1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "LoopVectorizationPlanner.h" 51 #include "llvm/ADT/APInt.h" 52 #include "llvm/ADT/ArrayRef.h" 53 #include "llvm/ADT/DenseMap.h" 54 #include "llvm/ADT/DenseMapInfo.h" 55 #include "llvm/ADT/Hashing.h" 56 #include "llvm/ADT/MapVector.h" 57 #include "llvm/ADT/None.h" 58 #include "llvm/ADT/Optional.h" 59 #include "llvm/ADT/SCCIterator.h" 60 #include "llvm/ADT/STLExtras.h" 61 #include "llvm/ADT/SetVector.h" 62 #include "llvm/ADT/SmallPtrSet.h" 63 #include "llvm/ADT/SmallSet.h" 64 #include "llvm/ADT/SmallVector.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/ADT/StringRef.h" 67 #include "llvm/ADT/Twine.h" 68 #include "llvm/ADT/iterator_range.h" 69 #include "llvm/Analysis/AssumptionCache.h" 70 #include "llvm/Analysis/BasicAliasAnalysis.h" 71 #include "llvm/Analysis/BlockFrequencyInfo.h" 72 #include "llvm/Analysis/CodeMetrics.h" 73 #include "llvm/Analysis/DemandedBits.h" 74 #include "llvm/Analysis/GlobalsModRef.h" 75 #include "llvm/Analysis/LoopAccessAnalysis.h" 76 #include "llvm/Analysis/LoopAnalysisManager.h" 77 #include "llvm/Analysis/LoopInfo.h" 78 #include "llvm/Analysis/LoopIterator.h" 79 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 80 #include "llvm/Analysis/ScalarEvolution.h" 81 #include "llvm/Analysis/ScalarEvolutionExpander.h" 82 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 83 #include "llvm/Analysis/TargetLibraryInfo.h" 84 #include "llvm/Analysis/TargetTransformInfo.h" 85 #include "llvm/Analysis/VectorUtils.h" 86 #include "llvm/IR/Attributes.h" 87 #include "llvm/IR/BasicBlock.h" 88 #include "llvm/IR/CFG.h" 89 #include "llvm/IR/Constant.h" 90 #include "llvm/IR/Constants.h" 91 #include "llvm/IR/DataLayout.h" 92 #include "llvm/IR/DebugInfoMetadata.h" 93 #include "llvm/IR/DebugLoc.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/DiagnosticInfo.h" 96 #include "llvm/IR/Dominators.h" 97 #include "llvm/IR/Function.h" 98 #include "llvm/IR/IRBuilder.h" 99 #include "llvm/IR/InstrTypes.h" 100 #include "llvm/IR/Instruction.h" 101 #include "llvm/IR/Instructions.h" 102 #include "llvm/IR/IntrinsicInst.h" 103 #include "llvm/IR/Intrinsics.h" 104 #include "llvm/IR/LLVMContext.h" 105 #include "llvm/IR/Metadata.h" 106 #include "llvm/IR/Module.h" 107 #include "llvm/IR/Operator.h" 108 #include "llvm/IR/Type.h" 109 #include "llvm/IR/Use.h" 110 #include "llvm/IR/User.h" 111 #include "llvm/IR/Value.h" 112 #include "llvm/IR/ValueHandle.h" 113 #include "llvm/IR/Verifier.h" 114 #include "llvm/Pass.h" 115 #include "llvm/Support/Casting.h" 116 #include "llvm/Support/CommandLine.h" 117 #include "llvm/Support/Compiler.h" 118 #include "llvm/Support/Debug.h" 119 #include "llvm/Support/ErrorHandling.h" 120 #include "llvm/Support/MathExtras.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 123 #include "llvm/Transforms/Utils/LoopSimplify.h" 124 #include "llvm/Transforms/Utils/LoopUtils.h" 125 #include "llvm/Transforms/Utils/LoopVersioning.h" 126 #include <algorithm> 127 #include <cassert> 128 #include <cstdint> 129 #include <cstdlib> 130 #include <functional> 131 #include <iterator> 132 #include <limits> 133 #include <memory> 134 #include <string> 135 #include <tuple> 136 #include <utility> 137 #include <vector> 138 139 using namespace llvm; 140 141 #define LV_NAME "loop-vectorize" 142 #define DEBUG_TYPE LV_NAME 143 144 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 145 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 146 147 static cl::opt<bool> 148 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 149 cl::desc("Enable if-conversion during vectorization.")); 150 151 /// Loops with a known constant trip count below this number are vectorized only 152 /// if no scalar iteration overheads are incurred. 153 static cl::opt<unsigned> TinyTripCountVectorThreshold( 154 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 155 cl::desc("Loops with a constant trip count that is smaller than this " 156 "value are vectorized only if no scalar iteration overheads " 157 "are incurred.")); 158 159 static cl::opt<bool> MaximizeBandwidth( 160 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 161 cl::desc("Maximize bandwidth when selecting vectorization factor which " 162 "will be determined by the smallest type in loop.")); 163 164 static cl::opt<bool> EnableInterleavedMemAccesses( 165 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 166 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 167 168 /// Maximum factor for an interleaved memory access. 169 static cl::opt<unsigned> MaxInterleaveGroupFactor( 170 "max-interleave-group-factor", cl::Hidden, 171 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 172 cl::init(8)); 173 174 /// We don't interleave loops with a known constant trip count below this 175 /// number. 176 static const unsigned TinyTripCountInterleaveThreshold = 128; 177 178 static cl::opt<unsigned> ForceTargetNumScalarRegs( 179 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 180 cl::desc("A flag that overrides the target's number of scalar registers.")); 181 182 static cl::opt<unsigned> ForceTargetNumVectorRegs( 183 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 184 cl::desc("A flag that overrides the target's number of vector registers.")); 185 186 /// Maximum vectorization interleave count. 187 static const unsigned MaxInterleaveFactor = 16; 188 189 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 190 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 191 cl::desc("A flag that overrides the target's max interleave factor for " 192 "scalar loops.")); 193 194 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 195 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 196 cl::desc("A flag that overrides the target's max interleave factor for " 197 "vectorized loops.")); 198 199 static cl::opt<unsigned> ForceTargetInstructionCost( 200 "force-target-instruction-cost", cl::init(0), cl::Hidden, 201 cl::desc("A flag that overrides the target's expected cost for " 202 "an instruction to a single constant value. Mostly " 203 "useful for getting consistent testing.")); 204 205 static cl::opt<unsigned> SmallLoopCost( 206 "small-loop-cost", cl::init(20), cl::Hidden, 207 cl::desc( 208 "The cost of a loop that is considered 'small' by the interleaver.")); 209 210 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 211 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 212 cl::desc("Enable the use of the block frequency analysis to access PGO " 213 "heuristics minimizing code growth in cold regions and being more " 214 "aggressive in hot regions.")); 215 216 // Runtime interleave loops for load/store throughput. 217 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 218 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 219 cl::desc( 220 "Enable runtime interleaving until load/store ports are saturated")); 221 222 /// The number of stores in a loop that are allowed to need predication. 223 static cl::opt<unsigned> NumberOfStoresToPredicate( 224 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 225 cl::desc("Max number of stores to be predicated behind an if.")); 226 227 static cl::opt<bool> EnableIndVarRegisterHeur( 228 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 229 cl::desc("Count the induction variable only once when interleaving")); 230 231 static cl::opt<bool> EnableCondStoresVectorization( 232 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 233 cl::desc("Enable if predication of stores during vectorization.")); 234 235 static cl::opt<unsigned> MaxNestedScalarReductionIC( 236 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 237 cl::desc("The maximum interleave count to use when interleaving a scalar " 238 "reduction in a nested loop.")); 239 240 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 241 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 242 cl::desc("The maximum allowed number of runtime memory checks with a " 243 "vectorize(enable) pragma.")); 244 245 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 246 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 247 cl::desc("The maximum number of SCEV checks allowed.")); 248 249 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 250 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 251 cl::desc("The maximum number of SCEV checks allowed with a " 252 "vectorize(enable) pragma")); 253 254 /// Create an analysis remark that explains why vectorization failed 255 /// 256 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 257 /// RemarkName is the identifier for the remark. If \p I is passed it is an 258 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 259 /// the location of the remark. \return the remark object that can be 260 /// streamed to. 261 static OptimizationRemarkAnalysis 262 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 263 Instruction *I = nullptr) { 264 Value *CodeRegion = TheLoop->getHeader(); 265 DebugLoc DL = TheLoop->getStartLoc(); 266 267 if (I) { 268 CodeRegion = I->getParent(); 269 // If there is no debug location attached to the instruction, revert back to 270 // using the loop's. 271 if (I->getDebugLoc()) 272 DL = I->getDebugLoc(); 273 } 274 275 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 276 R << "loop not vectorized: "; 277 return R; 278 } 279 280 namespace { 281 282 class LoopVectorizationRequirements; 283 284 } // end anonymous namespace 285 286 /// Returns true if the given loop body has a cycle, excluding the loop 287 /// itself. 288 static bool hasCyclesInLoopBody(const Loop &L) { 289 if (!L.empty()) 290 return true; 291 292 for (const auto &SCC : 293 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 294 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 295 if (SCC.size() > 1) { 296 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 297 DEBUG(L.dump()); 298 return true; 299 } 300 } 301 return false; 302 } 303 304 /// A helper function for converting Scalar types to vector types. 305 /// If the incoming type is void, we return void. If the VF is 1, we return 306 /// the scalar type. 307 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 308 if (Scalar->isVoidTy() || VF == 1) 309 return Scalar; 310 return VectorType::get(Scalar, VF); 311 } 312 313 // FIXME: The following helper functions have multiple implementations 314 // in the project. They can be effectively organized in a common Load/Store 315 // utilities unit. 316 317 /// A helper function that returns the pointer operand of a load or store 318 /// instruction. 319 static Value *getPointerOperand(Value *I) { 320 if (auto *LI = dyn_cast<LoadInst>(I)) 321 return LI->getPointerOperand(); 322 if (auto *SI = dyn_cast<StoreInst>(I)) 323 return SI->getPointerOperand(); 324 return nullptr; 325 } 326 327 /// A helper function that returns the type of loaded or stored value. 328 static Type *getMemInstValueType(Value *I) { 329 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 330 "Expected Load or Store instruction"); 331 if (auto *LI = dyn_cast<LoadInst>(I)) 332 return LI->getType(); 333 return cast<StoreInst>(I)->getValueOperand()->getType(); 334 } 335 336 /// A helper function that returns the alignment of load or store instruction. 337 static unsigned getMemInstAlignment(Value *I) { 338 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 339 "Expected Load or Store instruction"); 340 if (auto *LI = dyn_cast<LoadInst>(I)) 341 return LI->getAlignment(); 342 return cast<StoreInst>(I)->getAlignment(); 343 } 344 345 /// A helper function that returns the address space of the pointer operand of 346 /// load or store instruction. 347 static unsigned getMemInstAddressSpace(Value *I) { 348 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 349 "Expected Load or Store instruction"); 350 if (auto *LI = dyn_cast<LoadInst>(I)) 351 return LI->getPointerAddressSpace(); 352 return cast<StoreInst>(I)->getPointerAddressSpace(); 353 } 354 355 /// A helper function that returns true if the given type is irregular. The 356 /// type is irregular if its allocated size doesn't equal the store size of an 357 /// element of the corresponding vector type at the given vectorization factor. 358 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 359 // Determine if an array of VF elements of type Ty is "bitcast compatible" 360 // with a <VF x Ty> vector. 361 if (VF > 1) { 362 auto *VectorTy = VectorType::get(Ty, VF); 363 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 364 } 365 366 // If the vectorization factor is one, we just check if an array of type Ty 367 // requires padding between elements. 368 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 369 } 370 371 /// A helper function that returns the reciprocal of the block probability of 372 /// predicated blocks. If we return X, we are assuming the predicated block 373 /// will execute once for every X iterations of the loop header. 374 /// 375 /// TODO: We should use actual block probability here, if available. Currently, 376 /// we always assume predicated blocks have a 50% chance of executing. 377 static unsigned getReciprocalPredBlockProb() { return 2; } 378 379 /// A helper function that adds a 'fast' flag to floating-point operations. 380 static Value *addFastMathFlag(Value *V) { 381 if (isa<FPMathOperator>(V)) { 382 FastMathFlags Flags; 383 Flags.setFast(); 384 cast<Instruction>(V)->setFastMathFlags(Flags); 385 } 386 return V; 387 } 388 389 /// A helper function that returns an integer or floating-point constant with 390 /// value C. 391 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 392 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 393 : ConstantFP::get(Ty, C); 394 } 395 396 namespace llvm { 397 398 /// InnerLoopVectorizer vectorizes loops which contain only one basic 399 /// block to a specified vectorization factor (VF). 400 /// This class performs the widening of scalars into vectors, or multiple 401 /// scalars. This class also implements the following features: 402 /// * It inserts an epilogue loop for handling loops that don't have iteration 403 /// counts that are known to be a multiple of the vectorization factor. 404 /// * It handles the code generation for reduction variables. 405 /// * Scalarization (implementation using scalars) of un-vectorizable 406 /// instructions. 407 /// InnerLoopVectorizer does not perform any vectorization-legality 408 /// checks, and relies on the caller to check for the different legality 409 /// aspects. The InnerLoopVectorizer relies on the 410 /// LoopVectorizationLegality class to provide information about the induction 411 /// and reduction variables that were found to a given vectorization factor. 412 class InnerLoopVectorizer { 413 public: 414 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 415 LoopInfo *LI, DominatorTree *DT, 416 const TargetLibraryInfo *TLI, 417 const TargetTransformInfo *TTI, AssumptionCache *AC, 418 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 419 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 420 LoopVectorizationCostModel *CM) 421 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 422 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 423 Builder(PSE.getSE()->getContext()), 424 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 425 virtual ~InnerLoopVectorizer() = default; 426 427 /// Create a new empty loop. Unlink the old loop and connect the new one. 428 /// Return the pre-header block of the new loop. 429 BasicBlock *createVectorizedLoopSkeleton(); 430 431 /// Widen a single instruction within the innermost loop. 432 void widenInstruction(Instruction &I); 433 434 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 435 void fixVectorizedLoop(); 436 437 // Return true if any runtime check is added. 438 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 439 440 /// A type for vectorized values in the new loop. Each value from the 441 /// original loop, when vectorized, is represented by UF vector values in the 442 /// new unrolled loop, where UF is the unroll factor. 443 using VectorParts = SmallVector<Value *, 2>; 444 445 /// Vectorize a single PHINode in a block. This method handles the induction 446 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 447 /// arbitrary length vectors. 448 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 449 450 /// A helper function to scalarize a single Instruction in the innermost loop. 451 /// Generates a sequence of scalar instances for each lane between \p MinLane 452 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 453 /// inclusive.. 454 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 455 bool IfPredicateInstr); 456 457 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 458 /// is provided, the integer induction variable will first be truncated to 459 /// the corresponding type. 460 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 461 462 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 463 /// vector or scalar value on-demand if one is not yet available. When 464 /// vectorizing a loop, we visit the definition of an instruction before its 465 /// uses. When visiting the definition, we either vectorize or scalarize the 466 /// instruction, creating an entry for it in the corresponding map. (In some 467 /// cases, such as induction variables, we will create both vector and scalar 468 /// entries.) Then, as we encounter uses of the definition, we derive values 469 /// for each scalar or vector use unless such a value is already available. 470 /// For example, if we scalarize a definition and one of its uses is vector, 471 /// we build the required vector on-demand with an insertelement sequence 472 /// when visiting the use. Otherwise, if the use is scalar, we can use the 473 /// existing scalar definition. 474 /// 475 /// Return a value in the new loop corresponding to \p V from the original 476 /// loop at unroll index \p Part. If the value has already been vectorized, 477 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 478 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 479 /// a new vector value on-demand by inserting the scalar values into a vector 480 /// with an insertelement sequence. If the value has been neither vectorized 481 /// nor scalarized, it must be loop invariant, so we simply broadcast the 482 /// value into a vector. 483 Value *getOrCreateVectorValue(Value *V, unsigned Part); 484 485 /// Return a value in the new loop corresponding to \p V from the original 486 /// loop at unroll and vector indices \p Instance. If the value has been 487 /// vectorized but not scalarized, the necessary extractelement instruction 488 /// will be generated. 489 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 490 491 /// Construct the vector value of a scalarized value \p V one lane at a time. 492 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 493 494 /// Try to vectorize the interleaved access group that \p Instr belongs to. 495 void vectorizeInterleaveGroup(Instruction *Instr); 496 497 /// Vectorize Load and Store instructions, optionally masking the vector 498 /// operations if \p BlockInMask is non-null. 499 void vectorizeMemoryInstruction(Instruction *Instr, 500 VectorParts *BlockInMask = nullptr); 501 502 /// \brief Set the debug location in the builder using the debug location in 503 /// the instruction. 504 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 505 506 protected: 507 friend class LoopVectorizationPlanner; 508 509 /// A small list of PHINodes. 510 using PhiVector = SmallVector<PHINode *, 4>; 511 512 /// A type for scalarized values in the new loop. Each value from the 513 /// original loop, when scalarized, is represented by UF x VF scalar values 514 /// in the new unrolled loop, where UF is the unroll factor and VF is the 515 /// vectorization factor. 516 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 517 518 /// Set up the values of the IVs correctly when exiting the vector loop. 519 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 520 Value *CountRoundDown, Value *EndValue, 521 BasicBlock *MiddleBlock); 522 523 /// Create a new induction variable inside L. 524 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 525 Value *Step, Instruction *DL); 526 527 /// Handle all cross-iteration phis in the header. 528 void fixCrossIterationPHIs(); 529 530 /// Fix a first-order recurrence. This is the second phase of vectorizing 531 /// this phi node. 532 void fixFirstOrderRecurrence(PHINode *Phi); 533 534 /// Fix a reduction cross-iteration phi. This is the second phase of 535 /// vectorizing this phi node. 536 void fixReduction(PHINode *Phi); 537 538 /// \brief The Loop exit block may have single value PHI nodes with some 539 /// incoming value. While vectorizing we only handled real values 540 /// that were defined inside the loop and we should have one value for 541 /// each predecessor of its parent basic block. See PR14725. 542 void fixLCSSAPHIs(); 543 544 /// Iteratively sink the scalarized operands of a predicated instruction into 545 /// the block that was created for it. 546 void sinkScalarOperands(Instruction *PredInst); 547 548 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 549 /// represented as. 550 void truncateToMinimalBitwidths(); 551 552 /// Insert the new loop to the loop hierarchy and pass manager 553 /// and update the analysis passes. 554 void updateAnalysis(); 555 556 /// Create a broadcast instruction. This method generates a broadcast 557 /// instruction (shuffle) for loop invariant values and for the induction 558 /// value. If this is the induction variable then we extend it to N, N+1, ... 559 /// this is needed because each iteration in the loop corresponds to a SIMD 560 /// element. 561 virtual Value *getBroadcastInstrs(Value *V); 562 563 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 564 /// to each vector element of Val. The sequence starts at StartIndex. 565 /// \p Opcode is relevant for FP induction variable. 566 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 567 Instruction::BinaryOps Opcode = 568 Instruction::BinaryOpsEnd); 569 570 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 571 /// variable on which to base the steps, \p Step is the size of the step, and 572 /// \p EntryVal is the value from the original loop that maps to the steps. 573 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 574 /// can be a truncate instruction). 575 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 576 const InductionDescriptor &ID); 577 578 /// Create a vector induction phi node based on an existing scalar one. \p 579 /// EntryVal is the value from the original loop that maps to the vector phi 580 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 581 /// truncate instruction, instead of widening the original IV, we widen a 582 /// version of the IV truncated to \p EntryVal's type. 583 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 584 Value *Step, Instruction *EntryVal); 585 586 /// Returns true if an instruction \p I should be scalarized instead of 587 /// vectorized for the chosen vectorization factor. 588 bool shouldScalarizeInstruction(Instruction *I) const; 589 590 /// Returns true if we should generate a scalar version of \p IV. 591 bool needsScalarInduction(Instruction *IV) const; 592 593 /// If there is a cast involved in the induction variable \p ID, which should 594 /// be ignored in the vectorized loop body, this function records the 595 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 596 /// cast. We had already proved that the casted Phi is equal to the uncasted 597 /// Phi in the vectorized loop (under a runtime guard), and therefore 598 /// there is no need to vectorize the cast - the same value can be used in the 599 /// vector loop for both the Phi and the cast. 600 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 601 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 602 void recordVectorLoopValueForInductionCast (const InductionDescriptor &ID, 603 Value *VectorLoopValue, 604 unsigned Part, 605 unsigned Lane = UINT_MAX); 606 607 /// Generate a shuffle sequence that will reverse the vector Vec. 608 virtual Value *reverseVector(Value *Vec); 609 610 /// Returns (and creates if needed) the original loop trip count. 611 Value *getOrCreateTripCount(Loop *NewLoop); 612 613 /// Returns (and creates if needed) the trip count of the widened loop. 614 Value *getOrCreateVectorTripCount(Loop *NewLoop); 615 616 /// Returns a bitcasted value to the requested vector type. 617 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 618 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 619 const DataLayout &DL); 620 621 /// Emit a bypass check to see if the vector trip count is zero, including if 622 /// it overflows. 623 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 624 625 /// Emit a bypass check to see if all of the SCEV assumptions we've 626 /// had to make are correct. 627 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 628 629 /// Emit bypass checks to check any memory assumptions we may have made. 630 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 631 632 /// Add additional metadata to \p To that was not present on \p Orig. 633 /// 634 /// Currently this is used to add the noalias annotations based on the 635 /// inserted memchecks. Use this for instructions that are *cloned* into the 636 /// vector loop. 637 void addNewMetadata(Instruction *To, const Instruction *Orig); 638 639 /// Add metadata from one instruction to another. 640 /// 641 /// This includes both the original MDs from \p From and additional ones (\see 642 /// addNewMetadata). Use this for *newly created* instructions in the vector 643 /// loop. 644 void addMetadata(Instruction *To, Instruction *From); 645 646 /// \brief Similar to the previous function but it adds the metadata to a 647 /// vector of instructions. 648 void addMetadata(ArrayRef<Value *> To, Instruction *From); 649 650 /// The original loop. 651 Loop *OrigLoop; 652 653 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 654 /// dynamic knowledge to simplify SCEV expressions and converts them to a 655 /// more usable form. 656 PredicatedScalarEvolution &PSE; 657 658 /// Loop Info. 659 LoopInfo *LI; 660 661 /// Dominator Tree. 662 DominatorTree *DT; 663 664 /// Alias Analysis. 665 AliasAnalysis *AA; 666 667 /// Target Library Info. 668 const TargetLibraryInfo *TLI; 669 670 /// Target Transform Info. 671 const TargetTransformInfo *TTI; 672 673 /// Assumption Cache. 674 AssumptionCache *AC; 675 676 /// Interface to emit optimization remarks. 677 OptimizationRemarkEmitter *ORE; 678 679 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 680 /// used. 681 /// 682 /// This is currently only used to add no-alias metadata based on the 683 /// memchecks. The actually versioning is performed manually. 684 std::unique_ptr<LoopVersioning> LVer; 685 686 /// The vectorization SIMD factor to use. Each vector will have this many 687 /// vector elements. 688 unsigned VF; 689 690 /// The vectorization unroll factor to use. Each scalar is vectorized to this 691 /// many different vector instructions. 692 unsigned UF; 693 694 /// The builder that we use 695 IRBuilder<> Builder; 696 697 // --- Vectorization state --- 698 699 /// The vector-loop preheader. 700 BasicBlock *LoopVectorPreHeader; 701 702 /// The scalar-loop preheader. 703 BasicBlock *LoopScalarPreHeader; 704 705 /// Middle Block between the vector and the scalar. 706 BasicBlock *LoopMiddleBlock; 707 708 /// The ExitBlock of the scalar loop. 709 BasicBlock *LoopExitBlock; 710 711 /// The vector loop body. 712 BasicBlock *LoopVectorBody; 713 714 /// The scalar loop body. 715 BasicBlock *LoopScalarBody; 716 717 /// A list of all bypass blocks. The first block is the entry of the loop. 718 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 719 720 /// The new Induction variable which was added to the new block. 721 PHINode *Induction = nullptr; 722 723 /// The induction variable of the old basic block. 724 PHINode *OldInduction = nullptr; 725 726 /// Maps values from the original loop to their corresponding values in the 727 /// vectorized loop. A key value can map to either vector values, scalar 728 /// values or both kinds of values, depending on whether the key was 729 /// vectorized and scalarized. 730 VectorizerValueMap VectorLoopValueMap; 731 732 /// Store instructions that were predicated. 733 SmallVector<Instruction *, 4> PredicatedInstructions; 734 735 /// Trip count of the original loop. 736 Value *TripCount = nullptr; 737 738 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 739 Value *VectorTripCount = nullptr; 740 741 /// The legality analysis. 742 LoopVectorizationLegality *Legal; 743 744 /// The profitablity analysis. 745 LoopVectorizationCostModel *Cost; 746 747 // Record whether runtime checks are added. 748 bool AddedSafetyChecks = false; 749 750 // Holds the end values for each induction variable. We save the end values 751 // so we can later fix-up the external users of the induction variables. 752 DenseMap<PHINode *, Value *> IVEndValues; 753 }; 754 755 class InnerLoopUnroller : public InnerLoopVectorizer { 756 public: 757 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 758 LoopInfo *LI, DominatorTree *DT, 759 const TargetLibraryInfo *TLI, 760 const TargetTransformInfo *TTI, AssumptionCache *AC, 761 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 762 LoopVectorizationLegality *LVL, 763 LoopVectorizationCostModel *CM) 764 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 765 UnrollFactor, LVL, CM) {} 766 767 private: 768 Value *getBroadcastInstrs(Value *V) override; 769 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 770 Instruction::BinaryOps Opcode = 771 Instruction::BinaryOpsEnd) override; 772 Value *reverseVector(Value *Vec) override; 773 }; 774 775 } // end namespace llvm 776 777 /// \brief Look for a meaningful debug location on the instruction or it's 778 /// operands. 779 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 780 if (!I) 781 return I; 782 783 DebugLoc Empty; 784 if (I->getDebugLoc() != Empty) 785 return I; 786 787 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 788 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 789 if (OpInst->getDebugLoc() != Empty) 790 return OpInst; 791 } 792 793 return I; 794 } 795 796 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 797 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 798 const DILocation *DIL = Inst->getDebugLoc(); 799 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 800 !isa<DbgInfoIntrinsic>(Inst)) 801 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 802 else 803 B.SetCurrentDebugLocation(DIL); 804 } else 805 B.SetCurrentDebugLocation(DebugLoc()); 806 } 807 808 #ifndef NDEBUG 809 /// \return string containing a file name and a line # for the given loop. 810 static std::string getDebugLocString(const Loop *L) { 811 std::string Result; 812 if (L) { 813 raw_string_ostream OS(Result); 814 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 815 LoopDbgLoc.print(OS); 816 else 817 // Just print the module name. 818 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 819 OS.flush(); 820 } 821 return Result; 822 } 823 #endif 824 825 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 826 const Instruction *Orig) { 827 // If the loop was versioned with memchecks, add the corresponding no-alias 828 // metadata. 829 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 830 LVer->annotateInstWithNoAlias(To, Orig); 831 } 832 833 void InnerLoopVectorizer::addMetadata(Instruction *To, 834 Instruction *From) { 835 propagateMetadata(To, From); 836 addNewMetadata(To, From); 837 } 838 839 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 840 Instruction *From) { 841 for (Value *V : To) { 842 if (Instruction *I = dyn_cast<Instruction>(V)) 843 addMetadata(I, From); 844 } 845 } 846 847 namespace llvm { 848 849 /// \brief The group of interleaved loads/stores sharing the same stride and 850 /// close to each other. 851 /// 852 /// Each member in this group has an index starting from 0, and the largest 853 /// index should be less than interleaved factor, which is equal to the absolute 854 /// value of the access's stride. 855 /// 856 /// E.g. An interleaved load group of factor 4: 857 /// for (unsigned i = 0; i < 1024; i+=4) { 858 /// a = A[i]; // Member of index 0 859 /// b = A[i+1]; // Member of index 1 860 /// d = A[i+3]; // Member of index 3 861 /// ... 862 /// } 863 /// 864 /// An interleaved store group of factor 4: 865 /// for (unsigned i = 0; i < 1024; i+=4) { 866 /// ... 867 /// A[i] = a; // Member of index 0 868 /// A[i+1] = b; // Member of index 1 869 /// A[i+2] = c; // Member of index 2 870 /// A[i+3] = d; // Member of index 3 871 /// } 872 /// 873 /// Note: the interleaved load group could have gaps (missing members), but 874 /// the interleaved store group doesn't allow gaps. 875 class InterleaveGroup { 876 public: 877 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 878 : Align(Align), InsertPos(Instr) { 879 assert(Align && "The alignment should be non-zero"); 880 881 Factor = std::abs(Stride); 882 assert(Factor > 1 && "Invalid interleave factor"); 883 884 Reverse = Stride < 0; 885 Members[0] = Instr; 886 } 887 888 bool isReverse() const { return Reverse; } 889 unsigned getFactor() const { return Factor; } 890 unsigned getAlignment() const { return Align; } 891 unsigned getNumMembers() const { return Members.size(); } 892 893 /// \brief Try to insert a new member \p Instr with index \p Index and 894 /// alignment \p NewAlign. The index is related to the leader and it could be 895 /// negative if it is the new leader. 896 /// 897 /// \returns false if the instruction doesn't belong to the group. 898 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 899 assert(NewAlign && "The new member's alignment should be non-zero"); 900 901 int Key = Index + SmallestKey; 902 903 // Skip if there is already a member with the same index. 904 if (Members.count(Key)) 905 return false; 906 907 if (Key > LargestKey) { 908 // The largest index is always less than the interleave factor. 909 if (Index >= static_cast<int>(Factor)) 910 return false; 911 912 LargestKey = Key; 913 } else if (Key < SmallestKey) { 914 // The largest index is always less than the interleave factor. 915 if (LargestKey - Key >= static_cast<int>(Factor)) 916 return false; 917 918 SmallestKey = Key; 919 } 920 921 // It's always safe to select the minimum alignment. 922 Align = std::min(Align, NewAlign); 923 Members[Key] = Instr; 924 return true; 925 } 926 927 /// \brief Get the member with the given index \p Index 928 /// 929 /// \returns nullptr if contains no such member. 930 Instruction *getMember(unsigned Index) const { 931 int Key = SmallestKey + Index; 932 if (!Members.count(Key)) 933 return nullptr; 934 935 return Members.find(Key)->second; 936 } 937 938 /// \brief Get the index for the given member. Unlike the key in the member 939 /// map, the index starts from 0. 940 unsigned getIndex(Instruction *Instr) const { 941 for (auto I : Members) 942 if (I.second == Instr) 943 return I.first - SmallestKey; 944 945 llvm_unreachable("InterleaveGroup contains no such member"); 946 } 947 948 Instruction *getInsertPos() const { return InsertPos; } 949 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 950 951 /// Add metadata (e.g. alias info) from the instructions in this group to \p 952 /// NewInst. 953 /// 954 /// FIXME: this function currently does not add noalias metadata a'la 955 /// addNewMedata. To do that we need to compute the intersection of the 956 /// noalias info from all members. 957 void addMetadata(Instruction *NewInst) const { 958 SmallVector<Value *, 4> VL; 959 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 960 [](std::pair<int, Instruction *> p) { return p.second; }); 961 propagateMetadata(NewInst, VL); 962 } 963 964 private: 965 unsigned Factor; // Interleave Factor. 966 bool Reverse; 967 unsigned Align; 968 DenseMap<int, Instruction *> Members; 969 int SmallestKey = 0; 970 int LargestKey = 0; 971 972 // To avoid breaking dependences, vectorized instructions of an interleave 973 // group should be inserted at either the first load or the last store in 974 // program order. 975 // 976 // E.g. %even = load i32 // Insert Position 977 // %add = add i32 %even // Use of %even 978 // %odd = load i32 979 // 980 // store i32 %even 981 // %odd = add i32 // Def of %odd 982 // store i32 %odd // Insert Position 983 Instruction *InsertPos; 984 }; 985 } // end namespace llvm 986 987 namespace { 988 989 /// \brief Drive the analysis of interleaved memory accesses in the loop. 990 /// 991 /// Use this class to analyze interleaved accesses only when we can vectorize 992 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 993 /// on interleaved accesses is unsafe. 994 /// 995 /// The analysis collects interleave groups and records the relationships 996 /// between the member and the group in a map. 997 class InterleavedAccessInfo { 998 public: 999 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1000 DominatorTree *DT, LoopInfo *LI) 1001 : PSE(PSE), TheLoop(L), DT(DT), LI(LI) {} 1002 1003 ~InterleavedAccessInfo() { 1004 SmallSet<InterleaveGroup *, 4> DelSet; 1005 // Avoid releasing a pointer twice. 1006 for (auto &I : InterleaveGroupMap) 1007 DelSet.insert(I.second); 1008 for (auto *Ptr : DelSet) 1009 delete Ptr; 1010 } 1011 1012 /// \brief Analyze the interleaved accesses and collect them in interleave 1013 /// groups. Substitute symbolic strides using \p Strides. 1014 void analyzeInterleaving(const ValueToValueMap &Strides); 1015 1016 /// \brief Check if \p Instr belongs to any interleave group. 1017 bool isInterleaved(Instruction *Instr) const { 1018 return InterleaveGroupMap.count(Instr); 1019 } 1020 1021 /// \brief Get the interleave group that \p Instr belongs to. 1022 /// 1023 /// \returns nullptr if doesn't have such group. 1024 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1025 if (InterleaveGroupMap.count(Instr)) 1026 return InterleaveGroupMap.find(Instr)->second; 1027 return nullptr; 1028 } 1029 1030 /// \brief Returns true if an interleaved group that may access memory 1031 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1032 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1033 1034 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1035 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1036 1037 private: 1038 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1039 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1040 /// The interleaved access analysis can also add new predicates (for example 1041 /// by versioning strides of pointers). 1042 PredicatedScalarEvolution &PSE; 1043 1044 Loop *TheLoop; 1045 DominatorTree *DT; 1046 LoopInfo *LI; 1047 const LoopAccessInfo *LAI = nullptr; 1048 1049 /// True if the loop may contain non-reversed interleaved groups with 1050 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1051 /// out-of-bounds by executing at least one scalar epilogue iteration. 1052 bool RequiresScalarEpilogue = false; 1053 1054 /// Holds the relationships between the members and the interleave group. 1055 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1056 1057 /// Holds dependences among the memory accesses in the loop. It maps a source 1058 /// access to a set of dependent sink accesses. 1059 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1060 1061 /// \brief The descriptor for a strided memory access. 1062 struct StrideDescriptor { 1063 StrideDescriptor() = default; 1064 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1065 unsigned Align) 1066 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1067 1068 // The access's stride. It is negative for a reverse access. 1069 int64_t Stride = 0; 1070 1071 // The scalar expression of this access. 1072 const SCEV *Scev = nullptr; 1073 1074 // The size of the memory object. 1075 uint64_t Size = 0; 1076 1077 // The alignment of this access. 1078 unsigned Align = 0; 1079 }; 1080 1081 /// \brief A type for holding instructions and their stride descriptors. 1082 using StrideEntry = std::pair<Instruction *, StrideDescriptor>; 1083 1084 /// \brief Create a new interleave group with the given instruction \p Instr, 1085 /// stride \p Stride and alignment \p Align. 1086 /// 1087 /// \returns the newly created interleave group. 1088 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1089 unsigned Align) { 1090 assert(!InterleaveGroupMap.count(Instr) && 1091 "Already in an interleaved access group"); 1092 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1093 return InterleaveGroupMap[Instr]; 1094 } 1095 1096 /// \brief Release the group and remove all the relationships. 1097 void releaseGroup(InterleaveGroup *Group) { 1098 for (unsigned i = 0; i < Group->getFactor(); i++) 1099 if (Instruction *Member = Group->getMember(i)) 1100 InterleaveGroupMap.erase(Member); 1101 1102 delete Group; 1103 } 1104 1105 /// \brief Collect all the accesses with a constant stride in program order. 1106 void collectConstStrideAccesses( 1107 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1108 const ValueToValueMap &Strides); 1109 1110 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1111 static bool isStrided(int Stride) { 1112 unsigned Factor = std::abs(Stride); 1113 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1114 } 1115 1116 /// \brief Returns true if \p BB is a predicated block. 1117 bool isPredicated(BasicBlock *BB) const { 1118 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1119 } 1120 1121 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1122 bool areDependencesValid() const { 1123 return LAI && LAI->getDepChecker().getDependences(); 1124 } 1125 1126 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1127 /// necessary, when constructing interleaved groups. 1128 /// 1129 /// \p A must precede \p B in program order. We return false if reordering is 1130 /// not necessary or is prevented because \p A and \p B may be dependent. 1131 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1132 StrideEntry *B) const { 1133 // Code motion for interleaved accesses can potentially hoist strided loads 1134 // and sink strided stores. The code below checks the legality of the 1135 // following two conditions: 1136 // 1137 // 1. Potentially moving a strided load (B) before any store (A) that 1138 // precedes B, or 1139 // 1140 // 2. Potentially moving a strided store (A) after any load or store (B) 1141 // that A precedes. 