1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "VPlan.h" 51 #include "llvm/ADT/APInt.h" 52 #include "llvm/ADT/ArrayRef.h" 53 #include "llvm/ADT/DenseMap.h" 54 #include "llvm/ADT/DenseMapInfo.h" 55 #include "llvm/ADT/Hashing.h" 56 #include "llvm/ADT/MapVector.h" 57 #include "llvm/ADT/None.h" 58 #include "llvm/ADT/Optional.h" 59 #include "llvm/ADT/SCCIterator.h" 60 #include "llvm/ADT/STLExtras.h" 61 #include "llvm/ADT/SetVector.h" 62 #include "llvm/ADT/SmallPtrSet.h" 63 #include "llvm/ADT/SmallSet.h" 64 #include "llvm/ADT/SmallVector.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/ADT/StringRef.h" 67 #include "llvm/ADT/Twine.h" 68 #include "llvm/ADT/iterator_range.h" 69 #include "llvm/Analysis/AssumptionCache.h" 70 #include "llvm/Analysis/BasicAliasAnalysis.h" 71 #include "llvm/Analysis/BlockFrequencyInfo.h" 72 #include "llvm/Analysis/CodeMetrics.h" 73 #include "llvm/Analysis/DemandedBits.h" 74 #include "llvm/Analysis/GlobalsModRef.h" 75 #include "llvm/Analysis/LoopAccessAnalysis.h" 76 #include "llvm/Analysis/LoopAnalysisManager.h" 77 #include "llvm/Analysis/LoopInfo.h" 78 #include "llvm/Analysis/LoopIterator.h" 79 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 80 #include "llvm/Analysis/ScalarEvolution.h" 81 #include "llvm/Analysis/ScalarEvolutionExpander.h" 82 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 83 #include "llvm/Analysis/TargetLibraryInfo.h" 84 #include "llvm/Analysis/TargetTransformInfo.h" 85 #include "llvm/Analysis/VectorUtils.h" 86 #include "llvm/IR/Attributes.h" 87 #include "llvm/IR/BasicBlock.h" 88 #include "llvm/IR/CFG.h" 89 #include "llvm/IR/Constant.h" 90 #include "llvm/IR/Constants.h" 91 #include "llvm/IR/DataLayout.h" 92 #include "llvm/IR/DebugInfoMetadata.h" 93 #include "llvm/IR/DebugLoc.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/DiagnosticInfo.h" 96 #include "llvm/IR/Dominators.h" 97 #include "llvm/IR/Function.h" 98 #include "llvm/IR/IRBuilder.h" 99 #include "llvm/IR/InstrTypes.h" 100 #include "llvm/IR/Instruction.h" 101 #include "llvm/IR/Instructions.h" 102 #include "llvm/IR/IntrinsicInst.h" 103 #include "llvm/IR/Intrinsics.h" 104 #include "llvm/IR/LLVMContext.h" 105 #include "llvm/IR/Metadata.h" 106 #include "llvm/IR/Module.h" 107 #include "llvm/IR/Operator.h" 108 #include "llvm/IR/Type.h" 109 #include "llvm/IR/Use.h" 110 #include "llvm/IR/User.h" 111 #include "llvm/IR/Value.h" 112 #include "llvm/IR/ValueHandle.h" 113 #include "llvm/IR/Verifier.h" 114 #include "llvm/Pass.h" 115 #include "llvm/Support/Casting.h" 116 #include "llvm/Support/CommandLine.h" 117 #include "llvm/Support/Compiler.h" 118 #include "llvm/Support/Debug.h" 119 #include "llvm/Support/ErrorHandling.h" 120 #include "llvm/Support/MathExtras.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 123 #include "llvm/Transforms/Utils/LoopSimplify.h" 124 #include "llvm/Transforms/Utils/LoopUtils.h" 125 #include "llvm/Transforms/Utils/LoopVersioning.h" 126 #include <algorithm> 127 #include <cassert> 128 #include <cstdint> 129 #include <cstdlib> 130 #include <functional> 131 #include <iterator> 132 #include <limits> 133 #include <memory> 134 #include <string> 135 #include <tuple> 136 #include <utility> 137 #include <vector> 138 139 using namespace llvm; 140 141 #define LV_NAME "loop-vectorize" 142 #define DEBUG_TYPE LV_NAME 143 144 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 145 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 146 147 static cl::opt<bool> 148 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 149 cl::desc("Enable if-conversion during vectorization.")); 150 151 /// Loops with a known constant trip count below this number are vectorized only 152 /// if no scalar iteration overheads are incurred. 153 static cl::opt<unsigned> TinyTripCountVectorThreshold( 154 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 155 cl::desc("Loops with a constant trip count that is smaller than this " 156 "value are vectorized only if no scalar iteration overheads " 157 "are incurred.")); 158 159 static cl::opt<bool> MaximizeBandwidth( 160 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 161 cl::desc("Maximize bandwidth when selecting vectorization factor which " 162 "will be determined by the smallest type in loop.")); 163 164 static cl::opt<bool> EnableInterleavedMemAccesses( 165 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 166 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 167 168 /// Maximum factor for an interleaved memory access. 169 static cl::opt<unsigned> MaxInterleaveGroupFactor( 170 "max-interleave-group-factor", cl::Hidden, 171 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 172 cl::init(8)); 173 174 /// We don't interleave loops with a known constant trip count below this 175 /// number. 176 static const unsigned TinyTripCountInterleaveThreshold = 128; 177 178 static cl::opt<unsigned> ForceTargetNumScalarRegs( 179 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 180 cl::desc("A flag that overrides the target's number of scalar registers.")); 181 182 static cl::opt<unsigned> ForceTargetNumVectorRegs( 183 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 184 cl::desc("A flag that overrides the target's number of vector registers.")); 185 186 /// Maximum vectorization interleave count. 187 static const unsigned MaxInterleaveFactor = 16; 188 189 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 190 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 191 cl::desc("A flag that overrides the target's max interleave factor for " 192 "scalar loops.")); 193 194 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 195 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 196 cl::desc("A flag that overrides the target's max interleave factor for " 197 "vectorized loops.")); 198 199 static cl::opt<unsigned> ForceTargetInstructionCost( 200 "force-target-instruction-cost", cl::init(0), cl::Hidden, 201 cl::desc("A flag that overrides the target's expected cost for " 202 "an instruction to a single constant value. Mostly " 203 "useful for getting consistent testing.")); 204 205 static cl::opt<unsigned> SmallLoopCost( 206 "small-loop-cost", cl::init(20), cl::Hidden, 207 cl::desc( 208 "The cost of a loop that is considered 'small' by the interleaver.")); 209 210 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 211 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 212 cl::desc("Enable the use of the block frequency analysis to access PGO " 213 "heuristics minimizing code growth in cold regions and being more " 214 "aggressive in hot regions.")); 215 216 // Runtime interleave loops for load/store throughput. 217 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 218 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 219 cl::desc( 220 "Enable runtime interleaving until load/store ports are saturated")); 221 222 /// The number of stores in a loop that are allowed to need predication. 223 static cl::opt<unsigned> NumberOfStoresToPredicate( 224 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 225 cl::desc("Max number of stores to be predicated behind an if.")); 226 227 static cl::opt<bool> EnableIndVarRegisterHeur( 228 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 229 cl::desc("Count the induction variable only once when interleaving")); 230 231 static cl::opt<bool> EnableCondStoresVectorization( 232 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 233 cl::desc("Enable if predication of stores during vectorization.")); 234 235 static cl::opt<unsigned> MaxNestedScalarReductionIC( 236 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 237 cl::desc("The maximum interleave count to use when interleaving a scalar " 238 "reduction in a nested loop.")); 239 240 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 241 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 242 cl::desc("The maximum allowed number of runtime memory checks with a " 243 "vectorize(enable) pragma.")); 244 245 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 246 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 247 cl::desc("The maximum number of SCEV checks allowed.")); 248 249 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 250 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 251 cl::desc("The maximum number of SCEV checks allowed with a " 252 "vectorize(enable) pragma")); 253 254 /// Create an analysis remark that explains why vectorization failed 255 /// 256 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 257 /// RemarkName is the identifier for the remark. If \p I is passed it is an 258 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 259 /// the location of the remark. \return the remark object that can be 260 /// streamed to. 261 static OptimizationRemarkAnalysis 262 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 263 Instruction *I = nullptr) { 264 Value *CodeRegion = TheLoop->getHeader(); 265 DebugLoc DL = TheLoop->getStartLoc(); 266 267 if (I) { 268 CodeRegion = I->getParent(); 269 // If there is no debug location attached to the instruction, revert back to 270 // using the loop's. 271 if (I->getDebugLoc()) 272 DL = I->getDebugLoc(); 273 } 274 275 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 276 R << "loop not vectorized: "; 277 return R; 278 } 279 280 namespace { 281 282 class LoopVectorizationLegality; 283 class LoopVectorizationCostModel; 284 class LoopVectorizationRequirements; 285 class VPInterleaveRecipe; 286 class VPReplicateRecipe; 287 class VPWidenIntOrFpInductionRecipe; 288 289 } // end anonymous namespace 290 291 /// Returns true if the given loop body has a cycle, excluding the loop 292 /// itself. 293 static bool hasCyclesInLoopBody(const Loop &L) { 294 if (!L.empty()) 295 return true; 296 297 for (const auto &SCC : 298 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 299 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 300 if (SCC.size() > 1) { 301 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 302 DEBUG(L.dump()); 303 return true; 304 } 305 } 306 return false; 307 } 308 309 /// A helper function for converting Scalar types to vector types. 310 /// If the incoming type is void, we return void. If the VF is 1, we return 311 /// the scalar type. 312 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 313 if (Scalar->isVoidTy() || VF == 1) 314 return Scalar; 315 return VectorType::get(Scalar, VF); 316 } 317 318 // FIXME: The following helper functions have multiple implementations 319 // in the project. They can be effectively organized in a common Load/Store 320 // utilities unit. 321 322 /// A helper function that returns the pointer operand of a load or store 323 /// instruction. 324 static Value *getPointerOperand(Value *I) { 325 if (auto *LI = dyn_cast<LoadInst>(I)) 326 return LI->getPointerOperand(); 327 if (auto *SI = dyn_cast<StoreInst>(I)) 328 return SI->getPointerOperand(); 329 return nullptr; 330 } 331 332 /// A helper function that returns the type of loaded or stored value. 333 static Type *getMemInstValueType(Value *I) { 334 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 335 "Expected Load or Store instruction"); 336 if (auto *LI = dyn_cast<LoadInst>(I)) 337 return LI->getType(); 338 return cast<StoreInst>(I)->getValueOperand()->getType(); 339 } 340 341 /// A helper function that returns the alignment of load or store instruction. 342 static unsigned getMemInstAlignment(Value *I) { 343 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 344 "Expected Load or Store instruction"); 345 if (auto *LI = dyn_cast<LoadInst>(I)) 346 return LI->getAlignment(); 347 return cast<StoreInst>(I)->getAlignment(); 348 } 349 350 /// A helper function that returns the address space of the pointer operand of 351 /// load or store instruction. 352 static unsigned getMemInstAddressSpace(Value *I) { 353 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 354 "Expected Load or Store instruction"); 355 if (auto *LI = dyn_cast<LoadInst>(I)) 356 return LI->getPointerAddressSpace(); 357 return cast<StoreInst>(I)->getPointerAddressSpace(); 358 } 359 360 /// A helper function that returns true if the given type is irregular. The 361 /// type is irregular if its allocated size doesn't equal the store size of an 362 /// element of the corresponding vector type at the given vectorization factor. 363 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 364 // Determine if an array of VF elements of type Ty is "bitcast compatible" 365 // with a <VF x Ty> vector. 366 if (VF > 1) { 367 auto *VectorTy = VectorType::get(Ty, VF); 368 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 369 } 370 371 // If the vectorization factor is one, we just check if an array of type Ty 372 // requires padding between elements. 373 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 374 } 375 376 /// A helper function that returns the reciprocal of the block probability of 377 /// predicated blocks. If we return X, we are assuming the predicated block 378 /// will execute once for for every X iterations of the loop header. 379 /// 380 /// TODO: We should use actual block probability here, if available. Currently, 381 /// we always assume predicated blocks have a 50% chance of executing. 382 static unsigned getReciprocalPredBlockProb() { return 2; } 383 384 /// A helper function that adds a 'fast' flag to floating-point operations. 385 static Value *addFastMathFlag(Value *V) { 386 if (isa<FPMathOperator>(V)) { 387 FastMathFlags Flags; 388 Flags.setFast(); 389 cast<Instruction>(V)->setFastMathFlags(Flags); 390 } 391 return V; 392 } 393 394 /// A helper function that returns an integer or floating-point constant with 395 /// value C. 396 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 397 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 398 : ConstantFP::get(Ty, C); 399 } 400 401 namespace llvm { 402 403 /// InnerLoopVectorizer vectorizes loops which contain only one basic 404 /// block to a specified vectorization factor (VF). 405 /// This class performs the widening of scalars into vectors, or multiple 406 /// scalars. This class also implements the following features: 407 /// * It inserts an epilogue loop for handling loops that don't have iteration 408 /// counts that are known to be a multiple of the vectorization factor. 409 /// * It handles the code generation for reduction variables. 410 /// * Scalarization (implementation using scalars) of un-vectorizable 411 /// instructions. 412 /// InnerLoopVectorizer does not perform any vectorization-legality 413 /// checks, and relies on the caller to check for the different legality 414 /// aspects. The InnerLoopVectorizer relies on the 415 /// LoopVectorizationLegality class to provide information about the induction 416 /// and reduction variables that were found to a given vectorization factor. 417 class InnerLoopVectorizer { 418 public: 419 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 420 LoopInfo *LI, DominatorTree *DT, 421 const TargetLibraryInfo *TLI, 422 const TargetTransformInfo *TTI, AssumptionCache *AC, 423 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 424 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 425 LoopVectorizationCostModel *CM) 426 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 427 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 428 Builder(PSE.getSE()->getContext()), 429 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 430 virtual ~InnerLoopVectorizer() = default; 431 432 /// Create a new empty loop. Unlink the old loop and connect the new one. 433 /// Return the pre-header block of the new loop. 434 BasicBlock *createVectorizedLoopSkeleton(); 435 436 /// Widen a single instruction within the innermost loop. 437 void widenInstruction(Instruction &I); 438 439 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 440 void fixVectorizedLoop(); 441 442 // Return true if any runtime check is added. 443 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 444 445 /// A type for vectorized values in the new loop. Each value from the 446 /// original loop, when vectorized, is represented by UF vector values in the 447 /// new unrolled loop, where UF is the unroll factor. 448 using VectorParts = SmallVector<Value *, 2>; 449 450 /// A helper function that computes the predicate of the block BB, assuming 451 /// that the header block of the loop is set to True. It returns the *entry* 452 /// mask for the block BB. 453 VectorParts createBlockInMask(BasicBlock *BB); 454 455 /// Vectorize a single PHINode in a block. This method handles the induction 456 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 457 /// arbitrary length vectors. 458 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 459 460 /// A helper function to scalarize a single Instruction in the innermost loop. 461 /// Generates a sequence of scalar instances for each lane between \p MinLane 462 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 463 /// inclusive.. 464 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 465 bool IfPredicateInstr); 466 467 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 468 /// is provided, the integer induction variable will first be truncated to 469 /// the corresponding type. 470 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 471 472 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 473 /// vector or scalar value on-demand if one is not yet available. When 474 /// vectorizing a loop, we visit the definition of an instruction before its 475 /// uses. When visiting the definition, we either vectorize or scalarize the 476 /// instruction, creating an entry for it in the corresponding map. (In some 477 /// cases, such as induction variables, we will create both vector and scalar 478 /// entries.) Then, as we encounter uses of the definition, we derive values 479 /// for each scalar or vector use unless such a value is already available. 480 /// For example, if we scalarize a definition and one of its uses is vector, 481 /// we build the required vector on-demand with an insertelement sequence 482 /// when visiting the use. Otherwise, if the use is scalar, we can use the 483 /// existing scalar definition. 484 /// 485 /// Return a value in the new loop corresponding to \p V from the original 486 /// loop at unroll index \p Part. If the value has already been vectorized, 487 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 488 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 489 /// a new vector value on-demand by inserting the scalar values into a vector 490 /// with an insertelement sequence. If the value has been neither vectorized 491 /// nor scalarized, it must be loop invariant, so we simply broadcast the 492 /// value into a vector. 493 Value *getOrCreateVectorValue(Value *V, unsigned Part); 494 495 /// Return a value in the new loop corresponding to \p V from the original 496 /// loop at unroll and vector indices \p Instance. If the value has been 497 /// vectorized but not scalarized, the necessary extractelement instruction 498 /// will be generated. 499 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 500 501 /// Construct the vector value of a scalarized value \p V one lane at a time. 502 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 503 504 /// Try to vectorize the interleaved access group that \p Instr belongs to. 505 void vectorizeInterleaveGroup(Instruction *Instr); 506 507 protected: 508 friend class LoopVectorizationPlanner; 509 510 /// A small list of PHINodes. 511 using PhiVector = SmallVector<PHINode *, 4>; 512 513 /// A type for scalarized values in the new loop. Each value from the 514 /// original loop, when scalarized, is represented by UF x VF scalar values 515 /// in the new unrolled loop, where UF is the unroll factor and VF is the 516 /// vectorization factor. 517 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 518 519 // When we if-convert we need to create edge masks. We have to cache values 520 // so that we don't end up with exponential recursion/IR. 521 using EdgeMaskCacheTy = 522 DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts>; 523 using BlockMaskCacheTy = DenseMap<BasicBlock *, VectorParts>; 524 525 /// Set up the values of the IVs correctly when exiting the vector loop. 526 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 527 Value *CountRoundDown, Value *EndValue, 528 BasicBlock *MiddleBlock); 529 530 /// Create a new induction variable inside L. 531 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 532 Value *Step, Instruction *DL); 533 534 /// Handle all cross-iteration phis in the header. 535 void fixCrossIterationPHIs(); 536 537 /// Fix a first-order recurrence. This is the second phase of vectorizing 538 /// this phi node. 539 void fixFirstOrderRecurrence(PHINode *Phi); 540 541 /// Fix a reduction cross-iteration phi. This is the second phase of 542 /// vectorizing this phi node. 543 void fixReduction(PHINode *Phi); 544 545 /// \brief The Loop exit block may have single value PHI nodes with some 546 /// incoming value. While vectorizing we only handled real values 547 /// that were defined inside the loop and we should have one value for 548 /// each predecessor of its parent basic block. See PR14725. 549 void fixLCSSAPHIs(); 550 551 /// Iteratively sink the scalarized operands of a predicated instruction into 552 /// the block that was created for it. 553 void sinkScalarOperands(Instruction *PredInst); 554 555 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 556 /// represented as. 557 void truncateToMinimalBitwidths(); 558 559 /// A helper function that computes the predicate of the edge between SRC 560 /// and DST. 561 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 562 563 /// Insert the new loop to the loop hierarchy and pass manager 564 /// and update the analysis passes. 565 void updateAnalysis(); 566 567 /// Vectorize Load and Store instructions, 568 virtual void vectorizeMemoryInstruction(Instruction *Instr); 569 570 /// Create a broadcast instruction. This method generates a broadcast 571 /// instruction (shuffle) for loop invariant values and for the induction 572 /// value. If this is the induction variable then we extend it to N, N+1, ... 573 /// this is needed because each iteration in the loop corresponds to a SIMD 574 /// element. 575 virtual Value *getBroadcastInstrs(Value *V); 576 577 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 578 /// to each vector element of Val. The sequence starts at StartIndex. 579 /// \p Opcode is relevant for FP induction variable. 580 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 581 Instruction::BinaryOps Opcode = 582 Instruction::BinaryOpsEnd); 583 584 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 585 /// variable on which to base the steps, \p Step is the size of the step, and 586 /// \p EntryVal is the value from the original loop that maps to the steps. 587 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 588 /// can be a truncate instruction). 589 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 590 const InductionDescriptor &ID); 591 592 /// Create a vector induction phi node based on an existing scalar one. \p 593 /// EntryVal is the value from the original loop that maps to the vector phi 594 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 595 /// truncate instruction, instead of widening the original IV, we widen a 596 /// version of the IV truncated to \p EntryVal's type. 597 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 598 Value *Step, Instruction *EntryVal); 599 600 /// Returns true if an instruction \p I should be scalarized instead of 601 /// vectorized for the chosen vectorization factor. 602 bool shouldScalarizeInstruction(Instruction *I) const; 603 604 /// Returns true if we should generate a scalar version of \p IV. 605 bool needsScalarInduction(Instruction *IV) const; 606 607 /// Generate a shuffle sequence that will reverse the vector Vec. 608 virtual Value *reverseVector(Value *Vec); 609 610 /// Returns (and creates if needed) the original loop trip count. 611 Value *getOrCreateTripCount(Loop *NewLoop); 612 613 /// Returns (and creates if needed) the trip count of the widened loop. 614 Value *getOrCreateVectorTripCount(Loop *NewLoop); 615 616 /// Returns a bitcasted value to the requested vector type. 617 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 618 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 619 const DataLayout &DL); 620 621 /// Emit a bypass check to see if the vector trip count is zero, including if 622 /// it overflows. 623 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 624 625 /// Emit a bypass check to see if all of the SCEV assumptions we've 626 /// had to make are correct. 627 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 628 629 /// Emit bypass checks to check any memory assumptions we may have made. 630 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 631 632 /// Add additional metadata to \p To that was not present on \p Orig. 633 /// 634 /// Currently this is used to add the noalias annotations based on the 635 /// inserted memchecks. Use this for instructions that are *cloned* into the 636 /// vector loop. 637 void addNewMetadata(Instruction *To, const Instruction *Orig); 638 639 /// Add metadata from one instruction to another. 640 /// 641 /// This includes both the original MDs from \p From and additional ones (\see 642 /// addNewMetadata). Use this for *newly created* instructions in the vector 643 /// loop. 644 void addMetadata(Instruction *To, Instruction *From); 645 646 /// \brief Similar to the previous function but it adds the metadata to a 647 /// vector of instructions. 648 void addMetadata(ArrayRef<Value *> To, Instruction *From); 649 650 /// \brief Set the debug location in the builder using the debug location in 651 /// the instruction. 652 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 653 654 /// The original loop. 655 Loop *OrigLoop; 656 657 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 658 /// dynamic knowledge to simplify SCEV expressions and converts them to a 659 /// more usable form. 660 PredicatedScalarEvolution &PSE; 661 662 /// Loop Info. 663 LoopInfo *LI; 664 665 /// Dominator Tree. 666 DominatorTree *DT; 667 668 /// Alias Analysis. 669 AliasAnalysis *AA; 670 671 /// Target Library Info. 672 const TargetLibraryInfo *TLI; 673 674 /// Target Transform Info. 675 const TargetTransformInfo *TTI; 676 677 /// Assumption Cache. 678 AssumptionCache *AC; 679 680 /// Interface to emit optimization remarks. 681 OptimizationRemarkEmitter *ORE; 682 683 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 684 /// used. 685 /// 686 /// This is currently only used to add no-alias metadata based on the 687 /// memchecks. The actually versioning is performed manually. 688 std::unique_ptr<LoopVersioning> LVer; 689 690 /// The vectorization SIMD factor to use. Each vector will have this many 691 /// vector elements. 692 unsigned VF; 693 694 /// The vectorization unroll factor to use. Each scalar is vectorized to this 695 /// many different vector instructions. 696 unsigned UF; 697 698 /// The builder that we use 699 IRBuilder<> Builder; 700 701 // --- Vectorization state --- 702 703 /// The vector-loop preheader. 704 BasicBlock *LoopVectorPreHeader; 705 706 /// The scalar-loop preheader. 707 BasicBlock *LoopScalarPreHeader; 708 709 /// Middle Block between the vector and the scalar. 710 BasicBlock *LoopMiddleBlock; 711 712 /// The ExitBlock of the scalar loop. 713 BasicBlock *LoopExitBlock; 714 715 /// The vector loop body. 716 BasicBlock *LoopVectorBody; 717 718 /// The scalar loop body. 719 BasicBlock *LoopScalarBody; 720 721 /// A list of all bypass blocks. The first block is the entry of the loop. 722 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 723 724 /// The new Induction variable which was added to the new block. 725 PHINode *Induction = nullptr; 726 727 /// The induction variable of the old basic block. 728 PHINode *OldInduction = nullptr; 729 730 /// Maps values from the original loop to their corresponding values in the 731 /// vectorized loop. A key value can map to either vector values, scalar 732 /// values or both kinds of values, depending on whether the key was 733 /// vectorized and scalarized. 734 VectorizerValueMap VectorLoopValueMap; 735 736 /// Store instructions that were predicated. 737 SmallVector<Instruction *, 4> PredicatedInstructions; 738 739 EdgeMaskCacheTy EdgeMaskCache; 740 BlockMaskCacheTy BlockMaskCache; 741 742 /// Trip count of the original loop. 743 Value *TripCount = nullptr; 744 745 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 746 Value *VectorTripCount = nullptr; 747 748 /// The legality analysis. 749 LoopVectorizationLegality *Legal; 750 751 /// The profitablity analysis. 752 LoopVectorizationCostModel *Cost; 753 754 // Record whether runtime checks are added. 755 bool AddedSafetyChecks = false; 756 757 // Holds the end values for each induction variable. We save the end values 758 // so we can later fix-up the external users of the induction variables. 759 DenseMap<PHINode *, Value *> IVEndValues; 760 }; 761 762 class InnerLoopUnroller : public InnerLoopVectorizer { 763 public: 764 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 765 LoopInfo *LI, DominatorTree *DT, 766 const TargetLibraryInfo *TLI, 767 const TargetTransformInfo *TTI, AssumptionCache *AC, 768 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 769 LoopVectorizationLegality *LVL, 770 LoopVectorizationCostModel *CM) 771 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 772 UnrollFactor, LVL, CM) {} 773 774 private: 775 Value *getBroadcastInstrs(Value *V) override; 776 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 777 Instruction::BinaryOps Opcode = 778 Instruction::BinaryOpsEnd) override; 779 Value *reverseVector(Value *Vec) override; 780 }; 781 782 } // end namespace llvm 783 784 /// \brief Look for a meaningful debug location on the instruction or it's 785 /// operands. 786 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 787 if (!I) 788 return I; 789 790 DebugLoc Empty; 791 if (I->getDebugLoc() != Empty) 792 return I; 793 794 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 795 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 796 if (OpInst->getDebugLoc() != Empty) 797 return OpInst; 798 } 799 800 return I; 801 } 802 803 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 804 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 805 const DILocation *DIL = Inst->getDebugLoc(); 806 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 807 !isa<DbgInfoIntrinsic>(Inst)) 808 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 809 else 810 B.SetCurrentDebugLocation(DIL); 811 } else 812 B.SetCurrentDebugLocation(DebugLoc()); 813 } 814 815 #ifndef NDEBUG 816 /// \return string containing a file name and a line # for the given loop. 817 static std::string getDebugLocString(const Loop *L) { 818 std::string Result; 819 if (L) { 820 raw_string_ostream OS(Result); 821 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 822 LoopDbgLoc.print(OS); 823 else 824 // Just print the module name. 825 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 826 OS.flush(); 827 } 828 return Result; 829 } 830 #endif 831 832 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 833 const Instruction *Orig) { 834 // If the loop was versioned with memchecks, add the corresponding no-alias 835 // metadata. 836 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 837 LVer->annotateInstWithNoAlias(To, Orig); 838 } 839 840 void InnerLoopVectorizer::addMetadata(Instruction *To, 841 Instruction *From) { 842 propagateMetadata(To, From); 843 addNewMetadata(To, From); 844 } 845 846 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 847 Instruction *From) { 848 for (Value *V : To) { 849 if (Instruction *I = dyn_cast<Instruction>(V)) 850 addMetadata(I, From); 851 } 852 } 853 854 namespace { 855 856 /// \brief The group of interleaved loads/stores sharing the same stride and 857 /// close to each other. 858 /// 859 /// Each member in this group has an index starting from 0, and the largest 860 /// index should be less than interleaved factor, which is equal to the absolute 861 /// value of the access's stride. 862 /// 863 /// E.g. An interleaved load group of factor 4: 864 /// for (unsigned i = 0; i < 1024; i+=4) { 865 /// a = A[i]; // Member of index 0 866 /// b = A[i+1]; // Member of index 1 867 /// d = A[i+3]; // Member of index 3 868 /// ... 869 /// } 870 /// 871 /// An interleaved store group of factor 4: 872 /// for (unsigned i = 0; i < 1024; i+=4) { 873 /// ... 874 /// A[i] = a; // Member of index 0 875 /// A[i+1] = b; // Member of index 1 876 /// A[i+2] = c; // Member of index 2 877 /// A[i+3] = d; // Member of index 3 878 /// } 879 /// 880 /// Note: the interleaved load group could have gaps (missing members), but 881 /// the interleaved store group doesn't allow gaps. 882 class InterleaveGroup { 883 public: 884 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 885 : Align(Align), InsertPos(Instr) { 886 assert(Align && "The alignment should be non-zero"); 887 888 Factor = std::abs(Stride); 889 assert(Factor > 1 && "Invalid interleave factor"); 890 891 Reverse = Stride < 0; 892 Members[0] = Instr; 893 } 894 895 bool isReverse() const { return Reverse; } 896 unsigned getFactor() const { return Factor; } 897 unsigned getAlignment() const { return Align; } 898 unsigned getNumMembers() const { return Members.size(); } 899 900 /// \brief Try to insert a new member \p Instr with index \p Index and 901 /// alignment \p NewAlign. The index is related to the leader and it could be 902 /// negative if it is the new leader. 903 /// 904 /// \returns false if the instruction doesn't belong to the group. 905 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 906 assert(NewAlign && "The new member's alignment should be non-zero"); 907 908 int Key = Index + SmallestKey; 909 910 // Skip if there is already a member with the same index. 911 if (Members.count(Key)) 912 return false; 913 914 if (Key > LargestKey) { 915 // The largest index is always less than the interleave factor. 916 if (Index >= static_cast<int>(Factor)) 917 return false; 918 919 LargestKey = Key; 920 } else if (Key < SmallestKey) { 921 // The largest index is always less than the interleave factor. 922 if (LargestKey - Key >= static_cast<int>(Factor)) 923 return false; 924 925 SmallestKey = Key; 926 } 927 928 // It's always safe to select the minimum alignment. 929 Align = std::min(Align, NewAlign); 930 Members[Key] = Instr; 931 return true; 932 } 933 934 /// \brief Get the member with the given index \p Index 935 /// 936 /// \returns nullptr if contains no such member. 937 Instruction *getMember(unsigned Index) const { 938 int Key = SmallestKey + Index; 939 if (!Members.count(Key)) 940 return nullptr; 941 942 return Members.find(Key)->second; 943 } 944 945 /// \brief Get the index for the given member. Unlike the key in the member 946 /// map, the index starts from 0. 947 unsigned getIndex(Instruction *Instr) const { 948 for (auto I : Members) 949 if (I.second == Instr) 950 return I.first - SmallestKey; 951 952 llvm_unreachable("InterleaveGroup contains no such member"); 953 } 954 955 Instruction *getInsertPos() const { return InsertPos; } 956 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 957 958 private: 959 unsigned Factor; // Interleave Factor. 960 bool Reverse; 961 unsigned Align; 962 DenseMap<int, Instruction *> Members; 963 int SmallestKey = 0; 964 int LargestKey = 0; 965 966 // To avoid breaking dependences, vectorized instructions of an interleave 967 // group should be inserted at either the first load or the last store in 968 // program order. 969 // 970 // E.g. %even = load i32 // Insert Position 971 // %add = add i32 %even // Use of %even 972 // %odd = load i32 973 // 974 // store i32 %even 975 // %odd = add i32 // Def of %odd 976 // store i32 %odd // Insert Position 977 Instruction *InsertPos; 978 }; 979 980 /// \brief Drive the analysis of interleaved memory accesses in the loop. 981 /// 982 /// Use this class to analyze interleaved accesses only when we can vectorize 983 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 984 /// on interleaved accesses is unsafe. 985 /// 986 /// The analysis collects interleave groups and records the relationships 987 /// between the member and the group in a map. 988 class InterleavedAccessInfo { 989 public: 990 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 991 DominatorTree *DT, LoopInfo *LI) 992 : PSE(PSE), TheLoop(L), DT(DT), LI(LI) {} 993 994 ~InterleavedAccessInfo() { 995 SmallSet<InterleaveGroup *, 4> DelSet; 996 // Avoid releasing a pointer twice. 997 for (auto &I : InterleaveGroupMap) 998 DelSet.insert(I.second); 999 for (auto *Ptr : DelSet) 1000 delete Ptr; 1001 } 1002 1003 /// \brief Analyze the interleaved accesses and collect them in interleave 1004 /// groups. Substitute symbolic strides using \p Strides. 1005 void analyzeInterleaving(const ValueToValueMap &Strides); 1006 1007 /// \brief Check if \p Instr belongs to any interleave group. 1008 bool isInterleaved(Instruction *Instr) const { 1009 return InterleaveGroupMap.count(Instr); 1010 } 1011 1012 /// \brief Get the interleave group that \p Instr belongs to. 1013 /// 1014 /// \returns nullptr if doesn't have such group. 1015 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1016 if (InterleaveGroupMap.count(Instr)) 1017 return InterleaveGroupMap.find(Instr)->second; 1018 return nullptr; 1019 } 1020 1021 /// \brief Returns true if an interleaved group that may access memory 1022 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1023 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1024 1025 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1026 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1027 1028 private: 1029 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1030 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1031 /// The interleaved access analysis can also add new predicates (for example 1032 /// by versioning strides of pointers). 1033 PredicatedScalarEvolution &PSE; 1034 1035 Loop *TheLoop; 1036 DominatorTree *DT; 1037 LoopInfo *LI; 1038 const LoopAccessInfo *LAI = nullptr; 1039 1040 /// True if the loop may contain non-reversed interleaved groups with 1041 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1042 /// out-of-bounds by executing at least one scalar epilogue iteration. 1043 bool RequiresScalarEpilogue = false; 1044 1045 /// Holds the relationships between the members and the interleave group. 1046 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1047 1048 /// Holds dependences among the memory accesses in the loop. It maps a source 1049 /// access to a set of dependent sink accesses. 1050 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1051 1052 /// \brief The descriptor for a strided memory access. 1053 struct StrideDescriptor { 1054 StrideDescriptor() = default; 1055 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1056 unsigned Align) 1057 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1058 1059 // The access's stride. It is negative for a reverse access. 1060 int64_t Stride = 0; 1061 1062 // The scalar expression of this access. 1063 const SCEV *Scev = nullptr; 1064 1065 // The size of the memory object. 1066 uint64_t Size = 0; 1067 1068 // The alignment of this access. 1069 unsigned Align = 0; 1070 }; 1071 1072 /// \brief A type for holding instructions and their stride descriptors. 1073 using StrideEntry = std::pair<Instruction *, StrideDescriptor>; 1074 1075 /// \brief Create a new interleave group with the given instruction \p Instr, 1076 /// stride \p Stride and alignment \p Align. 1077 /// 1078 /// \returns the newly created interleave group. 1079 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1080 unsigned Align) { 1081 assert(!InterleaveGroupMap.count(Instr) && 1082 "Already in an interleaved access group"); 1083 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1084 return InterleaveGroupMap[Instr]; 1085 } 1086 1087 /// \brief Release the group and remove all the relationships. 1088 void releaseGroup(InterleaveGroup *Group) { 1089 for (unsigned i = 0; i < Group->getFactor(); i++) 1090 if (Instruction *Member = Group->getMember(i)) 1091 InterleaveGroupMap.erase(Member); 1092 1093 delete Group; 1094 } 1095 1096 /// \brief Collect all the accesses with a constant stride in program order. 1097 void collectConstStrideAccesses( 1098 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1099 const ValueToValueMap &Strides); 1100 1101 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1102 static bool isStrided(int Stride) { 1103 unsigned Factor = std::abs(Stride); 1104 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1105 } 1106 1107 /// \brief Returns true if \p BB is a predicated block. 1108 bool isPredicated(BasicBlock *BB) const { 1109 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1110 } 1111 1112 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1113 bool areDependencesValid() const { 1114 return LAI && LAI->getDepChecker().getDependences(); 1115 } 1116 1117 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1118 /// necessary, when constructing interleaved groups. 1119 /// 1120 /// \p A must precede \p B in program order. We return false if reordering is 1121 /// not necessary or is prevented because \p A and \p B may be dependent. 1122 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1123 StrideEntry *B) const { 1124 // Code motion for interleaved accesses can potentially hoist strided loads 1125 // and sink strided stores. The code below checks the legality of the 1126 // following two conditions: 1127 // 1128 // 1. Potentially moving a strided load (B) before any store (A) that 1129 // precedes B, or 1130 // 1131 // 2. Potentially moving a strided store (A) after any load or store (B) 1132 // that A precedes. 1133 // 1134 // It's legal to reorder A and B if we know there isn't a dependence from A 1135 // to B. Note that this determination is conservative since some 1136 // dependences could potentially be reordered safely. 1137 1138 // A is potentially the source of a dependence. 1139 auto *Src = A->first; 1140 auto SrcDes = A->second; 1141 1142 // B is potentially the sink of a dependence. 1143 auto *Sink = B->first; 1144 auto SinkDes = B->second; 1145 1146 // Code motion for interleaved accesses can't violate WAR dependences. 1147 // Thus, reordering is legal if the source isn't a write. 1148 if (!Src->mayWriteToMemory()) 1149 return true; 1150 1151 // At least one of the accesses must be strided. 1152 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1153 return true; 1154 1155 // If dependence information is not available from LoopAccessInfo, 1156 // conservatively assume the instructions can't be reordered. 1157 if (!areDependencesValid()) 1158 return false; 1159 1160 // If we know there is a dependence from source to sink, assume the 1161 // instructions can't be reordered. Otherwise, reordering is legal. 1162 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1163 } 1164 1165 /// \brief Collect the dependences from LoopAccessInfo. 