1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallVector.h"
74 #include "llvm/ADT/Statistic.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/ADT/Twine.h"
77 #include "llvm/ADT/iterator_range.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/BasicAliasAnalysis.h"
80 #include "llvm/Analysis/BlockFrequencyInfo.h"
81 #include "llvm/Analysis/CFG.h"
82 #include "llvm/Analysis/CodeMetrics.h"
83 #include "llvm/Analysis/DemandedBits.h"
84 #include "llvm/Analysis/GlobalsModRef.h"
85 #include "llvm/Analysis/LoopAccessAnalysis.h"
86 #include "llvm/Analysis/LoopAnalysisManager.h"
87 #include "llvm/Analysis/LoopInfo.h"
88 #include "llvm/Analysis/LoopIterator.h"
89 #include "llvm/Analysis/MemorySSA.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 cl::opt<bool> EnableStrictReductions(
335     "enable-strict-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns the type of loaded or stored value.
379 static Type *getMemInstValueType(Value *I) {
380   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
381          "Expected Load or Store instruction");
382   if (auto *LI = dyn_cast<LoadInst>(I))
383     return LI->getType();
384   return cast<StoreInst>(I)->getValueOperand()->getType();
385 }
386 
387 /// A helper function that returns true if the given type is irregular. The
388 /// type is irregular if its allocated size doesn't equal the store size of an
389 /// element of the corresponding vector type.
390 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
391   // Determine if an array of N elements of type Ty is "bitcast compatible"
392   // with a <N x Ty> vector.
393   // This is only true if there is no padding between the array elements.
394   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
395 }
396 
397 /// A helper function that returns the reciprocal of the block probability of
398 /// predicated blocks. If we return X, we are assuming the predicated block
399 /// will execute once for every X iterations of the loop header.
400 ///
401 /// TODO: We should use actual block probability here, if available. Currently,
402 ///       we always assume predicated blocks have a 50% chance of executing.
403 static unsigned getReciprocalPredBlockProb() { return 2; }
404 
405 /// A helper function that returns an integer or floating-point constant with
406 /// value C.
407 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
408   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
409                            : ConstantFP::get(Ty, C);
410 }
411 
412 /// Returns "best known" trip count for the specified loop \p L as defined by
413 /// the following procedure:
414 ///   1) Returns exact trip count if it is known.
415 ///   2) Returns expected trip count according to profile data if any.
416 ///   3) Returns upper bound estimate if it is known.
417 ///   4) Returns None if all of the above failed.
418 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
419   // Check if exact trip count is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
421     return ExpectedTC;
422 
423   // Check if there is an expected trip count available from profile data.
424   if (LoopVectorizeWithBlockFrequency)
425     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
426       return EstimatedTC;
427 
428   // Check if upper bound estimate is known.
429   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
430     return ExpectedTC;
431 
432   return None;
433 }
434 
435 // Forward declare GeneratedRTChecks.
436 class GeneratedRTChecks;
437 
438 namespace llvm {
439 
440 /// InnerLoopVectorizer vectorizes loops which contain only one basic
441 /// block to a specified vectorization factor (VF).
442 /// This class performs the widening of scalars into vectors, or multiple
443 /// scalars. This class also implements the following features:
444 /// * It inserts an epilogue loop for handling loops that don't have iteration
445 ///   counts that are known to be a multiple of the vectorization factor.
446 /// * It handles the code generation for reduction variables.
447 /// * Scalarization (implementation using scalars) of un-vectorizable
448 ///   instructions.
449 /// InnerLoopVectorizer does not perform any vectorization-legality
450 /// checks, and relies on the caller to check for the different legality
451 /// aspects. The InnerLoopVectorizer relies on the
452 /// LoopVectorizationLegality class to provide information about the induction
453 /// and reduction variables that were found to a given vectorization factor.
454 class InnerLoopVectorizer {
455 public:
456   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
457                       LoopInfo *LI, DominatorTree *DT,
458                       const TargetLibraryInfo *TLI,
459                       const TargetTransformInfo *TTI, AssumptionCache *AC,
460                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
461                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
462                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
463                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
464       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
465         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
466         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
467         PSI(PSI), RTChecks(RTChecks) {
468     // Query this against the original loop and save it here because the profile
469     // of the original loop header may change as the transformation happens.
470     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
471         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
472   }
473 
474   virtual ~InnerLoopVectorizer() = default;
475 
476   /// Create a new empty loop that will contain vectorized instructions later
477   /// on, while the old loop will be used as the scalar remainder. Control flow
478   /// is generated around the vectorized (and scalar epilogue) loops consisting
479   /// of various checks and bypasses. Return the pre-header block of the new
480   /// loop.
481   /// In the case of epilogue vectorization, this function is overriden to
482   /// handle the more complex control flow around the loops.
483   virtual BasicBlock *createVectorizedLoopSkeleton();
484 
485   /// Widen a single instruction within the innermost loop.
486   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
487                         VPTransformState &State);
488 
489   /// Widen a single call instruction within the innermost loop.
490   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
491                             VPTransformState &State);
492 
493   /// Widen a single select instruction within the innermost loop.
494   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
495                               bool InvariantCond, VPTransformState &State);
496 
497   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
498   void fixVectorizedLoop(VPTransformState &State);
499 
500   // Return true if any runtime check is added.
501   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
502 
503   /// A type for vectorized values in the new loop. Each value from the
504   /// original loop, when vectorized, is represented by UF vector values in the
505   /// new unrolled loop, where UF is the unroll factor.
506   using VectorParts = SmallVector<Value *, 2>;
507 
508   /// Vectorize a single GetElementPtrInst based on information gathered and
509   /// decisions taken during planning.
510   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
511                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
512                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
513 
514   /// Vectorize a single PHINode in a block. This method handles the induction
515   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
516   /// arbitrary length vectors.
517   void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc,
518                            VPWidenPHIRecipe *PhiR, VPTransformState &State);
519 
520   /// A helper function to scalarize a single Instruction in the innermost loop.
521   /// Generates a sequence of scalar instances for each lane between \p MinLane
522   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
523   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
524   /// Instr's operands.
525   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
526                             const VPIteration &Instance, bool IfPredicateInstr,
527                             VPTransformState &State);
528 
529   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
530   /// is provided, the integer induction variable will first be truncated to
531   /// the corresponding type.
532   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
533                              VPValue *Def, VPValue *CastDef,
534                              VPTransformState &State);
535 
536   /// Construct the vector value of a scalarized value \p V one lane at a time.
537   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
538                                  VPTransformState &State);
539 
540   /// Try to vectorize interleaved access group \p Group with the base address
541   /// given in \p Addr, optionally masking the vector operations if \p
542   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
543   /// values in the vectorized loop.
544   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
545                                 ArrayRef<VPValue *> VPDefs,
546                                 VPTransformState &State, VPValue *Addr,
547                                 ArrayRef<VPValue *> StoredValues,
548                                 VPValue *BlockInMask = nullptr);
549 
550   /// Vectorize Load and Store instructions with the base address given in \p
551   /// Addr, optionally masking the vector operations if \p BlockInMask is
552   /// non-null. Use \p State to translate given VPValues to IR values in the
553   /// vectorized loop.
554   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
555                                   VPValue *Def, VPValue *Addr,
556                                   VPValue *StoredValue, VPValue *BlockInMask);
557 
558   /// Set the debug location in the builder using the debug location in
559   /// the instruction.
560   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
561 
562   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
563   void fixNonInductionPHIs(VPTransformState &State);
564 
565   /// Create a broadcast instruction. This method generates a broadcast
566   /// instruction (shuffle) for loop invariant values and for the induction
567   /// value. If this is the induction variable then we extend it to N, N+1, ...
568   /// this is needed because each iteration in the loop corresponds to a SIMD
569   /// element.
570   virtual Value *getBroadcastInstrs(Value *V);
571 
572 protected:
573   friend class LoopVectorizationPlanner;
574 
575   /// A small list of PHINodes.
576   using PhiVector = SmallVector<PHINode *, 4>;
577 
578   /// A type for scalarized values in the new loop. Each value from the
579   /// original loop, when scalarized, is represented by UF x VF scalar values
580   /// in the new unrolled loop, where UF is the unroll factor and VF is the
581   /// vectorization factor.
582   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
583 
584   /// Set up the values of the IVs correctly when exiting the vector loop.
585   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
586                     Value *CountRoundDown, Value *EndValue,
587                     BasicBlock *MiddleBlock);
588 
589   /// Create a new induction variable inside L.
590   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
591                                    Value *Step, Instruction *DL);
592 
593   /// Handle all cross-iteration phis in the header.
594   void fixCrossIterationPHIs(VPTransformState &State);
595 
596   /// Fix a first-order recurrence. This is the second phase of vectorizing
597   /// this phi node.
598   void fixFirstOrderRecurrence(PHINode *Phi, VPTransformState &State);
599 
600   /// Fix a reduction cross-iteration phi. This is the second phase of
601   /// vectorizing this phi node.
602   void fixReduction(PHINode *Phi, VPTransformState &State);
603 
604   /// Clear NSW/NUW flags from reduction instructions if necessary.
605   void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc,
606                                VPTransformState &State);
607 
608   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
609   /// means we need to add the appropriate incoming value from the middle
610   /// block as exiting edges from the scalar epilogue loop (if present) are
611   /// already in place, and we exit the vector loop exclusively to the middle
612   /// block.
613   void fixLCSSAPHIs(VPTransformState &State);
614 
615   /// Iteratively sink the scalarized operands of a predicated instruction into
616   /// the block that was created for it.
617   void sinkScalarOperands(Instruction *PredInst);
618 
619   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
620   /// represented as.
621   void truncateToMinimalBitwidths(VPTransformState &State);
622 
623   /// This function adds
624   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
625   /// to each vector element of Val. The sequence starts at StartIndex.
626   /// \p Opcode is relevant for FP induction variable.
627   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
628                                Instruction::BinaryOps Opcode =
629                                Instruction::BinaryOpsEnd);
630 
631   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
632   /// variable on which to base the steps, \p Step is the size of the step, and
633   /// \p EntryVal is the value from the original loop that maps to the steps.
634   /// Note that \p EntryVal doesn't have to be an induction variable - it
635   /// can also be a truncate instruction.
636   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
637                         const InductionDescriptor &ID, VPValue *Def,
638                         VPValue *CastDef, VPTransformState &State);
639 
640   /// Create a vector induction phi node based on an existing scalar one. \p
641   /// EntryVal is the value from the original loop that maps to the vector phi
642   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
643   /// truncate instruction, instead of widening the original IV, we widen a
644   /// version of the IV truncated to \p EntryVal's type.
645   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
646                                        Value *Step, Value *Start,
647                                        Instruction *EntryVal, VPValue *Def,
648                                        VPValue *CastDef,
649                                        VPTransformState &State);
650 
651   /// Returns true if an instruction \p I should be scalarized instead of
652   /// vectorized for the chosen vectorization factor.
653   bool shouldScalarizeInstruction(Instruction *I) const;
654 
655   /// Returns true if we should generate a scalar version of \p IV.
656   bool needsScalarInduction(Instruction *IV) const;
657 
658   /// If there is a cast involved in the induction variable \p ID, which should
659   /// be ignored in the vectorized loop body, this function records the
660   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
661   /// cast. We had already proved that the casted Phi is equal to the uncasted
662   /// Phi in the vectorized loop (under a runtime guard), and therefore
663   /// there is no need to vectorize the cast - the same value can be used in the
664   /// vector loop for both the Phi and the cast.
665   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
666   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
667   ///
668   /// \p EntryVal is the value from the original loop that maps to the vector
669   /// phi node and is used to distinguish what is the IV currently being
670   /// processed - original one (if \p EntryVal is a phi corresponding to the
671   /// original IV) or the "newly-created" one based on the proof mentioned above
672   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
673   /// latter case \p EntryVal is a TruncInst and we must not record anything for
674   /// that IV, but it's error-prone to expect callers of this routine to care
675   /// about that, hence this explicit parameter.
676   void recordVectorLoopValueForInductionCast(
677       const InductionDescriptor &ID, const Instruction *EntryVal,
678       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
679       unsigned Part, unsigned Lane = UINT_MAX);
680 
681   /// Generate a shuffle sequence that will reverse the vector Vec.
682   virtual Value *reverseVector(Value *Vec);
683 
684   /// Returns (and creates if needed) the original loop trip count.