1142 // 1143 // It's legal to reorder A and B if we know there isn't a dependence from A 1144 // to B. Note that this determination is conservative since some 1145 // dependences could potentially be reordered safely. 1146 1147 // A is potentially the source of a dependence. 1148 auto *Src = A->first; 1149 auto SrcDes = A->second; 1150 1151 // B is potentially the sink of a dependence. 1152 auto *Sink = B->first; 1153 auto SinkDes = B->second; 1154 1155 // Code motion for interleaved accesses can't violate WAR dependences. 1156 // Thus, reordering is legal if the source isn't a write. 1157 if (!Src->mayWriteToMemory()) 1158 return true; 1159 1160 // At least one of the accesses must be strided. 1161 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1162 return true; 1163 1164 // If dependence information is not available from LoopAccessInfo, 1165 // conservatively assume the instructions can't be reordered. 1166 if (!areDependencesValid()) 1167 return false; 1168 1169 // If we know there is a dependence from source to sink, assume the 1170 // instructions can't be reordered. Otherwise, reordering is legal. 1171 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1172 } 1173 1174 /// \brief Collect the dependences from LoopAccessInfo. 1175 /// 1176 /// We process the dependences once during the interleaved access analysis to 1177 /// enable constant-time dependence queries. 1178 void collectDependences() { 1179 if (!areDependencesValid()) 1180 return; 1181 auto *Deps = LAI->getDepChecker().getDependences(); 1182 for (auto Dep : *Deps) 1183 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1184 } 1185 }; 1186 1187 /// Utility class for getting and setting loop vectorizer hints in the form 1188 /// of loop metadata. 1189 /// This class keeps a number of loop annotations locally (as member variables) 1190 /// and can, upon request, write them back as metadata on the loop. It will 1191 /// initially scan the loop for existing metadata, and will update the local 1192 /// values based on information in the loop. 1193 /// We cannot write all values to metadata, as the mere presence of some info, 1194 /// for example 'force', means a decision has been made. So, we need to be 1195 /// careful NOT to add them if the user hasn't specifically asked so. 1196 class LoopVectorizeHints { 1197 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED }; 1198 1199 /// Hint - associates name and validation with the hint value. 1200 struct Hint { 1201 const char *Name; 1202 unsigned Value; // This may have to change for non-numeric values. 1203 HintKind Kind; 1204 1205 Hint(const char *Name, unsigned Value, HintKind Kind) 1206 : Name(Name), Value(Value), Kind(Kind) {} 1207 1208 bool validate(unsigned Val) { 1209 switch (Kind) { 1210 case HK_WIDTH: 1211 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1212 case HK_UNROLL: 1213 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1214 case HK_FORCE: 1215 return (Val <= 1); 1216 case HK_ISVECTORIZED: 1217 return (Val==0 || Val==1); 1218 } 1219 return false; 1220 } 1221 }; 1222 1223 /// Vectorization width. 1224 Hint Width; 1225 1226 /// Vectorization interleave factor. 1227 Hint Interleave; 1228 1229 /// Vectorization forced 1230 Hint Force; 1231 1232 /// Already Vectorized 1233 Hint IsVectorized; 1234 1235 /// Return the loop metadata prefix. 1236 static StringRef Prefix() { return "llvm.loop."; } 1237 1238 /// True if there is any unsafe math in the loop. 1239 bool PotentiallyUnsafe = false; 1240 1241 public: 1242 enum ForceKind { 1243 FK_Undefined = -1, ///< Not selected. 1244 FK_Disabled = 0, ///< Forcing disabled. 1245 FK_Enabled = 1, ///< Forcing enabled. 1246 }; 1247 1248 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1249 OptimizationRemarkEmitter &ORE) 1250 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1251 HK_WIDTH), 1252 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1253 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1254 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { 1255 // Populate values with existing loop metadata. 1256 getHintsFromMetadata(); 1257 1258 // force-vector-interleave overrides DisableInterleaving. 1259 if (VectorizerParams::isInterleaveForced()) 1260 Interleave.Value = VectorizerParams::VectorizationInterleave; 1261 1262 if (IsVectorized.Value != 1) 1263 // If the vectorization width and interleaving count are both 1 then 1264 // consider the loop to have been already vectorized because there's 1265 // nothing more that we can do. 1266 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 1267 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1268 << "LV: Interleaving disabled by the pass manager\n"); 1269 } 1270 1271 /// Mark the loop L as already vectorized by setting the width to 1. 1272 void setAlreadyVectorized() { 1273 IsVectorized.Value = 1; 1274 Hint Hints[] = {IsVectorized}; 1275 writeHintsToMetadata(Hints); 1276 } 1277 1278 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1279 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1280 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1281 emitRemarkWithHints(); 1282 return false; 1283 } 1284 1285 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1286 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1287 emitRemarkWithHints(); 1288 return false; 1289 } 1290 1291 if (getIsVectorized() == 1) { 1292 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1293 // FIXME: Add interleave.disable metadata. This will allow 1294 // vectorize.disable to be used without disabling the pass and errors 1295 // to differentiate between disabled vectorization and a width of 1. 1296 ORE.emit([&]() { 1297 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1298 "AllDisabled", L->getStartLoc(), 1299 L->getHeader()) 1300 << "loop not vectorized: vectorization and interleaving are " 1301 "explicitly disabled, or the loop has already been " 1302 "vectorized"; 1303 }); 1304 return false; 1305 } 1306 1307 return true; 1308 } 1309 1310 /// Dumps all the hint information. 1311 void emitRemarkWithHints() const { 1312 using namespace ore; 1313 1314 ORE.emit([&]() { 1315 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1316 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1317 TheLoop->getStartLoc(), 1318 TheLoop->getHeader()) 1319 << "loop not vectorized: vectorization is explicitly disabled"; 1320 else { 1321 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1322 TheLoop->getStartLoc(), 1323 TheLoop->getHeader()); 1324 R << "loop not vectorized"; 1325 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1326 R << " (Force=" << NV("Force", true); 1327 if (Width.Value != 0) 1328 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1329 if (Interleave.Value != 0) 1330 R << ", Interleave Count=" 1331 << NV("InterleaveCount", Interleave.Value); 1332 R << ")"; 1333 } 1334 return R; 1335 } 1336 }); 1337 } 1338 1339 unsigned getWidth() const { return Width.Value; } 1340 unsigned getInterleave() const { return Interleave.Value; } 1341 unsigned getIsVectorized() const { return IsVectorized.Value; } 1342 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1343 1344 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1345 /// pass name to force the frontend to print the diagnostic. 1346 const char *vectorizeAnalysisPassName() const { 1347 if (getWidth() == 1) 1348 return LV_NAME; 1349 if (getForce() == LoopVectorizeHints::FK_Disabled) 1350 return LV_NAME; 1351 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1352 return LV_NAME; 1353 return OptimizationRemarkAnalysis::AlwaysPrint; 1354 } 1355 1356 bool allowReordering() const { 1357 // When enabling loop hints are provided we allow the vectorizer to change 1358 // the order of operations that is given by the scalar loop. This is not 1359 // enabled by default because can be unsafe or inefficient. For example, 1360 // reordering floating-point operations will change the way round-off 1361 // error accumulates in the loop. 1362 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1363 } 1364 1365 bool isPotentiallyUnsafe() const { 1366 // Avoid FP vectorization if the target is unsure about proper support. 1367 // This may be related to the SIMD unit in the target not handling 1368 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1369 // Otherwise, a sequence of vectorized loops, even without reduction, 1370 // could lead to different end results on the destination vectors. 1371 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1372 } 1373 1374 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1375 1376 private: 1377 /// Find hints specified in the loop metadata and update local values. 1378 void getHintsFromMetadata() { 1379 MDNode *LoopID = TheLoop->getLoopID(); 1380 if (!LoopID) 1381 return; 1382 1383 // First operand should refer to the loop id itself. 1384 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1385 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1386 1387 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1388 const MDString *S = nullptr; 1389 SmallVector<Metadata *, 4> Args; 1390 1391 // The expected hint is either a MDString or a MDNode with the first 1392 // operand a MDString. 1393 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1394 if (!MD || MD->getNumOperands() == 0) 1395 continue; 1396 S = dyn_cast<MDString>(MD->getOperand(0)); 1397 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1398 Args.push_back(MD->getOperand(i)); 1399 } else { 1400 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1401 assert(Args.size() == 0 && "too many arguments for MDString"); 1402 } 1403 1404 if (!S) 1405 continue; 1406 1407 // Check if the hint starts with the loop metadata prefix. 1408 StringRef Name = S->getString(); 1409 if (Args.size() == 1) 1410 setHint(Name, Args[0]); 1411 } 1412 } 1413 1414 /// Checks string hint with one operand and set value if valid. 1415 void setHint(StringRef Name, Metadata *Arg) { 1416 if (!Name.startswith(Prefix())) 1417 return; 1418 Name = Name.substr(Prefix().size(), StringRef::npos); 1419 1420 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1421 if (!C) 1422 return; 1423 unsigned Val = C->getZExtValue(); 1424 1425 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 1426 for (auto H : Hints) { 1427 if (Name == H->Name) { 1428 if (H->validate(Val)) 1429 H->Value = Val; 1430 else 1431 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1432 break; 1433 } 1434 } 1435 } 1436 1437 /// Create a new hint from name / value pair. 1438 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1439 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1440 Metadata *MDs[] = {MDString::get(Context, Name), 1441 ConstantAsMetadata::get( 1442 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1443 return MDNode::get(Context, MDs); 1444 } 1445 1446 /// Matches metadata with hint name. 1447 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1448 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1449 if (!Name) 1450 return false; 1451 1452 for (auto H : HintTypes) 1453 if (Name->getString().endswith(H.Name)) 1454 return true; 1455 return false; 1456 } 1457 1458 /// Sets current hints into loop metadata, keeping other values intact. 1459 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1460 if (HintTypes.empty()) 1461 return; 1462 1463 // Reserve the first element to LoopID (see below). 1464 SmallVector<Metadata *, 4> MDs(1); 1465 // If the loop already has metadata, then ignore the existing operands. 1466 MDNode *LoopID = TheLoop->getLoopID(); 1467 if (LoopID) { 1468 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1469 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1470 // If node in update list, ignore old value. 1471 if (!matchesHintMetadataName(Node, HintTypes)) 1472 MDs.push_back(Node); 1473 } 1474 } 1475 1476 // Now, add the missing hints. 1477 for (auto H : HintTypes) 1478 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1479 1480 // Replace current metadata node with new one. 1481 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1482 MDNode *NewLoopID = MDNode::get(Context, MDs); 1483 // Set operand 0 to refer to the loop id itself. 1484 NewLoopID->replaceOperandWith(0, NewLoopID); 1485 1486 TheLoop->setLoopID(NewLoopID); 1487 } 1488 1489 /// The loop these hints belong to. 1490 const Loop *TheLoop; 1491 1492 /// Interface to emit optimization remarks. 1493 OptimizationRemarkEmitter &ORE; 1494 }; 1495 1496 } // end anonymous namespace 1497 1498 static void emitMissedWarning(Function *F, Loop *L, 1499 const LoopVectorizeHints &LH, 1500 OptimizationRemarkEmitter *ORE) { 1501 LH.emitRemarkWithHints(); 1502 1503 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1504 if (LH.getWidth() != 1) 1505 ORE->emit(DiagnosticInfoOptimizationFailure( 1506 DEBUG_TYPE, "FailedRequestedVectorization", 1507 L->getStartLoc(), L->getHeader()) 1508 << "loop not vectorized: " 1509 << "failed explicitly specified loop vectorization"); 1510 else if (LH.getInterleave() != 1) 1511 ORE->emit(DiagnosticInfoOptimizationFailure( 1512 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1513 L->getHeader()) 1514 << "loop not interleaved: " 1515 << "failed explicitly specified loop interleaving"); 1516 } 1517 } 1518 1519 namespace llvm { 1520 1521 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1522 /// to what vectorization factor. 1523 /// This class does not look at the profitability of vectorization, only the 1524 /// legality. This class has two main kinds of checks: 1525 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1526 /// will change the order of memory accesses in a way that will change the 1527 /// correctness of the program. 1528 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1529 /// checks for a number of different conditions, such as the availability of a 1530 /// single induction variable, that all types are supported and vectorize-able, 1531 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1532 /// This class is also used by InnerLoopVectorizer for identifying 1533 /// induction variable and the different reduction variables. 1534 class LoopVectorizationLegality { 1535 public: 1536 LoopVectorizationLegality( 1537 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1538 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1539 const TargetTransformInfo *TTI, 1540 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1541 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1542 LoopVectorizeHints *H) 1543 : TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), GetLAA(GetLAA), 1544 ORE(ORE), InterleaveInfo(PSE, L, DT, LI), Requirements(R), Hints(H) {} 1545 1546 /// ReductionList contains the reduction descriptors for all 1547 /// of the reductions that were found in the loop. 1548 using ReductionList = DenseMap<PHINode *, RecurrenceDescriptor>; 1549 1550 /// InductionList saves induction variables and maps them to the 1551 /// induction descriptor. 1552 using InductionList = MapVector<PHINode *, InductionDescriptor>; 1553 1554 /// RecurrenceSet contains the phi nodes that are recurrences other than 1555 /// inductions and reductions. 1556 using RecurrenceSet = SmallPtrSet<const PHINode *, 8>; 1557 1558 /// Returns true if it is legal to vectorize this loop. 1559 /// This does not mean that it is profitable to vectorize this 1560 /// loop, only that it is legal to do so. 1561 bool canVectorize(); 1562 1563 /// Returns the primary induction variable. 1564 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1565 1566 /// Returns the reduction variables found in the loop. 1567 ReductionList *getReductionVars() { return &Reductions; } 1568 1569 /// Returns the induction variables found in the loop. 1570 InductionList *getInductionVars() { return &Inductions; } 1571 1572 /// Return the first-order recurrences found in the loop. 1573 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1574 1575 /// Return the set of instructions to sink to handle first-order recurrences. 1576 DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; } 1577 1578 /// Returns the widest induction type. 1579 Type *getWidestInductionType() { return WidestIndTy; } 1580 1581 /// Returns True if V is a Phi node of an induction variable in this loop. 1582 bool isInductionPhi(const Value *V); 1583 1584 /// Returns True if V is a cast that is part of an induction def-use chain, 1585 /// and had been proven to be redundant under a runtime guard (in other 1586 /// words, the cast has the same SCEV expression as the induction phi). 1587 bool isCastedInductionVariable(const Value *V); 1588 1589 /// Returns True if V can be considered as an induction variable in this 1590 /// loop. V can be the induction phi, or some redundant cast in the def-use 1591 /// chain of the inducion phi. 1592 bool isInductionVariable(const Value *V); 1593 1594 /// Returns True if PN is a reduction variable in this loop. 1595 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1596 1597 /// Returns True if Phi is a first-order recurrence in this loop. 1598 bool isFirstOrderRecurrence(const PHINode *Phi); 1599 1600 /// Return true if the block BB needs to be predicated in order for the loop 1601 /// to be vectorized. 1602 bool blockNeedsPredication(BasicBlock *BB); 1603 1604 /// Check if this pointer is consecutive when vectorizing. This happens 1605 /// when the last index of the GEP is the induction variable, or that the 1606 /// pointer itself is an induction variable. 1607 /// This check allows us to vectorize A[idx] into a wide load/store. 1608 /// Returns: 1609 /// 0 - Stride is unknown or non-consecutive. 1610 /// 1 - Address is consecutive. 1611 /// -1 - Address is consecutive, and decreasing. 1612 /// NOTE: This method must only be used before modifying the original scalar 1613 /// loop. Do not use after invoking 'createVectorizedLoopSkeleton' (PR34965). 1614 int isConsecutivePtr(Value *Ptr); 1615 1616 /// Returns true if the value V is uniform within the loop. 1617 bool isUniform(Value *V); 1618 1619 /// Returns the information that we collected about runtime memory check. 1620 const RuntimePointerChecking *getRuntimePointerChecking() const { 1621 return LAI->getRuntimePointerChecking(); 1622 } 1623 1624 const LoopAccessInfo *getLAI() const { return LAI; } 1625 1626 /// \brief Check if \p Instr belongs to any interleaved access group. 1627 bool isAccessInterleaved(Instruction *Instr) { 1628 return InterleaveInfo.isInterleaved(Instr); 1629 } 1630 1631 /// \brief Get the interleaved access group that \p Instr belongs to. 1632 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1633 return InterleaveInfo.getInterleaveGroup(Instr); 1634 } 1635 1636 /// \brief Returns true if an interleaved group requires a scalar iteration 1637 /// to handle accesses with gaps. 1638 bool requiresScalarEpilogue() const { 1639 return InterleaveInfo.requiresScalarEpilogue(); 1640 } 1641 1642 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1643 1644 uint64_t getMaxSafeRegisterWidth() const { 1645 return LAI->getDepChecker().getMaxSafeRegisterWidth(); 1646 } 1647 1648 bool hasStride(Value *V) { return LAI->hasStride(V); } 1649 1650 /// Returns true if the target machine supports masked store operation 1651 /// for the given \p DataType and kind of access to \p Ptr. 1652 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1653 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1654 } 1655 1656 /// Returns true if the target machine supports masked load operation 1657 /// for the given \p DataType and kind of access to \p Ptr. 1658 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1659 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1660 } 1661 1662 /// Returns true if the target machine supports masked scatter operation 1663 /// for the given \p DataType. 1664 bool isLegalMaskedScatter(Type *DataType) { 1665 return TTI->isLegalMaskedScatter(DataType); 1666 } 1667 1668 /// Returns true if the target machine supports masked gather operation 1669 /// for the given \p DataType. 1670 bool isLegalMaskedGather(Type *DataType) { 1671 return TTI->isLegalMaskedGather(DataType); 1672 } 1673 1674 /// Returns true if the target machine can represent \p V as a masked gather 1675 /// or scatter operation. 1676 bool isLegalGatherOrScatter(Value *V) { 1677 auto *LI = dyn_cast<LoadInst>(V); 1678 auto *SI = dyn_cast<StoreInst>(V); 1679 if (!LI && !SI) 1680 return false; 1681 auto *Ptr = getPointerOperand(V); 1682 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1683 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1684 } 1685 1686 /// Returns true if vector representation of the instruction \p I 1687 /// requires mask. 1688 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1689 1690 unsigned getNumStores() const { return LAI->getNumStores(); } 1691 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1692 unsigned getNumPredStores() const { return NumPredStores; } 1693 1694 /// Returns true if \p I is an instruction that will be scalarized with 1695 /// predication. Such instructions include conditional stores and 1696 /// instructions that may divide by zero. 1697 bool isScalarWithPredication(Instruction *I); 1698 1699 /// Returns true if \p I is a memory instruction with consecutive memory 1700 /// access that can be widened. 1701 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1702 1703 // Returns true if the NoNaN attribute is set on the function. 1704 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1705 1706 private: 1707 /// Check if a single basic block loop is vectorizable. 1708 /// At this point we know that this is a loop with a constant trip count 1709 /// and we only need to check individual instructions. 1710 bool canVectorizeInstrs(); 1711 1712 /// When we vectorize loops we may change the order in which 1713 /// we read and write from memory. This method checks if it is 1714 /// legal to vectorize the code, considering only memory constrains. 1715 /// Returns true if the loop is vectorizable 1716 bool canVectorizeMemory(); 1717 1718 /// Return true if we can vectorize this loop using the IF-conversion 1719 /// transformation. 1720 bool canVectorizeWithIfConvert(); 1721 1722 /// Return true if all of the instructions in the block can be speculatively 1723 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1724 /// and we know that we can read from them without segfault. 1725 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1726 1727 /// Updates the vectorization state by adding \p Phi to the inductions list. 1728 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1729 /// better choice for the main induction than the existing one. 1730 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1731 SmallPtrSetImpl<Value *> &AllowedExit); 1732 1733 /// Create an analysis remark that explains why vectorization failed 1734 /// 1735 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1736 /// an instruction that prevents vectorization. Otherwise the loop is used 1737 /// for the location of the remark. \return the remark object that can be 1738 /// streamed to. 1739 OptimizationRemarkAnalysis 1740 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1741 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1742 RemarkName, TheLoop, I); 1743 } 1744 1745 /// \brief If an access has a symbolic strides, this maps the pointer value to 1746 /// the stride symbol. 1747 const ValueToValueMap *getSymbolicStrides() { 1748 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1749 // it's collected. This happens from canVectorizeWithIfConvert, when the 1750 // pointer is checked to reference consecutive elements suitable for a 1751 // masked access. 1752 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1753 } 1754 1755 unsigned NumPredStores = 0; 1756 1757 /// The loop that we evaluate. 1758 Loop *TheLoop; 1759 1760 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1761 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1762 /// of existing SCEV assumptions. The analysis will also add a minimal set 1763 /// of new predicates if this is required to enable vectorization and 1764 /// unrolling. 1765 PredicatedScalarEvolution &PSE; 1766 1767 /// Target Library Info. 1768 TargetLibraryInfo *TLI; 1769 1770 /// Target Transform Info 1771 const TargetTransformInfo *TTI; 1772 1773 /// Dominator Tree. 1774 DominatorTree *DT; 1775 1776 // LoopAccess analysis. 1777 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1778 1779 // And the loop-accesses info corresponding to this loop. This pointer is 1780 // null until canVectorizeMemory sets it up. 1781 const LoopAccessInfo *LAI = nullptr; 1782 1783 /// Interface to emit optimization remarks. 1784 OptimizationRemarkEmitter *ORE; 1785 1786 /// The interleave access information contains groups of interleaved accesses 1787 /// with the same stride and close to each other. 1788 InterleavedAccessInfo InterleaveInfo; 1789 1790 // --- vectorization state --- // 1791 1792 /// Holds the primary induction variable. This is the counter of the 1793 /// loop. 1794 PHINode *PrimaryInduction = nullptr; 1795 1796 /// Holds the reduction variables. 1797 ReductionList Reductions; 1798 1799 /// Holds all of the induction variables that we found in the loop. 1800 /// Notice that inductions don't need to start at zero and that induction 1801 /// variables can be pointers. 1802 InductionList Inductions; 1803 1804 /// Holds all the casts that participate in the update chain of the induction 1805 /// variables, and that have been proven to be redundant (possibly under a 1806 /// runtime guard). These casts can be ignored when creating the vectorized 1807 /// loop body. 1808 SmallPtrSet<Instruction *, 4> InductionCastsToIgnore; 1809 1810 /// Holds the phi nodes that are first-order recurrences. 1811 RecurrenceSet FirstOrderRecurrences; 1812 1813 /// Holds instructions that need to sink past other instructions to handle 1814 /// first-order recurrences. 1815 DenseMap<Instruction *, Instruction *> SinkAfter; 1816 1817 /// Holds the widest induction type encountered. 1818 Type *WidestIndTy = nullptr; 1819 1820 /// Allowed outside users. This holds the induction and reduction 1821 /// vars which can be accessed from outside the loop. 1822 SmallPtrSet<Value *, 4> AllowedExit; 1823 1824 /// Can we assume the absence of NaNs. 1825 bool HasFunNoNaNAttr = false; 1826 1827 /// Vectorization requirements that will go through late-evaluation. 1828 LoopVectorizationRequirements *Requirements; 1829 1830 /// Used to emit an analysis of any legality issues. 1831 LoopVectorizeHints *Hints; 1832 1833 /// While vectorizing these instructions we have to generate a 1834 /// call to the appropriate masked intrinsic 1835 SmallPtrSet<const Instruction *, 8> MaskedOp; 1836 }; 1837 1838 /// LoopVectorizationCostModel - estimates the expected speedups due to 1839 /// vectorization. 1840 /// In many cases vectorization is not profitable. This can happen because of 1841 /// a number of reasons. In this class we mainly attempt to predict the 1842 /// expected speedup/slowdowns due to the supported instruction set. We use the 1843 /// TargetTransformInfo to query the different backends for the cost of 1844 /// different operations. 1845 class LoopVectorizationCostModel { 1846 public: 1847 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1848 LoopInfo *LI, LoopVectorizationLegality *Legal, 1849 const TargetTransformInfo &TTI, 1850 const TargetLibraryInfo *TLI, DemandedBits *DB, 1851 AssumptionCache *AC, 1852 OptimizationRemarkEmitter *ORE, const Function *F, 1853 const LoopVectorizeHints *Hints) 1854 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1855 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1856 1857 /// \return An upper bound for the vectorization factor, or None if 1858 /// vectorization should be avoided up front. 1859 Optional<unsigned> computeMaxVF(bool OptForSize); 1860 1861 /// \return The most profitable vectorization factor and the cost of that VF. 1862 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1863 /// then this vectorization factor will be selected if vectorization is 1864 /// possible. 1865 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1866 1867 /// Setup cost-based decisions for user vectorization factor. 1868 void selectUserVectorizationFactor(unsigned UserVF) { 1869 collectUniformsAndScalars(UserVF); 1870 collectInstsToScalarize(UserVF); 1871 } 1872 1873 /// \return The size (in bits) of the smallest and widest types in the code 1874 /// that needs to be vectorized. We ignore values that remain scalar such as 1875 /// 64 bit loop indices. 1876 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1877 1878 /// \return The desired interleave count. 1879 /// If interleave count has been specified by metadata it will be returned. 1880 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1881 /// are the selected vectorization factor and the cost of the selected VF. 1882 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1883 unsigned LoopCost); 1884 1885 /// Memory access instruction may be vectorized in more than one way. 1886 /// Form of instruction after vectorization depends on cost. 1887 /// This function takes cost-based decisions for Load/Store instructions 1888 /// and collects them in a map. This decisions map is used for building 1889 /// the lists of loop-uniform and loop-scalar instructions. 1890 /// The calculated cost is saved with widening decision in order to 1891 /// avoid redundant calculations. 1892 void setCostBasedWideningDecision(unsigned VF); 1893 1894 /// \brief A struct that represents some properties of the register usage 1895 /// of a loop. 1896 struct RegisterUsage { 1897 /// Holds the number of loop invariant values that are used in the loop. 1898 unsigned LoopInvariantRegs; 1899 1900 /// Holds the maximum number of concurrent live intervals in the loop. 1901 unsigned MaxLocalUsers; 1902 1903 /// Holds the number of instructions in the loop. 1904 unsigned NumInstructions; 1905 }; 1906 1907 /// \return Returns information about the register usages of the loop for the 1908 /// given vectorization factors. 1909 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1910 1911 /// Collect values we want to ignore in the cost model. 1912 void collectValuesToIgnore(); 1913 1914 /// \returns The smallest bitwidth each instruction can be represented with. 1915 /// The vector equivalents of these instructions should be truncated to this 1916 /// type. 1917 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1918 return MinBWs; 1919 } 1920 1921 /// \returns True if it is more profitable to scalarize instruction \p I for 1922 /// vectorization factor \p VF. 1923 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1924 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1925 auto Scalars = InstsToScalarize.find(VF); 1926 assert(Scalars != InstsToScalarize.end() && 1927 "VF not yet analyzed for scalarization profitability"); 1928 return Scalars->second.count(I); 1929 } 1930 1931 /// Returns true if \p I is known to be uniform after vectorization. 1932 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1933 if (VF == 1) 1934 return true; 1935 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1936 auto UniformsPerVF = Uniforms.find(VF); 1937 return UniformsPerVF->second.count(I); 1938 } 1939 1940 /// Returns true if \p I is known to be scalar after vectorization. 1941 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1942 if (VF == 1) 1943 return true; 1944 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1945 auto ScalarsPerVF = Scalars.find(VF); 1946 return ScalarsPerVF->second.count(I); 1947 } 1948 1949 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1950 /// for vectorization factor \p VF. 1951 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1952 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1953 !isScalarAfterVectorization(I, VF); 1954 } 1955 1956 /// Decision that was taken during cost calculation for memory instruction. 1957 enum InstWidening { 1958 CM_Unknown, 1959 CM_Widen, // For consecutive accesses with stride +1. 1960 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1961 CM_Interleave, 1962 CM_GatherScatter, 1963 CM_Scalarize 1964 }; 1965 1966 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1967 /// instruction \p I and vector width \p VF. 1968 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1969 unsigned Cost) { 1970 assert(VF >= 2 && "Expected VF >=2"); 1971 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1972 } 1973 1974 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1975 /// interleaving group \p Grp and vector width \p VF. 1976 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1977 InstWidening W, unsigned Cost) { 1978 assert(VF >= 2 && "Expected VF >=2"); 1979 /// Broadcast this decicion to all instructions inside the group. 1980 /// But the cost will be assigned to one instruction only. 1981 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1982 if (auto *I = Grp->getMember(i)) { 1983 if (Grp->getInsertPos() == I) 1984 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1985 else 1986 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1987 } 1988 } 1989 } 1990 1991 /// Return the cost model decision for the given instruction \p I and vector 1992 /// width \p VF. Return CM_Unknown if this instruction did not pass 1993 /// through the cost modeling. 1994 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1995 assert(VF >= 2 && "Expected VF >=2"); 1996 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1997 auto Itr = WideningDecisions.find(InstOnVF); 1998 if (Itr == WideningDecisions.end()) 1999 return CM_Unknown; 2000 return Itr->second.first; 2001 } 2002 2003 /// Return the vectorization cost for the given instruction \p I and vector 2004 /// width \p VF. 2005 unsigned getWideningCost(Instruction *I, unsigned VF) { 2006 assert(VF >= 2 && "Expected VF >=2"); 2007 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 2008 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 2009 return WideningDecisions[InstOnVF].second; 2010 } 2011 2012 /// Return True if instruction \p I is an optimizable truncate whose operand 2013 /// is an induction variable. Such a truncate will be removed by adding a new 2014 /// induction variable with the destination type. 2015 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 2016 // If the instruction is not a truncate, return false. 2017 auto *Trunc = dyn_cast<TruncInst>(I); 2018 if (!Trunc) 2019 return false; 2020 2021 // Get the source and destination types of the truncate. 2022 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 2023 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 2024 2025 // If the truncate is free for the given types, return false. Replacing a 2026 // free truncate with an induction variable would add an induction variable 2027 // update instruction to each iteration of the loop. We exclude from this 2028 // check the primary induction variable since it will need an update 2029 // instruction regardless. 2030 Value *Op = Trunc->getOperand(0); 2031 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 2032 return false; 2033 2034 // If the truncated value is not an induction variable, return false. 2035 return Legal->isInductionPhi(Op); 2036 } 2037 2038 /// Collects the instructions to scalarize for each predicated instruction in 2039 /// the loop. 2040 void collectInstsToScalarize(unsigned VF); 2041 2042 /// Collect Uniform and Scalar values for the given \p VF. 2043 /// The sets depend on CM decision for Load/Store instructions 2044 /// that may be vectorized as interleave, gather-scatter or scalarized. 2045 void collectUniformsAndScalars(unsigned VF) { 2046 // Do the analysis once. 2047 if (VF == 1 || Uniforms.count(VF)) 2048 return; 2049 setCostBasedWideningDecision(VF); 2050 collectLoopUniforms(VF); 2051 collectLoopScalars(VF); 2052 } 2053 2054 private: 2055 /// \return An upper bound for the vectorization factor, larger than zero. 2056 /// One is returned if vectorization should best be avoided due to cost. 2057 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 2058 2059 /// The vectorization cost is a combination of the cost itself and a boolean 2060 /// indicating whether any of the contributing operations will actually 2061 /// operate on 2062 /// vector values after type legalization in the backend. If this latter value 2063 /// is 2064 /// false, then all operations will be scalarized (i.e. no vectorization has 2065 /// actually taken place). 2066 using VectorizationCostTy = std::pair<unsigned, bool>; 2067 2068 /// Returns the expected execution cost. The unit of the cost does 2069 /// not matter because we use the 'cost' units to compare different 2070 /// vector widths. The cost that is returned is *not* normalized by 2071 /// the factor width. 2072 VectorizationCostTy expectedCost(unsigned VF); 2073 2074 /// Returns the execution time cost of an instruction for a given vector 2075 /// width. Vector width of one means scalar. 2076 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2077 2078 /// The cost-computation logic from getInstructionCost which provides 2079 /// the vector type as an output parameter. 2080 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2081 2082 /// Calculate vectorization cost of memory instruction \p I. 2083 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2084 2085 /// The cost computation for scalarized memory instruction. 2086 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2087 2088 /// The cost computation for interleaving group of memory instructions. 2089 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2090 2091 /// The cost computation for Gather/Scatter instruction. 2092 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2093 2094 /// The cost computation for widening instruction \p I with consecutive 2095 /// memory access. 2096 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2097 2098 /// The cost calculation for Load instruction \p I with uniform pointer - 2099 /// scalar load + broadcast. 2100 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2101 2102 /// Returns whether the instruction is a load or store and will be a emitted 2103 /// as a vector operation. 2104 bool isConsecutiveLoadOrStore(Instruction *I); 2105 2106 /// Create an analysis remark that explains why vectorization failed 2107 /// 2108 /// \p RemarkName is the identifier for the remark. \return the remark object 2109 /// that can be streamed to. 2110 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2111 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2112 RemarkName, TheLoop); 2113 } 2114 2115 /// Map of scalar integer values to the smallest bitwidth they can be legally 2116 /// represented as. The vector equivalents of these values should be truncated 2117 /// to this type. 2118 MapVector<Instruction *, uint64_t> MinBWs; 2119 2120 /// A type representing the costs for instructions if they were to be 2121 /// scalarized rather than vectorized. The entries are Instruction-Cost 2122 /// pairs. 2123 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 2124 2125 /// A set containing all BasicBlocks that are known to present after 2126 /// vectorization as a predicated block. 2127 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2128 2129 /// A map holding scalar costs for different vectorization factors. The 2130 /// presence of a cost for an instruction in the mapping indicates that the 2131 /// instruction will be scalarized when vectorizing with the associated 2132 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2133 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2134 2135 /// Holds the instructions known to be uniform after vectorization. 2136 /// The data is collected per VF. 2137 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2138 2139 /// Holds the instructions known to be scalar after vectorization. 2140 /// The data is collected per VF. 2141 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2142 2143 /// Holds the instructions (address computations) that are forced to be 2144 /// scalarized. 2145 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 2146 2147 /// Returns the expected difference in cost from scalarizing the expression 2148 /// feeding a predicated instruction \p PredInst. The instructions to 2149 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2150 /// non-negative return value implies the expression will be scalarized. 2151 /// Currently, only single-use chains are considered for scalarization. 2152 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2153 unsigned VF); 2154 2155 /// Collect the instructions that are uniform after vectorization. An 2156 /// instruction is uniform if we represent it with a single scalar value in 2157 /// the vectorized loop corresponding to each vector iteration. Examples of 2158 /// uniform instructions include pointer operands of consecutive or 2159 /// interleaved memory accesses. Note that although uniformity implies an 2160 /// instruction will be scalar, the reverse is not true. In general, a 2161 /// scalarized instruction will be represented by VF scalar values in the 2162 /// vectorized loop, each corresponding to an iteration of the original 2163 /// scalar loop. 2164 void collectLoopUniforms(unsigned VF); 2165 2166 /// Collect the instructions that are scalar after vectorization. An 2167 /// instruction is scalar if it is known to be uniform or will be scalarized 2168 /// during vectorization. Non-uniform scalarized instructions will be 2169 /// represented by VF values in the vectorized loop, each corresponding to an 2170 /// iteration of the original scalar loop. 2171 void collectLoopScalars(unsigned VF); 2172 2173 /// Keeps cost model vectorization decision and cost for instructions. 2174 /// Right now it is used for memory instructions only. 2175 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 2176 std::pair<InstWidening, unsigned>>; 2177 2178 DecisionList WideningDecisions; 2179 2180 public: 2181 /// The loop that we evaluate. 2182 Loop *TheLoop; 2183 2184 /// Predicated scalar evolution analysis. 2185 PredicatedScalarEvolution &PSE; 2186 2187 /// Loop Info analysis. 