1166 /// 1167 /// We process the dependences once during the interleaved access analysis to 1168 /// enable constant-time dependence queries. 1169 void collectDependences() { 1170 if (!areDependencesValid()) 1171 return; 1172 auto *Deps = LAI->getDepChecker().getDependences(); 1173 for (auto Dep : *Deps) 1174 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1175 } 1176 }; 1177 1178 /// Utility class for getting and setting loop vectorizer hints in the form 1179 /// of loop metadata. 1180 /// This class keeps a number of loop annotations locally (as member variables) 1181 /// and can, upon request, write them back as metadata on the loop. It will 1182 /// initially scan the loop for existing metadata, and will update the local 1183 /// values based on information in the loop. 1184 /// We cannot write all values to metadata, as the mere presence of some info, 1185 /// for example 'force', means a decision has been made. So, we need to be 1186 /// careful NOT to add them if the user hasn't specifically asked so. 1187 class LoopVectorizeHints { 1188 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED }; 1189 1190 /// Hint - associates name and validation with the hint value. 1191 struct Hint { 1192 const char *Name; 1193 unsigned Value; // This may have to change for non-numeric values. 1194 HintKind Kind; 1195 1196 Hint(const char *Name, unsigned Value, HintKind Kind) 1197 : Name(Name), Value(Value), Kind(Kind) {} 1198 1199 bool validate(unsigned Val) { 1200 switch (Kind) { 1201 case HK_WIDTH: 1202 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1203 case HK_UNROLL: 1204 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1205 case HK_FORCE: 1206 return (Val <= 1); 1207 case HK_ISVECTORIZED: 1208 return (Val==0 || Val==1); 1209 } 1210 return false; 1211 } 1212 }; 1213 1214 /// Vectorization width. 1215 Hint Width; 1216 1217 /// Vectorization interleave factor. 1218 Hint Interleave; 1219 1220 /// Vectorization forced 1221 Hint Force; 1222 1223 /// Already Vectorized 1224 Hint IsVectorized; 1225 1226 /// Return the loop metadata prefix. 1227 static StringRef Prefix() { return "llvm.loop."; } 1228 1229 /// True if there is any unsafe math in the loop. 1230 bool PotentiallyUnsafe = false; 1231 1232 public: 1233 enum ForceKind { 1234 FK_Undefined = -1, ///< Not selected. 1235 FK_Disabled = 0, ///< Forcing disabled. 1236 FK_Enabled = 1, ///< Forcing enabled. 1237 }; 1238 1239 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1240 OptimizationRemarkEmitter &ORE) 1241 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1242 HK_WIDTH), 1243 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1244 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1245 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { 1246 // Populate values with existing loop metadata. 1247 getHintsFromMetadata(); 1248 1249 // force-vector-interleave overrides DisableInterleaving. 1250 if (VectorizerParams::isInterleaveForced()) 1251 Interleave.Value = VectorizerParams::VectorizationInterleave; 1252 1253 if (IsVectorized.Value != 1) 1254 // If the vectorization width and interleaving count are both 1 then 1255 // consider the loop to have been already vectorized because there's 1256 // nothing more that we can do. 1257 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 1258 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1259 << "LV: Interleaving disabled by the pass manager\n"); 1260 } 1261 1262 /// Mark the loop L as already vectorized by setting the width to 1. 1263 void setAlreadyVectorized() { 1264 IsVectorized.Value = 1; 1265 Hint Hints[] = {IsVectorized}; 1266 writeHintsToMetadata(Hints); 1267 } 1268 1269 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1270 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1271 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1272 emitRemarkWithHints(); 1273 return false; 1274 } 1275 1276 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1277 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1278 emitRemarkWithHints(); 1279 return false; 1280 } 1281 1282 if (getIsVectorized() == 1) { 1283 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1284 // FIXME: Add interleave.disable metadata. This will allow 1285 // vectorize.disable to be used without disabling the pass and errors 1286 // to differentiate between disabled vectorization and a width of 1. 1287 ORE.emit([&]() { 1288 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1289 "AllDisabled", L->getStartLoc(), 1290 L->getHeader()) 1291 << "loop not vectorized: vectorization and interleaving are " 1292 "explicitly disabled, or the loop has already been " 1293 "vectorized"; 1294 }); 1295 return false; 1296 } 1297 1298 return true; 1299 } 1300 1301 /// Dumps all the hint information. 1302 void emitRemarkWithHints() const { 1303 using namespace ore; 1304 1305 ORE.emit([&]() { 1306 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1307 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1308 TheLoop->getStartLoc(), 1309 TheLoop->getHeader()) 1310 << "loop not vectorized: vectorization is explicitly disabled"; 1311 else { 1312 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1313 TheLoop->getStartLoc(), 1314 TheLoop->getHeader()); 1315 R << "loop not vectorized"; 1316 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1317 R << " (Force=" << NV("Force", true); 1318 if (Width.Value != 0) 1319 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1320 if (Interleave.Value != 0) 1321 R << ", Interleave Count=" 1322 << NV("InterleaveCount", Interleave.Value); 1323 R << ")"; 1324 } 1325 return R; 1326 } 1327 }); 1328 } 1329 1330 unsigned getWidth() const { return Width.Value; } 1331 unsigned getInterleave() const { return Interleave.Value; } 1332 unsigned getIsVectorized() const { return IsVectorized.Value; } 1333 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1334 1335 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1336 /// pass name to force the frontend to print the diagnostic. 1337 const char *vectorizeAnalysisPassName() const { 1338 if (getWidth() == 1) 1339 return LV_NAME; 1340 if (getForce() == LoopVectorizeHints::FK_Disabled) 1341 return LV_NAME; 1342 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1343 return LV_NAME; 1344 return OptimizationRemarkAnalysis::AlwaysPrint; 1345 } 1346 1347 bool allowReordering() const { 1348 // When enabling loop hints are provided we allow the vectorizer to change 1349 // the order of operations that is given by the scalar loop. This is not 1350 // enabled by default because can be unsafe or inefficient. For example, 1351 // reordering floating-point operations will change the way round-off 1352 // error accumulates in the loop. 1353 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1354 } 1355 1356 bool isPotentiallyUnsafe() const { 1357 // Avoid FP vectorization if the target is unsure about proper support. 1358 // This may be related to the SIMD unit in the target not handling 1359 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1360 // Otherwise, a sequence of vectorized loops, even without reduction, 1361 // could lead to different end results on the destination vectors. 1362 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1363 } 1364 1365 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1366 1367 private: 1368 /// Find hints specified in the loop metadata and update local values. 1369 void getHintsFromMetadata() { 1370 MDNode *LoopID = TheLoop->getLoopID(); 1371 if (!LoopID) 1372 return; 1373 1374 // First operand should refer to the loop id itself. 1375 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1376 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1377 1378 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1379 const MDString *S = nullptr; 1380 SmallVector<Metadata *, 4> Args; 1381 1382 // The expected hint is either a MDString or a MDNode with the first 1383 // operand a MDString. 1384 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1385 if (!MD || MD->getNumOperands() == 0) 1386 continue; 1387 S = dyn_cast<MDString>(MD->getOperand(0)); 1388 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1389 Args.push_back(MD->getOperand(i)); 1390 } else { 1391 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1392 assert(Args.size() == 0 && "too many arguments for MDString"); 1393 } 1394 1395 if (!S) 1396 continue; 1397 1398 // Check if the hint starts with the loop metadata prefix. 1399 StringRef Name = S->getString(); 1400 if (Args.size() == 1) 1401 setHint(Name, Args[0]); 1402 } 1403 } 1404 1405 /// Checks string hint with one operand and set value if valid. 1406 void setHint(StringRef Name, Metadata *Arg) { 1407 if (!Name.startswith(Prefix())) 1408 return; 1409 Name = Name.substr(Prefix().size(), StringRef::npos); 1410 1411 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1412 if (!C) 1413 return; 1414 unsigned Val = C->getZExtValue(); 1415 1416 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 1417 for (auto H : Hints) { 1418 if (Name == H->Name) { 1419 if (H->validate(Val)) 1420 H->Value = Val; 1421 else 1422 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1423 break; 1424 } 1425 } 1426 } 1427 1428 /// Create a new hint from name / value pair. 1429 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1430 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1431 Metadata *MDs[] = {MDString::get(Context, Name), 1432 ConstantAsMetadata::get( 1433 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1434 return MDNode::get(Context, MDs); 1435 } 1436 1437 /// Matches metadata with hint name. 1438 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1439 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1440 if (!Name) 1441 return false; 1442 1443 for (auto H : HintTypes) 1444 if (Name->getString().endswith(H.Name)) 1445 return true; 1446 return false; 1447 } 1448 1449 /// Sets current hints into loop metadata, keeping other values intact. 1450 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1451 if (HintTypes.empty()) 1452 return; 1453 1454 // Reserve the first element to LoopID (see below). 1455 SmallVector<Metadata *, 4> MDs(1); 1456 // If the loop already has metadata, then ignore the existing operands. 1457 MDNode *LoopID = TheLoop->getLoopID(); 1458 if (LoopID) { 1459 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1460 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1461 // If node in update list, ignore old value. 1462 if (!matchesHintMetadataName(Node, HintTypes)) 1463 MDs.push_back(Node); 1464 } 1465 } 1466 1467 // Now, add the missing hints. 1468 for (auto H : HintTypes) 1469 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1470 1471 // Replace current metadata node with new one. 1472 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1473 MDNode *NewLoopID = MDNode::get(Context, MDs); 1474 // Set operand 0 to refer to the loop id itself. 1475 NewLoopID->replaceOperandWith(0, NewLoopID); 1476 1477 TheLoop->setLoopID(NewLoopID); 1478 } 1479 1480 /// The loop these hints belong to. 1481 const Loop *TheLoop; 1482 1483 /// Interface to emit optimization remarks. 1484 OptimizationRemarkEmitter &ORE; 1485 }; 1486 1487 } // end anonymous namespace 1488 1489 static void emitMissedWarning(Function *F, Loop *L, 1490 const LoopVectorizeHints &LH, 1491 OptimizationRemarkEmitter *ORE) { 1492 LH.emitRemarkWithHints(); 1493 1494 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1495 if (LH.getWidth() != 1) 1496 ORE->emit(DiagnosticInfoOptimizationFailure( 1497 DEBUG_TYPE, "FailedRequestedVectorization", 1498 L->getStartLoc(), L->getHeader()) 1499 << "loop not vectorized: " 1500 << "failed explicitly specified loop vectorization"); 1501 else if (LH.getInterleave() != 1) 1502 ORE->emit(DiagnosticInfoOptimizationFailure( 1503 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1504 L->getHeader()) 1505 << "loop not interleaved: " 1506 << "failed explicitly specified loop interleaving"); 1507 } 1508 } 1509 1510 namespace { 1511 1512 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1513 /// to what vectorization factor. 1514 /// This class does not look at the profitability of vectorization, only the 1515 /// legality. This class has two main kinds of checks: 1516 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1517 /// will change the order of memory accesses in a way that will change the 1518 /// correctness of the program. 1519 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1520 /// checks for a number of different conditions, such as the availability of a 1521 /// single induction variable, that all types are supported and vectorize-able, 1522 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1523 /// This class is also used by InnerLoopVectorizer for identifying 1524 /// induction variable and the different reduction variables. 1525 class LoopVectorizationLegality { 1526 public: 1527 LoopVectorizationLegality( 1528 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1529 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1530 const TargetTransformInfo *TTI, 1531 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1532 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1533 LoopVectorizeHints *H) 1534 : TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), GetLAA(GetLAA), 1535 ORE(ORE), InterleaveInfo(PSE, L, DT, LI), Requirements(R), Hints(H) {} 1536 1537 /// ReductionList contains the reduction descriptors for all 1538 /// of the reductions that were found in the loop. 1539 using ReductionList = DenseMap<PHINode *, RecurrenceDescriptor>; 1540 1541 /// InductionList saves induction variables and maps them to the 1542 /// induction descriptor. 1543 using InductionList = MapVector<PHINode *, InductionDescriptor>; 1544 1545 /// RecurrenceSet contains the phi nodes that are recurrences other than 1546 /// inductions and reductions. 1547 using RecurrenceSet = SmallPtrSet<const PHINode *, 8>; 1548 1549 /// Returns true if it is legal to vectorize this loop. 1550 /// This does not mean that it is profitable to vectorize this 1551 /// loop, only that it is legal to do so. 1552 bool canVectorize(); 1553 1554 /// Returns the primary induction variable. 1555 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1556 1557 /// Returns the reduction variables found in the loop. 1558 ReductionList *getReductionVars() { return &Reductions; } 1559 1560 /// Returns the induction variables found in the loop. 1561 InductionList *getInductionVars() { return &Inductions; } 1562 1563 /// Return the first-order recurrences found in the loop. 1564 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1565 1566 /// Return the set of instructions to sink to handle first-order recurrences. 1567 DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; } 1568 1569 /// Returns the widest induction type. 1570 Type *getWidestInductionType() { return WidestIndTy; } 1571 1572 /// Returns True if V is an induction variable in this loop. 1573 bool isInductionVariable(const Value *V); 1574 1575 /// Returns True if PN is a reduction variable in this loop. 1576 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1577 1578 /// Returns True if Phi is a first-order recurrence in this loop. 1579 bool isFirstOrderRecurrence(const PHINode *Phi); 1580 1581 /// Return true if the block BB needs to be predicated in order for the loop 1582 /// to be vectorized. 1583 bool blockNeedsPredication(BasicBlock *BB); 1584 1585 /// Check if this pointer is consecutive when vectorizing. This happens 1586 /// when the last index of the GEP is the induction variable, or that the 1587 /// pointer itself is an induction variable. 1588 /// This check allows us to vectorize A[idx] into a wide load/store. 1589 /// Returns: 1590 /// 0 - Stride is unknown or non-consecutive. 1591 /// 1 - Address is consecutive. 1592 /// -1 - Address is consecutive, and decreasing. 1593 int isConsecutivePtr(Value *Ptr); 1594 1595 /// Returns true if the value V is uniform within the loop. 1596 bool isUniform(Value *V); 1597 1598 /// Returns the information that we collected about runtime memory check. 1599 const RuntimePointerChecking *getRuntimePointerChecking() const { 1600 return LAI->getRuntimePointerChecking(); 1601 } 1602 1603 const LoopAccessInfo *getLAI() const { return LAI; } 1604 1605 /// \brief Check if \p Instr belongs to any interleaved access group. 1606 bool isAccessInterleaved(Instruction *Instr) { 1607 return InterleaveInfo.isInterleaved(Instr); 1608 } 1609 1610 /// \brief Get the interleaved access group that \p Instr belongs to. 1611 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1612 return InterleaveInfo.getInterleaveGroup(Instr); 1613 } 1614 1615 /// \brief Returns true if an interleaved group requires a scalar iteration 1616 /// to handle accesses with gaps. 1617 bool requiresScalarEpilogue() const { 1618 return InterleaveInfo.requiresScalarEpilogue(); 1619 } 1620 1621 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1622 1623 uint64_t getMaxSafeRegisterWidth() const { 1624 return LAI->getDepChecker().getMaxSafeRegisterWidth(); 1625 } 1626 1627 bool hasStride(Value *V) { return LAI->hasStride(V); } 1628 1629 /// Returns true if the target machine supports masked store operation 1630 /// for the given \p DataType and kind of access to \p Ptr. 1631 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1632 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1633 } 1634 1635 /// Returns true if the target machine supports masked load operation 1636 /// for the given \p DataType and kind of access to \p Ptr. 1637 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1638 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1639 } 1640 1641 /// Returns true if the target machine supports masked scatter operation 1642 /// for the given \p DataType. 1643 bool isLegalMaskedScatter(Type *DataType) { 1644 return TTI->isLegalMaskedScatter(DataType); 1645 } 1646 1647 /// Returns true if the target machine supports masked gather operation 1648 /// for the given \p DataType. 1649 bool isLegalMaskedGather(Type *DataType) { 1650 return TTI->isLegalMaskedGather(DataType); 1651 } 1652 1653 /// Returns true if the target machine can represent \p V as a masked gather 1654 /// or scatter operation. 1655 bool isLegalGatherOrScatter(Value *V) { 1656 auto *LI = dyn_cast<LoadInst>(V); 1657 auto *SI = dyn_cast<StoreInst>(V); 1658 if (!LI && !SI) 1659 return false; 1660 auto *Ptr = getPointerOperand(V); 1661 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1662 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1663 } 1664 1665 /// Returns true if vector representation of the instruction \p I 1666 /// requires mask. 1667 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1668 1669 unsigned getNumStores() const { return LAI->getNumStores(); } 1670 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1671 unsigned getNumPredStores() const { return NumPredStores; } 1672 1673 /// Returns true if \p I is an instruction that will be scalarized with 1674 /// predication. Such instructions include conditional stores and 1675 /// instructions that may divide by zero. 1676 bool isScalarWithPredication(Instruction *I); 1677 1678 /// Returns true if \p I is a memory instruction with consecutive memory 1679 /// access that can be widened. 1680 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1681 1682 // Returns true if the NoNaN attribute is set on the function. 1683 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1684 1685 private: 1686 /// Check if a single basic block loop is vectorizable. 1687 /// At this point we know that this is a loop with a constant trip count 1688 /// and we only need to check individual instructions. 1689 bool canVectorizeInstrs(); 1690 1691 /// When we vectorize loops we may change the order in which 1692 /// we read and write from memory. This method checks if it is 1693 /// legal to vectorize the code, considering only memory constrains. 1694 /// Returns true if the loop is vectorizable 1695 bool canVectorizeMemory(); 1696 1697 /// Return true if we can vectorize this loop using the IF-conversion 1698 /// transformation. 1699 bool canVectorizeWithIfConvert(); 1700 1701 /// Return true if all of the instructions in the block can be speculatively 1702 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1703 /// and we know that we can read from them without segfault. 1704 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1705 1706 /// Updates the vectorization state by adding \p Phi to the inductions list. 1707 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1708 /// better choice for the main induction than the existing one. 1709 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1710 SmallPtrSetImpl<Value *> &AllowedExit); 1711 1712 /// Create an analysis remark that explains why vectorization failed 1713 /// 1714 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1715 /// an instruction that prevents vectorization. Otherwise the loop is used 1716 /// for the location of the remark. \return the remark object that can be 1717 /// streamed to. 1718 OptimizationRemarkAnalysis 1719 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1720 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1721 RemarkName, TheLoop, I); 1722 } 1723 1724 /// \brief If an access has a symbolic strides, this maps the pointer value to 1725 /// the stride symbol. 1726 const ValueToValueMap *getSymbolicStrides() { 1727 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1728 // it's collected. This happens from canVectorizeWithIfConvert, when the 1729 // pointer is checked to reference consecutive elements suitable for a 1730 // masked access. 1731 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1732 } 1733 1734 unsigned NumPredStores = 0; 1735 1736 /// The loop that we evaluate. 1737 Loop *TheLoop; 1738 1739 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1740 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1741 /// of existing SCEV assumptions. The analysis will also add a minimal set 1742 /// of new predicates if this is required to enable vectorization and 1743 /// unrolling. 1744 PredicatedScalarEvolution &PSE; 1745 1746 /// Target Library Info. 1747 TargetLibraryInfo *TLI; 1748 1749 /// Target Transform Info 1750 const TargetTransformInfo *TTI; 1751 1752 /// Dominator Tree. 1753 DominatorTree *DT; 1754 1755 // LoopAccess analysis. 1756 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1757 1758 // And the loop-accesses info corresponding to this loop. This pointer is 1759 // null until canVectorizeMemory sets it up. 1760 const LoopAccessInfo *LAI = nullptr; 1761 1762 /// Interface to emit optimization remarks. 1763 OptimizationRemarkEmitter *ORE; 1764 1765 /// The interleave access information contains groups of interleaved accesses 1766 /// with the same stride and close to each other. 1767 InterleavedAccessInfo InterleaveInfo; 1768 1769 // --- vectorization state --- // 1770 1771 /// Holds the primary induction variable. This is the counter of the 1772 /// loop. 1773 PHINode *PrimaryInduction = nullptr; 1774 1775 /// Holds the reduction variables. 1776 ReductionList Reductions; 1777 1778 /// Holds all of the induction variables that we found in the loop. 1779 /// Notice that inductions don't need to start at zero and that induction 1780 /// variables can be pointers. 1781 InductionList Inductions; 1782 1783 /// Holds the phi nodes that are first-order recurrences. 1784 RecurrenceSet FirstOrderRecurrences; 1785 1786 /// Holds instructions that need to sink past other instructions to handle 1787 /// first-order recurrences. 1788 DenseMap<Instruction *, Instruction *> SinkAfter; 1789 1790 /// Holds the widest induction type encountered. 1791 Type *WidestIndTy = nullptr; 1792 1793 /// Allowed outside users. This holds the induction and reduction 1794 /// vars which can be accessed from outside the loop. 1795 SmallPtrSet<Value *, 4> AllowedExit; 1796 1797 /// Can we assume the absence of NaNs. 1798 bool HasFunNoNaNAttr = false; 1799 1800 /// Vectorization requirements that will go through late-evaluation. 1801 LoopVectorizationRequirements *Requirements; 1802 1803 /// Used to emit an analysis of any legality issues. 1804 LoopVectorizeHints *Hints; 1805 1806 /// While vectorizing these instructions we have to generate a 1807 /// call to the appropriate masked intrinsic 1808 SmallPtrSet<const Instruction *, 8> MaskedOp; 1809 }; 1810 1811 /// LoopVectorizationCostModel - estimates the expected speedups due to 1812 /// vectorization. 1813 /// In many cases vectorization is not profitable. This can happen because of 1814 /// a number of reasons. In this class we mainly attempt to predict the 1815 /// expected speedup/slowdowns due to the supported instruction set. We use the 1816 /// TargetTransformInfo to query the different backends for the cost of 1817 /// different operations. 1818 class LoopVectorizationCostModel { 1819 public: 1820 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1821 LoopInfo *LI, LoopVectorizationLegality *Legal, 1822 const TargetTransformInfo &TTI, 1823 const TargetLibraryInfo *TLI, DemandedBits *DB, 1824 AssumptionCache *AC, 1825 OptimizationRemarkEmitter *ORE, const Function *F, 1826 const LoopVectorizeHints *Hints) 1827 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1828 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1829 1830 /// \return An upper bound for the vectorization factor, or None if 1831 /// vectorization should be avoided up front. 1832 Optional<unsigned> computeMaxVF(bool OptForSize); 1833 1834 /// Information about vectorization costs 1835 struct VectorizationFactor { 1836 // Vector width with best cost 1837 unsigned Width; 1838 1839 // Cost of the loop with that width 1840 unsigned Cost; 1841 }; 1842 1843 /// \return The most profitable vectorization factor and the cost of that VF. 1844 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1845 /// then this vectorization factor will be selected if vectorization is 1846 /// possible. 1847 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1848 1849 /// Setup cost-based decisions for user vectorization factor. 1850 void selectUserVectorizationFactor(unsigned UserVF) { 1851 collectUniformsAndScalars(UserVF); 1852 collectInstsToScalarize(UserVF); 1853 } 1854 1855 /// \return The size (in bits) of the smallest and widest types in the code 1856 /// that needs to be vectorized. We ignore values that remain scalar such as 1857 /// 64 bit loop indices. 1858 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1859 1860 /// \return The desired interleave count. 1861 /// If interleave count has been specified by metadata it will be returned. 1862 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1863 /// are the selected vectorization factor and the cost of the selected VF. 1864 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1865 unsigned LoopCost); 1866 1867 /// Memory access instruction may be vectorized in more than one way. 1868 /// Form of instruction after vectorization depends on cost. 1869 /// This function takes cost-based decisions for Load/Store instructions 1870 /// and collects them in a map. This decisions map is used for building 1871 /// the lists of loop-uniform and loop-scalar instructions. 1872 /// The calculated cost is saved with widening decision in order to 1873 /// avoid redundant calculations. 1874 void setCostBasedWideningDecision(unsigned VF); 1875 1876 /// \brief A struct that represents some properties of the register usage 1877 /// of a loop. 1878 struct RegisterUsage { 1879 /// Holds the number of loop invariant values that are used in the loop. 1880 unsigned LoopInvariantRegs; 1881 1882 /// Holds the maximum number of concurrent live intervals in the loop. 1883 unsigned MaxLocalUsers; 1884 1885 /// Holds the number of instructions in the loop. 1886 unsigned NumInstructions; 1887 }; 1888 1889 /// \return Returns information about the register usages of the loop for the 1890 /// given vectorization factors. 1891 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1892 1893 /// Collect values we want to ignore in the cost model. 1894 void collectValuesToIgnore(); 1895 1896 /// \returns The smallest bitwidth each instruction can be represented with. 1897 /// The vector equivalents of these instructions should be truncated to this 1898 /// type. 1899 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1900 return MinBWs; 1901 } 1902 1903 /// \returns True if it is more profitable to scalarize instruction \p I for 1904 /// vectorization factor \p VF. 1905 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1906 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1907 auto Scalars = InstsToScalarize.find(VF); 1908 assert(Scalars != InstsToScalarize.end() && 1909 "VF not yet analyzed for scalarization profitability"); 1910 return Scalars->second.count(I); 1911 } 1912 1913 /// Returns true if \p I is known to be uniform after vectorization. 1914 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1915 if (VF == 1) 1916 return true; 1917 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1918 auto UniformsPerVF = Uniforms.find(VF); 1919 return UniformsPerVF->second.count(I); 1920 } 1921 1922 /// Returns true if \p I is known to be scalar after vectorization. 1923 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1924 if (VF == 1) 1925 return true; 1926 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1927 auto ScalarsPerVF = Scalars.find(VF); 1928 return ScalarsPerVF->second.count(I); 1929 } 1930 1931 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1932 /// for vectorization factor \p VF. 1933 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1934 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1935 !isScalarAfterVectorization(I, VF); 1936 } 1937 1938 /// Decision that was taken during cost calculation for memory instruction. 1939 enum InstWidening { 1940 CM_Unknown, 1941 CM_Widen, 1942 CM_Interleave, 1943 CM_GatherScatter, 1944 CM_Scalarize 1945 }; 1946 1947 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1948 /// instruction \p I and vector width \p VF. 1949 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1950 unsigned Cost) { 1951 assert(VF >= 2 && "Expected VF >=2"); 1952 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1953 } 1954 1955 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1956 /// interleaving group \p Grp and vector width \p VF. 1957 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1958 InstWidening W, unsigned Cost) { 1959 assert(VF >= 2 && "Expected VF >=2"); 1960 /// Broadcast this decicion to all instructions inside the group. 1961 /// But the cost will be assigned to one instruction only. 1962 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1963 if (auto *I = Grp->getMember(i)) { 1964 if (Grp->getInsertPos() == I) 1965 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1966 else 1967 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1968 } 1969 } 1970 } 1971 1972 /// Return the cost model decision for the given instruction \p I and vector 1973 /// width \p VF. Return CM_Unknown if this instruction did not pass 1974 /// through the cost modeling. 1975 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1976 assert(VF >= 2 && "Expected VF >=2"); 1977 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1978 auto Itr = WideningDecisions.find(InstOnVF); 1979 if (Itr == WideningDecisions.end()) 1980 return CM_Unknown; 1981 return Itr->second.first; 1982 } 1983 1984 /// Return the vectorization cost for the given instruction \p I and vector 1985 /// width \p VF. 1986 unsigned getWideningCost(Instruction *I, unsigned VF) { 1987 assert(VF >= 2 && "Expected VF >=2"); 1988 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1989 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 1990 return WideningDecisions[InstOnVF].second; 1991 } 1992 1993 /// Return True if instruction \p I is an optimizable truncate whose operand 1994 /// is an induction variable. Such a truncate will be removed by adding a new 1995 /// induction variable with the destination type. 1996 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1997 // If the instruction is not a truncate, return false. 1998 auto *Trunc = dyn_cast<TruncInst>(I); 1999 if (!Trunc) 2000 return false; 2001 2002 // Get the source and destination types of the truncate. 2003 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 2004 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 2005 2006 // If the truncate is free for the given types, return false. Replacing a 2007 // free truncate with an induction variable would add an induction variable 2008 // update instruction to each iteration of the loop. We exclude from this 2009 // check the primary induction variable since it will need an update 2010 // instruction regardless. 2011 Value *Op = Trunc->getOperand(0); 2012 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 2013 return false; 2014 2015 // If the truncated value is not an induction variable, return false. 2016 return Legal->isInductionVariable(Op); 2017 } 2018 2019 /// Collects the instructions to scalarize for each predicated instruction in 2020 /// the loop. 2021 void collectInstsToScalarize(unsigned VF); 2022 2023 /// Collect Uniform and Scalar values for the given \p VF. 2024 /// The sets depend on CM decision for Load/Store instructions 2025 /// that may be vectorized as interleave, gather-scatter or scalarized. 2026 void collectUniformsAndScalars(unsigned VF) { 2027 // Do the analysis once. 2028 if (VF == 1 || Uniforms.count(VF)) 2029 return; 2030 setCostBasedWideningDecision(VF); 2031 collectLoopUniforms(VF); 2032 collectLoopScalars(VF); 2033 } 2034 2035 private: 2036 /// \return An upper bound for the vectorization factor, larger than zero. 2037 /// One is returned if vectorization should best be avoided due to cost. 2038 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 2039 2040 /// The vectorization cost is a combination of the cost itself and a boolean 2041 /// indicating whether any of the contributing operations will actually 2042 /// operate on 2043 /// vector values after type legalization in the backend. If this latter value 2044 /// is 2045 /// false, then all operations will be scalarized (i.e. no vectorization has 2046 /// actually taken place). 2047 using VectorizationCostTy = std::pair<unsigned, bool>; 2048 2049 /// Returns the expected execution cost. The unit of the cost does 2050 /// not matter because we use the 'cost' units to compare different 2051 /// vector widths. The cost that is returned is *not* normalized by 2052 /// the factor width. 2053 VectorizationCostTy expectedCost(unsigned VF); 2054 2055 /// Returns the execution time cost of an instruction for a given vector 2056 /// width. Vector width of one means scalar. 2057 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2058 2059 /// The cost-computation logic from getInstructionCost which provides 2060 /// the vector type as an output parameter. 2061 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2062 2063 /// Calculate vectorization cost of memory instruction \p I. 2064 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2065 2066 /// The cost computation for scalarized memory instruction. 2067 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2068 2069 /// The cost computation for interleaving group of memory instructions. 2070 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2071 2072 /// The cost computation for Gather/Scatter instruction. 2073 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2074 2075 /// The cost computation for widening instruction \p I with consecutive 2076 /// memory access. 2077 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2078 2079 /// The cost calculation for Load instruction \p I with uniform pointer - 2080 /// scalar load + broadcast. 2081 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2082 2083 /// Returns whether the instruction is a load or store and will be a emitted 2084 /// as a vector operation. 2085 bool isConsecutiveLoadOrStore(Instruction *I); 2086 2087 /// Create an analysis remark that explains why vectorization failed 2088 /// 2089 /// \p RemarkName is the identifier for the remark. \return the remark object 2090 /// that can be streamed to. 2091 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2092 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2093 RemarkName, TheLoop); 2094 } 2095 2096 /// Map of scalar integer values to the smallest bitwidth they can be legally 2097 /// represented as. The vector equivalents of these values should be truncated 2098 /// to this type. 2099 MapVector<Instruction *, uint64_t> MinBWs; 2100 2101 /// A type representing the costs for instructions if they were to be 2102 /// scalarized rather than vectorized. The entries are Instruction-Cost 2103 /// pairs. 2104 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 2105 2106 /// A set containing all BasicBlocks that are known to present after 2107 /// vectorization as a predicated block. 2108 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2109 2110 /// A map holding scalar costs for different vectorization factors. The 2111 /// presence of a cost for an instruction in the mapping indicates that the 2112 /// instruction will be scalarized when vectorizing with the associated 2113 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2114 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2115 2116 /// Holds the instructions known to be uniform after vectorization. 2117 /// The data is collected per VF. 2118 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2119 2120 /// Holds the instructions known to be scalar after vectorization. 2121 /// The data is collected per VF. 2122 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2123 2124 /// Holds the instructions (address computations) that are forced to be 2125 /// scalarized. 2126 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 2127 2128 /// Returns the expected difference in cost from scalarizing the expression 2129 /// feeding a predicated instruction \p PredInst. The instructions to 2130 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2131 /// non-negative return value implies the expression will be scalarized. 2132 /// Currently, only single-use chains are considered for scalarization. 2133 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2134 unsigned VF); 2135 2136 /// Collect the instructions that are uniform after vectorization. An 2137 /// instruction is uniform if we represent it with a single scalar value in 2138 /// the vectorized loop corresponding to each vector iteration. Examples of 2139 /// uniform instructions include pointer operands of consecutive or 2140 /// interleaved memory accesses. Note that although uniformity implies an 2141 /// instruction will be scalar, the reverse is not true. In general, a 2142 /// scalarized instruction will be represented by VF scalar values in the 2143 /// vectorized loop, each corresponding to an iteration of the original 2144 /// scalar loop. 2145 void collectLoopUniforms(unsigned VF); 2146 2147 /// Collect the instructions that are scalar after vectorization. An 2148 /// instruction is scalar if it is known to be uniform or will be scalarized 2149 /// during vectorization. Non-uniform scalarized instructions will be 2150 /// represented by VF values in the vectorized loop, each corresponding to an 2151 /// iteration of the original scalar loop. 2152 void collectLoopScalars(unsigned VF); 2153 2154 /// Keeps cost model vectorization decision and cost for instructions. 2155 /// Right now it is used for memory instructions only. 2156 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 2157 std::pair<InstWidening, unsigned>>; 2158 2159 DecisionList WideningDecisions; 2160 2161 public: 2162 /// The loop that we evaluate. 2163 Loop *TheLoop; 2164 2165 /// Predicated scalar evolution analysis. 2166 PredicatedScalarEvolution &PSE; 2167 2168 /// Loop Info analysis. 2169 LoopInfo *LI; 2170 2171 /// Vectorization legality. 2172 LoopVectorizationLegality *Legal; 2173 2174 /// Vector target information. 2175 const TargetTransformInfo &TTI; 2176 2177 /// Target Library Info. 2178 const TargetLibraryInfo *TLI; 2179 2180 /// Demanded bits analysis. 2181 DemandedBits *DB; 2182 2183 /// Assumption cache. 2184 AssumptionCache *AC; 2185 2186 /// Interface to emit optimization remarks. 2187 OptimizationRemarkEmitter *ORE; 2188 2189 const Function *TheFunction; 2190 2191 /// Loop Vectorize Hint. 2192 const LoopVectorizeHints *Hints; 2193 2194 /// Values to ignore in the cost model. 2195 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2196 2197 /// Values to ignore in the cost model when VF > 1. 2198 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2199 }; 2200 2201 } // end anonymous namespace 2202 2203 namespace llvm { 2204 2205 /// InnerLoopVectorizer vectorizes loops which contain only one basic 2206 /// LoopVectorizationPlanner - drives the vectorization process after having 2207 /// passed Legality checks. 2208 /// The planner builds and optimizes the Vectorization Plans which record the 2209 /// decisions how to vectorize the given loop. In particular, represent the 2210 /// control-flow of the vectorized version, the replication of instructions that 2211 /// are to be scalarized, and interleave access groups. 2212 class LoopVectorizationPlanner { 2213 /// The loop that we evaluate. 2214 Loop *OrigLoop; 2215 2216 /// Loop Info analysis. 2217 LoopInfo *LI; 2218 2219 /// Target Library Info. 2220 const TargetLibraryInfo *TLI; 2221 2222 /// Target Transform Info. 2223 const TargetTransformInfo *TTI; 2224 2225 /// The legality analysis. 2226 LoopVectorizationLegality *Legal; 2227 2228 /// The profitablity analysis. 2229 LoopVectorizationCostModel &CM; 2230 2231 SmallVector<std::unique_ptr<VPlan>, 4> VPlans; 2232 2233 unsigned BestVF = 0; 2234 unsigned BestUF = 0; 2235 2236 public: 2237 LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI, 2238 const TargetTransformInfo *TTI, 2239 LoopVectorizationLegality *Legal, 2240 LoopVectorizationCostModel &CM) 2241 : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM) {} 2242 2243 /// Plan how to best vectorize, return the best VF and its cost. 2244 LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize, 2245 unsigned UserVF); 2246 2247 /// Finalize the best decision and dispose of all other VPlans. 2248 void setBestPlan(unsigned VF, unsigned UF); 2249 2250 /// Generate the IR code for the body of the vectorized loop according to the 2251 /// best selected VPlan. 2252 void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT); 2253 2254 void printPlans(raw_ostream &O) { 2255 for (const auto &Plan : VPlans) 2256 O << *Plan; 2257 } 2258 2259 protected: 2260 /// Collect the instructions from the original loop that would be trivially 2261 /// dead in the vectorized loop if generated. 2262 void collectTriviallyDeadInstructions( 2263 SmallPtrSetImpl<Instruction *> &DeadInstructions); 2264 2265 /// A range of powers-of-2 vectorization factors with fixed start and 2266 /// adjustable end. The range includes start and excludes end, e.g.,: 2267 /// [1, 9) = {1, 2, 4, 8} 2268 struct VFRange { 2269 // A power of 2. 