used in the
659   /// vector loop for both the Phi and the cast.
660   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
661   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
662   ///
663   /// \p EntryVal is the value from the original loop that maps to the vector
664   /// phi node and is used to distinguish what is the IV currently being
665   /// processed - original one (if \p EntryVal is a phi corresponding to the
666   /// original IV) or the "newly-created" one based on the proof mentioned above
667   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
668   /// latter case \p EntryVal is a TruncInst and we must not record anything for
669   /// that IV, but it's error-prone to expect callers of this routine to care
670   /// about that, hence this explicit parameter.
671   void recordVectorLoopValueForInductionCast(
672       const InductionDescriptor &ID, const Instruction *EntryVal,
673       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
674       unsigned Part, unsigned Lane = UINT_MAX);
675 
676   /// Generate a shuffle sequence that will reverse the vector Vec.
677   virtual Value *reverseVector(Value *Vec);
678 
679   /// Returns (and creates if needed) the original loop trip count.
680   Value *getOrCreateTripCount(Loop *NewLoop);
681 
682   /// Returns (and creates if needed) the trip count of the widened loop.
683   Value *getOrCreateVectorTripCount(Loop *NewLoop);
684 
685   /// Returns a bitcasted value to the requested vector type.
686   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
687   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
688                                 const DataLayout &DL);
689 
690   /// Emit a bypass check to see if the vector trip count is zero, including if
691   /// it overflows.
692   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
693 
694   /// Emit a bypass check to see if all of the SCEV assumptions we've
695   /// had to make are correct. Returns the block containing the checks or
696   /// nullptr if no checks have been added.
697   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
698 
699   /// Emit bypass checks to check any memory assumptions we may have made.
700   /// Returns the block containing the checks or nullptr if no checks have been
701   /// added.
702   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
703 
704   /// Compute the transformed value of Index at offset StartValue using step
705   /// StepValue.
706   /// For integer induction, returns StartValue + Index * StepValue.
707   /// For pointer induction, returns StartValue[Index * StepValue].
708   /// FIXME: The newly created binary instructions should contain nsw/nuw
709   /// flags, which can be found from the original scalar operations.
710   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
711                               const DataLayout &DL,
712                               const InductionDescriptor &ID) const;
713 
714   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
715   /// vector loop preheader, middle block and scalar preheader. Also
716   /// allocate a loop object for the new vector loop and return it.
717   Loop *createVectorLoopSkeleton(StringRef Prefix);
718 
719   /// Create new phi nodes for the induction variables to resume iteration count
720   /// in the scalar epilogue, from where the vectorized loop left off (given by
721   /// \p VectorTripCount).
722   /// In cases where the loop skeleton is more complicated (eg. epilogue
723   /// vectorization) and the resume values can come from an additional bypass
724   /// block, the \p AdditionalBypass pair provides information about the bypass
725   /// block and the end value on the edge from bypass to this loop.
726   void createInductionResumeValues(
727       Loop *L, Value *VectorTripCount,
728       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
729 
730   /// Complete the loop skeleton by adding debug MDs, creating appropriate
731   /// conditional branches in the middle block, preparing the builder and
732   /// running the verifier. Take in the vector loop \p L as argument, and return
733   /// the preheader of the completed vector loop.
734   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
735 
736   /// Add additional metadata to \p To that was not present on \p Orig.
737   ///
738   /// Currently this is used to add the noalias annotations based on the
739   /// inserted memchecks.  Use this for instructions that are *cloned* into the
740   /// vector loop.
741   void addNewMetadata(Instruction *To, const Instruction *Orig);
742 
743   /// Add metadata from one instruction to another.
744   ///
745   /// This includes both the original MDs from \p From and additional ones (\see
746   /// addNewMetadata).  Use this for *newly created* instructions in the vector
747   /// loop.
748   void addMetadata(Instruction *To, Instruction *From);
749 
750   /// Similar to the previous function but it adds the metadata to a
751   /// vector of instructions.
752   void addMetadata(ArrayRef<Value *> To, Instruction *From);
753 
754   /// Allow subclasses to override and print debug traces before/after vplan
755   /// execution, when trace information is requested.
756   virtual void printDebugTracesAtStart(){};
757   virtual void printDebugTracesAtEnd(){};
758 
759   /// The original loop.
760   Loop *OrigLoop;
761 
762   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
763   /// dynamic knowledge to simplify SCEV expressions and converts them to a
764   /// more usable form.
765   PredicatedScalarEvolution &PSE;
766 
767   /// Loop Info.
768   LoopInfo *LI;
769 
770   /// Dominator Tree.
771   DominatorTree *DT;
772 
773   /// Alias Analysis.
774   AAResults *AA;
775 
776   /// Target Library Info.
777   const TargetLibraryInfo *TLI;
778 
779   /// Target Transform Info.
780   const TargetTransformInfo *TTI;
781 
782   /// Assumption Cache.
783   AssumptionCache *AC;
784 
785   /// Interface to emit optimization remarks.
786   OptimizationRemarkEmitter *ORE;
787 
788   /// LoopVersioning.  It's only set up (non-null) if memchecks were
789   /// used.
790   ///
791   /// This is currently only used to add no-alias metadata based on the
792   /// memchecks.  The actually versioning is performed manually.
793   std::unique_ptr<LoopVersioning> LVer;
794 
795   /// The vectorization SIMD factor to use. Each vector will have this many
796   /// vector elements.
797   ElementCount VF;
798 
799   /// The vectorization unroll factor to use. Each scalar is vectorized to this
800   /// many different vector instructions.
801   unsigned UF;
802 
803   /// The builder that we use
804   IRBuilder<> Builder;
805 
806   // --- Vectorization state ---
807 
808   /// The vector-loop preheader.
809   BasicBlock *LoopVectorPreHeader;
810 
811   /// The scalar-loop preheader.
812   BasicBlock *LoopScalarPreHeader;
813 
814   /// Middle Block between the vector and the scalar.
815   BasicBlock *LoopMiddleBlock;
816 
817   /// The unique ExitBlock of the scalar loop if one exists.  Note that
818   /// there can be multiple exiting edges reaching this block.
819   BasicBlock *LoopExitBlock;
820 
821   /// The vector loop body.
822   BasicBlock *LoopVectorBody;
823 
824   /// The scalar loop body.
825   BasicBlock *LoopScalarBody;
826 
827   /// A list of all bypass blocks. The first block is the entry of the loop.
828   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
829 
830   /// The new Induction variable which was added to the new block.
831   PHINode *Induction = nullptr;
832 
833   /// The induction variable of the old basic block.
834   PHINode *OldInduction = nullptr;
835 
836   /// Store instructions that were predicated.
837   SmallVector<Instruction *, 4> PredicatedInstructions;
838 
839   /// Trip count of the original loop.
840   Value *TripCount = nullptr;
841 
842   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
843   Value *VectorTripCount = nullptr;
844 
845   /// The legality analysis.
846   LoopVectorizationLegality *Legal;
847 
848   /// The profitablity analysis.
849   LoopVectorizationCostModel *Cost;
850 
851   // Record whether runtime checks are added.
852   bool AddedSafetyChecks = false;
853 
854   // Holds the end values for each induction variable. We save the end values
855   // so we can later fix-up the external users of the induction variables.
856   DenseMap<PHINode *, Value *> IVEndValues;
857 
858   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
859   // fixed up at the end of vector code generation.
860   SmallVector<PHINode *, 8> OrigPHIsToFix;
861 
862   /// BFI and PSI are used to check for profile guided size optimizations.
863   BlockFrequencyInfo *BFI;
864   ProfileSummaryInfo *PSI;
865 
866   // Whether this loop should be optimized for size based on profile guided size
867   // optimizatios.
868   bool OptForSizeBasedOnProfile;
869 
870   /// Structure to hold information about generated runtime checks, responsible
871   /// for cleaning the checks, if vectorization turns out unprofitable.
872   GeneratedRTChecks &RTChecks;
873 };
874 
875 class InnerLoopUnroller : public InnerLoopVectorizer {
876 public:
877   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
878                     LoopInfo *LI, DominatorTree *DT,
879                     const TargetLibraryInfo *TLI,
880                     const TargetTransformInfo *TTI, AssumptionCache *AC,
881                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
882                     LoopVectorizationLegality *LVL,
883                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
884                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
885       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
886                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
887                             BFI, PSI, Check) {}
888 
889 private:
890   Value *getBroadcastInstrs(Value *V) override;
891   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
892                        Instruction::BinaryOps Opcode =
893                        Instruction::BinaryOpsEnd) override;
894   Value *reverseVector(Value *Vec) override;
895 };
896 
897 /// Encapsulate information regarding vectorization of a loop and its epilogue.
898 /// This information is meant to be updated and used across two stages of
899 /// epilogue vectorization.
900 struct EpilogueLoopVectorizationInfo {
901   ElementCount MainLoopVF = ElementCount::getFixed(0);
902   unsigned MainLoopUF = 0;
903   ElementCount EpilogueVF = ElementCount::getFixed(0);
904   unsigned EpilogueUF = 0;
905   BasicBlock *MainLoopIterationCountCheck = nullptr;
906   BasicBlock *EpilogueIterationCountCheck = nullptr;
907   BasicBlock *SCEVSafetyCheck = nullptr;
908   BasicBlock *MemSafetyCheck = nullptr;
909   Value *TripCount = nullptr;
910   Value *VectorTripCount = nullptr;
911 
912   EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF,
913                                 unsigned EUF)
914       : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF),
915         EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) {
916     assert(EUF == 1 &&
917            "A high UF for the epilogue loop is likely not beneficial.");
918   }
919 };
920 
921 /// An extension of the inner loop vectorizer that creates a skeleton for a
922 /// vectorized loop that has its epilogue (residual) also vectorized.
923 /// The idea is to run the vplan on a given loop twice, firstly to setup the
924 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
925 /// from the first step and vectorize the epilogue.  This is achieved by
926 /// deriving two concrete strategy classes from this base class and invoking
927 /// them in succession from the loop vectorizer planner.
928 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
929 public:
930   InnerLoopAndEpilogueVectorizer(
931       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
932       DominatorTree *DT, const TargetLibraryInfo *TLI,
933       const TargetTransformInfo *TTI, AssumptionCache *AC,
934       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
935       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
936       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
937       GeneratedRTChecks &Checks)
938       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
939                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
940                             Checks),
941         EPI(EPI) {}
942 
943   // Override this function to handle the more complex control flow around the
944   // three loops.
945   BasicBlock *createVectorizedLoopSkeleton() final override {
946     return createEpilogueVectorizedLoopSkeleton();
947   }
948 
949   /// The interface for creating a vectorized skeleton using one of two
950   /// different strategies, each corresponding to one execution of the vplan
951   /// as described above.
952   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
953 
954   /// Holds and updates state information required to vectorize the main loop
955   /// and its epilogue in two separate passes. This setup helps us avoid
956   /// regenerating and recomputing runtime safety checks. It also helps us to
957   /// shorten the iteration-count-check path length for the cases where the
958   /// iteration count of the loop is so small that the main vector loop is
959   /// completely skipped.
960   EpilogueLoopVectorizationInfo &EPI;
961 };
962 
963 /// A specialized derived class of inner loop vectorizer that performs
964 /// vectorization of *main* loops in the process of vectorizing loops and their
965 /// epilogues.
966 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
967 public:
968   EpilogueVectorizerMainLoop(
969       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
970       DominatorTree *DT, const TargetLibraryInfo *TLI,
971       const TargetTransformInfo *TTI, AssumptionCache *AC,
972       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
973       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
974       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
975       GeneratedRTChecks &Check)
976       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
977                                        EPI, LVL, CM, BFI, PSI, Check) {}
978   /// Implements the interface for creating a vectorized skeleton using the
979   /// *main loop* strategy (ie the first pass of vplan execution).
980   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
981 
982 protected:
983   /// Emits an iteration count bypass check once for the main loop (when \p
984   /// ForEpilogue is false) and once for the epilogue loop (when \p
985   /// ForEpilogue is true).
986   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
987                                              bool ForEpilogue);
988   void printDebugTracesAtStart() override;
989   void printDebugTracesAtEnd() override;
990 };
991 
992 // A specialized derived class of inner loop vectorizer that performs
993 // vectorization of *epilogue* loops in the process of vectorizing loops and
994 // their epilogues.
995 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
996 public:
997   EpilogueVectorizerEpilogueLoop(
998       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
999       DominatorTree *DT, const TargetLibraryInfo *TLI,
1000       const TargetTransformInfo *TTI, AssumptionCache *AC,
1001       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1002       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1003       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1004       GeneratedRTChecks &Checks)
1005       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1006                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1007   /// Implements the interface for creating a vectorized skeleton using the
1008   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1009   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1010 
1011 protected:
1012   /// Emits an iteration count bypass check after the main vector loop has
1013   /// finished to see if there are any iterations left to execute by either
1014   /// the vector epilogue or the scalar epilogue.
1015   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1016                                                       BasicBlock *Bypass,
1017                                                       BasicBlock *Insert);
1018   void printDebugTracesAtStart() override;
1019   void printDebugTracesAtEnd() override;
1020 };
1021 } // end namespace llvm
1022 
1023 /// Look for a meaningful debug location on the instruction or it's
1024 /// operands.
1025 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1026   if (!I)
1027     return I;
1028 
1029   DebugLoc Empty;
1030   if (I->getDebugLoc() != Empty)
1031     return I;
1032 
1033   for (Use &Op : I->operands()) {
1034     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1035       if (OpInst->getDebugLoc() != Empty)
1036         return OpInst;
1037   }
1038 
1039   return I;
1040 }
1041 
1042 void InnerLoopVectorizer::setDebugLocFromInst(
1043     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1044   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1045   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1046     const DILocation *DIL = Inst->getDebugLoc();
1047 
1048     // When a FSDiscriminator is enabled, we don't need to add the multiply
1049     // factors to the discriminators.
1050     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1051         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1052       // FIXME: For scalable vectors, assume vscale=1.
1053       auto NewDIL =
1054           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1055       if (NewDIL)
1056         B->SetCurrentDebugLocation(NewDIL.getValue());
1057       else
1058         LLVM_DEBUG(dbgs()
1059                    << "Failed to create new discriminator: "
1060                    << DIL->getFilename() << " Line: " << DIL->getLine());
1061     } else
1062       B->SetCurrentDebugLocation(DIL);
1063   } else
1064     B->SetCurrentDebugLocation(DebugLoc());
1065 }
1066 
1067 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1068 /// is passed, the message relates to that particular instruction.
1069 #ifndef NDEBUG
1070 static void debugVectorizationMessage(const StringRef Prefix,
1071                                       const StringRef DebugMsg,
1072                                       Instruction *I) {
1073   dbgs() << "LV: " << Prefix << DebugMsg;
1074   if (I != nullptr)
1075     dbgs() << " " << *I;
1076   else
1077     dbgs() << '.';
1078   dbgs() << '\n';
1079 }
1080 #endif
1081 
1082 /// Create an analysis remark that explains why vectorization failed
1083 ///
1084 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1085 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1086 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1087 /// the location of the remark.  \return the remark object that can be
1088 /// streamed to.
1089 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1090     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1091   Value *CodeRegion = TheLoop->getHeader();
1092   DebugLoc DL = TheLoop->getStartLoc();
1093 
1094   if (I) {
1095     CodeRegion = I->getParent();
1096     // If there is no debug location attached to the instruction, revert back to
1097     // using the loop's.
1098     if (I->getDebugLoc())
1099       DL = I->getDebugLoc();
1100   }
1101 
1102   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1103 }
1104 
1105 /// Return a value for Step multiplied by VF.
1106 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1107   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1108   Constant *StepVal = ConstantInt::get(
1109       Step->getType(),
1110       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1111   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1112 }
1113 
1114 namespace llvm {
1115 
1116 /// Return the runtime value for VF.
1117 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1118   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1119   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1120 }
1121 
1122 void reportVectorizationFailure(const StringRef DebugMsg,
1123                                 const StringRef OREMsg, const StringRef ORETag,
1124                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1125                                 Instruction *I) {
1126   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1127   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1128   ORE->emit(
1129       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1130       << "loop not vectorized: " << OREMsg);
1131 }
1132 
1133 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1134                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1135                              Instruction *I) {
1136   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1137   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1138   ORE->emit(
1139       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1140       << Msg);
1141 }
1142 
1143 } // end namespace llvm
1144 
1145 #ifndef NDEBUG
1146 /// \return string containing a file name and a line # for the given loop.
1147 static std::string getDebugLocString(const Loop *L) {
1148   std::string Result;
1149   if (L) {
1150     raw_string_ostream OS(Result);
1151     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1152       LoopDbgLoc.print(OS);
1153     else
1154       // Just print the module name.
1155       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1156     OS.flush();
1157   }
1158   return Result;
1159 }
1160 #endif
1161 
1162 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1163                                          const Instruction *Orig) {
1164   // If the loop was versioned with memchecks, add the corresponding no-alias
1165   // metadata.
1166   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1167     LVer->annotateInstWithNoAlias(To, Orig);
1168 }
1169 
1170 void InnerLoopVectorizer::addMetadata(Instruction *To,
1171                                       Instruction *From) {
1172   propagateMetadata(To, From);
1173   addNewMetadata(To, From);
1174 }
1175 
1176 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1177                                       Instruction *From) {
1178   for (Value *V : To) {
1179     if (Instruction *I = dyn_cast<Instruction>(V))
1180       addMetadata(I, From);
1181   }
1182 }
1183 
1184 namespace llvm {
1185 
1186 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1187 // lowered.
1188 enum ScalarEpilogueLowering {
1189 
1190   // The default: allowing scalar epilogues.
1191   CM_ScalarEpilogueAllowed,
1192 
1193   // Vectorization with OptForSize: don't allow epilogues.
1194   CM_ScalarEpilogueNotAllowedOptSize,
1195 
1196   // A special case of vectorisation with OptForSize: loops with a very small
1197   // trip count are considered for vectorization under OptForSize, thereby
1198   // making sure the cost of their loop body is dominant, free of runtime
1199   // guards and scalar iteration overheads.
1200   CM_ScalarEpilogueNotAllowedLowTripLoop,
1201 
1202   // Loop hint predicate indicating an epilogue is undesired.
1203   CM_ScalarEpilogueNotNeededUsePredicate,
1204 
1205   // Directive indicating we must either tail fold or not vectorize
1206   CM_ScalarEpilogueNotAllowedUsePredicate
1207 };
1208 
1209 /// ElementCountComparator creates a total ordering for ElementCount
1210 /// for the purposes of using it in a set structure.
1211 struct ElementCountComparator {
1212   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1213     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1214            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1215   }
1216 };
1217 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1218 
1219 /// LoopVectorizationCostModel - estimates the expected speedups due to
1220 /// vectorization.
1221 /// In many cases vectorization is not profitable. This can happen because of
1222 /// a number of reasons. In this class we mainly attempt to predict the
1223 /// expected speedup/slowdowns due to the supported instruction set. We use the
1224 /// TargetTransformInfo to query the different backends for the cost of
1225 /// different operations.
1226 class LoopVectorizationCostModel {
1227 public:
1228   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1229                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1230                              LoopVectorizationLegality *Legal,
1231                              const TargetTransformInfo &TTI,
1232                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1233                              AssumptionCache *AC,
1234                              OptimizationRemarkEmitter *ORE, const Function *F,
1235                              const LoopVectorizeHints *Hints,
1236                              InterleavedAccessInfo &IAI)
1237       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1238         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1239         Hints(Hints), InterleaveInfo(IAI) {}
1240 
1241   /// \return An upper bound for the vectorization factors (both fixed and
1242   /// scalable). If the factors are 0, vectorization and interleaving should be
1243   /// avoided up front.
1244   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1245 
1246   /// \return True if runtime checks are required for vectorization, and false
1247   /// otherwise.
1248   bool runtimeChecksRequired();
1249 
1250   /// \return The most profitable vectorization factor and the cost of that VF.
1251   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1252   /// then this vectorization factor will be selected if vectorization is
1253   /// possible.
1254   VectorizationFactor
1255   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1256 
1257   VectorizationFactor
1258   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1259                                     const LoopVectorizationPlanner &LVP);
1260 
1261   /// Setup cost-based decisions for user vectorization factor.
1262   /// \return true if the UserVF is a feasible VF to be chosen.
1263   bool selectUserVectorizationFactor(ElementCount UserVF) {
1264     collectUniformsAndScalars(UserVF);
1265     collectInstsToScalarize(UserVF);
1266     return expectedCost(UserVF).first.isValid();
1267   }
1268 
1269   /// \return The size (in bits) of the smallest and widest types in the code
1270   /// that needs to be vectorized. We ignore values that remain scalar such as
1271   /// 64 bit loop indices.
1272   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1273 
1274   /// \return The desired interleave count.
1275   /// If interleave count has been specified by metadata it will be returned.
1276   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1277   /// are the selected vectorization factor and the cost of the selected VF.
1278   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1279 
1280   /// Memory access instruction may be vectorized in more than one way.
1281   /// Form of instruction after vectorization depends on cost.
1282   /// This function takes cost-based decisions for Load/Store instructions
1283   /// and collects them in a map. This decisions map is used for building
1284   /// the lists of loop-uniform and loop-scalar instructions.
1285   /// The calculated cost is saved with widening decision in order to
1286   /// avoid redundant calculations.
1287   void setCostBasedWideningDecision(ElementCount VF);
1288 
1289   /// A struct that represents some properties of the register usage
1290   /// of a loop.
1291   struct RegisterUsage {
1292     /// Holds the number of loop invariant values that are used in the loop.
1293     /// The key is ClassID of target-provided register class.
1294     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1295     /// Holds the maximum number of concurrent live intervals in the loop.
1296     /// The key is ClassID of target-provided register class.
1297     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1298   };
1299 
1300   /// \return Returns information about the register usages of the loop for the
1301   /// given vectorization factors.
1302   SmallVector<RegisterUsage, 8>
1303   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1304 
1305   /// Collect values we want to ignore in the cost model.
1306   void collectValuesToIgnore();
1307 
1308   /// Collect all element types in the loop for which widening is needed.
1309   void collectElementTypesForWidening();
1310 
1311   /// Split reductions into those that happen in the loop, and those that happen
1312   /// outside. In loop reductions are collected into InLoopReductionChains.
1313   void collectInLoopReductions();
1314 
1315   /// Returns true if we should use strict in-order reductions for the given
1316   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1317   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1318   /// of FP operations.
1319   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1320     return !Hints->allowReordering() && RdxDesc.isOrdered();
1321   }
1322 
1323   /// \returns The smallest bitwidth each instruction can be represented with.
1324   /// The vector equivalents of these instructions should be truncated to this
1325   /// type.
1326   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1327     return MinBWs;
1328   }
1329 
1330   /// \returns True if it is more profitable to scalarize instruction \p I for
1331   /// vectorization factor \p VF.
1332   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1333     assert(VF.isVector() &&
1334            "Profitable to scalarize relevant only for VF > 1.");
1335 
1336     // Cost model is not run in the VPlan-native path - return conservative
1337     // result until this changes.
1338     if (EnableVPlanNativePath)
1339       return false;
1340 
1341     auto Scalars = InstsToScalarize.find(VF);
1342     assert(Scalars != InstsToScalarize.end() &&
1343            "VF not yet analyzed for scalarization profitability");
1344     return Scalars->second.find(I) != Scalars->second.end();
1345   }
1346 
1347   /// Returns true if \p I is known to be uniform after vectorization.
1348   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1349     if (VF.isScalar())
1350       return true;
1351 
1352     // Cost model is not run in the VPlan-native path - return conservative
1353     // result until this changes.
1354     if (EnableVPlanNativePath)
1355       return false;
1356 
1357     auto UniformsPerVF = Uniforms.find(VF);
1358     assert(UniformsPerVF != Uniforms.end() &&
1359            "VF not yet analyzed for uniformity");
1360     return UniformsPerVF->second.count(I);
1361   }
1362 
1363   /// Returns true if \p I is known to be scalar after vectorization.
1364   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1365     if (VF.isScalar())
1366       return true;
1367 
1368     // Cost model is not run in the VPlan-native path - return conservative
1369     // result until this changes.
1370     if (EnableVPlanNativePath)
1371       return false;
1372 
1373     auto ScalarsPerVF = Scalars.find(VF);
1374     assert(ScalarsPerVF != Scalars.end() &&
1375            "Scalar values are not calculated for VF");
1376     return ScalarsPerVF->second.count(I);
1377   }
1378 
1379   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1380   /// for vectorization factor \p VF.
1381   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1382     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1383            !isProfitableToScalarize(I, VF) &&
1384            !isScalarAfterVectorization(I, VF);
1385   }
1386 
1387   /// Decision that was taken during cost calculation for memory instruction.
1388   enum InstWidening {
1389     CM_Unknown,
1390     CM_Widen,         // For consecutive accesses with stride +1.
1391     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1392     CM_Interleave,
1393     CM_GatherScatter,
1394     CM_Scalarize
1395   };
1396 
1397   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1398   /// instruction \p I and vector width \p VF.
1399   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1400                            InstructionCost Cost) {
1401     assert(VF.isVector() && "Expected VF >=2");
1402     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1403   }
1404 
1405   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1406   /// interleaving group \p Grp and vector width \p VF.
1407   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1408                            ElementCount VF, InstWidening W,
1409                            InstructionCost Cost) {
1410     assert(VF.isVector() && "Expected VF >=2");
1411     /// Broadcast this decicion to all instructions inside the group.
1412     /// But the cost will be assigned to one instruction only.
1413     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1414       if (auto *I = Grp->getMember(i)) {
1415         if (Grp->getInsertPos() == I)
1416           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1417         else
1418           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1419       }
1420     }
1421   }
1422 
1423   /// Return the cost model decision for the given instruction \p I and vector
1424   /// width \p VF. Return CM_Unknown if this instruction did not pass
1425   /// through the cost modeling.
1426   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1427     assert(VF.isVector() && "Expected VF to be a vector VF");
1428     // Cost model is not run in the VPlan-native path - return conservative
1429     // result until this changes.
1430     if (EnableVPlanNativePath)
1431       return CM_GatherScatter;
1432 
1433     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1434     auto Itr = WideningDecisions.find(InstOnVF);
1435     if (Itr == WideningDecisions.end())
1436       return CM_Unknown;
1437     return Itr->second.first;
1438   }
1439 
1440   /// Return the vectorization cost for the given instruction \p I and vector
1441   /// width \p VF.
1442   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1443     assert(VF.isVector() && "Expected VF >=2");
1444     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1445     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1446            "The cost is not calculated");
1447     return WideningDecisions[InstOnVF].second;
1448   }
1449 
1450   /// Return True if instruction \p I is an optimizable truncate whose operand
1451   /// is an induction variable. Such a truncate will be removed by adding a new
1452   /// induction variable with the destination type.
1453   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1454     // If the instruction is not a truncate, return false.
1455     auto *Trunc = dyn_cast<TruncInst>(I);
1456     if (!Trunc)
1457       return false;
1458 
1459     // Get the source and destination types of the truncate.
1460     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1461     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1462 
1463     // If the truncate is free for the given types, return false. Replacing a
1464     // free truncate with an induction variable would add an induction variable
1465     // update instruction to each iteration of the loop. We exclude from this
1466     // check the primary induction variable since it will need an update
1467     // instruction regardless.
1468     Value *Op = Trunc->getOperand(0);
1469     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1470       return false;
1471 
1472     // If the truncated value is not an induction variable, return false.
1473     return Legal->isInductionPhi(Op);
1474   }
1475 
1476   /// Collects the instructions to scalarize for each predicated instruction in
1477   /// the loop.
1478   void collectInstsToScalarize(ElementCount VF);
1479 
1480   /// Collect Uniform and Scalar values for the given \p VF.
1481   /// The sets depend on CM decision for Load/Store instructions
1482   /// that may be vectorized as interleave, gather-scatter or scalarized.
1483   void collectUniformsAndScalars(ElementCount VF) {
1484     // Do the analysis once.
1485     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1486       return;
1487     setCostBasedWideningDecision(VF);
1488     collectLoopUniforms(VF);
1489     collectLoopScalars(VF);
1490   }
1491 
1492   /// Returns true if the target machine supports masked store operation
1493   /// for the given \p DataType and kind of access to \p Ptr.
1494   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1495     return Legal->isConsecutivePtr(DataType, Ptr) &&
1496            TTI.isLegalMaskedStore(DataType, Alignment);
1497   }
1498 
1499   /// Returns true if the target machine supports masked load operation
1500   /// for the given \p DataType and kind of access to \p Ptr.
1501   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1502     return Legal->isConsecutivePtr(DataType, Ptr) &&
1503            TTI.isLegalMaskedLoad(DataType, Alignment);
1504   }
1505 
1506   /// Returns true if the target machine can represent \p V as a masked gather
1507   /// or scatter operation.
1508   bool isLegalGatherOrScatter(Value *V) {
1509     bool LI = isa<LoadInst>(V);
1510     bool SI = isa<StoreInst>(V);
1511     if (!LI && !SI)
1512       return false;
1513     auto *Ty = getLoadStoreType(V);
1514     Align Align = getLoadStoreAlignment(V);
1515     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1516            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1517   }
1518 
1519   /// Returns true if the target machine supports all of the reduction
1520   /// variables found for the given VF.
1521   bool canVectorizeReductions(ElementCount VF) const {
1522     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1523       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1524       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1525     }));
1526   }
1527 
1528   /// Returns true if \p I is an instruction that will be scalarized with
1529   /// predication. Such instructions include conditional stores and
1530   /// instructions that may divide by zero.
1531   /// If a non-zero VF has been calculated, we check if I will be scalarized
1532   /// predication for that VF.
1533   bool isScalarWithPredication(Instruction *I) const;
1534 
1535   // Returns true if \p I is an instruction that will be predicated either
1536   // through scalar predication or masked load/store or masked gather/scatter.
1537   // Superset of instructions that return true for isScalarWithPredication.
1538   bool isPredicatedInst(Instruction *I) {
1539     if (!blockNeedsPredication(I->getParent()))
1540       return false;
1541     // Loads and stores that need some form of masked operation are predicated
1542     // instructions.
1543     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1544       return Legal->isMaskRequired(I);
1545     return isScalarWithPredication(I);
1546   }
1547 
1548   /// Returns true if \p I is a memory instruction with consecutive memory
1549   /// access that can be widened.
1550   bool
1551   memoryInstructionCanBeWidened(Instruction *I,
1552                                 ElementCount VF = ElementCount::getFixed(1));
1553 
1554   /// Returns true if \p I is a memory instruction in an interleaved-group
1555   /// of memory accesses that can be vectorized with wide vector loads/stores
1556   /// and shuffles.
1557   bool
1558   interleavedAccessCanBeWidened(Instruction *I,
1559                                 ElementCount VF = ElementCount::getFixed(1));
1560 
1561   /// Check if \p Instr belongs to any interleaved access group.
1562   bool isAccessInterleaved(Instruction *Instr) {
1563     return InterleaveInfo.isInterleaved(Instr);
1564   }
1565 
1566   /// Get the interleaved access group that \p Instr belongs to.
1567   const InterleaveGroup<Instruction> *
1568   getInterleavedAccessGroup(Instruction *Instr) {
1569     return InterleaveInfo.getInterleaveGroup(Instr);
1570   }
1571 
1572   /// Returns true if we're required to use a scalar epilogue for at least
1573   /// the final iteration of the original loop.
1574   bool requiresScalarEpilogue(ElementCount VF) const {
1575     if (!isScalarEpilogueAllowed())
1576       return false;
1577     // If we might exit from anywhere but the latch, must run the exiting
1578     // iteration in scalar form.
1579     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1580       return true;
1581     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1582   }
1583 
1584   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1585   /// loop hint annotation.
1586   bool isScalarEpilogueAllowed() const {
1587     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1588   }
1589 
1590   /// Returns true if all loop blocks should be masked to fold tail loop.
1591   bool foldTailByMasking() const { return FoldTailByMasking; }
1592 
1593   bool blockNeedsPredication(BasicBlock *BB) const {
1594     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1595   }
1596 
1597   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1598   /// nodes to the chain of instructions representing the reductions. Uses a
1599   /// MapVector to ensure deterministic iteration order.
1600   using ReductionChainMap =
1601       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1602 
1603   /// Return the chain of instructions representing an inloop reduction.
1604   const ReductionChainMap &getInLoopReductionChains() const {
1605     return InLoopReductionChains;
1606   }
1607 
1608   /// Returns true if the Phi is part of an inloop reduction.
1609   bool isInLoopReduction(PHINode *Phi) const {
1610     return InLoopReductionChains.count(Phi);
1611   }
1612 
1613   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1614   /// with factor VF.  Return the cost of the instruction, including
1615   /// scalarization overhead if it's needed.
1616   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1617 
1618   /// Estimate cost of a call instruction CI if it were vectorized with factor
1619   /// VF. Return the cost of the instruction, including scalarization overhead
1620   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1621   /// scalarized -
1622   /// i.e. either vector version isn't available, or is too expensive.
1623   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1624                                     bool &NeedToScalarize) const;
1625 
1626   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1627   /// that of B.
1628   bool isMoreProfitable(const VectorizationFactor &A,
1629                         const VectorizationFactor &B) const;
1630 
1631   /// Invalidates decisions already taken by the cost model.
1632   void invalidateCostModelingDecisions() {
1633     WideningDecisions.clear();
1634     Uniforms.clear();
1635     Scalars.clear();
1636   }
1637 
1638 private:
1639   unsigned NumPredStores = 0;
1640 
1641   /// \return An upper bound for the vectorization factors for both
1642   /// fixed and scalable vectorization, where the minimum-known number of
1643   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1644   /// disabled or unsupported, then the scalable part will be equal to
1645   /// ElementCount::getScalable(0).
1646   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1647                                            ElementCount UserVF);
1648 
1649   /// \return the maximized element count based on the targets vector
1650   /// registers and the loop trip-count, but limited to a maximum safe VF.
1651   /// This is a helper function of computeFeasibleMaxVF.
1652   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1653   /// issue that occurred on one of the buildbots which cannot be reproduced
1654   /// without having access to the properietary compiler (see comments on
1655   /// D98509). The issue is currently under investigation and this workaround
1656   /// will be removed as soon as possible.
1657   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1658                                        unsigned SmallestType,
1659                                        unsigned WidestType,
1660                                        const ElementCount &MaxSafeVF);
1661 
1662   /// \return the maximum legal scalable VF, based on the safe max number
1663   /// of elements.
1664   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1665 
1666   /// The vectorization cost is a combination of the cost itself and a boolean
1667   /// indicating whether any of the contributing operations will actually
1668   /// operate on vector values after type legalization in the backend. If this
1669   /// latter value is false, then all operations will be scalarized (i.e. no
1670   /// vectorization has actually taken place).
1671   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1672 
1673   /// Returns the expected execution cost. The unit of the cost does
1674   /// not matter because we use the 'cost' units to compare different
1675   /// vector widths. The cost that is returned is *not* normalized by
1676   /// the factor width. If \p Invalid is not nullptr, this function
1677   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1678   /// each instruction that has an Invalid cost for the given VF.
1679   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1680   VectorizationCostTy
1681   expectedCost(ElementCount VF,
1682                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1683 
1684   /// Returns the execution time cost of an instruction for a given vector
1685   /// width. Vector width of one means scalar.
1686   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1687 
1688   /// The cost-computation logic from getInstructionCost which provides
1689   /// the vector type as an output parameter.
1690   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1691                                      Type *&VectorTy);
1692 
1693   /// Return the cost of instructions in an inloop reduction pattern, if I is
1694   /// part of that pattern.
1695   Optional<InstructionCost>
1696   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1697                           TTI::TargetCostKind CostKind);
1698 
1699   /// Calculate vectorization cost of memory instruction \p I.
1700   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1701 
1702   /// The cost computation for scalarized memory instruction.
1703   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1704 
1705   /// The cost computation for interleaving group of memory instructions.
1706   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1707 
1708   /// The cost computation for Gather/Scatter instruction.
1709   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1710 
1711   /// The cost computation for widening instruction \p I with consecutive
1712   /// memory access.
1713   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1714 
1715   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1716   /// Load: scalar load + broadcast.
1717   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1718   /// element)
1719   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1720 
1721   /// Estimate the overhead of scalarizing an instruction. This is a
1722   /// convenience wrapper for the type-based getScalarizationOverhead API.
1723   InstructionCost getScalarizationOverhead(Instruction *I,
1724                                            ElementCount VF) const;
1725 
1726   /// Returns whether the instruction is a load or store and will be a emitted
1727   /// as a vector operation.
1728   bool isConsecutiveLoadOrStore(Instruction *I);
1729 
1730   /// Returns true if an artificially high cost for emulated masked memrefs
1731   /// should be used.
1732   bool useEmulatedMaskMemRefHack(Instruction *I);
1733 
1734   /// Map of scalar integer values to the smallest bitwidth they can be legally
1735   /// represented as. The vector equivalents of these values should be truncated
1736   /// to this type.
1737   MapVector<Instruction *, uint64_t> MinBWs;
1738 
1739   /// A type representing the costs for instructions if they were to be
1740   /// scalarized rather than vectorized. The entries are Instruction-Cost
1741   /// pairs.
1742   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1743 
1744   /// A set containing all BasicBlocks that are known to present after
1745   /// vectorization as a predicated block.
1746   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1747 
1748   /// Records whether it is allowed to have the original scalar loop execute at
1749   /// least once. This may be needed as a fallback loop in case runtime
1750   /// aliasing/dependence checks fail, or to handle the tail/remainder
1751   /// iterations when the trip count is unknown or doesn't divide by the VF,
1752   /// or as a peel-loop to handle gaps in interleave-groups.
1753   /// Under optsize and when the trip count is very small we don't allow any
1754   /// iterations to execute in the scalar loop.
1755   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1756 
1757   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1758   bool FoldTailByMasking = false;
1759 
1760   /// A map holding scalar costs for different vectorization factors. The
1761   /// presence of a cost for an instruction in the mapping indicates that the
1762   /// instruction will be scalarized when vectorizing with the associated
1763   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1764   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1765 
1766   /// Holds the instructions known to be uniform after vectorization.
1767   /// The data is collected per VF.
1768   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1769 
1770   /// Holds the instructions known to be scalar after vectorization.
1771   /// The data is collected per VF.
1772   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1773 
1774   /// Holds the instructions (address computations) that are forced to be
1775   /// scalarized.
1776   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1777 
1778   /// PHINodes of the reductions that should be expanded in-loop along with
1779   /// their associated chains of reduction operations, in program order from top
1780   /// (PHI) to bottom
1781   ReductionChainMap InLoopReductionChains;
1782 
1783   /// A Map of inloop reduction operations and their immediate chain operand.
1784   /// FIXME: This can be removed once reductions can be costed correctly in
1785   /// vplan. This was added to allow quick lookup to the inloop operations,
1786   /// without having to loop through InLoopReductionChains.
1787   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1788 
1789   /// Returns the expected difference in cost from scalarizing the expression
1790   /// feeding a predicated instruction \p PredInst. The instructions to
1791   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1792   /// non-negative return value implies the expression will be scalarized.
1793   /// Currently, only single-use chains are considered for scalarization.
1794   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1795                               ElementCount VF);
1796 
1797   /// Collect the instructions that are uniform after vectorization. An
1798   /// instruction is uniform if we represent it with a single scalar value in
1799   /// the vectorized loop corresponding to each vector iteration. Examples of
1800   /// uniform instructions include pointer operands of consecutive or
1801   /// interleaved memory accesses. Note that although uniformity implies an
1802   /// instruction will be scalar, the reverse is not true. In general, a
1803   /// scalarized instruction will be represented by VF scalar values in the
1804   /// vectorized loop, each corresponding to an iteration of the original
1805   /// scalar loop.
1806   void collectLoopUniforms(ElementCount VF);
1807 
1808   /// Collect the instructions that are scalar after vectorization. An
1809   /// instruction is scalar if it is known to be uniform or will be scalarized
1810   /// during vectorization. Non-uniform scalarized instructions will be
1811   /// represented by VF values in the vectorized loop, each corresponding to an
1812   /// iteration of the original scalar loop.
1813   void collectLoopScalars(ElementCount VF);
1814 
1815   /// Keeps cost model vectorization decision and cost for instructions.
1816   /// Right now it is used for memory instructions only.
1817   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1818                                 std::pair<InstWidening, InstructionCost>>;
1819 
1820   DecisionList WideningDecisions;
1821 
1822   /// Returns true if \p V is expected to be vectorized and it needs to be
1823   /// extracted.
1824   bool needsExtract(Value *V, ElementCount VF) const {
1825     Instruction *I = dyn_cast<Instruction>(V);
1826     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1827         TheLoop->isLoopInvariant(I))
1828       return false;
1829 
1830     // Assume we can vectorize V (and hence we need extraction) if the
1831     // scalars are not computed yet. This can happen, because it is called
1832     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1833     // the scalars are collected. That should be a safe assumption in most
1834     // cases, because we check if the operands have vectorizable types
1835     // beforehand in LoopVectorizationLegality.
1836     return Scalars.find(VF) == Scalars.end() ||
1837            !isScalarAfterVectorization(I, VF);
1838   };
1839 
1840   /// Returns a range containing only operands needing to be extracted.
1841   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1842                                                    ElementCount VF) const {
1843     return SmallVector<Value *, 4>(make_filter_range(
1844         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1845   }
1846 
1847   /// Determines if we have the infrastructure to vectorize loop \p L and its
1848   /// epilogue, assuming the main loop is vectorized by \p VF.