685   Value *getOrCreateTripCount(Loop *NewLoop);
686 
687   /// Returns (and creates if needed) the trip count of the widened loop.
688   Value *getOrCreateVectorTripCount(Loop *NewLoop);
689 
690   /// Returns a bitcasted value to the requested vector type.
691   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
692   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
693                                 const DataLayout &DL);
694 
695   /// Emit a bypass check to see if the vector trip count is zero, including if
696   /// it overflows.
697   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
698 
699   /// Emit a bypass check to see if all of the SCEV assumptions we've
700   /// had to make are correct. Returns the block containing the checks or
701   /// nullptr if no checks have been added.
702   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
703 
704   /// Emit bypass checks to check any memory assumptions we may have made.
705   /// Returns the block containing the checks or nullptr if no checks have been
706   /// added.
707   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
708 
709   /// Compute the transformed value of Index at offset StartValue using step
710   /// StepValue.
711   /// For integer induction, returns StartValue + Index * StepValue.
712   /// For pointer induction, returns StartValue[Index * StepValue].
713   /// FIXME: The newly created binary instructions should contain nsw/nuw
714   /// flags, which can be found from the original scalar operations.
715   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
716                               const DataLayout &DL,
717                               const InductionDescriptor &ID) const;
718 
719   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
720   /// vector loop preheader, middle block and scalar preheader. Also
721   /// allocate a loop object for the new vector loop and return it.
722   Loop *createVectorLoopSkeleton(StringRef Prefix);
723 
724   /// Create new phi nodes for the induction variables to resume iteration count
725   /// in the scalar epilogue, from where the vectorized loop left off (given by
726   /// \p VectorTripCount).
727   /// In cases where the loop skeleton is more complicated (eg. epilogue
728   /// vectorization) and the resume values can come from an additional bypass
729   /// block, the \p AdditionalBypass pair provides information about the bypass
730   /// block and the end value on the edge from bypass to this loop.
731   void createInductionResumeValues(
732       Loop *L, Value *VectorTripCount,
733       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
734 
735   /// Complete the loop skeleton by adding debug MDs, creating appropriate
736   /// conditional branches in the middle block, preparing the builder and
737   /// running the verifier. Take in the vector loop \p L as argument, and return
738   /// the preheader of the completed vector loop.
739   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
740 
741   /// Add additional metadata to \p To that was not present on \p Orig.
742   ///
743   /// Currently this is used to add the noalias annotations based on the
744   /// inserted memchecks.  Use this for instructions that are *cloned* into the
745   /// vector loop.
746   void addNewMetadata(Instruction *To, const Instruction *Orig);
747 
748   /// Add metadata from one instruction to another.
749   ///
750   /// This includes both the original MDs from \p From and additional ones (\see
751   /// addNewMetadata).  Use this for *newly created* instructions in the vector
752   /// loop.
753   void addMetadata(Instruction *To, Instruction *From);
754 
755   /// Similar to the previous function but it adds the metadata to a
756   /// vector of instructions.
757   void addMetadata(ArrayRef<Value *> To, Instruction *From);
758 
759   /// Allow subclasses to override and print debug traces before/after vplan
760   /// execution, when trace information is requested.
761   virtual void printDebugTracesAtStart(){};
762   virtual void printDebugTracesAtEnd(){};
763 
764   /// The original loop.
765   Loop *OrigLoop;
766 
767   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
768   /// dynamic knowledge to simplify SCEV expressions and converts them to a
769   /// more usable form.
770   PredicatedScalarEvolution &PSE;
771 
772   /// Loop Info.
773   LoopInfo *LI;
774 
775   /// Dominator Tree.
776   DominatorTree *DT;
777 
778   /// Alias Analysis.
779   AAResults *AA;
780 
781   /// Target Library Info.
782   const TargetLibraryInfo *TLI;
783 
784   /// Target Transform Info.
785   const TargetTransformInfo *TTI;
786 
787   /// Assumption Cache.
788   AssumptionCache *AC;
789 
790   /// Interface to emit optimization remarks.
791   OptimizationRemarkEmitter *ORE;
792 
793   /// LoopVersioning.  It's only set up (non-null) if memchecks were
794   /// used.
795   ///
796   /// This is currently only used to add no-alias metadata based on the
797   /// memchecks.  The actually versioning is performed manually.
798   std::unique_ptr<LoopVersioning> LVer;
799 
800   /// The vectorization SIMD factor to use. Each vector will have this many
801   /// vector elements.
802   ElementCount VF;
803 
804   /// The vectorization unroll factor to use. Each scalar is vectorized to this
805   /// many different vector instructions.
806   unsigned UF;
807 
808   /// The builder that we use
809   IRBuilder<> Builder;
810 
811   // --- Vectorization state ---
812 
813   /// The vector-loop preheader.
814   BasicBlock *LoopVectorPreHeader;
815 
816   /// The scalar-loop preheader.
817   BasicBlock *LoopScalarPreHeader;
818 
819   /// Middle Block between the vector and the scalar.
820   BasicBlock *LoopMiddleBlock;
821 
822   /// The (unique) ExitBlock of the scalar loop.  Note that
823   /// there can be multiple exiting edges reaching this block.
824   BasicBlock *LoopExitBlock;
825 
826   /// The vector loop body.
827   BasicBlock *LoopVectorBody;
828 
829   /// The scalar loop body.
830   BasicBlock *LoopScalarBody;
831 
832   /// A list of all bypass blocks. The first block is the entry of the loop.
833   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
834 
835   /// The new Induction variable which was added to the new block.
836   PHINode *Induction = nullptr;
837 
838   /// The induction variable of the old basic block.
839   PHINode *OldInduction = nullptr;
840 
841   /// Store instructions that were predicated.
842   SmallVector<Instruction *, 4> PredicatedInstructions;
843 
844   /// Trip count of the original loop.
845   Value *TripCount = nullptr;
846 
847   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
848   Value *VectorTripCount = nullptr;
849 
850   /// The legality analysis.
851   LoopVectorizationLegality *Legal;
852 
853   /// The profitablity analysis.
854   LoopVectorizationCostModel *Cost;
855 
856   // Record whether runtime checks are added.
857   bool AddedSafetyChecks = false;
858 
859   // Holds the end values for each induction variable. We save the end values
860   // so we can later fix-up the external users of the induction variables.
861   DenseMap<PHINode *, Value *> IVEndValues;
862 
863   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
864   // fixed up at the end of vector code generation.
865   SmallVector<PHINode *, 8> OrigPHIsToFix;
866 
867   /// BFI and PSI are used to check for profile guided size optimizations.
868   BlockFrequencyInfo *BFI;
869   ProfileSummaryInfo *PSI;
870 
871   // Whether this loop should be optimized for size based on profile guided size
872   // optimizatios.
873   bool OptForSizeBasedOnProfile;
874 
875   /// Structure to hold information about generated runtime checks, responsible
876   /// for cleaning the checks, if vectorization turns out unprofitable.
877   GeneratedRTChecks &RTChecks;
878 };
879 
880 class InnerLoopUnroller : public InnerLoopVectorizer {
881 public:
882   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
883                     LoopInfo *LI, DominatorTree *DT,
884                     const TargetLibraryInfo *TLI,
885                     const TargetTransformInfo *TTI, AssumptionCache *AC,
886                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
887                     LoopVectorizationLegality *LVL,
888                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
889                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
890       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
891                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
892                             BFI, PSI, Check) {}
893 
894 private:
895   Value *getBroadcastInstrs(Value *V) override;
896   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
897                        Instruction::BinaryOps Opcode =
898                        Instruction::BinaryOpsEnd) override;
899   Value *reverseVector(Value *Vec) override;
900 };
901 
902 /// Encapsulate information regarding vectorization of a loop and its epilogue.
903 /// This information is meant to be updated and used across two stages of
904 /// epilogue vectorization.
905 struct EpilogueLoopVectorizationInfo {
906   ElementCount MainLoopVF = ElementCount::getFixed(0);
907   unsigned MainLoopUF = 0;
908   ElementCount EpilogueVF = ElementCount::getFixed(0);
909   unsigned EpilogueUF = 0;
910   BasicBlock *MainLoopIterationCountCheck = nullptr;
911   BasicBlock *EpilogueIterationCountCheck = nullptr;
912   BasicBlock *SCEVSafetyCheck = nullptr;
913   BasicBlock *MemSafetyCheck = nullptr;
914   Value *TripCount = nullptr;
915   Value *VectorTripCount = nullptr;
916 
917   EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF,
918                                 unsigned EUF)
919       : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF),
920         EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) {
921     assert(EUF == 1 &&
922            "A high UF for the epilogue loop is likely not beneficial.");
923   }
924 };
925 
926 /// An extension of the inner loop vectorizer that creates a skeleton for a
927 /// vectorized loop that has its epilogue (residual) also vectorized.
928 /// The idea is to run the vplan on a given loop twice, firstly to setup the
929 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
930 /// from the first step and vectorize the epilogue.  This is achieved by
931 /// deriving two concrete strategy classes from this base class and invoking
932 /// them in succession from the loop vectorizer planner.
933 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
934 public:
935   InnerLoopAndEpilogueVectorizer(
936       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
937       DominatorTree *DT, const TargetLibraryInfo *TLI,
938       const TargetTransformInfo *TTI, AssumptionCache *AC,
939       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
940       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
941       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
942       GeneratedRTChecks &Checks)
943       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
944                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
945                             Checks),
946         EPI(EPI) {}
947 
948   // Override this function to handle the more complex control flow around the
949   // three loops.
950   BasicBlock *createVectorizedLoopSkeleton() final override {
951     return createEpilogueVectorizedLoopSkeleton();
952   }
953 
954   /// The interface for creating a vectorized skeleton using one of two
955   /// different strategies, each corresponding to one execution of the vplan
956   /// as described above.
957   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
958 
959   /// Holds and updates state information required to vectorize the main loop
960   /// and its epilogue in two separate passes. This setup helps us avoid
961   /// regenerating and recomputing runtime safety checks. It also helps us to
962   /// shorten the iteration-count-check path length for the cases where the
963   /// iteration count of the loop is so small that the main vector loop is
964   /// completely skipped.
965   EpilogueLoopVectorizationInfo &EPI;
966 };
967 
968 /// A specialized derived class of inner loop vectorizer that performs
969 /// vectorization of *main* loops in the process of vectorizing loops and their
970 /// epilogues.
971 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
972 public:
973   EpilogueVectorizerMainLoop(
974       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
975       DominatorTree *DT, const TargetLibraryInfo *TLI,
976       const TargetTransformInfo *TTI, AssumptionCache *AC,
977       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
978       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
979       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
980       GeneratedRTChecks &Check)
981       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
982                                        EPI, LVL, CM, BFI, PSI, Check) {}
983   /// Implements the interface for creating a vectorized skeleton using the
984   /// *main loop* strategy (ie the first pass of vplan execution).
985   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
986 
987 protected:
988   /// Emits an iteration count bypass check once for the main loop (when \p
989   /// ForEpilogue is false) and once for the epilogue loop (when \p
990   /// ForEpilogue is true).
991   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
992                                              bool ForEpilogue);
993   void printDebugTracesAtStart() override;
994   void printDebugTracesAtEnd() override;
995 };
996 
997 // A specialized derived class of inner loop vectorizer that performs
998 // vectorization of *epilogue* loops in the process of vectorizing loops and
999 // their epilogues.
1000 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
1001 public:
1002   EpilogueVectorizerEpilogueLoop(
1003       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
1004       DominatorTree *DT, const TargetLibraryInfo *TLI,
1005       const TargetTransformInfo *TTI, AssumptionCache *AC,
1006       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1007       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1008       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1009       GeneratedRTChecks &Checks)
1010       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1011                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1012   /// Implements the interface for creating a vectorized skeleton using the
1013   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1014   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1015 
1016 protected:
1017   /// Emits an iteration count bypass check after the main vector loop has
1018   /// finished to see if there are any iterations left to execute by either
1019   /// the vector epilogue or the scalar epilogue.
1020   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1021                                                       BasicBlock *Bypass,
1022                                                       BasicBlock *Insert);
1023   void printDebugTracesAtStart() override;
1024   void printDebugTracesAtEnd() override;
1025 };
1026 } // end namespace llvm
1027 
1028 /// Look for a meaningful debug location on the instruction or it's
1029 /// operands.