2270 const unsigned Start; 2271 2272 // Need not be a power of 2. If End <= Start range is empty. 2273 unsigned End; 2274 }; 2275 2276 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying 2277 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the 2278 /// returned value holds for the entire \p Range. 2279 bool getDecisionAndClampRange(const std::function<bool(unsigned)> &Predicate, 2280 VFRange &Range); 2281 2282 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 2283 /// according to the information gathered by Legal when it checked if it is 2284 /// legal to vectorize the loop. 2285 void buildVPlans(unsigned MinVF, unsigned MaxVF); 2286 2287 private: 2288 /// Check if \I belongs to an Interleave Group within the given VF \p Range, 2289 /// \return true in the first returned value if so and false otherwise. 2290 /// Build a new VPInterleaveGroup Recipe if \I is the primary member of an IG 2291 /// for \p Range.Start, and provide it as the second returned value. 2292 /// Note that if \I is an adjunct member of an IG for \p Range.Start, the 2293 /// \return value is <true, nullptr>, as it is handled by another recipe. 2294 /// \p Range.End may be decreased to ensure same decision from \p Range.Start 2295 /// to \p Range.End. 2296 VPInterleaveRecipe *tryToInterleaveMemory(Instruction *I, VFRange &Range); 2297 2298 /// Check if an induction recipe should be constructed for \I within the given 2299 /// VF \p Range. If so build and return it. If not, return null. \p Range.End 2300 /// may be decreased to ensure same decision from \p Range.Start to 2301 /// \p Range.End. 2302 VPWidenIntOrFpInductionRecipe *tryToOptimizeInduction(Instruction *I, 2303 VFRange &Range); 2304 2305 /// Check if \p I can be widened within the given VF \p Range. If \p I can be 2306 /// widened for \p Range.Start, check if the last recipe of \p VPBB can be 2307 /// extended to include \p I or else build a new VPWidenRecipe for it and 2308 /// append it to \p VPBB. Return true if \p I can be widened for Range.Start, 2309 /// false otherwise. Range.End may be decreased to ensure same decision from 2310 /// \p Range.Start to \p Range.End. 2311 bool tryToWiden(Instruction *I, VPBasicBlock *VPBB, VFRange &Range); 2312 2313 /// Build a VPReplicationRecipe for \p I and enclose it within a Region if it 2314 /// is predicated. \return \p VPBB augmented with this new recipe if \p I is 2315 /// not predicated, otherwise \return a new VPBasicBlock that succeeds the new 2316 /// Region. Update the packing decision of predicated instructions if they 2317 /// feed \p I. Range.End may be decreased to ensure same recipe behavior from 2318 /// \p Range.Start to \p Range.End. 2319 VPBasicBlock *handleReplication( 2320 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 2321 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe); 2322 2323 /// Create a replicating region for instruction \p I that requires 2324 /// predication. \p PredRecipe is a VPReplicateRecipe holding \p I. 2325 VPRegionBlock *createReplicateRegion(Instruction *I, 2326 VPRecipeBase *PredRecipe); 2327 2328 /// Build a VPlan according to the information gathered by Legal. \return a 2329 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End 2330 /// exclusive, possibly decreasing \p Range.End. 2331 std::unique_ptr<VPlan> buildVPlan(VFRange &Range); 2332 }; 2333 2334 } // end namespace llvm 2335 2336 namespace { 2337 2338 /// \brief This holds vectorization requirements that must be verified late in 2339 /// the process. The requirements are set by legalize and costmodel. Once 2340 /// vectorization has been determined to be possible and profitable the 2341 /// requirements can be verified by looking for metadata or compiler options. 2342 /// For example, some loops require FP commutativity which is only allowed if 2343 /// vectorization is explicitly specified or if the fast-math compiler option 2344 /// has been provided. 2345 /// Late evaluation of these requirements allows helpful diagnostics to be 2346 /// composed that tells the user what need to be done to vectorize the loop. For 2347 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2348 /// evaluation should be used only when diagnostics can generated that can be 2349 /// followed by a non-expert user. 2350 class LoopVectorizationRequirements { 2351 public: 2352 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) : ORE(ORE) {} 2353 2354 void addUnsafeAlgebraInst(Instruction *I) { 2355 // First unsafe algebra instruction. 2356 if (!UnsafeAlgebraInst) 2357 UnsafeAlgebraInst = I; 2358 } 2359 2360 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2361 2362 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2363 const char *PassName = Hints.vectorizeAnalysisPassName(); 2364 bool Failed = false; 2365 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2366 ORE.emit([&]() { 2367 return OptimizationRemarkAnalysisFPCommute( 2368 PassName, "CantReorderFPOps", 2369 UnsafeAlgebraInst->getDebugLoc(), 2370 UnsafeAlgebraInst->getParent()) 2371 << "loop not vectorized: cannot prove it is safe to reorder " 2372 "floating-point operations"; 2373 }); 2374 Failed = true; 2375 } 2376 2377 // Test if runtime memcheck thresholds are exceeded. 2378 bool PragmaThresholdReached = 2379 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2380 bool ThresholdReached = 2381 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2382 if ((ThresholdReached && !Hints.allowReordering()) || 2383 PragmaThresholdReached) { 2384 ORE.emit([&]() { 2385 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2386 L->getStartLoc(), 2387 L->getHeader()) 2388 << "loop not vectorized: cannot prove it is safe to reorder " 2389 "memory operations"; 2390 }); 2391 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2392 Failed = true; 2393 } 2394 2395 return Failed; 2396 } 2397 2398 private: 2399 unsigned NumRuntimePointerChecks = 0; 2400 Instruction *UnsafeAlgebraInst = nullptr; 2401 2402 /// Interface to emit optimization remarks. 2403 OptimizationRemarkEmitter &ORE; 2404 }; 2405 2406 } // end anonymous namespace 2407 2408 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2409 if (L.empty()) { 2410 if (!hasCyclesInLoopBody(L)) 2411 V.push_back(&L); 2412 return; 2413 } 2414 for (Loop *InnerL : L) 2415 addAcyclicInnerLoop(*InnerL, V); 2416 } 2417 2418 namespace { 2419 2420 /// The LoopVectorize Pass. 2421 struct LoopVectorize : public FunctionPass { 2422 /// Pass identification, replacement for typeid 2423 static char ID; 2424 2425 LoopVectorizePass Impl; 2426 2427 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2428 : FunctionPass(ID) { 2429 Impl.DisableUnrolling = NoUnrolling; 2430 Impl.AlwaysVectorize = AlwaysVectorize; 2431 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2432 } 2433 2434 bool runOnFunction(Function &F) override { 2435 if (skipFunction(F)) 2436 return false; 2437 2438 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2439 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2440 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2441 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2442 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2443 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2444 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2445 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2446 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2447 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2448 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2449 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2450 2451 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2452 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2453 2454 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2455 GetLAA, *ORE); 2456 } 2457 2458 void getAnalysisUsage(AnalysisUsage &AU) const override { 2459 AU.addRequired<AssumptionCacheTracker>(); 2460 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2461 AU.addRequired<DominatorTreeWrapperPass>(); 2462 AU.addRequired<LoopInfoWrapperPass>(); 2463 AU.addRequired<ScalarEvolutionWrapperPass>(); 2464 AU.addRequired<TargetTransformInfoWrapperPass>(); 2465 AU.addRequired<AAResultsWrapperPass>(); 2466 AU.addRequired<LoopAccessLegacyAnalysis>(); 2467 AU.addRequired<DemandedBitsWrapperPass>(); 2468 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2469 AU.addPreserved<LoopInfoWrapperPass>(); 2470 AU.addPreserved<DominatorTreeWrapperPass>(); 2471 AU.addPreserved<BasicAAWrapperPass>(); 2472 AU.addPreserved<GlobalsAAWrapperPass>(); 2473 } 2474 }; 2475 2476 } // end anonymous namespace 2477 2478 //===----------------------------------------------------------------------===// 2479 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2480 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2481 //===----------------------------------------------------------------------===// 2482 2483 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2484 // We need to place the broadcast of invariant variables outside the loop. 2485 Instruction *Instr = dyn_cast<Instruction>(V); 2486 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2487 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2488 2489 // Place the code for broadcasting invariant variables in the new preheader. 2490 IRBuilder<>::InsertPointGuard Guard(Builder); 2491 if (Invariant) 2492 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2493 2494 // Broadcast the scalar into all locations in the vector. 2495 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2496 2497 return Shuf; 2498 } 2499 2500 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2501 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2502 Value *Start = II.getStartValue(); 2503 2504 // Construct the initial value of the vector IV in the vector loop preheader 2505 auto CurrIP = Builder.saveIP(); 2506 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2507 if (isa<TruncInst>(EntryVal)) { 2508 assert(Start->getType()->isIntegerTy() && 2509 "Truncation requires an integer type"); 2510 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2511 Step = Builder.CreateTrunc(Step, TruncType); 2512 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2513 } 2514 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2515 Value *SteppedStart = 2516 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2517 2518 // We create vector phi nodes for both integer and floating-point induction 2519 // variables. Here, we determine the kind of arithmetic we will perform. 2520 Instruction::BinaryOps AddOp; 2521 Instruction::BinaryOps MulOp; 2522 if (Step->getType()->isIntegerTy()) { 2523 AddOp = Instruction::Add; 2524 MulOp = Instruction::Mul; 2525 } else { 2526 AddOp = II.getInductionOpcode(); 2527 MulOp = Instruction::FMul; 2528 } 2529 2530 // Multiply the vectorization factor by the step using integer or 2531 // floating-point arithmetic as appropriate. 2532 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2533 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2534 2535 // Create a vector splat to use in the induction update. 2536 // 2537 // FIXME: If the step is non-constant, we create the vector splat with 2538 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2539 // handle a constant vector splat. 2540 Value *SplatVF = isa<Constant>(Mul) 2541 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2542 : Builder.CreateVectorSplat(VF, Mul); 2543 Builder.restoreIP(CurrIP); 2544 2545 // We may need to add the step a number of times, depending on the unroll 2546 // factor. The last of those goes into the PHI. 2547 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2548 &*LoopVectorBody->getFirstInsertionPt()); 2549 Instruction *LastInduction = VecInd; 2550 for (unsigned Part = 0; Part < UF; ++Part) { 2551 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 2552 if (isa<TruncInst>(EntryVal)) 2553 addMetadata(LastInduction, EntryVal); 2554 LastInduction = cast<Instruction>(addFastMathFlag( 2555 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2556 } 2557 2558 // Move the last step to the end of the latch block. This ensures consistent 2559 // placement of all induction updates. 2560 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2561 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2562 auto *ICmp = cast<Instruction>(Br->getCondition()); 2563 LastInduction->moveBefore(ICmp); 2564 LastInduction->setName("vec.ind.next"); 2565 2566 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2567 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2568 } 2569 2570 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2571 return Cost->isScalarAfterVectorization(I, VF) || 2572 Cost->isProfitableToScalarize(I, VF); 2573 } 2574 2575 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2576 if (shouldScalarizeInstruction(IV)) 2577 return true; 2578 auto isScalarInst = [&](User *U) -> bool { 2579 auto *I = cast<Instruction>(U); 2580 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2581 }; 2582 return llvm::any_of(IV->users(), isScalarInst); 2583 } 2584 2585 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2586 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2587 "Primary induction variable must have an integer type"); 2588 2589 auto II = Legal->getInductionVars()->find(IV); 2590 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2591 2592 auto ID = II->second; 2593 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2594 2595 // The scalar value to broadcast. This will be derived from the canonical 2596 // induction variable. 2597 Value *ScalarIV = nullptr; 2598 2599 // The value from the original loop to which we are mapping the new induction 2600 // variable. 2601 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2602 2603 // True if we have vectorized the induction variable. 2604 auto VectorizedIV = false; 2605 2606 // Determine if we want a scalar version of the induction variable. This is 2607 // true if the induction variable itself is not widened, or if it has at 2608 // least one user in the loop that is not widened. 2609 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2610 2611 // Generate code for the induction step. Note that induction steps are 2612 // required to be loop-invariant 2613 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2614 "Induction step should be loop invariant"); 2615 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2616 Value *Step = nullptr; 2617 if (PSE.getSE()->isSCEVable(IV->getType())) { 2618 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2619 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2620 LoopVectorPreHeader->getTerminator()); 2621 } else { 2622 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2623 } 2624 2625 // Try to create a new independent vector induction variable. If we can't 2626 // create the phi node, we will splat the scalar induction variable in each 2627 // loop iteration. 2628 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2629 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2630 VectorizedIV = true; 2631 } 2632 2633 // If we haven't yet vectorized the induction variable, or if we will create 2634 // a scalar one, we need to define the scalar induction variable and step 2635 // values. If we were given a truncation type, truncate the canonical 2636 // induction variable and step. Otherwise, derive these values from the 2637 // induction descriptor. 2638 if (!VectorizedIV || NeedsScalarIV) { 2639 ScalarIV = Induction; 2640 if (IV != OldInduction) { 2641 ScalarIV = IV->getType()->isIntegerTy() 2642 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2643 : Builder.CreateCast(Instruction::SIToFP, Induction, 2644 IV->getType()); 2645 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2646 ScalarIV->setName("offset.idx"); 2647 } 2648 if (Trunc) { 2649 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2650 assert(Step->getType()->isIntegerTy() && 2651 "Truncation requires an integer step"); 2652 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2653 Step = Builder.CreateTrunc(Step, TruncType); 2654 } 2655 } 2656 2657 // If we haven't yet vectorized the induction variable, splat the scalar 2658 // induction variable, and build the necessary step vectors. 2659 if (!VectorizedIV) { 2660 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2661 for (unsigned Part = 0; Part < UF; ++Part) { 2662 Value *EntryPart = 2663 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2664 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2665 if (Trunc) 2666 addMetadata(EntryPart, Trunc); 2667 } 2668 } 2669 2670 // If an induction variable is only used for counting loop iterations or 2671 // calculating addresses, it doesn't need to be widened. Create scalar steps 2672 // that can be used by instructions we will later scalarize. Note that the 2673 // addition of the scalar steps will not increase the number of instructions 2674 // in the loop in the common case prior to InstCombine. We will be trading 2675 // one vector extract for each scalar step. 2676 if (NeedsScalarIV) 2677 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2678 } 2679 2680 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2681 Instruction::BinaryOps BinOp) { 2682 // Create and check the types. 2683 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2684 int VLen = Val->getType()->getVectorNumElements(); 2685 2686 Type *STy = Val->getType()->getScalarType(); 2687 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2688 "Induction Step must be an integer or FP"); 2689 assert(Step->getType() == STy && "Step has wrong type"); 2690 2691 SmallVector<Constant *, 8> Indices; 2692 2693 if (STy->isIntegerTy()) { 2694 // Create a vector of consecutive numbers from zero to VF. 2695 for (int i = 0; i < VLen; ++i) 2696 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2697 2698 // Add the consecutive indices to the vector value. 2699 Constant *Cv = ConstantVector::get(Indices); 2700 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2701 Step = Builder.CreateVectorSplat(VLen, Step); 2702 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2703 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2704 // which can be found from the original scalar operations. 2705 Step = Builder.CreateMul(Cv, Step); 2706 return Builder.CreateAdd(Val, Step, "induction"); 2707 } 2708 2709 // Floating point induction. 2710 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2711 "Binary Opcode should be specified for FP induction"); 2712 // Create a vector of consecutive numbers from zero to VF. 2713 for (int i = 0; i < VLen; ++i) 2714 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2715 2716 // Add the consecutive indices to the vector value. 2717 Constant *Cv = ConstantVector::get(Indices); 2718 2719 Step = Builder.CreateVectorSplat(VLen, Step); 2720 2721 // Floating point operations had to be 'fast' to enable the induction. 2722 FastMathFlags Flags; 2723 Flags.setFast(); 2724 2725 Value *MulOp = Builder.CreateFMul(Cv, Step); 2726 if (isa<Instruction>(MulOp)) 2727 // Have to check, MulOp may be a constant 2728 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2729 2730 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2731 if (isa<Instruction>(BOp)) 2732 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2733 return BOp; 2734 } 2735 2736 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2737 Value *EntryVal, 2738 const InductionDescriptor &ID) { 2739 // We shouldn't have to build scalar steps if we aren't vectorizing. 2740 assert(VF > 1 && "VF should be greater than one"); 2741 2742 // Get the value type and ensure it and the step have the same integer type. 2743 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2744 assert(ScalarIVTy == Step->getType() && 2745 "Val and Step should have the same type"); 2746 2747 // We build scalar steps for both integer and floating-point induction 2748 // variables. Here, we determine the kind of arithmetic we will perform. 2749 Instruction::BinaryOps AddOp; 2750 Instruction::BinaryOps MulOp; 2751 if (ScalarIVTy->isIntegerTy()) { 2752 AddOp = Instruction::Add; 2753 MulOp = Instruction::Mul; 2754 } else { 2755 AddOp = ID.getInductionOpcode(); 2756 MulOp = Instruction::FMul; 2757 } 2758 2759 // Determine the number of scalars we need to generate for each unroll 2760 // iteration. If EntryVal is uniform, we only need to generate the first 2761 // lane. Otherwise, we generate all VF values. 2762 unsigned Lanes = 2763 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2764 : VF; 2765 // Compute the scalar steps and save the results in VectorLoopValueMap. 2766 for (unsigned Part = 0; Part < UF; ++Part) { 2767 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2768 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2769 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2770 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2771 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2772 } 2773 } 2774 } 2775 2776 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2777 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2778 ValueToValueMap(); 2779 2780 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2781 if (Stride == 1 || Stride == -1) 2782 return Stride; 2783 return 0; 2784 } 2785 2786 bool LoopVectorizationLegality::isUniform(Value *V) { 2787 return LAI->isUniform(V); 2788 } 2789 2790 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2791 assert(V != Induction && "The new induction variable should not be used."); 2792 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2793 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2794 2795 // If we have a stride that is replaced by one, do it here. 2796 if (Legal->hasStride(V)) 2797 V = ConstantInt::get(V->getType(), 1); 2798 2799 // If we have a vector mapped to this value, return it. 2800 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2801 return VectorLoopValueMap.getVectorValue(V, Part); 2802 2803 // If the value has not been vectorized, check if it has been scalarized 2804 // instead. If it has been scalarized, and we actually need the value in 2805 // vector form, we will construct the vector values on demand. 2806 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2807 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2808 2809 // If we've scalarized a value, that value should be an instruction. 2810 auto *I = cast<Instruction>(V); 2811 2812 // If we aren't vectorizing, we can just copy the scalar map values over to 2813 // the vector map. 2814 if (VF == 1) { 2815 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2816 return ScalarValue; 2817 } 2818 2819 // Get the last scalar instruction we generated for V and Part. If the value 2820 // is known to be uniform after vectorization, this corresponds to lane zero 2821 // of the Part unroll iteration. Otherwise, the last instruction is the one 2822 // we created for the last vector lane of the Part unroll iteration. 2823 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2824 auto *LastInst = cast<Instruction>( 2825 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2826 2827 // Set the insert point after the last scalarized instruction. This ensures 2828 // the insertelement sequence will directly follow the scalar definitions. 2829 auto OldIP = Builder.saveIP(); 2830 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2831 Builder.SetInsertPoint(&*NewIP); 2832 2833 // However, if we are vectorizing, we need to construct the vector values. 2834 // If the value is known to be uniform after vectorization, we can just 2835 // broadcast the scalar value corresponding to lane zero for each unroll 2836 // iteration. Otherwise, we construct the vector values using insertelement 2837 // instructions. Since the resulting vectors are stored in 2838 // VectorLoopValueMap, we will only generate the insertelements once. 2839 Value *VectorValue = nullptr; 2840 if (Cost->isUniformAfterVectorization(I, VF)) { 2841 VectorValue = getBroadcastInstrs(ScalarValue); 2842 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2843 } else { 2844 // Initialize packing with insertelements to start from undef. 2845 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2846 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2847 for (unsigned Lane = 0; Lane < VF; ++Lane) 2848 packScalarIntoVectorValue(V, {Part, Lane}); 2849 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2850 } 2851 Builder.restoreIP(OldIP); 2852 return VectorValue; 2853 } 2854 2855 // If this scalar is unknown, assume that it is a constant or that it is 2856 // loop invariant. Broadcast V and save the value for future uses. 2857 Value *B = getBroadcastInstrs(V); 2858 VectorLoopValueMap.setVectorValue(V, Part, B); 2859 return B; 2860 } 2861 2862 Value * 2863 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2864 const VPIteration &Instance) { 2865 // If the value is not an instruction contained in the loop, it should 2866 // already be scalar. 2867 if (OrigLoop->isLoopInvariant(V)) 2868 return V; 2869 2870 assert(Instance.Lane > 0 2871 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2872 : true && "Uniform values only have lane zero"); 2873 2874 // If the value from the original loop has not been vectorized, it is 2875 // represented by UF x VF scalar values in the new loop. Return the requested 2876 // scalar value. 2877 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2878 return VectorLoopValueMap.getScalarValue(V, Instance); 2879 2880 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2881 // for the given unroll part. If this entry is not a vector type (i.e., the 2882 // vectorization factor is one), there is no need to generate an 2883 // extractelement instruction. 2884 auto *U = getOrCreateVectorValue(V, Instance.Part); 2885 if (!U->getType()->isVectorTy()) { 2886 assert(VF == 1 && "Value not scalarized has non-vector type"); 2887 return U; 2888 } 2889 2890 // Otherwise, the value from the original loop has been vectorized and is 2891 // represented by UF vector values. Extract and return the requested scalar 2892 // value from the appropriate vector lane. 2893 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2894 } 2895 2896 void InnerLoopVectorizer::packScalarIntoVectorValue( 2897 Value *V, const VPIteration &Instance) { 2898 assert(V != Induction && "The new induction variable should not be used."); 2899 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2900 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2901 2902 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2903 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2904 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2905 Builder.getInt32(Instance.Lane)); 2906 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2907 } 2908 2909 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2910 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2911 SmallVector<Constant *, 8> ShuffleMask; 2912 for (unsigned i = 0; i < VF; ++i) 2913 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2914 2915 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2916 ConstantVector::get(ShuffleMask), 2917 "reverse"); 2918 } 2919 2920 // Try to vectorize the interleave group that \p Instr belongs to. 2921 // 2922 // E.g. Translate following interleaved load group (factor = 3): 2923 // for (i = 0; i < N; i+=3) { 2924 // R = Pic[i]; // Member of index 0 2925 // G = Pic[i+1]; // Member of index 1 2926 // B = Pic[i+2]; // Member of index 2 2927 // ... // do something to R, G, B 2928 // } 2929 // To: 2930 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2931 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2932 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2933 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2934 // 2935 // Or translate following interleaved store group (factor = 3): 2936 // for (i = 0; i < N; i+=3) { 2937 // ... do something to R, G, B 2938 // Pic[i] = R; // Member of index 0 2939 // Pic[i+1] = G; // Member of index 1 2940 // Pic[i+2] = B; // Member of index 2 2941 // } 2942 // To: 2943 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2944 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2945 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2946 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2947 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2948 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2949 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2950 assert(Group && "Fail to get an interleaved access group."); 2951 2952 // Skip if current instruction is not the insert position. 2953 if (Instr != Group->getInsertPos()) 2954 return; 2955 2956 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2957 Value *Ptr = getPointerOperand(Instr); 2958 2959 // Prepare for the vector type of the interleaved load/store. 2960 Type *ScalarTy = getMemInstValueType(Instr); 2961 unsigned InterleaveFactor = Group->getFactor(); 2962 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2963 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2964 2965 // Prepare for the new pointers. 2966 setDebugLocFromInst(Builder, Ptr); 2967 SmallVector<Value *, 2> NewPtrs; 2968 unsigned Index = Group->getIndex(Instr); 2969 2970 // If the group is reverse, adjust the index to refer to the last vector lane 2971 // instead of the first. We adjust the index from the first vector lane, 2972 // rather than directly getting the pointer for lane VF - 1, because the 2973 // pointer operand of the interleaved access is supposed to be uniform. For 2974 // uniform instructions, we're only required to generate a value for the 2975 // first vector lane in each unroll iteration. 2976 if (Group->isReverse()) 2977 Index += (VF - 1) * Group->getFactor(); 2978 2979 for (unsigned Part = 0; Part < UF; Part++) { 2980 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2981 2982 // Notice current instruction could be any index. Need to adjust the address 2983 // to the member of index 0. 2984 // 2985 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2986 // b = A[i]; // Member of index 0 2987 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2988 // 2989 // E.g. A[i+1] = a; // Member of index 1 2990 // A[i] = b; // Member of index 0 2991 // A[i+2] = c; // Member of index 2 (Current instruction) 2992 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2993 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2994 2995 // Cast to the vector pointer type. 2996 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2997 } 2998 2999 setDebugLocFromInst(Builder, Instr); 3000 Value *UndefVec = UndefValue::get(VecTy); 3001 3002 // Vectorize the interleaved load group. 3003 if (isa<LoadInst>(Instr)) { 3004 // For each unroll part, create a wide load for the group. 3005 SmallVector<Value *, 2> NewLoads; 3006 for (unsigned Part = 0; Part < UF; Part++) { 3007 auto *NewLoad = Builder.CreateAlignedLoad( 3008 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 3009 addMetadata(NewLoad, Instr); 3010 NewLoads.push_back(NewLoad); 3011 } 3012 3013 // For each member in the group, shuffle out the appropriate data from the 3014 // wide loads. 3015 for (unsigned I = 0; I < InterleaveFactor; ++I) { 3016 Instruction *Member = Group->getMember(I); 3017 3018 // Skip the gaps in the group. 3019 if (!Member) 3020 continue; 3021 3022 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 3023 for (unsigned Part = 0; Part < UF; Part++) { 3024 Value *StridedVec = Builder.CreateShuffleVector( 3025 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 3026 3027 // If this member has different type, cast the result type. 3028 if (Member->getType() != ScalarTy) { 3029 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 3030 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 3031 } 3032 3033 if (Group->isReverse()) 3034 StridedVec = reverseVector(StridedVec); 3035 3036 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 3037 } 3038 } 3039 return; 3040 } 3041 3042 // The sub vector type for current instruction. 3043 VectorType *SubVT = VectorType::get(ScalarTy, VF); 3044 3045 // Vectorize the interleaved store group. 3046 for (unsigned Part = 0; Part < UF; Part++) { 3047 // Collect the stored vector from each member. 3048 SmallVector<Value *, 4> StoredVecs; 3049 for (unsigned i = 0; i < InterleaveFactor; i++) { 3050 // Interleaved store group doesn't allow a gap, so each index has a member 3051 Instruction *Member = Group->getMember(i); 3052 assert(Member && "Fail to get a member from an interleaved store group"); 3053 3054 Value *StoredVec = getOrCreateVectorValue( 3055 cast<StoreInst>(Member)->getValueOperand(), Part); 3056 if (Group->isReverse()) 3057 StoredVec = reverseVector(StoredVec); 3058 3059 // If this member has different type, cast it to a unified type. 3060 3061 if (StoredVec->getType() != SubVT) 3062 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 3063 3064 StoredVecs.push_back(StoredVec); 3065 } 3066 3067 // Concatenate all vectors into a wide vector. 3068 Value *WideVec = concatenateVectors(Builder, StoredVecs); 3069 3070 // Interleave the elements in the wide vector. 3071 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 3072 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 3073 "interleaved.vec"); 3074 3075 Instruction *NewStoreInstr = 3076 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 3077 addMetadata(NewStoreInstr, Instr); 3078 } 3079 } 3080 3081 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 3082 // Attempt to issue a wide load. 3083 LoadInst *LI = dyn_cast<LoadInst>(Instr); 3084 StoreInst *SI = dyn_cast<StoreInst>(Instr); 3085 3086 assert((LI || SI) && "Invalid Load/Store instruction"); 3087 3088 LoopVectorizationCostModel::InstWidening Decision = 3089 Cost->getWideningDecision(Instr, VF); 3090 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 3091 "CM decision should be taken at this point"); 3092 if (Decision == LoopVectorizationCostModel::CM_Interleave) 3093 return vectorizeInterleaveGroup(Instr); 3094 3095 Type *ScalarDataTy = getMemInstValueType(Instr); 3096 Type *DataTy = VectorType::get(ScalarDataTy, VF); 3097 Value *Ptr = getPointerOperand(Instr); 3098 unsigned Alignment = getMemInstAlignment(Instr); 3099 // An alignment of 0 means target abi alignment. We need to use the scalar's 3100 // target abi alignment in such a case. 3101 const DataLayout &DL = Instr->getModule()->getDataLayout(); 3102 if (!Alignment) 3103 Alignment = DL.getABITypeAlignment(ScalarDataTy); 3104 unsigned AddressSpace = getMemInstAddressSpace(Instr); 3105 3106 // Determine if the pointer operand of the access is either consecutive or 3107 // reverse consecutive. 3108 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 3109 bool Reverse = ConsecutiveStride < 0; 3110 bool CreateGatherScatter = 3111 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 3112 3113 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 3114 // gather/scatter. Otherwise Decision should have been to Scalarize. 3115 assert((ConsecutiveStride || CreateGatherScatter) && 3116 "The instruction should be scalarized"); 3117 3118 // Handle consecutive loads/stores. 3119 if (ConsecutiveStride) 3120 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 3121 3122 VectorParts Mask = createBlockInMask(Instr->getParent()); 3123 // Handle Stores: 3124 if (SI) { 3125 assert(!Legal->isUniform(SI->getPointerOperand()) && 3126 "We do not allow storing to uniform addresses"); 3127 setDebugLocFromInst(Builder, SI); 3128 3129 for (unsigned Part = 0; Part < UF; ++Part) { 3130 Instruction *NewSI = nullptr; 3131 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 3132 if (CreateGatherScatter) { 3133 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 3134 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3135 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 3136 MaskPart); 3137 } else { 3138 // Calculate the pointer for the specific unroll-part. 3139 Value *PartPtr = 3140 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3141 3142 if (Reverse) { 3143 // If we store to reverse consecutive memory locations, then we need 3144 // to reverse the order of elements in the stored value. 3145 StoredVal = reverseVector(StoredVal); 3146 // We don't want to update the value in the map as it might be used in 3147 // another expression. So don't call resetVectorValue(StoredVal). 3148 3149 // If the address is consecutive but reversed, then the 3150 // wide store needs to start at the last vector element. 3151 PartPtr = 3152 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3153 PartPtr = 3154 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3155 if (Mask[Part]) // The reverse of a null all-one mask is a null mask. 3156 Mask[Part] = reverseVector(Mask[Part]); 3157 } 3158 3159 Value *VecPtr = 3160 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3161 3162 if (Legal->isMaskRequired(SI) && Mask[Part]) 3163 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3164 Mask[Part]); 3165 else 3166 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3167 } 3168 addMetadata(NewSI, SI); 3169 } 3170 return; 3171 } 3172 3173 // Handle loads. 3174 assert(LI && "Must have a load instruction"); 3175 setDebugLocFromInst(Builder, LI); 3176 for (unsigned Part = 0; Part < UF; ++Part) { 3177 Value *NewLI; 3178 if (CreateGatherScatter) { 3179 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 3180 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3181 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 3182 nullptr, "wide.masked.gather"); 3183 addMetadata(NewLI, LI); 3184 } else { 3185 // Calculate the pointer for the specific unroll-part. 3186 Value *PartPtr = 3187 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3188 3189 if (Reverse) { 3190 // If the address is consecutive but reversed, then the 3191 // wide load needs to start at the last vector element. 3192 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3193 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3194 if (Mask[Part]) // The reverse of a null all-one mask is a null mask. 3195 Mask[Part] = reverseVector(Mask[Part]); 3196 } 3197 3198 Value *VecPtr = 3199 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3200 if (Legal->isMaskRequired(LI) && Mask[Part]) 3201 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3202 UndefValue::get(DataTy), 3203 "wide.masked.load"); 3204 else 3205 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3206 3207 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3208 addMetadata(NewLI, LI); 3209 if (Reverse) 3210 NewLI = reverseVector(NewLI); 3211 } 3212 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 3213 } 3214 } 3215 3216 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3217 const VPIteration &Instance, 3218 bool IfPredicateInstr) { 3219 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3220 3221 setDebugLocFromInst(Builder, Instr); 3222 3223 // Does this instruction return a value ? 3224 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3225 3226 Instruction *Cloned = Instr->clone(); 3227 if (!IsVoidRetTy) 3228 Cloned->setName(Instr->getName() + ".cloned"); 3229 3230 // Replace the operands of the cloned instructions with their scalar 3231 // equivalents in the new loop. 3232 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3233 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 3234 Cloned->setOperand(op, NewOp); 3235 } 3236 addNewMetadata(Cloned, Instr); 3237 3238 // Place the cloned scalar in the new loop. 3239 Builder.Insert(Cloned); 3240 3241 // Add the cloned scalar to the scalar map entry. 3242 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 3243 3244 // If we just cloned a new assumption, add it the assumption cache. 3245 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3246 if (II->getIntrinsicID() == Intrinsic::assume) 3247 AC->registerAssumption(II); 3248 3249 // End if-block. 3250 if (IfPredicateInstr) 3251 PredicatedInstructions.push_back(Cloned); 3252 } 3253 3254 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3255 Value *End, Value *Step, 3256 Instruction *DL) { 3257 BasicBlock *Header = L->getHeader(); 3258 BasicBlock *Latch = L->getLoopLatch(); 3259 // As we're just creating this loop, it's possible no latch exists 3260 // yet. If so, use the header as this will be a single block loop. 3261 if (!Latch) 3262 Latch = Header; 3263 3264 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3265 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3266 setDebugLocFromInst(Builder, OldInst); 3267 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3268 3269 Builder.SetInsertPoint(Latch->getTerminator()); 3270 setDebugLocFromInst(Builder, OldInst); 3271 3272 // Create i+1 and fill the PHINode. 3273 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3274 Induction->addIncoming(Start, L->getLoopPreheader()); 3275 Induction->addIncoming(Next, Latch); 3276 // Create the compare. 3277 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3278 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3279 3280 // Now we have two terminators. Remove the old one from the block. 3281 Latch->getTerminator()->eraseFromParent(); 3282 3283 return Induction; 3284 } 3285 3286 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3287 if (TripCount) 3288 return TripCount; 3289 3290 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3291 // Find the loop boundaries. 3292 ScalarEvolution *SE = PSE.getSE(); 3293 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3294 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3295 "Invalid loop count"); 3296 3297 Type *IdxTy = Legal->getWidestInductionType(); 3298 3299 // The exit count might have the type of i64 while the phi is i32. This can 3300 // happen if we have an induction variable that is sign extended before the 3301 // compare. The only way that we get a backedge taken count is that the 3302 // induction variable was signed and as such will not overflow. In such a case 3303 // truncation is legal. 3304 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3305 IdxTy->getPrimitiveSizeInBits()) 3306 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3307 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3308 3309 // Get the total trip count from the count by adding 1. 3310 const SCEV *ExitCount = SE->getAddExpr( 3311 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3312 3313 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3314 3315 // Expand the trip count and place the new instructions in the preheader. 3316 // Notice that the pre-header does not change, only the loop body. 3317 SCEVExpander Exp(*SE, DL, "induction"); 3318 3319 // Count holds the overall loop count (N). 