2188 LoopInfo *LI; 2189 2190 /// Vectorization legality. 2191 LoopVectorizationLegality *Legal; 2192 2193 /// Vector target information. 2194 const TargetTransformInfo &TTI; 2195 2196 /// Target Library Info. 2197 const TargetLibraryInfo *TLI; 2198 2199 /// Demanded bits analysis. 2200 DemandedBits *DB; 2201 2202 /// Assumption cache. 2203 AssumptionCache *AC; 2204 2205 /// Interface to emit optimization remarks. 2206 OptimizationRemarkEmitter *ORE; 2207 2208 const Function *TheFunction; 2209 2210 /// Loop Vectorize Hint. 2211 const LoopVectorizeHints *Hints; 2212 2213 /// Values to ignore in the cost model. 2214 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2215 2216 /// Values to ignore in the cost model when VF > 1. 2217 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2218 }; 2219 2220 } // end namespace llvm 2221 2222 namespace { 2223 2224 /// \brief This holds vectorization requirements that must be verified late in 2225 /// the process. The requirements are set by legalize and costmodel. Once 2226 /// vectorization has been determined to be possible and profitable the 2227 /// requirements can be verified by looking for metadata or compiler options. 2228 /// For example, some loops require FP commutativity which is only allowed if 2229 /// vectorization is explicitly specified or if the fast-math compiler option 2230 /// has been provided. 2231 /// Late evaluation of these requirements allows helpful diagnostics to be 2232 /// composed that tells the user what need to be done to vectorize the loop. For 2233 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2234 /// evaluation should be used only when diagnostics can generated that can be 2235 /// followed by a non-expert user. 2236 class LoopVectorizationRequirements { 2237 public: 2238 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) : ORE(ORE) {} 2239 2240 void addUnsafeAlgebraInst(Instruction *I) { 2241 // First unsafe algebra instruction. 2242 if (!UnsafeAlgebraInst) 2243 UnsafeAlgebraInst = I; 2244 } 2245 2246 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2247 2248 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2249 const char *PassName = Hints.vectorizeAnalysisPassName(); 2250 bool Failed = false; 2251 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2252 ORE.emit([&]() { 2253 return OptimizationRemarkAnalysisFPCommute( 2254 PassName, "CantReorderFPOps", 2255 UnsafeAlgebraInst->getDebugLoc(), 2256 UnsafeAlgebraInst->getParent()) 2257 << "loop not vectorized: cannot prove it is safe to reorder " 2258 "floating-point operations"; 2259 }); 2260 Failed = true; 2261 } 2262 2263 // Test if runtime memcheck thresholds are exceeded. 2264 bool PragmaThresholdReached = 2265 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2266 bool ThresholdReached = 2267 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2268 if ((ThresholdReached && !Hints.allowReordering()) || 2269 PragmaThresholdReached) { 2270 ORE.emit([&]() { 2271 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2272 L->getStartLoc(), 2273 L->getHeader()) 2274 << "loop not vectorized: cannot prove it is safe to reorder " 2275 "memory operations"; 2276 }); 2277 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2278 Failed = true; 2279 } 2280 2281 return Failed; 2282 } 2283 2284 private: 2285 unsigned NumRuntimePointerChecks = 0; 2286 Instruction *UnsafeAlgebraInst = nullptr; 2287 2288 /// Interface to emit optimization remarks. 2289 OptimizationRemarkEmitter &ORE; 2290 }; 2291 2292 } // end anonymous namespace 2293 2294 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2295 if (L.empty()) { 2296 if (!hasCyclesInLoopBody(L)) 2297 V.push_back(&L); 2298 return; 2299 } 2300 for (Loop *InnerL : L) 2301 addAcyclicInnerLoop(*InnerL, V); 2302 } 2303 2304 namespace { 2305 2306 /// The LoopVectorize Pass. 2307 struct LoopVectorize : public FunctionPass { 2308 /// Pass identification, replacement for typeid 2309 static char ID; 2310 2311 LoopVectorizePass Impl; 2312 2313 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2314 : FunctionPass(ID) { 2315 Impl.DisableUnrolling = NoUnrolling; 2316 Impl.AlwaysVectorize = AlwaysVectorize; 2317 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2318 } 2319 2320 bool runOnFunction(Function &F) override { 2321 if (skipFunction(F)) 2322 return false; 2323 2324 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2325 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2326 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2327 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2328 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2329 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2330 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2331 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2332 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2333 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2334 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2335 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2336 2337 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2338 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2339 2340 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2341 GetLAA, *ORE); 2342 } 2343 2344 void getAnalysisUsage(AnalysisUsage &AU) const override { 2345 AU.addRequired<AssumptionCacheTracker>(); 2346 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2347 AU.addRequired<DominatorTreeWrapperPass>(); 2348 AU.addRequired<LoopInfoWrapperPass>(); 2349 AU.addRequired<ScalarEvolutionWrapperPass>(); 2350 AU.addRequired<TargetTransformInfoWrapperPass>(); 2351 AU.addRequired<AAResultsWrapperPass>(); 2352 AU.addRequired<LoopAccessLegacyAnalysis>(); 2353 AU.addRequired<DemandedBitsWrapperPass>(); 2354 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2355 AU.addPreserved<LoopInfoWrapperPass>(); 2356 AU.addPreserved<DominatorTreeWrapperPass>(); 2357 AU.addPreserved<BasicAAWrapperPass>(); 2358 AU.addPreserved<GlobalsAAWrapperPass>(); 2359 } 2360 }; 2361 2362 } // end anonymous namespace 2363 2364 //===----------------------------------------------------------------------===// 2365 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2366 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2367 //===----------------------------------------------------------------------===// 2368 2369 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2370 // We need to place the broadcast of invariant variables outside the loop. 2371 Instruction *Instr = dyn_cast<Instruction>(V); 2372 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2373 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2374 2375 // Place the code for broadcasting invariant variables in the new preheader. 2376 IRBuilder<>::InsertPointGuard Guard(Builder); 2377 if (Invariant) 2378 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2379 2380 // Broadcast the scalar into all locations in the vector. 2381 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2382 2383 return Shuf; 2384 } 2385 2386 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2387 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2388 Value *Start = II.getStartValue(); 2389 2390 // Construct the initial value of the vector IV in the vector loop preheader 2391 auto CurrIP = Builder.saveIP(); 2392 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2393 if (isa<TruncInst>(EntryVal)) { 2394 assert(Start->getType()->isIntegerTy() && 2395 "Truncation requires an integer type"); 2396 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2397 Step = Builder.CreateTrunc(Step, TruncType); 2398 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2399 } 2400 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2401 Value *SteppedStart = 2402 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2403 2404 // We create vector phi nodes for both integer and floating-point induction 2405 // variables. Here, we determine the kind of arithmetic we will perform. 2406 Instruction::BinaryOps AddOp; 2407 Instruction::BinaryOps MulOp; 2408 if (Step->getType()->isIntegerTy()) { 2409 AddOp = Instruction::Add; 2410 MulOp = Instruction::Mul; 2411 } else { 2412 AddOp = II.getInductionOpcode(); 2413 MulOp = Instruction::FMul; 2414 } 2415 2416 // Multiply the vectorization factor by the step using integer or 2417 // floating-point arithmetic as appropriate. 2418 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2419 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2420 2421 // Create a vector splat to use in the induction update. 2422 // 2423 // FIXME: If the step is non-constant, we create the vector splat with 2424 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2425 // handle a constant vector splat. 2426 Value *SplatVF = isa<Constant>(Mul) 2427 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2428 : Builder.CreateVectorSplat(VF, Mul); 2429 Builder.restoreIP(CurrIP); 2430 2431 // We may need to add the step a number of times, depending on the unroll 2432 // factor. The last of those goes into the PHI. 2433 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2434 &*LoopVectorBody->getFirstInsertionPt()); 2435 Instruction *LastInduction = VecInd; 2436 for (unsigned Part = 0; Part < UF; ++Part) { 2437 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 2438 2439 if (isa<TruncInst>(EntryVal)) 2440 addMetadata(LastInduction, EntryVal); 2441 else 2442 recordVectorLoopValueForInductionCast(II, LastInduction, Part); 2443 2444 LastInduction = cast<Instruction>(addFastMathFlag( 2445 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2446 } 2447 2448 // Move the last step to the end of the latch block. This ensures consistent 2449 // placement of all induction updates. 2450 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2451 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2452 auto *ICmp = cast<Instruction>(Br->getCondition()); 2453 LastInduction->moveBefore(ICmp); 2454 LastInduction->setName("vec.ind.next"); 2455 2456 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2457 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2458 } 2459 2460 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2461 return Cost->isScalarAfterVectorization(I, VF) || 2462 Cost->isProfitableToScalarize(I, VF); 2463 } 2464 2465 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2466 if (shouldScalarizeInstruction(IV)) 2467 return true; 2468 auto isScalarInst = [&](User *U) -> bool { 2469 auto *I = cast<Instruction>(U); 2470 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2471 }; 2472 return llvm::any_of(IV->users(), isScalarInst); 2473 } 2474 2475 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2476 const InductionDescriptor &ID, Value *VectorLoopVal, unsigned Part, 2477 unsigned Lane) { 2478 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2479 if (Casts.empty()) 2480 return; 2481 // Only the first Cast instruction in the Casts vector is of interest. 2482 // The rest of the Casts (if exist) have no uses outside the 2483 // induction update chain itself. 2484 Instruction *CastInst = *Casts.begin(); 2485 if (Lane < UINT_MAX) 2486 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 2487 else 2488 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 2489 } 2490 2491 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2492 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2493 "Primary induction variable must have an integer type"); 2494 2495 auto II = Legal->getInductionVars()->find(IV); 2496 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2497 2498 auto ID = II->second; 2499 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2500 2501 // The scalar value to broadcast. This will be derived from the canonical 2502 // induction variable. 2503 Value *ScalarIV = nullptr; 2504 2505 // The value from the original loop to which we are mapping the new induction 2506 // variable. 2507 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2508 2509 // True if we have vectorized the induction variable. 2510 auto VectorizedIV = false; 2511 2512 // Determine if we want a scalar version of the induction variable. This is 2513 // true if the induction variable itself is not widened, or if it has at 2514 // least one user in the loop that is not widened. 2515 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2516 2517 // Generate code for the induction step. Note that induction steps are 2518 // required to be loop-invariant 2519 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2520 "Induction step should be loop invariant"); 2521 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2522 Value *Step = nullptr; 2523 if (PSE.getSE()->isSCEVable(IV->getType())) { 2524 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2525 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2526 LoopVectorPreHeader->getTerminator()); 2527 } else { 2528 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2529 } 2530 2531 // Try to create a new independent vector induction variable. If we can't 2532 // create the phi node, we will splat the scalar induction variable in each 2533 // loop iteration. 2534 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2535 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2536 VectorizedIV = true; 2537 } 2538 2539 // If we haven't yet vectorized the induction variable, or if we will create 2540 // a scalar one, we need to define the scalar induction variable and step 2541 // values. If we were given a truncation type, truncate the canonical 2542 // induction variable and step. Otherwise, derive these values from the 2543 // induction descriptor. 2544 if (!VectorizedIV || NeedsScalarIV) { 2545 ScalarIV = Induction; 2546 if (IV != OldInduction) { 2547 ScalarIV = IV->getType()->isIntegerTy() 2548 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2549 : Builder.CreateCast(Instruction::SIToFP, Induction, 2550 IV->getType()); 2551 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2552 ScalarIV->setName("offset.idx"); 2553 } 2554 if (Trunc) { 2555 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2556 assert(Step->getType()->isIntegerTy() && 2557 "Truncation requires an integer step"); 2558 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2559 Step = Builder.CreateTrunc(Step, TruncType); 2560 } 2561 } 2562 2563 // If we haven't yet vectorized the induction variable, splat the scalar 2564 // induction variable, and build the necessary step vectors. 2565 // TODO: Don't do it unless the vectorized IV is really required. 2566 if (!VectorizedIV) { 2567 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2568 for (unsigned Part = 0; Part < UF; ++Part) { 2569 Value *EntryPart = 2570 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2571 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2572 if (Trunc) 2573 addMetadata(EntryPart, Trunc); 2574 else 2575 recordVectorLoopValueForInductionCast(ID, EntryPart, Part); 2576 } 2577 } 2578 2579 // If an induction variable is only used for counting loop iterations or 2580 // calculating addresses, it doesn't need to be widened. Create scalar steps 2581 // that can be used by instructions we will later scalarize. Note that the 2582 // addition of the scalar steps will not increase the number of instructions 2583 // in the loop in the common case prior to InstCombine. We will be trading 2584 // one vector extract for each scalar step. 2585 if (NeedsScalarIV) 2586 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2587 } 2588 2589 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2590 Instruction::BinaryOps BinOp) { 2591 // Create and check the types. 2592 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2593 int VLen = Val->getType()->getVectorNumElements(); 2594 2595 Type *STy = Val->getType()->getScalarType(); 2596 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2597 "Induction Step must be an integer or FP"); 2598 assert(Step->getType() == STy && "Step has wrong type"); 2599 2600 SmallVector<Constant *, 8> Indices; 2601 2602 if (STy->isIntegerTy()) { 2603 // Create a vector of consecutive numbers from zero to VF. 2604 for (int i = 0; i < VLen; ++i) 2605 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2606 2607 // Add the consecutive indices to the vector value. 2608 Constant *Cv = ConstantVector::get(Indices); 2609 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2610 Step = Builder.CreateVectorSplat(VLen, Step); 2611 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2612 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2613 // which can be found from the original scalar operations. 2614 Step = Builder.CreateMul(Cv, Step); 2615 return Builder.CreateAdd(Val, Step, "induction"); 2616 } 2617 2618 // Floating point induction. 2619 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2620 "Binary Opcode should be specified for FP induction"); 2621 // Create a vector of consecutive numbers from zero to VF. 2622 for (int i = 0; i < VLen; ++i) 2623 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2624 2625 // Add the consecutive indices to the vector value. 2626 Constant *Cv = ConstantVector::get(Indices); 2627 2628 Step = Builder.CreateVectorSplat(VLen, Step); 2629 2630 // Floating point operations had to be 'fast' to enable the induction. 2631 FastMathFlags Flags; 2632 Flags.setFast(); 2633 2634 Value *MulOp = Builder.CreateFMul(Cv, Step); 2635 if (isa<Instruction>(MulOp)) 2636 // Have to check, MulOp may be a constant 2637 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2638 2639 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2640 if (isa<Instruction>(BOp)) 2641 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2642 return BOp; 2643 } 2644 2645 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2646 Value *EntryVal, 2647 const InductionDescriptor &ID) { 2648 // We shouldn't have to build scalar steps if we aren't vectorizing. 2649 assert(VF > 1 && "VF should be greater than one"); 2650 2651 // Get the value type and ensure it and the step have the same integer type. 2652 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2653 assert(ScalarIVTy == Step->getType() && 2654 "Val and Step should have the same type"); 2655 2656 // We build scalar steps for both integer and floating-point induction 2657 // variables. Here, we determine the kind of arithmetic we will perform. 2658 Instruction::BinaryOps AddOp; 2659 Instruction::BinaryOps MulOp; 2660 if (ScalarIVTy->isIntegerTy()) { 2661 AddOp = Instruction::Add; 2662 MulOp = Instruction::Mul; 2663 } else { 2664 AddOp = ID.getInductionOpcode(); 2665 MulOp = Instruction::FMul; 2666 } 2667 2668 // Determine the number of scalars we need to generate for each unroll 2669 // iteration. If EntryVal is uniform, we only need to generate the first 2670 // lane. Otherwise, we generate all VF values. 2671 unsigned Lanes = 2672 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2673 : VF; 2674 // Compute the scalar steps and save the results in VectorLoopValueMap. 2675 for (unsigned Part = 0; Part < UF; ++Part) { 2676 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2677 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2678 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2679 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2680 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2681 recordVectorLoopValueForInductionCast(ID, Add, Part, Lane); 2682 } 2683 } 2684 } 2685 2686 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2687 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2688 ValueToValueMap(); 2689 2690 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2691 if (Stride == 1 || Stride == -1) 2692 return Stride; 2693 return 0; 2694 } 2695 2696 bool LoopVectorizationLegality::isUniform(Value *V) { 2697 return LAI->isUniform(V); 2698 } 2699 2700 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2701 assert(V != Induction && "The new induction variable should not be used."); 2702 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2703 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2704 2705 // If we have a stride that is replaced by one, do it here. 2706 if (Legal->hasStride(V)) 2707 V = ConstantInt::get(V->getType(), 1); 2708 2709 // If we have a vector mapped to this value, return it. 2710 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2711 return VectorLoopValueMap.getVectorValue(V, Part); 2712 2713 // If the value has not been vectorized, check if it has been scalarized 2714 // instead. If it has been scalarized, and we actually need the value in 2715 // vector form, we will construct the vector values on demand. 2716 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2717 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2718 2719 // If we've scalarized a value, that value should be an instruction. 2720 auto *I = cast<Instruction>(V); 2721 2722 // If we aren't vectorizing, we can just copy the scalar map values over to 2723 // the vector map. 2724 if (VF == 1) { 2725 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2726 return ScalarValue; 2727 } 2728 2729 // Get the last scalar instruction we generated for V and Part. If the value 2730 // is known to be uniform after vectorization, this corresponds to lane zero 2731 // of the Part unroll iteration. Otherwise, the last instruction is the one 2732 // we created for the last vector lane of the Part unroll iteration. 2733 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2734 auto *LastInst = cast<Instruction>( 2735 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2736 2737 // Set the insert point after the last scalarized instruction. This ensures 2738 // the insertelement sequence will directly follow the scalar definitions. 2739 auto OldIP = Builder.saveIP(); 2740 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2741 Builder.SetInsertPoint(&*NewIP); 2742 2743 // However, if we are vectorizing, we need to construct the vector values. 2744 // If the value is known to be uniform after vectorization, we can just 2745 // broadcast the scalar value corresponding to lane zero for each unroll 2746 // iteration. Otherwise, we construct the vector values using insertelement 2747 // instructions. Since the resulting vectors are stored in 2748 // VectorLoopValueMap, we will only generate the insertelements once. 2749 Value *VectorValue = nullptr; 2750 if (Cost->isUniformAfterVectorization(I, VF)) { 2751 VectorValue = getBroadcastInstrs(ScalarValue); 2752 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2753 } else { 2754 // Initialize packing with insertelements to start from undef. 2755 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2756 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2757 for (unsigned Lane = 0; Lane < VF; ++Lane) 2758 packScalarIntoVectorValue(V, {Part, Lane}); 2759 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2760 } 2761 Builder.restoreIP(OldIP); 2762 return VectorValue; 2763 } 2764 2765 // If this scalar is unknown, assume that it is a constant or that it is 2766 // loop invariant. Broadcast V and save the value for future uses. 2767 Value *B = getBroadcastInstrs(V); 2768 VectorLoopValueMap.setVectorValue(V, Part, B); 2769 return B; 2770 } 2771 2772 Value * 2773 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2774 const VPIteration &Instance) { 2775 // If the value is not an instruction contained in the loop, it should 2776 // already be scalar. 2777 if (OrigLoop->isLoopInvariant(V)) 2778 return V; 2779 2780 assert(Instance.Lane > 0 2781 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2782 : true && "Uniform values only have lane zero"); 2783 2784 // If the value from the original loop has not been vectorized, it is 2785 // represented by UF x VF scalar values in the new loop. Return the requested 2786 // scalar value. 2787 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2788 return VectorLoopValueMap.getScalarValue(V, Instance); 2789 2790 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2791 // for the given unroll part. If this entry is not a vector type (i.e., the 2792 // vectorization factor is one), there is no need to generate an 2793 // extractelement instruction. 2794 auto *U = getOrCreateVectorValue(V, Instance.Part); 2795 if (!U->getType()->isVectorTy()) { 2796 assert(VF == 1 && "Value not scalarized has non-vector type"); 2797 return U; 2798 } 2799 2800 // Otherwise, the value from the original loop has been vectorized and is 2801 // represented by UF vector values. Extract and return the requested scalar 2802 // value from the appropriate vector lane. 2803 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2804 } 2805 2806 void InnerLoopVectorizer::packScalarIntoVectorValue( 2807 Value *V, const VPIteration &Instance) { 2808 assert(V != Induction && "The new induction variable should not be used."); 2809 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2810 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2811 2812 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2813 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2814 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2815 Builder.getInt32(Instance.Lane)); 2816 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2817 } 2818 2819 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2820 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2821 SmallVector<Constant *, 8> ShuffleMask; 2822 for (unsigned i = 0; i < VF; ++i) 2823 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2824 2825 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2826 ConstantVector::get(ShuffleMask), 2827 "reverse"); 2828 } 2829 2830 // Try to vectorize the interleave group that \p Instr belongs to. 2831 // 2832 // E.g. Translate following interleaved load group (factor = 3): 2833 // for (i = 0; i < N; i+=3) { 2834 // R = Pic[i]; // Member of index 0 2835 // G = Pic[i+1]; // Member of index 1 2836 // B = Pic[i+2]; // Member of index 2 2837 // ... // do something to R, G, B 2838 // } 2839 // To: 2840 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2841 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2842 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2843 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2844 // 2845 // Or translate following interleaved store group (factor = 3): 2846 // for (i = 0; i < N; i+=3) { 2847 // ... do something to R, G, B 2848 // Pic[i] = R; // Member of index 0 2849 // Pic[i+1] = G; // Member of index 1 2850 // Pic[i+2] = B; // Member of index 2 2851 // } 2852 // To: 2853 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2854 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2855 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2856 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2857 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2858 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2859 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2860 assert(Group && "Fail to get an interleaved access group."); 2861 2862 // Skip if current instruction is not the insert position. 2863 if (Instr != Group->getInsertPos()) 2864 return; 2865 2866 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2867 Value *Ptr = getPointerOperand(Instr); 2868 2869 // Prepare for the vector type of the interleaved load/store. 2870 Type *ScalarTy = getMemInstValueType(Instr); 2871 unsigned InterleaveFactor = Group->getFactor(); 2872 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2873 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2874 2875 // Prepare for the new pointers. 2876 setDebugLocFromInst(Builder, Ptr); 2877 SmallVector<Value *, 2> NewPtrs; 2878 unsigned Index = Group->getIndex(Instr); 2879 2880 // If the group is reverse, adjust the index to refer to the last vector lane 2881 // instead of the first. We adjust the index from the first vector lane, 2882 // rather than directly getting the pointer for lane VF - 1, because the 2883 // pointer operand of the interleaved access is supposed to be uniform. For 2884 // uniform instructions, we're only required to generate a value for the 2885 // first vector lane in each unroll iteration. 2886 if (Group->isReverse()) 2887 Index += (VF - 1) * Group->getFactor(); 2888 2889 for (unsigned Part = 0; Part < UF; Part++) { 2890 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2891 2892 // Notice current instruction could be any index. Need to adjust the address 2893 // to the member of index 0. 2894 // 2895 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2896 // b = A[i]; // Member of index 0 2897 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2898 // 2899 // E.g. A[i+1] = a; // Member of index 1 2900 // A[i] = b; // Member of index 0 2901 // A[i+2] = c; // Member of index 2 (Current instruction) 2902 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2903 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2904 2905 // Cast to the vector pointer type. 2906 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2907 } 2908 2909 setDebugLocFromInst(Builder, Instr); 2910 Value *UndefVec = UndefValue::get(VecTy); 2911 2912 // Vectorize the interleaved load group. 2913 if (isa<LoadInst>(Instr)) { 2914 // For each unroll part, create a wide load for the group. 2915 SmallVector<Value *, 2> NewLoads; 2916 for (unsigned Part = 0; Part < UF; Part++) { 2917 auto *NewLoad = Builder.CreateAlignedLoad( 2918 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2919 Group->addMetadata(NewLoad); 2920 NewLoads.push_back(NewLoad); 2921 } 2922 2923 // For each member in the group, shuffle out the appropriate data from the 2924 // wide loads. 2925 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2926 Instruction *Member = Group->getMember(I); 2927 2928 // Skip the gaps in the group. 2929 if (!Member) 2930 continue; 2931 2932 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2933 for (unsigned Part = 0; Part < UF; Part++) { 2934 Value *StridedVec = Builder.CreateShuffleVector( 2935 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2936 2937 // If this member has different type, cast the result type. 2938 if (Member->getType() != ScalarTy) { 2939 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2940 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2941 } 2942 2943 if (Group->isReverse()) 2944 StridedVec = reverseVector(StridedVec); 2945 2946 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2947 } 2948 } 2949 return; 2950 } 2951 2952 // The sub vector type for current instruction. 2953 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2954 2955 // Vectorize the interleaved store group. 2956 for (unsigned Part = 0; Part < UF; Part++) { 2957 // Collect the stored vector from each member. 2958 SmallVector<Value *, 4> StoredVecs; 2959 for (unsigned i = 0; i < InterleaveFactor; i++) { 2960 // Interleaved store group doesn't allow a gap, so each index has a member 2961 Instruction *Member = Group->getMember(i); 2962 assert(Member && "Fail to get a member from an interleaved store group"); 2963 2964 Value *StoredVec = getOrCreateVectorValue( 2965 cast<StoreInst>(Member)->getValueOperand(), Part); 2966 if (Group->isReverse()) 2967 StoredVec = reverseVector(StoredVec); 2968 2969 // If this member has different type, cast it to a unified type. 2970 2971 if (StoredVec->getType() != SubVT) 2972 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2973 2974 StoredVecs.push_back(StoredVec); 2975 } 2976 2977 // Concatenate all vectors into a wide vector. 2978 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2979 2980 // Interleave the elements in the wide vector. 2981 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2982 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2983 "interleaved.vec"); 2984 2985 Instruction *NewStoreInstr = 2986 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2987 2988 Group->addMetadata(NewStoreInstr); 2989 } 2990 } 2991 2992 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2993 VectorParts *BlockInMask) { 2994 // Attempt to issue a wide load. 2995 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2996 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2997 2998 assert((LI || SI) && "Invalid Load/Store instruction"); 2999 3000 LoopVectorizationCostModel::InstWidening Decision = 3001 Cost->getWideningDecision(Instr, VF); 3002 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 3003 "CM decision should be taken at this point"); 3004 if (Decision == LoopVectorizationCostModel::CM_Interleave) 3005 return vectorizeInterleaveGroup(Instr); 3006 3007 Type *ScalarDataTy = getMemInstValueType(Instr); 3008 Type *DataTy = VectorType::get(ScalarDataTy, VF); 3009 Value *Ptr = getPointerOperand(Instr); 3010 unsigned Alignment = getMemInstAlignment(Instr); 3011 // An alignment of 0 means target abi alignment. We need to use the scalar's 3012 // target abi alignment in such a case. 3013 const DataLayout &DL = Instr->getModule()->getDataLayout(); 3014 if (!Alignment) 3015 Alignment = DL.getABITypeAlignment(ScalarDataTy); 3016 unsigned AddressSpace = getMemInstAddressSpace(Instr); 3017 3018 // Determine if the pointer operand of the access is either consecutive or 3019 // reverse consecutive. 3020 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 3021 bool ConsecutiveStride = 3022 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 3023 bool CreateGatherScatter = 3024 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 3025 3026 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 3027 // gather/scatter. Otherwise Decision should have been to Scalarize. 3028 assert((ConsecutiveStride || CreateGatherScatter) && 3029 "The instruction should be scalarized"); 3030 3031 // Handle consecutive loads/stores. 3032 if (ConsecutiveStride) 3033 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 3034 3035 VectorParts Mask; 3036 bool isMaskRequired = BlockInMask; 3037 if (isMaskRequired) 3038 Mask = *BlockInMask; 3039 3040 // Handle Stores: 3041 if (SI) { 3042 assert(!Legal->isUniform(SI->getPointerOperand()) && 3043 "We do not allow storing to uniform addresses"); 3044 setDebugLocFromInst(Builder, SI); 3045 3046 for (unsigned Part = 0; Part < UF; ++Part) { 3047 Instruction *NewSI = nullptr; 3048 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 3049 if (CreateGatherScatter) { 3050 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3051 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3052 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 3053 MaskPart); 3054 } else { 3055 // Calculate the pointer for the specific unroll-part. 3056 Value *PartPtr = 3057 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3058 3059 if (Reverse) { 3060 // If we store to reverse consecutive memory locations, then we need 3061 // to reverse the order of elements in the stored value. 3062 StoredVal = reverseVector(StoredVal); 3063 // We don't want to update the value in the map as it might be used in 3064 // another expression. So don't call resetVectorValue(StoredVal). 3065 3066 // If the address is consecutive but reversed, then the 3067 // wide store needs to start at the last vector element. 3068 PartPtr = 3069 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3070 PartPtr = 3071 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3072 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3073 Mask[Part] = reverseVector(Mask[Part]); 3074 } 3075 3076 Value *VecPtr = 3077 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3078 3079 if (isMaskRequired) 3080 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3081 Mask[Part]); 3082 else 3083 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3084 } 3085 addMetadata(NewSI, SI); 3086 } 3087 return; 3088 } 3089 3090 // Handle loads. 3091 assert(LI && "Must have a load instruction"); 3092 setDebugLocFromInst(Builder, LI); 3093 for (unsigned Part = 0; Part < UF; ++Part) { 3094 Value *NewLI; 3095 if (CreateGatherScatter) { 3096 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3097 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3098 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 3099 nullptr, "wide.masked.gather"); 3100 addMetadata(NewLI, LI); 3101 } else { 3102 // Calculate the pointer for the specific unroll-part. 3103 Value *PartPtr = 3104 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3105 3106 if (Reverse) { 3107 // If the address is consecutive but reversed, then the 3108 // wide load needs to start at the last vector element. 3109 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3110 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3111 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3112 Mask[Part] = reverseVector(Mask[Part]); 3113 } 3114 3115 Value *VecPtr = 3116 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3117 if (isMaskRequired) 3118 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3119 UndefValue::get(DataTy), 3120 "wide.masked.load"); 3121 else 3122 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3123 3124 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3125 addMetadata(NewLI, LI); 3126 if (Reverse) 3127 NewLI = reverseVector(NewLI); 3128 } 3129 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 3130 } 3131 } 3132 3133 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3134 const VPIteration &Instance, 3135 bool IfPredicateInstr) { 3136 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3137 3138 setDebugLocFromInst(Builder, Instr); 3139 3140 // Does this instruction return a value ? 3141 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3142 3143 Instruction *Cloned = Instr->clone(); 3144 if (!IsVoidRetTy) 3145 Cloned->setName(Instr->getName() + ".cloned"); 3146 3147 // Replace the operands of the cloned instructions with their scalar 3148 // equivalents in the new loop. 3149 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3150 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 3151 Cloned->setOperand(op, NewOp); 3152 } 3153 addNewMetadata(Cloned, Instr); 3154 3155 // Place the cloned scalar in the new loop. 3156 Builder.Insert(Cloned); 3157 3158 // Add the cloned scalar to the scalar map entry. 3159 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 3160 3161 // If we just cloned a new assumption, add it the assumption cache. 3162 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3163 if (II->getIntrinsicID() == Intrinsic::assume) 3164 AC->registerAssumption(II); 3165 3166 // End if-block. 3167 if (IfPredicateInstr) 3168 PredicatedInstructions.push_back(Cloned); 3169 } 3170 3171 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3172 Value *End, Value *Step, 3173 Instruction *DL) { 3174 BasicBlock *Header = L->getHeader(); 3175 BasicBlock *Latch = L->getLoopLatch(); 3176 // As we're just creating this loop, it's possible no latch exists 3177 // yet. If so, use the header as this will be a single block loop. 3178 if (!Latch) 3179 Latch = Header; 3180 3181 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3182 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3183 setDebugLocFromInst(Builder, OldInst); 3184 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3185 3186 Builder.SetInsertPoint(Latch->getTerminator()); 3187 setDebugLocFromInst(Builder, OldInst); 3188 3189 // Create i+1 and fill the PHINode. 3190 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3191 Induction->addIncoming(Start, L->getLoopPreheader()); 3192 Induction->addIncoming(Next, Latch); 3193 // Create the compare. 3194 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3195 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3196 3197 // Now we have two terminators. Remove the old one from the block. 3198 Latch->getTerminator()->eraseFromParent(); 3199 3200 return Induction; 3201 } 3202 3203 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3204 if (TripCount) 3205 return TripCount; 3206 3207 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3208 // Find the loop boundaries. 3209 ScalarEvolution *SE = PSE.getSE(); 3210 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3211 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3212 "Invalid loop count"); 3213 3214 Type *IdxTy = Legal->getWidestInductionType(); 3215 3216 // The exit count might have the type of i64 while the phi is i32. This can 3217 // happen if we have an induction variable that is sign extended before the 3218 // compare. The only way that we get a backedge taken count is that the 3219 // induction variable was signed and as such will not overflow. In such a case 3220 // truncation is legal. 3221 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3222 IdxTy->getPrimitiveSizeInBits()) 3223 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3224 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3225 3226 // Get the total trip count from the count by adding 1. 3227 const SCEV *ExitCount = SE->getAddExpr( 3228 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3229 3230 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3231 3232 // Expand the trip count and place the new instructions in the preheader. 3233 // Notice that the pre-header does not change, only the loop body. 3234 SCEVExpander Exp(*SE, DL, "induction"); 3235 3236 // Count holds the overall loop count (N). 3237 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3238 L->getLoopPreheader()->getTerminator()); 3239 3240 if (TripCount->getType()->isPointerTy()) 3241 TripCount = 3242 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3243 L->getLoopPreheader()->getTerminator()); 3244 3245 return TripCount; 3246 } 3247 3248 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3249 if (VectorTripCount) 3250 return VectorTripCount; 3251 3252 Value *TC = getOrCreateTripCount(L); 3253 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3254 3255 // Now we need to generate the expression for the part of the loop that the 3256 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3257 // iterations are not required for correctness, or N - Step, otherwise. Step 3258 // is equal to the vectorization factor (number of SIMD elements) times the 3259 // unroll factor (number of SIMD instructions). 