1849   bool isCandidateForEpilogueVectorization(const Loop &L,
1850                                            const ElementCount VF) const;
1851 
1852   /// Returns true if epilogue vectorization is considered profitable, and
1853   /// false otherwise.
1854   /// \p VF is the vectorization factor chosen for the original loop.
1855   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1856 
1857 public:
1858   /// The loop that we evaluate.
1859   Loop *TheLoop;
1860 
1861   /// Predicated scalar evolution analysis.
1862   PredicatedScalarEvolution &PSE;
1863 
1864   /// Loop Info analysis.
1865   LoopInfo *LI;
1866 
1867   /// Vectorization legality.
1868   LoopVectorizationLegality *Legal;
1869 
1870   /// Vector target information.
1871   const TargetTransformInfo &TTI;
1872 
1873   /// Target Library Info.
1874   const TargetLibraryInfo *TLI;
1875 
1876   /// Demanded bits analysis.
1877   DemandedBits *DB;
1878 
1879   /// Assumption cache.
1880   AssumptionCache *AC;
1881 
1882   /// Interface to emit optimization remarks.
1883   OptimizationRemarkEmitter *ORE;
1884 
1885   const Function *TheFunction;
1886 
1887   /// Loop Vectorize Hint.
1888   const LoopVectorizeHints *Hints;
1889 
1890   /// The interleave access information contains groups of interleaved accesses
1891   /// with the same stride and close to each other.
1892   InterleavedAccessInfo &InterleaveInfo;
1893 
1894   /// Values to ignore in the cost model.
1895   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1896 
1897   /// Values to ignore in the cost model when VF > 1.
1898   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1899 
1900   /// All element types found in the loop.
1901   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1902 
1903   /// Profitable vector factors.
1904   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1905 };
1906 } // end namespace llvm
1907 
1908 /// Helper struct to manage generating runtime checks for vectorization.
1909 ///
1910 /// The runtime checks are created up-front in temporary blocks to allow better
1911 /// estimating the cost and un-linked from the existing IR. After deciding to
1912 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1913 /// temporary blocks are completely removed.
1914 class GeneratedRTChecks {
1915   /// Basic block which contains the generated SCEV checks, if any.
1916   BasicBlock *SCEVCheckBlock = nullptr;
1917 
1918   /// The value representing the result of the generated SCEV checks. If it is
1919   /// nullptr, either no SCEV checks have been generated or they have been used.
1920   Value *SCEVCheckCond = nullptr;
1921 
1922   /// Basic block which contains the generated memory runtime checks, if any.
1923   BasicBlock *MemCheckBlock = nullptr;
1924 
1925   /// The value representing the result of the generated memory runtime checks.
1926   /// If it is nullptr, either no memory runtime checks have been generated or
1927   /// they have been used.
1928   Instruction *MemRuntimeCheckCond = nullptr;
1929 
1930   DominatorTree *DT;
1931   LoopInfo *LI;
1932 
1933   SCEVExpander SCEVExp;
1934   SCEVExpander MemCheckExp;
1935 
1936 public:
1937   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1938                     const DataLayout &DL)
1939       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1940         MemCheckExp(SE, DL, "scev.check") {}
1941 
1942   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1943   /// accurately estimate the cost of the runtime checks. The blocks are
1944   /// un-linked from the IR and is added back during vector code generation. If
1945   /// there is no vector code generation, the check blocks are removed
1946   /// completely.
1947   void Create(Loop *L, const LoopAccessInfo &LAI,
1948               const SCEVUnionPredicate &UnionPred) {
1949 
1950     BasicBlock *LoopHeader = L->getHeader();
1951     BasicBlock *Preheader = L->getLoopPreheader();
1952 
1953     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1954     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1955     // may be used by SCEVExpander. The blocks will be un-linked from their
1956     // predecessors and removed from LI & DT at the end of the function.
1957     if (!UnionPred.isAlwaysTrue()) {
1958       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1959                                   nullptr, "vector.scevcheck");
1960 
1961       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1962           &UnionPred, SCEVCheckBlock->getTerminator());
1963     }
1964 
1965     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1966     if (RtPtrChecking.Need) {
1967       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1968       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1969                                  "vector.memcheck");
1970 
1971       std::tie(std::ignore, MemRuntimeCheckCond) =
1972           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1973                            RtPtrChecking.getChecks(), MemCheckExp);
1974       assert(MemRuntimeCheckCond &&
1975              "no RT checks generated although RtPtrChecking "
1976              "claimed checks are required");
1977     }
1978 
1979     if (!MemCheckBlock && !SCEVCheckBlock)
1980       return;
1981 
1982     // Unhook the temporary block with the checks, update various places
1983     // accordingly.
1984     if (SCEVCheckBlock)
1985       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1986     if (MemCheckBlock)
1987       MemCheckBlock->replaceAllUsesWith(Preheader);
1988 
1989     if (SCEVCheckBlock) {
1990       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1991       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1992       Preheader->getTerminator()->eraseFromParent();
1993     }
1994     if (MemCheckBlock) {
1995       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1996       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1997       Preheader->getTerminator()->eraseFromParent();
1998     }
1999 
2000     DT->changeImmediateDominator(LoopHeader, Preheader);
2001     if (MemCheckBlock) {
2002       DT->eraseNode(MemCheckBlock);
2003       LI->removeBlock(MemCheckBlock);
2004     }
2005     if (SCEVCheckBlock) {
2006       DT->eraseNode(SCEVCheckBlock);
2007       LI->removeBlock(SCEVCheckBlock);
2008     }
2009   }
2010 
2011   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2012   /// unused.
2013   ~GeneratedRTChecks() {
2014     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2015     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2016     if (!SCEVCheckCond)
2017       SCEVCleaner.markResultUsed();
2018 
2019     if (!MemRuntimeCheckCond)
2020       MemCheckCleaner.markResultUsed();
2021 
2022     if (MemRuntimeCheckCond) {
2023       auto &SE = *MemCheckExp.getSE();
2024       // Memory runtime check generation creates compares that use expanded
2025       // values. Remove them before running the SCEVExpanderCleaners.
2026       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2027         if (MemCheckExp.isInsertedInstruction(&I))
2028           continue;
2029         SE.forgetValue(&I);
2030         SE.eraseValueFromMap(&I);
2031         I.eraseFromParent();
2032       }
2033     }
2034     MemCheckCleaner.cleanup();
2035     SCEVCleaner.cleanup();
2036 
2037     if (SCEVCheckCond)
2038       SCEVCheckBlock->eraseFromParent();
2039     if (MemRuntimeCheckCond)
2040       MemCheckBlock->eraseFromParent();
2041   }
2042 
2043   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2044   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2045   /// depending on the generated condition.
2046   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2047                              BasicBlock *LoopVectorPreHeader,
2048                              BasicBlock *LoopExitBlock) {
2049     if (!SCEVCheckCond)
2050       return nullptr;
2051     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2052       if (C->isZero())
2053         return nullptr;
2054 
2055     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2056 
2057     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2058     // Create new preheader for vector loop.
2059     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2060       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2061 
2062     SCEVCheckBlock->getTerminator()->eraseFromParent();
2063     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2064     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2065                                                 SCEVCheckBlock);
2066 
2067     DT->addNewBlock(SCEVCheckBlock, Pred);
2068     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2069 
2070     ReplaceInstWithInst(
2071         SCEVCheckBlock->getTerminator(),
2072         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2073     // Mark the check as used, to prevent it from being removed during cleanup.
2074     SCEVCheckCond = nullptr;
2075     return SCEVCheckBlock;
2076   }
2077 
2078   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2079   /// the branches to branch to the vector preheader or \p Bypass, depending on
2080   /// the generated condition.
2081   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2082                                    BasicBlock *LoopVectorPreHeader) {
2083     // Check if we generated code that checks in runtime if arrays overlap.
2084     if (!MemRuntimeCheckCond)
2085       return nullptr;
2086 
2087     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2088     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2089                                                 MemCheckBlock);
2090 
2091     DT->addNewBlock(MemCheckBlock, Pred);
2092     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2093     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2094 
2095     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2096       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2097 
2098     ReplaceInstWithInst(
2099         MemCheckBlock->getTerminator(),
2100         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2101     MemCheckBlock->getTerminator()->setDebugLoc(
2102         Pred->getTerminator()->getDebugLoc());
2103 
2104     // Mark the check as used, to prevent it from being removed during cleanup.
2105     MemRuntimeCheckCond = nullptr;
2106     return MemCheckBlock;
2107   }
2108 };
2109 
2110 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2111 // vectorization. The loop needs to be annotated with #pragma omp simd
2112 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2113 // vector length information is not provided, vectorization is not considered
2114 // explicit. Interleave hints are not allowed either. These limitations will be
2115 // relaxed in the future.
2116 // Please, note that we are currently forced to abuse the pragma 'clang
2117 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2118 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2119 // provides *explicit vectorization hints* (LV can bypass legal checks and
2120 // assume that vectorization is legal). However, both hints are implemented
2121 // using the same metadata (llvm.loop.vectorize, processed by
2122 // LoopVectorizeHints). This will be fixed in the future when the native IR
2123 // representation for pragma 'omp simd' is introduced.
2124 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2125                                    OptimizationRemarkEmitter *ORE) {
2126   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2127   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2128 
2129   // Only outer loops with an explicit vectorization hint are supported.
2130   // Unannotated outer loops are ignored.
2131   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2132     return false;
2133 
2134   Function *Fn = OuterLp->getHeader()->getParent();
2135   if (!Hints.allowVectorization(Fn, OuterLp,
2136                                 true /*VectorizeOnlyWhenForced*/)) {
2137     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2138     return false;
2139   }
2140 
2141   if (Hints.getInterleave() > 1) {
2142     // TODO: Interleave support is future work.
2143     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2144                          "outer loops.\n");
2145     Hints.emitRemarkWithHints();
2146     return false;
2147   }
2148 
2149   return true;
2150 }
2151 
2152 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2153                                   OptimizationRemarkEmitter *ORE,
2154                                   SmallVectorImpl<Loop *> &V) {
2155   // Collect inner loops and outer loops without irreducible control flow. For
2156   // now, only collect outer loops that have explicit vectorization hints. If we
2157   // are stress testing the VPlan H-CFG construction, we collect the outermost
2158   // loop of every loop nest.
2159   if (L.isInnermost() || VPlanBuildStressTest ||
2160       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2161     LoopBlocksRPO RPOT(&L);
2162     RPOT.perform(LI);
2163     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2164       V.push_back(&L);
2165       // TODO: Collect inner loops inside marked outer loops in case
2166       // vectorization fails for the outer loop. Do not invoke
2167       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2168       // already known to be reducible. We can use an inherited attribute for
2169       // that.
2170       return;
2171     }
2172   }
2173   for (Loop *InnerL : L)
2174     collectSupportedLoops(*InnerL, LI, ORE, V);
2175 }
2176 
2177 namespace {
2178 
2179 /// The LoopVectorize Pass.
2180 struct LoopVectorize : public FunctionPass {
2181   /// Pass identification, replacement for typeid
2182   static char ID;
2183 
2184   LoopVectorizePass Impl;
2185 
2186   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2187                          bool VectorizeOnlyWhenForced = false)
2188       : FunctionPass(ID),
2189         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2190     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2191   }
2192 
2193   bool runOnFunction(Function &F) override {
2194     if (skipFunction(F))
2195       return false;
2196 
2197     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2198     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2199     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2200     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2201     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2202     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2203     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2204     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2205     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2206     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2207     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2208     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2209     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2210 
2211     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2212         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2213 
2214     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2215                         GetLAA, *ORE, PSI).MadeAnyChange;
2216   }
2217 
2218   void getAnalysisUsage(AnalysisUsage &AU) const override {
2219     AU.addRequired<AssumptionCacheTracker>();
2220     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2221     AU.addRequired<DominatorTreeWrapperPass>();
2222     AU.addRequired<LoopInfoWrapperPass>();
2223     AU.addRequired<ScalarEvolutionWrapperPass>();
2224     AU.addRequired<TargetTransformInfoWrapperPass>();
2225     AU.addRequired<AAResultsWrapperPass>();
2226     AU.addRequired<LoopAccessLegacyAnalysis>();
2227     AU.addRequired<DemandedBitsWrapperPass>();
2228     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2229     AU.addRequired<InjectTLIMappingsLegacy>();
2230 
2231     // We currently do not preserve loopinfo/dominator analyses with outer loop
2232     // vectorization. Until this is addressed, mark these analyses as preserved
2233     // only for non-VPlan-native path.
2234     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2235     if (!EnableVPlanNativePath) {
2236       AU.addPreserved<LoopInfoWrapperPass>();
2237       AU.addPreserved<DominatorTreeWrapperPass>();
2238     }
2239 
2240     AU.addPreserved<BasicAAWrapperPass>();
2241     AU.addPreserved<GlobalsAAWrapperPass>();
2242     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2243   }
2244 };
2245 
2246 } // end anonymous namespace
2247 
2248 //===----------------------------------------------------------------------===//
2249 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2250 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2251 //===----------------------------------------------------------------------===//
2252 
2253 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2254   // We need to place the broadcast of invariant variables outside the loop,
2255   // but only if it's proven safe to do so. Else, broadcast will be inside
2256   // vector loop body.
2257   Instruction *Instr = dyn_cast<Instruction>(V);
2258   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2259                      (!Instr ||
2260                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2261   // Place the code for broadcasting invariant variables in the new preheader.
2262   IRBuilder<>::InsertPointGuard Guard(Builder);
2263   if (SafeToHoist)
2264     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2265 
2266   // Broadcast the scalar into all locations in the vector.
2267   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2268 
2269   return Shuf;
2270 }
2271 
2272 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2273     const InductionDescriptor &II, Value *Step, Value *Start,
2274     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2275     VPTransformState &State) {
2276   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2277          "Expected either an induction phi-node or a truncate of it!");
2278 
2279   // Construct the initial value of the vector IV in the vector loop preheader
2280   auto CurrIP = Builder.saveIP();
2281   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2282   if (isa<TruncInst>(EntryVal)) {
2283     assert(Start->getType()->isIntegerTy() &&
2284            "Truncation requires an integer type");
2285     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2286     Step = Builder.CreateTrunc(Step, TruncType);
2287     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2288   }
2289   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2290   Value *SteppedStart =
2291       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2292 
2293   // We create vector phi nodes for both integer and floating-point induction
2294   // variables. Here, we determine the kind of arithmetic we will perform.
2295   Instruction::BinaryOps AddOp;
2296   Instruction::BinaryOps MulOp;
2297   if (Step->getType()->isIntegerTy()) {
2298     AddOp = Instruction::Add;
2299     MulOp = Instruction::Mul;
2300   } else {
2301     AddOp = II.getInductionOpcode();
2302     MulOp = Instruction::FMul;
2303   }
2304 
2305   // Multiply the vectorization factor by the step using integer or
2306   // floating-point arithmetic as appropriate.
2307   Type *StepType = Step->getType();
2308   if (Step->getType()->isFloatingPointTy())
2309     StepType = IntegerType::get(StepType->getContext(),
2310                                 StepType->getScalarSizeInBits());
2311   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2312   if (Step->getType()->isFloatingPointTy())
2313     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2314   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2315 
2316   // Create a vector splat to use in the induction update.
2317   //
2318   // FIXME: If the step is non-constant, we create the vector splat with
2319   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2320   //        handle a constant vector splat.
2321   Value *SplatVF = isa<Constant>(Mul)
2322                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2323                        : Builder.CreateVectorSplat(VF, Mul);
2324   Builder.restoreIP(CurrIP);
2325 
2326   // We may need to add the step a number of times, depending on the unroll
2327   // factor. The last of those goes into the PHI.
2328   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2329                                     &*LoopVectorBody->getFirstInsertionPt());
2330   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2331   Instruction *LastInduction = VecInd;
2332   for (unsigned Part = 0; Part < UF; ++Part) {
2333     State.set(Def, LastInduction, Part);
2334 
2335     if (isa<TruncInst>(EntryVal))
2336       addMetadata(LastInduction, EntryVal);
2337     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2338                                           State, Part);
2339 
2340     LastInduction = cast<Instruction>(
2341         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2342     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2343   }
2344 
2345   // Move the last step to the end of the latch block. This ensures consistent
2346   // placement of all induction updates.
2347   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2348   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2349   auto *ICmp = cast<Instruction>(Br->getCondition());
2350   LastInduction->moveBefore(ICmp);
2351   LastInduction->setName("vec.ind.next");
2352 
2353   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2354   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2355 }
2356 
2357 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2358   return Cost->isScalarAfterVectorization(I, VF) ||
2359          Cost->isProfitableToScalarize(I, VF);
2360 }
2361 
2362 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2363   if (shouldScalarizeInstruction(IV))
2364     return true;
2365   auto isScalarInst = [&](User *U) -> bool {
2366     auto *I = cast<Instruction>(U);
2367     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2368   };
2369   return llvm::any_of(IV->users(), isScalarInst);
2370 }
2371 
2372 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2373     const InductionDescriptor &ID, const Instruction *EntryVal,
2374     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2375     unsigned Part, unsigned Lane) {
2376   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2377          "Expected either an induction phi-node or a truncate of it!");
2378 
2379   // This induction variable is not the phi from the original loop but the
2380   // newly-created IV based on the proof that casted Phi is equal to the
2381   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2382   // re-uses the same InductionDescriptor that original IV uses but we don't
2383   // have to do any recording in this case - that is done when original IV is
2384   // processed.
2385   if (isa<TruncInst>(EntryVal))
2386     return;
2387 
2388   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2389   if (Casts.empty())
2390     return;
2391   // Only the first Cast instruction in the Casts vector is of interest.
2392   // The rest of the Casts (if exist) have no uses outside the
2393   // induction update chain itself.
2394   if (Lane < UINT_MAX)
2395     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2396   else
2397     State.set(CastDef, VectorLoopVal, Part);
2398 }
2399 
2400 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2401                                                 TruncInst *Trunc, VPValue *Def,
2402                                                 VPValue *CastDef,
2403                                                 VPTransformState &State) {
2404   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2405          "Primary induction variable must have an integer type");
2406 
2407   auto II = Legal->getInductionVars().find(IV);
2408   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2409 
2410   auto ID = II->second;
2411   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2412 
2413   // The value from the original loop to which we are mapping the new induction
2414   // variable.
2415   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2416 
2417   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2418 
2419   // Generate code for the induction step. Note that induction steps are
2420   // required to be loop-invariant
2421   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2422     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2423            "Induction step should be loop invariant");
2424     if (PSE.getSE()->isSCEVable(IV->getType())) {
2425       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2426       return Exp.expandCodeFor(Step, Step->getType(),
2427                                LoopVectorPreHeader->getTerminator());
2428     }
2429     return cast<SCEVUnknown>(Step)->getValue();
2430   };
2431 
2432   // The scalar value to broadcast. This is derived from the canonical
2433   // induction variable. If a truncation type is given, truncate the canonical
2434   // induction variable and step. Otherwise, derive these values from the
2435   // induction descriptor.
2436   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2437     Value *ScalarIV = Induction;
2438     if (IV != OldInduction) {
2439       ScalarIV = IV->getType()->isIntegerTy()
2440                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2441                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2442                                           IV->getType());
2443       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2444       ScalarIV->setName("offset.idx");
2445     }
2446     if (Trunc) {
2447       auto *TruncType = cast<IntegerType>(Trunc->getType());
2448       assert(Step->getType()->isIntegerTy() &&
2449              "Truncation requires an integer step");
2450       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2451       Step = Builder.CreateTrunc(Step, TruncType);
2452     }
2453     return ScalarIV;
2454   };
2455 
2456   // Create the vector values from the scalar IV, in the absence of creating a
2457   // vector IV.
2458   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2459     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2460     for (unsigned Part = 0; Part < UF; ++Part) {
2461       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2462       Value *EntryPart =
2463           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2464                         ID.getInductionOpcode());
2465       State.set(Def, EntryPart, Part);
2466       if (Trunc)
2467         addMetadata(EntryPart, Trunc);
2468       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2469                                             State, Part);
2470     }
2471   };
2472 
2473   // Fast-math-flags propagate from the original induction instruction.
2474   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2475   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2476     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2477 
2478   // Now do the actual transformations, and start with creating the step value.
2479   Value *Step = CreateStepValue(ID.getStep());
2480   if (VF.isZero() || VF.isScalar()) {
2481     Value *ScalarIV = CreateScalarIV(Step);
2482     CreateSplatIV(ScalarIV, Step);
2483     return;
2484   }
2485 
2486   // Determine if we want a scalar version of the induction variable. This is
2487   // true if the induction variable itself is not widened, or if it has at
2488   // least one user in the loop that is not widened.
2489   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2490   if (!NeedsScalarIV) {
2491     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2492                                     State);
2493     return;
2494   }
2495 
2496   // Try to create a new independent vector induction variable. If we can't
2497   // create the phi node, we will splat the scalar induction variable in each
2498   // loop iteration.
2499   if (!shouldScalarizeInstruction(EntryVal)) {
2500     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2501                                     State);
2502     Value *ScalarIV = CreateScalarIV(Step);
2503     // Create scalar steps that can be used by instructions we will later
2504     // scalarize. Note that the addition of the scalar steps will not increase
2505     // the number of instructions in the loop in the common case prior to
2506     // InstCombine. We will be trading one vector extract for each scalar step.
2507     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2508     return;
2509   }
2510 
2511   // All IV users are scalar instructions, so only emit a scalar IV, not a
2512   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2513   // predicate used by the masked loads/stores.
2514   Value *ScalarIV = CreateScalarIV(Step);
2515   if (!Cost->isScalarEpilogueAllowed())
2516     CreateSplatIV(ScalarIV, Step);
2517   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2518 }
2519 
2520 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2521                                           Instruction::BinaryOps BinOp) {
2522   // Create and check the types.
2523   auto *ValVTy = cast<VectorType>(Val->getType());
2524   ElementCount VLen = ValVTy->getElementCount();
2525 
2526   Type *STy = Val->getType()->getScalarType();
2527   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2528          "Induction Step must be an integer or FP");
2529   assert(Step->getType() == STy && "Step has wrong type");
2530 
2531   SmallVector<Constant *, 8> Indices;
2532 
2533   // Create a vector of consecutive numbers from zero to VF.
2534   VectorType *InitVecValVTy = ValVTy;
2535   Type *InitVecValSTy = STy;
2536   if (STy->isFloatingPointTy()) {
2537     InitVecValSTy =
2538         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2539     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2540   }
2541   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2542 
2543   // Add on StartIdx
2544   Value *StartIdxSplat = Builder.CreateVectorSplat(
2545       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2546   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2547 
2548   if (STy->isIntegerTy()) {
2549     Step = Builder.CreateVectorSplat(VLen, Step);
2550     assert(Step->getType() == Val->getType() && "Invalid step vec");
2551     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2552     // which can be found from the original scalar operations.
2553     Step = Builder.CreateMul(InitVec, Step);
2554     return Builder.CreateAdd(Val, Step, "induction");
2555   }
2556 
2557   // Floating point induction.
2558   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2559          "Binary Opcode should be specified for FP induction");
2560   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2561   Step = Builder.CreateVectorSplat(VLen, Step);
2562   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2563   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2564 }
2565 
2566 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2567                                            Instruction *EntryVal,
2568                                            const InductionDescriptor &ID,
2569                                            VPValue *Def, VPValue *CastDef,
2570                                            VPTransformState &State) {
2571   // We shouldn't have to build scalar steps if we aren't vectorizing.
2572   assert(VF.isVector() && "VF should be greater than one");
2573   // Get the value type and ensure it and the step have the same integer type.
2574   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2575   assert(ScalarIVTy == Step->getType() &&
2576          "Val and Step should have the same type");
2577 
2578   // We build scalar steps for both integer and floating-point induction
2579   // variables. Here, we determine the kind of arithmetic we will perform.
2580   Instruction::BinaryOps AddOp;
2581   Instruction::BinaryOps MulOp;
2582   if (ScalarIVTy->isIntegerTy()) {
2583     AddOp = Instruction::Add;
2584     MulOp = Instruction::Mul;
2585   } else {
2586     AddOp = ID.getInductionOpcode();
2587     MulOp = Instruction::FMul;
2588   }
2589 
2590   // Determine the number of scalars we need to generate for each unroll
2591   // iteration. If EntryVal is uniform, we only need to generate the first
2592   // lane. Otherwise, we generate all VF values.
2593   bool IsUniform =
2594       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2595   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2596   // Compute the scalar steps and save the results in State.
2597   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2598                                      ScalarIVTy->getScalarSizeInBits());
2599   Type *VecIVTy = nullptr;
2600   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2601   if (!IsUniform && VF.isScalable()) {
2602     VecIVTy = VectorType::get(ScalarIVTy, VF);
2603     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2604     SplatStep = Builder.CreateVectorSplat(VF, Step);
2605     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2606   }
2607 
2608   for (unsigned Part = 0; Part < UF; ++Part) {
2609     Value *StartIdx0 =
2610         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2611 
2612     if (!IsUniform && VF.isScalable()) {
2613       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2614       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2615       if (ScalarIVTy->isFloatingPointTy())
2616         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2617       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2618       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2619       State.set(Def, Add, Part);
2620       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2621                                             Part);
2622       // It's useful to record the lane values too for the known minimum number
2623       // of elements so we do those below. This improves the code quality when
2624       // trying to extract the first element, for example.
2625     }
2626 
2627     if (ScalarIVTy->isFloatingPointTy())
2628       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2629 
2630     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2631       Value *StartIdx = Builder.CreateBinOp(
2632           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2633       // The step returned by `createStepForVF` is a runtime-evaluated value
2634       // when VF is scalable. Otherwise, it should be folded into a Constant.
2635       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2636              "Expected StartIdx to be folded to a constant when VF is not "
2637              "scalable");
2638       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2639       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2640       State.set(Def, Add, VPIteration(Part, Lane));
2641       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2642                                             Part, Lane);
2643     }
2644   }
2645 }
2646 
2647 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2648                                                     const VPIteration &Instance,
2649                                                     VPTransformState &State) {
2650   Value *ScalarInst = State.get(Def, Instance);
2651   Value *VectorValue = State.get(Def, Instance.Part);
2652   VectorValue = Builder.CreateInsertElement(
2653       VectorValue, ScalarInst,
2654       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2655   State.set(Def, VectorValue, Instance.Part);
2656 }
2657 
2658 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2659   assert(Vec->getType()->isVectorTy() && "Invalid type");
2660   return Builder.CreateVectorReverse(Vec, "reverse");
2661 }
2662 
2663 // Return whether we allow using masked interleave-groups (for dealing with
2664 // strided loads/stores that reside in predicated blocks, or for dealing
2665 // with gaps).
2666 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2667   // If an override option has been passed in for interleaved accesses, use it.
2668   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2669     return EnableMaskedInterleavedMemAccesses;
2670 
2671   return TTI.enableMaskedInterleavedAccessVectorization();
2672 }
2673 
2674 // Try to vectorize the interleave group that \p Instr belongs to.
2675 //
2676 // E.g. Translate following interleaved load group (factor = 3):
2677 //   for (i = 0; i < N; i+=3) {
2678 //     R = Pic[i];             // Member of index 0
2679 //     G = Pic[i+1];           // Member of index 1
2680 //     B = Pic[i+2];           // Member of index 2
2681 //     ... // do something to R, G, B
2682 //   }
2683 // To:
2684 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2685 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2686 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2687 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2688 //
2689 // Or translate following interleaved store group (factor = 3):
2690 //   for (i = 0; i < N; i+=3) {
2691 //     ... do something to R, G, B
2692 //     Pic[i]   = R;           // Member of index 0
2693 //     Pic[i+1] = G;           // Member of index 1
2694 //     Pic[i+2] = B;           // Member of index 2
2695 //   }
2696 // To:
2697 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2698 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2699 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2700 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2701 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2702 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2703     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2704     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2705     VPValue *BlockInMask) {
2706   Instruction *Instr = Group->getInsertPos();
2707   const DataLayout &DL = Instr->getModule()->getDataLayout();
2708 
2709   // Prepare for the vector type of the interleaved load/store.
2710   Type *ScalarTy = getLoadStoreType(Instr);
2711   unsigned InterleaveFactor = Group->getFactor();
2712   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2713   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2714 
2715   // Prepare for the new pointers.
2716   SmallVector<Value *, 2> AddrParts;
2717   unsigned Index = Group->getIndex(Instr);
2718 
2719   // TODO: extend the masked interleaved-group support to reversed access.
2720   assert((!BlockInMask || !Group->isReverse()) &&
2721          "Reversed masked interleave-group not supported.");
2722 
2723   // If the group is reverse, adjust the index to refer to the last vector lane
2724   // instead of the first. We adjust the index from the first vector lane,
2725   // rather than directly getting the pointer for lane VF - 1, because the
2726   // pointer operand of the interleaved access is supposed to be uniform. For
2727   // uniform instructions, we're only required to generate a value for the
2728   // first vector lane in each unroll iteration.
2729   if (Group->isReverse())
2730     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2731 
2732   for (unsigned Part = 0; Part < UF; Part++) {
2733     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2734     setDebugLocFromInst(AddrPart);
2735 
2736     // Notice current instruction could be any index. Need to adjust the address
2737     // to the member of index 0.
2738     //
2739     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2740     //       b = A[i];       // Member of index 0
2741     // Current pointer is pointed to A[i+1], adjust it to A[i].
2742     //
2743     // E.g.  A[i+1] = a;     // Member of index 1
2744     //       A[i]   = b;     // Member of index 0
2745     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2746     // Current pointer is pointed to A[i+2], adjust it to A[i].
2747 
2748     bool InBounds = false;
2749     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2750       InBounds = gep->isInBounds();
2751     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2752     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2753 
2754     // Cast to the vector pointer type.
2755     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2756     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2757     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2758   }
2759 
2760   setDebugLocFromInst(Instr);
2761   Value *PoisonVec = PoisonValue::get(VecTy);
2762 
2763   Value *MaskForGaps = nullptr;
2764   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2765     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2766     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2767   }
2768 
2769   // Vectorize the interleaved load group.
2770   if (isa<LoadInst>(Instr)) {
2771     // For each unroll part, create a wide load for the group.
2772     SmallVector<Value *, 2> NewLoads;
2773     for (unsigned Part = 0; Part < UF; Part++) {
2774       Instruction *NewLoad;
2775       if (BlockInMask || MaskForGaps) {
2776         assert(useMaskedInterleavedAccesses(*TTI) &&
2777                "masked interleaved groups are not allowed.");
2778         Value *GroupMask = MaskForGaps;
2779         if (BlockInMask) {
2780           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2781           Value *ShuffledMask = Builder.CreateShuffleVector(
2782               BlockInMaskPart,
2783               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2784               "interleaved.mask");
2785           GroupMask = MaskForGaps
2786                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2787                                                 MaskForGaps)
2788                           : ShuffledMask;
2789         }
2790         NewLoad =
2791             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2792                                      GroupMask, PoisonVec, "wide.masked.vec");
2793       }
2794       else
2795         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2796                                             Group->getAlign(), "wide.vec");
2797       Group->addMetadata(NewLoad);
2798       NewLoads.push_back(NewLoad);
2799     }
2800 
2801     // For each member in the group, shuffle out the appropriate data from the
2802     // wide loads.
2803     unsigned J = 0;
2804     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2805       Instruction *Member = Group->getMember(I);
2806 
2807       // Skip the gaps in the group.
2808       if (!Member)
2809         continue;
2810 
2811       auto StrideMask =
2812           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2813       for (unsigned Part = 0; Part < UF; Part++) {
2814         Value *StridedVec = Builder.CreateShuffleVector(
2815             NewLoads[Part], StrideMask, "strided.vec");
2816 
2817         // If this member has different type, cast the result type.
2818         if (Member->getType() != ScalarTy) {
2819           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2820           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2821           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2822         }
2823 
2824         if (Group->isReverse())
2825           StridedVec = reverseVector(StridedVec);
2826 
2827         State.set(VPDefs[J], StridedVec, Part);
2828       }
2829       ++J;
2830     }
2831     return;
2832   }
2833 
2834   // The sub vector type for current instruction.
2835   auto *SubVT = VectorType::get(ScalarTy, VF);
2836 
2837   // Vectorize the interleaved store group.
2838   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2839   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2840          "masked interleaved groups are not allowed.");
2841   assert((!MaskForGaps || !VF.isScalable()) &&
2842          "masking gaps for scalable vectors is not yet supported.");
2843   for (unsigned Part = 0; Part < UF; Part++) {
2844     // Collect the stored vector from each member.
2845     SmallVector<Value *, 4> StoredVecs;
2846     for (unsigned i = 0; i < InterleaveFactor; i++) {
2847       assert((Group->getMember(i) || MaskForGaps) &&
2848              "Fail to get a member from an interleaved store group");
2849       Instruction *Member = Group->getMember(i);
2850 
2851       // Skip the gaps in the group.
2852       if (!Member) {
2853         Value *Undef = PoisonValue::get(SubVT);
2854         StoredVecs.push_back(Undef);
2855         continue;
2856       }
2857 
2858       Value *StoredVec = State.get(StoredValues[i], Part);
2859 
2860       if (Group->isReverse())
2861         StoredVec = reverseVector(StoredVec);
2862 
2863       // If this member has different type, cast it to a unified type.
2864 
2865       if (StoredVec->getType() != SubVT)
2866         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2867 
2868       StoredVecs.push_back(StoredVec);
2869     }
2870 
2871     // Concatenate all vectors into a wide vector.
2872     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2873 
2874     // Interleave the elements in the wide vector.
2875     Value *IVec = Builder.CreateShuffleVector(
2876         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2877         "interleaved.vec");
2878 
2879     Instruction *NewStoreInstr;
2880     if (BlockInMask || MaskForGaps) {
2881       Value *GroupMask = MaskForGaps;
2882       if (BlockInMask) {
2883         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2884         Value *ShuffledMask = Builder.CreateShuffleVector(
2885             BlockInMaskPart,
2886             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2887             "interleaved.mask");
2888         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2889                                                       ShuffledMask, MaskForGaps)
2890                                 : ShuffledMask;
2891       }
2892       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2893                                                 Group->getAlign(), GroupMask);
2894     } else
2895       NewStoreInstr =
2896           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2897 
2898     Group->addMetadata(NewStoreInstr);
2899   }
2900 }
2901 
2902 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2903     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2904     VPValue *StoredValue, VPValue *BlockInMask) {
2905   // Attempt to issue a wide load.
2906   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2907   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2908 
2909   assert((LI || SI) && "Invalid Load/Store instruction");
2910   assert((!SI || StoredValue) && "No stored value provided for widened store");
2911   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2912 
2913   LoopVectorizationCostModel::InstWidening Decision =
2914       Cost->getWideningDecision(Instr, VF);
2915   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2916           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2917           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2918          "CM decision is not to widen the memory instruction");
2919 
2920   Type *ScalarDataTy = getLoadStoreType(Instr);
2921 
2922   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2923   const Align Alignment = getLoadStoreAlignment(Instr);
2924 
2925   // Determine if the pointer operand of the access is either consecutive or
2926   // reverse consecutive.
2927   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2928   bool ConsecutiveStride =
2929       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2930   bool CreateGatherScatter =
2931       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2932 
2933   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2934   // gather/scatter. Otherwise Decision should have been to Scalarize.
2935   assert((ConsecutiveStride || CreateGatherScatter) &&
2936          "The instruction should be scalarized");
2937   (void)ConsecutiveStride;
2938 
2939   VectorParts BlockInMaskParts(UF);
2940   bool isMaskRequired = BlockInMask;
2941   if (isMaskRequired)
2942     for (unsigned Part = 0; Part < UF; ++Part)
2943       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2944 
2945   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2946     // Calculate the pointer for the specific unroll-part.
2947     GetElementPtrInst *PartPtr = nullptr;
2948 
2949     bool InBounds = false;
2950     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2951       InBounds = gep->isInBounds();
2952     if (Reverse) {
2953       // If the address is consecutive but reversed, then the
2954       // wide store needs to start at the last vector element.
2955       // RunTimeVF =  VScale * VF.getKnownMinValue()
2956       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2957       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2958       // NumElt = -Part * RunTimeVF
2959       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2960       // LastLane = 1 - RunTimeVF
2961       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2962       PartPtr =
2963           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2964       PartPtr->setIsInBounds(InBounds);
2965       PartPtr = cast<GetElementPtrInst>(
2966           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2967       PartPtr->setIsInBounds(InBounds);
2968       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2969         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2970     } else {
2971       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2972       PartPtr = cast<GetElementPtrInst>(
2973           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2974       PartPtr->setIsInBounds(InBounds);
2975     }
2976 
2977     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2978     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2979   };
2980 
2981   // Handle Stores:
2982   if (SI) {
2983     setDebugLocFromInst(SI);
2984 
2985     for (unsigned Part = 0; Part < UF; ++Part) {
2986       Instruction *NewSI = nullptr;
2987       Value *StoredVal = State.get(StoredValue, Part);
2988       if (CreateGatherScatter) {
2989         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2990         Value *VectorGep = State.get(Addr, Part);
2991         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2992                                             MaskPart);
2993       } else {
2994         if (Reverse) {
2995           // If we store to reverse consecutive memory locations, then we need
2996           // to reverse the order of elements in the stored value.
2997           StoredVal = reverseVector(StoredVal);
2998           // We don't want to update the value in the map as it might be used in
2999           // another expression. So don't call resetVectorValue(StoredVal).
3000         }
3001         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3002         if (isMaskRequired)
3003           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
3004                                             BlockInMaskParts[Part]);
3005         else
3006           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
3007       }
3008       addMetadata(NewSI, SI);
3009     }
3010     return;
3011   }
3012 
3013   // Handle loads.
3014   assert(LI && "Must have a load instruction");
3015   setDebugLocFromInst(LI);
3016   for (unsigned Part = 0; Part < UF; ++Part) {
3017     Value *NewLI;
3018     if (CreateGatherScatter) {
3019       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3020       Value *VectorGep = State.get(Addr, Part);
3021       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3022                                          nullptr, "wide.masked.gather");
3023       addMetadata(NewLI, LI);
3024     } else {
3025       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3026       if (isMaskRequired)
3027         NewLI = Builder.CreateMaskedLoad(
3028             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3029             PoisonValue::get(DataTy), "wide.masked.load");
3030       else
3031         NewLI =
3032             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3033 
3034       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3035       addMetadata(NewLI, LI);
3036       if (Reverse)
3037         NewLI = reverseVector(NewLI);
3038     }
3039 
3040     State.set(Def, NewLI, Part);
3041   }
3042 }
3043 
3044 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3045                                                VPUser &User,
3046                                                const VPIteration &Instance,
3047                                                bool IfPredicateInstr,
3048                                                VPTransformState &State) {
3049   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3050 
3051   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3052   // the first lane and part.
3053   if (isa<NoAliasScopeDeclInst>(Instr))
3054     if (!Instance.isFirstIteration())
3055       return;
3056 
3057   setDebugLocFromInst(Instr);
3058 
3059   // Does this instruction return a value ?
3060   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3061 
3062   Instruction *Cloned = Instr->clone();
3063   if (!IsVoidRetTy)
3064     Cloned->setName(Instr->getName() + ".cloned");
3065 
3066   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3067                                Builder.GetInsertPoint());
3068   // Replace the operands of the cloned instructions with their scalar
3069   // equivalents in the new loop.
3070   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3071     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3072     auto InputInstance = Instance;
3073     if (!Operand || !OrigLoop->contains(Operand) ||
3074         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3075       InputInstance.Lane = VPLane::getFirstLane();
3076     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3077     Cloned->setOperand(op, NewOp);
3078   }
3079   addNewMetadata(Cloned, Instr);
3080 
3081   // Place the cloned scalar in the new loop.
3082   Builder.Insert(Cloned);
3083 
3084   State.set(Def, Cloned, Instance);
3085 
3086   // If we just cloned a new assumption, add it the assumption cache.
3087   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3088     AC->registerAssumption(II);
3089 
3090   // End if-block.
3091   if (IfPredicateInstr)
3092     PredicatedInstructions.push_back(Cloned);
3093 }
3094 
3095 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3096                                                       Value *End, Value *Step,
3097                                                       Instruction *DL) {
3098   BasicBlock *Header = L->getHeader();
3099   BasicBlock *Latch = L->getLoopLatch();
3100   // As we're just creating this loop, it's possible no latch exists
3101   // yet. If so, use the header as this will be a single block loop.
3102   if (!Latch)
3103     Latch = Header;
3104 
3105   IRBuilder<> B(&*Header->getFirstInsertionPt());
3106   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3107   setDebugLocFromInst(OldInst, &B);
3108   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3109 
3110   B.SetInsertPoint(Latch->getTerminator());
3111   setDebugLocFromInst(OldInst, &B);
3112 
3113   // Create i+1 and fill the PHINode.
3114   //
3115   // If the tail is not folded, we know that End - Start >= Step (either
3116   // statically or through the minimum iteration checks). We also know that both
3117   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3118   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3119   // overflows and we can mark the induction increment as NUW.
3120   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3121                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3122   Induction->addIncoming(Start, L->getLoopPreheader());
3123   Induction->addIncoming(Next, Latch);
3124   // Create the compare.
3125   Value *ICmp = B.CreateICmpEQ(Next, End);
3126   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3127 
3128   // Now we have two terminators. Remove the old one from the block.