3320 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3321 L->getLoopPreheader()->getTerminator()); 3322 3323 if (TripCount->getType()->isPointerTy()) 3324 TripCount = 3325 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3326 L->getLoopPreheader()->getTerminator()); 3327 3328 return TripCount; 3329 } 3330 3331 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3332 if (VectorTripCount) 3333 return VectorTripCount; 3334 3335 Value *TC = getOrCreateTripCount(L); 3336 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3337 3338 // Now we need to generate the expression for the part of the loop that the 3339 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3340 // iterations are not required for correctness, or N - Step, otherwise. Step 3341 // is equal to the vectorization factor (number of SIMD elements) times the 3342 // unroll factor (number of SIMD instructions). 3343 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3344 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3345 3346 // If there is a non-reversed interleaved group that may speculatively access 3347 // memory out-of-bounds, we need to ensure that there will be at least one 3348 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3349 // the trip count, we set the remainder to be equal to the step. If the step 3350 // does not evenly divide the trip count, no adjustment is necessary since 3351 // there will already be scalar iterations. Note that the minimum iterations 3352 // check ensures that N >= Step. 3353 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3354 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3355 R = Builder.CreateSelect(IsZero, Step, R); 3356 } 3357 3358 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3359 3360 return VectorTripCount; 3361 } 3362 3363 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3364 const DataLayout &DL) { 3365 // Verify that V is a vector type with same number of elements as DstVTy. 3366 unsigned VF = DstVTy->getNumElements(); 3367 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 3368 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3369 Type *SrcElemTy = SrcVecTy->getElementType(); 3370 Type *DstElemTy = DstVTy->getElementType(); 3371 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3372 "Vector elements must have same size"); 3373 3374 // Do a direct cast if element types are castable. 3375 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3376 return Builder.CreateBitOrPointerCast(V, DstVTy); 3377 } 3378 // V cannot be directly casted to desired vector type. 3379 // May happen when V is a floating point vector but DstVTy is a vector of 3380 // pointers or vice-versa. Handle this using a two-step bitcast using an 3381 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3382 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3383 "Only one type should be a pointer type"); 3384 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3385 "Only one type should be a floating point type"); 3386 Type *IntTy = 3387 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3388 VectorType *VecIntTy = VectorType::get(IntTy, VF); 3389 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3390 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 3391 } 3392 3393 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3394 BasicBlock *Bypass) { 3395 Value *Count = getOrCreateTripCount(L); 3396 BasicBlock *BB = L->getLoopPreheader(); 3397 IRBuilder<> Builder(BB->getTerminator()); 3398 3399 // Generate code to check if the loop's trip count is less than VF * UF, or 3400 // equal to it in case a scalar epilogue is required; this implies that the 3401 // vector trip count is zero. This check also covers the case where adding one 3402 // to the backedge-taken count overflowed leading to an incorrect trip count 3403 // of zero. In this case we will also jump to the scalar loop. 3404 auto P = Legal->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3405 : ICmpInst::ICMP_ULT; 3406 Value *CheckMinIters = Builder.CreateICmp( 3407 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3408 3409 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3410 // Update dominator tree immediately if the generated block is a 3411 // LoopBypassBlock because SCEV expansions to generate loop bypass 3412 // checks may query it before the current function is finished. 3413 DT->addNewBlock(NewBB, BB); 3414 if (L->getParentLoop()) 3415 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3416 ReplaceInstWithInst(BB->getTerminator(), 3417 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3418 LoopBypassBlocks.push_back(BB); 3419 } 3420 3421 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3422 BasicBlock *BB = L->getLoopPreheader(); 3423 3424 // Generate the code to check that the SCEV assumptions that we made. 3425 // We want the new basic block to start at the first instruction in a 3426 // sequence of instructions that form a check. 3427 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3428 "scev.check"); 3429 Value *SCEVCheck = 3430 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3431 3432 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3433 if (C->isZero()) 3434 return; 3435 3436 // Create a new block containing the stride check. 3437 BB->setName("vector.scevcheck"); 3438 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3439 // Update dominator tree immediately if the generated block is a 3440 // LoopBypassBlock because SCEV expansions to generate loop bypass 3441 // checks may query it before the current function is finished. 3442 DT->addNewBlock(NewBB, BB); 3443 if (L->getParentLoop()) 3444 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3445 ReplaceInstWithInst(BB->getTerminator(), 3446 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3447 LoopBypassBlocks.push_back(BB); 3448 AddedSafetyChecks = true; 3449 } 3450 3451 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3452 BasicBlock *BB = L->getLoopPreheader(); 3453 3454 // Generate the code that checks in runtime if arrays overlap. We put the 3455 // checks into a separate block to make the more common case of few elements 3456 // faster. 3457 Instruction *FirstCheckInst; 3458 Instruction *MemRuntimeCheck; 3459 std::tie(FirstCheckInst, MemRuntimeCheck) = 3460 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3461 if (!MemRuntimeCheck) 3462 return; 3463 3464 // Create a new block containing the memory check. 3465 BB->setName("vector.memcheck"); 3466 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3467 // Update dominator tree immediately if the generated block is a 3468 // LoopBypassBlock because SCEV expansions to generate loop bypass 3469 // checks may query it before the current function is finished. 3470 DT->addNewBlock(NewBB, BB); 3471 if (L->getParentLoop()) 3472 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3473 ReplaceInstWithInst(BB->getTerminator(), 3474 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3475 LoopBypassBlocks.push_back(BB); 3476 AddedSafetyChecks = true; 3477 3478 // We currently don't use LoopVersioning for the actual loop cloning but we 3479 // still use it to add the noalias metadata. 3480 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3481 PSE.getSE()); 3482 LVer->prepareNoAliasMetadata(); 3483 } 3484 3485 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3486 /* 3487 In this function we generate a new loop. The new loop will contain 3488 the vectorized instructions while the old loop will continue to run the 3489 scalar remainder. 3490 3491 [ ] <-- loop iteration number check. 3492 / | 3493 / v 3494 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3495 | / | 3496 | / v 3497 || [ ] <-- vector pre header. 3498 |/ | 3499 | v 3500 | [ ] \ 3501 | [ ]_| <-- vector loop. 3502 | | 3503 | v 3504 | -[ ] <--- middle-block. 3505 | / | 3506 | / v 3507 -|- >[ ] <--- new preheader. 3508 | | 3509 | v 3510 | [ ] \ 3511 | [ ]_| <-- old scalar loop to handle remainder. 3512 \ | 3513 \ v 3514 >[ ] <-- exit block. 3515 ... 3516 */ 3517 3518 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3519 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3520 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3521 assert(VectorPH && "Invalid loop structure"); 3522 assert(ExitBlock && "Must have an exit block"); 3523 3524 // Some loops have a single integer induction variable, while other loops 3525 // don't. One example is c++ iterators that often have multiple pointer 3526 // induction variables. In the code below we also support a case where we 3527 // don't have a single induction variable. 3528 // 3529 // We try to obtain an induction variable from the original loop as hard 3530 // as possible. However if we don't find one that: 3531 // - is an integer 3532 // - counts from zero, stepping by one 3533 // - is the size of the widest induction variable type 3534 // then we create a new one. 3535 OldInduction = Legal->getPrimaryInduction(); 3536 Type *IdxTy = Legal->getWidestInductionType(); 3537 3538 // Split the single block loop into the two loop structure described above. 3539 BasicBlock *VecBody = 3540 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3541 BasicBlock *MiddleBlock = 3542 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3543 BasicBlock *ScalarPH = 3544 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3545 3546 // Create and register the new vector loop. 3547 Loop *Lp = LI->AllocateLoop(); 3548 Loop *ParentLoop = OrigLoop->getParentLoop(); 3549 3550 // Insert the new loop into the loop nest and register the new basic blocks 3551 // before calling any utilities such as SCEV that require valid LoopInfo. 3552 if (ParentLoop) { 3553 ParentLoop->addChildLoop(Lp); 3554 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3555 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3556 } else { 3557 LI->addTopLevelLoop(Lp); 3558 } 3559 Lp->addBasicBlockToLoop(VecBody, *LI); 3560 3561 // Find the loop boundaries. 3562 Value *Count = getOrCreateTripCount(Lp); 3563 3564 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3565 3566 // Now, compare the new count to zero. If it is zero skip the vector loop and 3567 // jump to the scalar loop. This check also covers the case where the 3568 // backedge-taken count is uint##_max: adding one to it will overflow leading 3569 // to an incorrect trip count of zero. In this (rare) case we will also jump 3570 // to the scalar loop. 3571 emitMinimumIterationCountCheck(Lp, ScalarPH); 3572 3573 // Generate the code to check any assumptions that we've made for SCEV 3574 // expressions. 3575 emitSCEVChecks(Lp, ScalarPH); 3576 3577 // Generate the code that checks in runtime if arrays overlap. We put the 3578 // checks into a separate block to make the more common case of few elements 3579 // faster. 3580 emitMemRuntimeChecks(Lp, ScalarPH); 3581 3582 // Generate the induction variable. 3583 // The loop step is equal to the vectorization factor (num of SIMD elements) 3584 // times the unroll factor (num of SIMD instructions). 3585 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3586 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3587 Induction = 3588 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3589 getDebugLocFromInstOrOperands(OldInduction)); 3590 3591 // We are going to resume the execution of the scalar loop. 3592 // Go over all of the induction variables that we found and fix the 3593 // PHIs that are left in the scalar version of the loop. 3594 // The starting values of PHI nodes depend on the counter of the last 3595 // iteration in the vectorized loop. 3596 // If we come from a bypass edge then we need to start from the original 3597 // start value. 3598 3599 // This variable saves the new starting index for the scalar loop. It is used 3600 // to test if there are any tail iterations left once the vector loop has 3601 // completed. 3602 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3603 for (auto &InductionEntry : *List) { 3604 PHINode *OrigPhi = InductionEntry.first; 3605 InductionDescriptor II = InductionEntry.second; 3606 3607 // Create phi nodes to merge from the backedge-taken check block. 3608 PHINode *BCResumeVal = PHINode::Create( 3609 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3610 Value *&EndValue = IVEndValues[OrigPhi]; 3611 if (OrigPhi == OldInduction) { 3612 // We know what the end value is. 3613 EndValue = CountRoundDown; 3614 } else { 3615 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3616 Type *StepType = II.getStep()->getType(); 3617 Instruction::CastOps CastOp = 3618 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3619 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3620 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3621 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3622 EndValue->setName("ind.end"); 3623 } 3624 3625 // The new PHI merges the original incoming value, in case of a bypass, 3626 // or the value at the end of the vectorized loop. 3627 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3628 3629 // Fix the scalar body counter (PHI node). 3630 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3631 3632 // The old induction's phi node in the scalar body needs the truncated 3633 // value. 3634 for (BasicBlock *BB : LoopBypassBlocks) 3635 BCResumeVal->addIncoming(II.getStartValue(), BB); 3636 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3637 } 3638 3639 // Add a check in the middle block to see if we have completed 3640 // all of the iterations in the first vector loop. 3641 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3642 Value *CmpN = 3643 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3644 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3645 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3646 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3647 3648 // Get ready to start creating new instructions into the vectorized body. 3649 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3650 3651 // Save the state. 3652 LoopVectorPreHeader = Lp->getLoopPreheader(); 3653 LoopScalarPreHeader = ScalarPH; 3654 LoopMiddleBlock = MiddleBlock; 3655 LoopExitBlock = ExitBlock; 3656 LoopVectorBody = VecBody; 3657 LoopScalarBody = OldBasicBlock; 3658 3659 // Keep all loop hints from the original loop on the vector loop (we'll 3660 // replace the vectorizer-specific hints below). 3661 if (MDNode *LID = OrigLoop->getLoopID()) 3662 Lp->setLoopID(LID); 3663 3664 LoopVectorizeHints Hints(Lp, true, *ORE); 3665 Hints.setAlreadyVectorized(); 3666 3667 return LoopVectorPreHeader; 3668 } 3669 3670 // Fix up external users of the induction variable. At this point, we are 3671 // in LCSSA form, with all external PHIs that use the IV having one input value, 3672 // coming from the remainder loop. We need those PHIs to also have a correct 3673 // value for the IV when arriving directly from the middle block. 3674 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3675 const InductionDescriptor &II, 3676 Value *CountRoundDown, Value *EndValue, 3677 BasicBlock *MiddleBlock) { 3678 // There are two kinds of external IV usages - those that use the value 3679 // computed in the last iteration (the PHI) and those that use the penultimate 3680 // value (the value that feeds into the phi from the loop latch). 3681 // We allow both, but they, obviously, have different values. 3682 3683 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3684 3685 DenseMap<Value *, Value *> MissingVals; 3686 3687 // An external user of the last iteration's value should see the value that 3688 // the remainder loop uses to initialize its own IV. 3689 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3690 for (User *U : PostInc->users()) { 3691 Instruction *UI = cast<Instruction>(U); 3692 if (!OrigLoop->contains(UI)) { 3693 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3694 MissingVals[UI] = EndValue; 3695 } 3696 } 3697 3698 // An external user of the penultimate value need to see EndValue - Step. 3699 // The simplest way to get this is to recompute it from the constituent SCEVs, 3700 // that is Start + (Step * (CRD - 1)). 3701 for (User *U : OrigPhi->users()) { 3702 auto *UI = cast<Instruction>(U); 3703 if (!OrigLoop->contains(UI)) { 3704 const DataLayout &DL = 3705 OrigLoop->getHeader()->getModule()->getDataLayout(); 3706 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3707 3708 IRBuilder<> B(MiddleBlock->getTerminator()); 3709 Value *CountMinusOne = B.CreateSub( 3710 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3711 Value *CMO = 3712 !II.getStep()->getType()->isIntegerTy() 3713 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3714 II.getStep()->getType()) 3715 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3716 CMO->setName("cast.cmo"); 3717 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3718 Escape->setName("ind.escape"); 3719 MissingVals[UI] = Escape; 3720 } 3721 } 3722 3723 for (auto &I : MissingVals) { 3724 PHINode *PHI = cast<PHINode>(I.first); 3725 // One corner case we have to handle is two IVs "chasing" each-other, 3726 // that is %IV2 = phi [...], [ %IV1, %latch ] 3727 // In this case, if IV1 has an external use, we need to avoid adding both 3728 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3729 // don't already have an incoming value for the middle block. 3730 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3731 PHI->addIncoming(I.second, MiddleBlock); 3732 } 3733 } 3734 3735 namespace { 3736 3737 struct CSEDenseMapInfo { 3738 static bool canHandle(const Instruction *I) { 3739 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3740 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3741 } 3742 3743 static inline Instruction *getEmptyKey() { 3744 return DenseMapInfo<Instruction *>::getEmptyKey(); 3745 } 3746 3747 static inline Instruction *getTombstoneKey() { 3748 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3749 } 3750 3751 static unsigned getHashValue(const Instruction *I) { 3752 assert(canHandle(I) && "Unknown instruction!"); 3753 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3754 I->value_op_end())); 3755 } 3756 3757 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3758 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3759 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3760 return LHS == RHS; 3761 return LHS->isIdenticalTo(RHS); 3762 } 3763 }; 3764 3765 } // end anonymous namespace 3766 3767 ///\brief Perform cse of induction variable instructions. 3768 static void cse(BasicBlock *BB) { 3769 // Perform simple cse. 3770 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3771 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3772 Instruction *In = &*I++; 3773 3774 if (!CSEDenseMapInfo::canHandle(In)) 3775 continue; 3776 3777 // Check if we can replace this instruction with any of the 3778 // visited instructions. 3779 if (Instruction *V = CSEMap.lookup(In)) { 3780 In->replaceAllUsesWith(V); 3781 In->eraseFromParent(); 3782 continue; 3783 } 3784 3785 CSEMap[In] = In; 3786 } 3787 } 3788 3789 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3790 /// convenience wrapper for the type-based getScalarizationOverhead API. 3791 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3792 const TargetTransformInfo &TTI) { 3793 if (VF == 1) 3794 return 0; 3795 3796 unsigned Cost = 0; 3797 Type *RetTy = ToVectorTy(I->getType(), VF); 3798 if (!RetTy->isVoidTy() && 3799 (!isa<LoadInst>(I) || 3800 !TTI.supportsEfficientVectorElementLoadStore())) 3801 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3802 3803 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3804 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3805 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3806 } 3807 else if (!isa<StoreInst>(I) || 3808 !TTI.supportsEfficientVectorElementLoadStore()) { 3809 SmallVector<const Value *, 4> Operands(I->operand_values()); 3810 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3811 } 3812 3813 return Cost; 3814 } 3815 3816 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3817 // Return the cost of the instruction, including scalarization overhead if it's 3818 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3819 // i.e. either vector version isn't available, or is too expensive. 3820 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3821 const TargetTransformInfo &TTI, 3822 const TargetLibraryInfo *TLI, 3823 bool &NeedToScalarize) { 3824 Function *F = CI->getCalledFunction(); 3825 StringRef FnName = CI->getCalledFunction()->getName(); 3826 Type *ScalarRetTy = CI->getType(); 3827 SmallVector<Type *, 4> Tys, ScalarTys; 3828 for (auto &ArgOp : CI->arg_operands()) 3829 ScalarTys.push_back(ArgOp->getType()); 3830 3831 // Estimate cost of scalarized vector call. The source operands are assumed 3832 // to be vectors, so we need to extract individual elements from there, 3833 // execute VF scalar calls, and then gather the result into the vector return 3834 // value. 3835 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3836 if (VF == 1) 3837 return ScalarCallCost; 3838 3839 // Compute corresponding vector type for return value and arguments. 3840 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3841 for (Type *ScalarTy : ScalarTys) 3842 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3843 3844 // Compute costs of unpacking argument values for the scalar calls and 3845 // packing the return values to a vector. 3846 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3847 3848 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3849 3850 // If we can't emit a vector call for this function, then the currently found 3851 // cost is the cost we need to return. 3852 NeedToScalarize = true; 3853 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3854 return Cost; 3855 3856 // If the corresponding vector cost is cheaper, return its cost. 3857 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3858 if (VectorCallCost < Cost) { 3859 NeedToScalarize = false; 3860 return VectorCallCost; 3861 } 3862 return Cost; 3863 } 3864 3865 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3866 // factor VF. Return the cost of the instruction, including scalarization 3867 // overhead if it's needed. 3868 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3869 const TargetTransformInfo &TTI, 3870 const TargetLibraryInfo *TLI) { 3871 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3872 assert(ID && "Expected intrinsic call!"); 3873 3874 FastMathFlags FMF; 3875 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3876 FMF = FPMO->getFastMathFlags(); 3877 3878 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3879 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3880 } 3881 3882 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3883 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3884 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3885 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3886 } 3887 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3888 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3889 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3890 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3891 } 3892 3893 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3894 // For every instruction `I` in MinBWs, truncate the operands, create a 3895 // truncated version of `I` and reextend its result. InstCombine runs 3896 // later and will remove any ext/trunc pairs. 3897 SmallPtrSet<Value *, 4> Erased; 3898 for (const auto &KV : Cost->getMinimalBitwidths()) { 3899 // If the value wasn't vectorized, we must maintain the original scalar 3900 // type. The absence of the value from VectorLoopValueMap indicates that it 3901 // wasn't vectorized. 3902 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3903 continue; 3904 for (unsigned Part = 0; Part < UF; ++Part) { 3905 Value *I = getOrCreateVectorValue(KV.first, Part); 3906 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3907 continue; 3908 Type *OriginalTy = I->getType(); 3909 Type *ScalarTruncatedTy = 3910 IntegerType::get(OriginalTy->getContext(), KV.second); 3911 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3912 OriginalTy->getVectorNumElements()); 3913 if (TruncatedTy == OriginalTy) 3914 continue; 3915 3916 IRBuilder<> B(cast<Instruction>(I)); 3917 auto ShrinkOperand = [&](Value *V) -> Value * { 3918 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3919 if (ZI->getSrcTy() == TruncatedTy) 3920 return ZI->getOperand(0); 3921 return B.CreateZExtOrTrunc(V, TruncatedTy); 3922 }; 3923 3924 // The actual instruction modification depends on the instruction type, 3925 // unfortunately. 3926 Value *NewI = nullptr; 3927 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3928 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3929 ShrinkOperand(BO->getOperand(1))); 3930 3931 // Any wrapping introduced by shrinking this operation shouldn't be 3932 // considered undefined behavior. So, we can't unconditionally copy 3933 // arithmetic wrapping flags to NewI. 3934 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3935 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3936 NewI = 3937 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3938 ShrinkOperand(CI->getOperand(1))); 3939 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3940 NewI = B.CreateSelect(SI->getCondition(), 3941 ShrinkOperand(SI->getTrueValue()), 3942 ShrinkOperand(SI->getFalseValue())); 3943 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3944 switch (CI->getOpcode()) { 3945 default: 3946 llvm_unreachable("Unhandled cast!"); 3947 case Instruction::Trunc: 3948 NewI = ShrinkOperand(CI->getOperand(0)); 3949 break; 3950 case Instruction::SExt: 3951 NewI = B.CreateSExtOrTrunc( 3952 CI->getOperand(0), 3953 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3954 break; 3955 case Instruction::ZExt: 3956 NewI = B.CreateZExtOrTrunc( 3957 CI->getOperand(0), 3958 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3959 break; 3960 } 3961 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3962 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3963 auto *O0 = B.CreateZExtOrTrunc( 3964 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3965 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3966 auto *O1 = B.CreateZExtOrTrunc( 3967 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3968 3969 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3970 } else if (isa<LoadInst>(I)) { 3971 // Don't do anything with the operands, just extend the result. 3972 continue; 3973 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3974 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3975 auto *O0 = B.CreateZExtOrTrunc( 3976 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3977 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3978 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3979 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3980 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3981 auto *O0 = B.CreateZExtOrTrunc( 3982 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3983 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3984 } else { 3985 llvm_unreachable("Unhandled instruction type!"); 3986 } 3987 3988 // Lastly, extend the result. 3989 NewI->takeName(cast<Instruction>(I)); 3990 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3991 I->replaceAllUsesWith(Res); 3992 cast<Instruction>(I)->eraseFromParent(); 3993 Erased.insert(I); 3994 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3995 } 3996 } 3997 3998 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3999 for (const auto &KV : Cost->getMinimalBitwidths()) { 4000 // If the value wasn't vectorized, we must maintain the original scalar 4001 // type. The absence of the value from VectorLoopValueMap indicates that it 4002 // wasn't vectorized. 4003 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 4004 continue; 4005 for (unsigned Part = 0; Part < UF; ++Part) { 4006 Value *I = getOrCreateVectorValue(KV.first, Part); 4007 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4008 if (Inst && Inst->use_empty()) { 4009 Value *NewI = Inst->getOperand(0); 4010 Inst->eraseFromParent(); 4011 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 4012 } 4013 } 4014 } 4015 } 4016 4017 void InnerLoopVectorizer::fixVectorizedLoop() { 4018 // Insert truncates and extends for any truncated instructions as hints to 4019 // InstCombine. 4020 if (VF > 1) 4021 truncateToMinimalBitwidths(); 4022 4023 // At this point every instruction in the original loop is widened to a 4024 // vector form. Now we need to fix the recurrences in the loop. These PHI 4025 // nodes are currently empty because we did not want to introduce cycles. 4026 // This is the second stage of vectorizing recurrences. 4027 fixCrossIterationPHIs(); 4028 4029 // Update the dominator tree. 4030 // 4031 // FIXME: After creating the structure of the new loop, the dominator tree is 4032 // no longer up-to-date, and it remains that way until we update it 4033 // here. An out-of-date dominator tree is problematic for SCEV, 4034 // because SCEVExpander uses it to guide code generation. The 4035 // vectorizer use SCEVExpanders in several places. Instead, we should 4036 // keep the dominator tree up-to-date as we go. 4037 updateAnalysis(); 4038 4039 // Fix-up external users of the induction variables. 4040 for (auto &Entry : *Legal->getInductionVars()) 4041 fixupIVUsers(Entry.first, Entry.second, 4042 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4043 IVEndValues[Entry.first], LoopMiddleBlock); 4044 4045 fixLCSSAPHIs(); 4046 for (Instruction *PI : PredicatedInstructions) 4047 sinkScalarOperands(&*PI); 4048 4049 // Remove redundant induction instructions. 4050 cse(LoopVectorBody); 4051 } 4052 4053 void InnerLoopVectorizer::fixCrossIterationPHIs() { 4054 // In order to support recurrences we need to be able to vectorize Phi nodes. 4055 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4056 // stage #2: We now need to fix the recurrences by adding incoming edges to 4057 // the currently empty PHI nodes. At this point every instruction in the 4058 // original loop is widened to a vector form so we can use them to construct 4059 // the incoming edges. 4060 for (Instruction &I : *OrigLoop->getHeader()) { 4061 PHINode *Phi = dyn_cast<PHINode>(&I); 4062 if (!Phi) 4063 break; 4064 // Handle first-order recurrences and reductions that need to be fixed. 4065 if (Legal->isFirstOrderRecurrence(Phi)) 4066 fixFirstOrderRecurrence(Phi); 4067 else if (Legal->isReductionVariable(Phi)) 4068 fixReduction(Phi); 4069 } 4070 } 4071 4072 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 4073 // This is the second phase of vectorizing first-order recurrences. An 4074 // overview of the transformation is described below. Suppose we have the 4075 // following loop. 4076 // 4077 // for (int i = 0; i < n; ++i) 4078 // b[i] = a[i] - a[i - 1]; 4079 // 4080 // There is a first-order recurrence on "a". For this loop, the shorthand 4081 // scalar IR looks like: 4082 // 4083 // scalar.ph: 4084 // s_init = a[-1] 4085 // br scalar.body 4086 // 4087 // scalar.body: 4088 // i = phi [0, scalar.ph], [i+1, scalar.body] 4089 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4090 // s2 = a[i] 4091 // b[i] = s2 - s1 4092 // br cond, scalar.body, ... 4093 // 4094 // In this example, s1 is a recurrence because it's value depends on the 4095 // previous iteration. In the first phase of vectorization, we created a 4096 // temporary value for s1. We now complete the vectorization and produce the 4097 // shorthand vector IR shown below (for VF = 4, UF = 1). 4098 // 4099 // vector.ph: 4100 // v_init = vector(..., ..., ..., a[-1]) 4101 // br vector.body 4102 // 4103 // vector.body 4104 // i = phi [0, vector.ph], [i+4, vector.body] 4105 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4106 // v2 = a[i, i+1, i+2, i+3]; 4107 // v3 = vector(v1(3), v2(0, 1, 2)) 4108 // b[i, i+1, i+2, i+3] = v2 - v3 4109 // br cond, vector.body, middle.block 4110 // 4111 // middle.block: 4112 // x = v2(3) 4113 // br scalar.ph 4114 // 4115 // scalar.ph: 4116 // s_init = phi [x, middle.block], [a[-1], otherwise] 4117 // br scalar.body 4118 // 4119 // After execution completes the vector loop, we extract the next value of 4120 // the recurrence (x) to use as the initial value in the scalar loop. 4121 4122 // Get the original loop preheader and single loop latch. 4123 auto *Preheader = OrigLoop->getLoopPreheader(); 4124 auto *Latch = OrigLoop->getLoopLatch(); 4125 4126 // Get the initial and previous values of the scalar recurrence. 4127 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4128 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4129 4130 // Create a vector from the initial value. 4131 auto *VectorInit = ScalarInit; 4132 if (VF > 1) { 4133 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4134 VectorInit = Builder.CreateInsertElement( 4135 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4136 Builder.getInt32(VF - 1), "vector.recur.init"); 4137 } 4138 4139 // We constructed a temporary phi node in the first phase of vectorization. 4140 // This phi node will eventually be deleted. 4141 Builder.SetInsertPoint( 4142 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4143 4144 // Create a phi node for the new recurrence. The current value will either be 4145 // the initial value inserted into a vector or loop-varying vector value. 4146 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4147 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4148 4149 // Get the vectorized previous value of the last part UF - 1. It appears last 4150 // among all unrolled iterations, due to the order of their construction. 4151 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4152 4153 // Set the insertion point after the previous value if it is an instruction. 4154 // Note that the previous value may have been constant-folded so it is not 4155 // guaranteed to be an instruction in the vector loop. Also, if the previous 4156 // value is a phi node, we should insert after all the phi nodes to avoid 4157 // breaking basic block verification. 4158 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 4159 isa<PHINode>(PreviousLastPart)) 4160 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4161 else 4162 Builder.SetInsertPoint( 4163 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 4164 4165 // We will construct a vector for the recurrence by combining the values for 4166 // the current and previous iterations. This is the required shuffle mask. 4167 SmallVector<Constant *, 8> ShuffleMask(VF); 4168 ShuffleMask[0] = Builder.getInt32(VF - 1); 4169 for (unsigned I = 1; I < VF; ++I) 4170 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4171 4172 // The vector from which to take the initial value for the current iteration 4173 // (actual or unrolled). Initially, this is the vector phi node. 4174 Value *Incoming = VecPhi; 4175 4176 // Shuffle the current and previous vector and update the vector parts. 4177 for (unsigned Part = 0; Part < UF; ++Part) { 4178 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4179 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4180 auto *Shuffle = 4181 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 4182 ConstantVector::get(ShuffleMask)) 4183 : Incoming; 4184 PhiPart->replaceAllUsesWith(Shuffle); 4185 cast<Instruction>(PhiPart)->eraseFromParent(); 4186 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4187 Incoming = PreviousPart; 4188 } 4189 4190 // Fix the latch value of the new recurrence in the vector loop. 4191 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4192 4193 // Extract the last vector element in the middle block. This will be the 4194 // initial value for the recurrence when jumping to the scalar loop. 4195 auto *ExtractForScalar = Incoming; 4196 if (VF > 1) { 4197 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4198 ExtractForScalar = Builder.CreateExtractElement( 4199 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4200 } 4201 // Extract the second last element in the middle block if the 4202 // Phi is used outside the loop. We need to extract the phi itself 4203 // and not the last element (the phi update in the current iteration). This 4204 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4205 // when the scalar loop is not run at all. 4206 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4207 if (VF > 1) 4208 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4209 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4210 // When loop is unrolled without vectorizing, initialize 4211 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4212 // `Incoming`. This is analogous to the vectorized case above: extracting the 4213 // second last element when VF > 1. 4214 else if (UF > 1) 4215 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4216 4217 // Fix the initial value of the original recurrence in the scalar loop. 4218 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4219 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4220 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4221 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4222 Start->addIncoming(Incoming, BB); 4223 } 4224 4225 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4226 Phi->setName("scalar.recur"); 4227 4228 // Finally, fix users of the recurrence outside the loop. The users will need 4229 // either the last value of the scalar recurrence or the last value of the 4230 // vector recurrence we extracted in the middle block. Since the loop is in 4231 // LCSSA form, we just need to find the phi node for the original scalar 4232 // recurrence in the exit block, and then add an edge for the middle block. 4233 for (auto &I : *LoopExitBlock) { 4234 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4235 if (!LCSSAPhi) 4236 break; 4237 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4238 LCSSAPhi->addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4239 break; 4240 } 4241 } 4242 } 4243 4244 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4245 Constant *Zero = Builder.getInt32(0); 4246 4247 // Get it's reduction variable descriptor. 4248 assert(Legal->isReductionVariable(Phi) && 4249 "Unable to find the reduction variable"); 4250 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4251 4252 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4253 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4254 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4255 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4256 RdxDesc.getMinMaxRecurrenceKind(); 4257 setDebugLocFromInst(Builder, ReductionStartValue); 4258 4259 // We need to generate a reduction vector from the incoming scalar. 4260 // To do so, we need to generate the 'identity' vector and override 4261 // one of the elements with the incoming scalar reduction. We need 4262 // to do it in the vector-loop preheader. 4263 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4264 4265 // This is the vector-clone of the value that leaves the loop. 4266 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4267 4268 // Find the reduction identity variable. Zero for addition, or, xor, 4269 // one for multiplication, -1 for And. 4270 Value *Identity; 4271 Value *VectorStart; 4272 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4273 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4274 // MinMax reduction have the start value as their identify. 4275 if (VF == 1) { 4276 VectorStart = Identity = ReductionStartValue; 4277 } else { 4278 VectorStart = Identity = 4279 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4280 } 4281 } else { 4282 // Handle other reduction kinds: 4283 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4284 RK, VecTy->getScalarType()); 4285 if (VF == 1) { 4286 Identity = Iden; 4287 // This vector is the Identity vector where the first element is the 4288 // incoming scalar reduction. 4289 VectorStart = ReductionStartValue; 4290 } else { 4291 Identity = ConstantVector::getSplat(VF, Iden); 4292 4293 // This vector is the Identity vector where the first element is the 4294 // incoming scalar reduction. 4295 VectorStart = 4296 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4297 } 4298 } 4299 4300 // Fix the vector-loop phi. 4301 4302 // Reductions do not have to start at zero. They can start with 4303 // any loop invariant values. 4304 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4305 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4306 for (unsigned Part = 0; Part < UF; ++Part) { 4307 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4308 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4309 // Make sure to add the reduction stat value only to the 4310 // first unroll part. 4311 Value *StartVal = (Part == 0) ? VectorStart : Identity; 4312 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 4313 cast<PHINode>(VecRdxPhi) 4314 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4315 } 4316 4317 // Before each round, move the insertion point right between 4318 // the PHIs and the values we are going to write. 4319 // This allows us to write both PHINodes and the extractelement 4320 // instructions. 4321 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4322 4323 setDebugLocFromInst(Builder, LoopExitInst); 4324 4325 // If the vector reduction can be performed in a smaller type, we truncate 4326 // then extend the loop exit value to enable InstCombine to evaluate the 4327 // entire expression in the smaller type. 4328 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4329 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4330 Builder.SetInsertPoint( 4331 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4332 VectorParts RdxParts(UF); 4333 for (unsigned Part = 0; Part < UF; ++Part) { 4334 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4335 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4336 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4337 : Builder.CreateZExt(Trunc, VecTy); 4338 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4339 UI != RdxParts[Part]->user_end();) 4340 if (*UI != Trunc) { 4341 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4342 RdxParts[Part] = Extnd; 4343 } else { 4344 ++UI; 4345 } 4346 } 4347 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4348 for (unsigned Part = 0; Part < UF; ++Part) { 4349 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4350 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4351 } 4352 } 4353 4354 // Reduce all of the unrolled parts into a single vector. 4355 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4356 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4357 setDebugLocFromInst(Builder, ReducedPartRdx); 4358 for (unsigned Part = 1; Part < UF; ++Part) { 4359 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4360 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4361 // Floating point operations had to be 'fast' to enable the reduction. 