3260 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3261 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3262 3263 // If there is a non-reversed interleaved group that may speculatively access 3264 // memory out-of-bounds, we need to ensure that there will be at least one 3265 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3266 // the trip count, we set the remainder to be equal to the step. If the step 3267 // does not evenly divide the trip count, no adjustment is necessary since 3268 // there will already be scalar iterations. Note that the minimum iterations 3269 // check ensures that N >= Step. 3270 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3271 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3272 R = Builder.CreateSelect(IsZero, Step, R); 3273 } 3274 3275 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3276 3277 return VectorTripCount; 3278 } 3279 3280 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3281 const DataLayout &DL) { 3282 // Verify that V is a vector type with same number of elements as DstVTy. 3283 unsigned VF = DstVTy->getNumElements(); 3284 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 3285 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3286 Type *SrcElemTy = SrcVecTy->getElementType(); 3287 Type *DstElemTy = DstVTy->getElementType(); 3288 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3289 "Vector elements must have same size"); 3290 3291 // Do a direct cast if element types are castable. 3292 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3293 return Builder.CreateBitOrPointerCast(V, DstVTy); 3294 } 3295 // V cannot be directly casted to desired vector type. 3296 // May happen when V is a floating point vector but DstVTy is a vector of 3297 // pointers or vice-versa. Handle this using a two-step bitcast using an 3298 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3299 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3300 "Only one type should be a pointer type"); 3301 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3302 "Only one type should be a floating point type"); 3303 Type *IntTy = 3304 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3305 VectorType *VecIntTy = VectorType::get(IntTy, VF); 3306 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3307 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 3308 } 3309 3310 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3311 BasicBlock *Bypass) { 3312 Value *Count = getOrCreateTripCount(L); 3313 BasicBlock *BB = L->getLoopPreheader(); 3314 IRBuilder<> Builder(BB->getTerminator()); 3315 3316 // Generate code to check if the loop's trip count is less than VF * UF, or 3317 // equal to it in case a scalar epilogue is required; this implies that the 3318 // vector trip count is zero. This check also covers the case where adding one 3319 // to the backedge-taken count overflowed leading to an incorrect trip count 3320 // of zero. In this case we will also jump to the scalar loop. 3321 auto P = Legal->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3322 : ICmpInst::ICMP_ULT; 3323 Value *CheckMinIters = Builder.CreateICmp( 3324 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3325 3326 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3327 // Update dominator tree immediately if the generated block is a 3328 // LoopBypassBlock because SCEV expansions to generate loop bypass 3329 // checks may query it before the current function is finished. 3330 DT->addNewBlock(NewBB, BB); 3331 if (L->getParentLoop()) 3332 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3333 ReplaceInstWithInst(BB->getTerminator(), 3334 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3335 LoopBypassBlocks.push_back(BB); 3336 } 3337 3338 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3339 BasicBlock *BB = L->getLoopPreheader(); 3340 3341 // Generate the code to check that the SCEV assumptions that we made. 3342 // We want the new basic block to start at the first instruction in a 3343 // sequence of instructions that form a check. 3344 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3345 "scev.check"); 3346 Value *SCEVCheck = 3347 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3348 3349 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3350 if (C->isZero()) 3351 return; 3352 3353 // Create a new block containing the stride check. 3354 BB->setName("vector.scevcheck"); 3355 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3356 // Update dominator tree immediately if the generated block is a 3357 // LoopBypassBlock because SCEV expansions to generate loop bypass 3358 // checks may query it before the current function is finished. 3359 DT->addNewBlock(NewBB, BB); 3360 if (L->getParentLoop()) 3361 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3362 ReplaceInstWithInst(BB->getTerminator(), 3363 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3364 LoopBypassBlocks.push_back(BB); 3365 AddedSafetyChecks = true; 3366 } 3367 3368 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3369 BasicBlock *BB = L->getLoopPreheader(); 3370 3371 // Generate the code that checks in runtime if arrays overlap. We put the 3372 // checks into a separate block to make the more common case of few elements 3373 // faster. 3374 Instruction *FirstCheckInst; 3375 Instruction *MemRuntimeCheck; 3376 std::tie(FirstCheckInst, MemRuntimeCheck) = 3377 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3378 if (!MemRuntimeCheck) 3379 return; 3380 3381 // Create a new block containing the memory check. 3382 BB->setName("vector.memcheck"); 3383 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3384 // Update dominator tree immediately if the generated block is a 3385 // LoopBypassBlock because SCEV expansions to generate loop bypass 3386 // checks may query it before the current function is finished. 3387 DT->addNewBlock(NewBB, BB); 3388 if (L->getParentLoop()) 3389 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3390 ReplaceInstWithInst(BB->getTerminator(), 3391 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3392 LoopBypassBlocks.push_back(BB); 3393 AddedSafetyChecks = true; 3394 3395 // We currently don't use LoopVersioning for the actual loop cloning but we 3396 // still use it to add the noalias metadata. 3397 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3398 PSE.getSE()); 3399 LVer->prepareNoAliasMetadata(); 3400 } 3401 3402 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3403 /* 3404 In this function we generate a new loop. The new loop will contain 3405 the vectorized instructions while the old loop will continue to run the 3406 scalar remainder. 3407 3408 [ ] <-- loop iteration number check. 3409 / | 3410 / v 3411 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3412 | / | 3413 | / v 3414 || [ ] <-- vector pre header. 3415 |/ | 3416 | v 3417 | [ ] \ 3418 | [ ]_| <-- vector loop. 3419 | | 3420 | v 3421 | -[ ] <--- middle-block. 3422 | / | 3423 | / v 3424 -|- >[ ] <--- new preheader. 3425 | | 3426 | v 3427 | [ ] \ 3428 | [ ]_| <-- old scalar loop to handle remainder. 3429 \ | 3430 \ v 3431 >[ ] <-- exit block. 3432 ... 3433 */ 3434 3435 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3436 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3437 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3438 assert(VectorPH && "Invalid loop structure"); 3439 assert(ExitBlock && "Must have an exit block"); 3440 3441 // Some loops have a single integer induction variable, while other loops 3442 // don't. One example is c++ iterators that often have multiple pointer 3443 // induction variables. In the code below we also support a case where we 3444 // don't have a single induction variable. 3445 // 3446 // We try to obtain an induction variable from the original loop as hard 3447 // as possible. However if we don't find one that: 3448 // - is an integer 3449 // - counts from zero, stepping by one 3450 // - is the size of the widest induction variable type 3451 // then we create a new one. 3452 OldInduction = Legal->getPrimaryInduction(); 3453 Type *IdxTy = Legal->getWidestInductionType(); 3454 3455 // Split the single block loop into the two loop structure described above. 3456 BasicBlock *VecBody = 3457 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3458 BasicBlock *MiddleBlock = 3459 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3460 BasicBlock *ScalarPH = 3461 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3462 3463 // Create and register the new vector loop. 3464 Loop *Lp = LI->AllocateLoop(); 3465 Loop *ParentLoop = OrigLoop->getParentLoop(); 3466 3467 // Insert the new loop into the loop nest and register the new basic blocks 3468 // before calling any utilities such as SCEV that require valid LoopInfo. 3469 if (ParentLoop) { 3470 ParentLoop->addChildLoop(Lp); 3471 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3472 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3473 } else { 3474 LI->addTopLevelLoop(Lp); 3475 } 3476 Lp->addBasicBlockToLoop(VecBody, *LI); 3477 3478 // Find the loop boundaries. 3479 Value *Count = getOrCreateTripCount(Lp); 3480 3481 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3482 3483 // Now, compare the new count to zero. If it is zero skip the vector loop and 3484 // jump to the scalar loop. This check also covers the case where the 3485 // backedge-taken count is uint##_max: adding one to it will overflow leading 3486 // to an incorrect trip count of zero. In this (rare) case we will also jump 3487 // to the scalar loop. 3488 emitMinimumIterationCountCheck(Lp, ScalarPH); 3489 3490 // Generate the code to check any assumptions that we've made for SCEV 3491 // expressions. 3492 emitSCEVChecks(Lp, ScalarPH); 3493 3494 // Generate the code that checks in runtime if arrays overlap. We put the 3495 // checks into a separate block to make the more common case of few elements 3496 // faster. 3497 emitMemRuntimeChecks(Lp, ScalarPH); 3498 3499 // Generate the induction variable. 3500 // The loop step is equal to the vectorization factor (num of SIMD elements) 3501 // times the unroll factor (num of SIMD instructions). 3502 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3503 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3504 Induction = 3505 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3506 getDebugLocFromInstOrOperands(OldInduction)); 3507 3508 // We are going to resume the execution of the scalar loop. 3509 // Go over all of the induction variables that we found and fix the 3510 // PHIs that are left in the scalar version of the loop. 3511 // The starting values of PHI nodes depend on the counter of the last 3512 // iteration in the vectorized loop. 3513 // If we come from a bypass edge then we need to start from the original 3514 // start value. 3515 3516 // This variable saves the new starting index for the scalar loop. It is used 3517 // to test if there are any tail iterations left once the vector loop has 3518 // completed. 3519 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3520 for (auto &InductionEntry : *List) { 3521 PHINode *OrigPhi = InductionEntry.first; 3522 InductionDescriptor II = InductionEntry.second; 3523 3524 // Create phi nodes to merge from the backedge-taken check block. 3525 PHINode *BCResumeVal = PHINode::Create( 3526 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3527 Value *&EndValue = IVEndValues[OrigPhi]; 3528 if (OrigPhi == OldInduction) { 3529 // We know what the end value is. 3530 EndValue = CountRoundDown; 3531 } else { 3532 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3533 Type *StepType = II.getStep()->getType(); 3534 Instruction::CastOps CastOp = 3535 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3536 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3537 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3538 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3539 EndValue->setName("ind.end"); 3540 } 3541 3542 // The new PHI merges the original incoming value, in case of a bypass, 3543 // or the value at the end of the vectorized loop. 3544 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3545 3546 // Fix the scalar body counter (PHI node). 3547 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3548 3549 // The old induction's phi node in the scalar body needs the truncated 3550 // value. 3551 for (BasicBlock *BB : LoopBypassBlocks) 3552 BCResumeVal->addIncoming(II.getStartValue(), BB); 3553 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3554 } 3555 3556 // Add a check in the middle block to see if we have completed 3557 // all of the iterations in the first vector loop. 3558 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3559 Value *CmpN = 3560 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3561 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3562 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3563 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3564 3565 // Get ready to start creating new instructions into the vectorized body. 3566 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3567 3568 // Save the state. 3569 LoopVectorPreHeader = Lp->getLoopPreheader(); 3570 LoopScalarPreHeader = ScalarPH; 3571 LoopMiddleBlock = MiddleBlock; 3572 LoopExitBlock = ExitBlock; 3573 LoopVectorBody = VecBody; 3574 LoopScalarBody = OldBasicBlock; 3575 3576 // Keep all loop hints from the original loop on the vector loop (we'll 3577 // replace the vectorizer-specific hints below). 3578 if (MDNode *LID = OrigLoop->getLoopID()) 3579 Lp->setLoopID(LID); 3580 3581 LoopVectorizeHints Hints(Lp, true, *ORE); 3582 Hints.setAlreadyVectorized(); 3583 3584 return LoopVectorPreHeader; 3585 } 3586 3587 // Fix up external users of the induction variable. At this point, we are 3588 // in LCSSA form, with all external PHIs that use the IV having one input value, 3589 // coming from the remainder loop. We need those PHIs to also have a correct 3590 // value for the IV when arriving directly from the middle block. 3591 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3592 const InductionDescriptor &II, 3593 Value *CountRoundDown, Value *EndValue, 3594 BasicBlock *MiddleBlock) { 3595 // There are two kinds of external IV usages - those that use the value 3596 // computed in the last iteration (the PHI) and those that use the penultimate 3597 // value (the value that feeds into the phi from the loop latch). 3598 // We allow both, but they, obviously, have different values. 3599 3600 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3601 3602 DenseMap<Value *, Value *> MissingVals; 3603 3604 // An external user of the last iteration's value should see the value that 3605 // the remainder loop uses to initialize its own IV. 3606 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3607 for (User *U : PostInc->users()) { 3608 Instruction *UI = cast<Instruction>(U); 3609 if (!OrigLoop->contains(UI)) { 3610 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3611 MissingVals[UI] = EndValue; 3612 } 3613 } 3614 3615 // An external user of the penultimate value need to see EndValue - Step. 3616 // The simplest way to get this is to recompute it from the constituent SCEVs, 3617 // that is Start + (Step * (CRD - 1)). 3618 for (User *U : OrigPhi->users()) { 3619 auto *UI = cast<Instruction>(U); 3620 if (!OrigLoop->contains(UI)) { 3621 const DataLayout &DL = 3622 OrigLoop->getHeader()->getModule()->getDataLayout(); 3623 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3624 3625 IRBuilder<> B(MiddleBlock->getTerminator()); 3626 Value *CountMinusOne = B.CreateSub( 3627 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3628 Value *CMO = 3629 !II.getStep()->getType()->isIntegerTy() 3630 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3631 II.getStep()->getType()) 3632 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3633 CMO->setName("cast.cmo"); 3634 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3635 Escape->setName("ind.escape"); 3636 MissingVals[UI] = Escape; 3637 } 3638 } 3639 3640 for (auto &I : MissingVals) { 3641 PHINode *PHI = cast<PHINode>(I.first); 3642 // One corner case we have to handle is two IVs "chasing" each-other, 3643 // that is %IV2 = phi [...], [ %IV1, %latch ] 3644 // In this case, if IV1 has an external use, we need to avoid adding both 3645 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3646 // don't already have an incoming value for the middle block. 3647 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3648 PHI->addIncoming(I.second, MiddleBlock); 3649 } 3650 } 3651 3652 namespace { 3653 3654 struct CSEDenseMapInfo { 3655 static bool canHandle(const Instruction *I) { 3656 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3657 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3658 } 3659 3660 static inline Instruction *getEmptyKey() { 3661 return DenseMapInfo<Instruction *>::getEmptyKey(); 3662 } 3663 3664 static inline Instruction *getTombstoneKey() { 3665 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3666 } 3667 3668 static unsigned getHashValue(const Instruction *I) { 3669 assert(canHandle(I) && "Unknown instruction!"); 3670 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3671 I->value_op_end())); 3672 } 3673 3674 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3675 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3676 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3677 return LHS == RHS; 3678 return LHS->isIdenticalTo(RHS); 3679 } 3680 }; 3681 3682 } // end anonymous namespace 3683 3684 ///\brief Perform cse of induction variable instructions. 3685 static void cse(BasicBlock *BB) { 3686 // Perform simple cse. 3687 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3688 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3689 Instruction *In = &*I++; 3690 3691 if (!CSEDenseMapInfo::canHandle(In)) 3692 continue; 3693 3694 // Check if we can replace this instruction with any of the 3695 // visited instructions. 3696 if (Instruction *V = CSEMap.lookup(In)) { 3697 In->replaceAllUsesWith(V); 3698 In->eraseFromParent(); 3699 continue; 3700 } 3701 3702 CSEMap[In] = In; 3703 } 3704 } 3705 3706 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3707 /// convenience wrapper for the type-based getScalarizationOverhead API. 3708 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3709 const TargetTransformInfo &TTI) { 3710 if (VF == 1) 3711 return 0; 3712 3713 unsigned Cost = 0; 3714 Type *RetTy = ToVectorTy(I->getType(), VF); 3715 if (!RetTy->isVoidTy() && 3716 (!isa<LoadInst>(I) || 3717 !TTI.supportsEfficientVectorElementLoadStore())) 3718 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3719 3720 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3721 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3722 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3723 } 3724 else if (!isa<StoreInst>(I) || 3725 !TTI.supportsEfficientVectorElementLoadStore()) { 3726 SmallVector<const Value *, 4> Operands(I->operand_values()); 3727 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3728 } 3729 3730 return Cost; 3731 } 3732 3733 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3734 // Return the cost of the instruction, including scalarization overhead if it's 3735 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3736 // i.e. either vector version isn't available, or is too expensive. 3737 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3738 const TargetTransformInfo &TTI, 3739 const TargetLibraryInfo *TLI, 3740 bool &NeedToScalarize) { 3741 Function *F = CI->getCalledFunction(); 3742 StringRef FnName = CI->getCalledFunction()->getName(); 3743 Type *ScalarRetTy = CI->getType(); 3744 SmallVector<Type *, 4> Tys, ScalarTys; 3745 for (auto &ArgOp : CI->arg_operands()) 3746 ScalarTys.push_back(ArgOp->getType()); 3747 3748 // Estimate cost of scalarized vector call. The source operands are assumed 3749 // to be vectors, so we need to extract individual elements from there, 3750 // execute VF scalar calls, and then gather the result into the vector return 3751 // value. 3752 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3753 if (VF == 1) 3754 return ScalarCallCost; 3755 3756 // Compute corresponding vector type for return value and arguments. 3757 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3758 for (Type *ScalarTy : ScalarTys) 3759 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3760 3761 // Compute costs of unpacking argument values for the scalar calls and 3762 // packing the return values to a vector. 3763 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3764 3765 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3766 3767 // If we can't emit a vector call for this function, then the currently found 3768 // cost is the cost we need to return. 3769 NeedToScalarize = true; 3770 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3771 return Cost; 3772 3773 // If the corresponding vector cost is cheaper, return its cost. 3774 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3775 if (VectorCallCost < Cost) { 3776 NeedToScalarize = false; 3777 return VectorCallCost; 3778 } 3779 return Cost; 3780 } 3781 3782 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3783 // factor VF. Return the cost of the instruction, including scalarization 3784 // overhead if it's needed. 3785 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3786 const TargetTransformInfo &TTI, 3787 const TargetLibraryInfo *TLI) { 3788 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3789 assert(ID && "Expected intrinsic call!"); 3790 3791 FastMathFlags FMF; 3792 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3793 FMF = FPMO->getFastMathFlags(); 3794 3795 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3796 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3797 } 3798 3799 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3800 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3801 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3802 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3803 } 3804 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3805 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3806 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3807 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3808 } 3809 3810 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3811 // For every instruction `I` in MinBWs, truncate the operands, create a 3812 // truncated version of `I` and reextend its result. InstCombine runs 3813 // later and will remove any ext/trunc pairs. 3814 SmallPtrSet<Value *, 4> Erased; 3815 for (const auto &KV : Cost->getMinimalBitwidths()) { 3816 // If the value wasn't vectorized, we must maintain the original scalar 3817 // type. The absence of the value from VectorLoopValueMap indicates that it 3818 // wasn't vectorized. 3819 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3820 continue; 3821 for (unsigned Part = 0; Part < UF; ++Part) { 3822 Value *I = getOrCreateVectorValue(KV.first, Part); 3823 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3824 continue; 3825 Type *OriginalTy = I->getType(); 3826 Type *ScalarTruncatedTy = 3827 IntegerType::get(OriginalTy->getContext(), KV.second); 3828 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3829 OriginalTy->getVectorNumElements()); 3830 if (TruncatedTy == OriginalTy) 3831 continue; 3832 3833 IRBuilder<> B(cast<Instruction>(I)); 3834 auto ShrinkOperand = [&](Value *V) -> Value * { 3835 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3836 if (ZI->getSrcTy() == TruncatedTy) 3837 return ZI->getOperand(0); 3838 return B.CreateZExtOrTrunc(V, TruncatedTy); 3839 }; 3840 3841 // The actual instruction modification depends on the instruction type, 3842 // unfortunately. 3843 Value *NewI = nullptr; 3844 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3845 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3846 ShrinkOperand(BO->getOperand(1))); 3847 3848 // Any wrapping introduced by shrinking this operation shouldn't be 3849 // considered undefined behavior. So, we can't unconditionally copy 3850 // arithmetic wrapping flags to NewI. 3851 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3852 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3853 NewI = 3854 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3855 ShrinkOperand(CI->getOperand(1))); 3856 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3857 NewI = B.CreateSelect(SI->getCondition(), 3858 ShrinkOperand(SI->getTrueValue()), 3859 ShrinkOperand(SI->getFalseValue())); 3860 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3861 switch (CI->getOpcode()) { 3862 default: 3863 llvm_unreachable("Unhandled cast!"); 3864 case Instruction::Trunc: 3865 NewI = ShrinkOperand(CI->getOperand(0)); 3866 break; 3867 case Instruction::SExt: 3868 NewI = B.CreateSExtOrTrunc( 3869 CI->getOperand(0), 3870 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3871 break; 3872 case Instruction::ZExt: 3873 NewI = B.CreateZExtOrTrunc( 3874 CI->getOperand(0), 3875 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3876 break; 3877 } 3878 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3879 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3880 auto *O0 = B.CreateZExtOrTrunc( 3881 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3882 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3883 auto *O1 = B.CreateZExtOrTrunc( 3884 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3885 3886 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3887 } else if (isa<LoadInst>(I)) { 3888 // Don't do anything with the operands, just extend the result. 3889 continue; 3890 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3891 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3892 auto *O0 = B.CreateZExtOrTrunc( 3893 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3894 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3895 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3896 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3897 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3898 auto *O0 = B.CreateZExtOrTrunc( 3899 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3900 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3901 } else { 3902 llvm_unreachable("Unhandled instruction type!"); 3903 } 3904 3905 // Lastly, extend the result. 3906 NewI->takeName(cast<Instruction>(I)); 3907 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3908 I->replaceAllUsesWith(Res); 3909 cast<Instruction>(I)->eraseFromParent(); 3910 Erased.insert(I); 3911 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3912 } 3913 } 3914 3915 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3916 for (const auto &KV : Cost->getMinimalBitwidths()) { 3917 // If the value wasn't vectorized, we must maintain the original scalar 3918 // type. The absence of the value from VectorLoopValueMap indicates that it 3919 // wasn't vectorized. 3920 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3921 continue; 3922 for (unsigned Part = 0; Part < UF; ++Part) { 3923 Value *I = getOrCreateVectorValue(KV.first, Part); 3924 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3925 if (Inst && Inst->use_empty()) { 3926 Value *NewI = Inst->getOperand(0); 3927 Inst->eraseFromParent(); 3928 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3929 } 3930 } 3931 } 3932 } 3933 3934 void InnerLoopVectorizer::fixVectorizedLoop() { 3935 // Insert truncates and extends for any truncated instructions as hints to 3936 // InstCombine. 3937 if (VF > 1) 3938 truncateToMinimalBitwidths(); 3939 3940 // At this point every instruction in the original loop is widened to a 3941 // vector form. Now we need to fix the recurrences in the loop. These PHI 3942 // nodes are currently empty because we did not want to introduce cycles. 3943 // This is the second stage of vectorizing recurrences. 3944 fixCrossIterationPHIs(); 3945 3946 // Update the dominator tree. 3947 // 3948 // FIXME: After creating the structure of the new loop, the dominator tree is 3949 // no longer up-to-date, and it remains that way until we update it 3950 // here. An out-of-date dominator tree is problematic for SCEV, 3951 // because SCEVExpander uses it to guide code generation. The 3952 // vectorizer use SCEVExpanders in several places. Instead, we should 3953 // keep the dominator tree up-to-date as we go. 3954 updateAnalysis(); 3955 3956 // Fix-up external users of the induction variables. 3957 for (auto &Entry : *Legal->getInductionVars()) 3958 fixupIVUsers(Entry.first, Entry.second, 3959 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3960 IVEndValues[Entry.first], LoopMiddleBlock); 3961 3962 fixLCSSAPHIs(); 3963 for (Instruction *PI : PredicatedInstructions) 3964 sinkScalarOperands(&*PI); 3965 3966 // Remove redundant induction instructions. 3967 cse(LoopVectorBody); 3968 } 3969 3970 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3971 // In order to support recurrences we need to be able to vectorize Phi nodes. 3972 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3973 // stage #2: We now need to fix the recurrences by adding incoming edges to 3974 // the currently empty PHI nodes. At this point every instruction in the 3975 // original loop is widened to a vector form so we can use them to construct 3976 // the incoming edges. 3977 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3978 // Handle first-order recurrences and reductions that need to be fixed. 3979 if (Legal->isFirstOrderRecurrence(&Phi)) 3980 fixFirstOrderRecurrence(&Phi); 3981 else if (Legal->isReductionVariable(&Phi)) 3982 fixReduction(&Phi); 3983 } 3984 } 3985 3986 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3987 // This is the second phase of vectorizing first-order recurrences. An 3988 // overview of the transformation is described below. Suppose we have the 3989 // following loop. 3990 // 3991 // for (int i = 0; i < n; ++i) 3992 // b[i] = a[i] - a[i - 1]; 3993 // 3994 // There is a first-order recurrence on "a". For this loop, the shorthand 3995 // scalar IR looks like: 3996 // 3997 // scalar.ph: 3998 // s_init = a[-1] 3999 // br scalar.body 4000 // 4001 // scalar.body: 4002 // i = phi [0, scalar.ph], [i+1, scalar.body] 4003 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4004 // s2 = a[i] 4005 // b[i] = s2 - s1 4006 // br cond, scalar.body, ... 4007 // 4008 // In this example, s1 is a recurrence because it's value depends on the 4009 // previous iteration. In the first phase of vectorization, we created a 4010 // temporary value for s1. We now complete the vectorization and produce the 4011 // shorthand vector IR shown below (for VF = 4, UF = 1). 4012 // 4013 // vector.ph: 4014 // v_init = vector(..., ..., ..., a[-1]) 4015 // br vector.body 4016 // 4017 // vector.body 4018 // i = phi [0, vector.ph], [i+4, vector.body] 4019 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4020 // v2 = a[i, i+1, i+2, i+3]; 4021 // v3 = vector(v1(3), v2(0, 1, 2)) 4022 // b[i, i+1, i+2, i+3] = v2 - v3 4023 // br cond, vector.body, middle.block 4024 // 4025 // middle.block: 4026 // x = v2(3) 4027 // br scalar.ph 4028 // 4029 // scalar.ph: 4030 // s_init = phi [x, middle.block], [a[-1], otherwise] 4031 // br scalar.body 4032 // 4033 // After execution completes the vector loop, we extract the next value of 4034 // the recurrence (x) to use as the initial value in the scalar loop. 4035 4036 // Get the original loop preheader and single loop latch. 4037 auto *Preheader = OrigLoop->getLoopPreheader(); 4038 auto *Latch = OrigLoop->getLoopLatch(); 4039 4040 // Get the initial and previous values of the scalar recurrence. 4041 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4042 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4043 4044 // Create a vector from the initial value. 4045 auto *VectorInit = ScalarInit; 4046 if (VF > 1) { 4047 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4048 VectorInit = Builder.CreateInsertElement( 4049 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4050 Builder.getInt32(VF - 1), "vector.recur.init"); 4051 } 4052 4053 // We constructed a temporary phi node in the first phase of vectorization. 4054 // This phi node will eventually be deleted. 4055 Builder.SetInsertPoint( 4056 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4057 4058 // Create a phi node for the new recurrence. The current value will either be 4059 // the initial value inserted into a vector or loop-varying vector value. 4060 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4061 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4062 4063 // Get the vectorized previous value of the last part UF - 1. It appears last 4064 // among all unrolled iterations, due to the order of their construction. 4065 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4066 4067 // Set the insertion point after the previous value if it is an instruction. 4068 // Note that the previous value may have been constant-folded so it is not 4069 // guaranteed to be an instruction in the vector loop. Also, if the previous 4070 // value is a phi node, we should insert after all the phi nodes to avoid 4071 // breaking basic block verification. 4072 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 4073 isa<PHINode>(PreviousLastPart)) 4074 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4075 else 4076 Builder.SetInsertPoint( 4077 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 4078 4079 // We will construct a vector for the recurrence by combining the values for 4080 // the current and previous iterations. This is the required shuffle mask. 4081 SmallVector<Constant *, 8> ShuffleMask(VF); 4082 ShuffleMask[0] = Builder.getInt32(VF - 1); 4083 for (unsigned I = 1; I < VF; ++I) 4084 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4085 4086 // The vector from which to take the initial value for the current iteration 4087 // (actual or unrolled). Initially, this is the vector phi node. 4088 Value *Incoming = VecPhi; 4089 4090 // Shuffle the current and previous vector and update the vector parts. 4091 for (unsigned Part = 0; Part < UF; ++Part) { 4092 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4093 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4094 auto *Shuffle = 4095 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 4096 ConstantVector::get(ShuffleMask)) 4097 : Incoming; 4098 PhiPart->replaceAllUsesWith(Shuffle); 4099 cast<Instruction>(PhiPart)->eraseFromParent(); 4100 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4101 Incoming = PreviousPart; 4102 } 4103 4104 // Fix the latch value of the new recurrence in the vector loop. 4105 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4106 4107 // Extract the last vector element in the middle block. This will be the 4108 // initial value for the recurrence when jumping to the scalar loop. 4109 auto *ExtractForScalar = Incoming; 4110 if (VF > 1) { 4111 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4112 ExtractForScalar = Builder.CreateExtractElement( 4113 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4114 } 4115 // Extract the second last element in the middle block if the 4116 // Phi is used outside the loop. We need to extract the phi itself 4117 // and not the last element (the phi update in the current iteration). This 4118 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4119 // when the scalar loop is not run at all. 4120 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4121 if (VF > 1) 4122 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4123 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4124 // When loop is unrolled without vectorizing, initialize 4125 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4126 // `Incoming`. This is analogous to the vectorized case above: extracting the 4127 // second last element when VF > 1. 4128 else if (UF > 1) 4129 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4130 4131 // Fix the initial value of the original recurrence in the scalar loop. 4132 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4133 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4134 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4135 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4136 Start->addIncoming(Incoming, BB); 4137 } 4138 4139 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4140 Phi->setName("scalar.recur"); 4141 4142 // Finally, fix users of the recurrence outside the loop. The users will need 4143 // either the last value of the scalar recurrence or the last value of the 4144 // vector recurrence we extracted in the middle block. Since the loop is in 4145 // LCSSA form, we just need to find the phi node for the original scalar 4146 // recurrence in the exit block, and then add an edge for the middle block. 4147 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4148 if (LCSSAPhi.getIncomingValue(0) == Phi) { 4149 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4150 break; 4151 } 4152 } 4153 } 4154 4155 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4156 Constant *Zero = Builder.getInt32(0); 4157 4158 // Get it's reduction variable descriptor. 4159 assert(Legal->isReductionVariable(Phi) && 4160 "Unable to find the reduction variable"); 4161 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4162 4163 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4164 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4165 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4166 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4167 RdxDesc.getMinMaxRecurrenceKind(); 4168 setDebugLocFromInst(Builder, ReductionStartValue); 4169 4170 // We need to generate a reduction vector from the incoming scalar. 4171 // To do so, we need to generate the 'identity' vector and override 4172 // one of the elements with the incoming scalar reduction. We need 4173 // to do it in the vector-loop preheader. 4174 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4175 4176 // This is the vector-clone of the value that leaves the loop. 4177 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4178 4179 // Find the reduction identity variable. Zero for addition, or, xor, 4180 // one for multiplication, -1 for And. 4181 Value *Identity; 4182 Value *VectorStart; 4183 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4184 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4185 // MinMax reduction have the start value as their identify. 4186 if (VF == 1) { 4187 VectorStart = Identity = ReductionStartValue; 4188 } else { 4189 VectorStart = Identity = 4190 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4191 } 4192 } else { 4193 // Handle other reduction kinds: 4194 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4195 RK, VecTy->getScalarType()); 4196 if (VF == 1) { 4197 Identity = Iden; 4198 // This vector is the Identity vector where the first element is the 4199 // incoming scalar reduction. 4200 VectorStart = ReductionStartValue; 4201 } else { 4202 Identity = ConstantVector::getSplat(VF, Iden); 4203 4204 // This vector is the Identity vector where the first element is the 4205 // incoming scalar reduction. 4206 VectorStart = 4207 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4208 } 4209 } 4210 4211 // Fix the vector-loop phi. 4212 4213 // Reductions do not have to start at zero. They can start with 4214 // any loop invariant values. 4215 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4216 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4217 for (unsigned Part = 0; Part < UF; ++Part) { 4218 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4219 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4220 // Make sure to add the reduction stat value only to the 4221 // first unroll part. 4222 Value *StartVal = (Part == 0) ? VectorStart : Identity; 4223 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 4224 cast<PHINode>(VecRdxPhi) 4225 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4226 } 4227 4228 // Before each round, move the insertion point right between 4229 // the PHIs and the values we are going to write. 4230 // This allows us to write both PHINodes and the extractelement 4231 // instructions. 4232 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4233 4234 setDebugLocFromInst(Builder, LoopExitInst); 4235 4236 // If the vector reduction can be performed in a smaller type, we truncate 4237 // then extend the loop exit value to enable InstCombine to evaluate the 4238 // entire expression in the smaller type. 4239 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4240 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4241 Builder.SetInsertPoint( 4242 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4243 VectorParts RdxParts(UF); 4244 for (unsigned Part = 0; Part < UF; ++Part) { 4245 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4246 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4247 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4248 : Builder.CreateZExt(Trunc, VecTy); 4249 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4250 UI != RdxParts[Part]->user_end();) 4251 if (*UI != Trunc) { 4252 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4253 RdxParts[Part] = Extnd; 4254 } else { 4255 ++UI; 4256 } 4257 } 4258 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4259 for (unsigned Part = 0; Part < UF; ++Part) { 4260 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4261 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4262 } 4263 } 4264 4265 // Reduce all of the unrolled parts into a single vector. 4266 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4267 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4268 setDebugLocFromInst(Builder, ReducedPartRdx); 4269 for (unsigned Part = 1; Part < UF; ++Part) { 4270 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4271 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4272 // Floating point operations had to be 'fast' to enable the reduction. 4273 ReducedPartRdx = addFastMathFlag( 4274 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4275 ReducedPartRdx, "bin.rdx")); 4276 else 4277 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4278 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 4279 } 4280 4281 if (VF > 1) { 4282 bool NoNaN = Legal->hasFunNoNaNAttr(); 4283 ReducedPartRdx = 4284 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4285 // If the reduction can be performed in a smaller type, we need to extend 4286 // the reduction to the wider type before we branch to the original loop. 4287 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4288 ReducedPartRdx = 4289 RdxDesc.isSigned() 4290 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4291 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4292 } 4293 4294 // Create a phi node that merges control-flow from the backedge-taken check 4295 // block and the middle block. 