3129   Latch->getTerminator()->eraseFromParent();
3130 
3131   return Induction;
3132 }
3133 
3134 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3135   if (TripCount)
3136     return TripCount;
3137 
3138   assert(L && "Create Trip Count for null loop.");
3139   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3140   // Find the loop boundaries.
3141   ScalarEvolution *SE = PSE.getSE();
3142   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3143   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3144          "Invalid loop count");
3145 
3146   Type *IdxTy = Legal->getWidestInductionType();
3147   assert(IdxTy && "No type for induction");
3148 
3149   // The exit count might have the type of i64 while the phi is i32. This can
3150   // happen if we have an induction variable that is sign extended before the
3151   // compare. The only way that we get a backedge taken count is that the
3152   // induction variable was signed and as such will not overflow. In such a case
3153   // truncation is legal.
3154   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3155       IdxTy->getPrimitiveSizeInBits())
3156     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3157   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3158 
3159   // Get the total trip count from the count by adding 1.
3160   const SCEV *ExitCount = SE->getAddExpr(
3161       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3162 
3163   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3164 
3165   // Expand the trip count and place the new instructions in the preheader.
3166   // Notice that the pre-header does not change, only the loop body.
3167   SCEVExpander Exp(*SE, DL, "induction");
3168 
3169   // Count holds the overall loop count (N).
3170   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3171                                 L->getLoopPreheader()->getTerminator());
3172 
3173   if (TripCount->getType()->isPointerTy())
3174     TripCount =
3175         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3176                                     L->getLoopPreheader()->getTerminator());
3177 
3178   return TripCount;
3179 }
3180 
3181 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3182   if (VectorTripCount)
3183     return VectorTripCount;
3184 
3185   Value *TC = getOrCreateTripCount(L);
3186   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3187 
3188   Type *Ty = TC->getType();
3189   // This is where we can make the step a runtime constant.
3190   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3191 
3192   // If the tail is to be folded by masking, round the number of iterations N
3193   // up to a multiple of Step instead of rounding down. This is done by first
3194   // adding Step-1 and then rounding down. Note that it's ok if this addition
3195   // overflows: the vector induction variable will eventually wrap to zero given
3196   // that it starts at zero and its Step is a power of two; the loop will then
3197   // exit, with the last early-exit vector comparison also producing all-true.
3198   if (Cost->foldTailByMasking()) {
3199     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3200            "VF*UF must be a power of 2 when folding tail by masking");
3201     assert(!VF.isScalable() &&
3202            "Tail folding not yet supported for scalable vectors");
3203     TC = Builder.CreateAdd(
3204         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3205   }
3206 
3207   // Now we need to generate the expression for the part of the loop that the
3208   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3209   // iterations are not required for correctness, or N - Step, otherwise. Step
3210   // is equal to the vectorization factor (number of SIMD elements) times the
3211   // unroll factor (number of SIMD instructions).
3212   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3213 
3214   // There are cases where we *must* run at least one iteration in the remainder
3215   // loop.  See the cost model for when this can happen.  If the step evenly
3216   // divides the trip count, we set the remainder to be equal to the step. If
3217   // the step does not evenly divide the trip count, no adjustment is necessary
3218   // since there will already be scalar iterations. Note that the minimum
3219   // iterations check ensures that N >= Step.
3220   if (Cost->requiresScalarEpilogue(VF)) {
3221     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3222     R = Builder.CreateSelect(IsZero, Step, R);
3223   }
3224 
3225   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3226 
3227   return VectorTripCount;
3228 }
3229 
3230 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3231                                                    const DataLayout &DL) {
3232   // Verify that V is a vector type with same number of elements as DstVTy.
3233   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3234   unsigned VF = DstFVTy->getNumElements();
3235   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3236   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3237   Type *SrcElemTy = SrcVecTy->getElementType();
3238   Type *DstElemTy = DstFVTy->getElementType();
3239   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3240          "Vector elements must have same size");
3241 
3242   // Do a direct cast if element types are castable.
3243   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3244     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3245   }
3246   // V cannot be directly casted to desired vector type.
3247   // May happen when V is a floating point vector but DstVTy is a vector of
3248   // pointers or vice-versa. Handle this using a two-step bitcast using an
3249   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3250   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3251          "Only one type should be a pointer type");
3252   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3253          "Only one type should be a floating point type");
3254   Type *IntTy =
3255       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3256   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3257   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3258   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3259 }
3260 
3261 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3262                                                          BasicBlock *Bypass) {
3263   Value *Count = getOrCreateTripCount(L);
3264   // Reuse existing vector loop preheader for TC checks.
3265   // Note that new preheader block is generated for vector loop.
3266   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3267   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3268 
3269   // Generate code to check if the loop's trip count is less than VF * UF, or
3270   // equal to it in case a scalar epilogue is required; this implies that the
3271   // vector trip count is zero. This check also covers the case where adding one
3272   // to the backedge-taken count overflowed leading to an incorrect trip count
3273   // of zero. In this case we will also jump to the scalar loop.
3274   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3275                                             : ICmpInst::ICMP_ULT;
3276 
3277   // If tail is to be folded, vector loop takes care of all iterations.
3278   Value *CheckMinIters = Builder.getFalse();
3279   if (!Cost->foldTailByMasking()) {
3280     Value *Step =
3281         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3282     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3283   }
3284   // Create new preheader for vector loop.
3285   LoopVectorPreHeader =
3286       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3287                  "vector.ph");
3288 
3289   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3290                                DT->getNode(Bypass)->getIDom()) &&
3291          "TC check is expected to dominate Bypass");
3292 
3293   // Update dominator for Bypass & LoopExit (if needed).
3294   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3295   if (!Cost->requiresScalarEpilogue(VF))
3296     // If there is an epilogue which must run, there's no edge from the
3297     // middle block to exit blocks  and thus no need to update the immediate
3298     // dominator of the exit blocks.
3299     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3300 
3301   ReplaceInstWithInst(
3302       TCCheckBlock->getTerminator(),
3303       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3304   LoopBypassBlocks.push_back(TCCheckBlock);
3305 }
3306 
3307 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3308 
3309   BasicBlock *const SCEVCheckBlock =
3310       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3311   if (!SCEVCheckBlock)
3312     return nullptr;
3313 
3314   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3315            (OptForSizeBasedOnProfile &&
3316             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3317          "Cannot SCEV check stride or overflow when optimizing for size");
3318 
3319 
3320   // Update dominator only if this is first RT check.
3321   if (LoopBypassBlocks.empty()) {
3322     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3323     if (!Cost->requiresScalarEpilogue(VF))
3324       // If there is an epilogue which must run, there's no edge from the
3325       // middle block to exit blocks  and thus no need to update the immediate
3326       // dominator of the exit blocks.
3327       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3328   }
3329 
3330   LoopBypassBlocks.push_back(SCEVCheckBlock);
3331   AddedSafetyChecks = true;
3332   return SCEVCheckBlock;
3333 }
3334 
3335 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3336                                                       BasicBlock *Bypass) {
3337   // VPlan-native path does not do any analysis for runtime checks currently.
3338   if (EnableVPlanNativePath)
3339     return nullptr;
3340 
3341   BasicBlock *const MemCheckBlock =
3342       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3343 
3344   // Check if we generated code that checks in runtime if arrays overlap. We put
3345   // the checks into a separate block to make the more common case of few
3346   // elements faster.
3347   if (!MemCheckBlock)
3348     return nullptr;
3349 
3350   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3351     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3352            "Cannot emit memory checks when optimizing for size, unless forced "
3353            "to vectorize.");
3354     ORE->emit([&]() {
3355       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3356                                         L->getStartLoc(), L->getHeader())
3357              << "Code-size may be reduced by not forcing "
3358                 "vectorization, or by source-code modifications "
3359                 "eliminating the need for runtime checks "
3360                 "(e.g., adding 'restrict').";
3361     });
3362   }
3363 
3364   LoopBypassBlocks.push_back(MemCheckBlock);
3365 
3366   AddedSafetyChecks = true;
3367 
3368   // We currently don't use LoopVersioning for the actual loop cloning but we
3369   // still use it to add the noalias metadata.
3370   LVer = std::make_unique<LoopVersioning>(
3371       *Legal->getLAI(),
3372       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3373       DT, PSE.getSE());
3374   LVer->prepareNoAliasMetadata();
3375   return MemCheckBlock;
3376 }
3377 
3378 Value *InnerLoopVectorizer::emitTransformedIndex(
3379     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3380     const InductionDescriptor &ID) const {
3381 
3382   SCEVExpander Exp(*SE, DL, "induction");
3383   auto Step = ID.getStep();
3384   auto StartValue = ID.getStartValue();
3385   assert(Index->getType()->getScalarType() == Step->getType() &&
3386          "Index scalar type does not match StepValue type");
3387 
3388   // Note: the IR at this point is broken. We cannot use SE to create any new
3389   // SCEV and then expand it, hoping that SCEV's simplification will give us
3390   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3391   // lead to various SCEV crashes. So all we can do is to use builder and rely
3392   // on InstCombine for future simplifications. Here we handle some trivial
3393   // cases only.
3394   auto CreateAdd = [&B](Value *X, Value *Y) {
3395     assert(X->getType() == Y->getType() && "Types don't match!");
3396     if (auto *CX = dyn_cast<ConstantInt>(X))
3397       if (CX->isZero())
3398         return Y;
3399     if (auto *CY = dyn_cast<ConstantInt>(Y))
3400       if (CY->isZero())
3401         return X;
3402     return B.CreateAdd(X, Y);
3403   };
3404 
3405   // We allow X to be a vector type, in which case Y will potentially be
3406   // splatted into a vector with the same element count.
3407   auto CreateMul = [&B](Value *X, Value *Y) {
3408     assert(X->getType()->getScalarType() == Y->getType() &&
3409            "Types don't match!");
3410     if (auto *CX = dyn_cast<ConstantInt>(X))
3411       if (CX->isOne())
3412         return Y;
3413     if (auto *CY = dyn_cast<ConstantInt>(Y))
3414       if (CY->isOne())
3415         return X;
3416     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3417     if (XVTy && !isa<VectorType>(Y->getType()))
3418       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3419     return B.CreateMul(X, Y);
3420   };
3421 
3422   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3423   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3424   // the DomTree is not kept up-to-date for additional blocks generated in the
3425   // vector loop. By using the header as insertion point, we guarantee that the
3426   // expanded instructions dominate all their uses.
3427   auto GetInsertPoint = [this, &B]() {
3428     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3429     if (InsertBB != LoopVectorBody &&
3430         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3431       return LoopVectorBody->getTerminator();
3432     return &*B.GetInsertPoint();
3433   };
3434 
3435   switch (ID.getKind()) {
3436   case InductionDescriptor::IK_IntInduction: {
3437     assert(!isa<VectorType>(Index->getType()) &&
3438            "Vector indices not supported for integer inductions yet");
3439     assert(Index->getType() == StartValue->getType() &&
3440            "Index type does not match StartValue type");
3441     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3442       return B.CreateSub(StartValue, Index);
3443     auto *Offset = CreateMul(
3444         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3445     return CreateAdd(StartValue, Offset);
3446   }
3447   case InductionDescriptor::IK_PtrInduction: {
3448     assert(isa<SCEVConstant>(Step) &&
3449            "Expected constant step for pointer induction");
3450     return B.CreateGEP(
3451         ID.getElementType(), StartValue,
3452         CreateMul(Index,
3453                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3454                                     GetInsertPoint())));
3455   }
3456   case InductionDescriptor::IK_FpInduction: {
3457     assert(!isa<VectorType>(Index->getType()) &&
3458            "Vector indices not supported for FP inductions yet");
3459     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3460     auto InductionBinOp = ID.getInductionBinOp();
3461     assert(InductionBinOp &&
3462            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3463             InductionBinOp->getOpcode() == Instruction::FSub) &&
3464            "Original bin op should be defined for FP induction");
3465 
3466     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3467     Value *MulExp = B.CreateFMul(StepValue, Index);
3468     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3469                          "induction");
3470   }
3471   case InductionDescriptor::IK_NoInduction:
3472     return nullptr;
3473   }
3474   llvm_unreachable("invalid enum");
3475 }
3476 
3477 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3478   LoopScalarBody = OrigLoop->getHeader();
3479   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3480   assert(LoopVectorPreHeader && "Invalid loop structure");
3481   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3482   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3483          "multiple exit loop without required epilogue?");
3484 
3485   LoopMiddleBlock =
3486       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3487                  LI, nullptr, Twine(Prefix) + "middle.block");
3488   LoopScalarPreHeader =
3489       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3490                  nullptr, Twine(Prefix) + "scalar.ph");
3491 
3492   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3493 
3494   // Set up the middle block terminator.  Two cases:
3495   // 1) If we know that we must execute the scalar epilogue, emit an
3496   //    unconditional branch.
3497   // 2) Otherwise, we must have a single unique exit block (due to how we
3498   //    implement the multiple exit case).  In this case, set up a conditonal
3499   //    branch from the middle block to the loop scalar preheader, and the
3500   //    exit block.  completeLoopSkeleton will update the condition to use an
3501   //    iteration check, if required to decide whether to execute the remainder.
3502   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3503     BranchInst::Create(LoopScalarPreHeader) :
3504     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3505                        Builder.getTrue());
3506   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3507   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3508 
3509   // We intentionally don't let SplitBlock to update LoopInfo since
3510   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3511   // LoopVectorBody is explicitly added to the correct place few lines later.
3512   LoopVectorBody =
3513       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3514                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3515 
3516   // Update dominator for loop exit.
3517   if (!Cost->requiresScalarEpilogue(VF))
3518     // If there is an epilogue which must run, there's no edge from the
3519     // middle block to exit blocks  and thus no need to update the immediate
3520     // dominator of the exit blocks.
3521     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3522 
3523   // Create and register the new vector loop.
3524   Loop *Lp = LI->AllocateLoop();
3525   Loop *ParentLoop = OrigLoop->getParentLoop();
3526 
3527   // Insert the new loop into the loop nest and register the new basic blocks
3528   // before calling any utilities such as SCEV that require valid LoopInfo.
3529   if (ParentLoop) {
3530     ParentLoop->addChildLoop(Lp);
3531   } else {
3532     LI->addTopLevelLoop(Lp);
3533   }
3534   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3535   return Lp;
3536 }
3537 
3538 void InnerLoopVectorizer::createInductionResumeValues(
3539     Loop *L, Value *VectorTripCount,
3540     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3541   assert(VectorTripCount && L && "Expected valid arguments");
3542   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3543           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3544          "Inconsistent information about additional bypass.");
3545   // We are going to resume the execution of the scalar loop.
3546   // Go over all of the induction variables that we found and fix the
3547   // PHIs that are left in the scalar version of the loop.
3548   // The starting values of PHI nodes depend on the counter of the last
3549   // iteration in the vectorized loop.
3550   // If we come from a bypass edge then we need to start from the original
3551   // start value.
3552   for (auto &InductionEntry : Legal->getInductionVars()) {
3553     PHINode *OrigPhi = InductionEntry.first;
3554     InductionDescriptor II = InductionEntry.second;
3555 
3556     // Create phi nodes to merge from the  backedge-taken check block.
3557     PHINode *BCResumeVal =
3558         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3559                         LoopScalarPreHeader->getTerminator());
3560     // Copy original phi DL over to the new one.
3561     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3562     Value *&EndValue = IVEndValues[OrigPhi];
3563     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3564     if (OrigPhi == OldInduction) {
3565       // We know what the end value is.
3566       EndValue = VectorTripCount;
3567     } else {
3568       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3569 
3570       // Fast-math-flags propagate from the original induction instruction.
3571       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3572         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3573 
3574       Type *StepType = II.getStep()->getType();
3575       Instruction::CastOps CastOp =
3576           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3577       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3578       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3579       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3580       EndValue->setName("ind.end");
3581 
3582       // Compute the end value for the additional bypass (if applicable).
3583       if (AdditionalBypass.first) {
3584         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3585         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3586                                          StepType, true);
3587         CRD =
3588             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3589         EndValueFromAdditionalBypass =
3590             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3591         EndValueFromAdditionalBypass->setName("ind.end");
3592       }
3593     }
3594     // The new PHI merges the original incoming value, in case of a bypass,
3595     // or the value at the end of the vectorized loop.
3596     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3597 
3598     // Fix the scalar body counter (PHI node).
3599     // The old induction's phi node in the scalar body needs the truncated
3600     // value.
3601     for (BasicBlock *BB : LoopBypassBlocks)
3602       BCResumeVal->addIncoming(II.getStartValue(), BB);
3603 
3604     if (AdditionalBypass.first)
3605       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3606                                             EndValueFromAdditionalBypass);
3607 
3608     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3609   }
3610 }
3611 
3612 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3613                                                       MDNode *OrigLoopID) {
3614   assert(L && "Expected valid loop.");
3615 
3616   // The trip counts should be cached by now.
3617   Value *Count = getOrCreateTripCount(L);
3618   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3619 
3620   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3621 
3622   // Add a check in the middle block to see if we have completed
3623   // all of the iterations in the first vector loop.  Three cases:
3624   // 1) If we require a scalar epilogue, there is no conditional branch as
3625   //    we unconditionally branch to the scalar preheader.  Do nothing.
3626   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3627   //    Thus if tail is to be folded, we know we don't need to run the
3628   //    remainder and we can use the previous value for the condition (true).
3629   // 3) Otherwise, construct a runtime check.
3630   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3631     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3632                                         Count, VectorTripCount, "cmp.n",
3633                                         LoopMiddleBlock->getTerminator());
3634 
3635     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3636     // of the corresponding compare because they may have ended up with
3637     // different line numbers and we want to avoid awkward line stepping while
3638     // debugging. Eg. if the compare has got a line number inside the loop.
3639     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3640     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3641   }
3642 
3643   // Get ready to start creating new instructions into the vectorized body.
3644   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3645          "Inconsistent vector loop preheader");
3646   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3647 
3648   Optional<MDNode *> VectorizedLoopID =
3649       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3650                                       LLVMLoopVectorizeFollowupVectorized});
3651   if (VectorizedLoopID.hasValue()) {
3652     L->setLoopID(VectorizedLoopID.getValue());
3653 
3654     // Do not setAlreadyVectorized if loop attributes have been defined
3655     // explicitly.
3656     return LoopVectorPreHeader;
3657   }
3658 
3659   // Keep all loop hints from the original loop on the vector loop (we'll
3660   // replace the vectorizer-specific hints below).
3661   if (MDNode *LID = OrigLoop->getLoopID())
3662     L->setLoopID(LID);
3663 
3664   LoopVectorizeHints Hints(L, true, *ORE);
3665   Hints.setAlreadyVectorized();
3666 
3667 #ifdef EXPENSIVE_CHECKS
3668   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3669   LI->verify(*DT);
3670 #endif
3671 
3672   return LoopVectorPreHeader;
3673 }
3674 
3675 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3676   /*
3677    In this function we generate a new loop. The new loop will contain
3678    the vectorized instructions while the old loop will continue to run the
3679    scalar remainder.
3680 
3681        [ ] <-- loop iteration number check.
3682     /   |
3683    /    v
3684   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3685   |  /  |
3686   | /   v
3687   ||   [ ]     <-- vector pre header.
3688   |/    |
3689   |     v
3690   |    [  ] \
3691   |    [  ]_|   <-- vector loop.
3692   |     |
3693   |     v
3694   \   -[ ]   <--- middle-block.
3695    \/   |
3696    /\   v
3697    | ->[ ]     <--- new preheader.
3698    |    |
3699  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3700    |   [ ] \
3701    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3702     \   |
3703      \  v
3704       >[ ]     <-- exit block(s).
3705    ...
3706    */
3707 
3708   // Get the metadata of the original loop before it gets modified.
3709   MDNode *OrigLoopID = OrigLoop->getLoopID();
3710 
3711   // Workaround!  Compute the trip count of the original loop and cache it
3712   // before we start modifying the CFG.  This code has a systemic problem
3713   // wherein it tries to run analysis over partially constructed IR; this is
3714   // wrong, and not simply for SCEV.  The trip count of the original loop
3715   // simply happens to be prone to hitting this in practice.  In theory, we
3716   // can hit the same issue for any SCEV, or ValueTracking query done during
3717   // mutation.  See PR49900.
3718   getOrCreateTripCount(OrigLoop);
3719 
3720   // Create an empty vector loop, and prepare basic blocks for the runtime
3721   // checks.
3722   Loop *Lp = createVectorLoopSkeleton("");
3723 
3724   // Now, compare the new count to zero. If it is zero skip the vector loop and
3725   // jump to the scalar loop. This check also covers the case where the
3726   // backedge-taken count is uint##_max: adding one to it will overflow leading
3727   // to an incorrect trip count of zero. In this (rare) case we will also jump
3728   // to the scalar loop.
3729   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3730 
3731   // Generate the code to check any assumptions that we've made for SCEV
3732   // expressions.
3733   emitSCEVChecks(Lp, LoopScalarPreHeader);
3734 
3735   // Generate the code that checks in runtime if arrays overlap. We put the
3736   // checks into a separate block to make the more common case of few elements
3737   // faster.
3738   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3739 
3740   // Some loops have a single integer induction variable, while other loops
3741   // don't. One example is c++ iterators that often have multiple pointer
3742   // induction variables. In the code below we also support a case where we
3743   // don't have a single induction variable.
3744   //
3745   // We try to obtain an induction variable from the original loop as hard
3746   // as possible. However if we don't find one that:
3747   //   - is an integer
3748   //   - counts from zero, stepping by one
3749   //   - is the size of the widest induction variable type
3750   // then we create a new one.
3751   OldInduction = Legal->getPrimaryInduction();
3752   Type *IdxTy = Legal->getWidestInductionType();
3753   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3754   // The loop step is equal to the vectorization factor (num of SIMD elements)
3755   // times the unroll factor (num of SIMD instructions).
3756   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3757   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3758   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3759   Induction =
3760       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3761                               getDebugLocFromInstOrOperands(OldInduction));
3762 
3763   // Emit phis for the new starting index of the scalar loop.
3764   createInductionResumeValues(Lp, CountRoundDown);
3765 
3766   return completeLoopSkeleton(Lp, OrigLoopID);
3767 }
3768 
3769 // Fix up external users of the induction variable. At this point, we are
3770 // in LCSSA form, with all external PHIs that use the IV having one input value,
3771 // coming from the remainder loop. We need those PHIs to also have a correct
3772 // value for the IV when arriving directly from the middle block.
3773 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3774                                        const InductionDescriptor &II,
3775                                        Value *CountRoundDown, Value *EndValue,
3776                                        BasicBlock *MiddleBlock) {
3777   // There are two kinds of external IV usages - those that use the value
3778   // computed in the last iteration (the PHI) and those that use the penultimate
3779   // value (the value that feeds into the phi from the loop latch).
3780   // We allow both, but they, obviously, have different values.
3781 
3782   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3783 
3784   DenseMap<Value *, Value *> MissingVals;
3785 
3786   // An external user of the last iteration's value should see the value that
3787   // the remainder loop uses to initialize its own IV.
3788   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3789   for (User *U : PostInc->users()) {
3790     Instruction *UI = cast<Instruction>(U);
3791     if (!OrigLoop->contains(UI)) {
3792       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3793       MissingVals[UI] = EndValue;
3794     }
3795   }
3796 
3797   // An external user of the penultimate value need to see EndValue - Step.
3798   // The simplest way to get this is to recompute it from the constituent SCEVs,
3799   // that is Start + (Step * (CRD - 1)).
3800   for (User *U : OrigPhi->users()) {
3801     auto *UI = cast<Instruction>(U);
3802     if (!OrigLoop->contains(UI)) {
3803       const DataLayout &DL =
3804           OrigLoop->getHeader()->getModule()->getDataLayout();
3805       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3806 
3807       IRBuilder<> B(MiddleBlock->getTerminator());
3808 
3809       // Fast-math-flags propagate from the original induction instruction.
3810       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3811         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3812 
3813       Value *CountMinusOne = B.CreateSub(
3814           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3815       Value *CMO =
3816           !II.getStep()->getType()->isIntegerTy()
3817               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3818                              II.getStep()->getType())
3819               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3820       CMO->setName("cast.cmo");
3821       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3822       Escape->setName("ind.escape");
3823       MissingVals[UI] = Escape;
3824     }
3825   }
3826 
3827   for (auto &I : MissingVals) {
3828     PHINode *PHI = cast<PHINode>(I.first);
3829     // One corner case we have to handle is two IVs "chasing" each-other,
3830     // that is %IV2 = phi [...], [ %IV1, %latch ]
3831     // In this case, if IV1 has an external use, we need to avoid adding both
3832     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3833     // don't already have an incoming value for the middle block.
3834     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3835       PHI->addIncoming(I.second, MiddleBlock);
3836   }
3837 }
3838 
3839 namespace {
3840 
3841 struct CSEDenseMapInfo {
3842   static bool canHandle(const Instruction *I) {
3843     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3844            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3845   }
3846 
3847   static inline Instruction *getEmptyKey() {
3848     return DenseMapInfo<Instruction *>::getEmptyKey();
3849   }
3850 
3851   static inline Instruction *getTombstoneKey() {
3852     return DenseMapInfo<Instruction *>::getTombstoneKey();
3853   }
3854 
3855   static unsigned getHashValue(const Instruction *I) {
3856     assert(canHandle(I) && "Unknown instruction!");
3857     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3858                                                            I->value_op_end()));
3859   }
3860 
3861   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3862     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3863         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3864       return LHS == RHS;
3865     return LHS->isIdenticalTo(RHS);
3866   }
3867 };
3868 
3869 } // end anonymous namespace
3870 
3871 ///Perform cse of induction variable instructions.
3872 static void cse(BasicBlock *BB) {
3873   // Perform simple cse.
3874   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3875   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3876     Instruction *In = &*I++;
3877 
3878     if (!CSEDenseMapInfo::canHandle(In))
3879       continue;
3880 
3881     // Check if we can replace this instruction with any of the
3882     // visited instructions.
3883     if (Instruction *V = CSEMap.lookup(In)) {
3884       In->replaceAllUsesWith(V);
3885       In->eraseFromParent();
3886       continue;
3887     }
3888 
3889     CSEMap[In] = In;
3890   }
3891 }
3892 
3893 InstructionCost
3894 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3895                                               bool &NeedToScalarize) const {
3896   Function *F = CI->getCalledFunction();
3897   Type *ScalarRetTy = CI->getType();
3898   SmallVector<Type *, 4> Tys, ScalarTys;
3899   for (auto &ArgOp : CI->arg_operands())
3900     ScalarTys.push_back(ArgOp->getType());
3901 
3902   // Estimate cost of scalarized vector call. The source operands are assumed
3903   // to be vectors, so we need to extract individual elements from there,
3904   // execute VF scalar calls, and then gather the result into the vector return
3905   // value.
3906   InstructionCost ScalarCallCost =
3907       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3908   if (VF.isScalar())
3909     return ScalarCallCost;
3910 
3911   // Compute corresponding vector type for return value and arguments.
3912   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3913   for (Type *ScalarTy : ScalarTys)
3914     Tys.push_back(ToVectorTy(ScalarTy, VF));
3915 
3916   // Compute costs of unpacking argument values for the scalar calls and
3917   // packing the return values to a vector.
3918   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3919 
3920   InstructionCost Cost =
3921       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3922 
3923   // If we can't emit a vector call for this function, then the currently found
3924   // cost is the cost we need to return.
3925   NeedToScalarize = true;
3926   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3927   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3928 
3929   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3930     return Cost;
3931 
3932   // If the corresponding vector cost is cheaper, return its cost.
3933   InstructionCost VectorCallCost =
3934       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3935   if (VectorCallCost < Cost) {
3936     NeedToScalarize = false;
3937     Cost = VectorCallCost;
3938   }
3939   return Cost;
3940 }
3941 
3942 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3943   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3944     return Elt;
3945   return VectorType::get(Elt, VF);
3946 }
3947 
3948 InstructionCost
3949 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3950                                                    ElementCount VF) const {
3951   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3952   assert(ID && "Expected intrinsic call!");
3953   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3954   FastMathFlags FMF;
3955   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3956     FMF = FPMO->getFastMathFlags();
3957 
3958   SmallVector<const Value *> Arguments(CI->args());
3959   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3960   SmallVector<Type *> ParamTys;
3961   std::transform(FTy->param_begin(), FTy->param_end(),
3962                  std::back_inserter(ParamTys),
3963                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3964 
3965   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3966                                     dyn_cast<IntrinsicInst>(CI));
3967   return TTI.getIntrinsicInstrCost(CostAttrs,
3968                                    TargetTransformInfo::TCK_RecipThroughput);
3969 }
3970 
3971 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3972   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3973   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3974   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3975 }
3976 
3977 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3978   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3979   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3980   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3981 }
3982 
3983 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3984   // For every instruction `I` in MinBWs, truncate the operands, create a
3985   // truncated version of `I` and reextend its result. InstCombine runs
3986   // later and will remove any ext/trunc pairs.
3987   SmallPtrSet<Value *, 4> Erased;
3988   for (const auto &KV : Cost->getMinimalBitwidths()) {
3989     // If the value wasn't vectorized, we must maintain the original scalar
3990     // type. The absence of the value from State indicates that it
3991     // wasn't vectorized.
3992     // FIXME: Should not rely on getVPValue at this point.
3993     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3994     if (!State.hasAnyVectorValue(Def))
3995       continue;
3996     for (unsigned Part = 0; Part < UF; ++Part) {
3997       Value *I = State.get(Def, Part);
3998       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3999         continue;
4000       Type *OriginalTy = I->getType();
4001       Type *ScalarTruncatedTy =
4002           IntegerType::get(OriginalTy->getContext(), KV.second);
4003       auto *TruncatedTy = VectorType::get(
4004           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
4005       if (TruncatedTy == OriginalTy)
4006         continue;
4007 
4008       IRBuilder<> B(cast<Instruction>(I));
4009       auto ShrinkOperand = [&](Value *V) -> Value * {
4010         if (auto *ZI = dyn_cast<ZExtInst>(V))
4011           if (ZI->getSrcTy() == TruncatedTy)
4012             return ZI->getOperand(0);
4013         return B.CreateZExtOrTrunc(V, TruncatedTy);
4014       };
4015 
4016       // The actual instruction modification depends on the instruction type,
4017       // unfortunately.
4018       Value *NewI = nullptr;
4019       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4020         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4021                              ShrinkOperand(BO->getOperand(1)));
4022 
4023         // Any wrapping introduced by shrinking this operation shouldn't be
4024         // considered undefined behavior. So, we can't unconditionally copy
4025         // arithmetic wrapping flags to NewI.
4026         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4027       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4028         NewI =
4029             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4030                          ShrinkOperand(CI->getOperand(1)));
4031       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4032         NewI = B.CreateSelect(SI->getCondition(),
4033                               ShrinkOperand(SI->getTrueValue()),
4034                               ShrinkOperand(SI->getFalseValue()));
4035       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4036         switch (CI->getOpcode()) {
4037         default:
4038           llvm_unreachable("Unhandled cast!");
4039         case Instruction::Trunc:
4040           NewI = ShrinkOperand(CI->getOperand(0));
4041           break;
4042         case Instruction::SExt:
4043           NewI = B.CreateSExtOrTrunc(
4044               CI->getOperand(0),
4045               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4046           break;
4047         case Instruction::ZExt:
4048           NewI = B.CreateZExtOrTrunc(
4049               CI->getOperand(0),
4050               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4051           break;
4052         }
4053       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4054         auto Elements0 =
4055             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4056         auto *O0 = B.CreateZExtOrTrunc(
4057             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4058         auto Elements1 =
4059             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4060         auto *O1 = B.CreateZExtOrTrunc(
4061             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4062 
4063         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4064       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4065         // Don't do anything with the operands, just extend the result.
4066         continue;
4067       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4068         auto Elements =
4069             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
4070         auto *O0 = B.CreateZExtOrTrunc(
4071             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4072         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4073         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4074       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4075         auto Elements =
4076             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
4077         auto *O0 = B.CreateZExtOrTrunc(
4078             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4079         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4080       } else {
4081         // If we don't know what to do, be conservative and don't do anything.
4082         continue;
4083       }
4084 
4085       // Lastly, extend the result.
4086       NewI->takeName(cast<Instruction>(I));
4087       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4088       I->replaceAllUsesWith(Res);
4089       cast<Instruction>(I)->eraseFromParent();
4090       Erased.insert(I);
4091       State.reset(Def, Res, Part);
4092     }
4093   }
4094 
4095   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4096   for (const auto &KV : Cost->getMinimalBitwidths()) {
4097     // If the value wasn't vectorized, we must maintain the original scalar
4098     // type. The absence of the value from State indicates that it
4099     // wasn't vectorized.
4100     // FIXME: Should not rely on getVPValue at this point.
4101     VPValue *Def = State.Plan->getVPValue(KV.first, true);
4102     if (!State.hasAnyVectorValue(Def))
4103       continue;
4104     for (unsigned Part = 0; Part < UF; ++Part) {
4105       Value *I = State.get(Def, Part);
4106       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4107       if (Inst && Inst->use_empty()) {
4108         Value *NewI = Inst->getOperand(0);
4109         Inst->eraseFromParent();
4110         State.reset(Def, NewI, Part);
4111       }
4112     }
4113   }
4114 }
4115 
4116 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4117   // Insert truncates and extends for any truncated instructions as hints to
4118   // InstCombine.
4119   if (VF.isVector())
4120     truncateToMinimalBitwidths(State);
4121 
4122   // Fix widened non-induction PHIs by setting up the PHI operands.
4123   if (OrigPHIsToFix.size()) {
4124     assert(EnableVPlanNativePath &&
4125            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4126     fixNonInductionPHIs(State);
4127   }
4128 
4129   // At this point every instruction in the original loop is widened to a
4130   // vector form. Now we need to fix the recurrences in the loop. These PHI
4131   // nodes are currently empty because we did not want to introduce cycles.
4132   // This is the second stage of vectorizing recurrences.
4133   fixCrossIterationPHIs(State);
4134 
4135   // Forget the original basic block.
4136   PSE.getSE()->forgetLoop(OrigLoop);
4137 
4138   // If we inserted an edge from the middle block to the unique exit block,
4139   // update uses outside the loop (phis) to account for the newly inserted
4140   // edge.
4141   if (!Cost->requiresScalarEpilogue(VF)) {
4142     // Fix-up external users of the induction variables.
4143     for (auto &Entry : Legal->getInductionVars())
4144       fixupIVUsers(Entry.first, Entry.second,
4145                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4146                    IVEndValues[Entry.first], LoopMiddleBlock);
4147 
4148     fixLCSSAPHIs(State);
4149   }
4150 
4151   for (Instruction *PI : PredicatedInstructions)
4152     sinkScalarOperands(&*PI);
4153 
4154   // Remove redundant induction instructions.
4155   cse(LoopVectorBody);
4156 
4157   // Set/update profile weights for the vector and remainder loops as original
4158   // loop iterations are now distributed among them. Note that original loop
4159   // represented by LoopScalarBody becomes remainder loop after vectorization.
4160   //
4161   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4162   // end up getting slightly roughened result but that should be OK since
4163   // profile is not inherently precise anyway. Note also possible bypass of
4164   // vector code caused by legality checks is ignored, assigning all the weight
4165   // to the vector loop, optimistically.
4166   //
4167   // For scalable vectorization we can't know at compile time how many iterations
4168   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4169   // vscale of '1'.
4170   setProfileInfoAfterUnrolling(
4171       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4172       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4173 }
4174 
4175 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4176   // In order to support recurrences we need to be able to vectorize Phi nodes.
4177   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4178   // stage #2: We now need to fix the recurrences by adding incoming edges to
4179   // the currently empty PHI nodes. At this point every instruction in the
4180   // original loop is widened to a vector form so we can use them to construct
4181   // the incoming edges.
4182   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4183   for (VPRecipeBase &R : Header->phis()) {
4184     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4185       fixReduction(ReductionPhi, State);
4186     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4187       fixFirstOrderRecurrence(FOR, State);
4188   }
4189 }
4190 
4191 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4192                                                   VPTransformState &State) {
4193   // This is the second phase of vectorizing first-order recurrences. An
4194   // overview of the transformation is described below. Suppose we have the
4195   // following loop.
4196   //
4197   //   for (int i = 0; i < n; ++i)
4198   //     b[i] = a[i] - a[i - 1];
4199   //
4200   // There is a first-order recurrence on "a". For this loop, the shorthand
4201   // scalar IR looks like:
4202   //
4203   //   scalar.ph:
4204   //     s_init = a[-1]
4205   //     br scalar.body
4206   //
4207   //   scalar.body:
4208   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4209   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4210   //     s2 = a[i]
4211   //     b[i] = s2 - s1
4212   //     br cond, scalar.body, ...
4213   //
4214   // In this example, s1 is a recurrence because it's value depends on the
4215   // previous iteration. In the first phase of vectorization, we created a
4216   // vector phi v1 for s1. We now complete the vectorization and produce the
4217   // shorthand vector IR shown below (for VF = 4, UF = 1).
4218   //
4219   //   vector.ph:
4220   //     v_init = vector(..., ..., ..., a[-1])
4221   //     br vector.body
4222   //
4223   //   vector.body
4224   //     i = phi [0, vector.ph], [i+4, vector.body]
4225   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4226   //     v2 = a[i, i+1, i+2, i+3];
4227   //     v3 = vector(v1(3), v2(0, 1, 2))
4228   //     b[i, i+1, i+2, i+3] = v2 - v3
4229   //     br cond, vector.body, middle.block
4230   //
4231   //   middle.block:
4232   //     x = v2(3)
4233   //     br scalar.ph
4234   //
4235   //   scalar.ph:
4236   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4237   //     br scalar.body
4238   //
4239   // After execution completes the vector loop, we extract the next value of
4240   // the recurrence (x) to use as the initial value in the scalar loop.
4241 
4242   // Extract the last vector element in the middle block. This will be the
4243   // initial value for the recurrence when jumping to the scalar loop.
4244   VPValue *PreviousDef = PhiR->getBackedgeValue();
4245   Value *Incoming = State.get(PreviousDef, UF - 1);
4246   auto *ExtractForScalar = Incoming;
4247   auto *IdxTy = Builder.getInt32Ty();
4248   if (VF.isVector()) {
4249     auto *One = ConstantInt::get(IdxTy, 1);
4250     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4251     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4252     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4253     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4254                                                     "vector.recur.extract");
4255   }
4256   // Extract the second last element in the middle block if the
4257   // Phi is used outside the loop. We need to extract the phi itself
4258   // and not the last element (the phi update in the current iteration). This
4259   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4260   // when the scalar loop is not run at all.
4261   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4262   if (VF.isVector()) {
4263     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4264     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4265     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4266         Incoming, Idx, "vector.recur.extract.for.phi");
4267   } else if (UF > 1)
4268     // When loop is unrolled without vectorizing, initialize
4269     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4270     // of `Incoming`. This is analogous to the vectorized case above: extracting
4271     // the second last element when VF > 1.
4272     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4273 
4274   // Fix the initial value of the original recurrence in the scalar loop.
4275   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4276   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4277   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4278   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4279   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4280     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4281     Start->addIncoming(Incoming, BB);
4282   }
4283 
4284   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4285   Phi->setName("scalar.recur");
4286 
4287   // Finally, fix users of the recurrence outside the loop. The users will need
4288   // either the last value of the scalar recurrence or the last value of the
4289   // vector recurrence we extracted in the middle block. Since the loop is in
4290   // LCSSA form, we just need to find all the phi nodes for the original scalar
4291   // recurrence in the exit block, and then add an edge for the middle block.
4292   // Note that LCSSA does not imply single entry when the original scalar loop
4293   // had multiple exiting edges (as we always run the last iteration in the
4294   // scalar epilogue); in that case, there is no edge from middle to exit and
4295   // and thus no phis which needed updated.
4296   if (!Cost->requiresScalarEpilogue(VF))
4297     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4298       if (any_of(LCSSAPhi.incoming_values(),
4299                  [Phi](Value *V) { return V == Phi; }))
4300         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4301 }
4302 
4303 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4304                                        VPTransformState &State) {
4305   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4306   // Get it's reduction variable descriptor.
4307   assert(Legal->isReductionVariable(OrigPhi) &&
4308          "Unable to find the reduction variable");
4309   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4310 
4311   RecurKind RK = RdxDesc.getRecurrenceKind();
4312   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4313   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4314   setDebugLocFromInst(ReductionStartValue);
4315 
4316   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4317   // This is the vector-clone of the value that leaves the loop.
4318   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4319 
4320   // Wrap flags are in general invalid after vectorization, clear them.
4321   clearReductionWrapFlags(RdxDesc, State);
4322 
4323   // Before each round, move the insertion point right between
4324   // the PHIs and the values we are going to write.
4325   // This allows us to write both PHINodes and the extractelement
4326   // instructions.
4327   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4328 
4329   setDebugLocFromInst(LoopExitInst);
4330 
4331   Type *PhiTy = OrigPhi->getType();
4332   // If tail is folded by masking, the vector value to leave the loop should be
4333   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4334   // instead of the former. For an inloop reduction the reduction will already
4335   // be predicated, and does not need to be handled here.