4362 ReducedPartRdx = addFastMathFlag( 4363 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4364 ReducedPartRdx, "bin.rdx")); 4365 else 4366 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4367 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 4368 } 4369 4370 if (VF > 1) { 4371 bool NoNaN = Legal->hasFunNoNaNAttr(); 4372 ReducedPartRdx = 4373 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4374 // If the reduction can be performed in a smaller type, we need to extend 4375 // the reduction to the wider type before we branch to the original loop. 4376 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4377 ReducedPartRdx = 4378 RdxDesc.isSigned() 4379 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4380 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4381 } 4382 4383 // Create a phi node that merges control-flow from the backedge-taken check 4384 // block and the middle block. 4385 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4386 LoopScalarPreHeader->getTerminator()); 4387 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4388 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4389 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4390 4391 // Now, we need to fix the users of the reduction variable 4392 // inside and outside of the scalar remainder loop. 4393 // We know that the loop is in LCSSA form. We need to update the 4394 // PHI nodes in the exit blocks. 4395 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4396 LEE = LoopExitBlock->end(); 4397 LEI != LEE; ++LEI) { 4398 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4399 if (!LCSSAPhi) 4400 break; 4401 4402 // All PHINodes need to have a single entry edge, or two if 4403 // we already fixed them. 4404 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4405 4406 // We found a reduction value exit-PHI. Update it with the 4407 // incoming bypass edge. 4408 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) 4409 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4410 } // end of the LCSSA phi scan. 4411 4412 // Fix the scalar loop reduction variable with the incoming reduction sum 4413 // from the vector body and from the backedge value. 4414 int IncomingEdgeBlockIdx = 4415 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4416 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4417 // Pick the other block. 4418 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4419 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4420 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4421 } 4422 4423 void InnerLoopVectorizer::fixLCSSAPHIs() { 4424 for (Instruction &LEI : *LoopExitBlock) { 4425 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4426 if (!LCSSAPhi) 4427 break; 4428 if (LCSSAPhi->getNumIncomingValues() == 1) { 4429 assert(OrigLoop->isLoopInvariant(LCSSAPhi->getIncomingValue(0)) && 4430 "Incoming value isn't loop invariant"); 4431 LCSSAPhi->addIncoming(LCSSAPhi->getIncomingValue(0), LoopMiddleBlock); 4432 } 4433 } 4434 } 4435 4436 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4437 // The basic block and loop containing the predicated instruction. 4438 auto *PredBB = PredInst->getParent(); 4439 auto *VectorLoop = LI->getLoopFor(PredBB); 4440 4441 // Initialize a worklist with the operands of the predicated instruction. 4442 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4443 4444 // Holds instructions that we need to analyze again. An instruction may be 4445 // reanalyzed if we don't yet know if we can sink it or not. 4446 SmallVector<Instruction *, 8> InstsToReanalyze; 4447 4448 // Returns true if a given use occurs in the predicated block. Phi nodes use 4449 // their operands in their corresponding predecessor blocks. 4450 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4451 auto *I = cast<Instruction>(U.getUser()); 4452 BasicBlock *BB = I->getParent(); 4453 if (auto *Phi = dyn_cast<PHINode>(I)) 4454 BB = Phi->getIncomingBlock( 4455 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4456 return BB == PredBB; 4457 }; 4458 4459 // Iteratively sink the scalarized operands of the predicated instruction 4460 // into the block we created for it. When an instruction is sunk, it's 4461 // operands are then added to the worklist. The algorithm ends after one pass 4462 // through the worklist doesn't sink a single instruction. 4463 bool Changed; 4464 do { 4465 // Add the instructions that need to be reanalyzed to the worklist, and 4466 // reset the changed indicator. 4467 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4468 InstsToReanalyze.clear(); 4469 Changed = false; 4470 4471 while (!Worklist.empty()) { 4472 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4473 4474 // We can't sink an instruction if it is a phi node, is already in the 4475 // predicated block, is not in the loop, or may have side effects. 4476 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4477 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4478 continue; 4479 4480 // It's legal to sink the instruction if all its uses occur in the 4481 // predicated block. Otherwise, there's nothing to do yet, and we may 4482 // need to reanalyze the instruction. 4483 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4484 InstsToReanalyze.push_back(I); 4485 continue; 4486 } 4487 4488 // Move the instruction to the beginning of the predicated block, and add 4489 // it's operands to the worklist. 4490 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4491 Worklist.insert(I->op_begin(), I->op_end()); 4492 4493 // The sinking may have enabled other instructions to be sunk, so we will 4494 // need to iterate. 4495 Changed = true; 4496 } 4497 } while (Changed); 4498 } 4499 4500 InnerLoopVectorizer::VectorParts 4501 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4502 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4503 4504 // Look for cached value. 4505 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4506 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 4507 if (ECEntryIt != EdgeMaskCache.end()) 4508 return ECEntryIt->second; 4509 4510 VectorParts SrcMask = createBlockInMask(Src); 4511 4512 // The terminator has to be a branch inst! 4513 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4514 assert(BI && "Unexpected terminator found"); 4515 4516 if (!BI->isConditional()) 4517 return EdgeMaskCache[Edge] = SrcMask; 4518 4519 VectorParts EdgeMask(UF); 4520 for (unsigned Part = 0; Part < UF; ++Part) { 4521 auto *EdgeMaskPart = getOrCreateVectorValue(BI->getCondition(), Part); 4522 if (BI->getSuccessor(0) != Dst) 4523 EdgeMaskPart = Builder.CreateNot(EdgeMaskPart); 4524 4525 if (SrcMask[Part]) // Otherwise block in-mask is all-one, no need to AND. 4526 EdgeMaskPart = Builder.CreateAnd(EdgeMaskPart, SrcMask[Part]); 4527 4528 EdgeMask[Part] = EdgeMaskPart; 4529 } 4530 4531 return EdgeMaskCache[Edge] = EdgeMask; 4532 } 4533 4534 InnerLoopVectorizer::VectorParts 4535 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4536 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4537 4538 // Look for cached value. 4539 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 4540 if (BCEntryIt != BlockMaskCache.end()) 4541 return BCEntryIt->second; 4542 4543 // All-one mask is modelled as no-mask following the convention for masked 4544 // load/store/gather/scatter. Initialize BlockMask to no-mask. 4545 VectorParts BlockMask(UF); 4546 for (unsigned Part = 0; Part < UF; ++Part) 4547 BlockMask[Part] = nullptr; 4548 4549 // Loop incoming mask is all-one. 4550 if (OrigLoop->getHeader() == BB) 4551 return BlockMaskCache[BB] = BlockMask; 4552 4553 // This is the block mask. We OR all incoming edges. 4554 for (auto *Predecessor : predecessors(BB)) { 4555 VectorParts EdgeMask = createEdgeMask(Predecessor, BB); 4556 if (!EdgeMask[0]) // Mask of predecessor is all-one so mask of block is too. 4557 return BlockMaskCache[BB] = EdgeMask; 4558 4559 if (!BlockMask[0]) { // BlockMask has its initialized nullptr value. 4560 BlockMask = EdgeMask; 4561 continue; 4562 } 4563 4564 for (unsigned Part = 0; Part < UF; ++Part) 4565 BlockMask[Part] = Builder.CreateOr(BlockMask[Part], EdgeMask[Part]); 4566 } 4567 4568 return BlockMaskCache[BB] = BlockMask; 4569 } 4570 4571 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4572 unsigned VF) { 4573 PHINode *P = cast<PHINode>(PN); 4574 // In order to support recurrences we need to be able to vectorize Phi nodes. 4575 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4576 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4577 // this value when we vectorize all of the instructions that use the PHI. 4578 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4579 for (unsigned Part = 0; Part < UF; ++Part) { 4580 // This is phase one of vectorizing PHIs. 4581 Type *VecTy = 4582 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4583 Value *EntryPart = PHINode::Create( 4584 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4585 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4586 } 4587 return; 4588 } 4589 4590 setDebugLocFromInst(Builder, P); 4591 // Check for PHI nodes that are lowered to vector selects. 4592 if (P->getParent() != OrigLoop->getHeader()) { 4593 // We know that all PHIs in non-header blocks are converted into 4594 // selects, so we don't have to worry about the insertion order and we 4595 // can just use the builder. 4596 // At this point we generate the predication tree. There may be 4597 // duplications since this is a simple recursive scan, but future 4598 // optimizations will clean it up. 4599 4600 unsigned NumIncoming = P->getNumIncomingValues(); 4601 4602 // Generate a sequence of selects of the form: 4603 // SELECT(Mask3, In3, 4604 // SELECT(Mask2, In2, 4605 // ( ...))) 4606 VectorParts Entry(UF); 4607 for (unsigned In = 0; In < NumIncoming; In++) { 4608 VectorParts Cond = 4609 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4610 4611 for (unsigned Part = 0; Part < UF; ++Part) { 4612 Value *In0 = getOrCreateVectorValue(P->getIncomingValue(In), Part); 4613 assert((Cond[Part] || NumIncoming == 1) && 4614 "Multiple predecessors with one predecessor having a full mask"); 4615 if (In == 0) 4616 Entry[Part] = In0; // Initialize with the first incoming value. 4617 else 4618 // Select between the current value and the previous incoming edge 4619 // based on the incoming mask. 4620 Entry[Part] = Builder.CreateSelect(Cond[Part], In0, Entry[Part], 4621 "predphi"); 4622 } 4623 } 4624 for (unsigned Part = 0; Part < UF; ++Part) 4625 VectorLoopValueMap.setVectorValue(P, Part, Entry[Part]); 4626 return; 4627 } 4628 4629 // This PHINode must be an induction variable. 4630 // Make sure that we know about it. 4631 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4632 4633 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4634 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4635 4636 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4637 // which can be found from the original scalar operations. 4638 switch (II.getKind()) { 4639 case InductionDescriptor::IK_NoInduction: 4640 llvm_unreachable("Unknown induction"); 4641 case InductionDescriptor::IK_IntInduction: 4642 case InductionDescriptor::IK_FpInduction: 4643 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4644 case InductionDescriptor::IK_PtrInduction: { 4645 // Handle the pointer induction variable case. 4646 assert(P->getType()->isPointerTy() && "Unexpected type."); 4647 // This is the normalized GEP that starts counting at zero. 4648 Value *PtrInd = Induction; 4649 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4650 // Determine the number of scalars we need to generate for each unroll 4651 // iteration. If the instruction is uniform, we only need to generate the 4652 // first lane. Otherwise, we generate all VF values. 4653 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4654 // These are the scalar results. Notice that we don't generate vector GEPs 4655 // because scalar GEPs result in better code. 4656 for (unsigned Part = 0; Part < UF; ++Part) { 4657 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4658 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4659 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4660 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4661 SclrGep->setName("next.gep"); 4662 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4663 } 4664 } 4665 return; 4666 } 4667 } 4668 } 4669 4670 /// A helper function for checking whether an integer division-related 4671 /// instruction may divide by zero (in which case it must be predicated if 4672 /// executed conditionally in the scalar code). 4673 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4674 /// Non-zero divisors that are non compile-time constants will not be 4675 /// converted into multiplication, so we will still end up scalarizing 4676 /// the division, but can do so w/o predication. 4677 static bool mayDivideByZero(Instruction &I) { 4678 assert((I.getOpcode() == Instruction::UDiv || 4679 I.getOpcode() == Instruction::SDiv || 4680 I.getOpcode() == Instruction::URem || 4681 I.getOpcode() == Instruction::SRem) && 4682 "Unexpected instruction"); 4683 Value *Divisor = I.getOperand(1); 4684 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4685 return !CInt || CInt->isZero(); 4686 } 4687 4688 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4689 switch (I.getOpcode()) { 4690 case Instruction::Br: 4691 case Instruction::PHI: 4692 llvm_unreachable("This instruction is handled by a different recipe."); 4693 case Instruction::GetElementPtr: { 4694 // Construct a vector GEP by widening the operands of the scalar GEP as 4695 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4696 // results in a vector of pointers when at least one operand of the GEP 4697 // is vector-typed. Thus, to keep the representation compact, we only use 4698 // vector-typed operands for loop-varying values. 4699 auto *GEP = cast<GetElementPtrInst>(&I); 4700 4701 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4702 // If we are vectorizing, but the GEP has only loop-invariant operands, 4703 // the GEP we build (by only using vector-typed operands for 4704 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4705 // produce a vector of pointers, we need to either arbitrarily pick an 4706 // operand to broadcast, or broadcast a clone of the original GEP. 4707 // Here, we broadcast a clone of the original. 4708 // 4709 // TODO: If at some point we decide to scalarize instructions having 4710 // loop-invariant operands, this special case will no longer be 4711 // required. We would add the scalarization decision to 4712 // collectLoopScalars() and teach getVectorValue() to broadcast 4713 // the lane-zero scalar value. 4714 auto *Clone = Builder.Insert(GEP->clone()); 4715 for (unsigned Part = 0; Part < UF; ++Part) { 4716 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4717 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 4718 addMetadata(EntryPart, GEP); 4719 } 4720 } else { 4721 // If the GEP has at least one loop-varying operand, we are sure to 4722 // produce a vector of pointers. But if we are only unrolling, we want 4723 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4724 // produce with the code below will be scalar (if VF == 1) or vector 4725 // (otherwise). Note that for the unroll-only case, we still maintain 4726 // values in the vector mapping with initVector, as we do for other 4727 // instructions. 4728 for (unsigned Part = 0; Part < UF; ++Part) { 4729 // The pointer operand of the new GEP. If it's loop-invariant, we 4730 // won't broadcast it. 4731 auto *Ptr = 4732 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4733 ? GEP->getPointerOperand() 4734 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4735 4736 // Collect all the indices for the new GEP. If any index is 4737 // loop-invariant, we won't broadcast it. 4738 SmallVector<Value *, 4> Indices; 4739 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4740 if (OrigLoop->isLoopInvariant(U.get())) 4741 Indices.push_back(U.get()); 4742 else 4743 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 4744 } 4745 4746 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4747 // but it should be a vector, otherwise. 4748 auto *NewGEP = GEP->isInBounds() 4749 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4750 : Builder.CreateGEP(Ptr, Indices); 4751 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4752 "NewGEP is not a pointer vector"); 4753 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4754 addMetadata(NewGEP, GEP); 4755 } 4756 } 4757 4758 break; 4759 } 4760 case Instruction::UDiv: 4761 case Instruction::SDiv: 4762 case Instruction::SRem: 4763 case Instruction::URem: 4764 case Instruction::Add: 4765 case Instruction::FAdd: 4766 case Instruction::Sub: 4767 case Instruction::FSub: 4768 case Instruction::Mul: 4769 case Instruction::FMul: 4770 case Instruction::FDiv: 4771 case Instruction::FRem: 4772 case Instruction::Shl: 4773 case Instruction::LShr: 4774 case Instruction::AShr: 4775 case Instruction::And: 4776 case Instruction::Or: 4777 case Instruction::Xor: { 4778 // Just widen binops. 4779 auto *BinOp = cast<BinaryOperator>(&I); 4780 setDebugLocFromInst(Builder, BinOp); 4781 4782 for (unsigned Part = 0; Part < UF; ++Part) { 4783 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 4784 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 4785 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 4786 4787 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4788 VecOp->copyIRFlags(BinOp); 4789 4790 // Use this vector value for all users of the original instruction. 4791 VectorLoopValueMap.setVectorValue(&I, Part, V); 4792 addMetadata(V, BinOp); 4793 } 4794 4795 break; 4796 } 4797 case Instruction::Select: { 4798 // Widen selects. 4799 // If the selector is loop invariant we can create a select 4800 // instruction with a scalar condition. Otherwise, use vector-select. 4801 auto *SE = PSE.getSE(); 4802 bool InvariantCond = 4803 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4804 setDebugLocFromInst(Builder, &I); 4805 4806 // The condition can be loop invariant but still defined inside the 4807 // loop. This means that we can't just use the original 'cond' value. 4808 // We have to take the 'vectorized' value and pick the first lane. 4809 // Instcombine will make this a no-op. 4810 4811 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4812 4813 for (unsigned Part = 0; Part < UF; ++Part) { 4814 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4815 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4816 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4817 Value *Sel = 4818 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4819 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4820 addMetadata(Sel, &I); 4821 } 4822 4823 break; 4824 } 4825 4826 case Instruction::ICmp: 4827 case Instruction::FCmp: { 4828 // Widen compares. Generate vector compares. 4829 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4830 auto *Cmp = dyn_cast<CmpInst>(&I); 4831 setDebugLocFromInst(Builder, Cmp); 4832 for (unsigned Part = 0; Part < UF; ++Part) { 4833 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4834 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4835 Value *C = nullptr; 4836 if (FCmp) { 4837 // Propagate fast math flags. 4838 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4839 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4840 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4841 } else { 4842 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4843 } 4844 VectorLoopValueMap.setVectorValue(&I, Part, C); 4845 addMetadata(C, &I); 4846 } 4847 4848 break; 4849 } 4850 4851 case Instruction::Store: 4852 case Instruction::Load: 4853 vectorizeMemoryInstruction(&I); 4854 break; 4855 case Instruction::ZExt: 4856 case Instruction::SExt: 4857 case Instruction::FPToUI: 4858 case Instruction::FPToSI: 4859 case Instruction::FPExt: 4860 case Instruction::PtrToInt: 4861 case Instruction::IntToPtr: 4862 case Instruction::SIToFP: 4863 case Instruction::UIToFP: 4864 case Instruction::Trunc: 4865 case Instruction::FPTrunc: 4866 case Instruction::BitCast: { 4867 auto *CI = dyn_cast<CastInst>(&I); 4868 setDebugLocFromInst(Builder, CI); 4869 4870 /// Vectorize casts. 4871 Type *DestTy = 4872 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4873 4874 for (unsigned Part = 0; Part < UF; ++Part) { 4875 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4876 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4877 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4878 addMetadata(Cast, &I); 4879 } 4880 break; 4881 } 4882 4883 case Instruction::Call: { 4884 // Ignore dbg intrinsics. 4885 if (isa<DbgInfoIntrinsic>(I)) 4886 break; 4887 setDebugLocFromInst(Builder, &I); 4888 4889 Module *M = I.getParent()->getParent()->getParent(); 4890 auto *CI = cast<CallInst>(&I); 4891 4892 StringRef FnName = CI->getCalledFunction()->getName(); 4893 Function *F = CI->getCalledFunction(); 4894 Type *RetTy = ToVectorTy(CI->getType(), VF); 4895 SmallVector<Type *, 4> Tys; 4896 for (Value *ArgOperand : CI->arg_operands()) 4897 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4898 4899 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4900 4901 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4902 // version of the instruction. 4903 // Is it beneficial to perform intrinsic call compared to lib call? 4904 bool NeedToScalarize; 4905 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4906 bool UseVectorIntrinsic = 4907 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4908 assert((UseVectorIntrinsic || !NeedToScalarize) && 4909 "Instruction should be scalarized elsewhere."); 4910 4911 for (unsigned Part = 0; Part < UF; ++Part) { 4912 SmallVector<Value *, 4> Args; 4913 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4914 Value *Arg = CI->getArgOperand(i); 4915 // Some intrinsics have a scalar argument - don't replace it with a 4916 // vector. 4917 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4918 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4919 Args.push_back(Arg); 4920 } 4921 4922 Function *VectorF; 4923 if (UseVectorIntrinsic) { 4924 // Use vector version of the intrinsic. 4925 Type *TysForDecl[] = {CI->getType()}; 4926 if (VF > 1) 4927 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4928 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4929 } else { 4930 // Use vector version of the library call. 4931 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4932 assert(!VFnName.empty() && "Vector function name is empty."); 4933 VectorF = M->getFunction(VFnName); 4934 if (!VectorF) { 4935 // Generate a declaration 4936 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4937 VectorF = 4938 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4939 VectorF->copyAttributesFrom(F); 4940 } 4941 } 4942 assert(VectorF && "Can't create vector function."); 4943 4944 SmallVector<OperandBundleDef, 1> OpBundles; 4945 CI->getOperandBundlesAsDefs(OpBundles); 4946 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4947 4948 if (isa<FPMathOperator>(V)) 4949 V->copyFastMathFlags(CI); 4950 4951 VectorLoopValueMap.setVectorValue(&I, Part, V); 4952 addMetadata(V, &I); 4953 } 4954 4955 break; 4956 } 4957 4958 default: 4959 // All other instructions are scalarized. 4960 DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4961 llvm_unreachable("Unhandled instruction!"); 4962 } // end of switch. 4963 } 4964 4965 void InnerLoopVectorizer::updateAnalysis() { 4966 // Forget the original basic block. 4967 PSE.getSE()->forgetLoop(OrigLoop); 4968 4969 // Update the dominator tree information. 4970 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4971 "Entry does not dominate exit."); 4972 4973 DT->addNewBlock(LoopMiddleBlock, 4974 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4975 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4976 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4977 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4978 DEBUG(DT->verifyDomTree()); 4979 } 4980 4981 /// \brief Check whether it is safe to if-convert this phi node. 4982 /// 4983 /// Phi nodes with constant expressions that can trap are not safe to if 4984 /// convert. 4985 static bool canIfConvertPHINodes(BasicBlock *BB) { 4986 for (Instruction &I : *BB) { 4987 auto *Phi = dyn_cast<PHINode>(&I); 4988 if (!Phi) 4989 return true; 4990 for (Value *V : Phi->incoming_values()) 4991 if (auto *C = dyn_cast<Constant>(V)) 4992 if (C->canTrap()) 4993 return false; 4994 } 4995 return true; 4996 } 4997 4998 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4999 if (!EnableIfConversion) { 5000 ORE->emit(createMissedAnalysis("IfConversionDisabled") 5001 << "if-conversion is disabled"); 5002 return false; 5003 } 5004 5005 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 5006 5007 // A list of pointers that we can safely read and write to. 5008 SmallPtrSet<Value *, 8> SafePointes; 5009 5010 // Collect safe addresses. 5011 for (BasicBlock *BB : TheLoop->blocks()) { 5012 if (blockNeedsPredication(BB)) 5013 continue; 5014 5015 for (Instruction &I : *BB) 5016 if (auto *Ptr = getPointerOperand(&I)) 5017 SafePointes.insert(Ptr); 5018 } 5019 5020 // Collect the blocks that need predication. 5021 BasicBlock *Header = TheLoop->getHeader(); 5022 for (BasicBlock *BB : TheLoop->blocks()) { 5023 // We don't support switch statements inside loops. 5024 if (!isa<BranchInst>(BB->getTerminator())) { 5025 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 5026 << "loop contains a switch statement"); 5027 return false; 5028 } 5029 5030 // We must be able to predicate all blocks that need to be predicated. 5031 if (blockNeedsPredication(BB)) { 5032 if (!blockCanBePredicated(BB, SafePointes)) { 5033 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5034 << "control flow cannot be substituted for a select"); 5035 return false; 5036 } 5037 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 5038 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5039 << "control flow cannot be substituted for a select"); 5040 return false; 5041 } 5042 } 5043 5044 // We can if-convert this loop. 5045 return true; 5046 } 5047 5048 bool LoopVectorizationLegality::canVectorize() { 5049 // Store the result and return it at the end instead of exiting early, in case 5050 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 5051 bool Result = true; 5052 5053 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 5054 if (DoExtraAnalysis) 5055 // We must have a loop in canonical form. Loops with indirectbr in them cannot 5056 // be canonicalized. 5057 if (!TheLoop->getLoopPreheader()) { 5058 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5059 << "loop control flow is not understood by vectorizer"); 5060 if (DoExtraAnalysis) 5061 Result = false; 5062 else 5063 return false; 5064 } 5065 5066 // FIXME: The code is currently dead, since the loop gets sent to 5067 // LoopVectorizationLegality is already an innermost loop. 5068 // 5069 // We can only vectorize innermost loops. 5070 if (!TheLoop->empty()) { 5071 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5072 << "loop is not the innermost loop"); 5073 if (DoExtraAnalysis) 5074 Result = false; 5075 else 5076 return false; 5077 } 5078 5079 // We must have a single backedge. 5080 if (TheLoop->getNumBackEdges() != 1) { 5081 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5082 << "loop control flow is not understood by vectorizer"); 5083 if (DoExtraAnalysis) 5084 Result = false; 5085 else 5086 return false; 5087 } 5088 5089 // We must have a single exiting block. 5090 if (!TheLoop->getExitingBlock()) { 5091 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5092 << "loop control flow is not understood by vectorizer"); 5093 if (DoExtraAnalysis) 5094 Result = false; 5095 else 5096 return false; 5097 } 5098 5099 // We only handle bottom-tested loops, i.e. loop in which the condition is 5100 // checked at the end of each iteration. With that we can assume that all 5101 // instructions in the loop are executed the same number of times. 5102 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5103 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5104 << "loop control flow is not understood by vectorizer"); 5105 if (DoExtraAnalysis) 5106 Result = false; 5107 else 5108 return false; 5109 } 5110 5111 // We need to have a loop header. 5112 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5113 << '\n'); 5114 5115 // Check if we can if-convert non-single-bb loops. 5116 unsigned NumBlocks = TheLoop->getNumBlocks(); 5117 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5118 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5119 if (DoExtraAnalysis) 5120 Result = false; 5121 else 5122 return false; 5123 } 5124 5125 // Check if we can vectorize the instructions and CFG in this loop. 5126 if (!canVectorizeInstrs()) { 5127 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5128 if (DoExtraAnalysis) 5129 Result = false; 5130 else 5131 return false; 5132 } 5133 5134 // Go over each instruction and look at memory deps. 5135 if (!canVectorizeMemory()) { 5136 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5137 if (DoExtraAnalysis) 5138 Result = false; 5139 else 5140 return false; 5141 } 5142 5143 DEBUG(dbgs() << "LV: We can vectorize this loop" 5144 << (LAI->getRuntimePointerChecking()->Need 5145 ? " (with a runtime bound check)" 5146 : "") 5147 << "!\n"); 5148 5149 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5150 5151 // If an override option has been passed in for interleaved accesses, use it. 5152 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5153 UseInterleaved = EnableInterleavedMemAccesses; 5154 5155 // Analyze interleaved memory accesses. 5156 if (UseInterleaved) 5157 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5158 5159 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5160 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5161 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5162 5163 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5164 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5165 << "Too many SCEV assumptions need to be made and checked " 5166 << "at runtime"); 5167 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5168 if (DoExtraAnalysis) 5169 Result = false; 5170 else 5171 return false; 5172 } 5173 5174 // Okay! We've done all the tests. If any have failed, return false. Otherwise 5175 // we can vectorize, and at this point we don't have any other mem analysis 5176 // which may limit our maximum vectorization factor, so just return true with 5177 // no restrictions. 5178 return Result; 5179 } 5180 5181 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5182 if (Ty->isPointerTy()) 5183 return DL.getIntPtrType(Ty); 5184 5185 // It is possible that char's or short's overflow when we ask for the loop's 5186 // trip count, work around this by changing the type size. 5187 if (Ty->getScalarSizeInBits() < 32) 5188 return Type::getInt32Ty(Ty->getContext()); 5189 5190 return Ty; 5191 } 5192 5193 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5194 Ty0 = convertPointerToIntegerType(DL, Ty0); 5195 Ty1 = convertPointerToIntegerType(DL, Ty1); 5196 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5197 return Ty0; 5198 return Ty1; 5199 } 5200 5201 /// \brief Check that the instruction has outside loop users and is not an 5202 /// identified reduction variable. 5203 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5204 SmallPtrSetImpl<Value *> &AllowedExit) { 5205 // Reduction and Induction instructions are allowed to have exit users. All 5206 // other instructions must not have external users. 5207 if (!AllowedExit.count(Inst)) 5208 // Check that all of the users of the loop are inside the BB. 5209 for (User *U : Inst->users()) { 5210 Instruction *UI = cast<Instruction>(U); 5211 // This user may be a reduction exit value. 5212 if (!TheLoop->contains(UI)) { 5213 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5214 return true; 5215 } 5216 } 5217 return false; 5218 } 5219 5220 void LoopVectorizationLegality::addInductionPhi( 5221 PHINode *Phi, const InductionDescriptor &ID, 5222 SmallPtrSetImpl<Value *> &AllowedExit) { 5223 Inductions[Phi] = ID; 5224 Type *PhiTy = Phi->getType(); 5225 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5226 5227 // Get the widest type. 5228 if (!PhiTy->isFloatingPointTy()) { 5229 if (!WidestIndTy) 5230 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5231 else 5232 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5233 } 5234 5235 // Int inductions are special because we only allow one IV. 5236 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5237 ID.getConstIntStepValue() && 5238 ID.getConstIntStepValue()->isOne() && 5239 isa<Constant>(ID.getStartValue()) && 5240 cast<Constant>(ID.getStartValue())->isNullValue()) { 5241 5242 // Use the phi node with the widest type as induction. Use the last 5243 // one if there are multiple (no good reason for doing this other 5244 // than it is expedient). We've checked that it begins at zero and 5245 // steps by one, so this is a canonical induction variable. 5246 if (!PrimaryInduction || PhiTy == WidestIndTy) 5247 PrimaryInduction = Phi; 5248 } 5249 5250 // Both the PHI node itself, and the "post-increment" value feeding 5251 // back into the PHI node may have external users. 5252 // We can allow those uses, except if the SCEVs we have for them rely 5253 // on predicates that only hold within the loop, since allowing the exit 5254 // currently means re-using this SCEV outside the loop. 5255 if (PSE.getUnionPredicate().isAlwaysTrue()) { 5256 AllowedExit.insert(Phi); 5257 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5258 } 5259 5260 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5261 } 5262 5263 bool LoopVectorizationLegality::canVectorizeInstrs() { 5264 BasicBlock *Header = TheLoop->getHeader(); 5265 5266 // Look for the attribute signaling the absence of NaNs. 5267 Function &F = *Header->getParent(); 5268 HasFunNoNaNAttr = 5269 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5270 5271 // For each block in the loop. 5272 for (BasicBlock *BB : TheLoop->blocks()) { 5273 // Scan the instructions in the block and look for hazards. 5274 for (Instruction &I : *BB) { 5275 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5276 Type *PhiTy = Phi->getType(); 5277 // Check that this PHI type is allowed. 5278 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5279 !PhiTy->isPointerTy()) { 5280 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5281 << "loop control flow is not understood by vectorizer"); 5282 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5283 return false; 5284 } 5285 5286 // If this PHINode is not in the header block, then we know that we 5287 // can convert it to select during if-conversion. No need to check if 5288 // the PHIs in this block are induction or reduction variables. 5289 if (BB != Header) { 5290 // Check that this instruction has no outside users or is an 5291 // identified reduction value with an outside user. 5292 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5293 continue; 5294 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5295 << "value could not be identified as " 5296 "an induction or reduction variable"); 5297 return false; 5298 } 5299 5300 // We only allow if-converted PHIs with exactly two incoming values. 5301 if (Phi->getNumIncomingValues() != 2) { 5302 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5303 << "control flow not understood by vectorizer"); 5304 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5305 return false; 5306 } 5307 5308 RecurrenceDescriptor RedDes; 5309 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5310 if (RedDes.hasUnsafeAlgebra()) 5311 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5312 AllowedExit.insert(RedDes.getLoopExitInstr()); 5313 Reductions[Phi] = RedDes; 5314 continue; 5315 } 5316 5317 InductionDescriptor ID; 5318 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5319 addInductionPhi(Phi, ID, AllowedExit); 5320 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5321 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5322 continue; 5323 } 5324 5325 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 5326 SinkAfter, DT)) { 5327 FirstOrderRecurrences.insert(Phi); 5328 continue; 5329 } 5330 5331 // As a last resort, coerce the PHI to a AddRec expression 5332 // and re-try classifying it a an induction PHI. 5333 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5334 addInductionPhi(Phi, ID, AllowedExit); 5335 continue; 5336 } 5337 5338 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5339 << "value that could not be identified as " 5340 "reduction is used outside the loop"); 5341 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5342 return false; 5343 } // end of PHI handling 5344 5345 // We handle calls that: 5346 // * Are debug info intrinsics. 5347 // * Have a mapping to an IR intrinsic. 5348 // * Have a vector version available. 5349 auto *CI = dyn_cast<CallInst>(&I); 5350 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5351 !isa<DbgInfoIntrinsic>(CI) && 5352 !(CI->getCalledFunction() && TLI && 5353 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5354 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5355 << "call instruction cannot be vectorized"); 5356 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5357 return false; 5358 } 5359 5360 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5361 // second argument is the same (i.e. loop invariant) 5362 if (CI && hasVectorInstrinsicScalarOpd( 5363 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5364 auto *SE = PSE.getSE(); 5365 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5366 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5367 << "intrinsic instruction cannot be vectorized"); 5368 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5369 return false; 5370 } 5371 } 5372 5373 // Check that the instruction return type is vectorizable. 5374 // Also, we can't vectorize extractelement instructions. 5375 if ((!VectorType::isValidElementType(I.getType()) && 5376 !I.getType()->isVoidTy()) || 5377 isa<ExtractElementInst>(I)) { 5378 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5379 << "instruction return type cannot be vectorized"); 5380 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5381 return false; 5382 } 5383 5384 // Check that the stored type is vectorizable. 5385 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5386 Type *T = ST->getValueOperand()->getType(); 5387 if (!VectorType::isValidElementType(T)) { 5388 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5389 << "store instruction cannot be vectorized"); 5390 return false; 5391 } 5392 5393 // FP instructions can allow unsafe algebra, thus vectorizable by 5394 // non-IEEE-754 compliant SIMD units. 5395 // This applies to floating-point math operations and calls, not memory 5396 // operations, shuffles, or casts, as they don't change precision or 5397 // semantics. 5398 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5399 !I.isFast()) { 5400 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5401 Hints->setPotentiallyUnsafe(); 5402 } 5403 5404 // Reduction instructions are allowed to have exit users. 5405 // All other instructions must not have external users. 5406 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5407 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5408 << "value cannot be used outside the loop"); 5409 return false; 5410 } 5411 } // next instr. 5412 } 5413 5414 if (!PrimaryInduction) { 5415 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5416 if (Inductions.empty()) { 5417 ORE->emit(createMissedAnalysis("NoInductionVariable") 5418 << "loop induction variable could not be identified"); 5419 return false; 5420 } 5421 } 5422 5423 // Now we know the widest induction type, check if our found induction 5424 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5425 // will create another. 5426 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5427 PrimaryInduction = nullptr; 5428 5429 return true; 5430 } 5431 5432 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5433 // We should not collect Scalars more than once per VF. Right now, this 5434 // function is called from collectUniformsAndScalars(), which already does 5435 // this check. Collecting Scalars for VF=1 does not make any sense. 5436 assert(VF >= 2 && !Scalars.count(VF) && 5437 "This function should not be visited twice for the same VF"); 5438 5439 SmallSetVector<Instruction *, 8> Worklist; 5440 5441 // These sets are used to seed the analysis with pointers used by memory 5442 // accesses that will remain scalar. 5443 SmallSetVector<Instruction *, 8> ScalarPtrs; 5444 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5445 5446 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5447 // The pointer operands of loads and stores will be scalar as long as the 5448 // memory access is not a gather or scatter operation. The value operand of a 5449 // store will remain scalar if the store is scalarized. 5450 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5451 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5452 assert(WideningDecision != CM_Unknown && 5453 "Widening decision should be ready at this moment"); 5454 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5455 if (Ptr == Store->getValueOperand()) 5456 return WideningDecision == CM_Scalarize; 5457 assert(Ptr == getPointerOperand(MemAccess) && 5458 "Ptr is neither a value or pointer operand"); 5459 return WideningDecision != CM_GatherScatter; 5460 }; 5461 5462 // A helper that returns true if the given value is a bitcast or 5463 // getelementptr instruction contained in the loop. 5464 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5465 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5466 isa<GetElementPtrInst>(V)) && 5467 !TheLoop->isLoopInvariant(V); 5468 }; 5469 5470 // A helper that evaluates a memory access's use of a pointer. If the use 5471 // will be a scalar use, and the pointer is only used by memory accesses, we 5472 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5473 // PossibleNonScalarPtrs. 5474 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5475 // We only care about bitcast and getelementptr instructions contained in 5476 // the loop. 5477 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5478 return; 5479 5480 // If the pointer has already been identified as scalar (e.g., if it was 5481 // also identified as uniform), there's nothing to do. 5482 auto *I = cast<Instruction>(Ptr); 5483 if (Worklist.count(I)) 5484 return; 5485 5486 // If the use of the pointer will be a scalar use, and all users of the 5487 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5488 // place the pointer in PossibleNonScalarPtrs. 5489 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5490 return isa<LoadInst>(U) || isa<StoreInst>(U); 5491 })) 5492 ScalarPtrs.insert(I); 5493 else 5494 PossibleNonScalarPtrs.insert(I); 5495 }; 5496 5497 // We seed the scalars analysis with three classes of instructions: (1) 5498 // instructions marked uniform-after-vectorization, (2) bitcast and 5499 // getelementptr instructions used by memory accesses requiring a scalar use, 5500 // and (3) pointer induction variables and their update instructions (we 5501 // currently only scalarize these). 