1030 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1031   if (!I)
1032     return I;
1033 
1034   DebugLoc Empty;
1035   if (I->getDebugLoc() != Empty)
1036     return I;
1037 
1038   for (Use &Op : I->operands()) {
1039     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1040       if (OpInst->getDebugLoc() != Empty)
1041         return OpInst;
1042   }
1043 
1044   return I;
1045 }
1046 
1047 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
1048   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
1049     const DILocation *DIL = Inst->getDebugLoc();
1050     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1051         !isa<DbgInfoIntrinsic>(Inst)) {
1052       assert(!VF.isScalable() && "scalable vectors not yet supported.");
1053       auto NewDIL =
1054           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1055       if (NewDIL)
1056         B.SetCurrentDebugLocation(NewDIL.getValue());
1057       else
1058         LLVM_DEBUG(dbgs()
1059                    << "Failed to create new discriminator: "
1060                    << DIL->getFilename() << " Line: " << DIL->getLine());
1061     }
1062     else
1063       B.SetCurrentDebugLocation(DIL);
1064   } else
1065     B.SetCurrentDebugLocation(DebugLoc());
1066 }
1067 
1068 /// Write a record \p DebugMsg about vectorization failure to the debug
1069 /// output stream. If \p I is passed, it is an instruction that prevents
1070 /// vectorization.
1071 #ifndef NDEBUG
1072 static void debugVectorizationFailure(const StringRef DebugMsg,
1073     Instruction *I) {
1074   dbgs() << "LV: Not vectorizing: " << DebugMsg;
1075   if (I != nullptr)
1076     dbgs() << " " << *I;
1077   else
1078     dbgs() << '.';
1079   dbgs() << '\n';
1080 }
1081 #endif
1082 
1083 /// Create an analysis remark that explains why vectorization failed
1084 ///
1085 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1086 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1087 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1088 /// the location of the remark.  \return the remark object that can be
1089 /// streamed to.
1090 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1091     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1092   Value *CodeRegion = TheLoop->getHeader();
1093   DebugLoc DL = TheLoop->getStartLoc();
1094 
1095   if (I) {
1096     CodeRegion = I->getParent();
1097     // If there is no debug location attached to the instruction, revert back to
1098     // using the loop's.
1099     if (I->getDebugLoc())
1100       DL = I->getDebugLoc();
1101   }
1102 
1103   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
1104   R << "loop not vectorized: ";
1105   return R;
1106 }
1107 
1108 /// Return a value for Step multiplied by VF.
1109 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1110   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1111   Constant *StepVal = ConstantInt::get(
1112       Step->getType(),
1113       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1114   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1115 }
1116 
1117 namespace llvm {
1118 
1119 /// Return the runtime value for VF.
1120 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1121   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1122   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1123 }
1124 
1125 void reportVectorizationFailure(const StringRef DebugMsg,
1126     const StringRef OREMsg, const StringRef ORETag,
1127     OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) {
1128   LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I));
1129   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1130   ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(),
1131                 ORETag, TheLoop, I) << OREMsg);
1132 }
1133 
1134 } // end namespace llvm
1135 
1136 #ifndef NDEBUG
1137 /// \return string containing a file name and a line # for the given loop.
1138 static std::string getDebugLocString(const Loop *L) {
1139   std::string Result;
1140   if (L) {
1141     raw_string_ostream OS(Result);
1142     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1143       LoopDbgLoc.print(OS);
1144     else
1145       // Just print the module name.
1146       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1147     OS.flush();
1148   }
1149   return Result;
1150 }
1151 #endif
1152 
1153 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1154                                          const Instruction *Orig) {
1155   // If the loop was versioned with memchecks, add the corresponding no-alias
1156   // metadata.
1157   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1158     LVer->annotateInstWithNoAlias(To, Orig);
1159 }
1160 
1161 void InnerLoopVectorizer::addMetadata(Instruction *To,
1162                                       Instruction *From) {
1163   propagateMetadata(To, From);
1164   addNewMetadata(To, From);
1165 }
1166 
1167 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1168                                       Instruction *From) {
1169   for (Value *V : To) {
1170     if (Instruction *I = dyn_cast<Instruction>(V))
1171       addMetadata(I, From);
1172   }
1173 }
1174 
1175 namespace llvm {
1176 
1177 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1178 // lowered.
1179 enum ScalarEpilogueLowering {
1180 
1181   // The default: allowing scalar epilogues.
1182   CM_ScalarEpilogueAllowed,
1183 
1184   // Vectorization with OptForSize: don't allow epilogues.
1185   CM_ScalarEpilogueNotAllowedOptSize,
1186 
1187   // A special case of vectorisation with OptForSize: loops with a very small
1188   // trip count are considered for vectorization under OptForSize, thereby
1189   // making sure the cost of their loop body is dominant, free of runtime
1190   // guards and scalar iteration overheads.
1191   CM_ScalarEpilogueNotAllowedLowTripLoop,
1192 
1193   // Loop hint predicate indicating an epilogue is undesired.
1194   CM_ScalarEpilogueNotNeededUsePredicate,
1195 
1196   // Directive indicating we must either tail fold or not vectorize
1197   CM_ScalarEpilogueNotAllowedUsePredicate
1198 };
1199 
1200 /// LoopVectorizationCostModel - estimates the expected speedups due to
1201 /// vectorization.
1202 /// In many cases vectorization is not profitable. This can happen because of
1203 /// a number of reasons. In this class we mainly attempt to predict the
1204 /// expected speedup/slowdowns due to the supported instruction set. We use the
1205 /// TargetTransformInfo to query the different backends for the cost of
1206 /// different operations.
1207 class LoopVectorizationCostModel {
1208 public:
1209   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1210                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1211                              LoopVectorizationLegality *Legal,
1212                              const TargetTransformInfo &TTI,
1213                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1214                              AssumptionCache *AC,
1215                              OptimizationRemarkEmitter *ORE, const Function *F,
1216                              const LoopVectorizeHints *Hints,
1217                              InterleavedAccessInfo &IAI)
1218       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1219         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1220         Hints(Hints), InterleaveInfo(IAI) {}
1221 
1222   /// \return An upper bound for the vectorization factor, or None if
1223   /// vectorization and interleaving should be avoided up front.
1224   Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC);
1225 
1226   /// \return True if runtime checks are required for vectorization, and false
1227   /// otherwise.
1228   bool runtimeChecksRequired();
1229 
1230   /// \return The most profitable vectorization factor and the cost of that VF.
1231   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
1232   /// then this vectorization factor will be selected if vectorization is
1233   /// possible.
1234   VectorizationFactor selectVectorizationFactor(ElementCount MaxVF);
1235   VectorizationFactor
1236   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1237                                     const LoopVectorizationPlanner &LVP);
1238 
1239   /// Setup cost-based decisions for user vectorization factor.
1240   void selectUserVectorizationFactor(ElementCount UserVF) {
1241     collectUniformsAndScalars(UserVF);
1242     collectInstsToScalarize(UserVF);
1243   }
1244 
1245   /// \return The size (in bits) of the smallest and widest types in the code
1246   /// that needs to be vectorized. We ignore values that remain scalar such as
1247   /// 64 bit loop indices.
1248   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1249 
1250   /// \return The desired interleave count.
1251   /// If interleave count has been specified by metadata it will be returned.
1252   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1253   /// are the selected vectorization factor and the cost of the selected VF.
1254   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1255 
1256   /// Memory access instruction may be vectorized in more than one way.
1257   /// Form of instruction after vectorization depends on cost.
1258   /// This function takes cost-based decisions for Load/Store instructions
1259   /// and collects them in a map. This decisions map is used for building
1260   /// the lists of loop-uniform and loop-scalar instructions.
1261   /// The calculated cost is saved with widening decision in order to
1262   /// avoid redundant calculations.
1263   void setCostBasedWideningDecision(ElementCount VF);
1264 
1265   /// A struct that represents some properties of the register usage
1266   /// of a loop.
1267   struct RegisterUsage {
1268     /// Holds the number of loop invariant values that are used in the loop.
1269     /// The key is ClassID of target-provided register class.
1270     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1271     /// Holds the maximum number of concurrent live intervals in the loop.
1272     /// The key is ClassID of target-provided register class.
1273     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1274   };
1275 
1276   /// \return Returns information about the register usages of the loop for the
1277   /// given vectorization factors.
1278   SmallVector<RegisterUsage, 8>
1279   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1280 
1281   /// Collect values we want to ignore in the cost model.
1282   void collectValuesToIgnore();
1283 
1284   /// Split reductions into those that happen in the loop, and those that happen
1285   /// outside. In loop reductions are collected into InLoopReductionChains.
1286   void collectInLoopReductions();
1287 
1288   /// \returns The smallest bitwidth each instruction can be represented with.
1289   /// The vector equivalents of these instructions should be truncated to this
1290   /// type.
1291   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1292     return MinBWs;
1293   }
1294 
1295   /// \returns True if it is more profitable to scalarize instruction \p I for
1296   /// vectorization factor \p VF.
1297   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1298     assert(VF.isVector() &&
1299            "Profitable to scalarize relevant only for VF > 1.");
1300 
1301     // Cost model is not run in the VPlan-native path - return conservative
1302     // result until this changes.
1303     if (EnableVPlanNativePath)
1304       return false;
1305 
1306     auto Scalars = InstsToScalarize.find(VF);
1307     assert(Scalars != InstsToScalarize.end() &&
1308            "VF not yet analyzed for scalarization profitability");
1309     return Scalars->second.find(I) != Scalars->second.end();
1310   }
1311 
1312   /// Returns true if \p I is known to be uniform after vectorization.
1313   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1314     if (VF.isScalar())
1315       return true;
1316 
1317     // Cost model is not run in the VPlan-native path - return conservative
1318     // result until this changes.
1319     if (EnableVPlanNativePath)
1320       return false;
1321 
1322     auto UniformsPerVF = Uniforms.find(VF);
1323     assert(UniformsPerVF != Uniforms.end() &&
1324            "VF not yet analyzed for uniformity");
1325     return UniformsPerVF->second.count(I);
1326   }
1327 
1328   /// Returns true if \p I is known to be scalar after vectorization.
1329   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1330     if (VF.isScalar())
1331       return true;
1332 
1333     // Cost model is not run in the VPlan-native path - return conservative
1334     // result until this changes.
1335     if (EnableVPlanNativePath)
1336       return false;
1337 
1338     auto ScalarsPerVF = Scalars.find(VF);
1339     assert(ScalarsPerVF != Scalars.end() &&
1340            "Scalar values are not calculated for VF");
1341     return ScalarsPerVF->second.count(I);
1342   }
1343 
1344   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1345   /// for vectorization factor \p VF.
1346   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1347     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1348            !isProfitableToScalarize(I, VF) &&
1349            !isScalarAfterVectorization(I, VF);
1350   }
1351 
1352   /// Decision that was taken during cost calculation for memory instruction.
1353   enum InstWidening {
1354     CM_Unknown,
1355     CM_Widen,         // For consecutive accesses with stride +1.
1356     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1357     CM_Interleave,
1358     CM_GatherScatter,
1359     CM_Scalarize
1360   };
1361 
1362   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1363   /// instruction \p I and vector width \p VF.
1364   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1365                            InstructionCost Cost) {
1366     assert(VF.isVector() && "Expected VF >=2");
1367     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1368   }
1369 
1370   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1371   /// interleaving group \p Grp and vector width \p VF.
1372   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1373                            ElementCount VF, InstWidening W,
1374                            InstructionCost Cost) {
1375     assert(VF.isVector() && "Expected VF >=2");
1376     /// Broadcast this decicion to all instructions inside the group.
1377     /// But the cost will be assigned to one instruction only.
1378     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1379       if (auto *I = Grp->getMember(i)) {
1380         if (Grp->getInsertPos() == I)
1381           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1382         else
1383           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1384       }
1385     }
1386   }
1387 
1388   /// Return the cost model decision for the given instruction \p I and vector
1389   /// width \p VF. Return CM_Unknown if this instruction did not pass
1390   /// through the cost modeling.
1391   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1392     assert(VF.isVector() && "Expected VF to be a vector VF");
1393     // Cost model is not run in the VPlan-native path - return conservative
1394     // result until this changes.