4336   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4337     for (unsigned Part = 0; Part < UF; ++Part) {
4338       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4339       Value *Sel = nullptr;
4340       for (User *U : VecLoopExitInst->users()) {
4341         if (isa<SelectInst>(U)) {
4342           assert(!Sel && "Reduction exit feeding two selects");
4343           Sel = U;
4344         } else
4345           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4346       }
4347       assert(Sel && "Reduction exit feeds no select");
4348       State.reset(LoopExitInstDef, Sel, Part);
4349 
4350       // If the target can create a predicated operator for the reduction at no
4351       // extra cost in the loop (for example a predicated vadd), it can be
4352       // cheaper for the select to remain in the loop than be sunk out of it,
4353       // and so use the select value for the phi instead of the old
4354       // LoopExitValue.
4355       if (PreferPredicatedReductionSelect ||
4356           TTI->preferPredicatedReductionSelect(
4357               RdxDesc.getOpcode(), PhiTy,
4358               TargetTransformInfo::ReductionFlags())) {
4359         auto *VecRdxPhi =
4360             cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part));
4361         VecRdxPhi->setIncomingValueForBlock(
4362             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4363       }
4364     }
4365   }
4366 
4367   // If the vector reduction can be performed in a smaller type, we truncate
4368   // then extend the loop exit value to enable InstCombine to evaluate the
4369   // entire expression in the smaller type.
4370   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4371     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4372     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4373     Builder.SetInsertPoint(
4374         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4375     VectorParts RdxParts(UF);
4376     for (unsigned Part = 0; Part < UF; ++Part) {
4377       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4378       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4379       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4380                                         : Builder.CreateZExt(Trunc, VecTy);
4381       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4382            UI != RdxParts[Part]->user_end();)
4383         if (*UI != Trunc) {
4384           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4385           RdxParts[Part] = Extnd;
4386         } else {
4387           ++UI;
4388         }
4389     }
4390     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4391     for (unsigned Part = 0; Part < UF; ++Part) {
4392       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4393       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4394     }
4395   }
4396 
4397   // Reduce all of the unrolled parts into a single vector.
4398   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4399   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4400 
4401   // The middle block terminator has already been assigned a DebugLoc here (the
4402   // OrigLoop's single latch terminator). We want the whole middle block to
4403   // appear to execute on this line because: (a) it is all compiler generated,
4404   // (b) these instructions are always executed after evaluating the latch
4405   // conditional branch, and (c) other passes may add new predecessors which
4406   // terminate on this line. This is the easiest way to ensure we don't
4407   // accidentally cause an extra step back into the loop while debugging.
4408   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4409   if (PhiR->isOrdered())
4410     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4411   else {
4412     // Floating-point operations should have some FMF to enable the reduction.
4413     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4414     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4415     for (unsigned Part = 1; Part < UF; ++Part) {
4416       Value *RdxPart = State.get(LoopExitInstDef, Part);
4417       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4418         ReducedPartRdx = Builder.CreateBinOp(
4419             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4420       } else {
4421         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4422       }
4423     }
4424   }
4425 
4426   // Create the reduction after the loop. Note that inloop reductions create the
4427   // target reduction in the loop using a Reduction recipe.
4428   if (VF.isVector() && !PhiR->isInLoop()) {
4429     ReducedPartRdx =
4430         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4431     // If the reduction can be performed in a smaller type, we need to extend
4432     // the reduction to the wider type before we branch to the original loop.
4433     if (PhiTy != RdxDesc.getRecurrenceType())
4434       ReducedPartRdx = RdxDesc.isSigned()
4435                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4436                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4437   }
4438 
4439   // Create a phi node that merges control-flow from the backedge-taken check
4440   // block and the middle block.
4441   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4442                                         LoopScalarPreHeader->getTerminator());
4443   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4444     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4445   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4446 
4447   // Now, we need to fix the users of the reduction variable
4448   // inside and outside of the scalar remainder loop.
4449 
4450   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4451   // in the exit blocks.  See comment on analogous loop in
4452   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4453   if (!Cost->requiresScalarEpilogue(VF))
4454     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4455       if (any_of(LCSSAPhi.incoming_values(),
4456                  [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4457         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4458 
4459   // Fix the scalar loop reduction variable with the incoming reduction sum
4460   // from the vector body and from the backedge value.
4461   int IncomingEdgeBlockIdx =
4462       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4463   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4464   // Pick the other block.
4465   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4466   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4467   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4468 }
4469 
4470 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4471                                                   VPTransformState &State) {
4472   RecurKind RK = RdxDesc.getRecurrenceKind();
4473   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4474     return;
4475 
4476   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4477   assert(LoopExitInstr && "null loop exit instruction");
4478   SmallVector<Instruction *, 8> Worklist;
4479   SmallPtrSet<Instruction *, 8> Visited;
4480   Worklist.push_back(LoopExitInstr);
4481   Visited.insert(LoopExitInstr);
4482 
4483   while (!Worklist.empty()) {
4484     Instruction *Cur = Worklist.pop_back_val();
4485     if (isa<OverflowingBinaryOperator>(Cur))
4486       for (unsigned Part = 0; Part < UF; ++Part) {
4487         // FIXME: Should not rely on getVPValue at this point.
4488         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4489         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4490       }
4491 
4492     for (User *U : Cur->users()) {
4493       Instruction *UI = cast<Instruction>(U);
4494       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4495           Visited.insert(UI).second)
4496         Worklist.push_back(UI);
4497     }
4498   }
4499 }
4500 
4501 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4502   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4503     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4504       // Some phis were already hand updated by the reduction and recurrence
4505       // code above, leave them alone.
4506       continue;
4507 
4508     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4509     // Non-instruction incoming values will have only one value.
4510 
4511     VPLane Lane = VPLane::getFirstLane();
4512     if (isa<Instruction>(IncomingValue) &&
4513         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4514                                            VF))
4515       Lane = VPLane::getLastLaneForVF(VF);
4516 
4517     // Can be a loop invariant incoming value or the last scalar value to be
4518     // extracted from the vectorized loop.
4519     // FIXME: Should not rely on getVPValue at this point.
4520     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4521     Value *lastIncomingValue =
4522         OrigLoop->isLoopInvariant(IncomingValue)
4523             ? IncomingValue
4524             : State.get(State.Plan->getVPValue(IncomingValue, true),
4525                         VPIteration(UF - 1, Lane));
4526     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4527   }
4528 }
4529 
4530 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4531   // The basic block and loop containing the predicated instruction.
4532   auto *PredBB = PredInst->getParent();
4533   auto *VectorLoop = LI->getLoopFor(PredBB);
4534 
4535   // Initialize a worklist with the operands of the predicated instruction.
4536   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4537 
4538   // Holds instructions that we need to analyze again. An instruction may be
4539   // reanalyzed if we don't yet know if we can sink it or not.
4540   SmallVector<Instruction *, 8> InstsToReanalyze;
4541 
4542   // Returns true if a given use occurs in the predicated block. Phi nodes use
4543   // their operands in their corresponding predecessor blocks.
4544   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4545     auto *I = cast<Instruction>(U.getUser());
4546     BasicBlock *BB = I->getParent();
4547     if (auto *Phi = dyn_cast<PHINode>(I))
4548       BB = Phi->getIncomingBlock(
4549           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4550     return BB == PredBB;
4551   };
4552 
4553   // Iteratively sink the scalarized operands of the predicated instruction
4554   // into the block we created for it. When an instruction is sunk, it's
4555   // operands are then added to the worklist. The algorithm ends after one pass
4556   // through the worklist doesn't sink a single instruction.
4557   bool Changed;
4558   do {
4559     // Add the instructions that need to be reanalyzed to the worklist, and
4560     // reset the changed indicator.
4561     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4562     InstsToReanalyze.clear();
4563     Changed = false;
4564 
4565     while (!Worklist.empty()) {
4566       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4567 
4568       // We can't sink an instruction if it is a phi node, is not in the loop,
4569       // or may have side effects.
4570       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4571           I->mayHaveSideEffects())
4572         continue;
4573 
4574       // If the instruction is already in PredBB, check if we can sink its
4575       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4576       // sinking the scalar instruction I, hence it appears in PredBB; but it
4577       // may have failed to sink I's operands (recursively), which we try
4578       // (again) here.
4579       if (I->getParent() == PredBB) {
4580         Worklist.insert(I->op_begin(), I->op_end());
4581         continue;
4582       }
4583 
4584       // It's legal to sink the instruction if all its uses occur in the
4585       // predicated block. Otherwise, there's nothing to do yet, and we may
4586       // need to reanalyze the instruction.
4587       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4588         InstsToReanalyze.push_back(I);
4589         continue;
4590       }
4591 
4592       // Move the instruction to the beginning of the predicated block, and add
4593       // it's operands to the worklist.
4594       I->moveBefore(&*PredBB->getFirstInsertionPt());
4595       Worklist.insert(I->op_begin(), I->op_end());
4596 
4597       // The sinking may have enabled other instructions to be sunk, so we will
4598       // need to iterate.
4599       Changed = true;
4600     }
4601   } while (Changed);
4602 }
4603 
4604 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4605   for (PHINode *OrigPhi : OrigPHIsToFix) {
4606     VPWidenPHIRecipe *VPPhi =
4607         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4608     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4609     // Make sure the builder has a valid insert point.
4610     Builder.SetInsertPoint(NewPhi);
4611     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4612       VPValue *Inc = VPPhi->getIncomingValue(i);
4613       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4614       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4615     }
4616   }
4617 }
4618 
4619 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4620   return Cost->useOrderedReductions(RdxDesc);
4621 }
4622 
4623 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4624                                    VPUser &Operands, unsigned UF,
4625                                    ElementCount VF, bool IsPtrLoopInvariant,
4626                                    SmallBitVector &IsIndexLoopInvariant,
4627                                    VPTransformState &State) {
4628   // Construct a vector GEP by widening the operands of the scalar GEP as
4629   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4630   // results in a vector of pointers when at least one operand of the GEP
4631   // is vector-typed. Thus, to keep the representation compact, we only use
4632   // vector-typed operands for loop-varying values.
4633 
4634   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4635     // If we are vectorizing, but the GEP has only loop-invariant operands,
4636     // the GEP we build (by only using vector-typed operands for
4637     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4638     // produce a vector of pointers, we need to either arbitrarily pick an
4639     // operand to broadcast, or broadcast a clone of the original GEP.
4640     // Here, we broadcast a clone of the original.
4641     //
4642     // TODO: If at some point we decide to scalarize instructions having
4643     //       loop-invariant operands, this special case will no longer be
4644     //       required. We would add the scalarization decision to
4645     //       collectLoopScalars() and teach getVectorValue() to broadcast
4646     //       the lane-zero scalar value.
4647     auto *Clone = Builder.Insert(GEP->clone());
4648     for (unsigned Part = 0; Part < UF; ++Part) {
4649       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4650       State.set(VPDef, EntryPart, Part);
4651       addMetadata(EntryPart, GEP);
4652     }
4653   } else {
4654     // If the GEP has at least one loop-varying operand, we are sure to
4655     // produce a vector of pointers. But if we are only unrolling, we want
4656     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4657     // produce with the code below will be scalar (if VF == 1) or vector
4658     // (otherwise). Note that for the unroll-only case, we still maintain
4659     // values in the vector mapping with initVector, as we do for other
4660     // instructions.
4661     for (unsigned Part = 0; Part < UF; ++Part) {
4662       // The pointer operand of the new GEP. If it's loop-invariant, we
4663       // won't broadcast it.
4664       auto *Ptr = IsPtrLoopInvariant
4665                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4666                       : State.get(Operands.getOperand(0), Part);
4667 
4668       // Collect all the indices for the new GEP. If any index is
4669       // loop-invariant, we won't broadcast it.
4670       SmallVector<Value *, 4> Indices;
4671       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4672         VPValue *Operand = Operands.getOperand(I);
4673         if (IsIndexLoopInvariant[I - 1])
4674           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4675         else
4676           Indices.push_back(State.get(Operand, Part));
4677       }
4678 
4679       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4680       // but it should be a vector, otherwise.
4681       auto *NewGEP =
4682           GEP->isInBounds()
4683               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4684                                           Indices)
4685               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4686       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4687              "NewGEP is not a pointer vector");
4688       State.set(VPDef, NewGEP, Part);
4689       addMetadata(NewGEP, GEP);
4690     }
4691   }
4692 }
4693 
4694 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4695                                               VPWidenPHIRecipe *PhiR,
4696                                               VPTransformState &State) {
4697   PHINode *P = cast<PHINode>(PN);
4698   if (EnableVPlanNativePath) {
4699     // Currently we enter here in the VPlan-native path for non-induction
4700     // PHIs where all control flow is uniform. We simply widen these PHIs.
4701     // Create a vector phi with no operands - the vector phi operands will be
4702     // set at the end of vector code generation.
4703     Type *VecTy = (State.VF.isScalar())
4704                       ? PN->getType()
4705                       : VectorType::get(PN->getType(), State.VF);
4706     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4707     State.set(PhiR, VecPhi, 0);
4708     OrigPHIsToFix.push_back(P);
4709 
4710     return;
4711   }
4712 
4713   assert(PN->getParent() == OrigLoop->getHeader() &&
4714          "Non-header phis should have been handled elsewhere");
4715 
4716   // In order to support recurrences we need to be able to vectorize Phi nodes.
4717   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4718   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4719   // this value when we vectorize all of the instructions that use the PHI.
4720 
4721   assert(!Legal->isReductionVariable(P) &&
4722          "reductions should be handled elsewhere");
4723 
4724   setDebugLocFromInst(P);
4725 
4726   // This PHINode must be an induction variable.
4727   // Make sure that we know about it.
4728   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4729 
4730   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4731   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4732 
4733   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4734   // which can be found from the original scalar operations.
4735   switch (II.getKind()) {
4736   case InductionDescriptor::IK_NoInduction:
4737     llvm_unreachable("Unknown induction");
4738   case InductionDescriptor::IK_IntInduction:
4739   case InductionDescriptor::IK_FpInduction:
4740     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4741   case InductionDescriptor::IK_PtrInduction: {
4742     // Handle the pointer induction variable case.
4743     assert(P->getType()->isPointerTy() && "Unexpected type.");
4744 
4745     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4746       // This is the normalized GEP that starts counting at zero.
4747       Value *PtrInd =
4748           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4749       // Determine the number of scalars we need to generate for each unroll
4750       // iteration. If the instruction is uniform, we only need to generate the
4751       // first lane. Otherwise, we generate all VF values.
4752       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4753       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4754 
4755       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4756       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4757       if (NeedsVectorIndex) {
4758         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4759         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4760         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4761       }
4762 
4763       for (unsigned Part = 0; Part < UF; ++Part) {
4764         Value *PartStart = createStepForVF(
4765             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4766 
4767         if (NeedsVectorIndex) {
4768           // Here we cache the whole vector, which means we can support the
4769           // extraction of any lane. However, in some cases the extractelement
4770           // instruction that is generated for scalar uses of this vector (e.g.
4771           // a load instruction) is not folded away. Therefore we still
4772           // calculate values for the first n lanes to avoid redundant moves
4773           // (when extracting the 0th element) and to produce scalar code (i.e.
4774           // additional add/gep instructions instead of expensive extractelement
4775           // instructions) when extracting higher-order elements.
4776           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4777           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4778           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4779           Value *SclrGep =
4780               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4781           SclrGep->setName("next.gep");
4782           State.set(PhiR, SclrGep, Part);
4783         }
4784 
4785         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4786           Value *Idx = Builder.CreateAdd(
4787               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4788           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4789           Value *SclrGep =
4790               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4791           SclrGep->setName("next.gep");
4792           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4793         }
4794       }
4795       return;
4796     }
4797     assert(isa<SCEVConstant>(II.getStep()) &&
4798            "Induction step not a SCEV constant!");
4799     Type *PhiType = II.getStep()->getType();
4800 
4801     // Build a pointer phi
4802     Value *ScalarStartValue = II.getStartValue();
4803     Type *ScStValueType = ScalarStartValue->getType();
4804     PHINode *NewPointerPhi =
4805         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4806     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4807 
4808     // A pointer induction, performed by using a gep
4809     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4810     Instruction *InductionLoc = LoopLatch->getTerminator();
4811     const SCEV *ScalarStep = II.getStep();
4812     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4813     Value *ScalarStepValue =
4814         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4815     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4816     Value *NumUnrolledElems =
4817         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4818     Value *InductionGEP = GetElementPtrInst::Create(
4819         II.getElementType(), NewPointerPhi,
4820         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4821         InductionLoc);
4822     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4823 
4824     // Create UF many actual address geps that use the pointer
4825     // phi as base and a vectorized version of the step value
4826     // (<step*0, ..., step*N>) as offset.
4827     for (unsigned Part = 0; Part < State.UF; ++Part) {
4828       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4829       Value *StartOffsetScalar =
4830           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4831       Value *StartOffset =
4832           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4833       // Create a vector of consecutive numbers from zero to VF.
4834       StartOffset =
4835           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4836 
4837       Value *GEP = Builder.CreateGEP(
4838           II.getElementType(), NewPointerPhi,
4839           Builder.CreateMul(
4840               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4841               "vector.gep"));
4842       State.set(PhiR, GEP, Part);
4843     }
4844   }
4845   }
4846 }
4847 
4848 /// A helper function for checking whether an integer division-related
4849 /// instruction may divide by zero (in which case it must be predicated if
4850 /// executed conditionally in the scalar code).
4851 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4852 /// Non-zero divisors that are non compile-time constants will not be
4853 /// converted into multiplication, so we will still end up scalarizing
4854 /// the division, but can do so w/o predication.
4855 static bool mayDivideByZero(Instruction &I) {
4856   assert((I.getOpcode() == Instruction::UDiv ||
4857           I.getOpcode() == Instruction::SDiv ||
4858           I.getOpcode() == Instruction::URem ||
4859           I.getOpcode() == Instruction::SRem) &&
4860          "Unexpected instruction");
4861   Value *Divisor = I.getOperand(1);
4862   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4863   return !CInt || CInt->isZero();
4864 }
4865 
4866 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4867                                            VPUser &User,
4868                                            VPTransformState &State) {
4869   switch (I.getOpcode()) {
4870   case Instruction::Call:
4871   case Instruction::Br:
4872   case Instruction::PHI:
4873   case Instruction::GetElementPtr:
4874   case Instruction::Select:
4875     llvm_unreachable("This instruction is handled by a different recipe.");
4876   case Instruction::UDiv:
4877   case Instruction::SDiv:
4878   case Instruction::SRem:
4879   case Instruction::URem:
4880   case Instruction::Add:
4881   case Instruction::FAdd:
4882   case Instruction::Sub:
4883   case Instruction::FSub:
4884   case Instruction::FNeg:
4885   case Instruction::Mul:
4886   case Instruction::FMul:
4887   case Instruction::FDiv:
4888   case Instruction::FRem:
4889   case Instruction::Shl:
4890   case Instruction::LShr:
4891   case Instruction::AShr:
4892   case Instruction::And:
4893   case Instruction::Or:
4894   case Instruction::Xor: {
4895     // Just widen unops and binops.
4896     setDebugLocFromInst(&I);
4897 
4898     for (unsigned Part = 0; Part < UF; ++Part) {
4899       SmallVector<Value *, 2> Ops;
4900       for (VPValue *VPOp : User.operands())
4901         Ops.push_back(State.get(VPOp, Part));
4902 
4903       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4904 
4905       if (auto *VecOp = dyn_cast<Instruction>(V))
4906         VecOp->copyIRFlags(&I);
4907 
4908       // Use this vector value for all users of the original instruction.
4909       State.set(Def, V, Part);
4910       addMetadata(V, &I);
4911     }
4912 
4913     break;
4914   }
4915   case Instruction::ICmp:
4916   case Instruction::FCmp: {
4917     // Widen compares. Generate vector compares.
4918     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4919     auto *Cmp = cast<CmpInst>(&I);
4920     setDebugLocFromInst(Cmp);
4921     for (unsigned Part = 0; Part < UF; ++Part) {
4922       Value *A = State.get(User.getOperand(0), Part);
4923       Value *B = State.get(User.getOperand(1), Part);
4924       Value *C = nullptr;
4925       if (FCmp) {
4926         // Propagate fast math flags.
4927         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4928         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4929         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4930       } else {
4931         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4932       }
4933       State.set(Def, C, Part);
4934       addMetadata(C, &I);
4935     }
4936 
4937     break;
4938   }
4939 
4940   case Instruction::ZExt:
4941   case Instruction::SExt:
4942   case Instruction::FPToUI:
4943   case Instruction::FPToSI:
4944   case Instruction::FPExt:
4945   case Instruction::PtrToInt:
4946   case Instruction::IntToPtr:
4947   case Instruction::SIToFP:
4948   case Instruction::UIToFP:
4949   case Instruction::Trunc:
4950   case Instruction::FPTrunc:
4951   case Instruction::BitCast: {
4952     auto *CI = cast<CastInst>(&I);
4953     setDebugLocFromInst(CI);
4954 
4955     /// Vectorize casts.
4956     Type *DestTy =
4957         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4958 
4959     for (unsigned Part = 0; Part < UF; ++Part) {
4960       Value *A = State.get(User.getOperand(0), Part);
4961       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4962       State.set(Def, Cast, Part);
4963       addMetadata(Cast, &I);
4964     }
4965     break;
4966   }
4967   default:
4968     // This instruction is not vectorized by simple widening.
4969     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4970     llvm_unreachable("Unhandled instruction!");
4971   } // end of switch.
4972 }
4973 
4974 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4975                                                VPUser &ArgOperands,
4976                                                VPTransformState &State) {
4977   assert(!isa<DbgInfoIntrinsic>(I) &&
4978          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4979   setDebugLocFromInst(&I);
4980 
4981   Module *M = I.getParent()->getParent()->getParent();
4982   auto *CI = cast<CallInst>(&I);
4983 
4984   SmallVector<Type *, 4> Tys;
4985   for (Value *ArgOperand : CI->arg_operands())
4986     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4987 
4988   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4989 
4990   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4991   // version of the instruction.
4992   // Is it beneficial to perform intrinsic call compared to lib call?
4993   bool NeedToScalarize = false;
4994   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4995   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4996   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4997   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4998          "Instruction should be scalarized elsewhere.");
4999   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
5000          "Either the intrinsic cost or vector call cost must be valid");
5001 
5002   for (unsigned Part = 0; Part < UF; ++Part) {
5003     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
5004     SmallVector<Value *, 4> Args;
5005     for (auto &I : enumerate(ArgOperands.operands())) {
5006       // Some intrinsics have a scalar argument - don't replace it with a
5007       // vector.
5008       Value *Arg;
5009       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5010         Arg = State.get(I.value(), Part);
5011       else {
5012         Arg = State.get(I.value(), VPIteration(0, 0));
5013         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5014           TysForDecl.push_back(Arg->getType());
5015       }
5016       Args.push_back(Arg);
5017     }
5018 
5019     Function *VectorF;
5020     if (UseVectorIntrinsic) {
5021       // Use vector version of the intrinsic.
5022       if (VF.isVector())
5023         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5024       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5025       assert(VectorF && "Can't retrieve vector intrinsic.");
5026     } else {
5027       // Use vector version of the function call.
5028       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5029 #ifndef NDEBUG
5030       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5031              "Can't create vector function.");
5032 #endif
5033         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5034     }
5035       SmallVector<OperandBundleDef, 1> OpBundles;
5036       CI->getOperandBundlesAsDefs(OpBundles);
5037       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5038 
5039       if (isa<FPMathOperator>(V))
5040         V->copyFastMathFlags(CI);
5041 
5042       State.set(Def, V, Part);
5043       addMetadata(V, &I);
5044   }
5045 }
5046 
5047 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5048                                                  VPUser &Operands,
5049                                                  bool InvariantCond,
5050                                                  VPTransformState &State) {
5051   setDebugLocFromInst(&I);
5052 
5053   // The condition can be loop invariant  but still defined inside the
5054   // loop. This means that we can't just use the original 'cond' value.
5055   // We have to take the 'vectorized' value and pick the first lane.
5056   // Instcombine will make this a no-op.
5057   auto *InvarCond = InvariantCond
5058                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5059                         : nullptr;
5060 
5061   for (unsigned Part = 0; Part < UF; ++Part) {
5062     Value *Cond =
5063         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5064     Value *Op0 = State.get(Operands.getOperand(1), Part);
5065     Value *Op1 = State.get(Operands.getOperand(2), Part);
5066     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5067     State.set(VPDef, Sel, Part);
5068     addMetadata(Sel, &I);
5069   }
5070 }
5071 
5072 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5073   // We should not collect Scalars more than once per VF. Right now, this
5074   // function is called from collectUniformsAndScalars(), which already does
5075   // this check. Collecting Scalars for VF=1 does not make any sense.
5076   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5077          "This function should not be visited twice for the same VF");
5078 
5079   SmallSetVector<Instruction *, 8> Worklist;
5080 
5081   // These sets are used to seed the analysis with pointers used by memory
5082   // accesses that will remain scalar.
5083   SmallSetVector<Instruction *, 8> ScalarPtrs;
5084   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5085   auto *Latch = TheLoop->getLoopLatch();
5086 
5087   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5088   // The pointer operands of loads and stores will be scalar as long as the
5089   // memory access is not a gather or scatter operation. The value operand of a
5090   // store will remain scalar if the store is scalarized.
5091   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5092     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5093     assert(WideningDecision != CM_Unknown &&
5094            "Widening decision should be ready at this moment");
5095     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5096       if (Ptr == Store->getValueOperand())
5097         return WideningDecision == CM_Scalarize;
5098     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5099            "Ptr is neither a value or pointer operand");
5100     return WideningDecision != CM_GatherScatter;
5101   };
5102 
5103   // A helper that returns true if the given value is a bitcast or
5104   // getelementptr instruction contained in the loop.
5105   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5106     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5107             isa<GetElementPtrInst>(V)) &&
5108            !TheLoop->isLoopInvariant(V);
5109   };
5110 
5111   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5112     if (!isa<PHINode>(Ptr) ||
5113         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5114       return false;
5115     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5116     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5117       return false;
5118     return isScalarUse(MemAccess, Ptr);
5119   };
5120 
5121   // A helper that evaluates a memory access's use of a pointer. If the
5122   // pointer is actually the pointer induction of a loop, it is being
5123   // inserted into Worklist. If the use will be a scalar use, and the
5124   // pointer is only used by memory accesses, we place the pointer in
5125   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5126   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5127     if (isScalarPtrInduction(MemAccess, Ptr)) {
5128       Worklist.insert(cast<Instruction>(Ptr));
5129       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5130                         << "\n");
5131 
5132       Instruction *Update = cast<Instruction>(
5133           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5134       ScalarPtrs.insert(Update);
5135       return;
5136     }
5137     // We only care about bitcast and getelementptr instructions contained in
5138     // the loop.
5139     if (!isLoopVaryingBitCastOrGEP(Ptr))
5140       return;
5141 
5142     // If the pointer has already been identified as scalar (e.g., if it was
5143     // also identified as uniform), there's nothing to do.
5144     auto *I = cast<Instruction>(Ptr);
5145     if (Worklist.count(I))
5146       return;
5147 
5148     // If the use of the pointer will be a scalar use, and all users of the
5149     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5150     // place the pointer in PossibleNonScalarPtrs.
5151     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5152           return isa<LoadInst>(U) || isa<StoreInst>(U);
5153         }))
5154       ScalarPtrs.insert(I);
5155     else
5156       PossibleNonScalarPtrs.insert(I);
5157   };
5158 
5159   // We seed the scalars analysis with three classes of instructions: (1)
5160   // instructions marked uniform-after-vectorization and (2) bitcast,
5161   // getelementptr and (pointer) phi instructions used by memory accesses
5162   // requiring a scalar use.
5163   //
5164   // (1) Add to the worklist all instructions that have been identified as
5165   // uniform-after-vectorization.
5166   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5167 
5168   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5169   // memory accesses requiring a scalar use. The pointer operands of loads and
5170   // stores will be scalar as long as the memory accesses is not a gather or
5171   // scatter operation. The value operand of a store will remain scalar if the
5172   // store is scalarized.
5173   for (auto *BB : TheLoop->blocks())
5174     for (auto &I : *BB) {
5175       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5176         evaluatePtrUse(Load, Load->getPointerOperand());
5177       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5178         evaluatePtrUse(Store, Store->getPointerOperand());
5179         evaluatePtrUse(Store, Store->getValueOperand());
5180       }
5181     }
5182   for (auto *I : ScalarPtrs)
5183     if (!PossibleNonScalarPtrs.count(I)) {
5184       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5185       Worklist.insert(I);
5186     }
5187 
5188   // Insert the forced scalars.
5189   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5190   // induction variable when the PHI user is scalarized.
5191   auto ForcedScalar = ForcedScalars.find(VF);
5192   if (ForcedScalar != ForcedScalars.end())
5193     for (auto *I : ForcedScalar->second)
5194       Worklist.insert(I);
5195 
5196   // Expand the worklist by looking through any bitcasts and getelementptr
5197   // instructions we've already identified as scalar. This is similar to the
5198   // expansion step in collectLoopUniforms(); however, here we're only
5199   // expanding to include additional bitcasts and getelementptr instructions.
5200   unsigned Idx = 0;
5201   while (Idx != Worklist.size()) {
5202     Instruction *Dst = Worklist[Idx++];
5203     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5204       continue;
5205     auto *Src = cast<Instruction>(Dst->getOperand(0));
5206     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5207           auto *J = cast<Instruction>(U);
5208           return !TheLoop->contains(J) || Worklist.count(J) ||
5209                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5210                   isScalarUse(J, Src));
5211         })) {
5212       Worklist.insert(Src);
5213       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5214     }
5215   }
5216 
5217   // An induction variable will remain scalar if all users of the induction
5218   // variable and induction variable update remain scalar.
5219   for (auto &Induction : Legal->getInductionVars()) {
5220     auto *Ind = Induction.first;
5221     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5222 
5223     // If tail-folding is applied, the primary induction variable will be used
5224     // to feed a vector compare.
5225     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5226       continue;
5227 
5228     // Determine if all users of the induction variable are scalar after
5229     // vectorization.
5230     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5231       auto *I = cast<Instruction>(U);
5232       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5233     });
5234     if (!ScalarInd)
5235       continue;
5236 
5237     // Determine if all users of the induction variable update instruction are
5238     // scalar after vectorization.
5239     auto ScalarIndUpdate =
5240         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5241           auto *I = cast<Instruction>(U);
5242           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5243         });
5244     if (!ScalarIndUpdate)
5245       continue;
5246 
5247     // The induction variable and its update instruction will remain scalar.
5248     Worklist.insert(Ind);
5249     Worklist.insert(IndUpdate);
5250     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5251     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5252                       << "\n");
5253   }
5254 
5255   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5256 }
5257 
5258 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5259   if (!blockNeedsPredication(I->getParent()))
5260     return false;
5261   switch(I->getOpcode()) {
5262   default:
5263     break;
5264   case Instruction::Load:
5265   case Instruction::Store: {
5266     if (!Legal->isMaskRequired(I))
5267       return false;
5268     auto *Ptr = getLoadStorePointerOperand(I);
5269     auto *Ty = getLoadStoreType(I);
5270     const Align Alignment = getLoadStoreAlignment(I);
5271     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5272                                 TTI.isLegalMaskedGather(Ty, Alignment))
5273                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5274                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5275   }
5276   case Instruction::UDiv:
5277   case Instruction::SDiv:
5278   case Instruction::SRem:
5279   case Instruction::URem:
5280     return mayDivideByZero(*I);
5281   }
5282   return false;
5283 }
5284 
5285 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5286     Instruction *I, ElementCount VF) {
5287   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5288   assert(getWideningDecision(I, VF) == CM_Unknown &&
5289          "Decision should not be set yet.");
5290   auto *Group = getInterleavedAccessGroup(I);
5291   assert(Group && "Must have a group.");
5292 
5293   // If the instruction's allocated size doesn't equal it's type size, it
5294   // requires padding and will be scalarized.
5295   auto &DL = I->getModule()->getDataLayout();
5296   auto *ScalarTy = getLoadStoreType(I);
5297   if (hasIrregularType(ScalarTy, DL))
5298     return false;
5299 
5300   // Check if masking is required.
5301   // A Group may need masking for one of two reasons: it resides in a block that
5302   // needs predication, or it was decided to use masking to deal with gaps
5303   // (either a gap at the end of a load-access that may result in a speculative
5304   // load, or any gaps in a store-access).
5305   bool PredicatedAccessRequiresMasking =
5306       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5307   bool LoadAccessWithGapsRequiresEpilogMasking =
5308       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
5309       !isScalarEpilogueAllowed();
5310   bool StoreAccessWithGapsRequiresMasking =
5311       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
5312   if (!PredicatedAccessRequiresMasking &&
5313       !LoadAccessWithGapsRequiresEpilogMasking &&
5314       !StoreAccessWithGapsRequiresMasking)
5315     return true;
5316 
5317   // If masked interleaving is required, we expect that the user/target had
5318   // enabled it, because otherwise it either wouldn't have been created or
5319   // it should have been invalidated by the CostModel.
5320   assert(useMaskedInterleavedAccesses(TTI) &&
5321          "Masked interleave-groups for predicated accesses are not enabled.");
5322 
5323   auto *Ty = getLoadStoreType(I);
5324   const Align Alignment = getLoadStoreAlignment(I);
5325   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5326                           : TTI.isLegalMaskedStore(Ty, Alignment);
5327 }
5328 
5329 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5330     Instruction *I, ElementCount VF) {
5331   // Get and ensure we have a valid memory instruction.
5332   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
5333 
5334   auto *Ptr = getLoadStorePointerOperand(I);
5335   auto *ScalarTy = getLoadStoreType(I);
5336 
5337   // In order to be widened, the pointer should be consecutive, first of all.
5338   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
5339     return false;
5340 
5341   // If the instruction is a store located in a predicated block, it will be
5342   // scalarized.
5343   if (isScalarWithPredication(I))
5344     return false;
5345 
5346   // If the instruction's allocated size doesn't equal it's type size, it
5347   // requires padding and will be scalarized.
5348   auto &DL = I->getModule()->getDataLayout();
5349   if (hasIrregularType(ScalarTy, DL))
5350     return false;
5351 
5352   return true;
5353 }
5354 
5355 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5356   // We should not collect Uniforms more than once per VF. Right now,
5357   // this function is called from collectUniformsAndScalars(), which
5358   // already does this check. Collecting Uniforms for VF=1 does not make any
5359   // sense.
5360 
5361   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5362          "This function should not be visited twice for the same VF");
5363 
5364   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5365   // not analyze again.  Uniforms.count(VF) will return 1.
5366   Uniforms[VF].clear();
5367 
5368   // We now know that the loop is vectorizable!
5369   // Collect instructions inside the loop that will remain uniform after
5370   // vectorization.
5371 
5372   // Global values, params and instructions outside of current loop are out of
5373   // scope.
5374   auto isOutOfScope = [&](Value *V) -> bool {
5375     Instruction *I = dyn_cast<Instruction>(V);
5376     return (!I || !TheLoop->contains(I));
5377   };
5378 
5379   SetVector<Instruction *> Worklist;
5380   BasicBlock *Latch = TheLoop->getLoopLatch();
5381 
5382   // Instructions that are scalar with predication must not be considered
5383   // uniform after vectorization, because that would create an erroneous
5384   // replicating region where only a single instance out of VF should be formed.
5385   // TODO: optimize such seldom cases if found important, see PR40816.
5386   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5387     if (isOutOfScope(I)) {
5388       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5389                         << *I << "\n");
5390       return;
5391     }
5392     if (isScalarWithPredication(I)) {
5393       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5394                         << *I << "\n");
5395       return;
5396     }
5397     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5398     Worklist.insert(I);
5399   };
5400 
5401   // Start with the conditional branch. If the branch condition is an
5402   // instruction contained in the loop that is only used by the branch, it is
5403   // uniform.
5404   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5405   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5406     addToWorklistIfAllowed(Cmp);
5407 
5408   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5409     InstWidening WideningDecision = getWideningDecision(I, VF);
5410     assert(WideningDecision != CM_Unknown &&
5411            "Widening decision should be ready at this moment");
5412 
5413     // A uniform memory op is itself uniform.  We exclude uniform stores
5414     // here as they demand the last lane, not the first one.
5415     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5416       assert(WideningDecision == CM_Scalarize);
5417       return true;
5418     }
5419 
5420     return (WideningDecision == CM_Widen ||
5421             WideningDecision == CM_Widen_Reverse ||
5422             WideningDecision == CM_Interleave);
5423   };
5424 
5425 
5426   // Returns true if Ptr is the pointer operand of a memory access instruction
5427   // I, and I is known to not require scalarization.
5428   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5429     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5430   };
5431 
5432   // Holds a list of values which are known to have at least one uniform use.
5433   // Note that there may be other uses which aren't uniform.  A "uniform use"
5434   // here is something which only demands lane 0 of the unrolled iterations;
5435   // it does not imply that all lanes produce the same value (e.g. this is not
5436   // the usual meaning of uniform)
5437   SetVector<Value *> HasUniformUse;
5438 
5439   // Scan the loop for instructions which are either a) known to have only
5440   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5441   for (auto *BB : TheLoop->blocks())
5442     for (auto &I : *BB) {
5443       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5444         switch (II->getIntrinsicID()) {
5445         case Intrinsic::sideeffect:
5446         case Intrinsic::experimental_noalias_scope_decl:
5447         case Intrinsic::assume:
5448         case Intrinsic::lifetime_start:
5449         case Intrinsic::lifetime_end:
5450           if (TheLoop->hasLoopInvariantOperands(&I))
5451             addToWorklistIfAllowed(&I);
5452           break;
5453         default:
5454           break;
5455         }
5456       }
5457 
5458       // ExtractValue instructions must be uniform, because the operands are
5459       // known to be loop-invariant.
5460       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5461         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5462                "Expected aggregate value to be loop invariant");
5463         addToWorklistIfAllowed(EVI);
5464         continue;
5465       }
5466 
5467       // If there's no pointer operand, there's nothing to do.
5468       auto *Ptr = getLoadStorePointerOperand(&I);
5469       if (!Ptr)
5470         continue;
5471 
5472       // A uniform memory op is itself uniform.  We exclude uniform stores
5473       // here as they demand the last lane, not the first one.
5474       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5475         addToWorklistIfAllowed(&I);
5476 
5477       if (isUniformDecision(&I, VF)) {
5478         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5479         HasUniformUse.insert(Ptr);
5480       }
5481     }
5482 
5483   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5484   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5485   // disallows uses outside the loop as well.
5486   for (auto *V : HasUniformUse) {
5487     if (isOutOfScope(V))
5488       continue;
5489     auto *I = cast<Instruction>(V);
5490     auto UsersAreMemAccesses =
5491       llvm::all_of(I->users(), [&](User *U) -> bool {
5492         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5493       });
5494     if (UsersAreMemAccesses)
5495       addToWorklistIfAllowed(I);
5496   }
5497 
5498   // Expand Worklist in topological order: whenever a new instruction
5499   // is added , its users should be already inside Worklist.  It ensures
5500   // a uniform instruction will only be used by uniform instructions.
5501   unsigned idx = 0;
5502   while (idx != Worklist.size()) {
5503     Instruction *I = Worklist[idx++];
5504 
5505     for (auto OV : I->operand_values()) {
5506       // isOutOfScope operands cannot be uniform instructions.
5507       if (isOutOfScope(OV))
5508         continue;
5509       // First order recurrence Phi's should typically be considered
5510       // non-uniform.
5511       auto *OP = dyn_cast<PHINode>(OV);
5512       if (OP && Legal->isFirstOrderRecurrence(OP))
5513         continue;
5514       // If all the users of the operand are uniform, then add the
5515       // operand into the uniform worklist.
5516       auto *OI = cast<Instruction>(OV);
5517       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5518             auto *J = cast<Instruction>(U);
5519             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5520           }))
5521         addToWorklistIfAllowed(OI);
5522     }
5523   }
5524 
5525   // For an instruction to be added into Worklist above, all its users inside
5526   // the loop should also be in Worklist. However, this condition cannot be
5527   // true for phi nodes that form a cyclic dependence. We must process phi
5528   // nodes separately. An induction variable will remain uniform if all users
5529   // of the induction variable and induction variable update remain uniform.
5530   // The code below handles both pointer and non-pointer induction variables.
5531   for (auto &Induction : Legal->getInductionVars()) {
5532     auto *Ind = Induction.first;
5533     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5534 
5535     // Determine if all users of the induction variable are uniform after
5536     // vectorization.
5537     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5538       auto *I = cast<Instruction>(U);
5539       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5540              isVectorizedMemAccessUse(I, Ind);
5541     });
5542     if (!UniformInd)
5543       continue;
5544 
5545     // Determine if all users of the induction variable update instruction are
5546     // uniform after vectorization.
5547     auto UniformIndUpdate =
5548         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5549           auto *I = cast<Instruction>(U);
5550           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5551                  isVectorizedMemAccessUse(I, IndUpdate);
5552         });
5553     if (!UniformIndUpdate)
5554       continue;
5555 
5556     // The induction variable and its update instruction will remain uniform.