5502 // 5503 // (1) Add to the worklist all instructions that have been identified as 5504 // uniform-after-vectorization. 5505 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5506 5507 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5508 // memory accesses requiring a scalar use. The pointer operands of loads and 5509 // stores will be scalar as long as the memory accesses is not a gather or 5510 // scatter operation. The value operand of a store will remain scalar if the 5511 // store is scalarized. 5512 for (auto *BB : TheLoop->blocks()) 5513 for (auto &I : *BB) { 5514 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5515 evaluatePtrUse(Load, Load->getPointerOperand()); 5516 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5517 evaluatePtrUse(Store, Store->getPointerOperand()); 5518 evaluatePtrUse(Store, Store->getValueOperand()); 5519 } 5520 } 5521 for (auto *I : ScalarPtrs) 5522 if (!PossibleNonScalarPtrs.count(I)) { 5523 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5524 Worklist.insert(I); 5525 } 5526 5527 // (3) Add to the worklist all pointer induction variables and their update 5528 // instructions. 5529 // 5530 // TODO: Once we are able to vectorize pointer induction variables we should 5531 // no longer insert them into the worklist here. 5532 auto *Latch = TheLoop->getLoopLatch(); 5533 for (auto &Induction : *Legal->getInductionVars()) { 5534 auto *Ind = Induction.first; 5535 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5536 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5537 continue; 5538 Worklist.insert(Ind); 5539 Worklist.insert(IndUpdate); 5540 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5541 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5542 } 5543 5544 // Insert the forced scalars. 5545 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5546 // induction variable when the PHI user is scalarized. 5547 if (ForcedScalars.count(VF)) 5548 for (auto *I : ForcedScalars.find(VF)->second) 5549 Worklist.insert(I); 5550 5551 // Expand the worklist by looking through any bitcasts and getelementptr 5552 // instructions we've already identified as scalar. This is similar to the 5553 // expansion step in collectLoopUniforms(); however, here we're only 5554 // expanding to include additional bitcasts and getelementptr instructions. 5555 unsigned Idx = 0; 5556 while (Idx != Worklist.size()) { 5557 Instruction *Dst = Worklist[Idx++]; 5558 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5559 continue; 5560 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5561 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5562 auto *J = cast<Instruction>(U); 5563 return !TheLoop->contains(J) || Worklist.count(J) || 5564 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5565 isScalarUse(J, Src)); 5566 })) { 5567 Worklist.insert(Src); 5568 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5569 } 5570 } 5571 5572 // An induction variable will remain scalar if all users of the induction 5573 // variable and induction variable update remain scalar. 5574 for (auto &Induction : *Legal->getInductionVars()) { 5575 auto *Ind = Induction.first; 5576 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5577 5578 // We already considered pointer induction variables, so there's no reason 5579 // to look at their users again. 5580 // 5581 // TODO: Once we are able to vectorize pointer induction variables we 5582 // should no longer skip over them here. 5583 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5584 continue; 5585 5586 // Determine if all users of the induction variable are scalar after 5587 // vectorization. 5588 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5589 auto *I = cast<Instruction>(U); 5590 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5591 }); 5592 if (!ScalarInd) 5593 continue; 5594 5595 // Determine if all users of the induction variable update instruction are 5596 // scalar after vectorization. 5597 auto ScalarIndUpdate = 5598 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5599 auto *I = cast<Instruction>(U); 5600 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5601 }); 5602 if (!ScalarIndUpdate) 5603 continue; 5604 5605 // The induction variable and its update instruction will remain scalar. 5606 Worklist.insert(Ind); 5607 Worklist.insert(IndUpdate); 5608 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5609 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5610 } 5611 5612 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5613 } 5614 5615 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5616 if (!blockNeedsPredication(I->getParent())) 5617 return false; 5618 switch(I->getOpcode()) { 5619 default: 5620 break; 5621 case Instruction::Store: 5622 return !isMaskRequired(I); 5623 case Instruction::UDiv: 5624 case Instruction::SDiv: 5625 case Instruction::SRem: 5626 case Instruction::URem: 5627 return mayDivideByZero(*I); 5628 } 5629 return false; 5630 } 5631 5632 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5633 unsigned VF) { 5634 // Get and ensure we have a valid memory instruction. 5635 LoadInst *LI = dyn_cast<LoadInst>(I); 5636 StoreInst *SI = dyn_cast<StoreInst>(I); 5637 assert((LI || SI) && "Invalid memory instruction"); 5638 5639 auto *Ptr = getPointerOperand(I); 5640 5641 // In order to be widened, the pointer should be consecutive, first of all. 5642 if (!isConsecutivePtr(Ptr)) 5643 return false; 5644 5645 // If the instruction is a store located in a predicated block, it will be 5646 // scalarized. 5647 if (isScalarWithPredication(I)) 5648 return false; 5649 5650 // If the instruction's allocated size doesn't equal it's type size, it 5651 // requires padding and will be scalarized. 5652 auto &DL = I->getModule()->getDataLayout(); 5653 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5654 if (hasIrregularType(ScalarTy, DL, VF)) 5655 return false; 5656 5657 return true; 5658 } 5659 5660 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5661 // We should not collect Uniforms more than once per VF. Right now, 5662 // this function is called from collectUniformsAndScalars(), which 5663 // already does this check. Collecting Uniforms for VF=1 does not make any 5664 // sense. 5665 5666 assert(VF >= 2 && !Uniforms.count(VF) && 5667 "This function should not be visited twice for the same VF"); 5668 5669 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5670 // not analyze again. Uniforms.count(VF) will return 1. 5671 Uniforms[VF].clear(); 5672 5673 // We now know that the loop is vectorizable! 5674 // Collect instructions inside the loop that will remain uniform after 5675 // vectorization. 5676 5677 // Global values, params and instructions outside of current loop are out of 5678 // scope. 5679 auto isOutOfScope = [&](Value *V) -> bool { 5680 Instruction *I = dyn_cast<Instruction>(V); 5681 return (!I || !TheLoop->contains(I)); 5682 }; 5683 5684 SetVector<Instruction *> Worklist; 5685 BasicBlock *Latch = TheLoop->getLoopLatch(); 5686 5687 // Start with the conditional branch. If the branch condition is an 5688 // instruction contained in the loop that is only used by the branch, it is 5689 // uniform. 5690 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5691 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5692 Worklist.insert(Cmp); 5693 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5694 } 5695 5696 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5697 // are pointers that are treated like consecutive pointers during 5698 // vectorization. The pointer operands of interleaved accesses are an 5699 // example. 5700 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5701 5702 // Holds pointer operands of instructions that are possibly non-uniform. 5703 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5704 5705 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5706 InstWidening WideningDecision = getWideningDecision(I, VF); 5707 assert(WideningDecision != CM_Unknown && 5708 "Widening decision should be ready at this moment"); 5709 5710 return (WideningDecision == CM_Widen || 5711 WideningDecision == CM_Interleave); 5712 }; 5713 // Iterate over the instructions in the loop, and collect all 5714 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5715 // that a consecutive-like pointer operand will be scalarized, we collect it 5716 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5717 // getelementptr instruction can be used by both vectorized and scalarized 5718 // memory instructions. For example, if a loop loads and stores from the same 5719 // location, but the store is conditional, the store will be scalarized, and 5720 // the getelementptr won't remain uniform. 5721 for (auto *BB : TheLoop->blocks()) 5722 for (auto &I : *BB) { 5723 // If there's no pointer operand, there's nothing to do. 5724 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5725 if (!Ptr) 5726 continue; 5727 5728 // True if all users of Ptr are memory accesses that have Ptr as their 5729 // pointer operand. 5730 auto UsersAreMemAccesses = 5731 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 5732 return getPointerOperand(U) == Ptr; 5733 }); 5734 5735 // Ensure the memory instruction will not be scalarized or used by 5736 // gather/scatter, making its pointer operand non-uniform. If the pointer 5737 // operand is used by any instruction other than a memory access, we 5738 // conservatively assume the pointer operand may be non-uniform. 5739 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5740 PossibleNonUniformPtrs.insert(Ptr); 5741 5742 // If the memory instruction will be vectorized and its pointer operand 5743 // is consecutive-like, or interleaving - the pointer operand should 5744 // remain uniform. 5745 else 5746 ConsecutiveLikePtrs.insert(Ptr); 5747 } 5748 5749 // Add to the Worklist all consecutive and consecutive-like pointers that 5750 // aren't also identified as possibly non-uniform. 5751 for (auto *V : ConsecutiveLikePtrs) 5752 if (!PossibleNonUniformPtrs.count(V)) { 5753 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5754 Worklist.insert(V); 5755 } 5756 5757 // Expand Worklist in topological order: whenever a new instruction 5758 // is added , its users should be either already inside Worklist, or 5759 // out of scope. It ensures a uniform instruction will only be used 5760 // by uniform instructions or out of scope instructions. 5761 unsigned idx = 0; 5762 while (idx != Worklist.size()) { 5763 Instruction *I = Worklist[idx++]; 5764 5765 for (auto OV : I->operand_values()) { 5766 if (isOutOfScope(OV)) 5767 continue; 5768 auto *OI = cast<Instruction>(OV); 5769 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5770 auto *J = cast<Instruction>(U); 5771 return !TheLoop->contains(J) || Worklist.count(J) || 5772 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5773 })) { 5774 Worklist.insert(OI); 5775 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5776 } 5777 } 5778 } 5779 5780 // Returns true if Ptr is the pointer operand of a memory access instruction 5781 // I, and I is known to not require scalarization. 5782 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5783 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5784 }; 5785 5786 // For an instruction to be added into Worklist above, all its users inside 5787 // the loop should also be in Worklist. However, this condition cannot be 5788 // true for phi nodes that form a cyclic dependence. We must process phi 5789 // nodes separately. An induction variable will remain uniform if all users 5790 // of the induction variable and induction variable update remain uniform. 5791 // The code below handles both pointer and non-pointer induction variables. 5792 for (auto &Induction : *Legal->getInductionVars()) { 5793 auto *Ind = Induction.first; 5794 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5795 5796 // Determine if all users of the induction variable are uniform after 5797 // vectorization. 5798 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5799 auto *I = cast<Instruction>(U); 5800 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5801 isVectorizedMemAccessUse(I, Ind); 5802 }); 5803 if (!UniformInd) 5804 continue; 5805 5806 // Determine if all users of the induction variable update instruction are 5807 // uniform after vectorization. 5808 auto UniformIndUpdate = 5809 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5810 auto *I = cast<Instruction>(U); 5811 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5812 isVectorizedMemAccessUse(I, IndUpdate); 5813 }); 5814 if (!UniformIndUpdate) 5815 continue; 5816 5817 // The induction variable and its update instruction will remain uniform. 5818 Worklist.insert(Ind); 5819 Worklist.insert(IndUpdate); 5820 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5821 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5822 } 5823 5824 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5825 } 5826 5827 bool LoopVectorizationLegality::canVectorizeMemory() { 5828 LAI = &(*GetLAA)(*TheLoop); 5829 InterleaveInfo.setLAI(LAI); 5830 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5831 if (LAR) { 5832 ORE->emit([&]() { 5833 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 5834 "loop not vectorized: ", *LAR); 5835 }); 5836 } 5837 if (!LAI->canVectorizeMemory()) 5838 return false; 5839 5840 if (LAI->hasStoreToLoopInvariantAddress()) { 5841 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5842 << "write to a loop invariant address could not be vectorized"); 5843 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5844 return false; 5845 } 5846 5847 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5848 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5849 5850 return true; 5851 } 5852 5853 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5854 Value *In0 = const_cast<Value *>(V); 5855 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5856 if (!PN) 5857 return false; 5858 5859 return Inductions.count(PN); 5860 } 5861 5862 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5863 return FirstOrderRecurrences.count(Phi); 5864 } 5865 5866 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5867 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5868 } 5869 5870 bool LoopVectorizationLegality::blockCanBePredicated( 5871 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5872 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5873 5874 for (Instruction &I : *BB) { 5875 // Check that we don't have a constant expression that can trap as operand. 5876 for (Value *Operand : I.operands()) { 5877 if (auto *C = dyn_cast<Constant>(Operand)) 5878 if (C->canTrap()) 5879 return false; 5880 } 5881 // We might be able to hoist the load. 5882 if (I.mayReadFromMemory()) { 5883 auto *LI = dyn_cast<LoadInst>(&I); 5884 if (!LI) 5885 return false; 5886 if (!SafePtrs.count(LI->getPointerOperand())) { 5887 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5888 isLegalMaskedGather(LI->getType())) { 5889 MaskedOp.insert(LI); 5890 continue; 5891 } 5892 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5893 if (IsAnnotatedParallel) 5894 continue; 5895 return false; 5896 } 5897 } 5898 5899 if (I.mayWriteToMemory()) { 5900 auto *SI = dyn_cast<StoreInst>(&I); 5901 // We only support predication of stores in basic blocks with one 5902 // predecessor. 5903 if (!SI) 5904 return false; 5905 5906 // Build a masked store if it is legal for the target. 5907 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5908 SI->getPointerOperand()) || 5909 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5910 MaskedOp.insert(SI); 5911 continue; 5912 } 5913 5914 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5915 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5916 5917 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5918 !isSinglePredecessor) 5919 return false; 5920 } 5921 if (I.mayThrow()) 5922 return false; 5923 } 5924 5925 return true; 5926 } 5927 5928 void InterleavedAccessInfo::collectConstStrideAccesses( 5929 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5930 const ValueToValueMap &Strides) { 5931 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5932 5933 // Since it's desired that the load/store instructions be maintained in 5934 // "program order" for the interleaved access analysis, we have to visit the 5935 // blocks in the loop in reverse postorder (i.e., in a topological order). 5936 // Such an ordering will ensure that any load/store that may be executed 5937 // before a second load/store will precede the second load/store in 5938 // AccessStrideInfo. 5939 LoopBlocksDFS DFS(TheLoop); 5940 DFS.perform(LI); 5941 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5942 for (auto &I : *BB) { 5943 auto *LI = dyn_cast<LoadInst>(&I); 5944 auto *SI = dyn_cast<StoreInst>(&I); 5945 if (!LI && !SI) 5946 continue; 5947 5948 Value *Ptr = getPointerOperand(&I); 5949 // We don't check wrapping here because we don't know yet if Ptr will be 5950 // part of a full group or a group with gaps. Checking wrapping for all 5951 // pointers (even those that end up in groups with no gaps) will be overly 5952 // conservative. For full groups, wrapping should be ok since if we would 5953 // wrap around the address space we would do a memory access at nullptr 5954 // even without the transformation. The wrapping checks are therefore 5955 // deferred until after we've formed the interleaved groups. 5956 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5957 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5958 5959 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5960 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5961 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5962 5963 // An alignment of 0 means target ABI alignment. 5964 unsigned Align = getMemInstAlignment(&I); 5965 if (!Align) 5966 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5967 5968 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5969 } 5970 } 5971 5972 // Analyze interleaved accesses and collect them into interleaved load and 5973 // store groups. 5974 // 5975 // When generating code for an interleaved load group, we effectively hoist all 5976 // loads in the group to the location of the first load in program order. When 5977 // generating code for an interleaved store group, we sink all stores to the 5978 // location of the last store. This code motion can change the order of load 5979 // and store instructions and may break dependences. 5980 // 5981 // The code generation strategy mentioned above ensures that we won't violate 5982 // any write-after-read (WAR) dependences. 5983 // 5984 // E.g., for the WAR dependence: a = A[i]; // (1) 5985 // A[i] = b; // (2) 5986 // 5987 // The store group of (2) is always inserted at or below (2), and the load 5988 // group of (1) is always inserted at or above (1). Thus, the instructions will 5989 // never be reordered. All other dependences are checked to ensure the 5990 // correctness of the instruction reordering. 5991 // 5992 // The algorithm visits all memory accesses in the loop in bottom-up program 5993 // order. Program order is established by traversing the blocks in the loop in 5994 // reverse postorder when collecting the accesses. 5995 // 5996 // We visit the memory accesses in bottom-up order because it can simplify the 5997 // construction of store groups in the presence of write-after-write (WAW) 5998 // dependences. 5999 // 6000 // E.g., for the WAW dependence: A[i] = a; // (1) 6001 // A[i] = b; // (2) 6002 // A[i + 1] = c; // (3) 6003 // 6004 // We will first create a store group with (3) and (2). (1) can't be added to 6005 // this group because it and (2) are dependent. However, (1) can be grouped 6006 // with other accesses that may precede it in program order. Note that a 6007 // bottom-up order does not imply that WAW dependences should not be checked. 6008 void InterleavedAccessInfo::analyzeInterleaving( 6009 const ValueToValueMap &Strides) { 6010 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 6011 6012 // Holds all accesses with a constant stride. 6013 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 6014 collectConstStrideAccesses(AccessStrideInfo, Strides); 6015 6016 if (AccessStrideInfo.empty()) 6017 return; 6018 6019 // Collect the dependences in the loop. 6020 collectDependences(); 6021 6022 // Holds all interleaved store groups temporarily. 6023 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 6024 // Holds all interleaved load groups temporarily. 6025 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 6026 6027 // Search in bottom-up program order for pairs of accesses (A and B) that can 6028 // form interleaved load or store groups. In the algorithm below, access A 6029 // precedes access B in program order. We initialize a group for B in the 6030 // outer loop of the algorithm, and then in the inner loop, we attempt to 6031 // insert each A into B's group if: 6032 // 6033 // 1. A and B have the same stride, 6034 // 2. A and B have the same memory object size, and 6035 // 3. A belongs in B's group according to its distance from B. 6036 // 6037 // Special care is taken to ensure group formation will not break any 6038 // dependences. 6039 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 6040 BI != E; ++BI) { 6041 Instruction *B = BI->first; 6042 StrideDescriptor DesB = BI->second; 6043 6044 // Initialize a group for B if it has an allowable stride. Even if we don't 6045 // create a group for B, we continue with the bottom-up algorithm to ensure 6046 // we don't break any of B's dependences. 6047 InterleaveGroup *Group = nullptr; 6048 if (isStrided(DesB.Stride)) { 6049 Group = getInterleaveGroup(B); 6050 if (!Group) { 6051 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 6052 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 6053 } 6054 if (B->mayWriteToMemory()) 6055 StoreGroups.insert(Group); 6056 else 6057 LoadGroups.insert(Group); 6058 } 6059 6060 for (auto AI = std::next(BI); AI != E; ++AI) { 6061 Instruction *A = AI->first; 6062 StrideDescriptor DesA = AI->second; 6063 6064 // Our code motion strategy implies that we can't have dependences 6065 // between accesses in an interleaved group and other accesses located 6066 // between the first and last member of the group. Note that this also 6067 // means that a group can't have more than one member at a given offset. 6068 // The accesses in a group can have dependences with other accesses, but 6069 // we must ensure we don't extend the boundaries of the group such that 6070 // we encompass those dependent accesses. 6071 // 6072 // For example, assume we have the sequence of accesses shown below in a 6073 // stride-2 loop: 6074 // 6075 // (1, 2) is a group | A[i] = a; // (1) 6076 // | A[i-1] = b; // (2) | 6077 // A[i-3] = c; // (3) 6078 // A[i] = d; // (4) | (2, 4) is not a group 6079 // 6080 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 6081 // but not with (4). If we did, the dependent access (3) would be within 6082 // the boundaries of the (2, 4) group. 6083 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 6084 // If a dependence exists and A is already in a group, we know that A 6085 // must be a store since A precedes B and WAR dependences are allowed. 6086 // Thus, A would be sunk below B. We release A's group to prevent this 6087 // illegal code motion. A will then be free to form another group with 6088 // instructions that precede it. 6089 if (isInterleaved(A)) { 6090 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 6091 StoreGroups.remove(StoreGroup); 6092 releaseGroup(StoreGroup); 6093 } 6094 6095 // If a dependence exists and A is not already in a group (or it was 6096 // and we just released it), B might be hoisted above A (if B is a 6097 // load) or another store might be sunk below A (if B is a store). In 6098 // either case, we can't add additional instructions to B's group. B 6099 // will only form a group with instructions that it precedes. 6100 break; 6101 } 6102 6103 // At this point, we've checked for illegal code motion. If either A or B 6104 // isn't strided, there's nothing left to do. 6105 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 6106 continue; 6107 6108 // Ignore A if it's already in a group or isn't the same kind of memory 6109 // operation as B. 6110 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 6111 continue; 6112 6113 // Check rules 1 and 2. Ignore A if its stride or size is different from 6114 // that of B. 6115 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 6116 continue; 6117 6118 // Ignore A if the memory object of A and B don't belong to the same 6119 // address space 6120 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 6121 continue; 6122 6123 // Calculate the distance from A to B. 6124 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6125 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6126 if (!DistToB) 6127 continue; 6128 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6129 6130 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6131 // size. 6132 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6133 continue; 6134 6135 // Ignore A if either A or B is in a predicated block. Although we 6136 // currently prevent group formation for predicated accesses, we may be 6137 // able to relax this limitation in the future once we handle more 6138 // complicated blocks. 6139 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6140 continue; 6141 6142 // The index of A is the index of B plus A's distance to B in multiples 6143 // of the size. 6144 int IndexA = 6145 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6146 6147 // Try to insert A into B's group. 6148 if (Group->insertMember(A, IndexA, DesA.Align)) { 6149 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6150 << " into the interleave group with" << *B << '\n'); 6151 InterleaveGroupMap[A] = Group; 6152 6153 // Set the first load in program order as the insert position. 6154 if (A->mayReadFromMemory()) 6155 Group->setInsertPos(A); 6156 } 6157 } // Iteration over A accesses. 6158 } // Iteration over B accesses. 6159 6160 // Remove interleaved store groups with gaps. 6161 for (InterleaveGroup *Group : StoreGroups) 6162 if (Group->getNumMembers() != Group->getFactor()) { 6163 DEBUG(dbgs() << "LV: Invalidate candidate interleaved store group due " 6164 "to gaps.\n"); 6165 releaseGroup(Group); 6166 } 6167 // Remove interleaved groups with gaps (currently only loads) whose memory 6168 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6169 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6170 // not check wrapping (see documentation there). 6171 // FORNOW we use Assume=false; 6172 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6173 // of runtime SCEV assumptions checks (thereby potentially failing to 6174 // vectorize altogether). 6175 // Additional optional optimizations: 6176 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6177 // wrap then we can deduce that all pointers in the group don't wrap. 6178 // This means that we can forcefully peel the loop in order to only have to 6179 // check the first pointer for no-wrap. When we'll change to use Assume=true 6180 // we'll only need at most one runtime check per interleaved group. 6181 for (InterleaveGroup *Group : LoadGroups) { 6182 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6183 // load would wrap around the address space we would do a memory access at 6184 // nullptr even without the transformation. 6185 if (Group->getNumMembers() == Group->getFactor()) 6186 continue; 6187 6188 // Case 2: If first and last members of the group don't wrap this implies 6189 // that all the pointers in the group don't wrap. 6190 // So we check only group member 0 (which is always guaranteed to exist), 6191 // and group member Factor - 1; If the latter doesn't exist we rely on 6192 // peeling (if it is a non-reveresed accsess -- see Case 3). 6193 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6194 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6195 /*ShouldCheckWrap=*/true)) { 6196 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6197 "first group member potentially pointer-wrapping.\n"); 6198 releaseGroup(Group); 6199 continue; 6200 } 6201 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6202 if (LastMember) { 6203 Value *LastMemberPtr = getPointerOperand(LastMember); 6204 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6205 /*ShouldCheckWrap=*/true)) { 6206 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6207 "last group member potentially pointer-wrapping.\n"); 6208 releaseGroup(Group); 6209 } 6210 } else { 6211 // Case 3: A non-reversed interleaved load group with gaps: We need 6212 // to execute at least one scalar epilogue iteration. This will ensure 6213 // we don't speculatively access memory out-of-bounds. We only need 6214 // to look for a member at index factor - 1, since every group must have 6215 // a member at index zero. 6216 if (Group->isReverse()) { 6217 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6218 "a reverse access with gaps.\n"); 6219 releaseGroup(Group); 6220 continue; 6221 } 6222 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6223 RequiresScalarEpilogue = true; 6224 } 6225 } 6226 } 6227 6228 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6229 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6230 ORE->emit(createMissedAnalysis("ConditionalStore") 6231 << "store that is conditionally executed prevents vectorization"); 6232 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6233 return None; 6234 } 6235 6236 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 6237 // TODO: It may by useful to do since it's still likely to be dynamically 6238 // uniform if the target can skip. 6239 DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 6240 6241 ORE->emit( 6242 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 6243 << "runtime pointer checks needed. Not enabled for divergent target"); 6244 6245 return None; 6246 } 6247 6248 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6249 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6250 return computeFeasibleMaxVF(OptForSize, TC); 6251 6252 if (Legal->getRuntimePointerChecking()->Need) { 6253 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6254 << "runtime pointer checks needed. Enable vectorization of this " 6255 "loop with '#pragma clang loop vectorize(enable)' when " 6256 "compiling with -Os/-Oz"); 6257 DEBUG(dbgs() 6258 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6259 return None; 6260 } 6261 6262 // If we optimize the program for size, avoid creating the tail loop. 6263 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6264 6265 // If we don't know the precise trip count, don't try to vectorize. 6266 if (TC < 2) { 6267 ORE->emit( 6268 createMissedAnalysis("UnknownLoopCountComplexCFG") 6269 << "unable to calculate the loop count due to complex control flow"); 6270 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6271 return None; 6272 } 6273 6274 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 6275 6276 if (TC % MaxVF != 0) { 6277 // If the trip count that we found modulo the vectorization factor is not 6278 // zero then we require a tail. 6279 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6280 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6281 // smaller MaxVF that does not require a scalar epilog. 6282 6283 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6284 << "cannot optimize for size and vectorize at the " 6285 "same time. Enable vectorization of this loop " 6286 "with '#pragma clang loop vectorize(enable)' " 6287 "when compiling with -Os/-Oz"); 6288 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6289 return None; 6290 } 6291 6292 return MaxVF; 6293 } 6294 6295 unsigned 6296 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 6297 unsigned ConstTripCount) { 6298 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6299 unsigned SmallestType, WidestType; 6300 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6301 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6302 6303 // Get the maximum safe dependence distance in bits computed by LAA. 6304 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 6305 // the memory accesses that is most restrictive (involved in the smallest 6306 // dependence distance). 6307 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 6308 6309 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 6310 6311 unsigned MaxVectorSize = WidestRegister / WidestType; 6312 6313 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6314 << WidestType << " bits.\n"); 6315 DEBUG(dbgs() << "LV: The Widest register safe to use is: " << WidestRegister 6316 << " bits.\n"); 6317 6318 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6319 " into one vector!"); 6320 if (MaxVectorSize == 0) { 6321 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6322 MaxVectorSize = 1; 6323 return MaxVectorSize; 6324 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 6325 isPowerOf2_32(ConstTripCount)) { 6326 // We need to clamp the VF to be the ConstTripCount. There is no point in 6327 // choosing a higher viable VF as done in the loop below. 6328 DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 6329 << ConstTripCount << "\n"); 6330 MaxVectorSize = ConstTripCount; 6331 return MaxVectorSize; 6332 } 6333 6334 unsigned MaxVF = MaxVectorSize; 6335 if (MaximizeBandwidth && !OptForSize) { 6336 // Collect all viable vectorization factors larger than the default MaxVF 6337 // (i.e. MaxVectorSize). 6338 SmallVector<unsigned, 8> VFs; 6339 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6340 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 6341 VFs.push_back(VS); 6342 6343 // For each VF calculate its register usage. 6344 auto RUs = calculateRegisterUsage(VFs); 6345 6346 // Select the largest VF which doesn't require more registers than existing 6347 // ones. 6348 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6349 for (int i = RUs.size() - 1; i >= 0; --i) { 6350 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6351 MaxVF = VFs[i]; 6352 break; 6353 } 6354 } 6355 } 6356 return MaxVF; 6357 } 6358 6359 LoopVectorizationCostModel::VectorizationFactor 6360 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6361 float Cost = expectedCost(1).first; 6362 #ifndef NDEBUG 6363 const float ScalarCost = Cost; 6364 #endif /* NDEBUG */ 6365 unsigned Width = 1; 6366 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6367 6368 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6369 // Ignore scalar width, because the user explicitly wants vectorization. 6370 if (ForceVectorization && MaxVF > 1) { 6371 Width = 2; 6372 Cost = expectedCost(Width).first / (float)Width; 6373 } 6374 6375 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6376 // Notice that the vector loop needs to be executed less times, so 6377 // we need to divide the cost of the vector loops by the width of 6378 // the vector elements. 6379 VectorizationCostTy C = expectedCost(i); 6380 float VectorCost = C.first / (float)i; 6381 DEBUG(dbgs() << "LV: Vector loop of width " << i 6382 << " costs: " << (int)VectorCost << ".\n"); 6383 if (!C.second && !ForceVectorization) { 6384 DEBUG( 6385 dbgs() << "LV: Not considering vector loop of width " << i 6386 << " because it will not generate any vector instructions.\n"); 6387 continue; 6388 } 6389 if (VectorCost < Cost) { 6390 Cost = VectorCost; 6391 Width = i; 6392 } 6393 } 6394 6395 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6396 << "LV: Vectorization seems to be not beneficial, " 6397 << "but was forced by a user.\n"); 6398 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6399 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6400 return Factor; 6401 } 6402 6403 std::pair<unsigned, unsigned> 6404 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6405 unsigned MinWidth = -1U; 6406 unsigned MaxWidth = 8; 6407 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6408 6409 // For each block. 6410 for (BasicBlock *BB : TheLoop->blocks()) { 6411 // For each instruction in the loop. 6412 for (Instruction &I : *BB) { 6413 Type *T = I.getType(); 6414 6415 // Skip ignored values. 6416 if (ValuesToIgnore.count(&I)) 6417 continue; 6418 6419 // Only examine Loads, Stores and PHINodes. 6420 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6421 continue; 6422 6423 // Examine PHI nodes that are reduction variables. Update the type to 6424 // account for the recurrence type. 6425 if (auto *PN = dyn_cast<PHINode>(&I)) { 6426 if (!Legal->isReductionVariable(PN)) 6427 continue; 6428 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6429 T = RdxDesc.getRecurrenceType(); 6430 } 6431 6432 // Examine the stored values. 6433 if (auto *ST = dyn_cast<StoreInst>(&I)) 6434 T = ST->getValueOperand()->getType(); 6435 6436 // Ignore loaded pointer types and stored pointer types that are not 6437 // vectorizable. 6438 // 6439 // FIXME: The check here attempts to predict whether a load or store will 6440 // be vectorized. We only know this for certain after a VF has 6441 // been selected. Here, we assume that if an access can be 6442 // vectorized, it will be. We should also look at extending this 6443 // optimization to non-pointer types. 6444 // 6445 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6446 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6447 continue; 6448 6449 MinWidth = std::min(MinWidth, 6450 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6451 MaxWidth = std::max(MaxWidth, 6452 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6453 } 6454 } 6455 6456 return {MinWidth, MaxWidth}; 6457 } 6458 6459 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6460 unsigned VF, 6461 unsigned LoopCost) { 6462 // -- The interleave heuristics -- 6463 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6464 // There are many micro-architectural considerations that we can't predict 6465 // at this level. For example, frontend pressure (on decode or fetch) due to 6466 // code size, or the number and capabilities of the execution ports. 6467 // 6468 // We use the following heuristics to select the interleave count: 6469 // 1. If the code has reductions, then we interleave to break the cross 6470 // iteration dependency. 6471 // 2. If the loop is really small, then we interleave to reduce the loop 6472 // overhead. 6473 // 3. We don't interleave if we think that we will spill registers to memory 6474 // due to the increased register pressure. 6475 6476 // When we optimize for size, we don't interleave. 6477 if (OptForSize) 6478 return 1; 6479 6480 // We used the distance for the interleave count. 6481 if (Legal->getMaxSafeDepDistBytes() != -1U) 6482 return 1; 6483 6484 // Do not interleave loops with a relatively small trip count. 6485 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6486 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6487 return 1; 6488 6489 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6490 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6491 << " registers\n"); 6492 6493 if (VF == 1) { 6494 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6495 TargetNumRegisters = ForceTargetNumScalarRegs; 6496 } else { 6497 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6498 TargetNumRegisters = ForceTargetNumVectorRegs; 6499 } 6500 6501 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6502 // We divide by these constants so assume that we have at least one 6503 // instruction that uses at least one register. 6504 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6505 R.NumInstructions = std::max(R.NumInstructions, 1U); 6506 6507 // We calculate the interleave count using the following formula. 6508 // Subtract the number of loop invariants from the number of available 6509 // registers. These registers are used by all of the interleaved instances. 6510 // Next, divide the remaining registers by the number of registers that is 6511 // required by the loop, in order to estimate how many parallel instances 6512 // fit without causing spills. All of this is rounded down if necessary to be 6513 // a power of two. We want power of two interleave count to simplify any 6514 // addressing operations or alignment considerations. 6515 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6516 R.MaxLocalUsers); 6517 6518 // Don't count the induction variable as interleaved. 6519 if (EnableIndVarRegisterHeur) 6520 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6521 std::max(1U, (R.MaxLocalUsers - 1))); 6522 6523 // Clamp the interleave ranges to reasonable counts. 6524 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6525 6526 // Check if the user has overridden the max. 6527 if (VF == 1) { 6528 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6529 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6530 } else { 6531 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6532 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6533 } 6534 6535 // If we did not calculate the cost for VF (because the user selected the VF) 6536 // then we calculate the cost of VF here. 6537 if (LoopCost == 0) 6538 LoopCost = expectedCost(VF).first; 6539 6540 // Clamp the calculated IC to be between the 1 and the max interleave count 6541 // that the target allows. 6542 if (IC > MaxInterleaveCount) 6543 IC = MaxInterleaveCount; 6544 else if (IC < 1) 6545 IC = 1; 6546 6547 // Interleave if we vectorized this loop and there is a reduction that could 6548 // benefit from interleaving. 6549 if (VF > 1 && !Legal->getReductionVars()->empty()) { 6550 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6551 return IC; 6552 } 6553 6554 // Note that if we've already vectorized the loop we will have done the 6555 // runtime check and so interleaving won't require further checks. 6556 bool InterleavingRequiresRuntimePointerCheck = 6557 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6558 6559 // We want to interleave small loops in order to reduce the loop overhead and 6560 // potentially expose ILP opportunities. 6561 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6562 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6563 // We assume that the cost overhead is 1 and we use the cost model 6564 // to estimate the cost of the loop and interleave until the cost of the 6565 // loop overhead is about 5% of the cost of the loop. 6566 unsigned SmallIC = 6567 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6568 6569 // Interleave until store/load ports (estimated by max interleave count) are 6570 // saturated. 6571 unsigned NumStores = Legal->getNumStores(); 6572 unsigned NumLoads = Legal->getNumLoads(); 6573 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6574 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6575 6576 // If we have a scalar reduction (vector reductions are already dealt with 6577 // by this point), we can increase the critical path length if the loop 6578 // we're interleaving is inside another loop. Limit, by default to 2, so the 6579 // critical path only gets increased by one reduction operation. 