4296 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4297 LoopScalarPreHeader->getTerminator()); 4298 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4299 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4300 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4301 4302 // Now, we need to fix the users of the reduction variable 4303 // inside and outside of the scalar remainder loop. 4304 // We know that the loop is in LCSSA form. We need to update the 4305 // PHI nodes in the exit blocks. 4306 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4307 // All PHINodes need to have a single entry edge, or two if 4308 // we already fixed them. 4309 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4310 4311 // We found a reduction value exit-PHI. Update it with the 4312 // incoming bypass edge. 4313 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 4314 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4315 } // end of the LCSSA phi scan. 4316 4317 // Fix the scalar loop reduction variable with the incoming reduction sum 4318 // from the vector body and from the backedge value. 4319 int IncomingEdgeBlockIdx = 4320 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4321 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4322 // Pick the other block. 4323 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4324 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4325 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4326 } 4327 4328 void InnerLoopVectorizer::fixLCSSAPHIs() { 4329 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4330 if (LCSSAPhi.getNumIncomingValues() == 1) { 4331 assert(OrigLoop->isLoopInvariant(LCSSAPhi.getIncomingValue(0)) && 4332 "Incoming value isn't loop invariant"); 4333 LCSSAPhi.addIncoming(LCSSAPhi.getIncomingValue(0), LoopMiddleBlock); 4334 } 4335 } 4336 } 4337 4338 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4339 // The basic block and loop containing the predicated instruction. 4340 auto *PredBB = PredInst->getParent(); 4341 auto *VectorLoop = LI->getLoopFor(PredBB); 4342 4343 // Initialize a worklist with the operands of the predicated instruction. 4344 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4345 4346 // Holds instructions that we need to analyze again. An instruction may be 4347 // reanalyzed if we don't yet know if we can sink it or not. 4348 SmallVector<Instruction *, 8> InstsToReanalyze; 4349 4350 // Returns true if a given use occurs in the predicated block. Phi nodes use 4351 // their operands in their corresponding predecessor blocks. 4352 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4353 auto *I = cast<Instruction>(U.getUser()); 4354 BasicBlock *BB = I->getParent(); 4355 if (auto *Phi = dyn_cast<PHINode>(I)) 4356 BB = Phi->getIncomingBlock( 4357 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4358 return BB == PredBB; 4359 }; 4360 4361 // Iteratively sink the scalarized operands of the predicated instruction 4362 // into the block we created for it. When an instruction is sunk, it's 4363 // operands are then added to the worklist. The algorithm ends after one pass 4364 // through the worklist doesn't sink a single instruction. 4365 bool Changed; 4366 do { 4367 // Add the instructions that need to be reanalyzed to the worklist, and 4368 // reset the changed indicator. 4369 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4370 InstsToReanalyze.clear(); 4371 Changed = false; 4372 4373 while (!Worklist.empty()) { 4374 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4375 4376 // We can't sink an instruction if it is a phi node, is already in the 4377 // predicated block, is not in the loop, or may have side effects. 4378 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4379 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4380 continue; 4381 4382 // It's legal to sink the instruction if all its uses occur in the 4383 // predicated block. Otherwise, there's nothing to do yet, and we may 4384 // need to reanalyze the instruction. 4385 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4386 InstsToReanalyze.push_back(I); 4387 continue; 4388 } 4389 4390 // Move the instruction to the beginning of the predicated block, and add 4391 // it's operands to the worklist. 4392 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4393 Worklist.insert(I->op_begin(), I->op_end()); 4394 4395 // The sinking may have enabled other instructions to be sunk, so we will 4396 // need to iterate. 4397 Changed = true; 4398 } 4399 } while (Changed); 4400 } 4401 4402 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4403 unsigned VF) { 4404 assert(PN->getParent() == OrigLoop->getHeader() && 4405 "Non-header phis should have been handled elsewhere"); 4406 4407 PHINode *P = cast<PHINode>(PN); 4408 // In order to support recurrences we need to be able to vectorize Phi nodes. 4409 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4410 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4411 // this value when we vectorize all of the instructions that use the PHI. 4412 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4413 for (unsigned Part = 0; Part < UF; ++Part) { 4414 // This is phase one of vectorizing PHIs. 4415 Type *VecTy = 4416 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4417 Value *EntryPart = PHINode::Create( 4418 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4419 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4420 } 4421 return; 4422 } 4423 4424 setDebugLocFromInst(Builder, P); 4425 4426 // This PHINode must be an induction variable. 4427 // Make sure that we know about it. 4428 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4429 4430 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4431 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4432 4433 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4434 // which can be found from the original scalar operations. 4435 switch (II.getKind()) { 4436 case InductionDescriptor::IK_NoInduction: 4437 llvm_unreachable("Unknown induction"); 4438 case InductionDescriptor::IK_IntInduction: 4439 case InductionDescriptor::IK_FpInduction: 4440 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4441 case InductionDescriptor::IK_PtrInduction: { 4442 // Handle the pointer induction variable case. 4443 assert(P->getType()->isPointerTy() && "Unexpected type."); 4444 // This is the normalized GEP that starts counting at zero. 4445 Value *PtrInd = Induction; 4446 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4447 // Determine the number of scalars we need to generate for each unroll 4448 // iteration. If the instruction is uniform, we only need to generate the 4449 // first lane. Otherwise, we generate all VF values. 4450 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4451 // These are the scalar results. Notice that we don't generate vector GEPs 4452 // because scalar GEPs result in better code. 4453 for (unsigned Part = 0; Part < UF; ++Part) { 4454 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4455 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4456 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4457 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4458 SclrGep->setName("next.gep"); 4459 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4460 } 4461 } 4462 return; 4463 } 4464 } 4465 } 4466 4467 /// A helper function for checking whether an integer division-related 4468 /// instruction may divide by zero (in which case it must be predicated if 4469 /// executed conditionally in the scalar code). 4470 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4471 /// Non-zero divisors that are non compile-time constants will not be 4472 /// converted into multiplication, so we will still end up scalarizing 4473 /// the division, but can do so w/o predication. 4474 static bool mayDivideByZero(Instruction &I) { 4475 assert((I.getOpcode() == Instruction::UDiv || 4476 I.getOpcode() == Instruction::SDiv || 4477 I.getOpcode() == Instruction::URem || 4478 I.getOpcode() == Instruction::SRem) && 4479 "Unexpected instruction"); 4480 Value *Divisor = I.getOperand(1); 4481 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4482 return !CInt || CInt->isZero(); 4483 } 4484 4485 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4486 switch (I.getOpcode()) { 4487 case Instruction::Br: 4488 case Instruction::PHI: 4489 llvm_unreachable("This instruction is handled by a different recipe."); 4490 case Instruction::GetElementPtr: { 4491 // Construct a vector GEP by widening the operands of the scalar GEP as 4492 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4493 // results in a vector of pointers when at least one operand of the GEP 4494 // is vector-typed. Thus, to keep the representation compact, we only use 4495 // vector-typed operands for loop-varying values. 4496 auto *GEP = cast<GetElementPtrInst>(&I); 4497 4498 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4499 // If we are vectorizing, but the GEP has only loop-invariant operands, 4500 // the GEP we build (by only using vector-typed operands for 4501 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4502 // produce a vector of pointers, we need to either arbitrarily pick an 4503 // operand to broadcast, or broadcast a clone of the original GEP. 4504 // Here, we broadcast a clone of the original. 4505 // 4506 // TODO: If at some point we decide to scalarize instructions having 4507 // loop-invariant operands, this special case will no longer be 4508 // required. We would add the scalarization decision to 4509 // collectLoopScalars() and teach getVectorValue() to broadcast 4510 // the lane-zero scalar value. 4511 auto *Clone = Builder.Insert(GEP->clone()); 4512 for (unsigned Part = 0; Part < UF; ++Part) { 4513 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4514 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 4515 addMetadata(EntryPart, GEP); 4516 } 4517 } else { 4518 // If the GEP has at least one loop-varying operand, we are sure to 4519 // produce a vector of pointers. But if we are only unrolling, we want 4520 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4521 // produce with the code below will be scalar (if VF == 1) or vector 4522 // (otherwise). Note that for the unroll-only case, we still maintain 4523 // values in the vector mapping with initVector, as we do for other 4524 // instructions. 4525 for (unsigned Part = 0; Part < UF; ++Part) { 4526 // The pointer operand of the new GEP. If it's loop-invariant, we 4527 // won't broadcast it. 4528 auto *Ptr = 4529 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4530 ? GEP->getPointerOperand() 4531 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4532 4533 // Collect all the indices for the new GEP. If any index is 4534 // loop-invariant, we won't broadcast it. 4535 SmallVector<Value *, 4> Indices; 4536 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4537 if (OrigLoop->isLoopInvariant(U.get())) 4538 Indices.push_back(U.get()); 4539 else 4540 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 4541 } 4542 4543 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4544 // but it should be a vector, otherwise. 4545 auto *NewGEP = GEP->isInBounds() 4546 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4547 : Builder.CreateGEP(Ptr, Indices); 4548 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4549 "NewGEP is not a pointer vector"); 4550 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4551 addMetadata(NewGEP, GEP); 4552 } 4553 } 4554 4555 break; 4556 } 4557 case Instruction::UDiv: 4558 case Instruction::SDiv: 4559 case Instruction::SRem: 4560 case Instruction::URem: 4561 case Instruction::Add: 4562 case Instruction::FAdd: 4563 case Instruction::Sub: 4564 case Instruction::FSub: 4565 case Instruction::Mul: 4566 case Instruction::FMul: 4567 case Instruction::FDiv: 4568 case Instruction::FRem: 4569 case Instruction::Shl: 4570 case Instruction::LShr: 4571 case Instruction::AShr: 4572 case Instruction::And: 4573 case Instruction::Or: 4574 case Instruction::Xor: { 4575 // Just widen binops. 4576 auto *BinOp = cast<BinaryOperator>(&I); 4577 setDebugLocFromInst(Builder, BinOp); 4578 4579 for (unsigned Part = 0; Part < UF; ++Part) { 4580 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 4581 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 4582 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 4583 4584 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4585 VecOp->copyIRFlags(BinOp); 4586 4587 // Use this vector value for all users of the original instruction. 4588 VectorLoopValueMap.setVectorValue(&I, Part, V); 4589 addMetadata(V, BinOp); 4590 } 4591 4592 break; 4593 } 4594 case Instruction::Select: { 4595 // Widen selects. 4596 // If the selector is loop invariant we can create a select 4597 // instruction with a scalar condition. Otherwise, use vector-select. 4598 auto *SE = PSE.getSE(); 4599 bool InvariantCond = 4600 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4601 setDebugLocFromInst(Builder, &I); 4602 4603 // The condition can be loop invariant but still defined inside the 4604 // loop. This means that we can't just use the original 'cond' value. 4605 // We have to take the 'vectorized' value and pick the first lane. 4606 // Instcombine will make this a no-op. 4607 4608 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4609 4610 for (unsigned Part = 0; Part < UF; ++Part) { 4611 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4612 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4613 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4614 Value *Sel = 4615 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4616 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4617 addMetadata(Sel, &I); 4618 } 4619 4620 break; 4621 } 4622 4623 case Instruction::ICmp: 4624 case Instruction::FCmp: { 4625 // Widen compares. Generate vector compares. 4626 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4627 auto *Cmp = dyn_cast<CmpInst>(&I); 4628 setDebugLocFromInst(Builder, Cmp); 4629 for (unsigned Part = 0; Part < UF; ++Part) { 4630 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4631 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4632 Value *C = nullptr; 4633 if (FCmp) { 4634 // Propagate fast math flags. 4635 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4636 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4637 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4638 } else { 4639 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4640 } 4641 VectorLoopValueMap.setVectorValue(&I, Part, C); 4642 addMetadata(C, &I); 4643 } 4644 4645 break; 4646 } 4647 4648 case Instruction::ZExt: 4649 case Instruction::SExt: 4650 case Instruction::FPToUI: 4651 case Instruction::FPToSI: 4652 case Instruction::FPExt: 4653 case Instruction::PtrToInt: 4654 case Instruction::IntToPtr: 4655 case Instruction::SIToFP: 4656 case Instruction::UIToFP: 4657 case Instruction::Trunc: 4658 case Instruction::FPTrunc: 4659 case Instruction::BitCast: { 4660 auto *CI = dyn_cast<CastInst>(&I); 4661 setDebugLocFromInst(Builder, CI); 4662 4663 /// Vectorize casts. 4664 Type *DestTy = 4665 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4666 4667 for (unsigned Part = 0; Part < UF; ++Part) { 4668 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4669 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4670 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4671 addMetadata(Cast, &I); 4672 } 4673 break; 4674 } 4675 4676 case Instruction::Call: { 4677 // Ignore dbg intrinsics. 4678 if (isa<DbgInfoIntrinsic>(I)) 4679 break; 4680 setDebugLocFromInst(Builder, &I); 4681 4682 Module *M = I.getParent()->getParent()->getParent(); 4683 auto *CI = cast<CallInst>(&I); 4684 4685 StringRef FnName = CI->getCalledFunction()->getName(); 4686 Function *F = CI->getCalledFunction(); 4687 Type *RetTy = ToVectorTy(CI->getType(), VF); 4688 SmallVector<Type *, 4> Tys; 4689 for (Value *ArgOperand : CI->arg_operands()) 4690 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4691 4692 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4693 4694 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4695 // version of the instruction. 4696 // Is it beneficial to perform intrinsic call compared to lib call? 4697 bool NeedToScalarize; 4698 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4699 bool UseVectorIntrinsic = 4700 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4701 assert((UseVectorIntrinsic || !NeedToScalarize) && 4702 "Instruction should be scalarized elsewhere."); 4703 4704 for (unsigned Part = 0; Part < UF; ++Part) { 4705 SmallVector<Value *, 4> Args; 4706 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4707 Value *Arg = CI->getArgOperand(i); 4708 // Some intrinsics have a scalar argument - don't replace it with a 4709 // vector. 4710 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4711 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4712 Args.push_back(Arg); 4713 } 4714 4715 Function *VectorF; 4716 if (UseVectorIntrinsic) { 4717 // Use vector version of the intrinsic. 4718 Type *TysForDecl[] = {CI->getType()}; 4719 if (VF > 1) 4720 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4721 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4722 } else { 4723 // Use vector version of the library call. 4724 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4725 assert(!VFnName.empty() && "Vector function name is empty."); 4726 VectorF = M->getFunction(VFnName); 4727 if (!VectorF) { 4728 // Generate a declaration 4729 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4730 VectorF = 4731 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4732 VectorF->copyAttributesFrom(F); 4733 } 4734 } 4735 assert(VectorF && "Can't create vector function."); 4736 4737 SmallVector<OperandBundleDef, 1> OpBundles; 4738 CI->getOperandBundlesAsDefs(OpBundles); 4739 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4740 4741 if (isa<FPMathOperator>(V)) 4742 V->copyFastMathFlags(CI); 4743 4744 VectorLoopValueMap.setVectorValue(&I, Part, V); 4745 addMetadata(V, &I); 4746 } 4747 4748 break; 4749 } 4750 4751 default: 4752 // This instruction is not vectorized by simple widening. 4753 DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4754 llvm_unreachable("Unhandled instruction!"); 4755 } // end of switch. 4756 } 4757 4758 void InnerLoopVectorizer::updateAnalysis() { 4759 // Forget the original basic block. 4760 PSE.getSE()->forgetLoop(OrigLoop); 4761 4762 // Update the dominator tree information. 4763 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4764 "Entry does not dominate exit."); 4765 4766 DT->addNewBlock(LoopMiddleBlock, 4767 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4768 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4769 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4770 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4771 DEBUG(DT->verifyDomTree()); 4772 } 4773 4774 /// \brief Check whether it is safe to if-convert this phi node. 4775 /// 4776 /// Phi nodes with constant expressions that can trap are not safe to if 4777 /// convert. 4778 static bool canIfConvertPHINodes(BasicBlock *BB) { 4779 for (PHINode &Phi : BB->phis()) { 4780 for (Value *V : Phi.incoming_values()) 4781 if (auto *C = dyn_cast<Constant>(V)) 4782 if (C->canTrap()) 4783 return false; 4784 } 4785 return true; 4786 } 4787 4788 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4789 if (!EnableIfConversion) { 4790 ORE->emit(createMissedAnalysis("IfConversionDisabled") 4791 << "if-conversion is disabled"); 4792 return false; 4793 } 4794 4795 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4796 4797 // A list of pointers that we can safely read and write to. 4798 SmallPtrSet<Value *, 8> SafePointes; 4799 4800 // Collect safe addresses. 4801 for (BasicBlock *BB : TheLoop->blocks()) { 4802 if (blockNeedsPredication(BB)) 4803 continue; 4804 4805 for (Instruction &I : *BB) 4806 if (auto *Ptr = getPointerOperand(&I)) 4807 SafePointes.insert(Ptr); 4808 } 4809 4810 // Collect the blocks that need predication. 4811 BasicBlock *Header = TheLoop->getHeader(); 4812 for (BasicBlock *BB : TheLoop->blocks()) { 4813 // We don't support switch statements inside loops. 4814 if (!isa<BranchInst>(BB->getTerminator())) { 4815 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 4816 << "loop contains a switch statement"); 4817 return false; 4818 } 4819 4820 // We must be able to predicate all blocks that need to be predicated. 4821 if (blockNeedsPredication(BB)) { 4822 if (!blockCanBePredicated(BB, SafePointes)) { 4823 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4824 << "control flow cannot be substituted for a select"); 4825 return false; 4826 } 4827 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4828 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4829 << "control flow cannot be substituted for a select"); 4830 return false; 4831 } 4832 } 4833 4834 // We can if-convert this loop. 4835 return true; 4836 } 4837 4838 bool LoopVectorizationLegality::canVectorize() { 4839 // Store the result and return it at the end instead of exiting early, in case 4840 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 4841 bool Result = true; 4842 4843 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 4844 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4845 // be canonicalized. 4846 if (!TheLoop->getLoopPreheader()) { 4847 DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n"); 4848 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4849 << "loop control flow is not understood by vectorizer"); 4850 if (DoExtraAnalysis) 4851 Result = false; 4852 else 4853 return false; 4854 } 4855 4856 // FIXME: The code is currently dead, since the loop gets sent to 4857 // LoopVectorizationLegality is already an innermost loop. 4858 // 4859 // We can only vectorize innermost loops. 4860 if (!TheLoop->empty()) { 4861 ORE->emit(createMissedAnalysis("NotInnermostLoop") 4862 << "loop is not the innermost loop"); 4863 if (DoExtraAnalysis) 4864 Result = false; 4865 else 4866 return false; 4867 } 4868 4869 // We must have a single backedge. 4870 if (TheLoop->getNumBackEdges() != 1) { 4871 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4872 << "loop control flow is not understood by vectorizer"); 4873 if (DoExtraAnalysis) 4874 Result = false; 4875 else 4876 return false; 4877 } 4878 4879 // We must have a single exiting block. 4880 if (!TheLoop->getExitingBlock()) { 4881 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4882 << "loop control flow is not understood by vectorizer"); 4883 if (DoExtraAnalysis) 4884 Result = false; 4885 else 4886 return false; 4887 } 4888 4889 // We only handle bottom-tested loops, i.e. loop in which the condition is 4890 // checked at the end of each iteration. With that we can assume that all 4891 // instructions in the loop are executed the same number of times. 4892 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4893 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4894 << "loop control flow is not understood by vectorizer"); 4895 if (DoExtraAnalysis) 4896 Result = false; 4897 else 4898 return false; 4899 } 4900 4901 // We need to have a loop header. 4902 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 4903 << '\n'); 4904 4905 // Check if we can if-convert non-single-bb loops. 4906 unsigned NumBlocks = TheLoop->getNumBlocks(); 4907 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4908 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4909 if (DoExtraAnalysis) 4910 Result = false; 4911 else 4912 return false; 4913 } 4914 4915 // Check if we can vectorize the instructions and CFG in this loop. 4916 if (!canVectorizeInstrs()) { 4917 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4918 if (DoExtraAnalysis) 4919 Result = false; 4920 else 4921 return false; 4922 } 4923 4924 // Go over each instruction and look at memory deps. 4925 if (!canVectorizeMemory()) { 4926 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4927 if (DoExtraAnalysis) 4928 Result = false; 4929 else 4930 return false; 4931 } 4932 4933 DEBUG(dbgs() << "LV: We can vectorize this loop" 4934 << (LAI->getRuntimePointerChecking()->Need 4935 ? " (with a runtime bound check)" 4936 : "") 4937 << "!\n"); 4938 4939 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4940 4941 // If an override option has been passed in for interleaved accesses, use it. 4942 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4943 UseInterleaved = EnableInterleavedMemAccesses; 4944 4945 // Analyze interleaved memory accesses. 4946 if (UseInterleaved) 4947 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 4948 4949 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4950 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4951 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4952 4953 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4954 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 4955 << "Too many SCEV assumptions need to be made and checked " 4956 << "at runtime"); 4957 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4958 if (DoExtraAnalysis) 4959 Result = false; 4960 else 4961 return false; 4962 } 4963 4964 // Okay! We've done all the tests. If any have failed, return false. Otherwise 4965 // we can vectorize, and at this point we don't have any other mem analysis 4966 // which may limit our maximum vectorization factor, so just return true with 4967 // no restrictions. 4968 return Result; 4969 } 4970 4971 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4972 if (Ty->isPointerTy()) 4973 return DL.getIntPtrType(Ty); 4974 4975 // It is possible that char's or short's overflow when we ask for the loop's 4976 // trip count, work around this by changing the type size. 4977 if (Ty->getScalarSizeInBits() < 32) 4978 return Type::getInt32Ty(Ty->getContext()); 4979 4980 return Ty; 4981 } 4982 4983 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4984 Ty0 = convertPointerToIntegerType(DL, Ty0); 4985 Ty1 = convertPointerToIntegerType(DL, Ty1); 4986 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4987 return Ty0; 4988 return Ty1; 4989 } 4990 4991 /// \brief Check that the instruction has outside loop users and is not an 4992 /// identified reduction variable. 4993 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4994 SmallPtrSetImpl<Value *> &AllowedExit) { 4995 // Reduction and Induction instructions are allowed to have exit users. All 4996 // other instructions must not have external users. 4997 if (!AllowedExit.count(Inst)) 4998 // Check that all of the users of the loop are inside the BB. 4999 for (User *U : Inst->users()) { 5000 Instruction *UI = cast<Instruction>(U); 5001 // This user may be a reduction exit value. 5002 if (!TheLoop->contains(UI)) { 5003 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5004 return true; 5005 } 5006 } 5007 return false; 5008 } 5009 5010 void LoopVectorizationLegality::addInductionPhi( 5011 PHINode *Phi, const InductionDescriptor &ID, 5012 SmallPtrSetImpl<Value *> &AllowedExit) { 5013 Inductions[Phi] = ID; 5014 5015 // In case this induction also comes with casts that we know we can ignore 5016 // in the vectorized loop body, record them here. All casts could be recorded 5017 // here for ignoring, but suffices to record only the first (as it is the 5018 // only one that may bw used outside the cast sequence). 5019 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 5020 if (!Casts.empty()) 5021 InductionCastsToIgnore.insert(*Casts.begin()); 5022 5023 Type *PhiTy = Phi->getType(); 5024 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5025 5026 // Get the widest type. 5027 if (!PhiTy->isFloatingPointTy()) { 5028 if (!WidestIndTy) 5029 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5030 else 5031 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5032 } 5033 5034 // Int inductions are special because we only allow one IV. 5035 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5036 ID.getConstIntStepValue() && 5037 ID.getConstIntStepValue()->isOne() && 5038 isa<Constant>(ID.getStartValue()) && 5039 cast<Constant>(ID.getStartValue())->isNullValue()) { 5040 5041 // Use the phi node with the widest type as induction. Use the last 5042 // one if there are multiple (no good reason for doing this other 5043 // than it is expedient). We've checked that it begins at zero and 5044 // steps by one, so this is a canonical induction variable. 5045 if (!PrimaryInduction || PhiTy == WidestIndTy) 5046 PrimaryInduction = Phi; 5047 } 5048 5049 // Both the PHI node itself, and the "post-increment" value feeding 5050 // back into the PHI node may have external users. 5051 // We can allow those uses, except if the SCEVs we have for them rely 5052 // on predicates that only hold within the loop, since allowing the exit 5053 // currently means re-using this SCEV outside the loop. 5054 if (PSE.getUnionPredicate().isAlwaysTrue()) { 5055 AllowedExit.insert(Phi); 5056 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5057 } 5058 5059 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5060 } 5061 5062 bool LoopVectorizationLegality::canVectorizeInstrs() { 5063 BasicBlock *Header = TheLoop->getHeader(); 5064 5065 // Look for the attribute signaling the absence of NaNs. 5066 Function &F = *Header->getParent(); 5067 HasFunNoNaNAttr = 5068 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5069 5070 // For each block in the loop. 5071 for (BasicBlock *BB : TheLoop->blocks()) { 5072 // Scan the instructions in the block and look for hazards. 5073 for (Instruction &I : *BB) { 5074 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5075 Type *PhiTy = Phi->getType(); 5076 // Check that this PHI type is allowed. 5077 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5078 !PhiTy->isPointerTy()) { 5079 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5080 << "loop control flow is not understood by vectorizer"); 5081 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5082 return false; 5083 } 5084 5085 // If this PHINode is not in the header block, then we know that we 5086 // can convert it to select during if-conversion. No need to check if 5087 // the PHIs in this block are induction or reduction variables. 5088 if (BB != Header) { 5089 // Check that this instruction has no outside users or is an 5090 // identified reduction value with an outside user. 5091 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5092 continue; 5093 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5094 << "value could not be identified as " 5095 "an induction or reduction variable"); 5096 return false; 5097 } 5098 5099 // We only allow if-converted PHIs with exactly two incoming values. 5100 if (Phi->getNumIncomingValues() != 2) { 5101 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5102 << "control flow not understood by vectorizer"); 5103 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5104 return false; 5105 } 5106 5107 RecurrenceDescriptor RedDes; 5108 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5109 if (RedDes.hasUnsafeAlgebra()) 5110 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5111 AllowedExit.insert(RedDes.getLoopExitInstr()); 5112 Reductions[Phi] = RedDes; 5113 continue; 5114 } 5115 5116 InductionDescriptor ID; 5117 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5118 addInductionPhi(Phi, ID, AllowedExit); 5119 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5120 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5121 continue; 5122 } 5123 5124 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 5125 SinkAfter, DT)) { 5126 FirstOrderRecurrences.insert(Phi); 5127 continue; 5128 } 5129 5130 // As a last resort, coerce the PHI to a AddRec expression 5131 // and re-try classifying it a an induction PHI. 5132 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5133 addInductionPhi(Phi, ID, AllowedExit); 5134 continue; 5135 } 5136 5137 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5138 << "value that could not be identified as " 5139 "reduction is used outside the loop"); 5140 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5141 return false; 5142 } // end of PHI handling 5143 5144 // We handle calls that: 5145 // * Are debug info intrinsics. 5146 // * Have a mapping to an IR intrinsic. 5147 // * Have a vector version available. 5148 auto *CI = dyn_cast<CallInst>(&I); 5149 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5150 !isa<DbgInfoIntrinsic>(CI) && 5151 !(CI->getCalledFunction() && TLI && 5152 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5153 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5154 << "call instruction cannot be vectorized"); 5155 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5156 return false; 5157 } 5158 5159 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5160 // second argument is the same (i.e. loop invariant) 5161 if (CI && hasVectorInstrinsicScalarOpd( 5162 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5163 auto *SE = PSE.getSE(); 5164 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5165 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5166 << "intrinsic instruction cannot be vectorized"); 5167 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5168 return false; 5169 } 5170 } 5171 5172 // Check that the instruction return type is vectorizable. 5173 // Also, we can't vectorize extractelement instructions. 5174 if ((!VectorType::isValidElementType(I.getType()) && 5175 !I.getType()->isVoidTy()) || 5176 isa<ExtractElementInst>(I)) { 5177 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5178 << "instruction return type cannot be vectorized"); 5179 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5180 return false; 5181 } 5182 5183 // Check that the stored type is vectorizable. 5184 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5185 Type *T = ST->getValueOperand()->getType(); 5186 if (!VectorType::isValidElementType(T)) { 5187 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5188 << "store instruction cannot be vectorized"); 5189 return false; 5190 } 5191 5192 // FP instructions can allow unsafe algebra, thus vectorizable by 5193 // non-IEEE-754 compliant SIMD units. 5194 // This applies to floating-point math operations and calls, not memory 5195 // operations, shuffles, or casts, as they don't change precision or 5196 // semantics. 5197 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5198 !I.isFast()) { 5199 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5200 Hints->setPotentiallyUnsafe(); 5201 } 5202 5203 // Reduction instructions are allowed to have exit users. 5204 // All other instructions must not have external users. 5205 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5206 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5207 << "value cannot be used outside the loop"); 5208 return false; 5209 } 5210 } // next instr. 5211 } 5212 5213 if (!PrimaryInduction) { 5214 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5215 if (Inductions.empty()) { 5216 ORE->emit(createMissedAnalysis("NoInductionVariable") 5217 << "loop induction variable could not be identified"); 5218 return false; 5219 } 5220 } 5221 5222 // Now we know the widest induction type, check if our found induction 5223 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5224 // will create another. 5225 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5226 PrimaryInduction = nullptr; 5227 5228 return true; 5229 } 5230 5231 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5232 // We should not collect Scalars more than once per VF. Right now, this 5233 // function is called from collectUniformsAndScalars(), which already does 5234 // this check. Collecting Scalars for VF=1 does not make any sense. 5235 assert(VF >= 2 && !Scalars.count(VF) && 5236 "This function should not be visited twice for the same VF"); 5237 5238 SmallSetVector<Instruction *, 8> Worklist; 5239 5240 // These sets are used to seed the analysis with pointers used by memory 5241 // accesses that will remain scalar. 5242 SmallSetVector<Instruction *, 8> ScalarPtrs; 5243 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5244 5245 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5246 // The pointer operands of loads and stores will be scalar as long as the 5247 // memory access is not a gather or scatter operation. The value operand of a 5248 // store will remain scalar if the store is scalarized. 5249 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5250 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5251 assert(WideningDecision != CM_Unknown && 5252 "Widening decision should be ready at this moment"); 5253 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5254 if (Ptr == Store->getValueOperand()) 5255 return WideningDecision == CM_Scalarize; 5256 assert(Ptr == getPointerOperand(MemAccess) && 5257 "Ptr is neither a value or pointer operand"); 5258 return WideningDecision != CM_GatherScatter; 5259 }; 5260 5261 // A helper that returns true if the given value is a bitcast or 5262 // getelementptr instruction contained in the loop. 5263 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5264 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5265 isa<GetElementPtrInst>(V)) && 5266 !TheLoop->isLoopInvariant(V); 5267 }; 5268 5269 // A helper that evaluates a memory access's use of a pointer. If the use 5270 // will be a scalar use, and the pointer is only used by memory accesses, we 5271 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5272 // PossibleNonScalarPtrs. 5273 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5274 // We only care about bitcast and getelementptr instructions contained in 5275 // the loop. 5276 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5277 return; 5278 5279 // If the pointer has already been identified as scalar (e.g., if it was 5280 // also identified as uniform), there's nothing to do. 5281 auto *I = cast<Instruction>(Ptr); 5282 if (Worklist.count(I)) 5283 return; 5284 5285 // If the use of the pointer will be a scalar use, and all users of the 5286 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5287 // place the pointer in PossibleNonScalarPtrs. 5288 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5289 return isa<LoadInst>(U) || isa<StoreInst>(U); 5290 })) 5291 ScalarPtrs.insert(I); 5292 else 5293 PossibleNonScalarPtrs.insert(I); 5294 }; 5295 5296 // We seed the scalars analysis with three classes of instructions: (1) 5297 // instructions marked uniform-after-vectorization, (2) bitcast and 5298 // getelementptr instructions used by memory accesses requiring a scalar use, 5299 // and (3) pointer induction variables and their update instructions (we 5300 // currently only scalarize these). 5301 // 5302 // (1) Add to the worklist all instructions that have been identified as 5303 // uniform-after-vectorization. 5304 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5305 5306 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5307 // memory accesses requiring a scalar use. The pointer operands of loads and 5308 // stores will be scalar as long as the memory accesses is not a gather or 5309 // scatter operation. The value operand of a store will remain scalar if the 5310 // store is scalarized. 5311 for (auto *BB : TheLoop->blocks()) 5312 for (auto &I : *BB) { 5313 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5314 evaluatePtrUse(Load, Load->getPointerOperand()); 5315 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5316 evaluatePtrUse(Store, Store->getPointerOperand()); 5317 evaluatePtrUse(Store, Store->getValueOperand()); 5318 } 5319 } 5320 for (auto *I : ScalarPtrs) 5321 if (!PossibleNonScalarPtrs.count(I)) { 5322 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5323 Worklist.insert(I); 5324 } 5325 5326 // (3) Add to the worklist all pointer induction variables and their update 5327 // instructions. 5328 // 5329 // TODO: Once we are able to vectorize pointer induction variables we should 5330 // no longer insert them into the worklist here. 5331 auto *Latch = TheLoop->getLoopLatch(); 5332 for (auto &Induction : *Legal->getInductionVars()) { 5333 auto *Ind = Induction.first; 5334 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5335 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5336 continue; 5337 Worklist.insert(Ind); 5338 Worklist.insert(IndUpdate); 5339 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5340 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5341 } 5342 5343 // Insert the forced scalars. 5344 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5345 // induction variable when the PHI user is scalarized. 5346 if (ForcedScalars.count(VF)) 5347 for (auto *I : ForcedScalars.find(VF)->second) 5348 Worklist.insert(I); 5349 5350 // Expand the worklist by looking through any bitcasts and getelementptr 5351 // instructions we've already identified as scalar. This is similar to the 5352 // expansion step in collectLoopUniforms(); however, here we're only 5353 // expanding to include additional bitcasts and getelementptr instructions. 5354 unsigned Idx = 0; 5355 while (Idx != Worklist.size()) { 5356 Instruction *Dst = Worklist[Idx++]; 5357 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5358 continue; 5359 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5360 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5361 auto *J = cast<Instruction>(U); 5362 return !TheLoop->contains(J) || Worklist.count(J) || 5363 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5364 isScalarUse(J, Src)); 5365 })) { 5366 Worklist.insert(Src); 5367 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5368 } 5369 } 5370 5371 // An induction variable will remain scalar if all users of the induction 5372 // variable and induction variable update remain scalar. 5373 for (auto &Induction : *Legal->getInductionVars()) { 5374 auto *Ind = Induction.first; 5375 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5376 5377 // We already considered pointer induction variables, so there's no reason 5378 // to look at their users again. 