1395     if (EnableVPlanNativePath)
1396       return CM_GatherScatter;
1397 
1398     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1399     auto Itr = WideningDecisions.find(InstOnVF);
1400     if (Itr == WideningDecisions.end())
1401       return CM_Unknown;
1402     return Itr->second.first;
1403   }
1404 
1405   /// Return the vectorization cost for the given instruction \p I and vector
1406   /// width \p VF.
1407   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1408     assert(VF.isVector() && "Expected VF >=2");
1409     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1410     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1411            "The cost is not calculated");
1412     return WideningDecisions[InstOnVF].second;
1413   }
1414 
1415   /// Return True if instruction \p I is an optimizable truncate whose operand
1416   /// is an induction variable. Such a truncate will be removed by adding a new
1417   /// induction variable with the destination type.
1418   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1419     // If the instruction is not a truncate, return false.
1420     auto *Trunc = dyn_cast<TruncInst>(I);
1421     if (!Trunc)
1422       return false;
1423 
1424     // Get the source and destination types of the truncate.
1425     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1426     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1427 
1428     // If the truncate is free for the given types, return false. Replacing a
1429     // free truncate with an induction variable would add an induction variable
1430     // update instruction to each iteration of the loop. We exclude from this
1431     // check the primary induction variable since it will need an update
1432     // instruction regardless.
1433     Value *Op = Trunc->getOperand(0);
1434     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1435       return false;
1436 
1437     // If the truncated value is not an induction variable, return false.
1438     return Legal->isInductionPhi(Op);
1439   }
1440 
1441   /// Collects the instructions to scalarize for each predicated instruction in
1442   /// the loop.
1443   void collectInstsToScalarize(ElementCount VF);
1444 
1445   /// Collect Uniform and Scalar values for the given \p VF.
1446   /// The sets depend on CM decision for Load/Store instructions
1447   /// that may be vectorized as interleave, gather-scatter or scalarized.
1448   void collectUniformsAndScalars(ElementCount VF) {
1449     // Do the analysis once.
1450     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1451       return;
1452     setCostBasedWideningDecision(VF);
1453     collectLoopUniforms(VF);
1454     collectLoopScalars(VF);
1455   }
1456 
1457   /// Returns true if the target machine supports masked store operation
1458   /// for the given \p DataType and kind of access to \p Ptr.
1459   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1460     return Legal->isConsecutivePtr(Ptr) &&
1461            TTI.isLegalMaskedStore(DataType, Alignment);
1462   }
1463 
1464   /// Returns true if the target machine supports masked load operation
1465   /// for the given \p DataType and kind of access to \p Ptr.
1466   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1467     return Legal->isConsecutivePtr(Ptr) &&
1468            TTI.isLegalMaskedLoad(DataType, Alignment);
1469   }
1470 
1471   /// Returns true if the target machine supports masked scatter operation
1472   /// for the given \p DataType.
1473   bool isLegalMaskedScatter(Type *DataType, Align Alignment) const {
1474     return TTI.isLegalMaskedScatter(DataType, Alignment);
1475   }
1476 
1477   /// Returns true if the target machine supports masked gather operation
1478   /// for the given \p DataType.
1479   bool isLegalMaskedGather(Type *DataType, Align Alignment) const {
1480     return TTI.isLegalMaskedGather(DataType, Alignment);
1481   }
1482 
1483   /// Returns true if the target machine can represent \p V as a masked gather
1484   /// or scatter operation.
1485   bool isLegalGatherOrScatter(Value *V) {
1486     bool LI = isa<LoadInst>(V);
1487     bool SI = isa<StoreInst>(V);
1488     if (!LI && !SI)
1489       return false;
1490     auto *Ty = getMemInstValueType(V);
1491     Align Align = getLoadStoreAlignment(V);
1492     return (LI && isLegalMaskedGather(Ty, Align)) ||
1493            (SI && isLegalMaskedScatter(Ty, Align));
1494   }
1495 
1496   /// Returns true if the target machine supports all of the reduction
1497   /// variables found for the given VF.
1498   bool canVectorizeReductions(ElementCount VF) {
1499     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1500       RecurrenceDescriptor RdxDesc = Reduction.second;
1501       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1502     }));
1503   }
1504 
1505   /// Returns true if \p I is an instruction that will be scalarized with
1506   /// predication. Such instructions include conditional stores and
1507   /// instructions that may divide by zero.
1508   /// If a non-zero VF has been calculated, we check if I will be scalarized
1509   /// predication for that VF.
1510   bool
1511   isScalarWithPredication(Instruction *I,
1512                           ElementCount VF = ElementCount::getFixed(1)) const;
1513 
1514   // Returns true if \p I is an instruction that will be predicated either
1515   // through scalar predication or masked load/store or masked gather/scatter.
1516   // Superset of instructions that return true for isScalarWithPredication.
1517   bool isPredicatedInst(Instruction *I, ElementCount VF) {
1518     if (!blockNeedsPredication(I->getParent()))
1519       return false;
1520     // Loads and stores that need some form of masked operation are predicated
1521     // instructions.
1522     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1523       return Legal->isMaskRequired(I);
1524     return isScalarWithPredication(I, VF);
1525   }
1526 
1527   /// Returns true if \p I is a memory instruction with consecutive memory
1528   /// access that can be widened.
1529   bool
1530   memoryInstructionCanBeWidened(Instruction *I,
1531                                 ElementCount VF = ElementCount::getFixed(1));
1532 
1533   /// Returns true if \p I is a memory instruction in an interleaved-group
1534   /// of memory accesses that can be vectorized with wide vector loads/stores
1535   /// and shuffles.
1536   bool
1537   interleavedAccessCanBeWidened(Instruction *I,
1538                                 ElementCount VF = ElementCount::getFixed(1));
1539 
1540   /// Check if \p Instr belongs to any interleaved access group.
1541   bool isAccessInterleaved(Instruction *Instr) {
1542     return InterleaveInfo.isInterleaved(Instr);
1543   }
1544 
1545   /// Get the interleaved access group that \p Instr belongs to.
1546   const InterleaveGroup<Instruction> *
1547   getInterleavedAccessGroup(Instruction *Instr) {
1548     return InterleaveInfo.getInterleaveGroup(Instr);
1549   }
1550 
1551   /// Returns true if we're required to use a scalar epilogue for at least
1552   /// the final iteration of the original loop.
1553   bool requiresScalarEpilogue() const {
1554     if (!isScalarEpilogueAllowed())
1555       return false;
1556     // If we might exit from anywhere but the latch, must run the exiting
1557     // iteration in scalar form.
1558     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1559       return true;
1560     return InterleaveInfo.requiresScalarEpilogue();
1561   }
1562 
1563   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1564   /// loop hint annotation.
1565   bool isScalarEpilogueAllowed() const {
1566     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1567   }
1568 
1569   /// Returns true if all loop blocks should be masked to fold tail loop.
1570   bool foldTailByMasking() const { return FoldTailByMasking; }
1571 
1572   bool blockNeedsPredication(BasicBlock *BB) const {
1573     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1574   }
1575 
1576   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1577   /// nodes to the chain of instructions representing the reductions. Uses a
1578   /// MapVector to ensure deterministic iteration order.
1579   using ReductionChainMap =
1580       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1581 
1582   /// Return the chain of instructions representing an inloop reduction.
1583   const ReductionChainMap &getInLoopReductionChains() const {
1584     return InLoopReductionChains;
1585   }
1586 
1587   /// Returns true if the Phi is part of an inloop reduction.
1588   bool isInLoopReduction(PHINode *Phi) const {
1589     return InLoopReductionChains.count(Phi);
1590   }
1591 
1592   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1593   /// with factor VF.  Return the cost of the instruction, including
1594   /// scalarization overhead if it's needed.
1595   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1596 
1597   /// Estimate cost of a call instruction CI if it were vectorized with factor
1598   /// VF. Return the cost of the instruction, including scalarization overhead
1599   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1600   /// scalarized -
1601   /// i.e. either vector version isn't available, or is too expensive.
1602   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1603                                     bool &NeedToScalarize) const;
1604 
1605   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1606   /// that of B.
1607   bool isMoreProfitable(const VectorizationFactor &A,
1608                         const VectorizationFactor &B) const;
1609 
1610   /// Invalidates decisions already taken by the cost model.
1611   void invalidateCostModelingDecisions() {
1612     WideningDecisions.clear();
1613     Uniforms.clear();
1614     Scalars.clear();
1615   }
1616 
1617 private:
1618   unsigned NumPredStores = 0;
1619 
1620   /// \return An upper bound for the vectorization factor, a power-of-2 larger
1621   /// than zero. One is returned if vectorization should best be avoided due
1622   /// to cost.
1623   ElementCount computeFeasibleMaxVF(unsigned ConstTripCount,
1624                                     ElementCount UserVF);
1625 
1626   /// The vectorization cost is a combination of the cost itself and a boolean
1627   /// indicating whether any of the contributing operations will actually
1628   /// operate on
1629   /// vector values after type legalization in the backend. If this latter value
1630   /// is
1631   /// false, then all operations will be scalarized (i.e. no vectorization has
1632   /// actually taken place).
1633   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1634 
1635   /// Returns the expected execution cost. The unit of the cost does
1636   /// not matter because we use the 'cost' units to compare different
1637   /// vector widths. The cost that is returned is *not* normalized by
1638   /// the factor width.
1639   VectorizationCostTy expectedCost(ElementCount VF);
1640 
1641   /// Returns the execution time cost of an instruction for a given vector
1642   /// width. Vector width of one means scalar.
1643   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1644 
1645   /// The cost-computation logic from getInstructionCost which provides
1646   /// the vector type as an output parameter.
1647   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1648                                      Type *&VectorTy);
1649 
1650   /// Return the cost of instructions in an inloop reduction pattern, if I is
1651   /// part of that pattern.
1652   InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF,
1653                                           Type *VectorTy,
1654                                           TTI::TargetCostKind CostKind);
1655 
1656   /// Calculate vectorization cost of memory instruction \p I.
1657   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1658 
1659   /// The cost computation for scalarized memory instruction.
1660   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1661 
1662   /// The cost computation for interleaving group of memory instructions.
1663   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1664 
1665   /// The cost computation for Gather/Scatter instruction.
1666   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1667 
1668   /// The cost computation for widening instruction \p I with consecutive
1669   /// memory access.
1670   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1671 
1672   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1673   /// Load: scalar load + broadcast.
1674   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1675   /// element)
1676   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1677 
1678   /// Estimate the overhead of scalarizing an instruction. This is a
1679   /// convenience wrapper for the type-based getScalarizationOverhead API.
1680   InstructionCost getScalarizationOverhead(Instruction *I,
1681                                            ElementCount VF) const;
1682 
1683   /// Returns whether the instruction is a load or store and will be a emitted
1684   /// as a vector operation.
1685   bool isConsecutiveLoadOrStore(Instruction *I);
1686 
1687   /// Returns true if an artificially high cost for emulated masked memrefs
1688   /// should be used.
1689   bool useEmulatedMaskMemRefHack(Instruction *I);
1690 
1691   /// Map of scalar integer values to the smallest bitwidth they can be legally
1692   /// represented as. The vector equivalents of these values should be truncated
1693   /// to this type.
1694   MapVector<Instruction *, uint64_t> MinBWs;
1695 
1696   /// A type representing the costs for instructions if they were to be
1697   /// scalarized rather than vectorized. The entries are Instruction-Cost
1698   /// pairs.
1699   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1700 
1701   /// A set containing all BasicBlocks that are known to present after
1702   /// vectorization as a predicated block.
1703   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1704 
1705   /// Records whether it is allowed to have the original scalar loop execute at
1706   /// least once. This may be needed as a fallback loop in case runtime
1707   /// aliasing/dependence checks fail, or to handle the tail/remainder
1708   /// iterations when the trip count is unknown or doesn't divide by the VF,
1709   /// or as a peel-loop to handle gaps in interleave-groups.
1710   /// Under optsize and when the trip count is very small we don't allow any
1711   /// iterations to execute in the scalar loop.
1712   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1713 
1714   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1715   bool FoldTailByMasking = false;
1716 
1717   /// A map holding scalar costs for different vectorization factors. The
1718   /// presence of a cost for an instruction in the mapping indicates that the
1719   /// instruction will be scalarized when vectorizing with the associated
1720   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1721   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1722 
1723   /// Holds the instructions known to be uniform after vectorization.
1724   /// The data is collected per VF.