6580 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 6581 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6582 SmallIC = std::min(SmallIC, F); 6583 StoresIC = std::min(StoresIC, F); 6584 LoadsIC = std::min(LoadsIC, F); 6585 } 6586 6587 if (EnableLoadStoreRuntimeInterleave && 6588 std::max(StoresIC, LoadsIC) > SmallIC) { 6589 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6590 return std::max(StoresIC, LoadsIC); 6591 } 6592 6593 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6594 return SmallIC; 6595 } 6596 6597 // Interleave if this is a large loop (small loops are already dealt with by 6598 // this point) that could benefit from interleaving. 6599 bool HasReductions = !Legal->getReductionVars()->empty(); 6600 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6601 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6602 return IC; 6603 } 6604 6605 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6606 return 1; 6607 } 6608 6609 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6610 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6611 // This function calculates the register usage by measuring the highest number 6612 // of values that are alive at a single location. Obviously, this is a very 6613 // rough estimation. We scan the loop in a topological order in order and 6614 // assign a number to each instruction. We use RPO to ensure that defs are 6615 // met before their users. We assume that each instruction that has in-loop 6616 // users starts an interval. We record every time that an in-loop value is 6617 // used, so we have a list of the first and last occurrences of each 6618 // instruction. Next, we transpose this data structure into a multi map that 6619 // holds the list of intervals that *end* at a specific location. This multi 6620 // map allows us to perform a linear search. We scan the instructions linearly 6621 // and record each time that a new interval starts, by placing it in a set. 6622 // If we find this value in the multi-map then we remove it from the set. 6623 // The max register usage is the maximum size of the set. 6624 // We also search for instructions that are defined outside the loop, but are 6625 // used inside the loop. We need this number separately from the max-interval 6626 // usage number because when we unroll, loop-invariant values do not take 6627 // more register. 6628 LoopBlocksDFS DFS(TheLoop); 6629 DFS.perform(LI); 6630 6631 RegisterUsage RU; 6632 RU.NumInstructions = 0; 6633 6634 // Each 'key' in the map opens a new interval. The values 6635 // of the map are the index of the 'last seen' usage of the 6636 // instruction that is the key. 6637 using IntervalMap = DenseMap<Instruction *, unsigned>; 6638 6639 // Maps instruction to its index. 6640 DenseMap<unsigned, Instruction *> IdxToInstr; 6641 // Marks the end of each interval. 6642 IntervalMap EndPoint; 6643 // Saves the list of instruction indices that are used in the loop. 6644 SmallSet<Instruction *, 8> Ends; 6645 // Saves the list of values that are used in the loop but are 6646 // defined outside the loop, such as arguments and constants. 6647 SmallPtrSet<Value *, 8> LoopInvariants; 6648 6649 unsigned Index = 0; 6650 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6651 RU.NumInstructions += BB->size(); 6652 for (Instruction &I : *BB) { 6653 IdxToInstr[Index++] = &I; 6654 6655 // Save the end location of each USE. 6656 for (Value *U : I.operands()) { 6657 auto *Instr = dyn_cast<Instruction>(U); 6658 6659 // Ignore non-instruction values such as arguments, constants, etc. 6660 if (!Instr) 6661 continue; 6662 6663 // If this instruction is outside the loop then record it and continue. 6664 if (!TheLoop->contains(Instr)) { 6665 LoopInvariants.insert(Instr); 6666 continue; 6667 } 6668 6669 // Overwrite previous end points. 6670 EndPoint[Instr] = Index; 6671 Ends.insert(Instr); 6672 } 6673 } 6674 } 6675 6676 // Saves the list of intervals that end with the index in 'key'. 6677 using InstrList = SmallVector<Instruction *, 2>; 6678 DenseMap<unsigned, InstrList> TransposeEnds; 6679 6680 // Transpose the EndPoints to a list of values that end at each index. 6681 for (auto &Interval : EndPoint) 6682 TransposeEnds[Interval.second].push_back(Interval.first); 6683 6684 SmallSet<Instruction *, 8> OpenIntervals; 6685 6686 // Get the size of the widest register. 6687 unsigned MaxSafeDepDist = -1U; 6688 if (Legal->getMaxSafeDepDistBytes() != -1U) 6689 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6690 unsigned WidestRegister = 6691 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6692 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6693 6694 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6695 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6696 6697 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6698 6699 // A lambda that gets the register usage for the given type and VF. 6700 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6701 if (Ty->isTokenTy()) 6702 return 0U; 6703 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6704 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6705 }; 6706 6707 for (unsigned int i = 0; i < Index; ++i) { 6708 Instruction *I = IdxToInstr[i]; 6709 6710 // Remove all of the instructions that end at this location. 6711 InstrList &List = TransposeEnds[i]; 6712 for (Instruction *ToRemove : List) 6713 OpenIntervals.erase(ToRemove); 6714 6715 // Ignore instructions that are never used within the loop. 6716 if (!Ends.count(I)) 6717 continue; 6718 6719 // Skip ignored values. 6720 if (ValuesToIgnore.count(I)) 6721 continue; 6722 6723 // For each VF find the maximum usage of registers. 6724 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6725 if (VFs[j] == 1) { 6726 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6727 continue; 6728 } 6729 collectUniformsAndScalars(VFs[j]); 6730 // Count the number of live intervals. 6731 unsigned RegUsage = 0; 6732 for (auto Inst : OpenIntervals) { 6733 // Skip ignored values for VF > 1. 6734 if (VecValuesToIgnore.count(Inst) || 6735 isScalarAfterVectorization(Inst, VFs[j])) 6736 continue; 6737 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6738 } 6739 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6740 } 6741 6742 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6743 << OpenIntervals.size() << '\n'); 6744 6745 // Add the current instruction to the list of open intervals. 6746 OpenIntervals.insert(I); 6747 } 6748 6749 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6750 unsigned Invariant = 0; 6751 if (VFs[i] == 1) 6752 Invariant = LoopInvariants.size(); 6753 else { 6754 for (auto Inst : LoopInvariants) 6755 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6756 } 6757 6758 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6759 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6760 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6761 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6762 6763 RU.LoopInvariantRegs = Invariant; 6764 RU.MaxLocalUsers = MaxUsages[i]; 6765 RUs[i] = RU; 6766 } 6767 6768 return RUs; 6769 } 6770 6771 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6772 // If we aren't vectorizing the loop, or if we've already collected the 6773 // instructions to scalarize, there's nothing to do. Collection may already 6774 // have occurred if we have a user-selected VF and are now computing the 6775 // expected cost for interleaving. 6776 if (VF < 2 || InstsToScalarize.count(VF)) 6777 return; 6778 6779 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6780 // not profitable to scalarize any instructions, the presence of VF in the 6781 // map will indicate that we've analyzed it already. 6782 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6783 6784 // Find all the instructions that are scalar with predication in the loop and 6785 // determine if it would be better to not if-convert the blocks they are in. 6786 // If so, we also record the instructions to scalarize. 6787 for (BasicBlock *BB : TheLoop->blocks()) { 6788 if (!Legal->blockNeedsPredication(BB)) 6789 continue; 6790 for (Instruction &I : *BB) 6791 if (Legal->isScalarWithPredication(&I)) { 6792 ScalarCostsTy ScalarCosts; 6793 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6794 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6795 6796 // Remember that BB will remain after vectorization. 6797 PredicatedBBsAfterVectorization.insert(BB); 6798 } 6799 } 6800 } 6801 6802 int LoopVectorizationCostModel::computePredInstDiscount( 6803 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6804 unsigned VF) { 6805 assert(!isUniformAfterVectorization(PredInst, VF) && 6806 "Instruction marked uniform-after-vectorization will be predicated"); 6807 6808 // Initialize the discount to zero, meaning that the scalar version and the 6809 // vector version cost the same. 6810 int Discount = 0; 6811 6812 // Holds instructions to analyze. The instructions we visit are mapped in 6813 // ScalarCosts. Those instructions are the ones that would be scalarized if 6814 // we find that the scalar version costs less. 6815 SmallVector<Instruction *, 8> Worklist; 6816 6817 // Returns true if the given instruction can be scalarized. 6818 auto canBeScalarized = [&](Instruction *I) -> bool { 6819 // We only attempt to scalarize instructions forming a single-use chain 6820 // from the original predicated block that would otherwise be vectorized. 6821 // Although not strictly necessary, we give up on instructions we know will 6822 // already be scalar to avoid traversing chains that are unlikely to be 6823 // beneficial. 6824 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6825 isScalarAfterVectorization(I, VF)) 6826 return false; 6827 6828 // If the instruction is scalar with predication, it will be analyzed 6829 // separately. We ignore it within the context of PredInst. 6830 if (Legal->isScalarWithPredication(I)) 6831 return false; 6832 6833 // If any of the instruction's operands are uniform after vectorization, 6834 // the instruction cannot be scalarized. This prevents, for example, a 6835 // masked load from being scalarized. 6836 // 6837 // We assume we will only emit a value for lane zero of an instruction 6838 // marked uniform after vectorization, rather than VF identical values. 6839 // Thus, if we scalarize an instruction that uses a uniform, we would 6840 // create uses of values corresponding to the lanes we aren't emitting code 6841 // for. This behavior can be changed by allowing getScalarValue to clone 6842 // the lane zero values for uniforms rather than asserting. 6843 for (Use &U : I->operands()) 6844 if (auto *J = dyn_cast<Instruction>(U.get())) 6845 if (isUniformAfterVectorization(J, VF)) 6846 return false; 6847 6848 // Otherwise, we can scalarize the instruction. 6849 return true; 6850 }; 6851 6852 // Returns true if an operand that cannot be scalarized must be extracted 6853 // from a vector. We will account for this scalarization overhead below. Note 6854 // that the non-void predicated instructions are placed in their own blocks, 6855 // and their return values are inserted into vectors. Thus, an extract would 6856 // still be required. 6857 auto needsExtract = [&](Instruction *I) -> bool { 6858 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6859 }; 6860 6861 // Compute the expected cost discount from scalarizing the entire expression 6862 // feeding the predicated instruction. We currently only consider expressions 6863 // that are single-use instruction chains. 6864 Worklist.push_back(PredInst); 6865 while (!Worklist.empty()) { 6866 Instruction *I = Worklist.pop_back_val(); 6867 6868 // If we've already analyzed the instruction, there's nothing to do. 6869 if (ScalarCosts.count(I)) 6870 continue; 6871 6872 // Compute the cost of the vector instruction. Note that this cost already 6873 // includes the scalarization overhead of the predicated instruction. 6874 unsigned VectorCost = getInstructionCost(I, VF).first; 6875 6876 // Compute the cost of the scalarized instruction. This cost is the cost of 6877 // the instruction as if it wasn't if-converted and instead remained in the 6878 // predicated block. We will scale this cost by block probability after 6879 // computing the scalarization overhead. 6880 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6881 6882 // Compute the scalarization overhead of needed insertelement instructions 6883 // and phi nodes. 6884 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6885 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6886 true, false); 6887 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6888 } 6889 6890 // Compute the scalarization overhead of needed extractelement 6891 // instructions. For each of the instruction's operands, if the operand can 6892 // be scalarized, add it to the worklist; otherwise, account for the 6893 // overhead. 6894 for (Use &U : I->operands()) 6895 if (auto *J = dyn_cast<Instruction>(U.get())) { 6896 assert(VectorType::isValidElementType(J->getType()) && 6897 "Instruction has non-scalar type"); 6898 if (canBeScalarized(J)) 6899 Worklist.push_back(J); 6900 else if (needsExtract(J)) 6901 ScalarCost += TTI.getScalarizationOverhead( 6902 ToVectorTy(J->getType(),VF), false, true); 6903 } 6904 6905 // Scale the total scalar cost by block probability. 6906 ScalarCost /= getReciprocalPredBlockProb(); 6907 6908 // Compute the discount. A non-negative discount means the vector version 6909 // of the instruction costs more, and scalarizing would be beneficial. 6910 Discount += VectorCost - ScalarCost; 6911 ScalarCosts[I] = ScalarCost; 6912 } 6913 6914 return Discount; 6915 } 6916 6917 LoopVectorizationCostModel::VectorizationCostTy 6918 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6919 VectorizationCostTy Cost; 6920 6921 // For each block. 6922 for (BasicBlock *BB : TheLoop->blocks()) { 6923 VectorizationCostTy BlockCost; 6924 6925 // For each instruction in the old loop. 6926 for (Instruction &I : *BB) { 6927 // Skip dbg intrinsics. 6928 if (isa<DbgInfoIntrinsic>(I)) 6929 continue; 6930 6931 // Skip ignored values. 6932 if (ValuesToIgnore.count(&I)) 6933 continue; 6934 6935 VectorizationCostTy C = getInstructionCost(&I, VF); 6936 6937 // Check if we should override the cost. 6938 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6939 C.first = ForceTargetInstructionCost; 6940 6941 BlockCost.first += C.first; 6942 BlockCost.second |= C.second; 6943 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6944 << VF << " For instruction: " << I << '\n'); 6945 } 6946 6947 // If we are vectorizing a predicated block, it will have been 6948 // if-converted. This means that the block's instructions (aside from 6949 // stores and instructions that may divide by zero) will now be 6950 // unconditionally executed. For the scalar case, we may not always execute 6951 // the predicated block. Thus, scale the block's cost by the probability of 6952 // executing it. 6953 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6954 BlockCost.first /= getReciprocalPredBlockProb(); 6955 6956 Cost.first += BlockCost.first; 6957 Cost.second |= BlockCost.second; 6958 } 6959 6960 return Cost; 6961 } 6962 6963 /// \brief Gets Address Access SCEV after verifying that the access pattern 6964 /// is loop invariant except the induction variable dependence. 6965 /// 6966 /// This SCEV can be sent to the Target in order to estimate the address 6967 /// calculation cost. 6968 static const SCEV *getAddressAccessSCEV( 6969 Value *Ptr, 6970 LoopVectorizationLegality *Legal, 6971 ScalarEvolution *SE, 6972 const Loop *TheLoop) { 6973 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6974 if (!Gep) 6975 return nullptr; 6976 6977 // We are looking for a gep with all loop invariant indices except for one 6978 // which should be an induction variable. 6979 unsigned NumOperands = Gep->getNumOperands(); 6980 for (unsigned i = 1; i < NumOperands; ++i) { 6981 Value *Opd = Gep->getOperand(i); 6982 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6983 !Legal->isInductionVariable(Opd)) 6984 return nullptr; 6985 } 6986 6987 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6988 return SE->getSCEV(Ptr); 6989 } 6990 6991 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6992 return Legal->hasStride(I->getOperand(0)) || 6993 Legal->hasStride(I->getOperand(1)); 6994 } 6995 6996 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6997 unsigned VF) { 6998 Type *ValTy = getMemInstValueType(I); 6999 auto SE = PSE.getSE(); 7000 7001 unsigned Alignment = getMemInstAlignment(I); 7002 unsigned AS = getMemInstAddressSpace(I); 7003 Value *Ptr = getPointerOperand(I); 7004 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7005 7006 // Figure out whether the access is strided and get the stride value 7007 // if it's known in compile time 7008 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop); 7009 7010 // Get the cost of the scalar memory instruction and address computation. 7011 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7012 7013 Cost += VF * 7014 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7015 AS, I); 7016 7017 // Get the overhead of the extractelement and insertelement instructions 7018 // we might create due to scalarization. 7019 Cost += getScalarizationOverhead(I, VF, TTI); 7020 7021 // If we have a predicated store, it may not be executed for each vector 7022 // lane. Scale the cost by the probability of executing the predicated 7023 // block. 7024 if (Legal->isScalarWithPredication(I)) 7025 Cost /= getReciprocalPredBlockProb(); 7026 7027 return Cost; 7028 } 7029 7030 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7031 unsigned VF) { 7032 Type *ValTy = getMemInstValueType(I); 7033 Type *VectorTy = ToVectorTy(ValTy, VF); 7034 unsigned Alignment = getMemInstAlignment(I); 7035 Value *Ptr = getPointerOperand(I); 7036 unsigned AS = getMemInstAddressSpace(I); 7037 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7038 7039 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7040 "Stride should be 1 or -1 for consecutive memory access"); 7041 unsigned Cost = 0; 7042 if (Legal->isMaskRequired(I)) 7043 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7044 else 7045 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 7046 7047 bool Reverse = ConsecutiveStride < 0; 7048 if (Reverse) 7049 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7050 return Cost; 7051 } 7052 7053 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7054 unsigned VF) { 7055 LoadInst *LI = cast<LoadInst>(I); 7056 Type *ValTy = LI->getType(); 7057 Type *VectorTy = ToVectorTy(ValTy, VF); 7058 unsigned Alignment = LI->getAlignment(); 7059 unsigned AS = LI->getPointerAddressSpace(); 7060 7061 return TTI.getAddressComputationCost(ValTy) + 7062 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 7063 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7064 } 7065 7066 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7067 unsigned VF) { 7068 Type *ValTy = getMemInstValueType(I); 7069 Type *VectorTy = ToVectorTy(ValTy, VF); 7070 unsigned Alignment = getMemInstAlignment(I); 7071 Value *Ptr = getPointerOperand(I); 7072 7073 return TTI.getAddressComputationCost(VectorTy) + 7074 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 7075 Legal->isMaskRequired(I), Alignment); 7076 } 7077 7078 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7079 unsigned VF) { 7080 Type *ValTy = getMemInstValueType(I); 7081 Type *VectorTy = ToVectorTy(ValTy, VF); 7082 unsigned AS = getMemInstAddressSpace(I); 7083 7084 auto Group = Legal->getInterleavedAccessGroup(I); 7085 assert(Group && "Fail to get an interleaved access group."); 7086 7087 unsigned InterleaveFactor = Group->getFactor(); 7088 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7089 7090 // Holds the indices of existing members in an interleaved load group. 7091 // An interleaved store group doesn't need this as it doesn't allow gaps. 7092 SmallVector<unsigned, 4> Indices; 7093 if (isa<LoadInst>(I)) { 7094 for (unsigned i = 0; i < InterleaveFactor; i++) 7095 if (Group->getMember(i)) 7096 Indices.push_back(i); 7097 } 7098 7099 // Calculate the cost of the whole interleaved group. 7100 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 7101 Group->getFactor(), Indices, 7102 Group->getAlignment(), AS); 7103 7104 if (Group->isReverse()) 7105 Cost += Group->getNumMembers() * 7106 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7107 return Cost; 7108 } 7109 7110 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7111 unsigned VF) { 7112 // Calculate scalar cost only. Vectorization cost should be ready at this 7113 // moment. 7114 if (VF == 1) { 7115 Type *ValTy = getMemInstValueType(I); 7116 unsigned Alignment = getMemInstAlignment(I); 7117 unsigned AS = getMemInstAddressSpace(I); 7118 7119 return TTI.getAddressComputationCost(ValTy) + 7120 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 7121 } 7122 return getWideningCost(I, VF); 7123 } 7124 7125 LoopVectorizationCostModel::VectorizationCostTy 7126 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7127 // If we know that this instruction will remain uniform, check the cost of 7128 // the scalar version. 7129 if (isUniformAfterVectorization(I, VF)) 7130 VF = 1; 7131 7132 if (VF > 1 && isProfitableToScalarize(I, VF)) 7133 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7134 7135 // Forced scalars do not have any scalarization overhead. 7136 if (VF > 1 && ForcedScalars.count(VF) && 7137 ForcedScalars.find(VF)->second.count(I)) 7138 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 7139 7140 Type *VectorTy; 7141 unsigned C = getInstructionCost(I, VF, VectorTy); 7142 7143 bool TypeNotScalarized = 7144 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 7145 return VectorizationCostTy(C, TypeNotScalarized); 7146 } 7147 7148 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7149 if (VF == 1) 7150 return; 7151 for (BasicBlock *BB : TheLoop->blocks()) { 7152 // For each instruction in the old loop. 7153 for (Instruction &I : *BB) { 7154 Value *Ptr = getPointerOperand(&I); 7155 if (!Ptr) 7156 continue; 7157 7158 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7159 // Scalar load + broadcast 7160 unsigned Cost = getUniformMemOpCost(&I, VF); 7161 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7162 continue; 7163 } 7164 7165 // We assume that widening is the best solution when possible. 7166 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7167 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7168 setWideningDecision(&I, VF, CM_Widen, Cost); 7169 continue; 7170 } 7171 7172 // Choose between Interleaving, Gather/Scatter or Scalarization. 7173 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 7174 unsigned NumAccesses = 1; 7175 if (Legal->isAccessInterleaved(&I)) { 7176 auto Group = Legal->getInterleavedAccessGroup(&I); 7177 assert(Group && "Fail to get an interleaved access group."); 7178 7179 // Make one decision for the whole group. 7180 if (getWideningDecision(&I, VF) != CM_Unknown) 7181 continue; 7182 7183 NumAccesses = Group->getNumMembers(); 7184 InterleaveCost = getInterleaveGroupCost(&I, VF); 7185 } 7186 7187 unsigned GatherScatterCost = 7188 Legal->isLegalGatherOrScatter(&I) 7189 ? getGatherScatterCost(&I, VF) * NumAccesses 7190 : std::numeric_limits<unsigned>::max(); 7191 7192 unsigned ScalarizationCost = 7193 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7194 7195 // Choose better solution for the current VF, 7196 // write down this decision and use it during vectorization. 7197 unsigned Cost; 7198 InstWidening Decision; 7199 if (InterleaveCost <= GatherScatterCost && 7200 InterleaveCost < ScalarizationCost) { 7201 Decision = CM_Interleave; 7202 Cost = InterleaveCost; 7203 } else if (GatherScatterCost < ScalarizationCost) { 7204 Decision = CM_GatherScatter; 7205 Cost = GatherScatterCost; 7206 } else { 7207 Decision = CM_Scalarize; 7208 Cost = ScalarizationCost; 7209 } 7210 // If the instructions belongs to an interleave group, the whole group 7211 // receives the same decision. The whole group receives the cost, but 7212 // the cost will actually be assigned to one instruction. 7213 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7214 setWideningDecision(Group, VF, Decision, Cost); 7215 else 7216 setWideningDecision(&I, VF, Decision, Cost); 7217 } 7218 } 7219 7220 // Make sure that any load of address and any other address computation 7221 // remains scalar unless there is gather/scatter support. This avoids 7222 // inevitable extracts into address registers, and also has the benefit of 7223 // activating LSR more, since that pass can't optimize vectorized 7224 // addresses. 7225 if (TTI.prefersVectorizedAddressing()) 7226 return; 7227 7228 // Start with all scalar pointer uses. 7229 SmallPtrSet<Instruction *, 8> AddrDefs; 7230 for (BasicBlock *BB : TheLoop->blocks()) 7231 for (Instruction &I : *BB) { 7232 Instruction *PtrDef = 7233 dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 7234 if (PtrDef && TheLoop->contains(PtrDef) && 7235 getWideningDecision(&I, VF) != CM_GatherScatter) 7236 AddrDefs.insert(PtrDef); 7237 } 7238 7239 // Add all instructions used to generate the addresses. 7240 SmallVector<Instruction *, 4> Worklist; 7241 for (auto *I : AddrDefs) 7242 Worklist.push_back(I); 7243 while (!Worklist.empty()) { 7244 Instruction *I = Worklist.pop_back_val(); 7245 for (auto &Op : I->operands()) 7246 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7247 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7248 AddrDefs.insert(InstOp).second) 7249 Worklist.push_back(InstOp); 7250 } 7251 7252 for (auto *I : AddrDefs) { 7253 if (isa<LoadInst>(I)) { 7254 // Setting the desired widening decision should ideally be handled in 7255 // by cost functions, but since this involves the task of finding out 7256 // if the loaded register is involved in an address computation, it is 7257 // instead changed here when we know this is the case. 7258 if (getWideningDecision(I, VF) == CM_Widen) 7259 // Scalarize a widened load of address. 7260 setWideningDecision(I, VF, CM_Scalarize, 7261 (VF * getMemoryInstructionCost(I, 1))); 7262 else if (auto Group = Legal->getInterleavedAccessGroup(I)) { 7263 // Scalarize an interleave group of address loads. 7264 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7265 if (Instruction *Member = Group->getMember(I)) 7266 setWideningDecision(Member, VF, CM_Scalarize, 7267 (VF * getMemoryInstructionCost(Member, 1))); 7268 } 7269 } 7270 } else 7271 // Make sure I gets scalarized and a cost estimate without 7272 // scalarization overhead. 7273 ForcedScalars[VF].insert(I); 7274 } 7275 } 7276 7277 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7278 unsigned VF, 7279 Type *&VectorTy) { 7280 Type *RetTy = I->getType(); 7281 if (canTruncateToMinimalBitwidth(I, VF)) 7282 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7283 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7284 auto SE = PSE.getSE(); 7285 7286 // TODO: We need to estimate the cost of intrinsic calls. 7287 switch (I->getOpcode()) { 7288 case Instruction::GetElementPtr: 7289 // We mark this instruction as zero-cost because the cost of GEPs in 7290 // vectorized code depends on whether the corresponding memory instruction 7291 // is scalarized or not. Therefore, we handle GEPs with the memory 7292 // instruction cost. 7293 return 0; 7294 case Instruction::Br: { 7295 // In cases of scalarized and predicated instructions, there will be VF 7296 // predicated blocks in the vectorized loop. Each branch around these 7297 // blocks requires also an extract of its vector compare i1 element. 7298 bool ScalarPredicatedBB = false; 7299 BranchInst *BI = cast<BranchInst>(I); 7300 if (VF > 1 && BI->isConditional() && 7301 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7302 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7303 ScalarPredicatedBB = true; 7304 7305 if (ScalarPredicatedBB) { 7306 // Return cost for branches around scalarized and predicated blocks. 7307 Type *Vec_i1Ty = 7308 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7309 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7310 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7311 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7312 // The back-edge branch will remain, as will all scalar branches. 7313 return TTI.getCFInstrCost(Instruction::Br); 7314 else 7315 // This branch will be eliminated by if-conversion. 7316 return 0; 7317 // Note: We currently assume zero cost for an unconditional branch inside 7318 // a predicated block since it will become a fall-through, although we 7319 // may decide in the future to call TTI for all branches. 7320 } 7321 case Instruction::PHI: { 7322 auto *Phi = cast<PHINode>(I); 7323 7324 // First-order recurrences are replaced by vector shuffles inside the loop. 7325 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7326 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7327 VectorTy, VF - 1, VectorTy); 7328 7329 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7330 // converted into select instructions. We require N - 1 selects per phi 7331 // node, where N is the number of incoming values. 7332 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7333 return (Phi->getNumIncomingValues() - 1) * 7334 TTI.getCmpSelInstrCost( 7335 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7336 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7337 7338 return TTI.getCFInstrCost(Instruction::PHI); 7339 } 7340 case Instruction::UDiv: 7341 case Instruction::SDiv: 7342 case Instruction::URem: 7343 case Instruction::SRem: 7344 // If we have a predicated instruction, it may not be executed for each 7345 // vector lane. Get the scalarization cost and scale this amount by the 7346 // probability of executing the predicated block. If the instruction is not 7347 // predicated, we fall through to the next case. 7348 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7349 unsigned Cost = 0; 7350 7351 // These instructions have a non-void type, so account for the phi nodes 7352 // that we will create. This cost is likely to be zero. The phi node 7353 // cost, if any, should be scaled by the block probability because it 7354 // models a copy at the end of each predicated block. 7355 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7356 7357 // The cost of the non-predicated instruction. 7358 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7359 7360 // The cost of insertelement and extractelement instructions needed for 7361 // scalarization. 7362 Cost += getScalarizationOverhead(I, VF, TTI); 7363 7364 // Scale the cost by the probability of executing the predicated blocks. 7365 // This assumes the predicated block for each vector lane is equally 7366 // likely. 7367 return Cost / getReciprocalPredBlockProb(); 7368 } 7369 LLVM_FALLTHROUGH; 7370 case Instruction::Add: 7371 case Instruction::FAdd: 7372 case Instruction::Sub: 7373 case Instruction::FSub: 7374 case Instruction::Mul: 7375 case Instruction::FMul: 7376 case Instruction::FDiv: 7377 case Instruction::FRem: 7378 case Instruction::Shl: 7379 case Instruction::LShr: 7380 case Instruction::AShr: 7381 case Instruction::And: 7382 case Instruction::Or: 7383 case Instruction::Xor: { 7384 // Since we will replace the stride by 1 the multiplication should go away. 7385 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7386 return 0; 7387 // Certain instructions can be cheaper to vectorize if they have a constant 7388 // second vector operand. One example of this are shifts on x86. 7389 TargetTransformInfo::OperandValueKind Op1VK = 7390 TargetTransformInfo::OK_AnyValue; 7391 TargetTransformInfo::OperandValueKind Op2VK = 7392 TargetTransformInfo::OK_AnyValue; 7393 TargetTransformInfo::OperandValueProperties Op1VP = 7394 TargetTransformInfo::OP_None; 7395 TargetTransformInfo::OperandValueProperties Op2VP = 7396 TargetTransformInfo::OP_None; 7397 Value *Op2 = I->getOperand(1); 7398 7399 // Check for a splat or for a non uniform vector of constants. 7400 if (isa<ConstantInt>(Op2)) { 7401 ConstantInt *CInt = cast<ConstantInt>(Op2); 7402 if (CInt && CInt->getValue().isPowerOf2()) 7403 Op2VP = TargetTransformInfo::OP_PowerOf2; 7404 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7405 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7406 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7407 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7408 if (SplatValue) { 7409 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7410 if (CInt && CInt->getValue().isPowerOf2()) 7411 Op2VP = TargetTransformInfo::OP_PowerOf2; 7412 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7413 } 7414 } else if (Legal->isUniform(Op2)) { 7415 Op2VK = TargetTransformInfo::OK_UniformValue; 7416 } 7417 SmallVector<const Value *, 4> Operands(I->operand_values()); 7418 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7419 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7420 Op2VK, Op1VP, Op2VP, Operands); 7421 } 7422 case Instruction::Select: { 7423 SelectInst *SI = cast<SelectInst>(I); 7424 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7425 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7426 Type *CondTy = SI->getCondition()->getType(); 7427 if (!ScalarCond) 7428 CondTy = VectorType::get(CondTy, VF); 7429 7430 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7431 } 7432 case Instruction::ICmp: 7433 case Instruction::FCmp: { 7434 Type *ValTy = I->getOperand(0)->getType(); 7435 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7436 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7437 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7438 VectorTy = ToVectorTy(ValTy, VF); 7439 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7440 } 7441 case Instruction::Store: 7442 case Instruction::Load: { 7443 unsigned Width = VF; 7444 if (Width > 1) { 7445 InstWidening Decision = getWideningDecision(I, Width); 7446 assert(Decision != CM_Unknown && 7447 "CM decision should be taken at this point"); 7448 if (Decision == CM_Scalarize) 7449 Width = 1; 7450 } 7451 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7452 return getMemoryInstructionCost(I, VF); 7453 } 7454 case Instruction::ZExt: 7455 case Instruction::SExt: 7456 case Instruction::FPToUI: 7457 case Instruction::FPToSI: 7458 case Instruction::FPExt: 7459 case Instruction::PtrToInt: 7460 case Instruction::IntToPtr: 7461 case Instruction::SIToFP: 7462 case Instruction::UIToFP: 7463 case Instruction::Trunc: 7464 case Instruction::FPTrunc: 7465 case Instruction::BitCast: { 7466 // We optimize the truncation of induction variables having constant 7467 // integer steps. The cost of these truncations is the same as the scalar 7468 // operation. 7469 if (isOptimizableIVTruncate(I, VF)) { 7470 auto *Trunc = cast<TruncInst>(I); 7471 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7472 Trunc->getSrcTy(), Trunc); 7473 } 7474 7475 Type *SrcScalarTy = I->getOperand(0)->getType(); 7476 Type *SrcVecTy = 7477 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7478 if (canTruncateToMinimalBitwidth(I, VF)) { 7479 // This cast is going to be shrunk. This may remove the cast or it might 7480 // turn it into slightly different cast. For example, if MinBW == 16, 7481 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7482 // 7483 // Calculate the modified src and dest types. 7484 Type *MinVecTy = VectorTy; 7485 if (I->getOpcode() == Instruction::Trunc) { 7486 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7487 VectorTy = 7488 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7489 } else if (I->getOpcode() == Instruction::ZExt || 7490 I->getOpcode() == Instruction::SExt) { 7491 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7492 VectorTy = 7493 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7494 } 7495 } 7496 7497 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7498 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7499 } 7500 case Instruction::Call: { 7501 bool NeedToScalarize; 7502 CallInst *CI = cast<CallInst>(I); 7503 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7504 if (getVectorIntrinsicIDForCall(CI, TLI)) 7505 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7506 return CallCost; 7507 } 7508 default: 7509 // The cost of executing VF copies of the scalar instruction. This opcode 7510 // is unknown. Assume that it is the same as 'mul'. 7511 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7512 getScalarizationOverhead(I, VF, TTI); 7513 } // end of switch. 7514 } 7515 7516 char LoopVectorize::ID = 0; 7517 7518 static const char lv_name[] = "Loop Vectorization"; 7519 7520 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7521 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7522 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7523 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7524 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7525 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7526 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7527 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7528 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7529 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7530 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7531 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7532 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7533 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7534 7535 namespace llvm { 7536 7537 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7538 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7539 } 7540 7541 } // end namespace llvm 7542 7543 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7544 // Check if the pointer operand of a load or store instruction is 7545 // consecutive. 7546 if (auto *Ptr = getPointerOperand(Inst)) 7547 return Legal->isConsecutivePtr(Ptr); 7548 return false; 7549 } 7550 7551 void LoopVectorizationCostModel::collectValuesToIgnore() { 7552 // Ignore ephemeral values. 7553 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7554 7555 // Ignore type-promoting instructions we identified during reduction 7556 // detection. 7557 for (auto &Reduction : *Legal->getReductionVars()) { 7558 RecurrenceDescriptor &RedDes = Reduction.second; 7559 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7560 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7561 } 7562 } 7563 7564 LoopVectorizationCostModel::VectorizationFactor 7565 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7566 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7567 const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U, 7568 0U}; 7569 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7570 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7571 return NoVectorization; 7572 7573 if (UserVF) { 7574 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7575 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7576 // Collect the instructions (and their associated costs) that will be more 7577 // profitable to scalarize. 7578 CM.selectUserVectorizationFactor(UserVF); 7579 buildVPlans(UserVF, UserVF); 7580 DEBUG(printPlans(dbgs())); 7581 return {UserVF, 0}; 7582 } 7583 7584 unsigned MaxVF = MaybeMaxVF.getValue(); 7585 assert(MaxVF != 0 && "MaxVF is zero."); 7586 7587 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 7588 // Collect Uniform and Scalar instructions after vectorization with VF. 7589 CM.collectUniformsAndScalars(VF); 7590 7591 // Collect the instructions (and their associated costs) that will be more 7592 // profitable to scalarize. 7593 if (VF > 1) 7594 CM.collectInstsToScalarize(VF); 7595 } 7596 7597 buildVPlans(1, MaxVF); 7598 DEBUG(printPlans(dbgs())); 7599 if (MaxVF == 1) 7600 return NoVectorization; 7601 7602 // Select the optimal vectorization factor. 7603 return CM.selectVectorizationFactor(MaxVF); 7604 } 7605 7606 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 7607 DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF << '\n'); 7608 BestVF = VF; 7609 BestUF = UF; 7610 7611 erase_if(VPlans, [VF](const std::unique_ptr<VPlan> &Plan) { 7612 return !Plan->hasVF(VF); 7613 }); 7614 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7615 } 7616 7617 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7618 DominatorTree *DT) { 7619 // Perform the actual loop transformation. 7620 7621 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7622 VPTransformState State{ 7623 BestVF, BestUF, LI, DT, ILV.Builder, ILV.VectorLoopValueMap, &ILV}; 7624 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7625 7626 //===------------------------------------------------===// 7627 // 7628 // Notice: any optimization or new instruction that go 7629 // into the code below should also be implemented in 7630 // the cost-model. 7631 // 7632 //===------------------------------------------------===// 7633 7634 // 2. Copy and widen instructions from the old loop into the new loop. 7635 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7636 VPlans.front()->execute(&State); 7637 7638 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7639 // predication, updating analyses. 7640 ILV.fixVectorizedLoop(); 7641 } 7642 7643 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7644 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7645 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7646 7647 // We create new control-flow for the vectorized loop, so the original 7648 // condition will be dead after vectorization if it's only used by the 7649 // branch. 7650 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7651 if (Cmp && Cmp->hasOneUse()) 7652 DeadInstructions.insert(Cmp); 7653 7654 // We create new "steps" for induction variable updates to which the original 7655 // induction variables map. An original update instruction will be dead if 7656 // all its users except the induction variable are dead. 7657 for (auto &Induction : *Legal->getInductionVars()) { 7658 PHINode *Ind = Induction.first; 7659 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7660 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7661 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7662 })) 7663 DeadInstructions.insert(IndUpdate); 7664 } 7665 } 7666 7667 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7668 7669 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7670 7671 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7672 Instruction::BinaryOps BinOp) { 7673 // When unrolling and the VF is 1, we only need to add a simple scalar. 7674 Type *Ty = Val->getType(); 7675 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7676 7677 if (Ty->isFloatingPointTy()) { 7678 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7679 7680 // Floating point operations had to be 'fast' to enable the unrolling. 