5557     addToWorklistIfAllowed(Ind);
5558     addToWorklistIfAllowed(IndUpdate);
5559   }
5560 
5561   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5562 }
5563 
5564 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5565   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5566 
5567   if (Legal->getRuntimePointerChecking()->Need) {
5568     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5569         "runtime pointer checks needed. Enable vectorization of this "
5570         "loop with '#pragma clang loop vectorize(enable)' when "
5571         "compiling with -Os/-Oz",
5572         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5573     return true;
5574   }
5575 
5576   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5577     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5578         "runtime SCEV checks needed. Enable vectorization of this "
5579         "loop with '#pragma clang loop vectorize(enable)' when "
5580         "compiling with -Os/-Oz",
5581         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5582     return true;
5583   }
5584 
5585   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5586   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5587     reportVectorizationFailure("Runtime stride check for small trip count",
5588         "runtime stride == 1 checks needed. Enable vectorization of "
5589         "this loop without such check by compiling with -Os/-Oz",
5590         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5591     return true;
5592   }
5593 
5594   return false;
5595 }
5596 
5597 ElementCount
5598 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5599   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5600     return ElementCount::getScalable(0);
5601 
5602   if (Hints->isScalableVectorizationDisabled()) {
5603     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5604                             "ScalableVectorizationDisabled", ORE, TheLoop);
5605     return ElementCount::getScalable(0);
5606   }
5607 
5608   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5609 
5610   auto MaxScalableVF = ElementCount::getScalable(
5611       std::numeric_limits<ElementCount::ScalarTy>::max());
5612 
5613   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5614   // FIXME: While for scalable vectors this is currently sufficient, this should
5615   // be replaced by a more detailed mechanism that filters out specific VFs,
5616   // instead of invalidating vectorization for a whole set of VFs based on the
5617   // MaxVF.
5618 
5619   // Disable scalable vectorization if the loop contains unsupported reductions.
5620   if (!canVectorizeReductions(MaxScalableVF)) {
5621     reportVectorizationInfo(
5622         "Scalable vectorization not supported for the reduction "
5623         "operations found in this loop.",
5624         "ScalableVFUnfeasible", ORE, TheLoop);
5625     return ElementCount::getScalable(0);
5626   }
5627 
5628   // Disable scalable vectorization if the loop contains any instructions
5629   // with element types not supported for scalable vectors.
5630   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5631         return !Ty->isVoidTy() &&
5632                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5633       })) {
5634     reportVectorizationInfo("Scalable vectorization is not supported "
5635                             "for all element types found in this loop.",
5636                             "ScalableVFUnfeasible", ORE, TheLoop);
5637     return ElementCount::getScalable(0);
5638   }
5639 
5640   if (Legal->isSafeForAnyVectorWidth())
5641     return MaxScalableVF;
5642 
5643   // Limit MaxScalableVF by the maximum safe dependence distance.
5644   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5645   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5646     unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange)
5647                              .getVScaleRangeArgs()
5648                              .second;
5649     if (VScaleMax > 0)
5650       MaxVScale = VScaleMax;
5651   }
5652   MaxScalableVF = ElementCount::getScalable(
5653       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5654   if (!MaxScalableVF)
5655     reportVectorizationInfo(
5656         "Max legal vector width too small, scalable vectorization "
5657         "unfeasible.",
5658         "ScalableVFUnfeasible", ORE, TheLoop);
5659 
5660   return MaxScalableVF;
5661 }
5662 
5663 FixedScalableVFPair
5664 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5665                                                  ElementCount UserVF) {
5666   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5667   unsigned SmallestType, WidestType;
5668   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5669 
5670   // Get the maximum safe dependence distance in bits computed by LAA.
5671   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5672   // the memory accesses that is most restrictive (involved in the smallest
5673   // dependence distance).
5674   unsigned MaxSafeElements =
5675       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5676 
5677   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5678   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5679 
5680   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5681                     << ".\n");
5682   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5683                     << ".\n");
5684 
5685   // First analyze the UserVF, fall back if the UserVF should be ignored.
5686   if (UserVF) {
5687     auto MaxSafeUserVF =
5688         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5689 
5690     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5691       // If `VF=vscale x N` is safe, then so is `VF=N`
5692       if (UserVF.isScalable())
5693         return FixedScalableVFPair(
5694             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5695       else
5696         return UserVF;
5697     }
5698 
5699     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5700 
5701     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5702     // is better to ignore the hint and let the compiler choose a suitable VF.
5703     if (!UserVF.isScalable()) {
5704       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5705                         << " is unsafe, clamping to max safe VF="
5706                         << MaxSafeFixedVF << ".\n");
5707       ORE->emit([&]() {
5708         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5709                                           TheLoop->getStartLoc(),
5710                                           TheLoop->getHeader())
5711                << "User-specified vectorization factor "
5712                << ore::NV("UserVectorizationFactor", UserVF)
5713                << " is unsafe, clamping to maximum safe vectorization factor "
5714                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5715       });
5716       return MaxSafeFixedVF;
5717     }
5718 
5719     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5720       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5721                         << " is ignored because scalable vectors are not "
5722                            "available.\n");
5723       ORE->emit([&]() {
5724         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5725                                           TheLoop->getStartLoc(),
5726                                           TheLoop->getHeader())
5727                << "User-specified vectorization factor "
5728                << ore::NV("UserVectorizationFactor", UserVF)
5729                << " is ignored because the target does not support scalable "
5730                   "vectors. The compiler will pick a more suitable value.";
5731       });
5732     } else {
5733       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5734                         << " is unsafe. Ignoring scalable UserVF.\n");
5735       ORE->emit([&]() {
5736         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5737                                           TheLoop->getStartLoc(),
5738                                           TheLoop->getHeader())
5739                << "User-specified vectorization factor "
5740                << ore::NV("UserVectorizationFactor", UserVF)
5741                << " is unsafe. Ignoring the hint to let the compiler pick a "
5742                   "more suitable value.";
5743       });
5744     }
5745   }
5746 
5747   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5748                     << " / " << WidestType << " bits.\n");
5749 
5750   FixedScalableVFPair Result(ElementCount::getFixed(1),
5751                              ElementCount::getScalable(0));
5752   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5753                                            WidestType, MaxSafeFixedVF))
5754     Result.FixedVF = MaxVF;
5755 
5756   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5757                                            WidestType, MaxSafeScalableVF))
5758     if (MaxVF.isScalable()) {
5759       Result.ScalableVF = MaxVF;
5760       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5761                         << "\n");
5762     }
5763 
5764   return Result;
5765 }
5766 
5767 FixedScalableVFPair
5768 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5769   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5770     // TODO: It may by useful to do since it's still likely to be dynamically
5771     // uniform if the target can skip.
5772     reportVectorizationFailure(
5773         "Not inserting runtime ptr check for divergent target",
5774         "runtime pointer checks needed. Not enabled for divergent target",
5775         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5776     return FixedScalableVFPair::getNone();
5777   }
5778 
5779   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5780   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5781   if (TC == 1) {
5782     reportVectorizationFailure("Single iteration (non) loop",
5783         "loop trip count is one, irrelevant for vectorization",
5784         "SingleIterationLoop", ORE, TheLoop);
5785     return FixedScalableVFPair::getNone();
5786   }
5787 
5788   switch (ScalarEpilogueStatus) {
5789   case CM_ScalarEpilogueAllowed:
5790     return computeFeasibleMaxVF(TC, UserVF);
5791   case CM_ScalarEpilogueNotAllowedUsePredicate:
5792     LLVM_FALLTHROUGH;
5793   case CM_ScalarEpilogueNotNeededUsePredicate:
5794     LLVM_DEBUG(
5795         dbgs() << "LV: vector predicate hint/switch found.\n"
5796                << "LV: Not allowing scalar epilogue, creating predicated "
5797                << "vector loop.\n");
5798     break;
5799   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5800     // fallthrough as a special case of OptForSize
5801   case CM_ScalarEpilogueNotAllowedOptSize:
5802     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5803       LLVM_DEBUG(
5804           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5805     else
5806       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5807                         << "count.\n");
5808 
5809     // Bail if runtime checks are required, which are not good when optimising
5810     // for size.
5811     if (runtimeChecksRequired())
5812       return FixedScalableVFPair::getNone();
5813 
5814     break;
5815   }
5816 
5817   // The only loops we can vectorize without a scalar epilogue, are loops with
5818   // a bottom-test and a single exiting block. We'd have to handle the fact
5819   // that not every instruction executes on the last iteration.  This will
5820   // require a lane mask which varies through the vector loop body.  (TODO)
5821   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5822     // If there was a tail-folding hint/switch, but we can't fold the tail by
5823     // masking, fallback to a vectorization with a scalar epilogue.
5824     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5825       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5826                            "scalar epilogue instead.\n");
5827       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5828       return computeFeasibleMaxVF(TC, UserVF);
5829     }
5830     return FixedScalableVFPair::getNone();
5831   }
5832 
5833   // Now try the tail folding
5834 
5835   // Invalidate interleave groups that require an epilogue if we can't mask
5836   // the interleave-group.
5837   if (!useMaskedInterleavedAccesses(TTI)) {
5838     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5839            "No decisions should have been taken at this point");
5840     // Note: There is no need to invalidate any cost modeling decisions here, as
5841     // non where taken so far.
5842     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5843   }
5844 
5845   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5846   // Avoid tail folding if the trip count is known to be a multiple of any VF
5847   // we chose.
5848   // FIXME: The condition below pessimises the case for fixed-width vectors,
5849   // when scalable VFs are also candidates for vectorization.
5850   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5851     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5852     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5853            "MaxFixedVF must be a power of 2");
5854     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5855                                    : MaxFixedVF.getFixedValue();
5856     ScalarEvolution *SE = PSE.getSE();
5857     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5858     const SCEV *ExitCount = SE->getAddExpr(
5859         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5860     const SCEV *Rem = SE->getURemExpr(
5861         SE->applyLoopGuards(ExitCount, TheLoop),
5862         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5863     if (Rem->isZero()) {
5864       // Accept MaxFixedVF if we do not have a tail.
5865       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5866       return MaxFactors;
5867     }
5868   }
5869 
5870   // For scalable vectors, don't use tail folding as this is currently not yet
5871   // supported. The code is likely to have ended up here if the tripcount is
5872   // low, in which case it makes sense not to use scalable vectors.
5873   if (MaxFactors.ScalableVF.isVector())
5874     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5875 
5876   // If we don't know the precise trip count, or if the trip count that we
5877   // found modulo the vectorization factor is not zero, try to fold the tail
5878   // by masking.
5879   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5880   if (Legal->prepareToFoldTailByMasking()) {
5881     FoldTailByMasking = true;
5882     return MaxFactors;
5883   }
5884 
5885   // If there was a tail-folding hint/switch, but we can't fold the tail by
5886   // masking, fallback to a vectorization with a scalar epilogue.
5887   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5888     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5889                          "scalar epilogue instead.\n");
5890     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5891     return MaxFactors;
5892   }
5893 
5894   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5895     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5896     return FixedScalableVFPair::getNone();
5897   }
5898 
5899   if (TC == 0) {
5900     reportVectorizationFailure(
5901         "Unable to calculate the loop count due to complex control flow",
5902         "unable to calculate the loop count due to complex control flow",
5903         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5904     return FixedScalableVFPair::getNone();
5905   }
5906 
5907   reportVectorizationFailure(
5908       "Cannot optimize for size and vectorize at the same time.",
5909       "cannot optimize for size and vectorize at the same time. "
5910       "Enable vectorization of this loop with '#pragma clang loop "
5911       "vectorize(enable)' when compiling with -Os/-Oz",
5912       "NoTailLoopWithOptForSize", ORE, TheLoop);
5913   return FixedScalableVFPair::getNone();
5914 }
5915 
5916 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5917     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5918     const ElementCount &MaxSafeVF) {
5919   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5920   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5921       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5922                            : TargetTransformInfo::RGK_FixedWidthVector);
5923 
5924   // Convenience function to return the minimum of two ElementCounts.
5925   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5926     assert((LHS.isScalable() == RHS.isScalable()) &&
5927            "Scalable flags must match");
5928     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5929   };
5930 
5931   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5932   // Note that both WidestRegister and WidestType may not be a powers of 2.
5933   auto MaxVectorElementCount = ElementCount::get(
5934       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5935       ComputeScalableMaxVF);
5936   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5937   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5938                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5939 
5940   if (!MaxVectorElementCount) {
5941     LLVM_DEBUG(dbgs() << "LV: The target has no "
5942                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5943                       << " vector registers.\n");
5944     return ElementCount::getFixed(1);
5945   }
5946 
5947   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5948   if (ConstTripCount &&
5949       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5950       isPowerOf2_32(ConstTripCount)) {
5951     // We need to clamp the VF to be the ConstTripCount. There is no point in
5952     // choosing a higher viable VF as done in the loop below. If
5953     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5954     // the TC is less than or equal to the known number of lanes.
5955     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5956                       << ConstTripCount << "\n");
5957     return TripCountEC;
5958   }
5959 
5960   ElementCount MaxVF = MaxVectorElementCount;
5961   if (TTI.shouldMaximizeVectorBandwidth() ||
5962       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5963     auto MaxVectorElementCountMaxBW = ElementCount::get(
5964         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5965         ComputeScalableMaxVF);
5966     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5967 
5968     // Collect all viable vectorization factors larger than the default MaxVF
5969     // (i.e. MaxVectorElementCount).
5970     SmallVector<ElementCount, 8> VFs;
5971     for (ElementCount VS = MaxVectorElementCount * 2;
5972          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5973       VFs.push_back(VS);
5974 
5975     // For each VF calculate its register usage.
5976     auto RUs = calculateRegisterUsage(VFs);
5977 
5978     // Select the largest VF which doesn't require more registers than existing
5979     // ones.
5980     for (int i = RUs.size() - 1; i >= 0; --i) {
5981       bool Selected = true;
5982       for (auto &pair : RUs[i].MaxLocalUsers) {
5983         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5984         if (pair.second > TargetNumRegisters)
5985           Selected = false;
5986       }
5987       if (Selected) {
5988         MaxVF = VFs[i];
5989         break;
5990       }
5991     }
5992     if (ElementCount MinVF =
5993             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5994       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5995         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5996                           << ") with target's minimum: " << MinVF << '\n');
5997         MaxVF = MinVF;
5998       }
5999     }
6000   }
6001   return MaxVF;
6002 }
6003 
6004 bool LoopVectorizationCostModel::isMoreProfitable(
6005     const VectorizationFactor &A, const VectorizationFactor &B) const {
6006   InstructionCost CostA = A.Cost;
6007   InstructionCost CostB = B.Cost;
6008 
6009   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
6010 
6011   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
6012       MaxTripCount) {
6013     // If we are folding the tail and the trip count is a known (possibly small)
6014     // constant, the trip count will be rounded up to an integer number of
6015     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
6016     // which we compare directly. When not folding the tail, the total cost will
6017     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
6018     // approximated with the per-lane cost below instead of using the tripcount
6019     // as here.
6020     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
6021     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
6022     return RTCostA < RTCostB;
6023   }
6024 
6025   // When set to preferred, for now assume vscale may be larger than 1, so
6026   // that scalable vectorization is slightly favorable over fixed-width
6027   // vectorization.
6028   if (Hints->isScalableVectorizationPreferred())
6029     if (A.Width.isScalable() && !B.Width.isScalable())
6030       return (CostA * B.Width.getKnownMinValue()) <=
6031              (CostB * A.Width.getKnownMinValue());
6032 
6033   // To avoid the need for FP division:
6034   //      (CostA / A.Width) < (CostB / B.Width)
6035   // <=>  (CostA * B.Width) < (CostB * A.Width)
6036   return (CostA * B.Width.getKnownMinValue()) <
6037          (CostB * A.Width.getKnownMinValue());
6038 }
6039 
6040 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
6041     const ElementCountSet &VFCandidates) {
6042   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
6043   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
6044   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
6045   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
6046          "Expected Scalar VF to be a candidate");
6047 
6048   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
6049   VectorizationFactor ChosenFactor = ScalarCost;
6050 
6051   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6052   if (ForceVectorization && VFCandidates.size() > 1) {
6053     // Ignore scalar width, because the user explicitly wants vectorization.
6054     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6055     // evaluation.
6056     ChosenFactor.Cost = InstructionCost::getMax();
6057   }
6058 
6059   SmallVector<InstructionVFPair> InvalidCosts;
6060   for (const auto &i : VFCandidates) {
6061     // The cost for scalar VF=1 is already calculated, so ignore it.
6062     if (i.isScalar())
6063       continue;
6064 
6065     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6066     VectorizationFactor Candidate(i, C.first);
6067     LLVM_DEBUG(
6068         dbgs() << "LV: Vector loop of width " << i << " costs: "
6069                << (Candidate.Cost / Candidate.Width.getKnownMinValue())
6070                << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "")
6071                << ".\n");
6072 
6073     if (!C.second && !ForceVectorization) {
6074       LLVM_DEBUG(
6075           dbgs() << "LV: Not considering vector loop of width " << i
6076                  << " because it will not generate any vector instructions.\n");
6077       continue;
6078     }
6079 
6080     // If profitable add it to ProfitableVF list.
6081     if (isMoreProfitable(Candidate, ScalarCost))
6082       ProfitableVFs.push_back(Candidate);
6083 
6084     if (isMoreProfitable(Candidate, ChosenFactor))
6085       ChosenFactor = Candidate;
6086   }
6087 
6088   // Emit a report of VFs with invalid costs in the loop.
6089   if (!InvalidCosts.empty()) {
6090     // Group the remarks per instruction, keeping the instruction order from
6091     // InvalidCosts.
6092     std::map<Instruction *, unsigned> Numbering;
6093     unsigned I = 0;
6094     for (auto &Pair : InvalidCosts)
6095       if (!Numbering.count(Pair.first))
6096         Numbering[Pair.first] = I++;
6097 
6098     // Sort the list, first on instruction(number) then on VF.
6099     llvm::sort(InvalidCosts,
6100                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6101                  if (Numbering[A.first] != Numbering[B.first])
6102                    return Numbering[A.first] < Numbering[B.first];
6103                  ElementCountComparator ECC;
6104                  return ECC(A.second, B.second);
6105                });
6106 
6107     // For a list of ordered instruction-vf pairs:
6108     //   [(load, vf1), (load, vf2), (store, vf1)]
6109     // Group the instructions together to emit separate remarks for:
6110     //   load  (vf1, vf2)
6111     //   store (vf1)
6112     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6113     auto Subset = ArrayRef<InstructionVFPair>();
6114     do {
6115       if (Subset.empty())
6116         Subset = Tail.take_front(1);
6117 
6118       Instruction *I = Subset.front().first;
6119 
6120       // If the next instruction is different, or if there are no other pairs,
6121       // emit a remark for the collated subset. e.g.
6122       //   [(load, vf1), (load, vf2))]
6123       // to emit:
6124       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6125       if (Subset == Tail || Tail[Subset.size()].first != I) {
6126         std::string OutString;
6127         raw_string_ostream OS(OutString);
6128         assert(!Subset.empty() && "Unexpected empty range");
6129         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6130         for (auto &Pair : Subset)
6131           OS << (Pair.second == Subset.front().second ? "" : ", ")
6132              << Pair.second;
6133         OS << "):";
6134         if (auto *CI = dyn_cast<CallInst>(I))
6135           OS << " call to " << CI->getCalledFunction()->getName();
6136         else
6137           OS << " " << I->getOpcodeName();
6138         OS.flush();
6139         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6140         Tail = Tail.drop_front(Subset.size());
6141         Subset = {};
6142       } else
6143         // Grow the subset by one element
6144         Subset = Tail.take_front(Subset.size() + 1);
6145     } while (!Tail.empty());
6146   }
6147 
6148   if (!EnableCondStoresVectorization && NumPredStores) {
6149     reportVectorizationFailure("There are conditional stores.",
6150         "store that is conditionally executed prevents vectorization",
6151         "ConditionalStore", ORE, TheLoop);
6152     ChosenFactor = ScalarCost;
6153   }
6154 
6155   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6156                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6157              << "LV: Vectorization seems to be not beneficial, "
6158              << "but was forced by a user.\n");
6159   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6160   return ChosenFactor;
6161 }
6162 
6163 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6164     const Loop &L, ElementCount VF) const {
6165   // Cross iteration phis such as reductions need special handling and are
6166   // currently unsupported.
6167   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6168         return Legal->isFirstOrderRecurrence(&Phi) ||
6169                Legal->isReductionVariable(&Phi);
6170       }))
6171     return false;
6172 
6173   // Phis with uses outside of the loop require special handling and are
6174   // currently unsupported.
6175   for (auto &Entry : Legal->getInductionVars()) {
6176     // Look for uses of the value of the induction at the last iteration.
6177     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6178     for (User *U : PostInc->users())
6179       if (!L.contains(cast<Instruction>(U)))
6180         return false;
6181     // Look for uses of penultimate value of the induction.
6182     for (User *U : Entry.first->users())
6183       if (!L.contains(cast<Instruction>(U)))
6184         return false;
6185   }
6186 
6187   // Induction variables that are widened require special handling that is
6188   // currently not supported.
6189   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6190         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6191                  this->isProfitableToScalarize(Entry.first, VF));
6192       }))
6193     return false;
6194 
6195   // Epilogue vectorization code has not been auditted to ensure it handles
6196   // non-latch exits properly.  It may be fine, but it needs auditted and
6197   // tested.
6198   if (L.getExitingBlock() != L.getLoopLatch())
6199     return false;
6200 
6201   return true;
6202 }
6203 
6204 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6205     const ElementCount VF) const {
6206   // FIXME: We need a much better cost-model to take different parameters such
6207   // as register pressure, code size increase and cost of extra branches into
6208   // account. For now we apply a very crude heuristic and only consider loops
6209   // with vectorization factors larger than a certain value.
6210   // We also consider epilogue vectorization unprofitable for targets that don't
6211   // consider interleaving beneficial (eg. MVE).
6212   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6213     return false;
6214   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6215     return true;
6216   return false;
6217 }
6218 
6219 VectorizationFactor
6220 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6221     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6222   VectorizationFactor Result = VectorizationFactor::Disabled();
6223   if (!EnableEpilogueVectorization) {
6224     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6225     return Result;
6226   }
6227 
6228   if (!isScalarEpilogueAllowed()) {
6229     LLVM_DEBUG(
6230         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6231                   "allowed.\n";);
6232     return Result;
6233   }
6234 
6235   // FIXME: This can be fixed for scalable vectors later, because at this stage
6236   // the LoopVectorizer will only consider vectorizing a loop with scalable
6237   // vectors when the loop has a hint to enable vectorization for a given VF.
6238   if (MainLoopVF.isScalable()) {
6239     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6240                          "yet supported.\n");
6241     return Result;
6242   }
6243 
6244   // Not really a cost consideration, but check for unsupported cases here to
6245   // simplify the logic.
6246   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6247     LLVM_DEBUG(
6248         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6249                   "not a supported candidate.\n";);
6250     return Result;
6251   }
6252 
6253   if (EpilogueVectorizationForceVF > 1) {
6254     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6255     if (LVP.hasPlanWithVFs(
6256             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
6257       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
6258     else {
6259       LLVM_DEBUG(
6260           dbgs()
6261               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6262       return Result;
6263     }
6264   }
6265 
6266   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6267       TheLoop->getHeader()->getParent()->hasMinSize()) {
6268     LLVM_DEBUG(
6269         dbgs()
6270             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6271     return Result;
6272   }
6273 
6274   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6275     return Result;
6276 
6277   for (auto &NextVF : ProfitableVFs)
6278     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6279         (Result.Width.getFixedValue() == 1 ||
6280          isMoreProfitable(NextVF, Result)) &&
6281         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6282       Result = NextVF;
6283 
6284   if (Result != VectorizationFactor::Disabled())
6285     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6286                       << Result.Width.getFixedValue() << "\n";);
6287   return Result;
6288 }
6289 
6290 std::pair<unsigned, unsigned>
6291 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6292   unsigned MinWidth = -1U;
6293   unsigned MaxWidth = 8;
6294   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6295   for (Type *T : ElementTypesInLoop) {
6296     MinWidth = std::min<unsigned>(
6297         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6298     MaxWidth = std::max<unsigned>(
6299         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6300   }
6301   return {MinWidth, MaxWidth};
6302 }
6303 
6304 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6305   ElementTypesInLoop.clear();
6306   // For each block.
6307   for (BasicBlock *BB : TheLoop->blocks()) {
6308     // For each instruction in the loop.
6309     for (Instruction &I : BB->instructionsWithoutDebug()) {
6310       Type *T = I.getType();
6311 
6312       // Skip ignored values.
6313       if (ValuesToIgnore.count(&I))
6314         continue;
6315 
6316       // Only examine Loads, Stores and PHINodes.
6317       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6318         continue;
6319 
6320       // Examine PHI nodes that are reduction variables. Update the type to
6321       // account for the recurrence type.
6322       if (auto *PN = dyn_cast<PHINode>(&I)) {
6323         if (!Legal->isReductionVariable(PN))
6324           continue;
6325         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6326         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6327             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6328                                       RdxDesc.getRecurrenceType(),
6329                                       TargetTransformInfo::ReductionFlags()))
6330           continue;
6331         T = RdxDesc.getRecurrenceType();
6332       }
6333 
6334       // Examine the stored values.
6335       if (auto *ST = dyn_cast<StoreInst>(&I))
6336         T = ST->getValueOperand()->getType();
6337 
6338       // Ignore loaded pointer types and stored pointer types that are not
6339       // vectorizable.
6340       //
6341       // FIXME: The check here attempts to predict whether a load or store will
6342       //        be vectorized. We only know this for certain after a VF has
6343       //        been selected. Here, we assume that if an access can be
6344       //        vectorized, it will be. We should also look at extending this
6345       //        optimization to non-pointer types.
6346       //
6347       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6348           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6349         continue;
6350 
6351       ElementTypesInLoop.insert(T);
6352     }
6353   }
6354 }
6355 
6356 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6357                                                            unsigned LoopCost) {
6358   // -- The interleave heuristics --
6359   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6360   // There are many micro-architectural considerations that we can't predict
6361   // at this level. For example, frontend pressure (on decode or fetch) due to
6362   // code size, or the number and capabilities of the execution ports.
6363   //
6364   // We use the following heuristics to select the interleave count:
6365   // 1. If the code has reductions, then we interleave to break the cross
6366   // iteration dependency.
6367   // 2. If the loop is really small, then we interleave to reduce the loop
6368   // overhead.
6369   // 3. We don't interleave if we think that we will spill registers to memory
6370   // due to the increased register pressure.
6371 
6372   if (!isScalarEpilogueAllowed())
6373     return 1;
6374 
6375   // We used the distance for the interleave count.
6376   if (Legal->getMaxSafeDepDistBytes() != -1U)
6377     return 1;
6378 
6379   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6380   const bool HasReductions = !Legal->getReductionVars().empty();
6381   // Do not interleave loops with a relatively small known or estimated trip
6382   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6383   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6384   // because with the above conditions interleaving can expose ILP and break
6385   // cross iteration dependences for reductions.
6386   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6387       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6388     return 1;
6389 
6390   RegisterUsage R = calculateRegisterUsage({VF})[0];
6391   // We divide by these constants so assume that we have at least one
6392   // instruction that uses at least one register.
6393   for (auto& pair : R.MaxLocalUsers) {
6394     pair.second = std::max(pair.second, 1U);
6395   }
6396 
6397   // We calculate the interleave count using the following formula.
6398   // Subtract the number of loop invariants from the number of available
6399   // registers. These registers are used by all of the interleaved instances.
6400   // Next, divide the remaining registers by the number of registers that is
6401   // required by the loop, in order to estimate how many parallel instances
6402   // fit without causing spills. All of this is rounded down if necessary to be
6403   // a power of two. We want power of two interleave count to simplify any
6404   // addressing operations or alignment considerations.
6405   // We also want power of two interleave counts to ensure that the induction
6406   // variable of the vector loop wraps to zero, when tail is folded by masking;
6407   // this currently happens when OptForSize, in which case IC is set to 1 above.
6408   unsigned IC = UINT_MAX;
6409 
6410   for (auto& pair : R.MaxLocalUsers) {
6411     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6412     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6413                       << " registers of "
6414                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6415     if (VF.isScalar()) {
6416       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6417         TargetNumRegisters = ForceTargetNumScalarRegs;
6418     } else {
6419       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6420         TargetNumRegisters = ForceTargetNumVectorRegs;
6421     }
6422     unsigned MaxLocalUsers = pair.second;
6423     unsigned LoopInvariantRegs = 0;
6424     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6425       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6426 
6427     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6428     // Don't count the induction variable as interleaved.
6429     if (EnableIndVarRegisterHeur) {
6430       TmpIC =
6431           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6432                         std::max(1U, (MaxLocalUsers - 1)));
6433     }
6434 
6435     IC = std::min(IC, TmpIC);
6436   }
6437 
6438   // Clamp the interleave ranges to reasonable counts.
6439   unsigned MaxInterleaveCount =
6440       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6441 
6442   // Check if the user has overridden the max.
6443   if (VF.isScalar()) {
6444     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6445       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6446   } else {
6447     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6448       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6449   }
6450 
6451   // If trip count is known or estimated compile time constant, limit the
6452   // interleave count to be less than the trip count divided by VF, provided it
6453   // is at least 1.
6454   //
6455   // For scalable vectors we can't know if interleaving is beneficial. It may
6456   // not be beneficial for small loops if none of the lanes in the second vector
6457   // iterations is enabled. However, for larger loops, there is likely to be a
6458   // similar benefit as for fixed-width vectors. For now, we choose to leave
6459   // the InterleaveCount as if vscale is '1', although if some information about
6460   // the vector is known (e.g. min vector size), we can make a better decision.
6461   if (BestKnownTC) {
6462     MaxInterleaveCount =
6463         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6464     // Make sure MaxInterleaveCount is greater than 0.
6465     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6466   }
6467 
6468   assert(MaxInterleaveCount > 0 &&
6469          "Maximum interleave count must be greater than 0");
6470 
6471   // Clamp the calculated IC to be between the 1 and the max interleave count
6472   // that the target and trip count allows.
6473   if (IC > MaxInterleaveCount)
6474     IC = MaxInterleaveCount;
6475   else
6476     // Make sure IC is greater than 0.
6477     IC = std::max(1u, IC);
6478 
6479   assert(IC > 0 && "Interleave count must be greater than 0.");
6480 
6481   // If we did not calculate the cost for VF (because the user selected the VF)
6482   // then we calculate the cost of VF here.
6483   if (LoopCost == 0) {
6484     InstructionCost C = expectedCost(VF).first;
6485     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6486     LoopCost = *C.getValue();
6487   }
6488 
6489   assert(LoopCost && "Non-zero loop cost expected");
6490 
6491   // Interleave if we vectorized this loop and there is a reduction that could
6492   // benefit from interleaving.
6493   if (VF.isVector() && HasReductions) {
6494     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6495     return IC;
6496   }
6497 
6498   // Note that if we've already vectorized the loop we will have done the
6499   // runtime check and so interleaving won't require further checks.
6500   bool InterleavingRequiresRuntimePointerCheck =
6501       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6502 
6503   // We want to interleave small loops in order to reduce the loop overhead and
6504   // potentially expose ILP opportunities.
6505   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6506                     << "LV: IC is " << IC << '\n'
6507                     << "LV: VF is " << VF << '\n');
6508   const bool AggressivelyInterleaveReductions =
6509       TTI.enableAggressiveInterleaving(HasReductions);
6510   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6511     // We assume that the cost overhead is 1 and we use the cost model
6512     // to estimate the cost of the loop and interleave until the cost of the
6513     // loop overhead is about 5% of the cost of the loop.
6514     unsigned SmallIC =
6515         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6516 
6517     // Interleave until store/load ports (estimated by max interleave count) are
6518     // saturated.
6519     unsigned NumStores = Legal->getNumStores();
6520     unsigned NumLoads = Legal->getNumLoads();
6521     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6522     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6523 
6524     // If we have a scalar reduction (vector reductions are already dealt with
6525     // by this point), we can increase the critical path length if the loop
6526     // we're interleaving is inside another loop. For tree-wise reductions
6527     // set the limit to 2, and for ordered reductions it's best to disable
6528     // interleaving entirely.
6529     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6530       bool HasOrderedReductions =
6531           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6532             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6533             return RdxDesc.isOrdered();
6534           });
6535       if (HasOrderedReductions) {
6536         LLVM_DEBUG(
6537             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6538         return 1;
6539       }
6540 
6541       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6542       SmallIC = std::min(SmallIC, F);
6543       StoresIC = std::min(StoresIC, F);
6544       LoadsIC = std::min(LoadsIC, F);
6545     }
6546 
6547     if (EnableLoadStoreRuntimeInterleave &&
6548         std::max(StoresIC, LoadsIC) > SmallIC) {
6549       LLVM_DEBUG(
6550           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6551       return std::max(StoresIC, LoadsIC);
6552     }
6553 
6554     // If there are scalar reductions and TTI has enabled aggressive
6555     // interleaving for reductions, we will interleave to expose ILP.
6556     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6557         AggressivelyInterleaveReductions) {
6558       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6559       // Interleave no less than SmallIC but not as aggressive as the normal IC
6560       // to satisfy the rare situation when resources are too limited.
6561       return std::max(IC / 2, SmallIC);
6562     } else {
6563       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6564       return SmallIC;
6565     }
6566   }
6567 
6568   // Interleave if this is a large loop (small loops are already dealt with by
6569   // this point) that could benefit from interleaving.
6570   if (AggressivelyInterleaveReductions) {
6571     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6572     return IC;
6573   }
6574 
6575   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6576   return 1;
6577 }
6578 
6579 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6580 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6581   // This function calculates the register usage by measuring the highest number
6582   // of values that are alive at a single location. Obviously, this is a very
6583   // rough estimation. We scan the loop in a topological order in order and
6584   // assign a number to each instruction. We use RPO to ensure that defs are
6585   // met before their users. We assume that each instruction that has in-loop
6586   // users starts an interval. We record every time that an in-loop value is
6587   // used, so we have a list of the first and last occurrences of each
6588   // instruction. Next, we transpose this data structure into a multi map that
6589   // holds the list of intervals that *end* at a specific location. This multi
6590   // map allows us to perform a linear search. We scan the instructions linearly
6591   // and record each time that a new interval starts, by placing it in a set.
6592   // If we find this value in the multi-map then we remove it from the set.
6593   // The max register usage is the maximum size of the set.
6594   // We also search for instructions that are defined outside the loop, but are
6595   // used inside the loop. We need this number separately from the max-interval
6596   // usage number because when we unroll, loop-invariant values do not take
6597   // more register.
6598   LoopBlocksDFS DFS(TheLoop);
6599   DFS.perform(LI);
6600 
6601   RegisterUsage RU;
6602 
6603   // Each 'key' in the map opens a new interval. The values
6604   // of the map are the index of the 'last seen' usage of the
6605   // instruction that is the key.
6606   using IntervalMap = DenseMap<Instruction *, unsigned>;
6607 
6608   // Maps instruction to its index.
6609   SmallVector<Instruction *, 64> IdxToInstr;
6610   // Marks the end of each interval.
6611   IntervalMap EndPoint;
6612   // Saves the list of instruction indices that are used in the loop.
6613   SmallPtrSet<Instruction *, 8> Ends;
6614   // Saves the list of values that are used in the loop but are
6615   // defined outside the loop, such as arguments and constants.
6616   SmallPtrSet<Value *, 8> LoopInvariants;
6617 
6618   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6619     for (Instruction &I : BB->instructionsWithoutDebug()) {
6620       IdxToInstr.push_back(&I);
6621 
6622       // Save the end location of each USE.
6623       for (Value *U : I.operands()) {
6624         auto *Instr = dyn_cast<Instruction>(U);
6625 
6626         // Ignore non-instruction values such as arguments, constants, etc.
6627         if (!Instr)
6628           continue;
6629 
6630         // If this instruction is outside the loop then record it and continue.
6631         if (!TheLoop->contains(Instr)) {
6632           LoopInvariants.insert(Instr);
6633           continue;
6634         }
6635 
6636         // Overwrite previous end points.
6637         EndPoint[Instr] = IdxToInstr.size();
6638         Ends.insert(Instr);
6639       }
6640     }
6641   }
6642 
6643   // Saves the list of intervals that end with the index in 'key'.
6644   using InstrList = SmallVector<Instruction *, 2>;
6645   DenseMap<unsigned, InstrList> TransposeEnds;
6646 
6647   // Transpose the EndPoints to a list of values that end at each index.
6648   for (auto &Interval : EndPoint)
6649     TransposeEnds[Interval.second].push_back(Interval.first);
6650 
6651   SmallPtrSet<Instruction *, 8> OpenIntervals;
6652   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6653   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6654 
6655   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6656 
6657   // A lambda that gets the register usage for the given type and VF.
6658   const auto &TTICapture = TTI;
6659   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6660     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6661       return 0;
6662     InstructionCost::CostType RegUsage =
6663         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6664     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6665            "Nonsensical values for register usage.");
6666     return RegUsage;
6667   };
6668 
6669   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6670     Instruction *I = IdxToInstr[i];
6671 
6672     // Remove all of the instructions that end at this location.
6673     InstrList &List = TransposeEnds[i];
6674     for (Instruction *ToRemove : List)
6675       OpenIntervals.erase(ToRemove);
6676 
6677     // Ignore instructions that are never used within the loop.
6678     if (!Ends.count(I))
6679       continue;
6680 
6681     // Skip ignored values.
6682     if (ValuesToIgnore.count(I))
6683       continue;
6684 
6685     // For each VF find the maximum usage of registers.
6686     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6687       // Count the number of live intervals.
6688       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6689 
6690       if (VFs[j].isScalar()) {
6691         for (auto Inst : OpenIntervals) {
6692           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6693           if (RegUsage.find(ClassID) == RegUsage.end())
6694             RegUsage[ClassID] = 1;
6695           else
6696             RegUsage[ClassID] += 1;
6697         }
6698       } else {
6699         collectUniformsAndScalars(VFs[j]);
6700         for (auto Inst : OpenIntervals) {
6701           // Skip ignored values for VF > 1.
6702           if (VecValuesToIgnore.count(Inst))
6703             continue;
6704           if (isScalarAfterVectorization(Inst, VFs[j])) {
6705             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6706             if (RegUsage.find(ClassID) == RegUsage.end())
6707               RegUsage[ClassID] = 1;
6708             else
6709               RegUsage[ClassID] += 1;
6710           } else {
6711             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6712             if (RegUsage.find(ClassID) == RegUsage.end())
6713               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6714             else
6715               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6716           }
6717         }
6718       }
6719 
6720       for (auto& pair : RegUsage) {
6721         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6722           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6723         else
6724           MaxUsages[j][pair.first] = pair.second;
6725       }
6726     }
6727 
6728     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6729                       << OpenIntervals.size() << '\n');
6730 
6731     // Add the current instruction to the list of open intervals.
6732     OpenIntervals.insert(I);
6733   }
6734 
6735   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6736     SmallMapVector<unsigned, unsigned, 4> Invariant;
6737 
6738     for (auto Inst : LoopInvariants) {
6739       unsigned Usage =
6740           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6741       unsigned ClassID =
6742           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6743       if (Invariant.find(ClassID) == Invariant.end())
6744         Invariant[ClassID] = Usage;
6745       else
6746         Invariant[ClassID] += Usage;
6747     }
6748 
6749     LLVM_DEBUG({
6750       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6751       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6752              << " item\n";
6753       for (const auto &pair : MaxUsages[i]) {
6754         dbgs() << "LV(REG): RegisterClass: "
6755                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6756                << " registers\n";
6757       }
6758       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6759              << " item\n";
6760       for (const auto &pair : Invariant) {
6761         dbgs() << "LV(REG): RegisterClass: "
6762                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6763                << " registers\n";
6764       }
6765     });
6766 
6767     RU.LoopInvariantRegs = Invariant;
6768     RU.MaxLocalUsers = MaxUsages[i];
6769     RUs[i] = RU;
6770   }
6771 
6772   return RUs;
6773 }
6774 
6775 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6776   // TODO: Cost model for emulated masked load/store is completely
6777   // broken. This hack guides the cost model to use an artificially
6778   // high enough value to practically disable vectorization with such
6779   // operations, except where previously deployed legality hack allowed
6780   // using very low cost values. This is to avoid regressions coming simply
6781   // from moving "masked load/store" check from legality to cost model.
6782   // Masked Load/Gather emulation was previously never allowed.
6783   // Limited number of Masked Store/Scatter emulation was allowed.
6784   assert(isPredicatedInst(I) &&
6785          "Expecting a scalar emulated instruction");
6786   return isa<LoadInst>(I) ||
6787          (isa<StoreInst>(I) &&
6788           NumPredStores > NumberOfStoresToPredicate);
6789 }
6790 
6791 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6792   // If we aren't vectorizing the loop, or if we've already collected the
6793   // instructions to scalarize, there's nothing to do. Collection may already
6794   // have occurred if we have a user-selected VF and are now computing the
6795   // expected cost for interleaving.
6796   if (VF.isScalar() || VF.isZero() ||
6797       InstsToScalarize.find(VF) != InstsToScalarize.end())
6798     return;
6799 
6800   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6801   // not profitable to scalarize any instructions, the presence of VF in the
6802   // map will indicate that we've analyzed it already.
6803   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6804 
6805   // Find all the instructions that are scalar with predication in the loop and
6806   // determine if it would be better to not if-convert the blocks they are in.
6807   // If so, we also record the instructions to scalarize.
6808   for (BasicBlock *BB : TheLoop->blocks()) {
6809     if (!blockNeedsPredication(BB))
6810       continue;
6811     for (Instruction &I : *BB)
6812       if (isScalarWithPredication(&I)) {
6813         ScalarCostsTy ScalarCosts;
6814         // Do not apply discount if scalable, because that would lead to
6815         // invalid scalarization costs.
6816         // Do not apply discount logic if hacked cost is needed
6817         // for emulated masked memrefs.