1725   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1726 
1727   /// Holds the instructions known to be scalar after vectorization.
1728   /// The data is collected per VF.
1729   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1730 
1731   /// Holds the instructions (address computations) that are forced to be
1732   /// scalarized.
1733   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1734 
1735   /// PHINodes of the reductions that should be expanded in-loop along with
1736   /// their associated chains of reduction operations, in program order from top
1737   /// (PHI) to bottom
1738   ReductionChainMap InLoopReductionChains;
1739 
1740   /// A Map of inloop reduction operations and their immediate chain operand.
1741   /// FIXME: This can be removed once reductions can be costed correctly in
1742   /// vplan. This was added to allow quick lookup to the inloop operations,
1743   /// without having to loop through InLoopReductionChains.
1744   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1745 
1746   /// Returns the expected difference in cost from scalarizing the expression
1747   /// feeding a predicated instruction \p PredInst. The instructions to
1748   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1749   /// non-negative return value implies the expression will be scalarized.
1750   /// Currently, only single-use chains are considered for scalarization.
1751   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1752                               ElementCount VF);
1753 
1754   /// Collect the instructions that are uniform after vectorization. An
1755   /// instruction is uniform if we represent it with a single scalar value in
1756   /// the vectorized loop corresponding to each vector iteration. Examples of
1757   /// uniform instructions include pointer operands of consecutive or
1758   /// interleaved memory accesses. Note that although uniformity implies an
1759   /// instruction will be scalar, the reverse is not true. In general, a
1760   /// scalarized instruction will be represented by VF scalar values in the
1761   /// vectorized loop, each corresponding to an iteration of the original
1762   /// scalar loop.
1763   void collectLoopUniforms(ElementCount VF);
1764 
1765   /// Collect the instructions that are scalar after vectorization. An
1766   /// instruction is scalar if it is known to be uniform or will be scalarized
1767   /// during vectorization. Non-uniform scalarized instructions will be
1768   /// represented by VF values in the vectorized loop, each corresponding to an
1769   /// iteration of the original scalar loop.
1770   void collectLoopScalars(ElementCount VF);
1771 
1772   /// Keeps cost model vectorization decision and cost for instructions.
1773   /// Right now it is used for memory instructions only.
1774   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1775                                 std::pair<InstWidening, InstructionCost>>;
1776 
1777   DecisionList WideningDecisions;
1778 
1779   /// Returns true if \p V is expected to be vectorized and it needs to be
1780   /// extracted.
1781   bool needsExtract(Value *V, ElementCount VF) const {
1782     Instruction *I = dyn_cast<Instruction>(V);
1783     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1784         TheLoop->isLoopInvariant(I))
1785       return false;
1786 
1787     // Assume we can vectorize V (and hence we need extraction) if the
1788     // scalars are not computed yet. This can happen, because it is called
1789     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1790     // the scalars are collected. That should be a safe assumption in most
1791     // cases, because we check if the operands have vectorizable types
1792     // beforehand in LoopVectorizationLegality.
1793     return Scalars.find(VF) == Scalars.end() ||
1794            !isScalarAfterVectorization(I, VF);
1795   };
1796 
1797   /// Returns a range containing only operands needing to be extracted.
1798   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1799                                                    ElementCount VF) const {
1800     return SmallVector<Value *, 4>(make_filter_range(
1801         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1802   }
1803 
1804   /// Determines if we have the infrastructure to vectorize loop \p L and its
1805   /// epilogue, assuming the main loop is vectorized by \p VF.
1806   bool isCandidateForEpilogueVectorization(const Loop &L,
1807                                            const ElementCount VF) const;
1808 
1809   /// Returns true if epilogue vectorization is considered profitable, and
1810   /// false otherwise.
1811   /// \p VF is the vectorization factor chosen for the original loop.
1812   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1813 
1814 public:
1815   /// The loop that we evaluate.
1816   Loop *TheLoop;
1817 
1818   /// Predicated scalar evolution analysis.
1819   PredicatedScalarEvolution &PSE;
1820 
1821   /// Loop Info analysis.
1822   LoopInfo *LI;
1823 
1824   /// Vectorization legality.
1825   LoopVectorizationLegality *Legal;
1826 
1827   /// Vector target information.
1828   const TargetTransformInfo &TTI;
1829 
1830   /// Target Library Info.
1831   const TargetLibraryInfo *TLI;
1832 
1833   /// Demanded bits analysis.
1834   DemandedBits *DB;
1835 
1836   /// Assumption cache.
1837   AssumptionCache *AC;
1838 
1839   /// Interface to emit optimization remarks.
1840   OptimizationRemarkEmitter *ORE;
1841 
1842   const Function *TheFunction;
1843 
1844   /// Loop Vectorize Hint.
1845   const LoopVectorizeHints *Hints;
1846 
1847   /// The interleave access information contains groups of interleaved accesses
1848   /// with the same stride and close to each other.
1849   InterleavedAccessInfo &InterleaveInfo;
1850 
1851   /// Values to ignore in the cost model.
1852   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1853 
1854   /// Values to ignore in the cost model when VF > 1.
1855   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1856 
1857   /// Profitable vector factors.
1858   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1859 };
1860 } // end namespace llvm
1861 
1862 /// Helper struct to manage generating runtime checks for vectorization.
1863 ///
1864 /// The runtime checks are created up-front in temporary blocks to allow better
1865 /// estimating the cost and un-linked from the existing IR. After deciding to
1866 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1867 /// temporary blocks are completely removed.
1868 class GeneratedRTChecks {
1869   /// Basic block which contains the generated SCEV checks, if any.
1870   BasicBlock *SCEVCheckBlock = nullptr;
1871 
1872   /// The value representing the result of the generated SCEV checks. If it is
1873   /// nullptr, either no SCEV checks have been generated or they have been used.
1874   Value *SCEVCheckCond = nullptr;
1875 
1876   /// Basic block which contains the generated memory runtime checks, if any.
1877   BasicBlock *MemCheckBlock = nullptr;
1878 
1879   /// The value representing the result of the generated memory runtime checks.
1880   /// If it is nullptr, either no memory runtime checks have been generated or
1881   /// they have been used.
1882   Instruction *MemRuntimeCheckCond = nullptr;
1883 
1884   DominatorTree *DT;
1885   LoopInfo *LI;
1886 
1887   SCEVExpander SCEVExp;
1888   SCEVExpander MemCheckExp;
1889 
1890 public:
1891   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1892                     const DataLayout &DL)
1893       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1894         MemCheckExp(SE, DL, "scev.check") {}
1895 
1896   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1897   /// accurately estimate the cost of the runtime checks. The blocks are
1898   /// un-linked from the IR and is added back during vector code generation. If
1899   /// there is no vector code generation, the check blocks are removed
1900   /// completely.
1901   void Create(Loop *L, const LoopAccessInfo &LAI,
1902               const SCEVUnionPredicate &UnionPred) {
1903 
1904     BasicBlock *LoopHeader = L->getHeader();
1905     BasicBlock *Preheader = L->getLoopPreheader();
1906 
1907     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1908     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1909     // may be used by SCEVExpander. The blocks will be un-linked from their
1910     // predecessors and removed from LI & DT at the end of the function.
1911     if (!UnionPred.isAlwaysTrue()) {
1912       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1913                                   nullptr, "vector.scevcheck");
1914 
1915       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1916           &UnionPred, SCEVCheckBlock->getTerminator());
1917     }
1918 
1919     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1920     if (RtPtrChecking.Need) {
1921       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1922       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1923                                  "vector.memcheck");
1924 
1925       std::tie(std::ignore, MemRuntimeCheckCond) =
1926           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1927                            RtPtrChecking.getChecks(), MemCheckExp);
1928       assert(MemRuntimeCheckCond &&
1929              "no RT checks generated although RtPtrChecking "
1930              "claimed checks are required");
1931     }
1932 
1933     if (!MemCheckBlock && !SCEVCheckBlock)
1934       return;
1935 
1936     // Unhook the temporary block with the checks, update various places
1937     // accordingly.
1938     if (SCEVCheckBlock)
1939       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1940     if (MemCheckBlock)
1941       MemCheckBlock->replaceAllUsesWith(Preheader);
1942 
1943     if (SCEVCheckBlock) {
1944       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1945       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1946       Preheader->getTerminator()->eraseFromParent();
1947     }
1948     if (MemCheckBlock) {
1949       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1950       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1951       Preheader->getTerminator()->eraseFromParent();
1952     }
1953 
1954     DT->changeImmediateDominator(LoopHeader, Preheader);
1955     if (MemCheckBlock) {
1956       DT->eraseNode(MemCheckBlock);
1957       LI->removeBlock(MemCheckBlock);
1958     }
1959     if (SCEVCheckBlock) {
1960       DT->eraseNode(SCEVCheckBlock);
1961       LI->removeBlock(SCEVCheckBlock);
1962     }
1963   }
1964 
1965   /// Remove the created SCEV & memory runtime check blocks & instructions, if
1966   /// unused.
1967   ~GeneratedRTChecks() {
1968     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
1969     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
1970     if (!SCEVCheckCond)
1971       SCEVCleaner.markResultUsed();
1972 
1973     if (!MemRuntimeCheckCond)
1974       MemCheckCleaner.markResultUsed();
1975 
1976     if (MemRuntimeCheckCond) {
1977       auto &SE = *MemCheckExp.getSE();
1978       // Memory runtime check generation creates compares that use expanded
1979       // values. Remove them before running the SCEVExpanderCleaners.
1980       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
1981         if (MemCheckExp.isInsertedInstruction(&I))
1982           continue;
1983         SE.forgetValue(&I);
1984         SE.eraseValueFromMap(&I);
1985         I.eraseFromParent();
1986       }
1987     }
1988     MemCheckCleaner.cleanup();
1989     SCEVCleaner.cleanup();
1990 
1991     if (SCEVCheckCond)
1992       SCEVCheckBlock->eraseFromParent();
1993     if (MemRuntimeCheckCond)
1994       MemCheckBlock->eraseFromParent();
1995   }
1996 
1997   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
1998   /// adjusts the branches to branch to the vector preheader or \p Bypass,
1999   /// depending on the generated condition.
2000   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2001                              BasicBlock *LoopVectorPreHeader,
2002                              BasicBlock *LoopExitBlock) {
2003     if (!SCEVCheckCond)
2004       return nullptr;
2005     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2006       if (C->isZero())
2007         return nullptr;
2008 
2009     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2010 
2011     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2012     // Create new preheader for vector loop.
2013     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2014       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2015 
2016     SCEVCheckBlock->getTerminator()->eraseFromParent();
2017     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2018     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2019                                                 SCEVCheckBlock);
2020 
2021     DT->addNewBlock(SCEVCheckBlock, Pred);
2022     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2023 
2024     ReplaceInstWithInst(
2025         SCEVCheckBlock->getTerminator(),
2026         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2027     // Mark the check as used, to prevent it from being removed during cleanup.
2028     SCEVCheckCond = nullptr;
2029     return SCEVCheckBlock;
2030   }
2031 
2032   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2033   /// the branches to branch to the vector preheader or \p Bypass, depending on
2034   /// the generated condition.
2035   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2036                                    BasicBlock *LoopVectorPreHeader) {
2037     // Check if we generated code that checks in runtime if arrays overlap.
2038     if (!MemRuntimeCheckCond)
2039       return nullptr;
2040 
2041     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2042     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2043                                                 MemCheckBlock);
2044 
2045     DT->addNewBlock(MemCheckBlock, Pred);
2046     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2047     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2048 
2049     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2050       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2051 
2052     ReplaceInstWithInst(
2053         MemCheckBlock->getTerminator(),
2054         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2055     MemCheckBlock->getTerminator()->setDebugLoc(
2056         Pred->getTerminator()->getDebugLoc());
2057 
2058     // Mark the check as used, to prevent it from being removed during cleanup.
2059     MemRuntimeCheckCond = nullptr;
2060     return MemCheckBlock;
2061   }
2062 };
2063 
2064 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2065 // vectorization. The loop needs to be annotated with #pragma omp simd
2066 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2067 // vector length information is not provided, vectorization is not considered
2068 // explicit. Interleave hints are not allowed either. These limitations will be
2069 // relaxed in the future.