5379 // 5380 // TODO: Once we are able to vectorize pointer induction variables we 5381 // should no longer skip over them here. 5382 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5383 continue; 5384 5385 // Determine if all users of the induction variable are scalar after 5386 // vectorization. 5387 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5388 auto *I = cast<Instruction>(U); 5389 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5390 }); 5391 if (!ScalarInd) 5392 continue; 5393 5394 // Determine if all users of the induction variable update instruction are 5395 // scalar after vectorization. 5396 auto ScalarIndUpdate = 5397 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5398 auto *I = cast<Instruction>(U); 5399 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5400 }); 5401 if (!ScalarIndUpdate) 5402 continue; 5403 5404 // The induction variable and its update instruction will remain scalar. 5405 Worklist.insert(Ind); 5406 Worklist.insert(IndUpdate); 5407 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5408 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5409 } 5410 5411 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5412 } 5413 5414 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5415 if (!blockNeedsPredication(I->getParent())) 5416 return false; 5417 switch(I->getOpcode()) { 5418 default: 5419 break; 5420 case Instruction::Store: 5421 return !isMaskRequired(I); 5422 case Instruction::UDiv: 5423 case Instruction::SDiv: 5424 case Instruction::SRem: 5425 case Instruction::URem: 5426 return mayDivideByZero(*I); 5427 } 5428 return false; 5429 } 5430 5431 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5432 unsigned VF) { 5433 // Get and ensure we have a valid memory instruction. 5434 LoadInst *LI = dyn_cast<LoadInst>(I); 5435 StoreInst *SI = dyn_cast<StoreInst>(I); 5436 assert((LI || SI) && "Invalid memory instruction"); 5437 5438 auto *Ptr = getPointerOperand(I); 5439 5440 // In order to be widened, the pointer should be consecutive, first of all. 5441 if (!isConsecutivePtr(Ptr)) 5442 return false; 5443 5444 // If the instruction is a store located in a predicated block, it will be 5445 // scalarized. 5446 if (isScalarWithPredication(I)) 5447 return false; 5448 5449 // If the instruction's allocated size doesn't equal it's type size, it 5450 // requires padding and will be scalarized. 5451 auto &DL = I->getModule()->getDataLayout(); 5452 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5453 if (hasIrregularType(ScalarTy, DL, VF)) 5454 return false; 5455 5456 return true; 5457 } 5458 5459 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5460 // We should not collect Uniforms more than once per VF. Right now, 5461 // this function is called from collectUniformsAndScalars(), which 5462 // already does this check. Collecting Uniforms for VF=1 does not make any 5463 // sense. 5464 5465 assert(VF >= 2 && !Uniforms.count(VF) && 5466 "This function should not be visited twice for the same VF"); 5467 5468 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5469 // not analyze again. Uniforms.count(VF) will return 1. 5470 Uniforms[VF].clear(); 5471 5472 // We now know that the loop is vectorizable! 5473 // Collect instructions inside the loop that will remain uniform after 5474 // vectorization. 5475 5476 // Global values, params and instructions outside of current loop are out of 5477 // scope. 5478 auto isOutOfScope = [&](Value *V) -> bool { 5479 Instruction *I = dyn_cast<Instruction>(V); 5480 return (!I || !TheLoop->contains(I)); 5481 }; 5482 5483 SetVector<Instruction *> Worklist; 5484 BasicBlock *Latch = TheLoop->getLoopLatch(); 5485 5486 // Start with the conditional branch. If the branch condition is an 5487 // instruction contained in the loop that is only used by the branch, it is 5488 // uniform. 5489 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5490 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5491 Worklist.insert(Cmp); 5492 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5493 } 5494 5495 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5496 // are pointers that are treated like consecutive pointers during 5497 // vectorization. The pointer operands of interleaved accesses are an 5498 // example. 5499 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5500 5501 // Holds pointer operands of instructions that are possibly non-uniform. 5502 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5503 5504 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5505 InstWidening WideningDecision = getWideningDecision(I, VF); 5506 assert(WideningDecision != CM_Unknown && 5507 "Widening decision should be ready at this moment"); 5508 5509 return (WideningDecision == CM_Widen || 5510 WideningDecision == CM_Widen_Reverse || 5511 WideningDecision == CM_Interleave); 5512 }; 5513 // Iterate over the instructions in the loop, and collect all 5514 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5515 // that a consecutive-like pointer operand will be scalarized, we collect it 5516 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5517 // getelementptr instruction can be used by both vectorized and scalarized 5518 // memory instructions. For example, if a loop loads and stores from the same 5519 // location, but the store is conditional, the store will be scalarized, and 5520 // the getelementptr won't remain uniform. 5521 for (auto *BB : TheLoop->blocks()) 5522 for (auto &I : *BB) { 5523 // If there's no pointer operand, there's nothing to do. 5524 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5525 if (!Ptr) 5526 continue; 5527 5528 // True if all users of Ptr are memory accesses that have Ptr as their 5529 // pointer operand. 5530 auto UsersAreMemAccesses = 5531 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 5532 return getPointerOperand(U) == Ptr; 5533 }); 5534 5535 // Ensure the memory instruction will not be scalarized or used by 5536 // gather/scatter, making its pointer operand non-uniform. If the pointer 5537 // operand is used by any instruction other than a memory access, we 5538 // conservatively assume the pointer operand may be non-uniform. 5539 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5540 PossibleNonUniformPtrs.insert(Ptr); 5541 5542 // If the memory instruction will be vectorized and its pointer operand 5543 // is consecutive-like, or interleaving - the pointer operand should 5544 // remain uniform. 5545 else 5546 ConsecutiveLikePtrs.insert(Ptr); 5547 } 5548 5549 // Add to the Worklist all consecutive and consecutive-like pointers that 5550 // aren't also identified as possibly non-uniform. 5551 for (auto *V : ConsecutiveLikePtrs) 5552 if (!PossibleNonUniformPtrs.count(V)) { 5553 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5554 Worklist.insert(V); 5555 } 5556 5557 // Expand Worklist in topological order: whenever a new instruction 5558 // is added , its users should be either already inside Worklist, or 5559 // out of scope. It ensures a uniform instruction will only be used 5560 // by uniform instructions or out of scope instructions. 5561 unsigned idx = 0; 5562 while (idx != Worklist.size()) { 5563 Instruction *I = Worklist[idx++]; 5564 5565 for (auto OV : I->operand_values()) { 5566 if (isOutOfScope(OV)) 5567 continue; 5568 auto *OI = cast<Instruction>(OV); 5569 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5570 auto *J = cast<Instruction>(U); 5571 return !TheLoop->contains(J) || Worklist.count(J) || 5572 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5573 })) { 5574 Worklist.insert(OI); 5575 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5576 } 5577 } 5578 } 5579 5580 // Returns true if Ptr is the pointer operand of a memory access instruction 5581 // I, and I is known to not require scalarization. 5582 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5583 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5584 }; 5585 5586 // For an instruction to be added into Worklist above, all its users inside 5587 // the loop should also be in Worklist. However, this condition cannot be 5588 // true for phi nodes that form a cyclic dependence. We must process phi 5589 // nodes separately. An induction variable will remain uniform if all users 5590 // of the induction variable and induction variable update remain uniform. 5591 // The code below handles both pointer and non-pointer induction variables. 5592 for (auto &Induction : *Legal->getInductionVars()) { 5593 auto *Ind = Induction.first; 5594 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5595 5596 // Determine if all users of the induction variable are uniform after 5597 // vectorization. 5598 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5599 auto *I = cast<Instruction>(U); 5600 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5601 isVectorizedMemAccessUse(I, Ind); 5602 }); 5603 if (!UniformInd) 5604 continue; 5605 5606 // Determine if all users of the induction variable update instruction are 5607 // uniform after vectorization. 5608 auto UniformIndUpdate = 5609 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5610 auto *I = cast<Instruction>(U); 5611 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5612 isVectorizedMemAccessUse(I, IndUpdate); 5613 }); 5614 if (!UniformIndUpdate) 5615 continue; 5616 5617 // The induction variable and its update instruction will remain uniform. 5618 Worklist.insert(Ind); 5619 Worklist.insert(IndUpdate); 5620 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5621 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5622 } 5623 5624 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5625 } 5626 5627 bool LoopVectorizationLegality::canVectorizeMemory() { 5628 LAI = &(*GetLAA)(*TheLoop); 5629 InterleaveInfo.setLAI(LAI); 5630 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5631 if (LAR) { 5632 ORE->emit([&]() { 5633 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 5634 "loop not vectorized: ", *LAR); 5635 }); 5636 } 5637 if (!LAI->canVectorizeMemory()) 5638 return false; 5639 5640 if (LAI->hasStoreToLoopInvariantAddress()) { 5641 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5642 << "write to a loop invariant address could not be vectorized"); 5643 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5644 return false; 5645 } 5646 5647 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5648 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5649 5650 return true; 5651 } 5652 5653 bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 5654 Value *In0 = const_cast<Value *>(V); 5655 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5656 if (!PN) 5657 return false; 5658 5659 return Inductions.count(PN); 5660 } 5661 5662 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 5663 auto *Inst = dyn_cast<Instruction>(V); 5664 return (Inst && InductionCastsToIgnore.count(Inst)); 5665 } 5666 5667 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5668 return isInductionPhi(V) || isCastedInductionVariable(V); 5669 } 5670 5671 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5672 return FirstOrderRecurrences.count(Phi); 5673 } 5674 5675 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5676 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5677 } 5678 5679 bool LoopVectorizationLegality::blockCanBePredicated( 5680 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5681 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5682 5683 for (Instruction &I : *BB) { 5684 // Check that we don't have a constant expression that can trap as operand. 5685 for (Value *Operand : I.operands()) { 5686 if (auto *C = dyn_cast<Constant>(Operand)) 5687 if (C->canTrap()) 5688 return false; 5689 } 5690 // We might be able to hoist the load. 5691 if (I.mayReadFromMemory()) { 5692 auto *LI = dyn_cast<LoadInst>(&I); 5693 if (!LI) 5694 return false; 5695 if (!SafePtrs.count(LI->getPointerOperand())) { 5696 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5697 isLegalMaskedGather(LI->getType())) { 5698 MaskedOp.insert(LI); 5699 continue; 5700 } 5701 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5702 if (IsAnnotatedParallel) 5703 continue; 5704 return false; 5705 } 5706 } 5707 5708 if (I.mayWriteToMemory()) { 5709 auto *SI = dyn_cast<StoreInst>(&I); 5710 // We only support predication of stores in basic blocks with one 5711 // predecessor. 5712 if (!SI) 5713 return false; 5714 5715 // Build a masked store if it is legal for the target. 5716 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5717 SI->getPointerOperand()) || 5718 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5719 MaskedOp.insert(SI); 5720 continue; 5721 } 5722 5723 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5724 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5725 5726 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5727 !isSinglePredecessor) 5728 return false; 5729 } 5730 if (I.mayThrow()) 5731 return false; 5732 } 5733 5734 return true; 5735 } 5736 5737 void InterleavedAccessInfo::collectConstStrideAccesses( 5738 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5739 const ValueToValueMap &Strides) { 5740 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5741 5742 // Since it's desired that the load/store instructions be maintained in 5743 // "program order" for the interleaved access analysis, we have to visit the 5744 // blocks in the loop in reverse postorder (i.e., in a topological order). 5745 // Such an ordering will ensure that any load/store that may be executed 5746 // before a second load/store will precede the second load/store in 5747 // AccessStrideInfo. 5748 LoopBlocksDFS DFS(TheLoop); 5749 DFS.perform(LI); 5750 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5751 for (auto &I : *BB) { 5752 auto *LI = dyn_cast<LoadInst>(&I); 5753 auto *SI = dyn_cast<StoreInst>(&I); 5754 if (!LI && !SI) 5755 continue; 5756 5757 Value *Ptr = getPointerOperand(&I); 5758 // We don't check wrapping here because we don't know yet if Ptr will be 5759 // part of a full group or a group with gaps. Checking wrapping for all 5760 // pointers (even those that end up in groups with no gaps) will be overly 5761 // conservative. For full groups, wrapping should be ok since if we would 5762 // wrap around the address space we would do a memory access at nullptr 5763 // even without the transformation. The wrapping checks are therefore 5764 // deferred until after we've formed the interleaved groups. 5765 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5766 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5767 5768 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5769 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5770 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5771 5772 // An alignment of 0 means target ABI alignment. 5773 unsigned Align = getMemInstAlignment(&I); 5774 if (!Align) 5775 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5776 5777 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5778 } 5779 } 5780 5781 // Analyze interleaved accesses and collect them into interleaved load and 5782 // store groups. 5783 // 5784 // When generating code for an interleaved load group, we effectively hoist all 5785 // loads in the group to the location of the first load in program order. When 5786 // generating code for an interleaved store group, we sink all stores to the 5787 // location of the last store. This code motion can change the order of load 5788 // and store instructions and may break dependences. 5789 // 5790 // The code generation strategy mentioned above ensures that we won't violate 5791 // any write-after-read (WAR) dependences. 5792 // 5793 // E.g., for the WAR dependence: a = A[i]; // (1) 5794 // A[i] = b; // (2) 5795 // 5796 // The store group of (2) is always inserted at or below (2), and the load 5797 // group of (1) is always inserted at or above (1). Thus, the instructions will 5798 // never be reordered. All other dependences are checked to ensure the 5799 // correctness of the instruction reordering. 5800 // 5801 // The algorithm visits all memory accesses in the loop in bottom-up program 5802 // order. Program order is established by traversing the blocks in the loop in 5803 // reverse postorder when collecting the accesses. 5804 // 5805 // We visit the memory accesses in bottom-up order because it can simplify the 5806 // construction of store groups in the presence of write-after-write (WAW) 5807 // dependences. 5808 // 5809 // E.g., for the WAW dependence: A[i] = a; // (1) 5810 // A[i] = b; // (2) 5811 // A[i + 1] = c; // (3) 5812 // 5813 // We will first create a store group with (3) and (2). (1) can't be added to 5814 // this group because it and (2) are dependent. However, (1) can be grouped 5815 // with other accesses that may precede it in program order. Note that a 5816 // bottom-up order does not imply that WAW dependences should not be checked. 5817 void InterleavedAccessInfo::analyzeInterleaving( 5818 const ValueToValueMap &Strides) { 5819 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5820 5821 // Holds all accesses with a constant stride. 5822 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5823 collectConstStrideAccesses(AccessStrideInfo, Strides); 5824 5825 if (AccessStrideInfo.empty()) 5826 return; 5827 5828 // Collect the dependences in the loop. 5829 collectDependences(); 5830 5831 // Holds all interleaved store groups temporarily. 5832 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5833 // Holds all interleaved load groups temporarily. 5834 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5835 5836 // Search in bottom-up program order for pairs of accesses (A and B) that can 5837 // form interleaved load or store groups. In the algorithm below, access A 5838 // precedes access B in program order. We initialize a group for B in the 5839 // outer loop of the algorithm, and then in the inner loop, we attempt to 5840 // insert each A into B's group if: 5841 // 5842 // 1. A and B have the same stride, 5843 // 2. A and B have the same memory object size, and 5844 // 3. A belongs in B's group according to its distance from B. 5845 // 5846 // Special care is taken to ensure group formation will not break any 5847 // dependences. 5848 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5849 BI != E; ++BI) { 5850 Instruction *B = BI->first; 5851 StrideDescriptor DesB = BI->second; 5852 5853 // Initialize a group for B if it has an allowable stride. Even if we don't 5854 // create a group for B, we continue with the bottom-up algorithm to ensure 5855 // we don't break any of B's dependences. 5856 InterleaveGroup *Group = nullptr; 5857 if (isStrided(DesB.Stride)) { 5858 Group = getInterleaveGroup(B); 5859 if (!Group) { 5860 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 5861 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 5862 } 5863 if (B->mayWriteToMemory()) 5864 StoreGroups.insert(Group); 5865 else 5866 LoadGroups.insert(Group); 5867 } 5868 5869 for (auto AI = std::next(BI); AI != E; ++AI) { 5870 Instruction *A = AI->first; 5871 StrideDescriptor DesA = AI->second; 5872 5873 // Our code motion strategy implies that we can't have dependences 5874 // between accesses in an interleaved group and other accesses located 5875 // between the first and last member of the group. Note that this also 5876 // means that a group can't have more than one member at a given offset. 5877 // The accesses in a group can have dependences with other accesses, but 5878 // we must ensure we don't extend the boundaries of the group such that 5879 // we encompass those dependent accesses. 5880 // 5881 // For example, assume we have the sequence of accesses shown below in a 5882 // stride-2 loop: 5883 // 5884 // (1, 2) is a group | A[i] = a; // (1) 5885 // | A[i-1] = b; // (2) | 5886 // A[i-3] = c; // (3) 5887 // A[i] = d; // (4) | (2, 4) is not a group 5888 // 5889 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5890 // but not with (4). If we did, the dependent access (3) would be within 5891 // the boundaries of the (2, 4) group. 5892 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 5893 // If a dependence exists and A is already in a group, we know that A 5894 // must be a store since A precedes B and WAR dependences are allowed. 5895 // Thus, A would be sunk below B. We release A's group to prevent this 5896 // illegal code motion. A will then be free to form another group with 5897 // instructions that precede it. 5898 if (isInterleaved(A)) { 5899 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 5900 StoreGroups.remove(StoreGroup); 5901 releaseGroup(StoreGroup); 5902 } 5903 5904 // If a dependence exists and A is not already in a group (or it was 5905 // and we just released it), B might be hoisted above A (if B is a 5906 // load) or another store might be sunk below A (if B is a store). In 5907 // either case, we can't add additional instructions to B's group. B 5908 // will only form a group with instructions that it precedes. 5909 break; 5910 } 5911 5912 // At this point, we've checked for illegal code motion. If either A or B 5913 // isn't strided, there's nothing left to do. 5914 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 5915 continue; 5916 5917 // Ignore A if it's already in a group or isn't the same kind of memory 5918 // operation as B. 5919 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5920 continue; 5921 5922 // Check rules 1 and 2. Ignore A if its stride or size is different from 5923 // that of B. 5924 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 5925 continue; 5926 5927 // Ignore A if the memory object of A and B don't belong to the same 5928 // address space 5929 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 5930 continue; 5931 5932 // Calculate the distance from A to B. 5933 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 5934 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 5935 if (!DistToB) 5936 continue; 5937 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 5938 5939 // Check rule 3. Ignore A if its distance to B is not a multiple of the 5940 // size. 5941 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 5942 continue; 5943 5944 // Ignore A if either A or B is in a predicated block. Although we 5945 // currently prevent group formation for predicated accesses, we may be 5946 // able to relax this limitation in the future once we handle more 5947 // complicated blocks. 5948 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 5949 continue; 5950 5951 // The index of A is the index of B plus A's distance to B in multiples 5952 // of the size. 5953 int IndexA = 5954 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 5955 5956 // Try to insert A into B's group. 5957 if (Group->insertMember(A, IndexA, DesA.Align)) { 5958 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 5959 << " into the interleave group with" << *B << '\n'); 5960 InterleaveGroupMap[A] = Group; 5961 5962 // Set the first load in program order as the insert position. 5963 if (A->mayReadFromMemory()) 5964 Group->setInsertPos(A); 5965 } 5966 } // Iteration over A accesses. 5967 } // Iteration over B accesses. 5968 5969 // Remove interleaved store groups with gaps. 5970 for (InterleaveGroup *Group : StoreGroups) 5971 if (Group->getNumMembers() != Group->getFactor()) { 5972 DEBUG(dbgs() << "LV: Invalidate candidate interleaved store group due " 5973 "to gaps.\n"); 5974 releaseGroup(Group); 5975 } 5976 // Remove interleaved groups with gaps (currently only loads) whose memory 5977 // accesses may wrap around. We have to revisit the getPtrStride analysis, 5978 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 5979 // not check wrapping (see documentation there). 5980 // FORNOW we use Assume=false; 5981 // TODO: Change to Assume=true but making sure we don't exceed the threshold 5982 // of runtime SCEV assumptions checks (thereby potentially failing to 5983 // vectorize altogether). 5984 // Additional optional optimizations: 5985 // TODO: If we are peeling the loop and we know that the first pointer doesn't 5986 // wrap then we can deduce that all pointers in the group don't wrap. 5987 // This means that we can forcefully peel the loop in order to only have to 5988 // check the first pointer for no-wrap. When we'll change to use Assume=true 5989 // we'll only need at most one runtime check per interleaved group. 5990 for (InterleaveGroup *Group : LoadGroups) { 5991 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 5992 // load would wrap around the address space we would do a memory access at 5993 // nullptr even without the transformation. 5994 if (Group->getNumMembers() == Group->getFactor()) 5995 continue; 5996 5997 // Case 2: If first and last members of the group don't wrap this implies 5998 // that all the pointers in the group don't wrap. 5999 // So we check only group member 0 (which is always guaranteed to exist), 6000 // and group member Factor - 1; If the latter doesn't exist we rely on 6001 // peeling (if it is a non-reveresed accsess -- see Case 3). 6002 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6003 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6004 /*ShouldCheckWrap=*/true)) { 6005 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6006 "first group member potentially pointer-wrapping.\n"); 6007 releaseGroup(Group); 6008 continue; 6009 } 6010 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6011 if (LastMember) { 6012 Value *LastMemberPtr = getPointerOperand(LastMember); 6013 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6014 /*ShouldCheckWrap=*/true)) { 6015 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6016 "last group member potentially pointer-wrapping.\n"); 6017 releaseGroup(Group); 6018 } 6019 } else { 6020 // Case 3: A non-reversed interleaved load group with gaps: We need 6021 // to execute at least one scalar epilogue iteration. This will ensure 6022 // we don't speculatively access memory out-of-bounds. We only need 6023 // to look for a member at index factor - 1, since every group must have 6024 // a member at index zero. 6025 if (Group->isReverse()) { 6026 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6027 "a reverse access with gaps.\n"); 6028 releaseGroup(Group); 6029 continue; 6030 } 6031 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6032 RequiresScalarEpilogue = true; 6033 } 6034 } 6035 } 6036 6037 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6038 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6039 ORE->emit(createMissedAnalysis("ConditionalStore") 6040 << "store that is conditionally executed prevents vectorization"); 6041 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6042 return None; 6043 } 6044 6045 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 6046 // TODO: It may by useful to do since it's still likely to be dynamically 6047 // uniform if the target can skip. 6048 DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 6049 6050 ORE->emit( 6051 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 6052 << "runtime pointer checks needed. Not enabled for divergent target"); 6053 6054 return None; 6055 } 6056 6057 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6058 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6059 return computeFeasibleMaxVF(OptForSize, TC); 6060 6061 if (Legal->getRuntimePointerChecking()->Need) { 6062 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6063 << "runtime pointer checks needed. Enable vectorization of this " 6064 "loop with '#pragma clang loop vectorize(enable)' when " 6065 "compiling with -Os/-Oz"); 6066 DEBUG(dbgs() 6067 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6068 return None; 6069 } 6070 6071 // If we optimize the program for size, avoid creating the tail loop. 6072 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6073 6074 // If we don't know the precise trip count, don't try to vectorize. 6075 if (TC < 2) { 6076 ORE->emit( 6077 createMissedAnalysis("UnknownLoopCountComplexCFG") 6078 << "unable to calculate the loop count due to complex control flow"); 6079 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6080 return None; 6081 } 6082 6083 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 6084 6085 if (TC % MaxVF != 0) { 6086 // If the trip count that we found modulo the vectorization factor is not 6087 // zero then we require a tail. 6088 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6089 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6090 // smaller MaxVF that does not require a scalar epilog. 6091 6092 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6093 << "cannot optimize for size and vectorize at the " 6094 "same time. Enable vectorization of this loop " 6095 "with '#pragma clang loop vectorize(enable)' " 6096 "when compiling with -Os/-Oz"); 6097 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6098 return None; 6099 } 6100 6101 return MaxVF; 6102 } 6103 6104 unsigned 6105 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 6106 unsigned ConstTripCount) { 6107 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6108 unsigned SmallestType, WidestType; 6109 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6110 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6111 6112 // Get the maximum safe dependence distance in bits computed by LAA. 6113 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 6114 // the memory accesses that is most restrictive (involved in the smallest 6115 // dependence distance). 6116 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 6117 6118 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 6119 6120 unsigned MaxVectorSize = WidestRegister / WidestType; 6121 6122 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6123 << WidestType << " bits.\n"); 6124 DEBUG(dbgs() << "LV: The Widest register safe to use is: " << WidestRegister 6125 << " bits.\n"); 6126 6127 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6128 " into one vector!"); 6129 if (MaxVectorSize == 0) { 6130 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6131 MaxVectorSize = 1; 6132 return MaxVectorSize; 6133 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 6134 isPowerOf2_32(ConstTripCount)) { 6135 // We need to clamp the VF to be the ConstTripCount. There is no point in 6136 // choosing a higher viable VF as done in the loop below. 6137 DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 6138 << ConstTripCount << "\n"); 6139 MaxVectorSize = ConstTripCount; 6140 return MaxVectorSize; 6141 } 6142 6143 unsigned MaxVF = MaxVectorSize; 6144 if (MaximizeBandwidth && !OptForSize) { 6145 // Collect all viable vectorization factors larger than the default MaxVF 6146 // (i.e. MaxVectorSize). 6147 SmallVector<unsigned, 8> VFs; 6148 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6149 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 6150 VFs.push_back(VS); 6151 6152 // For each VF calculate its register usage. 6153 auto RUs = calculateRegisterUsage(VFs); 6154 6155 // Select the largest VF which doesn't require more registers than existing 6156 // ones. 6157 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6158 for (int i = RUs.size() - 1; i >= 0; --i) { 6159 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6160 MaxVF = VFs[i]; 6161 break; 6162 } 6163 } 6164 } 6165 return MaxVF; 6166 } 6167 6168 VectorizationFactor 6169 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6170 float Cost = expectedCost(1).first; 6171 #ifndef NDEBUG 6172 const float ScalarCost = Cost; 6173 #endif /* NDEBUG */ 6174 unsigned Width = 1; 6175 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6176 6177 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6178 // Ignore scalar width, because the user explicitly wants vectorization. 6179 if (ForceVectorization && MaxVF > 1) { 6180 Width = 2; 6181 Cost = expectedCost(Width).first / (float)Width; 6182 } 6183 6184 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6185 // Notice that the vector loop needs to be executed less times, so 6186 // we need to divide the cost of the vector loops by the width of 6187 // the vector elements. 6188 VectorizationCostTy C = expectedCost(i); 6189 float VectorCost = C.first / (float)i; 6190 DEBUG(dbgs() << "LV: Vector loop of width " << i 6191 << " costs: " << (int)VectorCost << ".\n"); 6192 if (!C.second && !ForceVectorization) { 6193 DEBUG( 6194 dbgs() << "LV: Not considering vector loop of width " << i 6195 << " because it will not generate any vector instructions.\n"); 6196 continue; 6197 } 6198 if (VectorCost < Cost) { 6199 Cost = VectorCost; 6200 Width = i; 6201 } 6202 } 6203 6204 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6205 << "LV: Vectorization seems to be not beneficial, " 6206 << "but was forced by a user.\n"); 6207 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6208 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6209 return Factor; 6210 } 6211 6212 std::pair<unsigned, unsigned> 6213 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6214 unsigned MinWidth = -1U; 6215 unsigned MaxWidth = 8; 6216 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6217 6218 // For each block. 6219 for (BasicBlock *BB : TheLoop->blocks()) { 6220 // For each instruction in the loop. 6221 for (Instruction &I : *BB) { 6222 Type *T = I.getType(); 6223 6224 // Skip ignored values. 6225 if (ValuesToIgnore.count(&I)) 6226 continue; 6227 6228 // Only examine Loads, Stores and PHINodes. 6229 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6230 continue; 6231 6232 // Examine PHI nodes that are reduction variables. Update the type to 6233 // account for the recurrence type. 6234 if (auto *PN = dyn_cast<PHINode>(&I)) { 6235 if (!Legal->isReductionVariable(PN)) 6236 continue; 6237 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6238 T = RdxDesc.getRecurrenceType(); 6239 } 6240 6241 // Examine the stored values. 6242 if (auto *ST = dyn_cast<StoreInst>(&I)) 6243 T = ST->getValueOperand()->getType(); 6244 6245 // Ignore loaded pointer types and stored pointer types that are not 6246 // vectorizable. 6247 // 6248 // FIXME: The check here attempts to predict whether a load or store will 6249 // be vectorized. We only know this for certain after a VF has 6250 // been selected. Here, we assume that if an access can be 6251 // vectorized, it will be. We should also look at extending this 6252 // optimization to non-pointer types. 6253 // 6254 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6255 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6256 continue; 6257 6258 MinWidth = std::min(MinWidth, 6259 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6260 MaxWidth = std::max(MaxWidth, 6261 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6262 } 6263 } 6264 6265 return {MinWidth, MaxWidth}; 6266 } 6267 6268 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6269 unsigned VF, 6270 unsigned LoopCost) { 6271 // -- The interleave heuristics -- 6272 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6273 // There are many micro-architectural considerations that we can't predict 6274 // at this level. For example, frontend pressure (on decode or fetch) due to 6275 // code size, or the number and capabilities of the execution ports. 6276 // 6277 // We use the following heuristics to select the interleave count: 6278 // 1. If the code has reductions, then we interleave to break the cross 6279 // iteration dependency. 6280 // 2. If the loop is really small, then we interleave to reduce the loop 6281 // overhead. 6282 // 3. We don't interleave if we think that we will spill registers to memory 6283 // due to the increased register pressure. 6284 6285 // When we optimize for size, we don't interleave. 6286 if (OptForSize) 6287 return 1; 6288 6289 // We used the distance for the interleave count. 6290 if (Legal->getMaxSafeDepDistBytes() != -1U) 6291 return 1; 6292 6293 // Do not interleave loops with a relatively small trip count. 6294 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6295 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6296 return 1; 6297 6298 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6299 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6300 << " registers\n"); 6301 6302 if (VF == 1) { 6303 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6304 TargetNumRegisters = ForceTargetNumScalarRegs; 6305 } else { 6306 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6307 TargetNumRegisters = ForceTargetNumVectorRegs; 6308 } 6309 6310 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6311 // We divide by these constants so assume that we have at least one 6312 // instruction that uses at least one register. 6313 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6314 R.NumInstructions = std::max(R.NumInstructions, 1U); 6315 6316 // We calculate the interleave count using the following formula. 6317 // Subtract the number of loop invariants from the number of available 6318 // registers. These registers are used by all of the interleaved instances. 6319 // Next, divide the remaining registers by the number of registers that is 6320 // required by the loop, in order to estimate how many parallel instances 6321 // fit without causing spills. All of this is rounded down if necessary to be 6322 // a power of two. We want power of two interleave count to simplify any 6323 // addressing operations or alignment considerations. 6324 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6325 R.MaxLocalUsers); 6326 6327 // Don't count the induction variable as interleaved. 6328 if (EnableIndVarRegisterHeur) 6329 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6330 std::max(1U, (R.MaxLocalUsers - 1))); 6331 6332 // Clamp the interleave ranges to reasonable counts. 6333 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6334 6335 // Check if the user has overridden the max. 6336 if (VF == 1) { 6337 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6338 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6339 } else { 6340 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6341 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6342 } 6343 6344 // If we did not calculate the cost for VF (because the user selected the VF) 6345 // then we calculate the cost of VF here. 6346 if (LoopCost == 0) 6347 LoopCost = expectedCost(VF).first; 6348 6349 // Clamp the calculated IC to be between the 1 and the max interleave count 6350 // that the target allows. 6351 if (IC > MaxInterleaveCount) 6352 IC = MaxInterleaveCount; 6353 else if (IC < 1) 6354 IC = 1; 6355 6356 // Interleave if we vectorized this loop and there is a reduction that could 6357 // benefit from interleaving. 6358 if (VF > 1 && !Legal->getReductionVars()->empty()) { 6359 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6360 return IC; 6361 } 6362 6363 // Note that if we've already vectorized the loop we will have done the 6364 // runtime check and so interleaving won't require further checks. 6365 bool InterleavingRequiresRuntimePointerCheck = 6366 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6367 6368 // We want to interleave small loops in order to reduce the loop overhead and 6369 // potentially expose ILP opportunities. 6370 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6371 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6372 // We assume that the cost overhead is 1 and we use the cost model 6373 // to estimate the cost of the loop and interleave until the cost of the 6374 // loop overhead is about 5% of the cost of the loop. 6375 unsigned SmallIC = 6376 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6377 6378 // Interleave until store/load ports (estimated by max interleave count) are 6379 // saturated. 6380 unsigned NumStores = Legal->getNumStores(); 6381 unsigned NumLoads = Legal->getNumLoads(); 6382 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6383 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6384 6385 // If we have a scalar reduction (vector reductions are already dealt with 6386 // by this point), we can increase the critical path length if the loop 6387 // we're interleaving is inside another loop. Limit, by default to 2, so the 6388 // critical path only gets increased by one reduction operation. 6389 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 6390 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6391 SmallIC = std::min(SmallIC, F); 6392 StoresIC = std::min(StoresIC, F); 6393 LoadsIC = std::min(LoadsIC, F); 6394 } 6395 6396 if (EnableLoadStoreRuntimeInterleave && 6397 std::max(StoresIC, LoadsIC) > SmallIC) { 6398 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6399 return std::max(StoresIC, LoadsIC); 6400 } 6401 6402 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6403 return SmallIC; 6404 } 6405 6406 // Interleave if this is a large loop (small loops are already dealt with by 6407 // this point) that could benefit from interleaving. 6408 bool HasReductions = !Legal->getReductionVars()->empty(); 6409 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6410 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6411 return IC; 6412 } 6413 6414 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6415 return 1; 6416 } 6417 6418 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6419 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6420 // This function calculates the register usage by measuring the highest number 6421 // of values that are alive at a single location. Obviously, this is a very 6422 // rough estimation. We scan the loop in a topological order in order and 6423 // assign a number to each instruction. We use RPO to ensure that defs are 6424 // met before their users. We assume that each instruction that has in-loop 6425 // users starts an interval. We record every time that an in-loop value is 6426 // used, so we have a list of the first and last occurrences of each 6427 // instruction. Next, we transpose this data structure into a multi map that 6428 // holds the list of intervals that *end* at a specific location. This multi 6429 // map allows us to perform a linear search. We scan the instructions linearly 6430 // and record each time that a new interval starts, by placing it in a set. 6431 // If we find this value in the multi-map then we remove it from the set. 6432 // The max register usage is the maximum size of the set. 6433 // We also search for instructions that are defined outside the loop, but are 6434 // used inside the loop. We need this number separately from the max-interval 6435 // usage number because when we unroll, loop-invariant values do not take 6436 // more register. 