6818         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6819             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6820           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6821         // Remember that BB will remain after vectorization.
6822         PredicatedBBsAfterVectorization.insert(BB);
6823       }
6824   }
6825 }
6826 
6827 int LoopVectorizationCostModel::computePredInstDiscount(
6828     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6829   assert(!isUniformAfterVectorization(PredInst, VF) &&
6830          "Instruction marked uniform-after-vectorization will be predicated");
6831 
6832   // Initialize the discount to zero, meaning that the scalar version and the
6833   // vector version cost the same.
6834   InstructionCost Discount = 0;
6835 
6836   // Holds instructions to analyze. The instructions we visit are mapped in
6837   // ScalarCosts. Those instructions are the ones that would be scalarized if
6838   // we find that the scalar version costs less.
6839   SmallVector<Instruction *, 8> Worklist;
6840 
6841   // Returns true if the given instruction can be scalarized.
6842   auto canBeScalarized = [&](Instruction *I) -> bool {
6843     // We only attempt to scalarize instructions forming a single-use chain
6844     // from the original predicated block that would otherwise be vectorized.
6845     // Although not strictly necessary, we give up on instructions we know will
6846     // already be scalar to avoid traversing chains that are unlikely to be
6847     // beneficial.
6848     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6849         isScalarAfterVectorization(I, VF))
6850       return false;
6851 
6852     // If the instruction is scalar with predication, it will be analyzed
6853     // separately. We ignore it within the context of PredInst.
6854     if (isScalarWithPredication(I))
6855       return false;
6856 
6857     // If any of the instruction's operands are uniform after vectorization,
6858     // the instruction cannot be scalarized. This prevents, for example, a
6859     // masked load from being scalarized.
6860     //
6861     // We assume we will only emit a value for lane zero of an instruction
6862     // marked uniform after vectorization, rather than VF identical values.
6863     // Thus, if we scalarize an instruction that uses a uniform, we would
6864     // create uses of values corresponding to the lanes we aren't emitting code
6865     // for. This behavior can be changed by allowing getScalarValue to clone
6866     // the lane zero values for uniforms rather than asserting.
6867     for (Use &U : I->operands())
6868       if (auto *J = dyn_cast<Instruction>(U.get()))
6869         if (isUniformAfterVectorization(J, VF))
6870           return false;
6871 
6872     // Otherwise, we can scalarize the instruction.
6873     return true;
6874   };
6875 
6876   // Compute the expected cost discount from scalarizing the entire expression
6877   // feeding the predicated instruction. We currently only consider expressions
6878   // that are single-use instruction chains.
6879   Worklist.push_back(PredInst);
6880   while (!Worklist.empty()) {
6881     Instruction *I = Worklist.pop_back_val();
6882 
6883     // If we've already analyzed the instruction, there's nothing to do.
6884     if (ScalarCosts.find(I) != ScalarCosts.end())
6885       continue;
6886 
6887     // Compute the cost of the vector instruction. Note that this cost already
6888     // includes the scalarization overhead of the predicated instruction.
6889     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6890 
6891     // Compute the cost of the scalarized instruction. This cost is the cost of
6892     // the instruction as if it wasn't if-converted and instead remained in the
6893     // predicated block. We will scale this cost by block probability after
6894     // computing the scalarization overhead.
6895     InstructionCost ScalarCost =
6896         VF.getFixedValue() *
6897         getInstructionCost(I, ElementCount::getFixed(1)).first;
6898 
6899     // Compute the scalarization overhead of needed insertelement instructions
6900     // and phi nodes.
6901     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6902       ScalarCost += TTI.getScalarizationOverhead(
6903           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6904           APInt::getAllOnes(VF.getFixedValue()), true, false);
6905       ScalarCost +=
6906           VF.getFixedValue() *
6907           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6908     }
6909 
6910     // Compute the scalarization overhead of needed extractelement
6911     // instructions. For each of the instruction's operands, if the operand can
6912     // be scalarized, add it to the worklist; otherwise, account for the
6913     // overhead.
6914     for (Use &U : I->operands())
6915       if (auto *J = dyn_cast<Instruction>(U.get())) {
6916         assert(VectorType::isValidElementType(J->getType()) &&
6917                "Instruction has non-scalar type");
6918         if (canBeScalarized(J))
6919           Worklist.push_back(J);
6920         else if (needsExtract(J, VF)) {
6921           ScalarCost += TTI.getScalarizationOverhead(
6922               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6923               APInt::getAllOnes(VF.getFixedValue()), false, true);
6924         }
6925       }
6926 
6927     // Scale the total scalar cost by block probability.
6928     ScalarCost /= getReciprocalPredBlockProb();
6929 
6930     // Compute the discount. A non-negative discount means the vector version
6931     // of the instruction costs more, and scalarizing would be beneficial.
6932     Discount += VectorCost - ScalarCost;
6933     ScalarCosts[I] = ScalarCost;
6934   }
6935 
6936   return *Discount.getValue();
6937 }
6938 
6939 LoopVectorizationCostModel::VectorizationCostTy
6940 LoopVectorizationCostModel::expectedCost(
6941     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6942   VectorizationCostTy Cost;
6943 
6944   // For each block.
6945   for (BasicBlock *BB : TheLoop->blocks()) {
6946     VectorizationCostTy BlockCost;
6947 
6948     // For each instruction in the old loop.
6949     for (Instruction &I : BB->instructionsWithoutDebug()) {
6950       // Skip ignored values.
6951       if (ValuesToIgnore.count(&I) ||
6952           (VF.isVector() && VecValuesToIgnore.count(&I)))
6953         continue;
6954 
6955       VectorizationCostTy C = getInstructionCost(&I, VF);
6956 
6957       // Check if we should override the cost.
6958       if (C.first.isValid() &&
6959           ForceTargetInstructionCost.getNumOccurrences() > 0)
6960         C.first = InstructionCost(ForceTargetInstructionCost);
6961 
6962       // Keep a list of instructions with invalid costs.
6963       if (Invalid && !C.first.isValid())
6964         Invalid->emplace_back(&I, VF);
6965 
6966       BlockCost.first += C.first;
6967       BlockCost.second |= C.second;
6968       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6969                         << " for VF " << VF << " For instruction: " << I
6970                         << '\n');
6971     }
6972 
6973     // If we are vectorizing a predicated block, it will have been
6974     // if-converted. This means that the block's instructions (aside from
6975     // stores and instructions that may divide by zero) will now be
6976     // unconditionally executed. For the scalar case, we may not always execute
6977     // the predicated block, if it is an if-else block. Thus, scale the block's
6978     // cost by the probability of executing it. blockNeedsPredication from
6979     // Legal is used so as to not include all blocks in tail folded loops.
6980     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6981       BlockCost.first /= getReciprocalPredBlockProb();
6982 
6983     Cost.first += BlockCost.first;
6984     Cost.second |= BlockCost.second;
6985   }
6986 
6987   return Cost;
6988 }
6989 
6990 /// Gets Address Access SCEV after verifying that the access pattern
6991 /// is loop invariant except the induction variable dependence.
6992 ///
6993 /// This SCEV can be sent to the Target in order to estimate the address
6994 /// calculation cost.
6995 static const SCEV *getAddressAccessSCEV(
6996               Value *Ptr,
6997               LoopVectorizationLegality *Legal,
6998               PredicatedScalarEvolution &PSE,
6999               const Loop *TheLoop) {
7000 
7001   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
7002   if (!Gep)
7003     return nullptr;
7004 
7005   // We are looking for a gep with all loop invariant indices except for one
7006   // which should be an induction variable.
7007   auto SE = PSE.getSE();
7008   unsigned NumOperands = Gep->getNumOperands();
7009   for (unsigned i = 1; i < NumOperands; ++i) {
7010     Value *Opd = Gep->getOperand(i);
7011     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
7012         !Legal->isInductionVariable(Opd))
7013       return nullptr;
7014   }
7015 
7016   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
7017   return PSE.getSCEV(Ptr);
7018 }
7019 
7020 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
7021   return Legal->hasStride(I->getOperand(0)) ||
7022          Legal->hasStride(I->getOperand(1));
7023 }
7024 
7025 InstructionCost
7026 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
7027                                                         ElementCount VF) {
7028   assert(VF.isVector() &&
7029          "Scalarization cost of instruction implies vectorization.");
7030   if (VF.isScalable())
7031     return InstructionCost::getInvalid();
7032 
7033   Type *ValTy = getLoadStoreType(I);
7034   auto SE = PSE.getSE();
7035 
7036   unsigned AS = getLoadStoreAddressSpace(I);
7037   Value *Ptr = getLoadStorePointerOperand(I);
7038   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
7039 
7040   // Figure out whether the access is strided and get the stride value
7041   // if it's known in compile time
7042   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
7043 
7044   // Get the cost of the scalar memory instruction and address computation.
7045   InstructionCost Cost =
7046       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
7047 
7048   // Don't pass *I here, since it is scalar but will actually be part of a
7049   // vectorized loop where the user of it is a vectorized instruction.
7050   const Align Alignment = getLoadStoreAlignment(I);
7051   Cost += VF.getKnownMinValue() *
7052           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
7053                               AS, TTI::TCK_RecipThroughput);
7054 
7055   // Get the overhead of the extractelement and insertelement instructions
7056   // we might create due to scalarization.
7057   Cost += getScalarizationOverhead(I, VF);
7058 
7059   // If we have a predicated load/store, it will need extra i1 extracts and
7060   // conditional branches, but may not be executed for each vector lane. Scale
7061   // the cost by the probability of executing the predicated block.
7062   if (isPredicatedInst(I)) {
7063     Cost /= getReciprocalPredBlockProb();
7064 
7065     // Add the cost of an i1 extract and a branch
7066     auto *Vec_i1Ty =
7067         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
7068     Cost += TTI.getScalarizationOverhead(
7069         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
7070         /*Insert=*/false, /*Extract=*/true);
7071     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7072 
7073     if (useEmulatedMaskMemRefHack(I))
7074       // Artificially setting to a high enough value to practically disable
7075       // vectorization with such operations.
7076       Cost = 3000000;
7077   }
7078 
7079   return Cost;
7080 }
7081 
7082 InstructionCost
7083 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7084                                                     ElementCount VF) {
7085   Type *ValTy = getLoadStoreType(I);
7086   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7087   Value *Ptr = getLoadStorePointerOperand(I);
7088   unsigned AS = getLoadStoreAddressSpace(I);
7089   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
7090   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7091 
7092   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7093          "Stride should be 1 or -1 for consecutive memory access");
7094   const Align Alignment = getLoadStoreAlignment(I);
7095   InstructionCost Cost = 0;
7096   if (Legal->isMaskRequired(I))
7097     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7098                                       CostKind);
7099   else
7100     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7101                                 CostKind, I);
7102 
7103   bool Reverse = ConsecutiveStride < 0;
7104   if (Reverse)
7105     Cost +=
7106         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7107   return Cost;
7108 }
7109 
7110 InstructionCost
7111 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7112                                                 ElementCount VF) {
7113   assert(Legal->isUniformMemOp(*I));
7114 
7115   Type *ValTy = getLoadStoreType(I);
7116   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7117   const Align Alignment = getLoadStoreAlignment(I);
7118   unsigned AS = getLoadStoreAddressSpace(I);
7119   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7120   if (isa<LoadInst>(I)) {
7121     return TTI.getAddressComputationCost(ValTy) +
7122            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7123                                CostKind) +
7124            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7125   }
7126   StoreInst *SI = cast<StoreInst>(I);
7127 
7128   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7129   return TTI.getAddressComputationCost(ValTy) +
7130          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7131                              CostKind) +
7132          (isLoopInvariantStoreValue
7133               ? 0
7134               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7135                                        VF.getKnownMinValue() - 1));
7136 }
7137 
7138 InstructionCost
7139 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7140                                                  ElementCount VF) {
7141   Type *ValTy = getLoadStoreType(I);
7142   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7143   const Align Alignment = getLoadStoreAlignment(I);
7144   const Value *Ptr = getLoadStorePointerOperand(I);
7145 
7146   return TTI.getAddressComputationCost(VectorTy) +
7147          TTI.getGatherScatterOpCost(
7148              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7149              TargetTransformInfo::TCK_RecipThroughput, I);
7150 }
7151 
7152 InstructionCost
7153 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7154                                                    ElementCount VF) {
7155   // TODO: Once we have support for interleaving with scalable vectors
7156   // we can calculate the cost properly here.
7157   if (VF.isScalable())
7158     return InstructionCost::getInvalid();
7159 
7160   Type *ValTy = getLoadStoreType(I);
7161   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7162   unsigned AS = getLoadStoreAddressSpace(I);
7163 
7164   auto Group = getInterleavedAccessGroup(I);
7165   assert(Group && "Fail to get an interleaved access group.");
7166 
7167   unsigned InterleaveFactor = Group->getFactor();
7168   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7169 
7170   // Holds the indices of existing members in the interleaved group.
7171   SmallVector<unsigned, 4> Indices;
7172   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
7173     if (Group->getMember(IF))
7174       Indices.push_back(IF);
7175 
7176   // Calculate the cost of the whole interleaved group.
7177   bool UseMaskForGaps =
7178       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
7179       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
7180   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7181       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7182       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7183 
7184   if (Group->isReverse()) {
7185     // TODO: Add support for reversed masked interleaved access.
7186     assert(!Legal->isMaskRequired(I) &&
7187            "Reverse masked interleaved access not supported.");
7188     Cost +=
7189         Group->getNumMembers() *
7190         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7191   }
7192   return Cost;
7193 }
7194 
7195 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7196     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7197   using namespace llvm::PatternMatch;
7198   // Early exit for no inloop reductions
7199   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7200     return None;
7201   auto *VectorTy = cast<VectorType>(Ty);
7202 
7203   // We are looking for a pattern of, and finding the minimal acceptable cost:
7204   //  reduce(mul(ext(A), ext(B))) or
7205   //  reduce(mul(A, B)) or
7206   //  reduce(ext(A)) or
7207   //  reduce(A).
7208   // The basic idea is that we walk down the tree to do that, finding the root
7209   // reduction instruction in InLoopReductionImmediateChains. From there we find
7210   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7211   // of the components. If the reduction cost is lower then we return it for the
7212   // reduction instruction and 0 for the other instructions in the pattern. If
7213   // it is not we return an invalid cost specifying the orignal cost method
7214   // should be used.
7215   Instruction *RetI = I;
7216   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7217     if (!RetI->hasOneUser())
7218       return None;
7219     RetI = RetI->user_back();
7220   }
7221   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7222       RetI->user_back()->getOpcode() == Instruction::Add) {
7223     if (!RetI->hasOneUser())
7224       return None;
7225     RetI = RetI->user_back();
7226   }
7227 
7228   // Test if the found instruction is a reduction, and if not return an invalid
7229   // cost specifying the parent to use the original cost modelling.
7230   if (!InLoopReductionImmediateChains.count(RetI))
7231     return None;
7232 
7233   // Find the reduction this chain is a part of and calculate the basic cost of
7234   // the reduction on its own.
7235   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7236   Instruction *ReductionPhi = LastChain;
7237   while (!isa<PHINode>(ReductionPhi))
7238     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7239 
7240   const RecurrenceDescriptor &RdxDesc =
7241       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7242 
7243   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7244       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
7245 
7246   // If we're using ordered reductions then we can just return the base cost
7247   // here, since getArithmeticReductionCost calculates the full ordered
7248   // reduction cost when FP reassociation is not allowed.
7249   if (useOrderedReductions(RdxDesc))
7250     return BaseCost;
7251 
7252   // Get the operand that was not the reduction chain and match it to one of the
7253   // patterns, returning the better cost if it is found.
7254   Instruction *RedOp = RetI->getOperand(1) == LastChain
7255                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7256                            : dyn_cast<Instruction>(RetI->getOperand(1));
7257 
7258   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7259 
7260   Instruction *Op0, *Op1;
7261   if (RedOp &&
7262       match(RedOp,
7263             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
7264       match(Op0, m_ZExtOrSExt(m_Value())) &&
7265       Op0->getOpcode() == Op1->getOpcode() &&
7266       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7267       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
7268       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
7269 
7270     // Matched reduce(ext(mul(ext(A), ext(B)))
7271     // Note that the extend opcodes need to all match, or if A==B they will have
7272     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
7273     // which is equally fine.
7274     bool IsUnsigned = isa<ZExtInst>(Op0);
7275     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7276     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
7277 
7278     InstructionCost ExtCost =
7279         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
7280                              TTI::CastContextHint::None, CostKind, Op0);
7281     InstructionCost MulCost =
7282         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
7283     InstructionCost Ext2Cost =
7284         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
7285                              TTI::CastContextHint::None, CostKind, RedOp);
7286 
7287     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7288         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7289         CostKind);
7290 
7291     if (RedCost.isValid() &&
7292         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
7293       return I == RetI ? RedCost : 0;
7294   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7295              !TheLoop->isLoopInvariant(RedOp)) {
7296     // Matched reduce(ext(A))
7297     bool IsUnsigned = isa<ZExtInst>(RedOp);
7298     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7299     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7300         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7301         CostKind);
7302 
7303     InstructionCost ExtCost =
7304         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7305                              TTI::CastContextHint::None, CostKind, RedOp);
7306     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7307       return I == RetI ? RedCost : 0;
7308   } else if (RedOp &&
7309              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7310     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7311         Op0->getOpcode() == Op1->getOpcode() &&
7312         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7313         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7314       bool IsUnsigned = isa<ZExtInst>(Op0);
7315       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7316       // Matched reduce(mul(ext, ext))
7317       InstructionCost ExtCost =
7318           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7319                                TTI::CastContextHint::None, CostKind, Op0);
7320       InstructionCost MulCost =
7321           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7322 
7323       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7324           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7325           CostKind);
7326 
7327       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7328         return I == RetI ? RedCost : 0;
7329     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7330       // Matched reduce(mul())
7331       InstructionCost MulCost =
7332           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7333 
7334       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7335           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7336           CostKind);
7337 
7338       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7339         return I == RetI ? RedCost : 0;
7340     }
7341   }
7342 
7343   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7344 }
7345 
7346 InstructionCost
7347 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7348                                                      ElementCount VF) {
7349   // Calculate scalar cost only. Vectorization cost should be ready at this
7350   // moment.
7351   if (VF.isScalar()) {
7352     Type *ValTy = getLoadStoreType(I);
7353     const Align Alignment = getLoadStoreAlignment(I);
7354     unsigned AS = getLoadStoreAddressSpace(I);
7355 
7356     return TTI.getAddressComputationCost(ValTy) +
7357            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7358                                TTI::TCK_RecipThroughput, I);
7359   }
7360   return getWideningCost(I, VF);
7361 }
7362 
7363 LoopVectorizationCostModel::VectorizationCostTy
7364 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7365                                                ElementCount VF) {
7366   // If we know that this instruction will remain uniform, check the cost of
7367   // the scalar version.
7368   if (isUniformAfterVectorization(I, VF))
7369     VF = ElementCount::getFixed(1);
7370 
7371   if (VF.isVector() && isProfitableToScalarize(I, VF))
7372     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7373 
7374   // Forced scalars do not have any scalarization overhead.
7375   auto ForcedScalar = ForcedScalars.find(VF);
7376   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7377     auto InstSet = ForcedScalar->second;
7378     if (InstSet.count(I))
7379       return VectorizationCostTy(
7380           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7381            VF.getKnownMinValue()),
7382           false);
7383   }
7384 
7385   Type *VectorTy;
7386   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7387 
7388   bool TypeNotScalarized =
7389       VF.isVector() && VectorTy->isVectorTy() &&
7390       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7391   return VectorizationCostTy(C, TypeNotScalarized);
7392 }
7393 
7394 InstructionCost
7395 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7396                                                      ElementCount VF) const {
7397 
7398   // There is no mechanism yet to create a scalable scalarization loop,
7399   // so this is currently Invalid.
7400   if (VF.isScalable())
7401     return InstructionCost::getInvalid();
7402 
7403   if (VF.isScalar())
7404     return 0;
7405 
7406   InstructionCost Cost = 0;
7407   Type *RetTy = ToVectorTy(I->getType(), VF);
7408   if (!RetTy->isVoidTy() &&
7409       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7410     Cost += TTI.getScalarizationOverhead(
7411         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7412         false);
7413 
7414   // Some targets keep addresses scalar.
7415   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7416     return Cost;
7417 
7418   // Some targets support efficient element stores.
7419   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7420     return Cost;
7421 
7422   // Collect operands to consider.
7423   CallInst *CI = dyn_cast<CallInst>(I);
7424   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
7425 
7426   // Skip operands that do not require extraction/scalarization and do not incur
7427   // any overhead.
7428   SmallVector<Type *> Tys;
7429   for (auto *V : filterExtractingOperands(Ops, VF))
7430     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7431   return Cost + TTI.getOperandsScalarizationOverhead(
7432                     filterExtractingOperands(Ops, VF), Tys);
7433 }
7434 
7435 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7436   if (VF.isScalar())
7437     return;
7438   NumPredStores = 0;
7439   for (BasicBlock *BB : TheLoop->blocks()) {
7440     // For each instruction in the old loop.
7441     for (Instruction &I : *BB) {
7442       Value *Ptr =  getLoadStorePointerOperand(&I);
7443       if (!Ptr)
7444         continue;
7445 
7446       // TODO: We should generate better code and update the cost model for
7447       // predicated uniform stores. Today they are treated as any other
7448       // predicated store (see added test cases in
7449       // invariant-store-vectorization.ll).
7450       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7451         NumPredStores++;
7452 
7453       if (Legal->isUniformMemOp(I)) {
7454         // TODO: Avoid replicating loads and stores instead of
7455         // relying on instcombine to remove them.
7456         // Load: Scalar load + broadcast
7457         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7458         InstructionCost Cost;
7459         if (isa<StoreInst>(&I) && VF.isScalable() &&
7460             isLegalGatherOrScatter(&I)) {
7461           Cost = getGatherScatterCost(&I, VF);
7462           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7463         } else {
7464           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7465                  "Cannot yet scalarize uniform stores");
7466           Cost = getUniformMemOpCost(&I, VF);
7467           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7468         }
7469         continue;
7470       }
7471 
7472       // We assume that widening is the best solution when possible.
7473       if (memoryInstructionCanBeWidened(&I, VF)) {
7474         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7475         int ConsecutiveStride = Legal->isConsecutivePtr(
7476             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7477         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7478                "Expected consecutive stride.");
7479         InstWidening Decision =
7480             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7481         setWideningDecision(&I, VF, Decision, Cost);
7482         continue;
7483       }
7484 
7485       // Choose between Interleaving, Gather/Scatter or Scalarization.
7486       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7487       unsigned NumAccesses = 1;
7488       if (isAccessInterleaved(&I)) {
7489         auto Group = getInterleavedAccessGroup(&I);
7490         assert(Group && "Fail to get an interleaved access group.");
7491 
7492         // Make one decision for the whole group.
7493         if (getWideningDecision(&I, VF) != CM_Unknown)
7494           continue;
7495 
7496         NumAccesses = Group->getNumMembers();
7497         if (interleavedAccessCanBeWidened(&I, VF))
7498           InterleaveCost = getInterleaveGroupCost(&I, VF);
7499       }
7500 
7501       InstructionCost GatherScatterCost =
7502           isLegalGatherOrScatter(&I)
7503               ? getGatherScatterCost(&I, VF) * NumAccesses
7504               : InstructionCost::getInvalid();
7505 
7506       InstructionCost ScalarizationCost =
7507           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7508 
7509       // Choose better solution for the current VF,
7510       // write down this decision and use it during vectorization.
7511       InstructionCost Cost;
7512       InstWidening Decision;
7513       if (InterleaveCost <= GatherScatterCost &&
7514           InterleaveCost < ScalarizationCost) {
7515         Decision = CM_Interleave;
7516         Cost = InterleaveCost;
7517       } else if (GatherScatterCost < ScalarizationCost) {
7518         Decision = CM_GatherScatter;
7519         Cost = GatherScatterCost;
7520       } else {
7521         Decision = CM_Scalarize;
7522         Cost = ScalarizationCost;
7523       }
7524       // If the instructions belongs to an interleave group, the whole group
7525       // receives the same decision. The whole group receives the cost, but
7526       // the cost will actually be assigned to one instruction.
7527       if (auto Group = getInterleavedAccessGroup(&I))
7528         setWideningDecision(Group, VF, Decision, Cost);
7529       else
7530         setWideningDecision(&I, VF, Decision, Cost);
7531     }
7532   }
7533 
7534   // Make sure that any load of address and any other address computation
7535   // remains scalar unless there is gather/scatter support. This avoids
7536   // inevitable extracts into address registers, and also has the benefit of
7537   // activating LSR more, since that pass can't optimize vectorized
7538   // addresses.
7539   if (TTI.prefersVectorizedAddressing())
7540     return;
7541 
7542   // Start with all scalar pointer uses.
7543   SmallPtrSet<Instruction *, 8> AddrDefs;
7544   for (BasicBlock *BB : TheLoop->blocks())
7545     for (Instruction &I : *BB) {
7546       Instruction *PtrDef =
7547         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7548       if (PtrDef && TheLoop->contains(PtrDef) &&
7549           getWideningDecision(&I, VF) != CM_GatherScatter)
7550         AddrDefs.insert(PtrDef);
7551     }
7552 
7553   // Add all instructions used to generate the addresses.
7554   SmallVector<Instruction *, 4> Worklist;
7555   append_range(Worklist, AddrDefs);
7556   while (!Worklist.empty()) {
7557     Instruction *I = Worklist.pop_back_val();
7558     for (auto &Op : I->operands())
7559       if (auto *InstOp = dyn_cast<Instruction>(Op))
7560         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7561             AddrDefs.insert(InstOp).second)
7562           Worklist.push_back(InstOp);
7563   }
7564 
7565   for (auto *I : AddrDefs) {
7566     if (isa<LoadInst>(I)) {
7567       // Setting the desired widening decision should ideally be handled in
7568       // by cost functions, but since this involves the task of finding out
7569       // if the loaded register is involved in an address computation, it is
7570       // instead changed here when we know this is the case.
7571       InstWidening Decision = getWideningDecision(I, VF);
7572       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7573         // Scalarize a widened load of address.
7574         setWideningDecision(
7575             I, VF, CM_Scalarize,
7576             (VF.getKnownMinValue() *
7577              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7578       else if (auto Group = getInterleavedAccessGroup(I)) {
7579         // Scalarize an interleave group of address loads.
7580         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7581           if (Instruction *Member = Group->getMember(I))
7582             setWideningDecision(
7583                 Member, VF, CM_Scalarize,
7584                 (VF.getKnownMinValue() *
7585                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7586         }
7587       }
7588     } else
7589       // Make sure I gets scalarized and a cost estimate without
7590       // scalarization overhead.
7591       ForcedScalars[VF].insert(I);
7592   }
7593 }
7594 
7595 InstructionCost
7596 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7597                                                Type *&VectorTy) {
7598   Type *RetTy = I->getType();
7599   if (canTruncateToMinimalBitwidth(I, VF))
7600     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7601   auto SE = PSE.getSE();
7602   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7603 
7604   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7605                                                 ElementCount VF) -> bool {
7606     if (VF.isScalar())
7607       return true;
7608 
7609     auto Scalarized = InstsToScalarize.find(VF);
7610     assert(Scalarized != InstsToScalarize.end() &&
7611            "VF not yet analyzed for scalarization profitability");
7612     return !Scalarized->second.count(I) &&
7613            llvm::all_of(I->users(), [&](User *U) {
7614              auto *UI = cast<Instruction>(U);
7615              return !Scalarized->second.count(UI);
7616            });
7617   };
7618   (void) hasSingleCopyAfterVectorization;
7619 
7620   if (isScalarAfterVectorization(I, VF)) {
7621     // With the exception of GEPs and PHIs, after scalarization there should
7622     // only be one copy of the instruction generated in the loop. This is
7623     // because the VF is either 1, or any instructions that need scalarizing
7624     // have already been dealt with by the the time we get here. As a result,
7625     // it means we don't have to multiply the instruction cost by VF.
7626     assert(I->getOpcode() == Instruction::GetElementPtr ||
7627            I->getOpcode() == Instruction::PHI ||
7628            (I->getOpcode() == Instruction::BitCast &&
7629             I->getType()->isPointerTy()) ||
7630            hasSingleCopyAfterVectorization(I, VF));
7631     VectorTy = RetTy;
7632   } else
7633     VectorTy = ToVectorTy(RetTy, VF);
7634 
7635   // TODO: We need to estimate the cost of intrinsic calls.
7636   switch (I->getOpcode()) {
7637   case Instruction::GetElementPtr:
7638     // We mark this instruction as zero-cost because the cost of GEPs in
7639     // vectorized code depends on whether the corresponding memory instruction
7640     // is scalarized or not. Therefore, we handle GEPs with the memory
7641     // instruction cost.
7642     return 0;
7643   case Instruction::Br: {
7644     // In cases of scalarized and predicated instructions, there will be VF
7645     // predicated blocks in the vectorized loop. Each branch around these
7646     // blocks requires also an extract of its vector compare i1 element.
7647     bool ScalarPredicatedBB = false;
7648     BranchInst *BI = cast<BranchInst>(I);
7649     if (VF.isVector() && BI->isConditional() &&
7650         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7651          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7652       ScalarPredicatedBB = true;
7653 
7654     if (ScalarPredicatedBB) {
7655       // Not possible to scalarize scalable vector with predicated instructions.
7656       if (VF.isScalable())
7657         return InstructionCost::getInvalid();
7658       // Return cost for branches around scalarized and predicated blocks.
7659       auto *Vec_i1Ty =
7660           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7661       return (
7662           TTI.getScalarizationOverhead(
7663               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7664           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7665     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7666       // The back-edge branch will remain, as will all scalar branches.
7667       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7668     else
7669       // This branch will be eliminated by if-conversion.
7670       return 0;
7671     // Note: We currently assume zero cost for an unconditional branch inside
7672     // a predicated block since it will become a fall-through, although we
7673     // may decide in the future to call TTI for all branches.
7674   }
7675   case Instruction::PHI: {
7676     auto *Phi = cast<PHINode>(I);
7677 
7678     // First-order recurrences are replaced by vector shuffles inside the loop.
7679     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7680     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7681       return TTI.getShuffleCost(
7682           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7683           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7684 
7685     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7686     // converted into select instructions. We require N - 1 selects per phi
7687     // node, where N is the number of incoming values.
7688     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7689       return (Phi->getNumIncomingValues() - 1) *
7690              TTI.getCmpSelInstrCost(
7691                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7692                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7693                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7694 
7695     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7696   }
7697   case Instruction::UDiv:
7698   case Instruction::SDiv:
7699   case Instruction::URem:
7700   case Instruction::SRem:
7701     // If we have a predicated instruction, it may not be executed for each
7702     // vector lane. Get the scalarization cost and scale this amount by the
7703     // probability of executing the predicated block. If the instruction is not
7704     // predicated, we fall through to the next case.
7705     if (VF.isVector() && isScalarWithPredication(I)) {
7706       InstructionCost Cost = 0;
7707 
7708       // These instructions have a non-void type, so account for the phi nodes
7709       // that we will create. This cost is likely to be zero. The phi node
7710       // cost, if any, should be scaled by the block probability because it
7711       // models a copy at the end of each predicated block.
7712       Cost += VF.getKnownMinValue() *
7713               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7714 
7715       // The cost of the non-predicated instruction.
7716       Cost += VF.getKnownMinValue() *
7717               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7718 
7719       // The cost of insertelement and extractelement instructions needed for
7720       // scalarization.
7721       Cost += getScalarizationOverhead(I, VF);
7722 
7723       // Scale the cost by the probability of executing the predicated blocks.
7724       // This assumes the predicated block for each vector lane is equally
7725       // likely.
7726       return Cost / getReciprocalPredBlockProb();
7727     }
7728     LLVM_FALLTHROUGH;
7729   case Instruction::Add:
7730   case Instruction::FAdd:
7731   case Instruction::Sub:
7732   case Instruction::FSub:
7733   case Instruction::Mul:
7734   case Instruction::FMul:
7735   case Instruction::FDiv:
7736   case Instruction::FRem:
7737   case Instruction::Shl:
7738   case Instruction::LShr:
7739   case Instruction::AShr:
7740   case Instruction::And:
7741   case Instruction::Or:
7742   case Instruction::Xor: {
7743     // Since we will replace the stride by 1 the multiplication should go away.
7744     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7745       return 0;
7746 
7747     // Detect reduction patterns
7748     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7749       return *RedCost;
7750 
7751     // Certain instructions can be cheaper to vectorize if they have a constant
7752     // second vector operand. One example of this are shifts on x86.
7753     Value *Op2 = I->getOperand(1);
7754     TargetTransformInfo::OperandValueProperties Op2VP;
7755     TargetTransformInfo::OperandValueKind Op2VK =
7756         TTI.getOperandInfo(Op2, Op2VP);
7757     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7758       Op2VK = TargetTransformInfo::OK_UniformValue;
7759 
7760     SmallVector<const Value *, 4> Operands(I->operand_values());
7761     return TTI.getArithmeticInstrCost(
7762         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7763         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7764   }
7765   case Instruction::FNeg: {
7766     return TTI.getArithmeticInstrCost(
7767         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7768         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7769         TargetTransformInfo::OP_None, I->getOperand(0), I);
7770   }
7771   case Instruction::Select: {
7772     SelectInst *SI = cast<SelectInst>(I);
7773     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7774     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7775 
7776     const Value *Op0, *Op1;
7777     using namespace llvm::PatternMatch;
7778     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7779                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7780       // select x, y, false --> x & y
7781       // select x, true, y --> x | y
7782       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7783       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7784       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7785       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7786       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7787               Op1->getType()->getScalarSizeInBits() == 1);
7788 
7789       SmallVector<const Value *, 2> Operands{Op0, Op1};
7790       return TTI.getArithmeticInstrCost(
7791           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7792           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7793     }
7794 
7795     Type *CondTy = SI->getCondition()->getType();
7796     if (!ScalarCond)
7797       CondTy = VectorType::get(CondTy, VF);
7798     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7799                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7800   }
7801   case Instruction::ICmp:
7802   case Instruction::FCmp: {
7803     Type *ValTy = I->getOperand(0)->getType();
7804     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7805     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7806       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7807     VectorTy = ToVectorTy(ValTy, VF);
7808     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7809                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7810   }
7811   case Instruction::Store:
7812   case Instruction::Load: {
7813     ElementCount Width = VF;
7814     if (Width.isVector()) {
7815       InstWidening Decision = getWideningDecision(I, Width);
7816       assert(Decision != CM_Unknown &&
7817              "CM decision should be taken at this point");
7818       if (Decision == CM_Scalarize)
7819         Width = ElementCount::getFixed(1);
7820     }
7821     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7822     return getMemoryInstructionCost(I, VF);
7823   }
7824   case Instruction::BitCast:
7825     if (I->getType()->isPointerTy())
7826       return 0;
7827     LLVM_FALLTHROUGH;
7828   case Instruction::ZExt:
7829   case Instruction::SExt:
7830   case Instruction::FPToUI:
7831   case Instruction::FPToSI:
7832   case Instruction::FPExt:
7833   case Instruction::PtrToInt:
7834   case Instruction::IntToPtr:
7835   case Instruction::SIToFP:
7836   case Instruction::UIToFP:
7837   case Instruction::Trunc:
7838   case Instruction::FPTrunc: {
7839     // Computes the CastContextHint from a Load/Store instruction.
7840     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7841       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7842              "Expected a load or a store!");
7843 
7844       if (VF.isScalar() || !TheLoop->contains(I))
7845         return TTI::CastContextHint::Normal;
7846 
7847       switch (getWideningDecision(I, VF)) {
7848       case LoopVectorizationCostModel::CM_GatherScatter:
7849         return TTI::CastContextHint::GatherScatter;
7850       case LoopVectorizationCostModel::CM_Interleave:
7851         return TTI::CastContextHint::Interleave;
7852       case LoopVectorizationCostModel::CM_Scalarize:
7853       case LoopVectorizationCostModel::CM_Widen:
7854         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7855                                         : TTI::CastContextHint::Normal;
7856       case LoopVectorizationCostModel::CM_Widen_Reverse:
7857         return TTI::CastContextHint::Reversed;
7858       case LoopVectorizationCostModel::CM_Unknown:
7859         llvm_unreachable("Instr did not go through cost modelling?");
7860       }
7861 
7862       llvm_unreachable("Unhandled case!");
7863     };
7864 
7865     unsigned Opcode = I->getOpcode();
7866     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7867     // For Trunc, the context is the only user, which must be a StoreInst.
7868     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7869       if (I->hasOneUse())
7870         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7871           CCH = ComputeCCH(Store);
7872     }
7873     // For Z/Sext, the context is the operand, which must be a LoadInst.
7874     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7875              Opcode == Instruction::FPExt) {
7876       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7877         CCH = ComputeCCH(Load);
7878     }
7879 
7880     // We optimize the truncation of induction variables having constant
7881     // integer steps. The cost of these truncations is the same as the scalar
7882     // operation.
7883     if (isOptimizableIVTruncate(I, VF)) {
7884       auto *Trunc = cast<TruncInst>(I);
7885       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7886                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7887     }
7888 
7889     // Detect reduction patterns
7890     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7891       return *RedCost;
7892 
7893     Type *SrcScalarTy = I->getOperand(0)->getType();
7894     Type *SrcVecTy =
7895         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7896     if (canTruncateToMinimalBitwidth(I, VF)) {
7897       // This cast is going to be shrunk. This may remove the cast or it might
7898       // turn it into slightly different cast. For example, if MinBW == 16,
7899       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7900       //
7901       // Calculate the modified src and dest types.
7902       Type *MinVecTy = VectorTy;
7903       if (Opcode == Instruction::Trunc) {
7904         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7905         VectorTy =
7906             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7907       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7908         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7909         VectorTy =
7910             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7911       }
7912     }
7913 
7914     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7915   }
7916   case Instruction::Call: {
7917     bool NeedToScalarize;
7918     CallInst *CI = cast<CallInst>(I);
7919     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7920     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7921       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7922       return std::min(CallCost, IntrinsicCost);
7923     }
7924     return CallCost;
7925   }
7926   case Instruction::ExtractValue:
7927     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7928   case Instruction::Alloca:
7929     // We cannot easily widen alloca to a scalable alloca, as
7930     // the result would need to be a vector of pointers.
7931     if (VF.isScalable())
7932       return InstructionCost::getInvalid();
7933     LLVM_FALLTHROUGH;
7934   default:
7935     // This opcode is unknown. Assume that it is the same as 'mul'.
7936     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7937   } // end of switch.
7938 }
7939 
7940 char LoopVectorize::ID = 0;
7941 
7942 static const char lv_name[] = "Loop Vectorization";
7943 
7944 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7945 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7946 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7947 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7948 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7949 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7950 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7951 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7952 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7953 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7954 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7955 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7956 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7957 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7958 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7959 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7960 
7961 namespace llvm {
7962 
7963 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7964 
7965 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7966                               bool VectorizeOnlyWhenForced) {
7967   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7968 }
7969 
7970 } // end namespace llvm
7971 
7972 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7973   // Check if the pointer operand of a load or store instruction is
7974   // consecutive.
7975   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7976     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7977   return false;
7978 }
7979 
7980 void LoopVectorizationCostModel::collectValuesToIgnore() {
7981   // Ignore ephemeral values.
7982   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7983 
7984   // Ignore type-promoting instructions we identified during reduction
7985   // detection.
7986   for (auto &Reduction : Legal->getReductionVars()) {
7987     RecurrenceDescriptor &RedDes = Reduction.second;
7988     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7989     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7990   }
7991   // Ignore type-casting instructions we identified during induction
7992   // detection.
7993   for (auto &Induction : Legal->getInductionVars()) {
7994     InductionDescriptor &IndDes = Induction.second;
7995     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7996     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7997   }
7998 }
7999 
8000 void LoopVectorizationCostModel::collectInLoopReductions() {
8001   for (auto &Reduction : Legal->getReductionVars()) {
8002     PHINode *Phi = Reduction.first;
8003     RecurrenceDescriptor &RdxDesc = Reduction.second;
8004 
8005     // We don't collect reductions that are type promoted (yet).
8006     if (RdxDesc.getRecurrenceType() != Phi->getType())
8007       continue;
8008 
8009     // If the target would prefer this reduction to happen "in-loop", then we
8010     // want to record it as such.
8011     unsigned Opcode = RdxDesc.getOpcode();
8012     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
8013         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
8014                                    TargetTransformInfo::ReductionFlags()))
8015       continue;
8016 
8017     // Check that we can correctly put the reductions into the loop, by
8018     // finding the chain of operations that leads from the phi to the loop
8019     // exit value.
8020     SmallVector<Instruction *, 4> ReductionOperations =
8021         RdxDesc.getReductionOpChain(Phi, TheLoop);
8022     bool InLoop = !ReductionOperations.empty();
8023     if (InLoop) {
8024       InLoopReductionChains[Phi] = ReductionOperations;
8025       // Add the elements to InLoopReductionImmediateChains for cost modelling.
8026       Instruction *LastChain = Phi;
8027       for (auto *I : ReductionOperations) {
8028         InLoopReductionImmediateChains[I] = LastChain;
8029         LastChain = I;
8030       }
8031     }
8032     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
8033                       << " reduction for phi: " << *Phi << "\n");
8034   }
8035 }
8036 
8037 // TODO: we could return a pair of values that specify the max VF and
8038 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
8039 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
8040 // doesn't have a cost model that can choose which plan to execute if
8041 // more than one is generated.