7681 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7682 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7683 } 7684 Constant *C = ConstantInt::get(Ty, StartIdx); 7685 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7686 } 7687 7688 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7689 SmallVector<Metadata *, 4> MDs; 7690 // Reserve first location for self reference to the LoopID metadata node. 7691 MDs.push_back(nullptr); 7692 bool IsUnrollMetadata = false; 7693 MDNode *LoopID = L->getLoopID(); 7694 if (LoopID) { 7695 // First find existing loop unrolling disable metadata. 7696 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7697 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7698 if (MD) { 7699 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7700 IsUnrollMetadata = 7701 S && S->getString().startswith("llvm.loop.unroll.disable"); 7702 } 7703 MDs.push_back(LoopID->getOperand(i)); 7704 } 7705 } 7706 7707 if (!IsUnrollMetadata) { 7708 // Add runtime unroll disable metadata. 7709 LLVMContext &Context = L->getHeader()->getContext(); 7710 SmallVector<Metadata *, 1> DisableOperands; 7711 DisableOperands.push_back( 7712 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7713 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7714 MDs.push_back(DisableNode); 7715 MDNode *NewLoopID = MDNode::get(Context, MDs); 7716 // Set operand 0 to refer to the loop id itself. 7717 NewLoopID->replaceOperandWith(0, NewLoopID); 7718 L->setLoopID(NewLoopID); 7719 } 7720 } 7721 7722 namespace { 7723 7724 /// VPWidenRecipe is a recipe for producing a copy of vector type for each 7725 /// Instruction in its ingredients independently, in order. This recipe covers 7726 /// most of the traditional vectorization cases where each ingredient transforms 7727 /// into a vectorized version of itself. 7728 class VPWidenRecipe : public VPRecipeBase { 7729 private: 7730 /// Hold the ingredients by pointing to their original BasicBlock location. 7731 BasicBlock::iterator Begin; 7732 BasicBlock::iterator End; 7733 7734 public: 7735 VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) { 7736 End = I->getIterator(); 7737 Begin = End++; 7738 } 7739 7740 ~VPWidenRecipe() override = default; 7741 7742 /// Method to support type inquiry through isa, cast, and dyn_cast. 7743 static inline bool classof(const VPRecipeBase *V) { 7744 return V->getVPRecipeID() == VPRecipeBase::VPWidenSC; 7745 } 7746 7747 /// Produce widened copies of all Ingredients. 7748 void execute(VPTransformState &State) override { 7749 for (auto &Instr : make_range(Begin, End)) 7750 State.ILV->widenInstruction(Instr); 7751 } 7752 7753 /// Augment the recipe to include Instr, if it lies at its End. 7754 bool appendInstruction(Instruction *Instr) { 7755 if (End != Instr->getIterator()) 7756 return false; 7757 End++; 7758 return true; 7759 } 7760 7761 /// Print the recipe. 7762 void print(raw_ostream &O, const Twine &Indent) const override { 7763 O << " +\n" << Indent << "\"WIDEN\\l\""; 7764 for (auto &Instr : make_range(Begin, End)) 7765 O << " +\n" << Indent << "\" " << VPlanIngredient(&Instr) << "\\l\""; 7766 } 7767 }; 7768 7769 /// A recipe for handling phi nodes of integer and floating-point inductions, 7770 /// producing their vector and scalar values. 7771 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase { 7772 private: 7773 PHINode *IV; 7774 TruncInst *Trunc; 7775 7776 public: 7777 VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr) 7778 : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {} 7779 ~VPWidenIntOrFpInductionRecipe() override = default; 7780 7781 /// Method to support type inquiry through isa, cast, and dyn_cast. 7782 static inline bool classof(const VPRecipeBase *V) { 7783 return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC; 7784 } 7785 7786 /// Generate the vectorized and scalarized versions of the phi node as 7787 /// needed by their users. 7788 void execute(VPTransformState &State) override { 7789 assert(!State.Instance && "Int or FP induction being replicated."); 7790 State.ILV->widenIntOrFpInduction(IV, Trunc); 7791 } 7792 7793 /// Print the recipe. 7794 void print(raw_ostream &O, const Twine &Indent) const override { 7795 O << " +\n" << Indent << "\"WIDEN-INDUCTION"; 7796 if (Trunc) { 7797 O << "\\l\""; 7798 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 7799 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc) << "\\l\""; 7800 } else 7801 O << " " << VPlanIngredient(IV) << "\\l\""; 7802 } 7803 }; 7804 7805 /// A recipe for handling all phi nodes except for integer and FP inductions. 7806 class VPWidenPHIRecipe : public VPRecipeBase { 7807 private: 7808 PHINode *Phi; 7809 7810 public: 7811 VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {} 7812 ~VPWidenPHIRecipe() override = default; 7813 7814 /// Method to support type inquiry through isa, cast, and dyn_cast. 7815 static inline bool classof(const VPRecipeBase *V) { 7816 return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC; 7817 } 7818 7819 /// Generate the phi/select nodes. 7820 void execute(VPTransformState &State) override { 7821 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7822 } 7823 7824 /// Print the recipe. 7825 void print(raw_ostream &O, const Twine &Indent) const override { 7826 O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\""; 7827 } 7828 }; 7829 7830 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load 7831 /// or stores into one wide load/store and shuffles. 7832 class VPInterleaveRecipe : public VPRecipeBase { 7833 private: 7834 const InterleaveGroup *IG; 7835 7836 public: 7837 VPInterleaveRecipe(const InterleaveGroup *IG) 7838 : VPRecipeBase(VPInterleaveSC), IG(IG) {} 7839 ~VPInterleaveRecipe() override = default; 7840 7841 /// Method to support type inquiry through isa, cast, and dyn_cast. 7842 static inline bool classof(const VPRecipeBase *V) { 7843 return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC; 7844 } 7845 7846 /// Generate the wide load or store, and shuffles. 7847 void execute(VPTransformState &State) override { 7848 assert(!State.Instance && "Interleave group being replicated."); 7849 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7850 } 7851 7852 /// Print the recipe. 7853 void print(raw_ostream &O, const Twine &Indent) const override; 7854 7855 const InterleaveGroup *getInterleaveGroup() { return IG; } 7856 }; 7857 7858 /// VPReplicateRecipe replicates a given instruction producing multiple scalar 7859 /// copies of the original scalar type, one per lane, instead of producing a 7860 /// single copy of widened type for all lanes. If the instruction is known to be 7861 /// uniform only one copy, per lane zero, will be generated. 7862 class VPReplicateRecipe : public VPRecipeBase { 7863 private: 7864 /// The instruction being replicated. 7865 Instruction *Ingredient; 7866 7867 /// Indicator if only a single replica per lane is needed. 7868 bool IsUniform; 7869 7870 /// Indicator if the replicas are also predicated. 7871 bool IsPredicated; 7872 7873 /// Indicator if the scalar values should also be packed into a vector. 7874 bool AlsoPack; 7875 7876 public: 7877 VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false) 7878 : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform), 7879 IsPredicated(IsPredicated) { 7880 // Retain the previous behavior of predicateInstructions(), where an 7881 // insert-element of a predicated instruction got hoisted into the 7882 // predicated basic block iff it was its only user. This is achieved by 7883 // having predicated instructions also pack their values into a vector by 7884 // default unless they have a replicated user which uses their scalar value. 7885 AlsoPack = IsPredicated && !I->use_empty(); 7886 } 7887 7888 ~VPReplicateRecipe() override = default; 7889 7890 /// Method to support type inquiry through isa, cast, and dyn_cast. 7891 static inline bool classof(const VPRecipeBase *V) { 7892 return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC; 7893 } 7894 7895 /// Generate replicas of the desired Ingredient. Replicas will be generated 7896 /// for all parts and lanes unless a specific part and lane are specified in 7897 /// the \p State. 7898 void execute(VPTransformState &State) override; 7899 7900 void setAlsoPack(bool Pack) { AlsoPack = Pack; } 7901 7902 /// Print the recipe. 7903 void print(raw_ostream &O, const Twine &Indent) const override { 7904 O << " +\n" 7905 << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 7906 << VPlanIngredient(Ingredient); 7907 if (AlsoPack) 7908 O << " (S->V)"; 7909 O << "\\l\""; 7910 } 7911 }; 7912 7913 /// A recipe for generating conditional branches on the bits of a mask. 7914 class VPBranchOnMaskRecipe : public VPRecipeBase { 7915 private: 7916 /// The input IR basic block used to obtain the mask providing the condition 7917 /// bits for the branch. 7918 BasicBlock *MaskedBasicBlock; 7919 7920 public: 7921 VPBranchOnMaskRecipe(BasicBlock *BB) 7922 : VPRecipeBase(VPBranchOnMaskSC), MaskedBasicBlock(BB) {} 7923 7924 /// Method to support type inquiry through isa, cast, and dyn_cast. 7925 static inline bool classof(const VPRecipeBase *V) { 7926 return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC; 7927 } 7928 7929 /// Generate the extraction of the appropriate bit from the block mask and the 7930 /// conditional branch. 7931 void execute(VPTransformState &State) override; 7932 7933 /// Print the recipe. 7934 void print(raw_ostream &O, const Twine &Indent) const override { 7935 O << " +\n" 7936 << Indent << "\"BRANCH-ON-MASK-OF " << MaskedBasicBlock->getName() 7937 << "\\l\""; 7938 } 7939 }; 7940 7941 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when 7942 /// control converges back from a Branch-on-Mask. The phi nodes are needed in 7943 /// order to merge values that are set under such a branch and feed their uses. 7944 /// The phi nodes can be scalar or vector depending on the users of the value. 7945 /// This recipe works in concert with VPBranchOnMaskRecipe. 7946 class VPPredInstPHIRecipe : public VPRecipeBase { 7947 private: 7948 Instruction *PredInst; 7949 7950 public: 7951 /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi 7952 /// nodes after merging back from a Branch-on-Mask. 7953 VPPredInstPHIRecipe(Instruction *PredInst) 7954 : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {} 7955 ~VPPredInstPHIRecipe() override = default; 7956 7957 /// Method to support type inquiry through isa, cast, and dyn_cast. 7958 static inline bool classof(const VPRecipeBase *V) { 7959 return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC; 7960 } 7961 7962 /// Generates phi nodes for live-outs as needed to retain SSA form. 7963 void execute(VPTransformState &State) override; 7964 7965 /// Print the recipe. 7966 void print(raw_ostream &O, const Twine &Indent) const override { 7967 O << " +\n" 7968 << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst) 7969 << "\\l\""; 7970 } 7971 }; 7972 7973 } // end anonymous namespace 7974 7975 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7976 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 7977 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 7978 bool PredicateAtRangeStart = Predicate(Range.Start); 7979 7980 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 7981 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7982 Range.End = TmpVF; 7983 break; 7984 } 7985 7986 return PredicateAtRangeStart; 7987 } 7988 7989 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7990 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7991 /// of VF's starting at a given VF and extending it as much as possible. Each 7992 /// vectorization decision can potentially shorten this sub-range during 7993 /// buildVPlan(). 7994 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 7995 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7996 VFRange SubRange = {VF, MaxVF + 1}; 7997 VPlans.push_back(buildVPlan(SubRange)); 7998 VF = SubRange.End; 7999 } 8000 } 8001 8002 VPInterleaveRecipe * 8003 LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I, 8004 VFRange &Range) { 8005 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(I); 8006 if (!IG) 8007 return nullptr; 8008 8009 // Now check if IG is relevant for VF's in the given range. 8010 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 8011 return [=](unsigned VF) -> bool { 8012 return (VF >= 2 && // Query is illegal for VF == 1 8013 CM.getWideningDecision(I, VF) == 8014 LoopVectorizationCostModel::CM_Interleave); 8015 }; 8016 }; 8017 if (!getDecisionAndClampRange(isIGMember(I), Range)) 8018 return nullptr; 8019 8020 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 8021 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 8022 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 8023 assert(I == IG->getInsertPos() && 8024 "Generating a recipe for an adjunct member of an interleave group"); 8025 8026 return new VPInterleaveRecipe(IG); 8027 } 8028 8029 VPWidenIntOrFpInductionRecipe * 8030 LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I, 8031 VFRange &Range) { 8032 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 8033 // Check if this is an integer or fp induction. If so, build the recipe that 8034 // produces its scalar and vector values. 8035 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 8036 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8037 II.getKind() == InductionDescriptor::IK_FpInduction) 8038 return new VPWidenIntOrFpInductionRecipe(Phi); 8039 8040 return nullptr; 8041 } 8042 8043 // Optimize the special case where the source is a constant integer 8044 // induction variable. Notice that we can only optimize the 'trunc' case 8045 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8046 // (c) other casts depend on pointer size. 8047 8048 // Determine whether \p K is a truncation based on an induction variable that 8049 // can be optimized. 8050 auto isOptimizableIVTruncate = 8051 [&](Instruction *K) -> std::function<bool(unsigned)> { 8052 return 8053 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 8054 }; 8055 8056 if (isa<TruncInst>(I) && 8057 getDecisionAndClampRange(isOptimizableIVTruncate(I), Range)) 8058 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8059 cast<TruncInst>(I)); 8060 return nullptr; 8061 } 8062 8063 bool LoopVectorizationPlanner::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 8064 VFRange &Range) { 8065 if (Legal->isScalarWithPredication(I)) 8066 return false; 8067 8068 auto IsVectorizableOpcode = [](unsigned Opcode) { 8069 switch (Opcode) { 8070 case Instruction::Add: 8071 case Instruction::And: 8072 case Instruction::AShr: 8073 case Instruction::BitCast: 8074 case Instruction::Br: 8075 case Instruction::Call: 8076 case Instruction::FAdd: 8077 case Instruction::FCmp: 8078 case Instruction::FDiv: 8079 case Instruction::FMul: 8080 case Instruction::FPExt: 8081 case Instruction::FPToSI: 8082 case Instruction::FPToUI: 8083 case Instruction::FPTrunc: 8084 case Instruction::FRem: 8085 case Instruction::FSub: 8086 case Instruction::GetElementPtr: 8087 case Instruction::ICmp: 8088 case Instruction::IntToPtr: 8089 case Instruction::Load: 8090 case Instruction::LShr: 8091 case Instruction::Mul: 8092 case Instruction::Or: 8093 case Instruction::PHI: 8094 case Instruction::PtrToInt: 8095 case Instruction::SDiv: 8096 case Instruction::Select: 8097 case Instruction::SExt: 8098 case Instruction::Shl: 8099 case Instruction::SIToFP: 8100 case Instruction::SRem: 8101 case Instruction::Store: 8102 case Instruction::Sub: 8103 case Instruction::Trunc: 8104 case Instruction::UDiv: 8105 case Instruction::UIToFP: 8106 case Instruction::URem: 8107 case Instruction::Xor: 8108 case Instruction::ZExt: 8109 return true; 8110 } 8111 return false; 8112 }; 8113 8114 if (!IsVectorizableOpcode(I->getOpcode())) 8115 return false; 8116 8117 if (CallInst *CI = dyn_cast<CallInst>(I)) { 8118 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8119 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8120 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 8121 return false; 8122 } 8123 8124 auto willWiden = [&](unsigned VF) -> bool { 8125 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 8126 CM.isProfitableToScalarize(I, VF))) 8127 return false; 8128 if (CallInst *CI = dyn_cast<CallInst>(I)) { 8129 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8130 // The following case may be scalarized depending on the VF. 8131 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8132 // version of the instruction. 8133 // Is it beneficial to perform intrinsic call compared to lib call? 8134 bool NeedToScalarize; 8135 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 8136 bool UseVectorIntrinsic = 8137 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 8138 return UseVectorIntrinsic || !NeedToScalarize; 8139 } 8140 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 8141 LoopVectorizationCostModel::InstWidening Decision = 8142 CM.getWideningDecision(I, VF); 8143 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8144 "CM decision should be taken at this point."); 8145 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 8146 "Interleave memory opportunity should be caught earlier."); 8147 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8148 } 8149 return true; 8150 }; 8151 8152 if (!getDecisionAndClampRange(willWiden, Range)) 8153 return false; 8154 8155 // Success: widen this instruction. We optimize the common case where 8156 // consecutive instructions can be represented by a single recipe. 8157 if (!VPBB->empty()) { 8158 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 8159 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 8160 return true; 8161 } 8162 8163 VPBB->appendRecipe(new VPWidenRecipe(I)); 8164 return true; 8165 } 8166 8167 VPBasicBlock *LoopVectorizationPlanner::handleReplication( 8168 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8169 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe) { 8170 bool IsUniform = getDecisionAndClampRange( 8171 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 8172 Range); 8173 8174 bool IsPredicated = Legal->isScalarWithPredication(I); 8175 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 8176 8177 // Find if I uses a predicated instruction. If so, it will use its scalar 8178 // value. Avoid hoisting the insert-element which packs the scalar value into 8179 // a vector value, as that happens iff all users use the vector value. 8180 for (auto &Op : I->operands()) 8181 if (auto *PredInst = dyn_cast<Instruction>(Op)) 8182 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 8183 PredInst2Recipe[PredInst]->setAlsoPack(false); 8184 8185 // Finalize the recipe for Instr, first if it is not predicated. 8186 if (!IsPredicated) { 8187 DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8188 VPBB->appendRecipe(Recipe); 8189 return VPBB; 8190 } 8191 DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8192 assert(VPBB->getSuccessors().empty() && 8193 "VPBB has successors when handling predicated replication."); 8194 // Record predicated instructions for above packing optimizations. 8195 PredInst2Recipe[I] = Recipe; 8196 VPBlockBase *Region = VPBB->setOneSuccessor(createReplicateRegion(I, Recipe)); 8197 return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock())); 8198 } 8199 8200 VPRegionBlock * 8201 LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr, 8202 VPRecipeBase *PredRecipe) { 8203 // Instructions marked for predication are replicated and placed under an 8204 // if-then construct to prevent side-effects. 8205 8206 // Build the triangular if-then region. 8207 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8208 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8209 auto *BOMRecipe = new VPBranchOnMaskRecipe(Instr->getParent()); 8210 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8211 auto *PHIRecipe = 8212 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 8213 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8214 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8215 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8216 8217 // Note: first set Entry as region entry and then connect successors starting 8218 // from it in order, to propagate the "parent" of each VPBasicBlock. 8219 Entry->setTwoSuccessors(Pred, Exit); 8220 Pred->setOneSuccessor(Exit); 8221 8222 return Region; 8223 } 8224 8225 std::unique_ptr<VPlan> LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 8226 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8227 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 8228 8229 // Collect instructions from the original loop that will become trivially dead 8230 // in the vectorized loop. We don't need to vectorize these instructions. For 8231 // example, original induction update instructions can become dead because we 8232 // separately emit induction "steps" when generating code for the new loop. 8233 // Similarly, we create a new latch condition when setting up the structure 8234 // of the new loop, so the old one can become dead. 8235 SmallPtrSet<Instruction *, 4> DeadInstructions; 8236 collectTriviallyDeadInstructions(DeadInstructions); 8237 8238 // Hold a mapping from predicated instructions to their recipes, in order to 8239 // fix their AlsoPack behavior if a user is determined to replicate and use a 8240 // scalar instead of vector value. 8241 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 8242 8243 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 8244 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 8245 auto Plan = llvm::make_unique<VPlan>(VPBB); 8246 8247 // Scan the body of the loop in a topological order to visit each basic block 8248 // after having visited its predecessor basic blocks. 8249 LoopBlocksDFS DFS(OrigLoop); 8250 DFS.perform(LI); 8251 8252 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8253 // Relevant instructions from basic block BB will be grouped into VPRecipe 8254 // ingredients and fill a new VPBasicBlock. 8255 unsigned VPBBsForBB = 0; 8256 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8257 VPBB->setOneSuccessor(FirstVPBBForBB); 8258 VPBB = FirstVPBBForBB; 8259 8260 std::vector<Instruction *> Ingredients; 8261 8262 // Organize the ingredients to vectorize from current basic block in the 8263 // right order. 8264 for (Instruction &I : *BB) { 8265 Instruction *Instr = &I; 8266 8267 // First filter out irrelevant instructions, to ensure no recipes are 8268 // built for them. 8269 if (isa<BranchInst>(Instr) || isa<DbgInfoIntrinsic>(Instr) || 8270 DeadInstructions.count(Instr)) 8271 continue; 8272 8273 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 8274 // member of the IG, do not construct any Recipe for it. 8275 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(Instr); 8276 if (IG && Instr != IG->getInsertPos() && 8277 Range.Start >= 2 && // Query is illegal for VF == 1 8278 CM.getWideningDecision(Instr, Range.Start) == 8279 LoopVectorizationCostModel::CM_Interleave) { 8280 if (SinkAfterInverse.count(Instr)) 8281 Ingredients.push_back(SinkAfterInverse.find(Instr)->second); 8282 continue; 8283 } 8284 8285 // Move instructions to handle first-order recurrences, step 1: avoid 8286 // handling this instruction until after we've handled the instruction it 8287 // should follow. 8288 auto SAIt = SinkAfter.find(Instr); 8289 if (SAIt != SinkAfter.end()) { 8290 DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" << *SAIt->second 8291 << " to vectorize a 1st order recurrence.\n"); 8292 SinkAfterInverse[SAIt->second] = Instr; 8293 continue; 8294 } 8295 8296 Ingredients.push_back(Instr); 8297 8298 // Move instructions to handle first-order recurrences, step 2: push the 8299 // instruction to be sunk at its insertion point. 8300 auto SAInvIt = SinkAfterInverse.find(Instr); 8301 if (SAInvIt != SinkAfterInverse.end()) 8302 Ingredients.push_back(SAInvIt->second); 8303 } 8304 8305 // Introduce each ingredient into VPlan. 8306 for (Instruction *Instr : Ingredients) { 8307 VPRecipeBase *Recipe = nullptr; 8308 8309 // Check if Instr should belong to an interleave memory recipe, or already 8310 // does. In the latter case Instr is irrelevant. 8311 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 8312 VPBB->appendRecipe(Recipe); 8313 continue; 8314 } 8315 8316 // Check if Instr should form some PHI recipe. 8317 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 8318 VPBB->appendRecipe(Recipe); 8319 continue; 8320 } 8321 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 8322 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 8323 continue; 8324 } 8325 8326 // Check if Instr is to be widened by a general VPWidenRecipe, after 8327 // having first checked for specific widening recipes that deal with 8328 // Interleave Groups, Inductions and Phi nodes. 8329 if (tryToWiden(Instr, VPBB, Range)) 8330 continue; 8331 8332 // Otherwise, if all widening options failed, Instruction is to be 8333 // replicated. This may create a successor for VPBB. 8334 VPBasicBlock *NextVPBB = 8335 handleReplication(Instr, Range, VPBB, PredInst2Recipe); 8336 if (NextVPBB != VPBB) { 8337 VPBB = NextVPBB; 8338 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8339 : ""); 8340 } 8341 } 8342 } 8343 8344 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8345 // may also be empty, such as the last one VPBB, reflecting original 8346 // basic-blocks with no recipes. 8347 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8348 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8349 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8350 PreEntry->disconnectSuccessor(Entry); 8351 delete PreEntry; 8352 8353 std::string PlanName; 8354 raw_string_ostream RSO(PlanName); 8355 unsigned VF = Range.Start; 8356 Plan->addVF(VF); 8357 RSO << "Initial VPlan for VF={" << VF; 8358 for (VF *= 2; VF < Range.End; VF *= 2) { 8359 Plan->addVF(VF); 8360 RSO << "," << VF; 8361 } 8362 RSO << "},UF>=1"; 8363 RSO.flush(); 8364 Plan->setName(PlanName); 8365 8366 return Plan; 8367 } 8368 8369 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 8370 O << " +\n" 8371 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8372 IG->getInsertPos()->printAsOperand(O, false); 8373 O << "\\l\""; 8374 for (unsigned i = 0; i < IG->getFactor(); ++i) 8375 if (Instruction *I = IG->getMember(i)) 8376 O << " +\n" 8377 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 8378 } 8379 8380 void VPReplicateRecipe::execute(VPTransformState &State) { 8381 if (State.Instance) { // Generate a single instance. 8382 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 8383 // Insert scalar instance packing it into a vector. 8384 if (AlsoPack && State.VF > 1) { 8385 // If we're constructing lane 0, initialize to start from undef. 8386 if (State.Instance->Lane == 0) { 8387 Value *Undef = 8388 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 8389 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 8390 } 8391 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 8392 } 8393 return; 8394 } 8395 8396 // Generate scalar instances for all VF lanes of all UF parts, unless the 8397 // instruction is uniform inwhich case generate only the first lane for each 8398 // of the UF parts. 8399 unsigned EndLane = IsUniform ? 1 : State.VF; 8400 for (unsigned Part = 0; Part < State.UF; ++Part) 8401 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8402 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 8403 } 8404 8405 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8406 assert(State.Instance && "Branch on Mask works only on single instance."); 8407 8408 unsigned Part = State.Instance->Part; 8409 unsigned Lane = State.Instance->Lane; 8410 8411 auto Cond = State.ILV->createBlockInMask(MaskedBasicBlock); 8412 8413 Value *ConditionBit = Cond[Part]; 8414 if (!ConditionBit) // Block in mask is all-one. 8415 ConditionBit = State.Builder.getTrue(); 8416 else if (ConditionBit->getType()->isVectorTy()) 8417 ConditionBit = State.Builder.CreateExtractElement( 8418 ConditionBit, State.Builder.getInt32(Lane)); 8419 8420 // Replace the temporary unreachable terminator with a new conditional branch, 8421 // whose two destinations will be set later when they are created. 8422 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8423 assert(isa<UnreachableInst>(CurrentTerminator) && 8424 "Expected to replace unreachable terminator with conditional branch."); 8425 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8426 CondBr->setSuccessor(0, nullptr); 8427 ReplaceInstWithInst(CurrentTerminator, CondBr); 8428 8429 DEBUG(dbgs() << "\nLV: vectorizing BranchOnMask recipe " 8430 << MaskedBasicBlock->getName()); 8431 } 8432 8433 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8434 assert(State.Instance && "Predicated instruction PHI works per instance."); 8435 Instruction *ScalarPredInst = cast<Instruction>( 8436 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 8437 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8438 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8439 assert(PredicatingBB && "Predicated block has no single predecessor."); 8440 8441 // By current pack/unpack logic we need to generate only a single phi node: if 8442 // a vector value for the predicated instruction exists at this point it means 8443 // the instruction has vector users only, and a phi for the vector value is 8444 // needed. In this case the recipe of the predicated instruction is marked to 8445 // also do that packing, thereby "hoisting" the insert-element sequence. 8446 // Otherwise, a phi node for the scalar value is needed. 8447 unsigned Part = State.Instance->Part; 8448 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8449 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8450 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8451 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8452 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8453 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8454 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8455 } else { 8456 Type *PredInstType = PredInst->getType(); 8457 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8458 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8459 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8460 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8461 } 8462 } 8463 8464 bool LoopVectorizePass::processLoop(Loop *L) { 8465 assert(L->empty() && "Only process inner loops."); 8466 8467 #ifndef NDEBUG 8468 const std::string DebugLocStr = getDebugLocString(L); 8469 #endif /* NDEBUG */ 8470 8471 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8472 << L->getHeader()->getParent()->getName() << "\" from " 8473 << DebugLocStr << "\n"); 8474 8475 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 8476 8477 DEBUG(dbgs() << "LV: Loop hints:" 8478 << " force=" 8479 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8480 ? "disabled" 8481 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8482 ? "enabled" 8483 : "?")) 8484 << " width=" << Hints.getWidth() 8485 << " unroll=" << Hints.getInterleave() << "\n"); 8486 8487 // Function containing loop 8488 Function *F = L->getHeader()->getParent(); 8489 8490 // Looking at the diagnostic output is the only way to determine if a loop 8491 // was vectorized (other than looking at the IR or machine code), so it 8492 // is important to generate an optimization remark for each loop. Most of 8493 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8494 // generated as OptimizationRemark and OptimizationRemarkMissed are 8495 // less verbose reporting vectorized loops and unvectorized loops that may 8496 // benefit from vectorization, respectively. 8497 8498 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 8499 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8500 return false; 8501 } 8502 8503 PredicatedScalarEvolution PSE(*SE, *L); 8504 8505 // Check if it is legal to vectorize the loop. 8506 LoopVectorizationRequirements Requirements(*ORE); 8507 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 8508 &Requirements, &Hints); 8509 if (!LVL.canVectorize()) { 8510 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8511 emitMissedWarning(F, L, Hints, ORE); 8512 return false; 8513 } 8514 8515 // Check the function attributes to find out if this function should be 8516 // optimized for size. 8517 bool OptForSize = 8518 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 8519 8520 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8521 // count by optimizing for size, to minimize overheads. 8522 unsigned ExpectedTC = SE->getSmallConstantMaxTripCount(L); 8523 bool HasExpectedTC = (ExpectedTC > 0); 8524 8525 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 8526 auto EstimatedTC = getLoopEstimatedTripCount(L); 8527 if (EstimatedTC) { 8528 ExpectedTC = *EstimatedTC; 8529 HasExpectedTC = true; 8530 } 8531 } 8532 8533 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 8534 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8535 << "This loop is worth vectorizing only if no scalar " 8536 << "iteration overheads are incurred."); 8537 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8538 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8539 else { 8540 DEBUG(dbgs() << "\n"); 8541 // Loops with a very small trip count are considered for vectorization 8542 // under OptForSize, thereby making sure the cost of their loop body is 8543 // dominant, free of runtime guards and scalar iteration overheads. 8544 OptForSize = true; 8545 } 8546 } 8547 8548 // Check the function attributes to see if implicit floats are allowed. 8549 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8550 // an integer loop and the vector instructions selected are purely integer 8551 // vector instructions? 8552 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8553 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 8554 "attribute is used.\n"); 8555 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 8556 "NoImplicitFloat", L) 8557 << "loop not vectorized due to NoImplicitFloat attribute"); 8558 emitMissedWarning(F, L, Hints, ORE); 8559 return false; 8560 } 8561 8562 // Check if the target supports potentially unsafe FP vectorization. 8563 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8564 // for the target we're vectorizing for, to make sure none of the 8565 // additional fp-math flags can help. 8566 if (Hints.isPotentiallyUnsafe() && 8567 TTI->isFPVectorizationPotentiallyUnsafe()) { 8568 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 8569 ORE->emit( 8570 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 8571 << "loop not vectorized due to unsafe FP support."); 8572 emitMissedWarning(F, L, Hints, ORE); 8573 return false; 8574 } 8575 8576 // Use the cost model. 8577 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 8578 &Hints); 8579 CM.collectValuesToIgnore(); 8580 8581 // Use the planner for vectorization. 8582 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 8583 8584 // Get user vectorization factor. 8585 unsigned UserVF = Hints.getWidth(); 8586 8587 // Plan how to best vectorize, return the best VF and its cost. 8588 LoopVectorizationCostModel::VectorizationFactor VF = 8589 LVP.plan(OptForSize, UserVF); 8590 8591 // Select the interleave count. 8592 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 8593 8594 // Get user interleave count. 8595 unsigned UserIC = Hints.getInterleave(); 8596 8597 // Identify the diagnostic messages that should be produced. 8598 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8599 bool VectorizeLoop = true, InterleaveLoop = true; 8600 if (Requirements.doesNotMeet(F, L, Hints)) { 8601 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8602 "requirements.\n"); 8603 emitMissedWarning(F, L, Hints, ORE); 8604 return false; 8605 } 8606 8607 if (VF.Width == 1) { 8608 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8609 VecDiagMsg = std::make_pair( 8610 "VectorizationNotBeneficial", 8611 "the cost-model indicates that vectorization is not beneficial"); 8612 VectorizeLoop = false; 8613 } 8614 8615 if (IC == 1 && UserIC <= 1) { 8616 // Tell the user interleaving is not beneficial. 8617 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8618 IntDiagMsg = std::make_pair( 8619 "InterleavingNotBeneficial", 8620 "the cost-model indicates that interleaving is not beneficial"); 8621 InterleaveLoop = false; 8622 if (UserIC == 1) { 8623 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8624 IntDiagMsg.second += 8625 " and is explicitly disabled or interleave count is set to 1"; 8626 } 8627 } else if (IC > 1 && UserIC == 1) { 8628 // Tell the user interleaving is beneficial, but it explicitly disabled. 8629 DEBUG(dbgs() 8630 << "LV: Interleaving is beneficial but is explicitly disabled."); 8631 IntDiagMsg = std::make_pair( 8632 "InterleavingBeneficialButDisabled", 8633 "the cost-model indicates that interleaving is beneficial " 8634 "but is explicitly disabled or interleave count is set to 1"); 8635 InterleaveLoop = false; 8636 } 8637 8638 // Override IC if user provided an interleave count. 8639 IC = UserIC > 0 ? UserIC : IC; 8640 8641 // Emit diagnostic messages, if any. 8642 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8643 if (!VectorizeLoop && !InterleaveLoop) { 8644 // Do not vectorize or interleaving the loop. 8645 ORE->emit([&]() { 8646 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8647 L->getStartLoc(), L->getHeader()) 8648 << VecDiagMsg.second; 8649 }); 8650 ORE->emit([&]() { 8651 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8652 L->getStartLoc(), L->getHeader()) 8653 << IntDiagMsg.second; 8654 }); 8655 return false; 8656 } else if (!VectorizeLoop && InterleaveLoop) { 8657 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8658 ORE->emit([&]() { 8659 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8660 L->getStartLoc(), L->getHeader()) 8661 << VecDiagMsg.second; 8662 }); 8663 } else if (VectorizeLoop && !InterleaveLoop) { 8664 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8665 << DebugLocStr << '\n'); 8666 ORE->emit([&]() { 8667 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8668 L->getStartLoc(), L->getHeader()) 8669 << IntDiagMsg.second; 8670 }); 8671 } else if (VectorizeLoop && InterleaveLoop) { 8672 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8673 << DebugLocStr << '\n'); 8674 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8675 } 8676 8677 LVP.setBestPlan(VF.Width, IC); 8678 8679 using namespace ore; 8680 8681 if (!VectorizeLoop) { 8682 assert(IC > 1 && "interleave count should not be 1 or 0"); 8683 // If we decided that it is not legal to vectorize the loop, then 8684 // interleave it. 8685 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 8686 &CM); 8687 LVP.executePlan(Unroller, DT); 8688 8689 ORE->emit([&]() { 8690 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8691 L->getHeader()) 8692 << "interleaved loop (interleaved count: " 8693 << NV("InterleaveCount", IC) << ")"; 8694 }); 8695 } else { 8696 // If we decided that it is *legal* to vectorize the loop, then do it. 8697 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8698 &LVL, &CM); 8699 LVP.executePlan(LB, DT); 8700 ++LoopsVectorized; 8701 8702 // Add metadata to disable runtime unrolling a scalar loop when there are 8703 // no runtime checks about strides and memory. A scalar loop that is 8704 // rarely used is not worth unrolling. 8705 if (!LB.areSafetyChecksAdded()) 8706 AddRuntimeUnrollDisableMetaData(L); 8707 8708 // Report the vectorization decision. 8709 ORE->emit([&]() { 8710 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8711 L->getHeader()) 8712 << "vectorized loop (vectorization width: " 8713 << NV("VectorizationFactor", VF.Width) 8714 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8715 }); 8716 } 8717 8718 // Mark the loop as already vectorized to avoid vectorizing again. 8719 Hints.setAlreadyVectorized(); 8720 8721 DEBUG(verifyFunction(*L->getHeader()->getParent())); 8722 return true; 8723 } 8724 8725 bool LoopVectorizePass::runImpl( 8726 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8727 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8728 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 8729 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8730 OptimizationRemarkEmitter &ORE_) { 8731 SE = &SE_; 8732 LI = &LI_; 8733 TTI = &TTI_; 8734 DT = &DT_; 8735 BFI = &BFI_; 8736 TLI = TLI_; 8737 AA = &AA_; 8738 AC = &AC_; 8739 GetLAA = &GetLAA_; 8740 DB = &DB_; 8741 ORE = &ORE_; 8742 8743 // Don't attempt if 8744 // 1. the target claims to have no vector registers, and 8745 // 2. interleaving won't help ILP. 8746 // 8747 // The second condition is necessary because, even if the target has no 8748 // vector registers, loop vectorization may still enable scalar 8749 // interleaving. 8750 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 8751 return false; 8752 8753 bool Changed = false; 8754 8755 // The vectorizer requires loops to be in simplified form. 8756 // Since simplification may add new inner loops, it has to run before the 8757 // legality and profitability checks. This means running the loop vectorizer 8758 // will simplify all loops, regardless of whether anything end up being 8759 // vectorized. 8760 for (auto &L : *LI) 8761 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 8762 8763 // Build up a worklist of inner-loops to vectorize. This is necessary as 8764 // the act of vectorizing or partially unrolling a loop creates new loops 8765 // and can invalidate iterators across the loops. 8766 SmallVector<Loop *, 8> Worklist; 8767 8768 for (Loop *L : *LI) 8769 addAcyclicInnerLoop(*L, Worklist); 8770 8771 LoopsAnalyzed += Worklist.size(); 8772 8773 // Now walk the identified inner loops. 8774 while (!Worklist.empty()) { 8775 Loop *L = Worklist.pop_back_val(); 8776 8777 // For the inner loops we actually process, form LCSSA to simplify the 8778 // transform. 8779 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8780 8781 Changed |= processLoop(L); 8782 } 8783 8784 // Process each loop nest in the function. 8785 return Changed; 8786 } 8787 8788 PreservedAnalyses LoopVectorizePass::run(Function &F, 8789 FunctionAnalysisManager &AM) { 8790 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8791 auto &LI = AM.getResult<LoopAnalysis>(F); 8792 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8793 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8794 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8795 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8796 auto &AA = AM.getResult<AAManager>(F); 8797 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8798 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8799 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8800 8801 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8802 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8803 [&](Loop &L) -> const LoopAccessInfo & { 8804 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI}; 8805 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8806 }; 8807 bool Changed = 8808 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 8809 if (!Changed) 8810 return PreservedAnalyses::all(); 8811 PreservedAnalyses PA; 8812 PA.preserve<LoopAnalysis>(); 8813 PA.preserve<DominatorTreeAnalysis>(); 8814 PA.preserve<BasicAA>(); 8815 PA.preserve<GlobalsAA>(); 8816 return PA; 8817 } 8818