6437 LoopBlocksDFS DFS(TheLoop); 6438 DFS.perform(LI); 6439 6440 RegisterUsage RU; 6441 RU.NumInstructions = 0; 6442 6443 // Each 'key' in the map opens a new interval. The values 6444 // of the map are the index of the 'last seen' usage of the 6445 // instruction that is the key. 6446 using IntervalMap = DenseMap<Instruction *, unsigned>; 6447 6448 // Maps instruction to its index. 6449 DenseMap<unsigned, Instruction *> IdxToInstr; 6450 // Marks the end of each interval. 6451 IntervalMap EndPoint; 6452 // Saves the list of instruction indices that are used in the loop. 6453 SmallSet<Instruction *, 8> Ends; 6454 // Saves the list of values that are used in the loop but are 6455 // defined outside the loop, such as arguments and constants. 6456 SmallPtrSet<Value *, 8> LoopInvariants; 6457 6458 unsigned Index = 0; 6459 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6460 RU.NumInstructions += BB->size(); 6461 for (Instruction &I : *BB) { 6462 IdxToInstr[Index++] = &I; 6463 6464 // Save the end location of each USE. 6465 for (Value *U : I.operands()) { 6466 auto *Instr = dyn_cast<Instruction>(U); 6467 6468 // Ignore non-instruction values such as arguments, constants, etc. 6469 if (!Instr) 6470 continue; 6471 6472 // If this instruction is outside the loop then record it and continue. 6473 if (!TheLoop->contains(Instr)) { 6474 LoopInvariants.insert(Instr); 6475 continue; 6476 } 6477 6478 // Overwrite previous end points. 6479 EndPoint[Instr] = Index; 6480 Ends.insert(Instr); 6481 } 6482 } 6483 } 6484 6485 // Saves the list of intervals that end with the index in 'key'. 6486 using InstrList = SmallVector<Instruction *, 2>; 6487 DenseMap<unsigned, InstrList> TransposeEnds; 6488 6489 // Transpose the EndPoints to a list of values that end at each index. 6490 for (auto &Interval : EndPoint) 6491 TransposeEnds[Interval.second].push_back(Interval.first); 6492 6493 SmallSet<Instruction *, 8> OpenIntervals; 6494 6495 // Get the size of the widest register. 6496 unsigned MaxSafeDepDist = -1U; 6497 if (Legal->getMaxSafeDepDistBytes() != -1U) 6498 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6499 unsigned WidestRegister = 6500 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6501 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6502 6503 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6504 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6505 6506 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6507 6508 // A lambda that gets the register usage for the given type and VF. 6509 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6510 if (Ty->isTokenTy()) 6511 return 0U; 6512 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6513 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6514 }; 6515 6516 for (unsigned int i = 0; i < Index; ++i) { 6517 Instruction *I = IdxToInstr[i]; 6518 6519 // Remove all of the instructions that end at this location. 6520 InstrList &List = TransposeEnds[i]; 6521 for (Instruction *ToRemove : List) 6522 OpenIntervals.erase(ToRemove); 6523 6524 // Ignore instructions that are never used within the loop. 6525 if (!Ends.count(I)) 6526 continue; 6527 6528 // Skip ignored values. 6529 if (ValuesToIgnore.count(I)) 6530 continue; 6531 6532 // For each VF find the maximum usage of registers. 6533 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6534 if (VFs[j] == 1) { 6535 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6536 continue; 6537 } 6538 collectUniformsAndScalars(VFs[j]); 6539 // Count the number of live intervals. 6540 unsigned RegUsage = 0; 6541 for (auto Inst : OpenIntervals) { 6542 // Skip ignored values for VF > 1. 6543 if (VecValuesToIgnore.count(Inst) || 6544 isScalarAfterVectorization(Inst, VFs[j])) 6545 continue; 6546 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6547 } 6548 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6549 } 6550 6551 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6552 << OpenIntervals.size() << '\n'); 6553 6554 // Add the current instruction to the list of open intervals. 6555 OpenIntervals.insert(I); 6556 } 6557 6558 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6559 unsigned Invariant = 0; 6560 if (VFs[i] == 1) 6561 Invariant = LoopInvariants.size(); 6562 else { 6563 for (auto Inst : LoopInvariants) 6564 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6565 } 6566 6567 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6568 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6569 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6570 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6571 6572 RU.LoopInvariantRegs = Invariant; 6573 RU.MaxLocalUsers = MaxUsages[i]; 6574 RUs[i] = RU; 6575 } 6576 6577 return RUs; 6578 } 6579 6580 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6581 // If we aren't vectorizing the loop, or if we've already collected the 6582 // instructions to scalarize, there's nothing to do. Collection may already 6583 // have occurred if we have a user-selected VF and are now computing the 6584 // expected cost for interleaving. 6585 if (VF < 2 || InstsToScalarize.count(VF)) 6586 return; 6587 6588 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6589 // not profitable to scalarize any instructions, the presence of VF in the 6590 // map will indicate that we've analyzed it already. 6591 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6592 6593 // Find all the instructions that are scalar with predication in the loop and 6594 // determine if it would be better to not if-convert the blocks they are in. 6595 // If so, we also record the instructions to scalarize. 6596 for (BasicBlock *BB : TheLoop->blocks()) { 6597 if (!Legal->blockNeedsPredication(BB)) 6598 continue; 6599 for (Instruction &I : *BB) 6600 if (Legal->isScalarWithPredication(&I)) { 6601 ScalarCostsTy ScalarCosts; 6602 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6603 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6604 6605 // Remember that BB will remain after vectorization. 6606 PredicatedBBsAfterVectorization.insert(BB); 6607 } 6608 } 6609 } 6610 6611 int LoopVectorizationCostModel::computePredInstDiscount( 6612 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6613 unsigned VF) { 6614 assert(!isUniformAfterVectorization(PredInst, VF) && 6615 "Instruction marked uniform-after-vectorization will be predicated"); 6616 6617 // Initialize the discount to zero, meaning that the scalar version and the 6618 // vector version cost the same. 6619 int Discount = 0; 6620 6621 // Holds instructions to analyze. The instructions we visit are mapped in 6622 // ScalarCosts. Those instructions are the ones that would be scalarized if 6623 // we find that the scalar version costs less. 6624 SmallVector<Instruction *, 8> Worklist; 6625 6626 // Returns true if the given instruction can be scalarized. 6627 auto canBeScalarized = [&](Instruction *I) -> bool { 6628 // We only attempt to scalarize instructions forming a single-use chain 6629 // from the original predicated block that would otherwise be vectorized. 6630 // Although not strictly necessary, we give up on instructions we know will 6631 // already be scalar to avoid traversing chains that are unlikely to be 6632 // beneficial. 6633 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6634 isScalarAfterVectorization(I, VF)) 6635 return false; 6636 6637 // If the instruction is scalar with predication, it will be analyzed 6638 // separately. We ignore it within the context of PredInst. 6639 if (Legal->isScalarWithPredication(I)) 6640 return false; 6641 6642 // If any of the instruction's operands are uniform after vectorization, 6643 // the instruction cannot be scalarized. This prevents, for example, a 6644 // masked load from being scalarized. 6645 // 6646 // We assume we will only emit a value for lane zero of an instruction 6647 // marked uniform after vectorization, rather than VF identical values. 6648 // Thus, if we scalarize an instruction that uses a uniform, we would 6649 // create uses of values corresponding to the lanes we aren't emitting code 6650 // for. This behavior can be changed by allowing getScalarValue to clone 6651 // the lane zero values for uniforms rather than asserting. 6652 for (Use &U : I->operands()) 6653 if (auto *J = dyn_cast<Instruction>(U.get())) 6654 if (isUniformAfterVectorization(J, VF)) 6655 return false; 6656 6657 // Otherwise, we can scalarize the instruction. 6658 return true; 6659 }; 6660 6661 // Returns true if an operand that cannot be scalarized must be extracted 6662 // from a vector. We will account for this scalarization overhead below. Note 6663 // that the non-void predicated instructions are placed in their own blocks, 6664 // and their return values are inserted into vectors. Thus, an extract would 6665 // still be required. 6666 auto needsExtract = [&](Instruction *I) -> bool { 6667 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6668 }; 6669 6670 // Compute the expected cost discount from scalarizing the entire expression 6671 // feeding the predicated instruction. We currently only consider expressions 6672 // that are single-use instruction chains. 6673 Worklist.push_back(PredInst); 6674 while (!Worklist.empty()) { 6675 Instruction *I = Worklist.pop_back_val(); 6676 6677 // If we've already analyzed the instruction, there's nothing to do. 6678 if (ScalarCosts.count(I)) 6679 continue; 6680 6681 // Compute the cost of the vector instruction. Note that this cost already 6682 // includes the scalarization overhead of the predicated instruction. 6683 unsigned VectorCost = getInstructionCost(I, VF).first; 6684 6685 // Compute the cost of the scalarized instruction. This cost is the cost of 6686 // the instruction as if it wasn't if-converted and instead remained in the 6687 // predicated block. We will scale this cost by block probability after 6688 // computing the scalarization overhead. 6689 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6690 6691 // Compute the scalarization overhead of needed insertelement instructions 6692 // and phi nodes. 6693 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6694 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6695 true, false); 6696 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6697 } 6698 6699 // Compute the scalarization overhead of needed extractelement 6700 // instructions. For each of the instruction's operands, if the operand can 6701 // be scalarized, add it to the worklist; otherwise, account for the 6702 // overhead. 6703 for (Use &U : I->operands()) 6704 if (auto *J = dyn_cast<Instruction>(U.get())) { 6705 assert(VectorType::isValidElementType(J->getType()) && 6706 "Instruction has non-scalar type"); 6707 if (canBeScalarized(J)) 6708 Worklist.push_back(J); 6709 else if (needsExtract(J)) 6710 ScalarCost += TTI.getScalarizationOverhead( 6711 ToVectorTy(J->getType(),VF), false, true); 6712 } 6713 6714 // Scale the total scalar cost by block probability. 6715 ScalarCost /= getReciprocalPredBlockProb(); 6716 6717 // Compute the discount. A non-negative discount means the vector version 6718 // of the instruction costs more, and scalarizing would be beneficial. 6719 Discount += VectorCost - ScalarCost; 6720 ScalarCosts[I] = ScalarCost; 6721 } 6722 6723 return Discount; 6724 } 6725 6726 LoopVectorizationCostModel::VectorizationCostTy 6727 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6728 VectorizationCostTy Cost; 6729 6730 // For each block. 6731 for (BasicBlock *BB : TheLoop->blocks()) { 6732 VectorizationCostTy BlockCost; 6733 6734 // For each instruction in the old loop. 6735 for (Instruction &I : *BB) { 6736 // Skip dbg intrinsics. 6737 if (isa<DbgInfoIntrinsic>(I)) 6738 continue; 6739 6740 // Skip ignored values. 6741 if (ValuesToIgnore.count(&I) || 6742 (VF > 1 && VecValuesToIgnore.count(&I))) 6743 continue; 6744 6745 VectorizationCostTy C = getInstructionCost(&I, VF); 6746 6747 // Check if we should override the cost. 6748 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6749 C.first = ForceTargetInstructionCost; 6750 6751 BlockCost.first += C.first; 6752 BlockCost.second |= C.second; 6753 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6754 << VF << " For instruction: " << I << '\n'); 6755 } 6756 6757 // If we are vectorizing a predicated block, it will have been 6758 // if-converted. This means that the block's instructions (aside from 6759 // stores and instructions that may divide by zero) will now be 6760 // unconditionally executed. For the scalar case, we may not always execute 6761 // the predicated block. Thus, scale the block's cost by the probability of 6762 // executing it. 6763 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6764 BlockCost.first /= getReciprocalPredBlockProb(); 6765 6766 Cost.first += BlockCost.first; 6767 Cost.second |= BlockCost.second; 6768 } 6769 6770 return Cost; 6771 } 6772 6773 /// \brief Gets Address Access SCEV after verifying that the access pattern 6774 /// is loop invariant except the induction variable dependence. 6775 /// 6776 /// This SCEV can be sent to the Target in order to estimate the address 6777 /// calculation cost. 6778 static const SCEV *getAddressAccessSCEV( 6779 Value *Ptr, 6780 LoopVectorizationLegality *Legal, 6781 PredicatedScalarEvolution &PSE, 6782 const Loop *TheLoop) { 6783 6784 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6785 if (!Gep) 6786 return nullptr; 6787 6788 // We are looking for a gep with all loop invariant indices except for one 6789 // which should be an induction variable. 6790 auto SE = PSE.getSE(); 6791 unsigned NumOperands = Gep->getNumOperands(); 6792 for (unsigned i = 1; i < NumOperands; ++i) { 6793 Value *Opd = Gep->getOperand(i); 6794 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6795 !Legal->isInductionVariable(Opd)) 6796 return nullptr; 6797 } 6798 6799 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6800 return PSE.getSCEV(Ptr); 6801 } 6802 6803 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6804 return Legal->hasStride(I->getOperand(0)) || 6805 Legal->hasStride(I->getOperand(1)); 6806 } 6807 6808 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6809 unsigned VF) { 6810 Type *ValTy = getMemInstValueType(I); 6811 auto SE = PSE.getSE(); 6812 6813 unsigned Alignment = getMemInstAlignment(I); 6814 unsigned AS = getMemInstAddressSpace(I); 6815 Value *Ptr = getPointerOperand(I); 6816 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6817 6818 // Figure out whether the access is strided and get the stride value 6819 // if it's known in compile time 6820 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6821 6822 // Get the cost of the scalar memory instruction and address computation. 6823 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6824 6825 Cost += VF * 6826 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6827 AS, I); 6828 6829 // Get the overhead of the extractelement and insertelement instructions 6830 // we might create due to scalarization. 6831 Cost += getScalarizationOverhead(I, VF, TTI); 6832 6833 // If we have a predicated store, it may not be executed for each vector 6834 // lane. Scale the cost by the probability of executing the predicated 6835 // block. 6836 if (Legal->isScalarWithPredication(I)) 6837 Cost /= getReciprocalPredBlockProb(); 6838 6839 return Cost; 6840 } 6841 6842 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6843 unsigned VF) { 6844 Type *ValTy = getMemInstValueType(I); 6845 Type *VectorTy = ToVectorTy(ValTy, VF); 6846 unsigned Alignment = getMemInstAlignment(I); 6847 Value *Ptr = getPointerOperand(I); 6848 unsigned AS = getMemInstAddressSpace(I); 6849 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6850 6851 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6852 "Stride should be 1 or -1 for consecutive memory access"); 6853 unsigned Cost = 0; 6854 if (Legal->isMaskRequired(I)) 6855 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6856 else 6857 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 6858 6859 bool Reverse = ConsecutiveStride < 0; 6860 if (Reverse) 6861 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6862 return Cost; 6863 } 6864 6865 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6866 unsigned VF) { 6867 LoadInst *LI = cast<LoadInst>(I); 6868 Type *ValTy = LI->getType(); 6869 Type *VectorTy = ToVectorTy(ValTy, VF); 6870 unsigned Alignment = LI->getAlignment(); 6871 unsigned AS = LI->getPointerAddressSpace(); 6872 6873 return TTI.getAddressComputationCost(ValTy) + 6874 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 6875 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6876 } 6877 6878 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6879 unsigned VF) { 6880 Type *ValTy = getMemInstValueType(I); 6881 Type *VectorTy = ToVectorTy(ValTy, VF); 6882 unsigned Alignment = getMemInstAlignment(I); 6883 Value *Ptr = getPointerOperand(I); 6884 6885 return TTI.getAddressComputationCost(VectorTy) + 6886 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6887 Legal->isMaskRequired(I), Alignment); 6888 } 6889 6890 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6891 unsigned VF) { 6892 Type *ValTy = getMemInstValueType(I); 6893 Type *VectorTy = ToVectorTy(ValTy, VF); 6894 unsigned AS = getMemInstAddressSpace(I); 6895 6896 auto Group = Legal->getInterleavedAccessGroup(I); 6897 assert(Group && "Fail to get an interleaved access group."); 6898 6899 unsigned InterleaveFactor = Group->getFactor(); 6900 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6901 6902 // Holds the indices of existing members in an interleaved load group. 6903 // An interleaved store group doesn't need this as it doesn't allow gaps. 6904 SmallVector<unsigned, 4> Indices; 6905 if (isa<LoadInst>(I)) { 6906 for (unsigned i = 0; i < InterleaveFactor; i++) 6907 if (Group->getMember(i)) 6908 Indices.push_back(i); 6909 } 6910 6911 // Calculate the cost of the whole interleaved group. 6912 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 6913 Group->getFactor(), Indices, 6914 Group->getAlignment(), AS); 6915 6916 if (Group->isReverse()) 6917 Cost += Group->getNumMembers() * 6918 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6919 return Cost; 6920 } 6921 6922 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6923 unsigned VF) { 6924 // Calculate scalar cost only. Vectorization cost should be ready at this 6925 // moment. 6926 if (VF == 1) { 6927 Type *ValTy = getMemInstValueType(I); 6928 unsigned Alignment = getMemInstAlignment(I); 6929 unsigned AS = getMemInstAddressSpace(I); 6930 6931 return TTI.getAddressComputationCost(ValTy) + 6932 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 6933 } 6934 return getWideningCost(I, VF); 6935 } 6936 6937 LoopVectorizationCostModel::VectorizationCostTy 6938 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6939 // If we know that this instruction will remain uniform, check the cost of 6940 // the scalar version. 6941 if (isUniformAfterVectorization(I, VF)) 6942 VF = 1; 6943 6944 if (VF > 1 && isProfitableToScalarize(I, VF)) 6945 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6946 6947 // Forced scalars do not have any scalarization overhead. 6948 if (VF > 1 && ForcedScalars.count(VF) && 6949 ForcedScalars.find(VF)->second.count(I)) 6950 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 6951 6952 Type *VectorTy; 6953 unsigned C = getInstructionCost(I, VF, VectorTy); 6954 6955 bool TypeNotScalarized = 6956 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 6957 return VectorizationCostTy(C, TypeNotScalarized); 6958 } 6959 6960 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 6961 if (VF == 1) 6962 return; 6963 for (BasicBlock *BB : TheLoop->blocks()) { 6964 // For each instruction in the old loop. 6965 for (Instruction &I : *BB) { 6966 Value *Ptr = getPointerOperand(&I); 6967 if (!Ptr) 6968 continue; 6969 6970 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 6971 // Scalar load + broadcast 6972 unsigned Cost = getUniformMemOpCost(&I, VF); 6973 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6974 continue; 6975 } 6976 6977 // We assume that widening is the best solution when possible. 6978 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 6979 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6980 int ConsecutiveStride = Legal->isConsecutivePtr(getPointerOperand(&I)); 6981 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6982 "Expected consecutive stride."); 6983 InstWidening Decision = 6984 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6985 setWideningDecision(&I, VF, Decision, Cost); 6986 continue; 6987 } 6988 6989 // Choose between Interleaving, Gather/Scatter or Scalarization. 6990 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6991 unsigned NumAccesses = 1; 6992 if (Legal->isAccessInterleaved(&I)) { 6993 auto Group = Legal->getInterleavedAccessGroup(&I); 6994 assert(Group && "Fail to get an interleaved access group."); 6995 6996 // Make one decision for the whole group. 6997 if (getWideningDecision(&I, VF) != CM_Unknown) 6998 continue; 6999 7000 NumAccesses = Group->getNumMembers(); 7001 InterleaveCost = getInterleaveGroupCost(&I, VF); 7002 } 7003 7004 unsigned GatherScatterCost = 7005 Legal->isLegalGatherOrScatter(&I) 7006 ? getGatherScatterCost(&I, VF) * NumAccesses 7007 : std::numeric_limits<unsigned>::max(); 7008 7009 unsigned ScalarizationCost = 7010 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7011 7012 // Choose better solution for the current VF, 7013 // write down this decision and use it during vectorization. 7014 unsigned Cost; 7015 InstWidening Decision; 7016 if (InterleaveCost <= GatherScatterCost && 7017 InterleaveCost < ScalarizationCost) { 7018 Decision = CM_Interleave; 7019 Cost = InterleaveCost; 7020 } else if (GatherScatterCost < ScalarizationCost) { 7021 Decision = CM_GatherScatter; 7022 Cost = GatherScatterCost; 7023 } else { 7024 Decision = CM_Scalarize; 7025 Cost = ScalarizationCost; 7026 } 7027 // If the instructions belongs to an interleave group, the whole group 7028 // receives the same decision. The whole group receives the cost, but 7029 // the cost will actually be assigned to one instruction. 7030 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7031 setWideningDecision(Group, VF, Decision, Cost); 7032 else 7033 setWideningDecision(&I, VF, Decision, Cost); 7034 } 7035 } 7036 7037 // Make sure that any load of address and any other address computation 7038 // remains scalar unless there is gather/scatter support. This avoids 7039 // inevitable extracts into address registers, and also has the benefit of 7040 // activating LSR more, since that pass can't optimize vectorized 7041 // addresses. 7042 if (TTI.prefersVectorizedAddressing()) 7043 return; 7044 7045 // Start with all scalar pointer uses. 7046 SmallPtrSet<Instruction *, 8> AddrDefs; 7047 for (BasicBlock *BB : TheLoop->blocks()) 7048 for (Instruction &I : *BB) { 7049 Instruction *PtrDef = 7050 dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 7051 if (PtrDef && TheLoop->contains(PtrDef) && 7052 getWideningDecision(&I, VF) != CM_GatherScatter) 7053 AddrDefs.insert(PtrDef); 7054 } 7055 7056 // Add all instructions used to generate the addresses. 7057 SmallVector<Instruction *, 4> Worklist; 7058 for (auto *I : AddrDefs) 7059 Worklist.push_back(I); 7060 while (!Worklist.empty()) { 7061 Instruction *I = Worklist.pop_back_val(); 7062 for (auto &Op : I->operands()) 7063 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7064 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7065 AddrDefs.insert(InstOp).second) 7066 Worklist.push_back(InstOp); 7067 } 7068 7069 for (auto *I : AddrDefs) { 7070 if (isa<LoadInst>(I)) { 7071 // Setting the desired widening decision should ideally be handled in 7072 // by cost functions, but since this involves the task of finding out 7073 // if the loaded register is involved in an address computation, it is 7074 // instead changed here when we know this is the case. 7075 InstWidening Decision = getWideningDecision(I, VF); 7076 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7077 // Scalarize a widened load of address. 7078 setWideningDecision(I, VF, CM_Scalarize, 7079 (VF * getMemoryInstructionCost(I, 1))); 7080 else if (auto Group = Legal->getInterleavedAccessGroup(I)) { 7081 // Scalarize an interleave group of address loads. 7082 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7083 if (Instruction *Member = Group->getMember(I)) 7084 setWideningDecision(Member, VF, CM_Scalarize, 7085 (VF * getMemoryInstructionCost(Member, 1))); 7086 } 7087 } 7088 } else 7089 // Make sure I gets scalarized and a cost estimate without 7090 // scalarization overhead. 7091 ForcedScalars[VF].insert(I); 7092 } 7093 } 7094 7095 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7096 unsigned VF, 7097 Type *&VectorTy) { 7098 Type *RetTy = I->getType(); 7099 if (canTruncateToMinimalBitwidth(I, VF)) 7100 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7101 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7102 auto SE = PSE.getSE(); 7103 7104 // TODO: We need to estimate the cost of intrinsic calls. 7105 switch (I->getOpcode()) { 7106 case Instruction::GetElementPtr: 7107 // We mark this instruction as zero-cost because the cost of GEPs in 7108 // vectorized code depends on whether the corresponding memory instruction 7109 // is scalarized or not. Therefore, we handle GEPs with the memory 7110 // instruction cost. 7111 return 0; 7112 case Instruction::Br: { 7113 // In cases of scalarized and predicated instructions, there will be VF 7114 // predicated blocks in the vectorized loop. Each branch around these 7115 // blocks requires also an extract of its vector compare i1 element. 7116 bool ScalarPredicatedBB = false; 7117 BranchInst *BI = cast<BranchInst>(I); 7118 if (VF > 1 && BI->isConditional() && 7119 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7120 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7121 ScalarPredicatedBB = true; 7122 7123 if (ScalarPredicatedBB) { 7124 // Return cost for branches around scalarized and predicated blocks. 7125 Type *Vec_i1Ty = 7126 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7127 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7128 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7129 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7130 // The back-edge branch will remain, as will all scalar branches. 7131 return TTI.getCFInstrCost(Instruction::Br); 7132 else 7133 // This branch will be eliminated by if-conversion. 7134 return 0; 7135 // Note: We currently assume zero cost for an unconditional branch inside 7136 // a predicated block since it will become a fall-through, although we 7137 // may decide in the future to call TTI for all branches. 7138 } 7139 case Instruction::PHI: { 7140 auto *Phi = cast<PHINode>(I); 7141 7142 // First-order recurrences are replaced by vector shuffles inside the loop. 7143 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7144 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7145 VectorTy, VF - 1, VectorTy); 7146 7147 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7148 // converted into select instructions. We require N - 1 selects per phi 7149 // node, where N is the number of incoming values. 7150 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7151 return (Phi->getNumIncomingValues() - 1) * 7152 TTI.getCmpSelInstrCost( 7153 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7154 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7155 7156 return TTI.getCFInstrCost(Instruction::PHI); 7157 } 7158 case Instruction::UDiv: 7159 case Instruction::SDiv: 7160 case Instruction::URem: 7161 case Instruction::SRem: 7162 // If we have a predicated instruction, it may not be executed for each 7163 // vector lane. Get the scalarization cost and scale this amount by the 7164 // probability of executing the predicated block. If the instruction is not 7165 // predicated, we fall through to the next case. 7166 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7167 unsigned Cost = 0; 7168 7169 // These instructions have a non-void type, so account for the phi nodes 7170 // that we will create. This cost is likely to be zero. The phi node 7171 // cost, if any, should be scaled by the block probability because it 7172 // models a copy at the end of each predicated block. 7173 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7174 7175 // The cost of the non-predicated instruction. 7176 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7177 7178 // The cost of insertelement and extractelement instructions needed for 7179 // scalarization. 7180 Cost += getScalarizationOverhead(I, VF, TTI); 7181 7182 // Scale the cost by the probability of executing the predicated blocks. 7183 // This assumes the predicated block for each vector lane is equally 7184 // likely. 7185 return Cost / getReciprocalPredBlockProb(); 7186 } 7187 LLVM_FALLTHROUGH; 7188 case Instruction::Add: 7189 case Instruction::FAdd: 7190 case Instruction::Sub: 7191 case Instruction::FSub: 7192 case Instruction::Mul: 7193 case Instruction::FMul: 7194 case Instruction::FDiv: 7195 case Instruction::FRem: 7196 case Instruction::Shl: 7197 case Instruction::LShr: 7198 case Instruction::AShr: 7199 case Instruction::And: 7200 case Instruction::Or: 7201 case Instruction::Xor: { 7202 // Since we will replace the stride by 1 the multiplication should go away. 7203 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7204 return 0; 7205 // Certain instructions can be cheaper to vectorize if they have a constant 7206 // second vector operand. One example of this are shifts on x86. 7207 TargetTransformInfo::OperandValueKind Op1VK = 7208 TargetTransformInfo::OK_AnyValue; 7209 TargetTransformInfo::OperandValueKind Op2VK = 7210 TargetTransformInfo::OK_AnyValue; 7211 TargetTransformInfo::OperandValueProperties Op1VP = 7212 TargetTransformInfo::OP_None; 7213 TargetTransformInfo::OperandValueProperties Op2VP = 7214 TargetTransformInfo::OP_None; 7215 Value *Op2 = I->getOperand(1); 7216 7217 // Check for a splat or for a non uniform vector of constants. 7218 if (isa<ConstantInt>(Op2)) { 7219 ConstantInt *CInt = cast<ConstantInt>(Op2); 7220 if (CInt && CInt->getValue().isPowerOf2()) 7221 Op2VP = TargetTransformInfo::OP_PowerOf2; 7222 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7223 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7224 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7225 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7226 if (SplatValue) { 7227 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7228 if (CInt && CInt->getValue().isPowerOf2()) 7229 Op2VP = TargetTransformInfo::OP_PowerOf2; 7230 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7231 } 7232 } else if (Legal->isUniform(Op2)) { 7233 Op2VK = TargetTransformInfo::OK_UniformValue; 7234 } 7235 SmallVector<const Value *, 4> Operands(I->operand_values()); 7236 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7237 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7238 Op2VK, Op1VP, Op2VP, Operands); 7239 } 7240 case Instruction::Select: { 7241 SelectInst *SI = cast<SelectInst>(I); 7242 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7243 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7244 Type *CondTy = SI->getCondition()->getType(); 7245 if (!ScalarCond) 7246 CondTy = VectorType::get(CondTy, VF); 7247 7248 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7249 } 7250 case Instruction::ICmp: 7251 case Instruction::FCmp: { 7252 Type *ValTy = I->getOperand(0)->getType(); 7253 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7254 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7255 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7256 VectorTy = ToVectorTy(ValTy, VF); 7257 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7258 } 7259 case Instruction::Store: 7260 case Instruction::Load: { 7261 unsigned Width = VF; 7262 if (Width > 1) { 7263 InstWidening Decision = getWideningDecision(I, Width); 7264 assert(Decision != CM_Unknown && 7265 "CM decision should be taken at this point"); 7266 if (Decision == CM_Scalarize) 7267 Width = 1; 7268 } 7269 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7270 return getMemoryInstructionCost(I, VF); 7271 } 7272 case Instruction::ZExt: 7273 case Instruction::SExt: 7274 case Instruction::FPToUI: 7275 case Instruction::FPToSI: 7276 case Instruction::FPExt: 7277 case Instruction::PtrToInt: 7278 case Instruction::IntToPtr: 7279 case Instruction::SIToFP: 7280 case Instruction::UIToFP: 7281 case Instruction::Trunc: 7282 case Instruction::FPTrunc: 7283 case Instruction::BitCast: { 7284 // We optimize the truncation of induction variables having constant 7285 // integer steps. The cost of these truncations is the same as the scalar 7286 // operation. 7287 if (isOptimizableIVTruncate(I, VF)) { 7288 auto *Trunc = cast<TruncInst>(I); 7289 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7290 Trunc->getSrcTy(), Trunc); 7291 } 7292 7293 Type *SrcScalarTy = I->getOperand(0)->getType(); 7294 Type *SrcVecTy = 7295 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7296 if (canTruncateToMinimalBitwidth(I, VF)) { 7297 // This cast is going to be shrunk. This may remove the cast or it might 7298 // turn it into slightly different cast. For example, if MinBW == 16, 7299 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7300 // 7301 // Calculate the modified src and dest types. 7302 Type *MinVecTy = VectorTy; 7303 if (I->getOpcode() == Instruction::Trunc) { 7304 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7305 VectorTy = 7306 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7307 } else if (I->getOpcode() == Instruction::ZExt || 7308 I->getOpcode() == Instruction::SExt) { 7309 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7310 VectorTy = 7311 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7312 } 7313 } 7314 7315 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7316 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7317 } 7318 case Instruction::Call: { 7319 bool NeedToScalarize; 7320 CallInst *CI = cast<CallInst>(I); 7321 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7322 if (getVectorIntrinsicIDForCall(CI, TLI)) 7323 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7324 return CallCost; 7325 } 7326 default: 7327 // The cost of executing VF copies of the scalar instruction. This opcode 7328 // is unknown. Assume that it is the same as 'mul'. 7329 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7330 getScalarizationOverhead(I, VF, TTI); 7331 } // end of switch. 7332 } 7333 7334 char LoopVectorize::ID = 0; 7335 7336 static const char lv_name[] = "Loop Vectorization"; 7337 7338 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7339 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7340 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7341 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7342 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7343 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7344 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7345 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7346 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7347 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7348 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7349 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7350 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7351 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7352 7353 namespace llvm { 7354 7355 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7356 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7357 } 7358 7359 } // end namespace llvm 7360 7361 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7362 // Check if the pointer operand of a load or store instruction is 7363 // consecutive. 7364 if (auto *Ptr = getPointerOperand(Inst)) 7365 return Legal->isConsecutivePtr(Ptr); 7366 return false; 7367 } 7368 7369 void LoopVectorizationCostModel::collectValuesToIgnore() { 7370 // Ignore ephemeral values. 7371 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7372 7373 // Ignore type-promoting instructions we identified during reduction 7374 // detection. 7375 for (auto &Reduction : *Legal->getReductionVars()) { 7376 RecurrenceDescriptor &RedDes = Reduction.second; 7377 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7378 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7379 } 7380 // Ignore type-casting instructions we identified during induction 7381 // detection. 7382 for (auto &Induction : *Legal->getInductionVars()) { 7383 InductionDescriptor &IndDes = Induction.second; 7384 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7385 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7386 } 7387 } 7388 7389 VectorizationFactor 7390 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7391 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7392 const VectorizationFactor NoVectorization = {1U, 0U}; 7393 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7394 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7395 return NoVectorization; 7396 7397 if (UserVF) { 7398 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7399 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7400 // Collect the instructions (and their associated costs) that will be more 7401 // profitable to scalarize. 7402 CM.selectUserVectorizationFactor(UserVF); 7403 buildVPlans(UserVF, UserVF); 7404 DEBUG(printPlans(dbgs())); 7405 return {UserVF, 0}; 7406 } 7407 7408 unsigned MaxVF = MaybeMaxVF.getValue(); 7409 assert(MaxVF != 0 && "MaxVF is zero."); 7410 7411 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 7412 // Collect Uniform and Scalar instructions after vectorization with VF. 7413 CM.collectUniformsAndScalars(VF); 7414 7415 // Collect the instructions (and their associated costs) that will be more 7416 // profitable to scalarize. 7417 if (VF > 1) 7418 CM.collectInstsToScalarize(VF); 7419 } 7420 7421 buildVPlans(1, MaxVF); 7422 DEBUG(printPlans(dbgs())); 7423 if (MaxVF == 1) 7424 return NoVectorization; 7425 7426 // Select the optimal vectorization factor. 7427 return CM.selectVectorizationFactor(MaxVF); 7428 } 7429 7430 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 7431 DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF << '\n'); 7432 BestVF = VF; 7433 BestUF = UF; 7434 7435 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7436 return !Plan->hasVF(VF); 7437 }); 7438 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7439 } 7440 7441 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7442 DominatorTree *DT) { 7443 // Perform the actual loop transformation. 7444 7445 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7446 VPCallbackILV CallbackILV(ILV); 7447 7448 VPTransformState State{BestVF, BestUF, LI, 7449 DT, ILV.Builder, ILV.VectorLoopValueMap, 7450 &ILV, CallbackILV}; 7451 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7452 7453 //===------------------------------------------------===// 7454 // 7455 // Notice: any optimization or new instruction that go 7456 // into the code below should also be implemented in 7457 // the cost-model. 7458 // 7459 //===------------------------------------------------===// 7460 7461 // 2. Copy and widen instructions from the old loop into the new loop. 7462 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7463 VPlans.front()->execute(&State); 7464 7465 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7466 // predication, updating analyses. 7467 ILV.fixVectorizedLoop(); 7468 } 7469 7470 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7471 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7472 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7473 7474 // We create new control-flow for the vectorized loop, so the original 7475 // condition will be dead after vectorization if it's only used by the 7476 // branch. 7477 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7478 if (Cmp && Cmp->hasOneUse()) 7479 DeadInstructions.insert(Cmp); 7480 7481 // We create new "steps" for induction variable updates to which the original 7482 // induction variables map. An original update instruction will be dead if 7483 // all its users except the induction variable are dead. 7484 for (auto &Induction : *Legal->getInductionVars()) { 7485 PHINode *Ind = Induction.first; 7486 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7487 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7488 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7489 })) 7490 DeadInstructions.insert(IndUpdate); 7491 7492 // We record as "Dead" also the type-casting instructions we had identified 7493 // during induction analysis. We don't need any handling for them in the 7494 // vectorized loop because we have proven that, under a proper runtime 7495 // test guarding the vectorized loop, the value of the phi, and the casted 7496 // value of the phi, are the same. The last instruction in this casting chain 7497 // will get its scalar/vector/widened def from the scalar/vector/widened def 7498 // of the respective phi node. Any other casts in the induction def-use chain 7499 // have no other uses outside the phi update chain, and will be ignored. 7500 InductionDescriptor &IndDes = Induction.second; 7501 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7502 DeadInstructions.insert(Casts.begin(), Casts.end()); 7503 } 7504 } 7505 7506 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7507 7508 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7509 7510 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7511 Instruction::BinaryOps BinOp) { 7512 // When unrolling and the VF is 1, we only need to add a simple scalar. 7513 Type *Ty = Val->getType(); 7514 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7515 7516 if (Ty->isFloatingPointTy()) { 7517 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7518 7519 // Floating point operations had to be 'fast' to enable the unrolling. 