8042 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
8043                                  LoopVectorizationCostModel &CM) {
8044   unsigned WidestType;
8045   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
8046   return WidestVectorRegBits / WidestType;
8047 }
8048 
8049 VectorizationFactor
8050 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
8051   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
8052   ElementCount VF = UserVF;
8053   // Outer loop handling: They may require CFG and instruction level
8054   // transformations before even evaluating whether vectorization is profitable.
8055   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8056   // the vectorization pipeline.
8057   if (!OrigLoop->isInnermost()) {
8058     // If the user doesn't provide a vectorization factor, determine a
8059     // reasonable one.
8060     if (UserVF.isZero()) {
8061       VF = ElementCount::getFixed(determineVPlanVF(
8062           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
8063               .getFixedSize(),
8064           CM));
8065       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
8066 
8067       // Make sure we have a VF > 1 for stress testing.
8068       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
8069         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
8070                           << "overriding computed VF.\n");
8071         VF = ElementCount::getFixed(4);
8072       }
8073     }
8074     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8075     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
8076            "VF needs to be a power of two");
8077     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
8078                       << "VF " << VF << " to build VPlans.\n");
8079     buildVPlans(VF, VF);
8080 
8081     // For VPlan build stress testing, we bail out after VPlan construction.
8082     if (VPlanBuildStressTest)
8083       return VectorizationFactor::Disabled();
8084 
8085     return {VF, 0 /*Cost*/};
8086   }
8087 
8088   LLVM_DEBUG(
8089       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
8090                 "VPlan-native path.\n");
8091   return VectorizationFactor::Disabled();
8092 }
8093 
8094 Optional<VectorizationFactor>
8095 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
8096   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8097   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
8098   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
8099     return None;
8100 
8101   // Invalidate interleave groups if all blocks of loop will be predicated.
8102   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
8103       !useMaskedInterleavedAccesses(*TTI)) {
8104     LLVM_DEBUG(
8105         dbgs()
8106         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8107            "which requires masked-interleaved support.\n");
8108     if (CM.InterleaveInfo.invalidateGroups())
8109       // Invalidating interleave groups also requires invalidating all decisions
8110       // based on them, which includes widening decisions and uniform and scalar
8111       // values.
8112       CM.invalidateCostModelingDecisions();
8113   }
8114 
8115   ElementCount MaxUserVF =
8116       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8117   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8118   if (!UserVF.isZero() && UserVFIsLegal) {
8119     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8120            "VF needs to be a power of two");
8121     // Collect the instructions (and their associated costs) that will be more
8122     // profitable to scalarize.
8123     if (CM.selectUserVectorizationFactor(UserVF)) {
8124       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8125       CM.collectInLoopReductions();
8126       buildVPlansWithVPRecipes(UserVF, UserVF);
8127       LLVM_DEBUG(printPlans(dbgs()));
8128       return {{UserVF, 0}};
8129     } else
8130       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8131                               "InvalidCost", ORE, OrigLoop);
8132   }
8133 
8134   // Populate the set of Vectorization Factor Candidates.
8135   ElementCountSet VFCandidates;
8136   for (auto VF = ElementCount::getFixed(1);
8137        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8138     VFCandidates.insert(VF);
8139   for (auto VF = ElementCount::getScalable(1);
8140        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8141     VFCandidates.insert(VF);
8142 
8143   for (const auto &VF : VFCandidates) {
8144     // Collect Uniform and Scalar instructions after vectorization with VF.
8145     CM.collectUniformsAndScalars(VF);
8146 
8147     // Collect the instructions (and their associated costs) that will be more
8148     // profitable to scalarize.
8149     if (VF.isVector())
8150       CM.collectInstsToScalarize(VF);
8151   }
8152 
8153   CM.collectInLoopReductions();
8154   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8155   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8156 
8157   LLVM_DEBUG(printPlans(dbgs()));
8158   if (!MaxFactors.hasVector())
8159     return VectorizationFactor::Disabled();
8160 
8161   // Select the optimal vectorization factor.
8162   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8163 
8164   // Check if it is profitable to vectorize with runtime checks.
8165   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8166   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8167     bool PragmaThresholdReached =
8168         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8169     bool ThresholdReached =
8170         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8171     if ((ThresholdReached && !Hints.allowReordering()) ||
8172         PragmaThresholdReached) {
8173       ORE->emit([&]() {
8174         return OptimizationRemarkAnalysisAliasing(
8175                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8176                    OrigLoop->getHeader())
8177                << "loop not vectorized: cannot prove it is safe to reorder "
8178                   "memory operations";
8179       });
8180       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8181       Hints.emitRemarkWithHints();
8182       return VectorizationFactor::Disabled();
8183     }
8184   }
8185   return SelectedVF;
8186 }
8187 
8188 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
8189   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
8190                     << '\n');
8191   BestVF = VF;
8192   BestUF = UF;
8193 
8194   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
8195     return !Plan->hasVF(VF);
8196   });
8197   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
8198 }
8199 
8200 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
8201                                            DominatorTree *DT) {
8202   // Perform the actual loop transformation.
8203 
8204   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8205   assert(BestVF.hasValue() && "Vectorization Factor is missing");
8206   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
8207 
8208   VPTransformState State{
8209       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
8210   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8211   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8212   State.CanonicalIV = ILV.Induction;
8213 
8214   ILV.printDebugTracesAtStart();
8215 
8216   //===------------------------------------------------===//
8217   //
8218   // Notice: any optimization or new instruction that go
8219   // into the code below should also be implemented in
8220   // the cost-model.
8221   //
8222   //===------------------------------------------------===//
8223 
8224   // 2. Copy and widen instructions from the old loop into the new loop.
8225   VPlans.front()->execute(&State);
8226 
8227   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8228   //    predication, updating analyses.
8229   ILV.fixVectorizedLoop(State);
8230 
8231   ILV.printDebugTracesAtEnd();
8232 }
8233 
8234 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8235 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8236   for (const auto &Plan : VPlans)
8237     if (PrintVPlansInDotFormat)
8238       Plan->printDOT(O);
8239     else
8240       Plan->print(O);
8241 }
8242 #endif
8243 
8244 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8245     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8246 
8247   // We create new control-flow for the vectorized loop, so the original exit
8248   // conditions will be dead after vectorization if it's only used by the
8249   // terminator
8250   SmallVector<BasicBlock*> ExitingBlocks;
8251   OrigLoop->getExitingBlocks(ExitingBlocks);
8252   for (auto *BB : ExitingBlocks) {
8253     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8254     if (!Cmp || !Cmp->hasOneUse())
8255       continue;
8256 
8257     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8258     if (!DeadInstructions.insert(Cmp).second)
8259       continue;
8260 
8261     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8262     // TODO: can recurse through operands in general
8263     for (Value *Op : Cmp->operands()) {
8264       if (isa<TruncInst>(Op) && Op->hasOneUse())
8265           DeadInstructions.insert(cast<Instruction>(Op));
8266     }
8267   }
8268 
8269   // We create new "steps" for induction variable updates to which the original
8270   // induction variables map. An original update instruction will be dead if
8271   // all its users except the induction variable are dead.
8272   auto *Latch = OrigLoop->getLoopLatch();
8273   for (auto &Induction : Legal->getInductionVars()) {
8274     PHINode *Ind = Induction.first;
8275     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8276 
8277     // If the tail is to be folded by masking, the primary induction variable,
8278     // if exists, isn't dead: it will be used for masking. Don't kill it.
8279     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8280       continue;
8281 
8282     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8283           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8284         }))
8285       DeadInstructions.insert(IndUpdate);
8286 
8287     // We record as "Dead" also the type-casting instructions we had identified
8288     // during induction analysis. We don't need any handling for them in the
8289     // vectorized loop because we have proven that, under a proper runtime
8290     // test guarding the vectorized loop, the value of the phi, and the casted
8291     // value of the phi, are the same. The last instruction in this casting chain
8292     // will get its scalar/vector/widened def from the scalar/vector/widened def
8293     // of the respective phi node. Any other casts in the induction def-use chain
8294     // have no other uses outside the phi update chain, and will be ignored.
8295     InductionDescriptor &IndDes = Induction.second;
8296     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8297     DeadInstructions.insert(Casts.begin(), Casts.end());
8298   }
8299 }
8300 
8301 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8302 
8303 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8304 
8305 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
8306                                         Instruction::BinaryOps BinOp) {
8307   // When unrolling and the VF is 1, we only need to add a simple scalar.
8308   Type *Ty = Val->getType();
8309   assert(!Ty->isVectorTy() && "Val must be a scalar");
8310 
8311   if (Ty->isFloatingPointTy()) {
8312     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
8313 
8314     // Floating-point operations inherit FMF via the builder's flags.
8315     Value *MulOp = Builder.CreateFMul(C, Step);
8316     return Builder.CreateBinOp(BinOp, Val, MulOp);
8317   }
8318   Constant *C = ConstantInt::get(Ty, StartIdx);
8319   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
8320 }
8321 
8322 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8323   SmallVector<Metadata *, 4> MDs;
8324   // Reserve first location for self reference to the LoopID metadata node.
8325   MDs.push_back(nullptr);
8326   bool IsUnrollMetadata = false;
8327   MDNode *LoopID = L->getLoopID();
8328   if (LoopID) {
8329     // First find existing loop unrolling disable metadata.
8330     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8331       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8332       if (MD) {
8333         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8334         IsUnrollMetadata =
8335             S && S->getString().startswith("llvm.loop.unroll.disable");
8336       }
8337       MDs.push_back(LoopID->getOperand(i));
8338     }
8339   }
8340 
8341   if (!IsUnrollMetadata) {
8342     // Add runtime unroll disable metadata.
8343     LLVMContext &Context = L->getHeader()->getContext();
8344     SmallVector<Metadata *, 1> DisableOperands;
8345     DisableOperands.push_back(
8346         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8347     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8348     MDs.push_back(DisableNode);
8349     MDNode *NewLoopID = MDNode::get(Context, MDs);
8350     // Set operand 0 to refer to the loop id itself.
8351     NewLoopID->replaceOperandWith(0, NewLoopID);
8352     L->setLoopID(NewLoopID);
8353   }
8354 }
8355 
8356 //===--------------------------------------------------------------------===//
8357 // EpilogueVectorizerMainLoop
8358 //===--------------------------------------------------------------------===//
8359 
8360 /// This function is partially responsible for generating the control flow
8361 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8362 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8363   MDNode *OrigLoopID = OrigLoop->getLoopID();
8364   Loop *Lp = createVectorLoopSkeleton("");
8365 
8366   // Generate the code to check the minimum iteration count of the vector
8367   // epilogue (see below).
8368   EPI.EpilogueIterationCountCheck =
8369       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8370   EPI.EpilogueIterationCountCheck->setName("iter.check");
8371 
8372   // Generate the code to check any assumptions that we've made for SCEV
8373   // expressions.
8374   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8375 
8376   // Generate the code that checks at runtime if arrays overlap. We put the
8377   // checks into a separate block to make the more common case of few elements
8378   // faster.
8379   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8380 
8381   // Generate the iteration count check for the main loop, *after* the check
8382   // for the epilogue loop, so that the path-length is shorter for the case
8383   // that goes directly through the vector epilogue. The longer-path length for
8384   // the main loop is compensated for, by the gain from vectorizing the larger
8385   // trip count. Note: the branch will get updated later on when we vectorize
8386   // the epilogue.
8387   EPI.MainLoopIterationCountCheck =
8388       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8389 
8390   // Generate the induction variable.
8391   OldInduction = Legal->getPrimaryInduction();
8392   Type *IdxTy = Legal->getWidestInductionType();
8393   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8394   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8395   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8396   EPI.VectorTripCount = CountRoundDown;
8397   Induction =
8398       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8399                               getDebugLocFromInstOrOperands(OldInduction));
8400 
8401   // Skip induction resume value creation here because they will be created in
8402   // the second pass. If we created them here, they wouldn't be used anyway,
8403   // because the vplan in the second pass still contains the inductions from the
8404   // original loop.
8405 
8406   return completeLoopSkeleton(Lp, OrigLoopID);
8407 }
8408 
8409 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8410   LLVM_DEBUG({
8411     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8412            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8413            << ", Main Loop UF:" << EPI.MainLoopUF
8414            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8415            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8416   });
8417 }
8418 
8419 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8420   DEBUG_WITH_TYPE(VerboseDebug, {
8421     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8422   });
8423 }
8424 
8425 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8426     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8427   assert(L && "Expected valid Loop.");
8428   assert(Bypass && "Expected valid bypass basic block.");
8429   unsigned VFactor =
8430       ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue();
8431   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8432   Value *Count = getOrCreateTripCount(L);
8433   // Reuse existing vector loop preheader for TC checks.
8434   // Note that new preheader block is generated for vector loop.
8435   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8436   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8437 
8438   // Generate code to check if the loop's trip count is less than VF * UF of the
8439   // main vector loop.
8440   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8441       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8442 
8443   Value *CheckMinIters = Builder.CreateICmp(
8444       P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor),
8445       "min.iters.check");
8446 
8447   if (!ForEpilogue)
8448     TCCheckBlock->setName("vector.main.loop.iter.check");
8449 
8450   // Create new preheader for vector loop.
8451   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8452                                    DT, LI, nullptr, "vector.ph");
8453 
8454   if (ForEpilogue) {
8455     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8456                                  DT->getNode(Bypass)->getIDom()) &&
8457            "TC check is expected to dominate Bypass");
8458 
8459     // Update dominator for Bypass & LoopExit.
8460     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8461     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8462       // For loops with multiple exits, there's no edge from the middle block
8463       // to exit blocks (as the epilogue must run) and thus no need to update
8464       // the immediate dominator of the exit blocks.
8465       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8466 
8467     LoopBypassBlocks.push_back(TCCheckBlock);
8468 
8469     // Save the trip count so we don't have to regenerate it in the
8470     // vec.epilog.iter.check. This is safe to do because the trip count
8471     // generated here dominates the vector epilog iter check.
8472     EPI.TripCount = Count;
8473   }
8474 
8475   ReplaceInstWithInst(
8476       TCCheckBlock->getTerminator(),
8477       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8478 
8479   return TCCheckBlock;
8480 }
8481 
8482 //===--------------------------------------------------------------------===//
8483 // EpilogueVectorizerEpilogueLoop
8484 //===--------------------------------------------------------------------===//
8485 
8486 /// This function is partially responsible for generating the control flow
8487 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8488 BasicBlock *
8489 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8490   MDNode *OrigLoopID = OrigLoop->getLoopID();
8491   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8492 
8493   // Now, compare the remaining count and if there aren't enough iterations to
8494   // execute the vectorized epilogue skip to the scalar part.
8495   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8496   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8497   LoopVectorPreHeader =
8498       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8499                  LI, nullptr, "vec.epilog.ph");
8500   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8501                                           VecEpilogueIterationCountCheck);
8502 
8503   // Adjust the control flow taking the state info from the main loop
8504   // vectorization into account.
8505   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8506          "expected this to be saved from the previous pass.");
8507   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8508       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8509 
8510   DT->changeImmediateDominator(LoopVectorPreHeader,
8511                                EPI.MainLoopIterationCountCheck);
8512 
8513   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8514       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8515 
8516   if (EPI.SCEVSafetyCheck)
8517     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8518         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8519   if (EPI.MemSafetyCheck)
8520     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8521         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8522 
8523   DT->changeImmediateDominator(
8524       VecEpilogueIterationCountCheck,
8525       VecEpilogueIterationCountCheck->getSinglePredecessor());
8526 
8527   DT->changeImmediateDominator(LoopScalarPreHeader,
8528                                EPI.EpilogueIterationCountCheck);
8529   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8530     // If there is an epilogue which must run, there's no edge from the
8531     // middle block to exit blocks  and thus no need to update the immediate
8532     // dominator of the exit blocks.
8533     DT->changeImmediateDominator(LoopExitBlock,
8534                                  EPI.EpilogueIterationCountCheck);
8535 
8536   // Keep track of bypass blocks, as they feed start values to the induction
8537   // phis in the scalar loop preheader.
8538   if (EPI.SCEVSafetyCheck)
8539     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8540   if (EPI.MemSafetyCheck)
8541     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8542   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8543 
8544   // Generate a resume induction for the vector epilogue and put it in the
8545   // vector epilogue preheader
8546   Type *IdxTy = Legal->getWidestInductionType();
8547   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8548                                          LoopVectorPreHeader->getFirstNonPHI());
8549   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8550   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8551                            EPI.MainLoopIterationCountCheck);
8552 
8553   // Generate the induction variable.
8554   OldInduction = Legal->getPrimaryInduction();
8555   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8556   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8557   Value *StartIdx = EPResumeVal;
8558   Induction =
8559       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8560                               getDebugLocFromInstOrOperands(OldInduction));
8561 
8562   // Generate induction resume values. These variables save the new starting
8563   // indexes for the scalar loop. They are used to test if there are any tail
8564   // iterations left once the vector loop has completed.
8565   // Note that when the vectorized epilogue is skipped due to iteration count
8566   // check, then the resume value for the induction variable comes from
8567   // the trip count of the main vector loop, hence passing the AdditionalBypass
8568   // argument.
8569   createInductionResumeValues(Lp, CountRoundDown,
8570                               {VecEpilogueIterationCountCheck,
8571                                EPI.VectorTripCount} /* AdditionalBypass */);
8572 
8573   AddRuntimeUnrollDisableMetaData(Lp);
8574   return completeLoopSkeleton(Lp, OrigLoopID);
8575 }
8576 
8577 BasicBlock *
8578 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8579     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8580 
8581   assert(EPI.TripCount &&
8582          "Expected trip count to have been safed in the first pass.");
8583   assert(
8584       (!isa<Instruction>(EPI.TripCount) ||
8585        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8586       "saved trip count does not dominate insertion point.");
8587   Value *TC = EPI.TripCount;
8588   IRBuilder<> Builder(Insert->getTerminator());
8589   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8590 
8591   // Generate code to check if the loop's trip count is less than VF * UF of the
8592   // vector epilogue loop.
8593   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8594       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8595 
8596   Value *CheckMinIters = Builder.CreateICmp(
8597       P, Count,
8598       ConstantInt::get(Count->getType(),
8599                        EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF),
8600       "min.epilog.iters.check");
8601 
8602   ReplaceInstWithInst(
8603       Insert->getTerminator(),
8604       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8605 
8606   LoopBypassBlocks.push_back(Insert);
8607   return Insert;
8608 }
8609 
8610 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8611   LLVM_DEBUG({
8612     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8613            << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8614            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8615   });
8616 }
8617 
8618 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8619   DEBUG_WITH_TYPE(VerboseDebug, {
8620     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8621   });
8622 }
8623 
8624 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8625     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8626   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8627   bool PredicateAtRangeStart = Predicate(Range.Start);
8628 
8629   for (ElementCount TmpVF = Range.Start * 2;
8630        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8631     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8632       Range.End = TmpVF;
8633       break;
8634     }
8635 
8636   return PredicateAtRangeStart;
8637 }
8638 
8639 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8640 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8641 /// of VF's starting at a given VF and extending it as much as possible. Each
8642 /// vectorization decision can potentially shorten this sub-range during
8643 /// buildVPlan().
8644 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8645                                            ElementCount MaxVF) {
8646   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8647   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8648     VFRange SubRange = {VF, MaxVFPlusOne};
8649     VPlans.push_back(buildVPlan(SubRange));
8650     VF = SubRange.End;
8651   }
8652 }
8653 
8654 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8655                                          VPlanPtr &Plan) {
8656   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8657 
8658   // Look for cached value.
8659   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8660   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8661   if (ECEntryIt != EdgeMaskCache.end())
8662     return ECEntryIt->second;
8663 
8664   VPValue *SrcMask = createBlockInMask(Src, Plan);
8665 
8666   // The terminator has to be a branch inst!
8667   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8668   assert(BI && "Unexpected terminator found");
8669 
8670   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8671     return EdgeMaskCache[Edge] = SrcMask;
8672 
8673   // If source is an exiting block, we know the exit edge is dynamically dead
8674   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8675   // adding uses of an otherwise potentially dead instruction.
8676   if (OrigLoop->isLoopExiting(Src))
8677     return EdgeMaskCache[Edge] = SrcMask;
8678 
8679   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8680   assert(EdgeMask && "No Edge Mask found for condition");
8681 
8682   if (BI->getSuccessor(0) != Dst)
8683     EdgeMask = Builder.createNot(EdgeMask);
8684 
8685   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8686     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8687     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8688     // The select version does not introduce new UB if SrcMask is false and
8689     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8690     VPValue *False = Plan->getOrAddVPValue(
8691         ConstantInt::getFalse(BI->getCondition()->getType()));
8692     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8693   }
8694 
8695   return EdgeMaskCache[Edge] = EdgeMask;
8696 }
8697 
8698 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8699   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8700 
8701   // Look for cached value.
8702   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8703   if (BCEntryIt != BlockMaskCache.end())
8704     return BCEntryIt->second;
8705 
8706   // All-one mask is modelled as no-mask following the convention for masked
8707   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8708   VPValue *BlockMask = nullptr;
8709 
8710   if (OrigLoop->getHeader() == BB) {
8711     if (!CM.blockNeedsPredication(BB))
8712       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8713 
8714     // Create the block in mask as the first non-phi instruction in the block.
8715     VPBuilder::InsertPointGuard Guard(Builder);
8716     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8717     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8718 
8719     // Introduce the early-exit compare IV <= BTC to form header block mask.
8720     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8721     // Start by constructing the desired canonical IV.
8722     VPValue *IV = nullptr;
8723     if (Legal->getPrimaryInduction())
8724       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8725     else {
8726       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8727       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8728       IV = IVRecipe->getVPSingleValue();
8729     }
8730     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8731     bool TailFolded = !CM.isScalarEpilogueAllowed();
8732 
8733     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8734       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8735       // as a second argument, we only pass the IV here and extract the
8736       // tripcount from the transform state where codegen of the VP instructions
8737       // happen.
8738       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8739     } else {
8740       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8741     }
8742     return BlockMaskCache[BB] = BlockMask;
8743   }
8744 
8745   // This is the block mask. We OR all incoming edges.
8746   for (auto *Predecessor : predecessors(BB)) {
8747     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8748     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8749       return BlockMaskCache[BB] = EdgeMask;
8750 
8751     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8752       BlockMask = EdgeMask;
8753       continue;
8754     }
8755 
8756     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8757   }
8758 
8759   return BlockMaskCache[BB] = BlockMask;
8760 }
8761 
8762 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8763                                                 ArrayRef<VPValue *> Operands,
8764                                                 VFRange &Range,
8765                                                 VPlanPtr &Plan) {
8766   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8767          "Must be called with either a load or store");
8768 
8769   auto willWiden = [&](ElementCount VF) -> bool {
8770     if (VF.isScalar())
8771       return false;
8772     LoopVectorizationCostModel::InstWidening Decision =
8773         CM.getWideningDecision(I, VF);
8774     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8775            "CM decision should be taken at this point.");
8776     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8777       return true;
8778     if (CM.isScalarAfterVectorization(I, VF) ||
8779         CM.isProfitableToScalarize(I, VF))
8780       return false;
8781     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8782   };
8783 
8784   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8785     return nullptr;
8786 
8787   VPValue *Mask = nullptr;
8788   if (Legal->isMaskRequired(I))
8789     Mask = createBlockInMask(I->getParent(), Plan);
8790 
8791   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8792     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8793 
8794   StoreInst *Store = cast<StoreInst>(I);
8795   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8796                                             Mask);
8797 }
8798 
8799 VPWidenIntOrFpInductionRecipe *
8800 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8801                                            ArrayRef<VPValue *> Operands) const {
8802   // Check if this is an integer or fp induction. If so, build the recipe that
8803   // produces its scalar and vector values.
8804   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8805   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8806       II.getKind() == InductionDescriptor::IK_FpInduction) {
8807     assert(II.getStartValue() ==
8808            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8809     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8810     return new VPWidenIntOrFpInductionRecipe(
8811         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8812   }
8813 
8814   return nullptr;
8815 }
8816 
8817 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8818     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8819     VPlan &Plan) const {
8820   // Optimize the special case where the source is a constant integer
8821   // induction variable. Notice that we can only optimize the 'trunc' case
8822   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8823   // (c) other casts depend on pointer size.
8824 
8825   // Determine whether \p K is a truncation based on an induction variable that
8826   // can be optimized.
8827   auto isOptimizableIVTruncate =
8828       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8829     return [=](ElementCount VF) -> bool {
8830       return CM.isOptimizableIVTruncate(K, VF);
8831     };
8832   };
8833 
8834   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8835           isOptimizableIVTruncate(I), Range)) {
8836 
8837     InductionDescriptor II =
8838         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8839     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8840     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8841                                              Start, nullptr, I);
8842   }
8843   return nullptr;
8844 }
8845 
8846 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8847                                                 ArrayRef<VPValue *> Operands,
8848                                                 VPlanPtr &Plan) {
8849   // If all incoming values are equal, the incoming VPValue can be used directly
8850   // instead of creating a new VPBlendRecipe.
8851   VPValue *FirstIncoming = Operands[0];
8852   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8853         return FirstIncoming == Inc;
8854       })) {
8855     return Operands[0];
8856   }
8857 
8858   // We know that all PHIs in non-header blocks are converted into selects, so
8859   // we don't have to worry about the insertion order and we can just use the
8860   // builder. At this point we generate the predication tree. There may be
8861   // duplications since this is a simple recursive scan, but future
8862   // optimizations will clean it up.
8863   SmallVector<VPValue *, 2> OperandsWithMask;
8864   unsigned NumIncoming = Phi->getNumIncomingValues();
8865 
8866   for (unsigned In = 0; In < NumIncoming; In++) {
8867     VPValue *EdgeMask =
8868       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8869     assert((EdgeMask || NumIncoming == 1) &&
8870            "Multiple predecessors with one having a full mask");
8871     OperandsWithMask.push_back(Operands[In]);
8872     if (EdgeMask)
8873       OperandsWithMask.push_back(EdgeMask);
8874   }
8875   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8876 }
8877 
8878 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8879                                                    ArrayRef<VPValue *> Operands,
8880                                                    VFRange &Range) const {
8881 
8882   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8883       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8884       Range);
8885 
8886   if (IsPredicated)
8887     return nullptr;
8888 
8889   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8890   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8891              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8892              ID == Intrinsic::pseudoprobe ||
8893              ID == Intrinsic::experimental_noalias_scope_decl))
8894     return nullptr;
8895 
8896   auto willWiden = [&](ElementCount VF) -> bool {
8897     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8898     // The following case may be scalarized depending on the VF.
8899     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8900     // version of the instruction.
8901     // Is it beneficial to perform intrinsic call compared to lib call?
8902     bool NeedToScalarize = false;
8903     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8904     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8905     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8906     return UseVectorIntrinsic || !NeedToScalarize;
8907   };
8908 
8909   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8910     return nullptr;
8911 
8912   ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands());
8913   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8914 }
8915 
8916 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8917   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8918          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8919   // Instruction should be widened, unless it is scalar after vectorization,
8920   // scalarization is profitable or it is predicated.
8921   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8922     return CM.isScalarAfterVectorization(I, VF) ||
8923            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8924   };
8925   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8926                                                              Range);
8927 }
8928 
8929 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8930                                            ArrayRef<VPValue *> Operands) const {
8931   auto IsVectorizableOpcode = [](unsigned Opcode) {
8932     switch (Opcode) {
8933     case Instruction::Add:
8934     case Instruction::And:
8935     case Instruction::AShr:
8936     case Instruction::BitCast:
8937     case Instruction::FAdd:
8938     case Instruction::FCmp:
8939     case Instruction::FDiv:
8940     case Instruction::FMul:
8941     case Instruction::FNeg:
8942     case Instruction::FPExt:
8943     case Instruction::FPToSI:
8944     case Instruction::FPToUI:
8945     case Instruction::FPTrunc:
8946     case Instruction::FRem:
8947     case Instruction::FSub:
8948     case Instruction::ICmp:
8949     case Instruction::IntToPtr:
8950     case Instruction::LShr:
8951     case Instruction::Mul:
8952     case Instruction::Or:
8953     case Instruction::PtrToInt:
8954     case Instruction::SDiv:
8955     case Instruction::Select:
8956     case Instruction::SExt:
8957     case Instruction::Shl:
8958     case Instruction::SIToFP:
8959     case Instruction::SRem:
8960     case Instruction::Sub:
8961     case Instruction::Trunc:
8962     case Instruction::UDiv:
8963     case Instruction::UIToFP:
8964     case Instruction::URem:
8965     case Instruction::Xor:
8966     case Instruction::ZExt:
8967       return true;
8968     }
8969     return false;
8970   };
8971 
8972   if (!IsVectorizableOpcode(I->getOpcode()))
8973     return nullptr;
8974 
8975   // Success: widen this instruction.
8976   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8977 }
8978 
8979 void VPRecipeBuilder::fixHeaderPhis() {
8980   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8981   for (VPWidenPHIRecipe *R : PhisToFix) {
8982     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8983     VPRecipeBase *IncR =
8984         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8985     R->addOperand(IncR->getVPSingleValue());
8986   }
8987 }
8988 
8989 VPBasicBlock *VPRecipeBuilder::handleReplication(
8990     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8991     VPlanPtr &Plan) {
8992   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8993       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8994       Range);
8995 
8996   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8997       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
8998 
8999   // Even if the instruction is not marked as uniform, there are certain
9000   // intrinsic calls that can be effectively treated as such, so we check for
9001   // them here. Conservatively, we only do this for scalable vectors, since
9002   // for fixed-width VFs we can always fall back on full scalarization.
9003   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
9004     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
9005     case Intrinsic::assume:
9006     case Intrinsic::lifetime_start:
9007     case Intrinsic::lifetime_end:
9008       // For scalable vectors if one of the operands is variant then we still
9009       // want to mark as uniform, which will generate one instruction for just
9010       // the first lane of the vector. We can't scalarize the call in the same
9011       // way as for fixed-width vectors because we don't know how many lanes
9012       // there are.
9013       //
9014       // The reasons for doing it this way for scalable vectors are:
9015       //   1. For the assume intrinsic generating the instruction for the first
9016       //      lane is still be better than not generating any at all. For
9017       //      example, the input may be a splat across all lanes.
9018       //   2. For the lifetime start/end intrinsics the pointer operand only
9019       //      does anything useful when the input comes from a stack object,
9020       //      which suggests it should always be uniform. For non-stack objects
9021       //      the effect is to poison the object, which still allows us to
9022       //      remove the call.
9023       IsUniform = true;
9024       break;
9025     default:
9026       break;
9027     }
9028   }
9029 
9030   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
9031                                        IsUniform, IsPredicated);
9032   setRecipe(I, Recipe);
9033   Plan->addVPValue(I, Recipe);
9034 
9035   // Find if I uses a predicated instruction. If so, it will use its scalar
9036   // value. Avoid hoisting the insert-element which packs the scalar value into
9037   // a vector value, as that happens iff all users use the vector value.
9038   for (VPValue *Op : Recipe->operands()) {
9039     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
9040     if (!PredR)
9041       continue;
9042     auto *RepR =
9043         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
9044     assert(RepR->isPredicated() &&
9045            "expected Replicate recipe to be predicated");
9046     RepR->setAlsoPack(false);
9047   }
9048 
9049   // Finalize the recipe for Instr, first if it is not predicated.
9050   if (!IsPredicated) {
9051     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
9052     VPBB->appendRecipe(Recipe);
9053     return VPBB;
9054   }
9055   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
9056   assert(VPBB->getSuccessors().empty() &&
9057          "VPBB has successors when handling predicated replication.");
9058   // Record predicated instructions for above packing optimizations.
9059   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
9060   VPBlockUtils::insertBlockAfter(Region, VPBB);
9061   auto *RegSucc = new VPBasicBlock();
9062   VPBlockUtils::insertBlockAfter(RegSucc, Region);
9063   return RegSucc;
9064 }
9065 
9066 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
9067                                                       VPRecipeBase *PredRecipe,
9068                                                       VPlanPtr &Plan) {
9069   // Instructions marked for predication are replicated and placed under an
9070   // if-then construct to prevent side-effects.
9071 
9072   // Generate recipes to compute the block mask for this region.
9073   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
9074 
9075   // Build the triangular if-then region.
9076   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
9077   assert(Instr->getParent() && "Predicated instruction not in any basic block");
9078   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
9079   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
9080   auto *PHIRecipe = Instr->getType()->isVoidTy()
9081                         ? nullptr
9082                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
9083   if (PHIRecipe) {
9084     Plan->removeVPValueFor(Instr);
9085     Plan->addVPValue(Instr, PHIRecipe);
9086   }
9087   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
9088   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
9089   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
9090 
9091   // Note: first set Entry as region entry and then connect successors starting
9092   // from it in order, to propagate the "parent" of each VPBasicBlock.
9093   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
9094   VPBlockUtils::connectBlocks(Pred, Exit);
9095 
9096   return Region;
9097 }
9098 
9099 VPRecipeOrVPValueTy
9100 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
9101                                         ArrayRef<VPValue *> Operands,
9102                                         VFRange &Range, VPlanPtr &Plan) {
9103   // First, check for specific widening recipes that deal with calls, memory
9104   // operations, inductions and Phi nodes.
9105   if (auto *CI = dyn_cast<CallInst>(Instr))
9106     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
9107 
9108   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
9109     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
9110 
9111   VPRecipeBase *Recipe;
9112   if (auto Phi = dyn_cast<PHINode>(Instr)) {
9113     if (Phi->getParent() != OrigLoop->getHeader())
9114       return tryToBlend(Phi, Operands, Plan);
9115     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
9116       return toVPRecipeResult(Recipe);
9117 
9118     VPWidenPHIRecipe *PhiRecipe = nullptr;
9119     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
9120       VPValue *StartV = Operands[0];
9121       if (Legal->isReductionVariable(Phi)) {
9122         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9123         assert(RdxDesc.getRecurrenceStartValue() ==
9124                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
9125         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
9126                                              CM.isInLoopReduction(Phi),
9127                                              CM.useOrderedReductions(RdxDesc));
9128       } else {
9129         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
9130       }
9131 
9132       // Record the incoming value from the backedge, so we can add the incoming
9133       // value from the backedge after all recipes have been created.
9134       recordRecipeOf(cast<Instruction>(
9135           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
9136       PhisToFix.push_back(PhiRecipe);
9137     } else {
9138       // TODO: record start and backedge value for remaining pointer induction
9139       // phis.
9140       assert(Phi->getType()->isPointerTy() &&
9141              "only pointer phis should be handled here");
9142       PhiRecipe = new VPWidenPHIRecipe(Phi);
9143     }
9144 
9145     return toVPRecipeResult(PhiRecipe);
9146   }
9147 
9148   if (isa<TruncInst>(Instr) &&
9149       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9150                                                Range, *Plan)))
9151     return toVPRecipeResult(Recipe);
9152 
9153   if (!shouldWiden(Instr, Range))
9154     return nullptr;
9155 
9156   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9157     return toVPRecipeResult(new VPWidenGEPRecipe(
9158         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9159 
9160   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9161     bool InvariantCond =
9162         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9163     return toVPRecipeResult(new VPWidenSelectRecipe(
9164         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9165   }
9166 
9167   return toVPRecipeResult(tryToWiden(Instr, Operands));
9168 }
9169 
9170 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9171                                                         ElementCount MaxVF) {
9172   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9173 
9174   // Collect instructions from the original loop that will become trivially dead
9175   // in the vectorized loop. We don't need to vectorize these instructions. For
9176   // example, original induction update instructions can become dead because we
9177   // separately emit induction "steps" when generating code for the new loop.
9178   // Similarly, we create a new latch condition when setting up the structure
9179   // of the new loop, so the old one can become dead.
9180   SmallPtrSet<Instruction *, 4> DeadInstructions;
9181   collectTriviallyDeadInstructions(DeadInstructions);
9182 
9183   // Add assume instructions we need to drop to DeadInstructions, to prevent
9184   // them from being added to the VPlan.
9185   // TODO: We only need to drop assumes in blocks that get flattend. If the
9186   // control flow is preserved, we should keep them.
9187   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9188   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9189 
9190   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9191   // Dead instructions do not need sinking. Remove them from SinkAfter.
9192   for (Instruction *I : DeadInstructions)
9193     SinkAfter.erase(I);
9194 
9195   // Cannot sink instructions after dead instructions (there won't be any
9196   // recipes for them). Instead, find the first non-dead previous instruction.
9197   for (auto &P : Legal->getSinkAfter()) {
9198     Instruction *SinkTarget = P.second;
9199     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9200     (void)FirstInst;
9201     while (DeadInstructions.contains(SinkTarget)) {
9202       assert(
9203           SinkTarget != FirstInst &&
9204           "Must find a live instruction (at least the one feeding the "
9205           "first-order recurrence PHI) before reaching beginning of the block");
9206       SinkTarget = SinkTarget->getPrevNode();
9207       assert(SinkTarget != P.first &&
9208              "sink source equals target, no sinking required");
9209     }
9210     P.second = SinkTarget;
9211   }
9212 
9213   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9214   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9215     VFRange SubRange = {VF, MaxVFPlusOne};
9216     VPlans.push_back(
9217         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9218     VF = SubRange.End;
9219   }
9220 }
9221 
9222 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9223     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9224     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9225 
9226   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9227 
9228   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9229 
9230   // ---------------------------------------------------------------------------
9231   // Pre-construction: record ingredients whose recipes we'll need to further
9232   // process after constructing the initial VPlan.
9233   // ---------------------------------------------------------------------------
9234 
9235   // Mark instructions we'll need to sink later and their targets as
9236   // ingredients whose recipe we'll need to record.
9237   for (auto &Entry : SinkAfter) {
9238     RecipeBuilder.recordRecipeOf(Entry.first);
9239     RecipeBuilder.recordRecipeOf(Entry.second);
9240   }
9241   for (auto &Reduction : CM.getInLoopReductionChains()) {
9242     PHINode *Phi = Reduction.first;
9243     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9244     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9245 
9246     RecipeBuilder.recordRecipeOf(Phi);
9247     for (auto &R : ReductionOperations) {
9248       RecipeBuilder.recordRecipeOf(R);
9249       // For min/max reducitons, where we have a pair of icmp/select, we also
9250       // need to record the ICmp recipe, so it can be removed later.
9251       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9252         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9253     }
9254   }
9255 
9256   // For each interleave group which is relevant for this (possibly trimmed)
9257   // Range, add it to the set of groups to be later applied to the VPlan and add
9258   // placeholders for its members' Recipes which we'll be replacing with a
9259   // single VPInterleaveRecipe.
9260   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9261     auto applyIG = [IG, this](ElementCount VF) -> bool {
9262       return (VF.isVector() && // Query is illegal for VF == 1
9263               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9264                   LoopVectorizationCostModel::CM_Interleave);
9265     };
9266     if (!getDecisionAndClampRange(applyIG, Range))
9267       continue;
9268     InterleaveGroups.insert(IG);
9269     for (unsigned i = 0; i < IG->getFactor(); i++)
9270       if (Instruction *Member = IG->getMember(i))
9271         RecipeBuilder.recordRecipeOf(Member);
9272   };
9273 
9274   // ---------------------------------------------------------------------------
9275   // Build initial VPlan: Scan the body of the loop in a topological order to
9276   // visit each basic block after having visited its predecessor basic blocks.
9277   // ---------------------------------------------------------------------------
9278 
9279   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9280   auto Plan = std::make_unique<VPlan>();
9281   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
9282   Plan->setEntry(VPBB);
9283 
9284   // Scan the body of the loop in a topological order to visit each basic block
9285   // after having visited its predecessor basic blocks.
9286   LoopBlocksDFS DFS(OrigLoop);
9287   DFS.perform(LI);
9288 
9289   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9290     // Relevant instructions from basic block BB will be grouped into VPRecipe
9291     // ingredients and fill a new VPBasicBlock.
9292     unsigned VPBBsForBB = 0;
9293     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9294     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9295     VPBB = FirstVPBBForBB;
9296     Builder.setInsertPoint(VPBB);
9297 
9298     // Introduce each ingredient into VPlan.
9299     // TODO: Model and preserve debug instrinsics in VPlan.
9300     for (Instruction &I : BB->instructionsWithoutDebug()) {
9301       Instruction *Instr = &I;
9302 
9303       // First filter out irrelevant instructions, to ensure no recipes are
9304       // built for them.
9305       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9306         continue;
9307 
9308       SmallVector<VPValue *, 4> Operands;
9309       auto *Phi = dyn_cast<PHINode>(Instr);
9310       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9311         Operands.push_back(Plan->getOrAddVPValue(
9312             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9313       } else {
9314         auto OpRange = Plan->mapToVPValues(Instr->operands());
9315         Operands = {OpRange.begin(), OpRange.end()};
9316       }
9317       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9318               Instr, Operands, Range, Plan)) {
9319         // If Instr can be simplified to an existing VPValue, use it.
9320         if (RecipeOrValue.is<VPValue *>()) {
9321           auto *VPV = RecipeOrValue.get<VPValue *>();
9322           Plan->addVPValue(Instr, VPV);
9323           // If the re-used value is a recipe, register the recipe for the
9324           // instruction, in case the recipe for Instr needs to be recorded.
9325           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9326             RecipeBuilder.setRecipe(Instr, R);
9327           continue;
9328         }
9329         // Otherwise, add the new recipe.