2070 // Please, note that we are currently forced to abuse the pragma 'clang
2071 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2072 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2073 // provides *explicit vectorization hints* (LV can bypass legal checks and
2074 // assume that vectorization is legal). However, both hints are implemented
2075 // using the same metadata (llvm.loop.vectorize, processed by
2076 // LoopVectorizeHints). This will be fixed in the future when the native IR
2077 // representation for pragma 'omp simd' is introduced.
2078 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2079                                    OptimizationRemarkEmitter *ORE) {
2080   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2081   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2082 
2083   // Only outer loops with an explicit vectorization hint are supported.
2084   // Unannotated outer loops are ignored.
2085   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2086     return false;
2087 
2088   Function *Fn = OuterLp->getHeader()->getParent();
2089   if (!Hints.allowVectorization(Fn, OuterLp,
2090                                 true /*VectorizeOnlyWhenForced*/)) {
2091     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2092     return false;
2093   }
2094 
2095   if (Hints.getInterleave() > 1) {
2096     // TODO: Interleave support is future work.
2097     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2098                          "outer loops.\n");
2099     Hints.emitRemarkWithHints();
2100     return false;
2101   }
2102 
2103   return true;
2104 }
2105 
2106 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2107                                   OptimizationRemarkEmitter *ORE,
2108                                   SmallVectorImpl<Loop *> &V) {
2109   // Collect inner loops and outer loops without irreducible control flow. For
2110   // now, only collect outer loops that have explicit vectorization hints. If we
2111   // are stress testing the VPlan H-CFG construction, we collect the outermost
2112   // loop of every loop nest.
2113   if (L.isInnermost() || VPlanBuildStressTest ||
2114       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2115     LoopBlocksRPO RPOT(&L);
2116     RPOT.perform(LI);
2117     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2118       V.push_back(&L);
2119       // TODO: Collect inner loops inside marked outer loops in case
2120       // vectorization fails for the outer loop. Do not invoke
2121       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2122       // already known to be reducible. We can use an inherited attribute for
2123       // that.
2124       return;
2125     }
2126   }
2127   for (Loop *InnerL : L)
2128     collectSupportedLoops(*InnerL, LI, ORE, V);
2129 }
2130 
2131 namespace {
2132 
2133 /// The LoopVectorize Pass.
2134 struct LoopVectorize : public FunctionPass {
2135   /// Pass identification, replacement for typeid
2136   static char ID;
2137 
2138   LoopVectorizePass Impl;
2139 
2140   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2141                          bool VectorizeOnlyWhenForced = false)
2142       : FunctionPass(ID),
2143         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2144     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2145   }
2146 
2147   bool runOnFunction(Function &F) override {
2148     if (skipFunction(F))
2149       return false;
2150 
2151     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2152     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2153     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2154     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2155     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2156     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2157     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2158     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2159     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2160     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2161     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2162     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2163     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2164 
2165     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2166         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2167 
2168     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2169                         GetLAA, *ORE, PSI).MadeAnyChange;
2170   }
2171 
2172   void getAnalysisUsage(AnalysisUsage &AU) const override {
2173     AU.addRequired<AssumptionCacheTracker>();
2174     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2175     AU.addRequired<DominatorTreeWrapperPass>();
2176     AU.addRequired<LoopInfoWrapperPass>();
2177     AU.addRequired<ScalarEvolutionWrapperPass>();
2178     AU.addRequired<TargetTransformInfoWrapperPass>();
2179     AU.addRequired<AAResultsWrapperPass>();
2180     AU.addRequired<LoopAccessLegacyAnalysis>();
2181     AU.addRequired<DemandedBitsWrapperPass>();
2182     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2183     AU.addRequired<InjectTLIMappingsLegacy>();
2184 
2185     // We currently do not preserve loopinfo/dominator analyses with outer loop
2186     // vectorization. Until this is addressed, mark these analyses as preserved
2187     // only for non-VPlan-native path.
2188     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2189     if (!EnableVPlanNativePath) {
2190       AU.addPreserved<LoopInfoWrapperPass>();
2191       AU.addPreserved<DominatorTreeWrapperPass>();
2192     }
2193 
2194     AU.addPreserved<BasicAAWrapperPass>();
2195     AU.addPreserved<GlobalsAAWrapperPass>();
2196     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2197   }
2198 };
2199 
2200 } // end anonymous namespace
2201 
2202 //===----------------------------------------------------------------------===//
2203 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2204 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2205 //===----------------------------------------------------------------------===//
2206 
2207 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2208   // We need to place the broadcast of invariant variables outside the loop,
2209   // but only if it's proven safe to do so. Else, broadcast will be inside
2210   // vector loop body.
2211   Instruction *Instr = dyn_cast<Instruction>(V);
2212   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2213                      (!Instr ||
2214                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2215   // Place the code for broadcasting invariant variables in the new preheader.
2216   IRBuilder<>::InsertPointGuard Guard(Builder);
2217   if (SafeToHoist)
2218     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2219 
2220   // Broadcast the scalar into all locations in the vector.
2221   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2222 
2223   return Shuf;
2224 }
2225 
2226 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2227     const InductionDescriptor &II, Value *Step, Value *Start,
2228     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2229     VPTransformState &State) {
2230   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2231          "Expected either an induction phi-node or a truncate of it!");
2232 
2233   // Construct the initial value of the vector IV in the vector loop preheader
2234   auto CurrIP = Builder.saveIP();
2235   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2236   if (isa<TruncInst>(EntryVal)) {
2237     assert(Start->getType()->isIntegerTy() &&
2238            "Truncation requires an integer type");
2239     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2240     Step = Builder.CreateTrunc(Step, TruncType);
2241     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2242   }
2243   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2244   Value *SteppedStart =
2245       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2246 
2247   // We create vector phi nodes for both integer and floating-point induction
2248   // variables. Here, we determine the kind of arithmetic we will perform.
2249   Instruction::BinaryOps AddOp;
2250   Instruction::BinaryOps MulOp;
2251   if (Step->getType()->isIntegerTy()) {
2252     AddOp = Instruction::Add;
2253     MulOp = Instruction::Mul;
2254   } else {
2255     AddOp = II.getInductionOpcode();
2256     MulOp = Instruction::FMul;
2257   }
2258 
2259   // Multiply the vectorization factor by the step using integer or
2260   // floating-point arithmetic as appropriate.
2261   Type *StepType = Step->getType();
2262   if (Step->getType()->isFloatingPointTy())
2263     StepType = IntegerType::get(StepType->getContext(),
2264                                 StepType->getScalarSizeInBits());
2265   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2266   if (Step->getType()->isFloatingPointTy())
2267     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2268   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2269 
2270   // Create a vector splat to use in the induction update.
2271   //
2272   // FIXME: If the step is non-constant, we create the vector splat with
2273   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2274   //        handle a constant vector splat.
2275   Value *SplatVF = isa<Constant>(Mul)
2276                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2277                        : Builder.CreateVectorSplat(VF, Mul);
2278   Builder.restoreIP(CurrIP);
2279 
2280   // We may need to add the step a number of times, depending on the unroll
2281   // factor. The last of those goes into the PHI.
2282   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2283                                     &*LoopVectorBody->getFirstInsertionPt());
2284   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2285   Instruction *LastInduction = VecInd;
2286   for (unsigned Part = 0; Part < UF; ++Part) {
2287     State.set(Def, LastInduction, Part);
2288 
2289     if (isa<TruncInst>(EntryVal))
2290       addMetadata(LastInduction, EntryVal);
2291     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2292                                           State, Part);
2293 
2294     LastInduction = cast<Instruction>(
2295         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2296     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2297   }
2298 
2299   // Move the last step to the end of the latch block. This ensures consistent
2300   // placement of all induction updates.
2301   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2302   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2303   auto *ICmp = cast<Instruction>(Br->getCondition());
2304   LastInduction->moveBefore(ICmp);
2305   LastInduction->setName("vec.ind.next");
2306 
2307   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2308   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2309 }
2310 
2311 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2312   return Cost->isScalarAfterVectorization(I, VF) ||
2313          Cost->isProfitableToScalarize(I, VF);
2314 }
2315 
2316 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2317   if (shouldScalarizeInstruction(IV))
2318     return true;
2319   auto isScalarInst = [&](User *U) -> bool {
2320     auto *I = cast<Instruction>(U);
2321     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2322   };
2323   return llvm::any_of(IV->users(), isScalarInst);
2324 }
2325 
2326 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2327     const InductionDescriptor &ID, const Instruction *EntryVal,
2328     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2329     unsigned Part, unsigned Lane) {
2330   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2331          "Expected either an induction phi-node or a truncate of it!");
2332 
2333   // This induction variable is not the phi from the original loop but the
2334   // newly-created IV based on the proof that casted Phi is equal to the
2335   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2336   // re-uses the same InductionDescriptor that original IV uses but we don't
2337   // have to do any recording in this case - that is done when original IV is
2338   // processed.
2339   if (isa<TruncInst>(EntryVal))
2340     return;
2341 
2342   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2343   if (Casts.empty())
2344     return;
2345   // Only the first Cast instruction in the Casts vector is of interest.
2346   // The rest of the Casts (if exist) have no uses outside the
2347   // induction update chain itself.
2348   if (Lane < UINT_MAX)
2349     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2350   else
2351     State.set(CastDef, VectorLoopVal, Part);
2352 }
2353 
2354 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2355                                                 TruncInst *Trunc, VPValue *Def,
2356                                                 VPValue *CastDef,
2357                                                 VPTransformState &State) {
2358   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2359          "Primary induction variable must have an integer type");
2360 
2361   auto II = Legal->getInductionVars().find(IV);
2362   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2363 
2364   auto ID = II->second;
2365   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2366 
2367   // The value from the original loop to which we are mapping the new induction
2368   // variable.
2369   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2370 
2371   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2372 
2373   // Generate code for the induction step. Note that induction steps are
2374   // required to be loop-invariant
2375   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2376     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2377            "Induction step should be loop invariant");
2378     if (PSE.getSE()->isSCEVable(IV->getType())) {
2379       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2380       return Exp.expandCodeFor(Step, Step->getType(),
2381                                LoopVectorPreHeader->getTerminator());
2382     }
2383     return cast<SCEVUnknown>(Step)->getValue();
2384   };
2385 
2386   // The scalar value to broadcast. This is derived from the canonical
2387   // induction variable. If a truncation type is given, truncate the canonical
2388   // induction variable and step. Otherwise, derive these values from the
2389   // induction descriptor.
2390   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2391     Value *ScalarIV = Induction;
2392     if (IV != OldInduction) {
2393       ScalarIV = IV->getType()->isIntegerTy()
2394                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2395                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2396                                           IV->getType());
2397       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2398       ScalarIV->setName("offset.idx");
2399     }
2400     if (Trunc) {
2401       auto *TruncType = cast<IntegerType>(Trunc->getType());
2402       assert(Step->getType()->isIntegerTy() &&
2403              "Truncation requires an integer step");
2404       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2405       Step = Builder.CreateTrunc(Step, TruncType);
2406     }
2407     return ScalarIV;
2408   };
2409 
2410   // Create the vector values from the scalar IV, in the absence of creating a
2411   // vector IV.
2412   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2413     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2414     for (unsigned Part = 0; Part < UF; ++Part) {
2415       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2416       Value *EntryPart =
2417           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2418                         ID.getInductionOpcode());
2419       State.set(Def, EntryPart, Part);
2420       if (Trunc)
2421         addMetadata(EntryPart, Trunc);
2422       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2423                                             State, Part);
2424     }
2425   };
2426 
2427   // Fast-math-flags propagate from the original induction instruction.
2428   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2429   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2430     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2431 
2432   // Now do the actual transformations, and start with creating the step value.
2433   Value *Step = CreateStepValue(ID.getStep());
2434   if (VF.isZero() || VF.isScalar()) {
2435     Value *ScalarIV = CreateScalarIV(Step);
2436     CreateSplatIV(ScalarIV, Step);
2437     return;
2438   }
2439 
2440   // Determine if we want a scalar version of the induction variable. This is
2441   // true if the induction variable itself is not widened, or if it has at
2442   // least one user in the loop that is not widened.
2443   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2444   if (!NeedsScalarIV) {
2445     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2446                                     State);
2447     return;
2448   }
2449 
2450   // Try to create a new independent vector induction variable. If we can't
2451   // create the phi node, we will splat the scalar induction variable in each
2452   // loop iteration.