7520 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7521 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7522 } 7523 Constant *C = ConstantInt::get(Ty, StartIdx); 7524 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7525 } 7526 7527 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7528 SmallVector<Metadata *, 4> MDs; 7529 // Reserve first location for self reference to the LoopID metadata node. 7530 MDs.push_back(nullptr); 7531 bool IsUnrollMetadata = false; 7532 MDNode *LoopID = L->getLoopID(); 7533 if (LoopID) { 7534 // First find existing loop unrolling disable metadata. 7535 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7536 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7537 if (MD) { 7538 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7539 IsUnrollMetadata = 7540 S && S->getString().startswith("llvm.loop.unroll.disable"); 7541 } 7542 MDs.push_back(LoopID->getOperand(i)); 7543 } 7544 } 7545 7546 if (!IsUnrollMetadata) { 7547 // Add runtime unroll disable metadata. 7548 LLVMContext &Context = L->getHeader()->getContext(); 7549 SmallVector<Metadata *, 1> DisableOperands; 7550 DisableOperands.push_back( 7551 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7552 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7553 MDs.push_back(DisableNode); 7554 MDNode *NewLoopID = MDNode::get(Context, MDs); 7555 // Set operand 0 to refer to the loop id itself. 7556 NewLoopID->replaceOperandWith(0, NewLoopID); 7557 L->setLoopID(NewLoopID); 7558 } 7559 } 7560 7561 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7562 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 7563 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 7564 bool PredicateAtRangeStart = Predicate(Range.Start); 7565 7566 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 7567 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7568 Range.End = TmpVF; 7569 break; 7570 } 7571 7572 return PredicateAtRangeStart; 7573 } 7574 7575 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7576 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7577 /// of VF's starting at a given VF and extending it as much as possible. Each 7578 /// vectorization decision can potentially shorten this sub-range during 7579 /// buildVPlan(). 7580 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 7581 7582 // Collect conditions feeding internal conditional branches; they need to be 7583 // represented in VPlan for it to model masking. 7584 SmallPtrSet<Value *, 1> NeedDef; 7585 7586 auto *Latch = OrigLoop->getLoopLatch(); 7587 for (BasicBlock *BB : OrigLoop->blocks()) { 7588 if (BB == Latch) 7589 continue; 7590 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7591 if (Branch && Branch->isConditional()) 7592 NeedDef.insert(Branch->getCondition()); 7593 } 7594 7595 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7596 VFRange SubRange = {VF, MaxVF + 1}; 7597 VPlans.push_back(buildVPlan(SubRange, NeedDef)); 7598 VF = SubRange.End; 7599 } 7600 } 7601 7602 VPValue *LoopVectorizationPlanner::createEdgeMask(BasicBlock *Src, 7603 BasicBlock *Dst, 7604 VPlanPtr &Plan) { 7605 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7606 7607 // Look for cached value. 7608 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7609 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7610 if (ECEntryIt != EdgeMaskCache.end()) 7611 return ECEntryIt->second; 7612 7613 VPValue *SrcMask = createBlockInMask(Src, Plan); 7614 7615 // The terminator has to be a branch inst! 7616 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7617 assert(BI && "Unexpected terminator found"); 7618 7619 if (!BI->isConditional()) 7620 return EdgeMaskCache[Edge] = SrcMask; 7621 7622 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 7623 assert(EdgeMask && "No Edge Mask found for condition"); 7624 7625 if (BI->getSuccessor(0) != Dst) 7626 EdgeMask = Builder.createNot(EdgeMask); 7627 7628 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 7629 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 7630 7631 return EdgeMaskCache[Edge] = EdgeMask; 7632 } 7633 7634 VPValue *LoopVectorizationPlanner::createBlockInMask(BasicBlock *BB, 7635 VPlanPtr &Plan) { 7636 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 7637 7638 // Look for cached value. 7639 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 7640 if (BCEntryIt != BlockMaskCache.end()) 7641 return BCEntryIt->second; 7642 7643 // All-one mask is modelled as no-mask following the convention for masked 7644 // load/store/gather/scatter. Initialize BlockMask to no-mask. 7645 VPValue *BlockMask = nullptr; 7646 7647 // Loop incoming mask is all-one. 7648 if (OrigLoop->getHeader() == BB) 7649 return BlockMaskCache[BB] = BlockMask; 7650 7651 // This is the block mask. We OR all incoming edges. 7652 for (auto *Predecessor : predecessors(BB)) { 7653 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 7654 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 7655 return BlockMaskCache[BB] = EdgeMask; 7656 7657 if (!BlockMask) { // BlockMask has its initialized nullptr value. 7658 BlockMask = EdgeMask; 7659 continue; 7660 } 7661 7662 BlockMask = Builder.createOr(BlockMask, EdgeMask); 7663 } 7664 7665 return BlockMaskCache[BB] = BlockMask; 7666 } 7667 7668 VPInterleaveRecipe * 7669 LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I, 7670 VFRange &Range) { 7671 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(I); 7672 if (!IG) 7673 return nullptr; 7674 7675 // Now check if IG is relevant for VF's in the given range. 7676 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 7677 return [=](unsigned VF) -> bool { 7678 return (VF >= 2 && // Query is illegal for VF == 1 7679 CM.getWideningDecision(I, VF) == 7680 LoopVectorizationCostModel::CM_Interleave); 7681 }; 7682 }; 7683 if (!getDecisionAndClampRange(isIGMember(I), Range)) 7684 return nullptr; 7685 7686 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 7687 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 7688 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 7689 assert(I == IG->getInsertPos() && 7690 "Generating a recipe for an adjunct member of an interleave group"); 7691 7692 return new VPInterleaveRecipe(IG); 7693 } 7694 7695 VPWidenMemoryInstructionRecipe * 7696 LoopVectorizationPlanner::tryToWidenMemory(Instruction *I, VFRange &Range, 7697 VPlanPtr &Plan) { 7698 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 7699 return nullptr; 7700 7701 auto willWiden = [&](unsigned VF) -> bool { 7702 if (VF == 1) 7703 return false; 7704 if (CM.isScalarAfterVectorization(I, VF) || 7705 CM.isProfitableToScalarize(I, VF)) 7706 return false; 7707 LoopVectorizationCostModel::InstWidening Decision = 7708 CM.getWideningDecision(I, VF); 7709 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 7710 "CM decision should be taken at this point."); 7711 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 7712 "Interleave memory opportunity should be caught earlier."); 7713 return Decision != LoopVectorizationCostModel::CM_Scalarize; 7714 }; 7715 7716 if (!getDecisionAndClampRange(willWiden, Range)) 7717 return nullptr; 7718 7719 VPValue *Mask = nullptr; 7720 if (Legal->isMaskRequired(I)) 7721 Mask = createBlockInMask(I->getParent(), Plan); 7722 7723 return new VPWidenMemoryInstructionRecipe(*I, Mask); 7724 } 7725 7726 VPWidenIntOrFpInductionRecipe * 7727 LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I, 7728 VFRange &Range) { 7729 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 7730 // Check if this is an integer or fp induction. If so, build the recipe that 7731 // produces its scalar and vector values. 7732 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 7733 if (II.getKind() == InductionDescriptor::IK_IntInduction || 7734 II.getKind() == InductionDescriptor::IK_FpInduction) 7735 return new VPWidenIntOrFpInductionRecipe(Phi); 7736 7737 return nullptr; 7738 } 7739 7740 // Optimize the special case where the source is a constant integer 7741 // induction variable. Notice that we can only optimize the 'trunc' case 7742 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 7743 // (c) other casts depend on pointer size. 7744 7745 // Determine whether \p K is a truncation based on an induction variable that 7746 // can be optimized. 7747 auto isOptimizableIVTruncate = 7748 [&](Instruction *K) -> std::function<bool(unsigned)> { 7749 return 7750 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 7751 }; 7752 7753 if (isa<TruncInst>(I) && 7754 getDecisionAndClampRange(isOptimizableIVTruncate(I), Range)) 7755 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 7756 cast<TruncInst>(I)); 7757 return nullptr; 7758 } 7759 7760 VPBlendRecipe * 7761 LoopVectorizationPlanner::tryToBlend(Instruction *I, VPlanPtr &Plan) { 7762 PHINode *Phi = dyn_cast<PHINode>(I); 7763 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 7764 return nullptr; 7765 7766 // We know that all PHIs in non-header blocks are converted into selects, so 7767 // we don't have to worry about the insertion order and we can just use the 7768 // builder. At this point we generate the predication tree. There may be 7769 // duplications since this is a simple recursive scan, but future 7770 // optimizations will clean it up. 7771 7772 SmallVector<VPValue *, 2> Masks; 7773 unsigned NumIncoming = Phi->getNumIncomingValues(); 7774 for (unsigned In = 0; In < NumIncoming; In++) { 7775 VPValue *EdgeMask = 7776 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 7777 assert((EdgeMask || NumIncoming == 1) && 7778 "Multiple predecessors with one having a full mask"); 7779 if (EdgeMask) 7780 Masks.push_back(EdgeMask); 7781 } 7782 return new VPBlendRecipe(Phi, Masks); 7783 } 7784 7785 bool LoopVectorizationPlanner::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 7786 VFRange &Range) { 7787 if (Legal->isScalarWithPredication(I)) 7788 return false; 7789 7790 auto IsVectorizableOpcode = [](unsigned Opcode) { 7791 switch (Opcode) { 7792 case Instruction::Add: 7793 case Instruction::And: 7794 case Instruction::AShr: 7795 case Instruction::BitCast: 7796 case Instruction::Br: 7797 case Instruction::Call: 7798 case Instruction::FAdd: 7799 case Instruction::FCmp: 7800 case Instruction::FDiv: 7801 case Instruction::FMul: 7802 case Instruction::FPExt: 7803 case Instruction::FPToSI: 7804 case Instruction::FPToUI: 7805 case Instruction::FPTrunc: 7806 case Instruction::FRem: 7807 case Instruction::FSub: 7808 case Instruction::GetElementPtr: 7809 case Instruction::ICmp: 7810 case Instruction::IntToPtr: 7811 case Instruction::Load: 7812 case Instruction::LShr: 7813 case Instruction::Mul: 7814 case Instruction::Or: 7815 case Instruction::PHI: 7816 case Instruction::PtrToInt: 7817 case Instruction::SDiv: 7818 case Instruction::Select: 7819 case Instruction::SExt: 7820 case Instruction::Shl: 7821 case Instruction::SIToFP: 7822 case Instruction::SRem: 7823 case Instruction::Store: 7824 case Instruction::Sub: 7825 case Instruction::Trunc: 7826 case Instruction::UDiv: 7827 case Instruction::UIToFP: 7828 case Instruction::URem: 7829 case Instruction::Xor: 7830 case Instruction::ZExt: 7831 return true; 7832 } 7833 return false; 7834 }; 7835 7836 if (!IsVectorizableOpcode(I->getOpcode())) 7837 return false; 7838 7839 if (CallInst *CI = dyn_cast<CallInst>(I)) { 7840 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7841 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 7842 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 7843 return false; 7844 } 7845 7846 auto willWiden = [&](unsigned VF) -> bool { 7847 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 7848 CM.isProfitableToScalarize(I, VF))) 7849 return false; 7850 if (CallInst *CI = dyn_cast<CallInst>(I)) { 7851 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7852 // The following case may be scalarized depending on the VF. 7853 // The flag shows whether we use Intrinsic or a usual Call for vectorized 7854 // version of the instruction. 7855 // Is it beneficial to perform intrinsic call compared to lib call? 7856 bool NeedToScalarize; 7857 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 7858 bool UseVectorIntrinsic = 7859 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 7860 return UseVectorIntrinsic || !NeedToScalarize; 7861 } 7862 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 7863 assert(CM.getWideningDecision(I, VF) == 7864 LoopVectorizationCostModel::CM_Scalarize && 7865 "Memory widening decisions should have been taken care by now"); 7866 return false; 7867 } 7868 return true; 7869 }; 7870 7871 if (!getDecisionAndClampRange(willWiden, Range)) 7872 return false; 7873 7874 // Success: widen this instruction. We optimize the common case where 7875 // consecutive instructions can be represented by a single recipe. 7876 if (!VPBB->empty()) { 7877 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 7878 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 7879 return true; 7880 } 7881 7882 VPBB->appendRecipe(new VPWidenRecipe(I)); 7883 return true; 7884 } 7885 7886 VPBasicBlock *LoopVectorizationPlanner::handleReplication( 7887 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7888 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7889 VPlanPtr &Plan) { 7890 bool IsUniform = getDecisionAndClampRange( 7891 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 7892 Range); 7893 7894 bool IsPredicated = Legal->isScalarWithPredication(I); 7895 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 7896 7897 // Find if I uses a predicated instruction. If so, it will use its scalar 7898 // value. Avoid hoisting the insert-element which packs the scalar value into 7899 // a vector value, as that happens iff all users use the vector value. 7900 for (auto &Op : I->operands()) 7901 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7902 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7903 PredInst2Recipe[PredInst]->setAlsoPack(false); 7904 7905 // Finalize the recipe for Instr, first if it is not predicated. 7906 if (!IsPredicated) { 7907 DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7908 VPBB->appendRecipe(Recipe); 7909 return VPBB; 7910 } 7911 DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7912 assert(VPBB->getSuccessors().empty() && 7913 "VPBB has successors when handling predicated replication."); 7914 // Record predicated instructions for above packing optimizations. 7915 PredInst2Recipe[I] = Recipe; 7916 VPBlockBase *Region = 7917 VPBB->setOneSuccessor(createReplicateRegion(I, Recipe, Plan)); 7918 return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock())); 7919 } 7920 7921 VPRegionBlock * 7922 LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr, 7923 VPRecipeBase *PredRecipe, 7924 VPlanPtr &Plan) { 7925 // Instructions marked for predication are replicated and placed under an 7926 // if-then construct to prevent side-effects. 7927 7928 // Generate recipes to compute the block mask for this region. 7929 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7930 7931 // Build the triangular if-then region. 7932 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7933 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7934 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7935 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7936 auto *PHIRecipe = 7937 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7938 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7939 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7940 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7941 7942 // Note: first set Entry as region entry and then connect successors starting 7943 // from it in order, to propagate the "parent" of each VPBasicBlock. 7944 Entry->setTwoSuccessors(Pred, Exit); 7945 Pred->setOneSuccessor(Exit); 7946 7947 return Region; 7948 } 7949 7950 LoopVectorizationPlanner::VPlanPtr 7951 LoopVectorizationPlanner::buildVPlan(VFRange &Range, 7952 const SmallPtrSetImpl<Value *> &NeedDef) { 7953 EdgeMaskCache.clear(); 7954 BlockMaskCache.clear(); 7955 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7956 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 7957 7958 // Collect instructions from the original loop that will become trivially dead 7959 // in the vectorized loop. We don't need to vectorize these instructions. For 7960 // example, original induction update instructions can become dead because we 7961 // separately emit induction "steps" when generating code for the new loop. 7962 // Similarly, we create a new latch condition when setting up the structure 7963 // of the new loop, so the old one can become dead. 7964 SmallPtrSet<Instruction *, 4> DeadInstructions; 7965 collectTriviallyDeadInstructions(DeadInstructions); 7966 7967 // Hold a mapping from predicated instructions to their recipes, in order to 7968 // fix their AlsoPack behavior if a user is determined to replicate and use a 7969 // scalar instead of vector value. 7970 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7971 7972 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7973 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7974 auto Plan = llvm::make_unique<VPlan>(VPBB); 7975 7976 // Represent values that will have defs inside VPlan. 7977 for (Value *V : NeedDef) 7978 Plan->addVPValue(V); 7979 7980 // Scan the body of the loop in a topological order to visit each basic block 7981 // after having visited its predecessor basic blocks. 7982 LoopBlocksDFS DFS(OrigLoop); 7983 DFS.perform(LI); 7984 7985 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7986 // Relevant instructions from basic block BB will be grouped into VPRecipe 7987 // ingredients and fill a new VPBasicBlock. 7988 unsigned VPBBsForBB = 0; 7989 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7990 VPBB->setOneSuccessor(FirstVPBBForBB); 7991 VPBB = FirstVPBBForBB; 7992 Builder.setInsertPoint(VPBB); 7993 7994 std::vector<Instruction *> Ingredients; 7995 7996 // Organize the ingredients to vectorize from current basic block in the 7997 // right order. 7998 for (Instruction &I : *BB) { 7999 Instruction *Instr = &I; 8000 8001 // First filter out irrelevant instructions, to ensure no recipes are 8002 // built for them. 8003 if (isa<BranchInst>(Instr) || isa<DbgInfoIntrinsic>(Instr) || 8004 DeadInstructions.count(Instr)) 8005 continue; 8006 8007 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 8008 // member of the IG, do not construct any Recipe for it. 8009 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(Instr); 8010 if (IG && Instr != IG->getInsertPos() && 8011 Range.Start >= 2 && // Query is illegal for VF == 1 8012 CM.getWideningDecision(Instr, Range.Start) == 8013 LoopVectorizationCostModel::CM_Interleave) { 8014 if (SinkAfterInverse.count(Instr)) 8015 Ingredients.push_back(SinkAfterInverse.find(Instr)->second); 8016 continue; 8017 } 8018 8019 // Move instructions to handle first-order recurrences, step 1: avoid 8020 // handling this instruction until after we've handled the instruction it 8021 // should follow. 8022 auto SAIt = SinkAfter.find(Instr); 8023 if (SAIt != SinkAfter.end()) { 8024 DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" << *SAIt->second 8025 << " to vectorize a 1st order recurrence.\n"); 8026 SinkAfterInverse[SAIt->second] = Instr; 8027 continue; 8028 } 8029 8030 Ingredients.push_back(Instr); 8031 8032 // Move instructions to handle first-order recurrences, step 2: push the 8033 // instruction to be sunk at its insertion point. 8034 auto SAInvIt = SinkAfterInverse.find(Instr); 8035 if (SAInvIt != SinkAfterInverse.end()) 8036 Ingredients.push_back(SAInvIt->second); 8037 } 8038 8039 // Introduce each ingredient into VPlan. 8040 for (Instruction *Instr : Ingredients) { 8041 VPRecipeBase *Recipe = nullptr; 8042 8043 // Check if Instr should belong to an interleave memory recipe, or already 8044 // does. In the latter case Instr is irrelevant. 8045 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 8046 VPBB->appendRecipe(Recipe); 8047 continue; 8048 } 8049 8050 // Check if Instr is a memory operation that should be widened. 8051 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 8052 VPBB->appendRecipe(Recipe); 8053 continue; 8054 } 8055 8056 // Check if Instr should form some PHI recipe. 8057 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 8058 VPBB->appendRecipe(Recipe); 8059 continue; 8060 } 8061 if ((Recipe = tryToBlend(Instr, Plan))) { 8062 VPBB->appendRecipe(Recipe); 8063 continue; 8064 } 8065 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 8066 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 8067 continue; 8068 } 8069 8070 // Check if Instr is to be widened by a general VPWidenRecipe, after 8071 // having first checked for specific widening recipes that deal with 8072 // Interleave Groups, Inductions and Phi nodes. 8073 if (tryToWiden(Instr, VPBB, Range)) 8074 continue; 8075 8076 // Otherwise, if all widening options failed, Instruction is to be 8077 // replicated. This may create a successor for VPBB. 8078 VPBasicBlock *NextVPBB = 8079 handleReplication(Instr, Range, VPBB, PredInst2Recipe, Plan); 8080 if (NextVPBB != VPBB) { 8081 VPBB = NextVPBB; 8082 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8083 : ""); 8084 } 8085 } 8086 } 8087 8088 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8089 // may also be empty, such as the last one VPBB, reflecting original 8090 // basic-blocks with no recipes. 8091 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8092 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8093 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8094 PreEntry->disconnectSuccessor(Entry); 8095 delete PreEntry; 8096 8097 std::string PlanName; 8098 raw_string_ostream RSO(PlanName); 8099 unsigned VF = Range.Start; 8100 Plan->addVF(VF); 8101 RSO << "Initial VPlan for VF={" << VF; 8102 for (VF *= 2; VF < Range.End; VF *= 2) { 8103 Plan->addVF(VF); 8104 RSO << "," << VF; 8105 } 8106 RSO << "},UF>=1"; 8107 RSO.flush(); 8108 Plan->setName(PlanName); 8109 8110 return Plan; 8111 } 8112 8113 Value* LoopVectorizationPlanner::VPCallbackILV:: 8114 getOrCreateVectorValues(Value *V, unsigned Part) { 8115 return ILV.getOrCreateVectorValue(V, Part); 8116 } 8117 8118 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 8119 O << " +\n" 8120 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8121 IG->getInsertPos()->printAsOperand(O, false); 8122 O << "\\l\""; 8123 for (unsigned i = 0; i < IG->getFactor(); ++i) 8124 if (Instruction *I = IG->getMember(i)) 8125 O << " +\n" 8126 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 8127 } 8128 8129 void VPWidenRecipe::execute(VPTransformState &State) { 8130 for (auto &Instr : make_range(Begin, End)) 8131 State.ILV->widenInstruction(Instr); 8132 } 8133 8134 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 8135 assert(!State.Instance && "Int or FP induction being replicated."); 8136 State.ILV->widenIntOrFpInduction(IV, Trunc); 8137 } 8138 8139 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8140 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 8141 } 8142 8143 void VPBlendRecipe::execute(VPTransformState &State) { 8144 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8145 // We know that all PHIs in non-header blocks are converted into 8146 // selects, so we don't have to worry about the insertion order and we 8147 // can just use the builder. 8148 // At this point we generate the predication tree. There may be 8149 // duplications since this is a simple recursive scan, but future 8150 // optimizations will clean it up. 8151 8152 unsigned NumIncoming = Phi->getNumIncomingValues(); 8153 8154 assert((User || NumIncoming == 1) && 8155 "Multiple predecessors with predecessors having a full mask"); 8156 // Generate a sequence of selects of the form: 8157 // SELECT(Mask3, In3, 8158 // SELECT(Mask2, In2, 8159 // ( ...))) 8160 InnerLoopVectorizer::VectorParts Entry(State.UF); 8161 for (unsigned In = 0; In < NumIncoming; ++In) { 8162 for (unsigned Part = 0; Part < State.UF; ++Part) { 8163 // We might have single edge PHIs (blocks) - use an identity 8164 // 'select' for the first PHI operand. 8165 Value *In0 = 8166 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 8167 if (In == 0) 8168 Entry[Part] = In0; // Initialize with the first incoming value. 8169 else { 8170 // Select between the current value and the previous incoming edge 8171 // based on the incoming mask. 8172 Value *Cond = State.get(User->getOperand(In), Part); 8173 Entry[Part] = 8174 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8175 } 8176 } 8177 } 8178 for (unsigned Part = 0; Part < State.UF; ++Part) 8179 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 8180 } 8181 8182 void VPInterleaveRecipe::execute(VPTransformState &State) { 8183 assert(!State.Instance && "Interleave group being replicated."); 8184 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 8185 } 8186 8187 void VPReplicateRecipe::execute(VPTransformState &State) { 8188 if (State.Instance) { // Generate a single instance. 8189 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 8190 // Insert scalar instance packing it into a vector. 8191 if (AlsoPack && State.VF > 1) { 8192 // If we're constructing lane 0, initialize to start from undef. 8193 if (State.Instance->Lane == 0) { 8194 Value *Undef = 8195 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 8196 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 8197 } 8198 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 8199 } 8200 return; 8201 } 8202 8203 // Generate scalar instances for all VF lanes of all UF parts, unless the 8204 // instruction is uniform inwhich case generate only the first lane for each 8205 // of the UF parts. 8206 unsigned EndLane = IsUniform ? 1 : State.VF; 8207 for (unsigned Part = 0; Part < State.UF; ++Part) 8208 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8209 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 8210 } 8211 8212 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8213 assert(State.Instance && "Branch on Mask works only on single instance."); 8214 8215 unsigned Part = State.Instance->Part; 8216 unsigned Lane = State.Instance->Lane; 8217 8218 Value *ConditionBit = nullptr; 8219 if (!User) // Block in mask is all-one. 8220 ConditionBit = State.Builder.getTrue(); 8221 else { 8222 VPValue *BlockInMask = User->getOperand(0); 8223 ConditionBit = State.get(BlockInMask, Part); 8224 if (ConditionBit->getType()->isVectorTy()) 8225 ConditionBit = State.Builder.CreateExtractElement( 8226 ConditionBit, State.Builder.getInt32(Lane)); 8227 } 8228 8229 // Replace the temporary unreachable terminator with a new conditional branch, 8230 // whose two destinations will be set later when they are created. 8231 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8232 assert(isa<UnreachableInst>(CurrentTerminator) && 8233 "Expected to replace unreachable terminator with conditional branch."); 8234 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8235 CondBr->setSuccessor(0, nullptr); 8236 ReplaceInstWithInst(CurrentTerminator, CondBr); 8237 } 8238 8239 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8240 assert(State.Instance && "Predicated instruction PHI works per instance."); 8241 Instruction *ScalarPredInst = cast<Instruction>( 8242 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 8243 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8244 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8245 assert(PredicatingBB && "Predicated block has no single predecessor."); 8246 8247 // By current pack/unpack logic we need to generate only a single phi node: if 8248 // a vector value for the predicated instruction exists at this point it means 8249 // the instruction has vector users only, and a phi for the vector value is 8250 // needed. In this case the recipe of the predicated instruction is marked to 8251 // also do that packing, thereby "hoisting" the insert-element sequence. 8252 // Otherwise, a phi node for the scalar value is needed. 8253 unsigned Part = State.Instance->Part; 8254 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8255 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8256 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8257 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8258 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8259 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8260 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8261 } else { 8262 Type *PredInstType = PredInst->getType(); 8263 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8264 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8265 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8266 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8267 } 8268 } 8269 8270 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 8271 if (!User) 8272 return State.ILV->vectorizeMemoryInstruction(&Instr); 8273 8274 // Last (and currently only) operand is a mask. 8275 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 8276 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 8277 for (unsigned Part = 0; Part < State.UF; ++Part) 8278 MaskValues[Part] = State.get(Mask, Part); 8279 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 8280 } 8281 8282 bool LoopVectorizePass::processLoop(Loop *L) { 8283 assert(L->empty() && "Only process inner loops."); 8284 8285 #ifndef NDEBUG 8286 const std::string DebugLocStr = getDebugLocString(L); 8287 #endif /* NDEBUG */ 8288 8289 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8290 << L->getHeader()->getParent()->getName() << "\" from " 8291 << DebugLocStr << "\n"); 8292 8293 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 8294 8295 DEBUG(dbgs() << "LV: Loop hints:" 8296 << " force=" 8297 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8298 ? "disabled" 8299 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8300 ? "enabled" 8301 : "?")) 8302 << " width=" << Hints.getWidth() 8303 << " unroll=" << Hints.getInterleave() << "\n"); 8304 8305 // Function containing loop 8306 Function *F = L->getHeader()->getParent(); 8307 8308 // Looking at the diagnostic output is the only way to determine if a loop 8309 // was vectorized (other than looking at the IR or machine code), so it 8310 // is important to generate an optimization remark for each loop. Most of 8311 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8312 // generated as OptimizationRemark and OptimizationRemarkMissed are 8313 // less verbose reporting vectorized loops and unvectorized loops that may 8314 // benefit from vectorization, respectively. 8315 8316 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 8317 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8318 return false; 8319 } 8320 8321 PredicatedScalarEvolution PSE(*SE, *L); 8322 8323 // Check if it is legal to vectorize the loop. 8324 LoopVectorizationRequirements Requirements(*ORE); 8325 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 8326 &Requirements, &Hints); 8327 if (!LVL.canVectorize()) { 8328 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8329 emitMissedWarning(F, L, Hints, ORE); 8330 return false; 8331 } 8332 8333 // Check the function attributes to find out if this function should be 8334 // optimized for size. 8335 bool OptForSize = 8336 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 8337 8338 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8339 // count by optimizing for size, to minimize overheads. 8340 unsigned ExpectedTC = SE->getSmallConstantMaxTripCount(L); 8341 bool HasExpectedTC = (ExpectedTC > 0); 8342 8343 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 8344 auto EstimatedTC = getLoopEstimatedTripCount(L); 8345 if (EstimatedTC) { 8346 ExpectedTC = *EstimatedTC; 8347 HasExpectedTC = true; 8348 } 8349 } 8350 8351 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 8352 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8353 << "This loop is worth vectorizing only if no scalar " 8354 << "iteration overheads are incurred."); 8355 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8356 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8357 else { 8358 DEBUG(dbgs() << "\n"); 8359 // Loops with a very small trip count are considered for vectorization 8360 // under OptForSize, thereby making sure the cost of their loop body is 8361 // dominant, free of runtime guards and scalar iteration overheads. 8362 OptForSize = true; 8363 } 8364 } 8365 8366 // Check the function attributes to see if implicit floats are allowed. 8367 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8368 // an integer loop and the vector instructions selected are purely integer 8369 // vector instructions? 8370 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8371 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 8372 "attribute is used.\n"); 8373 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 8374 "NoImplicitFloat", L) 8375 << "loop not vectorized due to NoImplicitFloat attribute"); 8376 emitMissedWarning(F, L, Hints, ORE); 8377 return false; 8378 } 8379 8380 // Check if the target supports potentially unsafe FP vectorization. 8381 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8382 // for the target we're vectorizing for, to make sure none of the 8383 // additional fp-math flags can help. 8384 if (Hints.isPotentiallyUnsafe() && 8385 TTI->isFPVectorizationPotentiallyUnsafe()) { 8386 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 8387 ORE->emit( 8388 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 8389 << "loop not vectorized due to unsafe FP support."); 8390 emitMissedWarning(F, L, Hints, ORE); 8391 return false; 8392 } 8393 8394 // Use the cost model. 8395 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 8396 &Hints); 8397 CM.collectValuesToIgnore(); 8398 8399 // Use the planner for vectorization. 8400 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 8401 8402 // Get user vectorization factor. 8403 unsigned UserVF = Hints.getWidth(); 8404 8405 // Plan how to best vectorize, return the best VF and its cost. 8406 VectorizationFactor VF = LVP.plan(OptForSize, UserVF); 8407 8408 // Select the interleave count. 8409 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 8410 8411 // Get user interleave count. 8412 unsigned UserIC = Hints.getInterleave(); 8413 8414 // Identify the diagnostic messages that should be produced. 8415 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8416 bool VectorizeLoop = true, InterleaveLoop = true; 8417 if (Requirements.doesNotMeet(F, L, Hints)) { 8418 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8419 "requirements.\n"); 8420 emitMissedWarning(F, L, Hints, ORE); 8421 return false; 8422 } 8423 8424 if (VF.Width == 1) { 8425 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8426 VecDiagMsg = std::make_pair( 8427 "VectorizationNotBeneficial", 8428 "the cost-model indicates that vectorization is not beneficial"); 8429 VectorizeLoop = false; 8430 } 8431 8432 if (IC == 1 && UserIC <= 1) { 8433 // Tell the user interleaving is not beneficial. 8434 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8435 IntDiagMsg = std::make_pair( 8436 "InterleavingNotBeneficial", 8437 "the cost-model indicates that interleaving is not beneficial"); 8438 InterleaveLoop = false; 8439 if (UserIC == 1) { 8440 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8441 IntDiagMsg.second += 8442 " and is explicitly disabled or interleave count is set to 1"; 8443 } 8444 } else if (IC > 1 && UserIC == 1) { 8445 // Tell the user interleaving is beneficial, but it explicitly disabled. 8446 DEBUG(dbgs() 8447 << "LV: Interleaving is beneficial but is explicitly disabled."); 8448 IntDiagMsg = std::make_pair( 8449 "InterleavingBeneficialButDisabled", 8450 "the cost-model indicates that interleaving is beneficial " 8451 "but is explicitly disabled or interleave count is set to 1"); 8452 InterleaveLoop = false; 8453 } 8454 8455 // Override IC if user provided an interleave count. 8456 IC = UserIC > 0 ? UserIC : IC; 8457 8458 // Emit diagnostic messages, if any. 8459 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8460 if (!VectorizeLoop && !InterleaveLoop) { 8461 // Do not vectorize or interleaving the loop. 8462 ORE->emit([&]() { 8463 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8464 L->getStartLoc(), L->getHeader()) 8465 << VecDiagMsg.second; 8466 }); 8467 ORE->emit([&]() { 8468 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8469 L->getStartLoc(), L->getHeader()) 8470 << IntDiagMsg.second; 8471 }); 8472 return false; 8473 } else if (!VectorizeLoop && InterleaveLoop) { 8474 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8475 ORE->emit([&]() { 8476 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8477 L->getStartLoc(), L->getHeader()) 8478 << VecDiagMsg.second; 8479 }); 8480 } else if (VectorizeLoop && !InterleaveLoop) { 8481 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8482 << DebugLocStr << '\n'); 8483 ORE->emit([&]() { 8484 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8485 L->getStartLoc(), L->getHeader()) 8486 << IntDiagMsg.second; 8487 }); 8488 } else if (VectorizeLoop && InterleaveLoop) { 8489 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8490 << DebugLocStr << '\n'); 8491 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8492 } 8493 8494 LVP.setBestPlan(VF.Width, IC); 8495 8496 using namespace ore; 8497 8498 if (!VectorizeLoop) { 8499 assert(IC > 1 && "interleave count should not be 1 or 0"); 8500 // If we decided that it is not legal to vectorize the loop, then 8501 // interleave it. 8502 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 8503 &CM); 8504 LVP.executePlan(Unroller, DT); 8505 8506 ORE->emit([&]() { 8507 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8508 L->getHeader()) 8509 << "interleaved loop (interleaved count: " 8510 << NV("InterleaveCount", IC) << ")"; 8511 }); 8512 } else { 8513 // If we decided that it is *legal* to vectorize the loop, then do it. 8514 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8515 &LVL, &CM); 8516 LVP.executePlan(LB, DT); 8517 ++LoopsVectorized; 8518 8519 // Add metadata to disable runtime unrolling a scalar loop when there are 8520 // no runtime checks about strides and memory. A scalar loop that is 8521 // rarely used is not worth unrolling. 8522 if (!LB.areSafetyChecksAdded()) 8523 AddRuntimeUnrollDisableMetaData(L); 8524 8525 // Report the vectorization decision. 8526 ORE->emit([&]() { 8527 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8528 L->getHeader()) 8529 << "vectorized loop (vectorization width: " 8530 << NV("VectorizationFactor", VF.Width) 8531 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8532 }); 8533 } 8534 8535 // Mark the loop as already vectorized to avoid vectorizing again. 8536 Hints.setAlreadyVectorized(); 8537 8538 DEBUG(verifyFunction(*L->getHeader()->getParent())); 8539 return true; 8540 } 8541 8542 bool LoopVectorizePass::runImpl( 8543 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8544 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8545 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 8546 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8547 OptimizationRemarkEmitter &ORE_) { 8548 SE = &SE_; 8549 LI = &LI_; 8550 TTI = &TTI_; 8551 DT = &DT_; 8552 BFI = &BFI_; 8553 TLI = TLI_; 8554 AA = &AA_; 8555 AC = &AC_; 8556 GetLAA = &GetLAA_; 8557 DB = &DB_; 8558 ORE = &ORE_; 8559 8560 // Don't attempt if 8561 // 1. the target claims to have no vector registers, and 8562 // 2. interleaving won't help ILP. 8563 // 8564 // The second condition is necessary because, even if the target has no 8565 // vector registers, loop vectorization may still enable scalar 8566 // interleaving. 8567 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 8568 return false; 8569 8570 bool Changed = false; 8571 8572 // The vectorizer requires loops to be in simplified form. 8573 // Since simplification may add new inner loops, it has to run before the 8574 // legality and profitability checks. This means running the loop vectorizer 8575 // will simplify all loops, regardless of whether anything end up being 8576 // vectorized. 8577 for (auto &L : *LI) 8578 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 8579 8580 // Build up a worklist of inner-loops to vectorize. This is necessary as 8581 // the act of vectorizing or partially unrolling a loop creates new loops 8582 // and can invalidate iterators across the loops. 8583 SmallVector<Loop *, 8> Worklist; 8584 8585 for (Loop *L : *LI) 8586 addAcyclicInnerLoop(*L, Worklist); 8587 8588 LoopsAnalyzed += Worklist.size(); 8589 8590 // Now walk the identified inner loops. 8591 while (!Worklist.empty()) { 8592 Loop *L = Worklist.pop_back_val(); 8593 8594 // For the inner loops we actually process, form LCSSA to simplify the 8595 // transform. 8596 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8597 8598 Changed |= processLoop(L); 8599 } 8600 8601 // Process each loop nest in the function. 8602 return Changed; 8603 } 8604 8605 PreservedAnalyses LoopVectorizePass::run(Function &F, 8606 FunctionAnalysisManager &AM) { 8607 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8608 auto &LI = AM.getResult<LoopAnalysis>(F); 8609 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8610 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8611 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8612 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8613 auto &AA = AM.getResult<AAManager>(F); 8614 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8615 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8616 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8617 8618 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8619 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8620 [&](Loop &L) -> const LoopAccessInfo & { 8621 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 8622 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8623 }; 8624 bool Changed = 8625 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 8626 if (!Changed) 8627 return PreservedAnalyses::all(); 8628 PreservedAnalyses PA; 8629 PA.preserve<LoopAnalysis>(); 8630 PA.preserve<DominatorTreeAnalysis>(); 8631 PA.preserve<BasicAA>(); 8632 PA.preserve<GlobalsAA>(); 8633 return PA; 8634 } 8635