9330         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9331         for (auto *Def : Recipe->definedValues()) {
9332           auto *UV = Def->getUnderlyingValue();
9333           Plan->addVPValue(UV, Def);
9334         }
9335 
9336         RecipeBuilder.setRecipe(Instr, Recipe);
9337         VPBB->appendRecipe(Recipe);
9338         continue;
9339       }
9340 
9341       // Otherwise, if all widening options failed, Instruction is to be
9342       // replicated. This may create a successor for VPBB.
9343       VPBasicBlock *NextVPBB =
9344           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9345       if (NextVPBB != VPBB) {
9346         VPBB = NextVPBB;
9347         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9348                                     : "");
9349       }
9350     }
9351   }
9352 
9353   RecipeBuilder.fixHeaderPhis();
9354 
9355   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
9356   // may also be empty, such as the last one VPBB, reflecting original
9357   // basic-blocks with no recipes.
9358   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
9359   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
9360   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
9361   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
9362   delete PreEntry;
9363 
9364   // ---------------------------------------------------------------------------
9365   // Transform initial VPlan: Apply previously taken decisions, in order, to
9366   // bring the VPlan to its final state.
9367   // ---------------------------------------------------------------------------
9368 
9369   // Apply Sink-After legal constraints.
9370   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9371     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9372     if (Region && Region->isReplicator()) {
9373       assert(Region->getNumSuccessors() == 1 &&
9374              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9375       assert(R->getParent()->size() == 1 &&
9376              "A recipe in an original replicator region must be the only "
9377              "recipe in its block");
9378       return Region;
9379     }
9380     return nullptr;
9381   };
9382   for (auto &Entry : SinkAfter) {
9383     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9384     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9385 
9386     auto *TargetRegion = GetReplicateRegion(Target);
9387     auto *SinkRegion = GetReplicateRegion(Sink);
9388     if (!SinkRegion) {
9389       // If the sink source is not a replicate region, sink the recipe directly.
9390       if (TargetRegion) {
9391         // The target is in a replication region, make sure to move Sink to
9392         // the block after it, not into the replication region itself.
9393         VPBasicBlock *NextBlock =
9394             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9395         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9396       } else
9397         Sink->moveAfter(Target);
9398       continue;
9399     }
9400 
9401     // The sink source is in a replicate region. Unhook the region from the CFG.
9402     auto *SinkPred = SinkRegion->getSinglePredecessor();
9403     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9404     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9405     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9406     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9407 
9408     if (TargetRegion) {
9409       // The target recipe is also in a replicate region, move the sink region
9410       // after the target region.
9411       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9412       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9413       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9414       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9415     } else {
9416       // The sink source is in a replicate region, we need to move the whole
9417       // replicate region, which should only contain a single recipe in the
9418       // main block.
9419       auto *SplitBlock =
9420           Target->getParent()->splitAt(std::next(Target->getIterator()));
9421 
9422       auto *SplitPred = SplitBlock->getSinglePredecessor();
9423 
9424       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9425       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9426       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9427       if (VPBB == SplitPred)
9428         VPBB = SplitBlock;
9429     }
9430   }
9431 
9432   // Adjust the recipes for any inloop reductions.
9433   adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start);
9434 
9435   // Introduce a recipe to combine the incoming and previous values of a
9436   // first-order recurrence.
9437   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9438     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9439     if (!RecurPhi)
9440       continue;
9441 
9442     auto *RecurSplice = cast<VPInstruction>(
9443         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9444                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9445 
9446     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9447     if (auto *Region = GetReplicateRegion(PrevRecipe)) {
9448       VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor());
9449       RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi());
9450     } else
9451       RecurSplice->moveAfter(PrevRecipe);
9452     RecurPhi->replaceAllUsesWith(RecurSplice);
9453     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9454     // all users.
9455     RecurSplice->setOperand(0, RecurPhi);
9456   }
9457 
9458   // Interleave memory: for each Interleave Group we marked earlier as relevant
9459   // for this VPlan, replace the Recipes widening its memory instructions with a
9460   // single VPInterleaveRecipe at its insertion point.
9461   for (auto IG : InterleaveGroups) {
9462     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9463         RecipeBuilder.getRecipe(IG->getInsertPos()));
9464     SmallVector<VPValue *, 4> StoredValues;
9465     for (unsigned i = 0; i < IG->getFactor(); ++i)
9466       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9467         auto *StoreR =
9468             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9469         StoredValues.push_back(StoreR->getStoredValue());
9470       }
9471 
9472     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9473                                         Recipe->getMask());
9474     VPIG->insertBefore(Recipe);
9475     unsigned J = 0;
9476     for (unsigned i = 0; i < IG->getFactor(); ++i)
9477       if (Instruction *Member = IG->getMember(i)) {
9478         if (!Member->getType()->isVoidTy()) {
9479           VPValue *OriginalV = Plan->getVPValue(Member);
9480           Plan->removeVPValueFor(Member);
9481           Plan->addVPValue(Member, VPIG->getVPValue(J));
9482           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9483           J++;
9484         }
9485         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9486       }
9487   }
9488 
9489   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9490   // in ways that accessing values using original IR values is incorrect.
9491   Plan->disableValue2VPValue();
9492 
9493   VPlanTransforms::sinkScalarOperands(*Plan);
9494   VPlanTransforms::mergeReplicateRegions(*Plan);
9495 
9496   std::string PlanName;
9497   raw_string_ostream RSO(PlanName);
9498   ElementCount VF = Range.Start;
9499   Plan->addVF(VF);
9500   RSO << "Initial VPlan for VF={" << VF;
9501   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9502     Plan->addVF(VF);
9503     RSO << "," << VF;
9504   }
9505   RSO << "},UF>=1";
9506   RSO.flush();
9507   Plan->setName(PlanName);
9508 
9509   return Plan;
9510 }
9511 
9512 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9513   // Outer loop handling: They may require CFG and instruction level
9514   // transformations before even evaluating whether vectorization is profitable.
9515   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9516   // the vectorization pipeline.
9517   assert(!OrigLoop->isInnermost());
9518   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9519 
9520   // Create new empty VPlan
9521   auto Plan = std::make_unique<VPlan>();
9522 
9523   // Build hierarchical CFG
9524   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9525   HCFGBuilder.buildHierarchicalCFG();
9526 
9527   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9528        VF *= 2)
9529     Plan->addVF(VF);
9530 
9531   if (EnableVPlanPredication) {
9532     VPlanPredicator VPP(*Plan);
9533     VPP.predicate();
9534 
9535     // Avoid running transformation to recipes until masked code generation in
9536     // VPlan-native path is in place.
9537     return Plan;
9538   }
9539 
9540   SmallPtrSet<Instruction *, 1> DeadInstructions;
9541   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9542                                              Legal->getInductionVars(),
9543                                              DeadInstructions, *PSE.getSE());
9544   return Plan;
9545 }
9546 
9547 // Adjust the recipes for reductions. For in-loop reductions the chain of
9548 // instructions leading from the loop exit instr to the phi need to be converted
9549 // to reductions, with one operand being vector and the other being the scalar
9550 // reduction chain. For other reductions, a select is introduced between the phi
9551 // and live-out recipes when folding the tail.
9552 void LoopVectorizationPlanner::adjustRecipesForReductions(
9553     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9554     ElementCount MinVF) {
9555   for (auto &Reduction : CM.getInLoopReductionChains()) {
9556     PHINode *Phi = Reduction.first;
9557     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9558     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9559 
9560     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9561       continue;
9562 
9563     // ReductionOperations are orders top-down from the phi's use to the
9564     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9565     // which of the two operands will remain scalar and which will be reduced.
9566     // For minmax the chain will be the select instructions.
9567     Instruction *Chain = Phi;
9568     for (Instruction *R : ReductionOperations) {
9569       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9570       RecurKind Kind = RdxDesc.getRecurrenceKind();
9571 
9572       VPValue *ChainOp = Plan->getVPValue(Chain);
9573       unsigned FirstOpId;
9574       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9575         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9576                "Expected to replace a VPWidenSelectSC");
9577         FirstOpId = 1;
9578       } else {
9579         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9580                "Expected to replace a VPWidenSC");
9581         FirstOpId = 0;
9582       }
9583       unsigned VecOpId =
9584           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9585       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9586 
9587       auto *CondOp = CM.foldTailByMasking()
9588                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9589                          : nullptr;
9590       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9591           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9592       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9593       Plan->removeVPValueFor(R);
9594       Plan->addVPValue(R, RedRecipe);
9595       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9596       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9597       WidenRecipe->eraseFromParent();
9598 
9599       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9600         VPRecipeBase *CompareRecipe =
9601             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9602         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9603                "Expected to replace a VPWidenSC");
9604         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9605                "Expected no remaining users");
9606         CompareRecipe->eraseFromParent();
9607       }
9608       Chain = R;
9609     }
9610   }
9611 
9612   // If tail is folded by masking, introduce selects between the phi
9613   // and the live-out instruction of each reduction, at the end of the latch.
9614   if (CM.foldTailByMasking()) {
9615     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9616       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9617       if (!PhiR || PhiR->isInLoop())
9618         continue;
9619       Builder.setInsertPoint(LatchVPBB);
9620       VPValue *Cond =
9621           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9622       VPValue *Red = PhiR->getBackedgeValue();
9623       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9624     }
9625   }
9626 }
9627 
9628 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9629 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9630                                VPSlotTracker &SlotTracker) const {
9631   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9632   IG->getInsertPos()->printAsOperand(O, false);
9633   O << ", ";
9634   getAddr()->printAsOperand(O, SlotTracker);
9635   VPValue *Mask = getMask();
9636   if (Mask) {
9637     O << ", ";
9638     Mask->printAsOperand(O, SlotTracker);
9639   }
9640 
9641   unsigned OpIdx = 0;
9642   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9643     if (!IG->getMember(i))
9644       continue;
9645     if (getNumStoreOperands() > 0) {
9646       O << "\n" << Indent << "  store ";
9647       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9648       O << " to index " << i;
9649     } else {
9650       O << "\n" << Indent << "  ";
9651       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9652       O << " = load from index " << i;
9653     }
9654     ++OpIdx;
9655   }
9656 }
9657 #endif
9658 
9659 void VPWidenCallRecipe::execute(VPTransformState &State) {
9660   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9661                                   *this, State);
9662 }
9663 
9664 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9665   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9666                                     this, *this, InvariantCond, State);
9667 }
9668 
9669 void VPWidenRecipe::execute(VPTransformState &State) {
9670   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9671 }
9672 
9673 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9674   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9675                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9676                       IsIndexLoopInvariant, State);
9677 }
9678 
9679 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9680   assert(!State.Instance && "Int or FP induction being replicated.");
9681   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9682                                    getTruncInst(), getVPValue(0),
9683                                    getCastValue(), State);
9684 }
9685 
9686 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9687   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9688                                  State);
9689 }
9690 
9691 void VPBlendRecipe::execute(VPTransformState &State) {
9692   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9693   // We know that all PHIs in non-header blocks are converted into
9694   // selects, so we don't have to worry about the insertion order and we
9695   // can just use the builder.
9696   // At this point we generate the predication tree. There may be
9697   // duplications since this is a simple recursive scan, but future
9698   // optimizations will clean it up.
9699 
9700   unsigned NumIncoming = getNumIncomingValues();
9701 
9702   // Generate a sequence of selects of the form:
9703   // SELECT(Mask3, In3,
9704   //        SELECT(Mask2, In2,
9705   //               SELECT(Mask1, In1,
9706   //                      In0)))
9707   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9708   // are essentially undef are taken from In0.
9709   InnerLoopVectorizer::VectorParts Entry(State.UF);
9710   for (unsigned In = 0; In < NumIncoming; ++In) {
9711     for (unsigned Part = 0; Part < State.UF; ++Part) {
9712       // We might have single edge PHIs (blocks) - use an identity
9713       // 'select' for the first PHI operand.
9714       Value *In0 = State.get(getIncomingValue(In), Part);
9715       if (In == 0)
9716         Entry[Part] = In0; // Initialize with the first incoming value.
9717       else {
9718         // Select between the current value and the previous incoming edge
9719         // based on the incoming mask.
9720         Value *Cond = State.get(getMask(In), Part);
9721         Entry[Part] =
9722             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9723       }
9724     }
9725   }
9726   for (unsigned Part = 0; Part < State.UF; ++Part)
9727     State.set(this, Entry[Part], Part);
9728 }
9729 
9730 void VPInterleaveRecipe::execute(VPTransformState &State) {
9731   assert(!State.Instance && "Interleave group being replicated.");
9732   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9733                                       getStoredValues(), getMask());
9734 }
9735 
9736 void VPReductionRecipe::execute(VPTransformState &State) {
9737   assert(!State.Instance && "Reduction being replicated.");
9738   Value *PrevInChain = State.get(getChainOp(), 0);
9739   for (unsigned Part = 0; Part < State.UF; ++Part) {
9740     RecurKind Kind = RdxDesc->getRecurrenceKind();
9741     bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9742     Value *NewVecOp = State.get(getVecOp(), Part);
9743     if (VPValue *Cond = getCondOp()) {
9744       Value *NewCond = State.get(Cond, Part);
9745       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9746       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9747           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9748       Constant *IdenVec =
9749           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9750       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9751       NewVecOp = Select;
9752     }
9753     Value *NewRed;
9754     Value *NextInChain;
9755     if (IsOrdered) {
9756       if (State.VF.isVector())
9757         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9758                                         PrevInChain);
9759       else
9760         NewRed = State.Builder.CreateBinOp(
9761             (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(),
9762             PrevInChain, NewVecOp);
9763       PrevInChain = NewRed;
9764     } else {
9765       PrevInChain = State.get(getChainOp(), Part);
9766       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9767     }
9768     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9769       NextInChain =
9770           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9771                          NewRed, PrevInChain);
9772     } else if (IsOrdered)
9773       NextInChain = NewRed;
9774     else {
9775       NextInChain = State.Builder.CreateBinOp(
9776           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9777           PrevInChain);
9778     }
9779     State.set(this, NextInChain, Part);
9780   }
9781 }
9782 
9783 void VPReplicateRecipe::execute(VPTransformState &State) {
9784   if (State.Instance) { // Generate a single instance.
9785     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9786     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9787                                     *State.Instance, IsPredicated, State);
9788     // Insert scalar instance packing it into a vector.
9789     if (AlsoPack && State.VF.isVector()) {
9790       // If we're constructing lane 0, initialize to start from poison.
9791       if (State.Instance->Lane.isFirstLane()) {
9792         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9793         Value *Poison = PoisonValue::get(
9794             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9795         State.set(this, Poison, State.Instance->Part);
9796       }
9797       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9798     }
9799     return;
9800   }
9801 
9802   // Generate scalar instances for all VF lanes of all UF parts, unless the
9803   // instruction is uniform inwhich case generate only the first lane for each
9804   // of the UF parts.
9805   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9806   assert((!State.VF.isScalable() || IsUniform) &&
9807          "Can't scalarize a scalable vector");
9808   for (unsigned Part = 0; Part < State.UF; ++Part)
9809     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9810       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9811                                       VPIteration(Part, Lane), IsPredicated,
9812                                       State);
9813 }
9814 
9815 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9816   assert(State.Instance && "Branch on Mask works only on single instance.");
9817 
9818   unsigned Part = State.Instance->Part;
9819   unsigned Lane = State.Instance->Lane.getKnownLane();
9820 
9821   Value *ConditionBit = nullptr;
9822   VPValue *BlockInMask = getMask();
9823   if (BlockInMask) {
9824     ConditionBit = State.get(BlockInMask, Part);
9825     if (ConditionBit->getType()->isVectorTy())
9826       ConditionBit = State.Builder.CreateExtractElement(
9827           ConditionBit, State.Builder.getInt32(Lane));
9828   } else // Block in mask is all-one.
9829     ConditionBit = State.Builder.getTrue();
9830 
9831   // Replace the temporary unreachable terminator with a new conditional branch,
9832   // whose two destinations will be set later when they are created.
9833   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9834   assert(isa<UnreachableInst>(CurrentTerminator) &&
9835          "Expected to replace unreachable terminator with conditional branch.");
9836   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9837   CondBr->setSuccessor(0, nullptr);
9838   ReplaceInstWithInst(CurrentTerminator, CondBr);
9839 }
9840 
9841 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9842   assert(State.Instance && "Predicated instruction PHI works per instance.");
9843   Instruction *ScalarPredInst =
9844       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9845   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9846   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9847   assert(PredicatingBB && "Predicated block has no single predecessor.");
9848   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9849          "operand must be VPReplicateRecipe");
9850 
9851   // By current pack/unpack logic we need to generate only a single phi node: if
9852   // a vector value for the predicated instruction exists at this point it means
9853   // the instruction has vector users only, and a phi for the vector value is
9854   // needed. In this case the recipe of the predicated instruction is marked to
9855   // also do that packing, thereby "hoisting" the insert-element sequence.
9856   // Otherwise, a phi node for the scalar value is needed.
9857   unsigned Part = State.Instance->Part;
9858   if (State.hasVectorValue(getOperand(0), Part)) {
9859     Value *VectorValue = State.get(getOperand(0), Part);
9860     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9861     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9862     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9863     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9864     if (State.hasVectorValue(this, Part))
9865       State.reset(this, VPhi, Part);
9866     else
9867       State.set(this, VPhi, Part);
9868     // NOTE: Currently we need to update the value of the operand, so the next
9869     // predicated iteration inserts its generated value in the correct vector.
9870     State.reset(getOperand(0), VPhi, Part);
9871   } else {
9872     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9873     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9874     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9875                      PredicatingBB);
9876     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9877     if (State.hasScalarValue(this, *State.Instance))
9878       State.reset(this, Phi, *State.Instance);
9879     else
9880       State.set(this, Phi, *State.Instance);
9881     // NOTE: Currently we need to update the value of the operand, so the next
9882     // predicated iteration inserts its generated value in the correct vector.
9883     State.reset(getOperand(0), Phi, *State.Instance);
9884   }
9885 }
9886 
9887 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9888   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9889   State.ILV->vectorizeMemoryInstruction(
9890       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9891       StoredValue, getMask());
9892 }
9893 
9894 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9895 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9896 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9897 // for predication.
9898 static ScalarEpilogueLowering getScalarEpilogueLowering(
9899     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9900     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9901     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9902     LoopVectorizationLegality &LVL) {
9903   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9904   // don't look at hints or options, and don't request a scalar epilogue.
9905   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9906   // LoopAccessInfo (due to code dependency and not being able to reliably get
9907   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9908   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9909   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9910   // back to the old way and vectorize with versioning when forced. See D81345.)
9911   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9912                                                       PGSOQueryType::IRPass) &&
9913                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9914     return CM_ScalarEpilogueNotAllowedOptSize;
9915 
9916   // 2) If set, obey the directives
9917   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9918     switch (PreferPredicateOverEpilogue) {
9919     case PreferPredicateTy::ScalarEpilogue:
9920       return CM_ScalarEpilogueAllowed;
9921     case PreferPredicateTy::PredicateElseScalarEpilogue:
9922       return CM_ScalarEpilogueNotNeededUsePredicate;
9923     case PreferPredicateTy::PredicateOrDontVectorize:
9924       return CM_ScalarEpilogueNotAllowedUsePredicate;
9925     };
9926   }
9927 
9928   // 3) If set, obey the hints
9929   switch (Hints.getPredicate()) {
9930   case LoopVectorizeHints::FK_Enabled:
9931     return CM_ScalarEpilogueNotNeededUsePredicate;
9932   case LoopVectorizeHints::FK_Disabled:
9933     return CM_ScalarEpilogueAllowed;
9934   };
9935 
9936   // 4) if the TTI hook indicates this is profitable, request predication.
9937   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9938                                        LVL.getLAI()))
9939     return CM_ScalarEpilogueNotNeededUsePredicate;
9940 
9941   return CM_ScalarEpilogueAllowed;
9942 }
9943 
9944 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9945   // If Values have been set for this Def return the one relevant for \p Part.
9946   if (hasVectorValue(Def, Part))
9947     return Data.PerPartOutput[Def][Part];
9948 
9949   if (!hasScalarValue(Def, {Part, 0})) {
9950     Value *IRV = Def->getLiveInIRValue();
9951     Value *B = ILV->getBroadcastInstrs(IRV);
9952     set(Def, B, Part);
9953     return B;
9954   }
9955 
9956   Value *ScalarValue = get(Def, {Part, 0});
9957   // If we aren't vectorizing, we can just copy the scalar map values over
9958   // to the vector map.
9959   if (VF.isScalar()) {
9960     set(Def, ScalarValue, Part);
9961     return ScalarValue;
9962   }
9963 
9964   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9965   bool IsUniform = RepR && RepR->isUniform();
9966 
9967   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9968   // Check if there is a scalar value for the selected lane.
9969   if (!hasScalarValue(Def, {Part, LastLane})) {
9970     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9971     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9972            "unexpected recipe found to be invariant");
9973     IsUniform = true;
9974     LastLane = 0;
9975   }
9976 
9977   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9978   // Set the insert point after the last scalarized instruction or after the
9979   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
9980   // will directly follow the scalar definitions.
9981   auto OldIP = Builder.saveIP();
9982   auto NewIP =
9983       isa<PHINode>(LastInst)
9984           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
9985           : std::next(BasicBlock::iterator(LastInst));
9986   Builder.SetInsertPoint(&*NewIP);
9987 
9988   // However, if we are vectorizing, we need to construct the vector values.
9989   // If the value is known to be uniform after vectorization, we can just
9990   // broadcast the scalar value corresponding to lane zero for each unroll
9991   // iteration. Otherwise, we construct the vector values using
9992   // insertelement instructions. Since the resulting vectors are stored in
9993   // State, we will only generate the insertelements once.
9994   Value *VectorValue = nullptr;
9995   if (IsUniform) {
9996     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9997     set(Def, VectorValue, Part);
9998   } else {
9999     // Initialize packing with insertelements to start from undef.
10000     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10001     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10002     set(Def, Undef, Part);
10003     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10004       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10005     VectorValue = get(Def, Part);
10006   }
10007   Builder.restoreIP(OldIP);
10008   return VectorValue;
10009 }
10010 
10011 // Process the loop in the VPlan-native vectorization path. This path builds
10012 // VPlan upfront in the vectorization pipeline, which allows to apply
10013 // VPlan-to-VPlan transformations from the very beginning without modifying the
10014 // input LLVM IR.
10015 static bool processLoopInVPlanNativePath(
10016     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10017     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10018     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10019     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10020     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10021     LoopVectorizationRequirements &Requirements) {
10022 
10023   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10024     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10025     return false;
10026   }
10027   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10028   Function *F = L->getHeader()->getParent();
10029   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10030 
10031   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10032       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10033 
10034   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10035                                 &Hints, IAI);
10036   // Use the planner for outer loop vectorization.
10037   // TODO: CM is not used at this point inside the planner. Turn CM into an
10038   // optional argument if we don't need it in the future.
10039   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10040                                Requirements, ORE);
10041 
10042   // Get user vectorization factor.
10043   ElementCount UserVF = Hints.getWidth();
10044 
10045   CM.collectElementTypesForWidening();
10046 
10047   // Plan how to best vectorize, return the best VF and its cost.
10048   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10049 
10050   // If we are stress testing VPlan builds, do not attempt to generate vector
10051   // code. Masked vector code generation support will follow soon.
10052   // Also, do not attempt to vectorize if no vector code will be produced.
10053   if (VPlanBuildStressTest || EnableVPlanPredication ||
10054       VectorizationFactor::Disabled() == VF)
10055     return false;
10056 
10057   LVP.setBestPlan(VF.Width, 1);
10058 
10059   {
10060     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10061                              F->getParent()->getDataLayout());
10062     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10063                            &CM, BFI, PSI, Checks);
10064     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10065                       << L->getHeader()->getParent()->getName() << "\"\n");
10066     LVP.executePlan(LB, DT);
10067   }
10068 
10069   // Mark the loop as already vectorized to avoid vectorizing again.
10070   Hints.setAlreadyVectorized();
10071   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10072   return true;
10073 }
10074 
10075 // Emit a remark if there are stores to floats that required a floating point
10076 // extension. If the vectorized loop was generated with floating point there
10077 // will be a performance penalty from the conversion overhead and the change in
10078 // the vector width.
10079 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10080   SmallVector<Instruction *, 4> Worklist;
10081   for (BasicBlock *BB : L->getBlocks()) {
10082     for (Instruction &Inst : *BB) {
10083       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10084         if (S->getValueOperand()->getType()->isFloatTy())
10085           Worklist.push_back(S);
10086       }
10087     }
10088   }
10089 
10090   // Traverse the floating point stores upwards searching, for floating point
10091   // conversions.
10092   SmallPtrSet<const Instruction *, 4> Visited;
10093   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10094   while (!Worklist.empty()) {
10095     auto *I = Worklist.pop_back_val();
10096     if (!L->contains(I))
10097       continue;
10098     if (!Visited.insert(I).second)
10099       continue;
10100 
10101     // Emit a remark if the floating point store required a floating
10102     // point conversion.
10103     // TODO: More work could be done to identify the root cause such as a
10104     // constant or a function return type and point the user to it.
10105     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10106       ORE->emit([&]() {
10107         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10108                                           I->getDebugLoc(), L->getHeader())
10109                << "floating point conversion changes vector width. "
10110                << "Mixed floating point precision requires an up/down "
10111                << "cast that will negatively impact performance.";
10112       });
10113 
10114     for (Use &Op : I->operands())
10115       if (auto *OpI = dyn_cast<Instruction>(Op))
10116         Worklist.push_back(OpI);
10117   }
10118 }
10119 
10120 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10121     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10122                                !EnableLoopInterleaving),
10123       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10124                               !EnableLoopVectorization) {}
10125 
10126 bool LoopVectorizePass::processLoop(Loop *L) {
10127   assert((EnableVPlanNativePath || L->isInnermost()) &&
10128          "VPlan-native path is not enabled. Only process inner loops.");
10129 
10130 #ifndef NDEBUG
10131   const std::string DebugLocStr = getDebugLocString(L);
10132 #endif /* NDEBUG */
10133 
10134   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10135                     << L->getHeader()->getParent()->getName() << "\" from "
10136                     << DebugLocStr << "\n");
10137 
10138   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
10139 
10140   LLVM_DEBUG(
10141       dbgs() << "LV: Loop hints:"
10142              << " force="
10143              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10144                      ? "disabled"
10145                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10146                             ? "enabled"
10147                             : "?"))
10148              << " width=" << Hints.getWidth()
10149              << " interleave=" << Hints.getInterleave() << "\n");
10150 
10151   // Function containing loop
10152   Function *F = L->getHeader()->getParent();
10153 
10154   // Looking at the diagnostic output is the only way to determine if a loop
10155   // was vectorized (other than looking at the IR or machine code), so it
10156   // is important to generate an optimization remark for each loop. Most of
10157   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10158   // generated as OptimizationRemark and OptimizationRemarkMissed are
10159   // less verbose reporting vectorized loops and unvectorized loops that may
10160   // benefit from vectorization, respectively.
10161 
10162   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10163     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10164     return false;
10165   }
10166 
10167   PredicatedScalarEvolution PSE(*SE, *L);
10168 
10169   // Check if it is legal to vectorize the loop.
10170   LoopVectorizationRequirements Requirements;
10171   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10172                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10173   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10174     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10175     Hints.emitRemarkWithHints();
10176     return false;
10177   }
10178 
10179   // Check the function attributes and profiles to find out if this function
10180   // should be optimized for size.
10181   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10182       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10183 
10184   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10185   // here. They may require CFG and instruction level transformations before
10186   // even evaluating whether vectorization is profitable. Since we cannot modify
10187   // the incoming IR, we need to build VPlan upfront in the vectorization
10188   // pipeline.
10189   if (!L->isInnermost())
10190     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10191                                         ORE, BFI, PSI, Hints, Requirements);
10192 
10193   assert(L->isInnermost() && "Inner loop expected.");
10194 
10195   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10196   // count by optimizing for size, to minimize overheads.
10197   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10198   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10199     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10200                       << "This loop is worth vectorizing only if no scalar "
10201                       << "iteration overheads are incurred.");
10202     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10203       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10204     else {
10205       LLVM_DEBUG(dbgs() << "\n");
10206       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10207     }
10208   }
10209 
10210   // Check the function attributes to see if implicit floats are allowed.
10211   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10212   // an integer loop and the vector instructions selected are purely integer
10213   // vector instructions?
10214   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10215     reportVectorizationFailure(
10216         "Can't vectorize when the NoImplicitFloat attribute is used",
10217         "loop not vectorized due to NoImplicitFloat attribute",
10218         "NoImplicitFloat", ORE, L);
10219     Hints.emitRemarkWithHints();
10220     return false;
10221   }
10222 
10223   // Check if the target supports potentially unsafe FP vectorization.
10224   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10225   // for the target we're vectorizing for, to make sure none of the
10226   // additional fp-math flags can help.
10227   if (Hints.isPotentiallyUnsafe() &&
10228       TTI->isFPVectorizationPotentiallyUnsafe()) {
10229     reportVectorizationFailure(
10230         "Potentially unsafe FP op prevents vectorization",
10231         "loop not vectorized due to unsafe FP support.",
10232         "UnsafeFP", ORE, L);
10233     Hints.emitRemarkWithHints();
10234     return false;
10235   }
10236 
10237   bool AllowOrderedReductions;
10238   // If the flag is set, use that instead and override the TTI behaviour.
10239   if (ForceOrderedReductions.getNumOccurrences() > 0)
10240     AllowOrderedReductions = ForceOrderedReductions;
10241   else
10242     AllowOrderedReductions = TTI->enableOrderedReductions();
10243   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10244     ORE->emit([&]() {
10245       auto *ExactFPMathInst = Requirements.getExactFPInst();
10246       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10247                                                  ExactFPMathInst->getDebugLoc(),
10248                                                  ExactFPMathInst->getParent())
10249              << "loop not vectorized: cannot prove it is safe to reorder "
10250                 "floating-point operations";
10251     });
10252     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10253                          "reorder floating-point operations\n");
10254     Hints.emitRemarkWithHints();
10255     return false;
10256   }
10257 
10258   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10259   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10260 
10261   // If an override option has been passed in for interleaved accesses, use it.
10262   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10263     UseInterleaved = EnableInterleavedMemAccesses;
10264 
10265   // Analyze interleaved memory accesses.
10266   if (UseInterleaved) {
10267     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10268   }
10269 
10270   // Use the cost model.
10271   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10272                                 F, &Hints, IAI);
10273   CM.collectValuesToIgnore();
10274   CM.collectElementTypesForWidening();
10275 
10276   // Use the planner for vectorization.
10277   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10278                                Requirements, ORE);
10279 
10280   // Get user vectorization factor and interleave count.
10281   ElementCount UserVF = Hints.getWidth();
10282   unsigned UserIC = Hints.getInterleave();
10283 
10284   // Plan how to best vectorize, return the best VF and its cost.
10285   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10286 
10287   VectorizationFactor VF = VectorizationFactor::Disabled();
10288   unsigned IC = 1;
10289 
10290   if (MaybeVF) {
10291     VF = *MaybeVF;
10292     // Select the interleave count.
10293     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10294   }
10295 
10296   // Identify the diagnostic messages that should be produced.
10297   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10298   bool VectorizeLoop = true, InterleaveLoop = true;
10299   if (VF.Width.isScalar()) {
10300     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10301     VecDiagMsg = std::make_pair(
10302         "VectorizationNotBeneficial",
10303         "the cost-model indicates that vectorization is not beneficial");
10304     VectorizeLoop = false;
10305   }
10306 
10307   if (!MaybeVF && UserIC > 1) {
10308     // Tell the user interleaving was avoided up-front, despite being explicitly
10309     // requested.
10310     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10311                          "interleaving should be avoided up front\n");
10312     IntDiagMsg = std::make_pair(
10313         "InterleavingAvoided",
10314         "Ignoring UserIC, because interleaving was avoided up front");
10315     InterleaveLoop = false;
10316   } else if (IC == 1 && UserIC <= 1) {
10317     // Tell the user interleaving is not beneficial.
10318     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10319     IntDiagMsg = std::make_pair(
10320         "InterleavingNotBeneficial",
10321         "the cost-model indicates that interleaving is not beneficial");
10322     InterleaveLoop = false;
10323     if (UserIC == 1) {
10324       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10325       IntDiagMsg.second +=
10326           " and is explicitly disabled or interleave count is set to 1";
10327     }
10328   } else if (IC > 1 && UserIC == 1) {
10329     // Tell the user interleaving is beneficial, but it explicitly disabled.
10330     LLVM_DEBUG(
10331         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10332     IntDiagMsg = std::make_pair(
10333         "InterleavingBeneficialButDisabled",
10334         "the cost-model indicates that interleaving is beneficial "
10335         "but is explicitly disabled or interleave count is set to 1");
10336     InterleaveLoop = false;
10337   }
10338 
10339   // Override IC if user provided an interleave count.
10340   IC = UserIC > 0 ? UserIC : IC;
10341 
10342   // Emit diagnostic messages, if any.
10343   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10344   if (!VectorizeLoop && !InterleaveLoop) {
10345     // Do not vectorize or interleaving the loop.
10346     ORE->emit([&]() {
10347       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10348                                       L->getStartLoc(), L->getHeader())
10349              << VecDiagMsg.second;
10350     });
10351     ORE->emit([&]() {
10352       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10353                                       L->getStartLoc(), L->getHeader())
10354              << IntDiagMsg.second;
10355     });
10356     return false;
10357   } else if (!VectorizeLoop && InterleaveLoop) {
10358     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10359     ORE->emit([&]() {
10360       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10361                                         L->getStartLoc(), L->getHeader())
10362              << VecDiagMsg.second;
10363     });
10364   } else if (VectorizeLoop && !InterleaveLoop) {
10365     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10366                       << ") in " << DebugLocStr << '\n');
10367     ORE->emit([&]() {
10368       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10369                                         L->getStartLoc(), L->getHeader())
10370              << IntDiagMsg.second;
10371     });
10372   } else if (VectorizeLoop && InterleaveLoop) {
10373     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10374                       << ") in " << DebugLocStr << '\n');
10375     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10376   }
10377 
10378   bool DisableRuntimeUnroll = false;
10379   MDNode *OrigLoopID = L->getLoopID();
10380   {
10381     // Optimistically generate runtime checks. Drop them if they turn out to not
10382     // be profitable. Limit the scope of Checks, so the cleanup happens
10383     // immediately after vector codegeneration is done.
10384     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10385                              F->getParent()->getDataLayout());
10386     if (!VF.Width.isScalar() || IC > 1)
10387       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10388     LVP.setBestPlan(VF.Width, IC);
10389 
10390     using namespace ore;
10391     if (!VectorizeLoop) {
10392       assert(IC > 1 && "interleave count should not be 1 or 0");
10393       // If we decided that it is not legal to vectorize the loop, then
10394       // interleave it.
10395       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10396                                  &CM, BFI, PSI, Checks);
10397       LVP.executePlan(Unroller, DT);
10398 
10399       ORE->emit([&]() {
10400         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10401                                   L->getHeader())
10402                << "interleaved loop (interleaved count: "
10403                << NV("InterleaveCount", IC) << ")";
10404       });
10405     } else {
10406       // If we decided that it is *legal* to vectorize the loop, then do it.
10407 
10408       // Consider vectorizing the epilogue too if it's profitable.
10409       VectorizationFactor EpilogueVF =
10410           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10411       if (EpilogueVF.Width.isVector()) {
10412 
10413         // The first pass vectorizes the main loop and creates a scalar epilogue
10414         // to be vectorized by executing the plan (potentially with a different
10415         // factor) again shortly afterwards.
10416         EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC,
10417                                           EpilogueVF.Width.getKnownMinValue(),
10418                                           1);
10419         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10420                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10421 
10422         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
10423         LVP.executePlan(MainILV, DT);
10424         ++LoopsVectorized;
10425 
10426         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10427         formLCSSARecursively(*L, *DT, LI, SE);
10428 
10429         // Second pass vectorizes the epilogue and adjusts the control flow
10430         // edges from the first pass.
10431         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
10432         EPI.MainLoopVF = EPI.EpilogueVF;
10433         EPI.MainLoopUF = EPI.EpilogueUF;
10434         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10435                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10436                                                  Checks);
10437         LVP.executePlan(EpilogILV, DT);
10438         ++LoopsEpilogueVectorized;
10439 
10440         if (!MainILV.areSafetyChecksAdded())
10441           DisableRuntimeUnroll = true;
10442       } else {
10443         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10444                                &LVL, &CM, BFI, PSI, Checks);
10445         LVP.executePlan(LB, DT);
10446         ++LoopsVectorized;
10447 
10448         // Add metadata to disable runtime unrolling a scalar loop when there
10449         // are no runtime checks about strides and memory. A scalar loop that is
10450         // rarely used is not worth unrolling.
10451         if (!LB.areSafetyChecksAdded())
10452           DisableRuntimeUnroll = true;
10453       }
10454       // Report the vectorization decision.
10455       ORE->emit([&]() {
10456         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10457                                   L->getHeader())
10458                << "vectorized loop (vectorization width: "
10459                << NV("VectorizationFactor", VF.Width)
10460                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10461       });
10462     }
10463 
10464     if (ORE->allowExtraAnalysis(LV_NAME))
10465       checkMixedPrecision(L, ORE);
10466   }
10467 
10468   Optional<MDNode *> RemainderLoopID =
10469       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10470                                       LLVMLoopVectorizeFollowupEpilogue});
10471   if (RemainderLoopID.hasValue()) {
10472     L->setLoopID(RemainderLoopID.getValue());
10473   } else {
10474     if (DisableRuntimeUnroll)
10475       AddRuntimeUnrollDisableMetaData(L);
10476 
10477     // Mark the loop as already vectorized to avoid vectorizing again.
10478     Hints.setAlreadyVectorized();
10479   }
10480 
10481   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10482   return true;
10483 }
10484 
10485 LoopVectorizeResult LoopVectorizePass::runImpl(
10486     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10487     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10488     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10489     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10490     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10491   SE = &SE_;
10492   LI = &LI_;
10493   TTI = &TTI_;
10494   DT = &DT_;
10495   BFI = &BFI_;
10496   TLI = TLI_;
10497   AA = &AA_;
10498   AC = &AC_;
10499   GetLAA = &GetLAA_;
10500   DB = &DB_;
10501   ORE = &ORE_;
10502   PSI = PSI_;
10503 
10504   // Don't attempt if
10505   // 1. the target claims to have no vector registers, and
10506   // 2. interleaving won't help ILP.
10507   //
10508   // The second condition is necessary because, even if the target has no
10509   // vector registers, loop vectorization may still enable scalar
10510   // interleaving.
10511   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10512       TTI->getMaxInterleaveFactor(1) < 2)
10513     return LoopVectorizeResult(false, false);
10514 
10515   bool Changed = false, CFGChanged = false;
10516 
10517   // The vectorizer requires loops to be in simplified form.
10518   // Since simplification may add new inner loops, it has to run before the
10519   // legality and profitability checks. This means running the loop vectorizer
10520   // will simplify all loops, regardless of whether anything end up being
10521   // vectorized.
10522   for (auto &L : *LI)
10523     Changed |= CFGChanged |=
10524         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10525 
10526   // Build up a worklist of inner-loops to vectorize. This is necessary as
10527   // the act of vectorizing or partially unrolling a loop creates new loops
10528   // and can invalidate iterators across the loops.
10529   SmallVector<Loop *, 8> Worklist;
10530 
10531   for (Loop *L : *LI)
10532     collectSupportedLoops(*L, LI, ORE, Worklist);
10533 
10534   LoopsAnalyzed += Worklist.size();
10535 
10536   // Now walk the identified inner loops.
10537   while (!Worklist.empty()) {
10538     Loop *L = Worklist.pop_back_val();
10539 
10540     // For the inner loops we actually process, form LCSSA to simplify the
10541     // transform.
10542     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10543 
10544     Changed |= CFGChanged |= processLoop(L);
10545   }
10546 
10547   // Process each loop nest in the function.
10548   return LoopVectorizeResult(Changed, CFGChanged);
10549 }
10550 
10551 PreservedAnalyses LoopVectorizePass::run(Function &F,
10552                                          FunctionAnalysisManager &AM) {
10553     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10554     auto &LI = AM.getResult<LoopAnalysis>(F);
10555     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10556     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10557     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10558     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10559     auto &AA = AM.getResult<AAManager>(F);
10560     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10561     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10562     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10563 
10564     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10565     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10566         [&](Loop &L) -> const LoopAccessInfo & {
10567       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
10568                                         TLI, TTI, nullptr, nullptr};
10569       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10570     };
10571     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10572     ProfileSummaryInfo *PSI =
10573         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10574     LoopVectorizeResult Result =
10575         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10576     if (!Result.MadeAnyChange)
10577       return PreservedAnalyses::all();
10578     PreservedAnalyses PA;
10579 
10580     // We currently do not preserve loopinfo/dominator analyses with outer loop
10581     // vectorization. Until this is addressed, mark these analyses as preserved
10582     // only for non-VPlan-native path.
10583     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10584     if (!EnableVPlanNativePath) {
10585       PA.preserve<LoopAnalysis>();
10586       PA.preserve<DominatorTreeAnalysis>();
10587     }
10588     if (!Result.MadeCFGChange)
10589       PA.preserveSet<CFGAnalyses>();
10590     return PA;
10591 }
10592