2453   if (!shouldScalarizeInstruction(EntryVal)) {
2454     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2455                                     State);
2456     Value *ScalarIV = CreateScalarIV(Step);
2457     // Create scalar steps that can be used by instructions we will later
2458     // scalarize. Note that the addition of the scalar steps will not increase
2459     // the number of instructions in the loop in the common case prior to
2460     // InstCombine. We will be trading one vector extract for each scalar step.
2461     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2462     return;
2463   }
2464 
2465   // All IV users are scalar instructions, so only emit a scalar IV, not a
2466   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2467   // predicate used by the masked loads/stores.
2468   Value *ScalarIV = CreateScalarIV(Step);
2469   if (!Cost->isScalarEpilogueAllowed())
2470     CreateSplatIV(ScalarIV, Step);
2471   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2472 }
2473 
2474 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2475                                           Instruction::BinaryOps BinOp) {
2476   // Create and check the types.
2477   auto *ValVTy = cast<VectorType>(Val->getType());
2478   ElementCount VLen = ValVTy->getElementCount();
2479 
2480   Type *STy = Val->getType()->getScalarType();
2481   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2482          "Induction Step must be an integer or FP");
2483   assert(Step->getType() == STy && "Step has wrong type");
2484 
2485   SmallVector<Constant *, 8> Indices;
2486 
2487   // Create a vector of consecutive numbers from zero to VF.
2488   VectorType *InitVecValVTy = ValVTy;
2489   Type *InitVecValSTy = STy;
2490   if (STy->isFloatingPointTy()) {
2491     InitVecValSTy =
2492         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2493     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2494   }
2495   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2496 
2497   // Add on StartIdx
2498   Value *StartIdxSplat = Builder.CreateVectorSplat(
2499       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2500   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2501 
2502   if (STy->isIntegerTy()) {
2503     Step = Builder.CreateVectorSplat(VLen, Step);
2504     assert(Step->getType() == Val->getType() && "Invalid step vec");
2505     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2506     // which can be found from the original scalar operations.
2507     Step = Builder.CreateMul(InitVec, Step);
2508     return Builder.CreateAdd(Val, Step, "induction");
2509   }
2510 
2511   // Floating point induction.
2512   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2513          "Binary Opcode should be specified for FP induction");
2514   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2515   Step = Builder.CreateVectorSplat(VLen, Step);
2516   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2517   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2518 }
2519 
2520 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2521                                            Instruction *EntryVal,
2522                                            const InductionDescriptor &ID,
2523                                            VPValue *Def, VPValue *CastDef,
2524                                            VPTransformState &State) {
2525   // We shouldn't have to build scalar steps if we aren't vectorizing.
2526   assert(VF.isVector() && "VF should be greater than one");
2527   // Get the value type and ensure it and the step have the same integer type.
2528   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2529   assert(ScalarIVTy == Step->getType() &&
2530          "Val and Step should have the same type");
2531 
2532   // We build scalar steps for both integer and floating-point induction
2533   // variables. Here, we determine the kind of arithmetic we will perform.
2534   Instruction::BinaryOps AddOp;
2535   Instruction::BinaryOps MulOp;
2536   if (ScalarIVTy->isIntegerTy()) {
2537     AddOp = Instruction::Add;
2538     MulOp = Instruction::Mul;
2539   } else {
2540     AddOp = ID.getInductionOpcode();
2541     MulOp = Instruction::FMul;
2542   }
2543 
2544   // Determine the number of scalars we need to generate for each unroll
2545   // iteration. If EntryVal is uniform, we only need to generate the first
2546   // lane. Otherwise, we generate all VF values.
2547   bool IsUniform =
2548       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2549   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2550   // Compute the scalar steps and save the results in State.
2551   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2552                                      ScalarIVTy->getScalarSizeInBits());
2553   Type *VecIVTy = nullptr;
2554   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2555   if (!IsUniform && VF.isScalable()) {
2556     VecIVTy = VectorType::get(ScalarIVTy, VF);
2557     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2558     SplatStep = Builder.CreateVectorSplat(VF, Step);
2559     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2560   }
2561 
2562   for (unsigned Part = 0; Part < UF; ++Part) {
2563     Value *StartIdx0 =
2564         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2565 
2566     if (!IsUniform && VF.isScalable()) {
2567       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2568       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2569       if (ScalarIVTy->isFloatingPointTy())
2570         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2571       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2572       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2573       State.set(Def, Add, Part);
2574       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2575                                             Part);
2576       // It's useful to record the lane values too for the known minimum number
2577       // of elements so we do those below. This improves the code quality when
2578       // trying to extract the first element, for example.
2579     }
2580 
2581     if (ScalarIVTy->isFloatingPointTy())
2582       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2583 
2584     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2585       Value *StartIdx = Builder.CreateBinOp(
2586           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2587       // The step returned by `createStepForVF` is a runtime-evaluated value
2588       // when VF is scalable. Otherwise, it should be folded into a Constant.
2589       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2590              "Expected StartIdx to be folded to a constant when VF is not "
2591              "scalable");
2592       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2593       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2594       State.set(Def, Add, VPIteration(Part, Lane));
2595       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2596                                             Part, Lane);
2597     }
2598   }
2599 }
2600 
2601 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2602                                                     const VPIteration &Instance,
2603                                                     VPTransformState &State) {
2604   Value *ScalarInst = State.get(Def, Instance);
2605   Value *VectorValue = State.get(Def, Instance.Part);
2606   VectorValue = Builder.CreateInsertElement(
2607       VectorValue, ScalarInst,
2608       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2609   State.set(Def, VectorValue, Instance.Part);
2610 }
2611 
2612 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2613   assert(Vec->getType()->isVectorTy() && "Invalid type");
2614   return Builder.CreateVectorReverse(Vec, "reverse");
2615 }
2616 
2617 // Return whether we allow using masked interleave-groups (for dealing with
2618 // strided loads/stores that reside in predicated blocks, or for dealing
2619 // with gaps).
2620 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2621   // If an override option has been passed in for interleaved accesses, use it.
2622   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2623     return EnableMaskedInterleavedMemAccesses;
2624 
2625   return TTI.enableMaskedInterleavedAccessVectorization();
2626 }
2627 
2628 // Try to vectorize the interleave group that \p Instr belongs to.
2629 //
2630 // E.g. Translate following interleaved load group (factor = 3):
2631 //   for (i = 0; i < N; i+=3) {
2632 //     R = Pic[i];             // Member of index 0
2633 //     G = Pic[i+1];           // Member of index 1
2634 //     B = Pic[i+2];           // Member of index 2
2635 //     ... // do something to R, G, B
2636 //   }
2637 // To:
2638 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2639 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2640 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2641 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2642 //
2643 // Or translate following interleaved store group (factor = 3):
2644 //   for (i = 0; i < N; i+=3) {
2645 //     ... do something to R, G, B
2646 //     Pic[i]   = R;           // Member of index 0
2647 //     Pic[i+1] = G;           // Member of index 1
2648 //     Pic[i+2] = B;           // Member of index 2
2649 //   }
2650 // To:
2651 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2652 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2653 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2654 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2655 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2656 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2657     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2658     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2659     VPValue *BlockInMask) {
2660   Instruction *Instr = Group->getInsertPos();
2661   const DataLayout &DL = Instr->getModule()->getDataLayout();
2662 
2663   // Prepare for the vector type of the interleaved load/store.
2664   Type *ScalarTy = getMemInstValueType(Instr);
2665   unsigned InterleaveFactor = Group->getFactor();
2666   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2667   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2668 
2669   // Prepare for the new pointers.
2670   SmallVector<Value *, 2> AddrParts;
2671   unsigned Index = Group->getIndex(Instr);
2672 
2673   // TODO: extend the masked interleaved-group support to reversed access.
2674   assert((!BlockInMask || !Group->isReverse()) &&
2675          "Reversed masked interleave-group not supported.");
2676 
2677   // If the group is reverse, adjust the index to refer to the last vector lane
2678   // instead of the first. We adjust the index from the first vector lane,
2679   // rather than directly getting the pointer for lane VF - 1, because the
2680   // pointer operand of the interleaved access is supposed to be uniform. For
2681   // uniform instructions, we're only required to generate a value for the
2682   // first vector lane in each unroll iteration.
2683   if (Group->isReverse())
2684     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2685 
2686   for (unsigned Part = 0; Part < UF; Part++) {
2687     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2688     setDebugLocFromInst(Builder, AddrPart);
2689 
2690     // Notice current instruction could be any index. Need to adjust the address
2691     // to the member of index 0.
2692     //
2693     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2694     //       b = A[i];       // Member of index 0
2695     // Current pointer is pointed to A[i+1], adjust it to A[i].
2696     //
2697     // E.g.  A[i+1] = a;     // Member of index 1
2698     //       A[i]   = b;     // Member of index 0
2699     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2700     // Current pointer is pointed to A[i+2], adjust it to A[i].
2701 
2702     bool InBounds = false;
2703     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2704       InBounds = gep->isInBounds();
2705     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2706     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2707 
2708     // Cast to the vector pointer type.
2709     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2710     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2711     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2712   }
2713 
2714   setDebugLocFromInst(Builder, Instr);
2715   Value *PoisonVec = PoisonValue::get(VecTy);
2716 
2717   Value *MaskForGaps = nullptr;
2718   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2719     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2720     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2721   }
2722 
2723   // Vectorize the interleaved load group.
2724   if (isa<LoadInst>(Instr)) {
2725     // For each unroll part, create a wide load for the group.
2726     SmallVector<Value *, 2> NewLoads;
2727     for (unsigned Part = 0; Part < UF; Part++) {
2728       Instruction *NewLoad;
2729       if (BlockInMask || MaskForGaps) {
2730         assert(useMaskedInterleavedAccesses(*TTI) &&
2731                "masked interleaved groups are not allowed.");
2732         Value *GroupMask = MaskForGaps;
2733         if (BlockInMask) {
2734           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2735           Value *ShuffledMask = Builder.CreateShuffleVector(
2736               BlockInMaskPart,
2737               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2738               "interleaved.mask");
2739           GroupMask = MaskForGaps
2740                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2741                                                 MaskForGaps)
2742                           : ShuffledMask;
2743         }
2744         NewLoad =
2745             Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(),
2746                                      GroupMask, PoisonVec, "wide.masked.vec");
2747       }
2748       else
2749         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2750                                             Group->getAlign(), "wide.vec");
2751       Group->addMetadata(NewLoad);
2752       NewLoads.push_back(NewLoad);
2753     }
2754 
2755     // For each member in the group, shuffle out the appropriate data from the
2756     // wide loads.
2757     unsigned J = 0;
2758     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2759       Instruction *Member = Group->getMember(I);
2760 
2761       // Skip the gaps in the group.
2762       if (!Member)
2763         continue;
2764 
2765       auto StrideMask =
2766           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2767       for (unsigned Part = 0; Part < UF; Part++) {
2768         Value *StridedVec = Builder.CreateShuffleVector(
2769             NewLoads[Part], StrideMask, "strided.vec");
2770 
2771         // If this member has different type, cast the result type.
2772         if (Member->getType() != ScalarTy) {
2773           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2774           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2775           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2776         }
2777 
2778         if (Group->isReverse())
2779           StridedVec = reverseVector(StridedVec);
2780 
2781         State.set(VPDefs[J], StridedVec, Part);
2782       }
2783       ++J;
2784     }
2785     return;
2786   }
2787 
2788   // The sub vector type for current instruction.
2789   auto *SubVT = VectorType::get(ScalarTy, VF);
2790 
2791   // Vectorize the interleaved store group.
2792   for (unsigned Part = 0; Part < UF; Part++) {
2793     // Collect the stored vector from each member.
2794     SmallVector<Value *, 4> StoredVecs;
2795     for (unsigned i = 0; i < InterleaveFactor; i++) {
2796       // Interleaved store group doesn't allow a gap, so each index has a member
2797       assert(Group->getMember(i) && "Fail to get a member from an interleaved store group");
2798 
2799       Value *StoredVec = State.get(StoredValues[i], Part);
2800 
2801       if (Group->isReverse())
2802         StoredVec = reverseVector(StoredVec);
2803 
2804       // If this member has different type, cast it to a unified type.
2805 
2806       if (StoredVec->getType() != SubVT)
2807         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2808 
2809       StoredVecs.push_back(StoredVec);
2810     }
2811 
2812     // Concatenate all vectors into a wide vector.
2813     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2814 
2815     // Interleave the elements in the wide vector.
2816     Value *IVec = Builder.CreateShuffleVector(
2817         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2818         "interleaved.vec");
2819 
2820     Instruction *NewStoreInstr;
2821     if (BlockInMask) {
2822       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2823       Value *ShuffledMask = Builder.CreateShuffleVector(
2824           BlockInMaskPart,
2825           createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2826           "interleaved.mask");
2827       NewStoreInstr = Builder.CreateMaskedStore(
2828           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2829     }
2830     else
2831       NewStoreInstr =
2832           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2833 
2834     Group->addMetadata(NewStoreInstr);
2835   }
2836 }
2837 
2838 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2839     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2840     VPValue *StoredValue, VPValue *BlockInMask) {
2841   // Attempt to issue a wide load.
2842   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2843   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2844 
2845   assert((LI || SI) && "Invalid Load/Store instruction");
2846   assert((!SI || StoredValue) && "No stored value provided for widened store");
2847   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2848 
2849   LoopVectorizationCostModel::InstWidening Decision =
2850       Cost->getWideningDecision(Instr, VF);
2851   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2852           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2853           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2854          "CM decision is not to widen the memory instruction");
2855 
2856   Type *ScalarDataTy = getMemInstValueType(Instr);
2857 
2858   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2859   const Align Alignment = getLoadStoreAlignment(Instr);
2860 
2861   // Determine if the pointer operand of the access is either consecutive or
2862   // reverse consecutive.
2863   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2864   bool ConsecutiveStride =
2865       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2866   bool CreateGatherScatter =
2867       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2868 
2869   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2870   // gather/scatter. Otherwise Decision should have been to Scalarize.
2871   assert((ConsecutiveStride || CreateGatherScatter) &&
2872          "The instruction should be scalarized");
2873   (void)ConsecutiveStride;
2874 
2875   VectorParts BlockInMaskParts(UF);
2876   bool isMaskRequired = BlockInMask;
2877   if (isMaskRequired)
2878     for (unsigned Part = 0; Part < UF; ++Part)
2879       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2880 
2881   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2882     // Calculate the pointer for the specific unroll-part.
2883     GetElementPtrInst *PartPtr = nullptr;
2884 
2885     bool InBounds = false;
2886     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2887       InBounds = gep->isInBounds();
2888     if (Reverse) {
2889       // If the address is consecutive but reversed, then the
2890       // wide store needs to start at the last vector element.
2891       // RunTimeVF =  VScale * VF.getKnownMinValue()
2892       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2893       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2894       // NumElt = -Part * RunTimeVF
2895       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2896       // LastLane = 1 - RunTimeVF
2897       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2898       PartPtr =
2899           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2900       PartPtr->setIsInBounds(InBounds);
2901       PartPtr = cast<GetElementPtrInst>(
2902           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2903       PartPtr->setIsInBounds(InBounds);
2904       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2905         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2906     } else {
2907       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2908       PartPtr = cast<GetElementPtrInst>(
2909           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2910       PartPtr->setIsInBounds(InBounds);
2911     }
2912 
2913     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2914     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2915   };
2916 
2917   // Handle Stores:
2918   if (SI) {
2919     setDebugLocFromInst(Builder, SI);
2920 
2921     for (unsigned Part = 0; Part < UF; ++Part) {
2922       Instruction *NewSI = nullptr;
2923       Value *StoredVal = State.get(StoredValue, Part);
2924       if (CreateGatherScatter) {
2925         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2926         Value *VectorGep = State.get(Addr, Part);
2927         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2928                                             MaskPart);
2929       } else {
2930         if (Reverse) {
2931           // If we store to reverse consecutive memory locations, then we need
2932           // to reverse the order of elements in the stored value.
2933           StoredVal = reverseVector(StoredVal);
2934           // We don't want to update the value in the map as it might be used in
2935           // another expression. So don't call resetVectorValue(StoredVal).
2936         }
2937         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2938         if (isMaskRequired)
2939           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2940                                             BlockInMaskParts[Part]);
2941         else
2942           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2943       }
2944       addMetadata(NewSI, SI);
2945     }
2946     return;
2947   }
2948 
2949   // Handle loads.
2950   assert(LI && "Must have a load instruction");
2951   setDebugLocFromInst(Builder, LI);
2952   for (unsigned Part = 0; Part < UF; ++Part) {
2953     Value *NewLI;
2954     if (CreateGatherScatter) {
2955       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2956       Value *VectorGep = State.get(Addr, Part);
2957       NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
2958                                          nullptr, "wide.masked.gather");
2959       addMetadata(NewLI, LI);
2960     } else {
2961       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2962       if (isMaskRequired)
2963         NewLI = Builder.CreateMaskedLoad(
2964             VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy),
2965             "wide.masked.load");
2966       else
2967         NewLI =
2968             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
2969 
2970       // Add metadata to the load, but setVectorValue to the reverse shuffle.
2971       addMetadata(NewLI, LI);
2972       if (Reverse)
2973         NewLI = reverseVector(NewLI);
2974     }
2975 
2976     State.set(Def, NewLI, Part);
2977   }
2978 }
2979 
2980 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
2981                                                VPUser &User,
2982                                                const VPIteration &Instance,
2983                                                bool IfPredicateInstr,
2984                                                VPTransformState &State) {
2985   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2986 
2987   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2988   // the first lane and part.
2989   if (isa<NoAliasScopeDeclInst>(Instr))
2990     if (!Instance.isFirstIteration())
2991       return;
2992 
2993   setDebugLocFromInst(Builder, Instr);
2994 
2995   // Does this instruction return a value ?
2996   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2997 
2998   Instruction *Cloned = Instr->clone();
2999   if (!IsVoidRetTy)
3000     Cloned->setName(Instr->getName() + ".cloned");
3001 
3002   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3003                                Builder.GetInsertPoint());
3004   // Replace the operands of the cloned instructions with their scalar
3005   // equivalents in the new loop.
3006   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3007     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3008     auto InputInstance = Instance;
3009     if (!Operand || !OrigLoop->contains(Operand) ||
3010         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3011       InputInstance.Lane = VPLane::getFirstLane();
3012     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3013     Cloned->setOperand(op, NewOp);
3014   }
3015   addNewMetadata(Cloned, Instr);
3016 
3017   // Place the cloned scalar in the new loop.
3018   Builder.Insert(Cloned);
3019 
3020   State.set(Def, Cloned, Instance);
3021 
3022   // If we just cloned a new assumption, add it the assumption cache.
3023   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3024     AC->registerAssumption(II);
3025 
3026   // End if-block.
3027   if (IfPredicateInstr)
3028     PredicatedInstructions.push_back(Cloned);
3029 }
3030 
3031 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3032                                                       Value *End, Value *Step,
3033                                                       Instruction *DL) {
3034   BasicBlock *Header = L->getHeader();
3035   BasicBlock *Latch = L->getLoopLatch();
3036   // As we're just creating this loop, it's possible no latch exists
3037   // yet. If so, use the header as this will be a single block loop.
3038   if (!Latch)
3039     Latch = Header;
3040 
3041   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
3042   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3043   setDebugLocFromInst(Builder, OldInst);
3044   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
3045 
3046   Builder.SetInsertPoint(Latch->getTerminator());
3047   setDebugLocFromInst(Builder, OldInst);
3048 
3049   // Create i+1 and fill the PHINode.
3050   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
3051   Induction->addIncoming(Start, L->getLoopPreheader());
3052   Induction->addIncoming(Next, Latch);
3053   // Create the compare.
3054   Value *ICmp = Builder.CreateICmpEQ(Next, End);
3055   Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3056 
3057   // Now we have two terminators. Remove the old one from the block.
3058   Latch->getTerminator()->eraseFromParent();
3059 
3060   return Induction;
3061 }
3062 
3063 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3064   if (TripCount)
3065     return TripCount;
3066 
3067   assert(L && "Create Trip Count for null loop.");
3068   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3069   // Find the loop boundaries.
3070   ScalarEvolution *SE = PSE.getSE();
3071   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3072   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3073          "Invalid loop count");
3074 
3075   Type *IdxTy = Legal->getWidestInductionType();
3076   assert(IdxTy && "No type for induction");
3077 
3078   // The exit count might have the type of i64 while the phi is i32. This can
3079   // happen if we have an induction variable that is sign extended before the
3080   // compare. The only way that we get a backedge taken count is that the
3081   // induction variable was signed and as such will not overflow. In such a case
3082   // truncation is legal.
3083   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3084       IdxTy->getPrimitiveSizeInBits())
3085     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3086   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3087 
3088   // Get the total trip count from the count by adding 1.
3089   const SCEV *ExitCount = SE->getAddExpr(
3090       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3091 
3092   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3093 
3094   // Expand the trip count and place the new instructions in the preheader.
3095   // Notice that the pre-header does not change, only the loop body.
3096   SCEVExpander Exp(*SE, DL, "induction");
3097 
3098   // Count holds the overall loop count (N).
3099   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3100                                 L->getLoopPreheader()->getTerminator());
3101 
3102   if (TripCount->getType()->isPointerTy())
3103     TripCount =
3104         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3105                                     L->getLoopPreheader()->getTerminator());
3106 
3107   return TripCount;
3108 }
3109 
3110 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3111   if (VectorTripCount)
3112     return VectorTripCount;
3113 
3114   Value *TC = getOrCreateTripCount(L);
3115   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3116 
3117   Type *Ty = TC->getType();
3118   // This is where we can make the step a runtime constant.
3119   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3120 
3121   // If the tail is to be folded by masking, round the number of iterations N
3122   // up to a multiple of Step instead of rounding down. This is done by first
3123   // adding Step-1 and then rounding down. Note that it's ok if this addition
3124   // overflows: the vector induction variable will eventually wrap to zero given
3125   // that it starts at zero and its Step is a power of two; the loop will then
3126   // exit, with the last early-exit vector comparison also producing all-true.
3127   if (Cost->foldTailByMasking()) {
3128     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3129            "VF*UF must be a power of 2 when folding tail by masking");
3130     assert(!VF.isScalable() &&
3131            "Tail folding not yet supported for scalable vectors");
3132     TC = Builder.CreateAdd(
3133         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3134   }
3135 
3136   // Now we need to generate the expression for the part of the loop that the
3137   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3138   // iterations are not required for correctness, or N - Step, otherwise. Step
3139   // is equal to the vectorization factor (number of SIMD elements) times the
3140   // unroll factor (number of SIMD instructions).
3141   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3142 
3143   // There are two cases where we need to ensure (at least) the last iteration
3144   // runs in the scalar remainder loop. Thus, if the step evenly divides
3145   // the trip count, we set the remainder to be equal to the step. If the step
3146   // does not evenly divide the trip count, no adjustment is necessary since
3147   // there will already be scalar iterations. Note that the minimum iterations
3148   // check ensures that N >= Step. The cases are:
3149   // 1) If there is a non-reversed interleaved group that may speculatively
3150   //    access memory out-of-bounds.
3151   // 2) If any instruction may follow a conditionally taken exit. That is, if
3152   //    the loop contains multiple exiting blocks, or a single exiting block
3153   //    which is not the latch.
3154   if (VF.isVector() && Cost->requiresScalarEpilogue()) {
3155     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3156     R = Builder.CreateSelect(IsZero, Step, R);
3157   }
3158 
3159   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3160 
3161   return VectorTripCount;
3162 }
3163 
3164 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3165                                                    const DataLayout &DL) {
3166   // Verify that V is a vector type with same number of elements as DstVTy.
3167   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3168   unsigned VF = DstFVTy->getNumElements();
3169   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3170   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3171   Type *SrcElemTy = SrcVecTy->getElementType();
3172   Type *DstElemTy = DstFVTy->getElementType();
3173   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3174          "Vector elements must have same size");
3175 
3176   // Do a direct cast if element types are castable.
3177   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3178     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3179   }
3180   // V cannot be directly casted to desired vector type.
3181   // May happen when V is a floating point vector but DstVTy is a vector of
3182   // pointers or vice-versa. Handle this using a two-step bitcast using an
3183   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3184   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3185          "Only one type should be a pointer type");
3186   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3187          "Only one type should be a floating point type");
3188   Type *IntTy =
3189       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3190   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3191   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3192   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3193 }
3194 
3195 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3196                                                          BasicBlock *Bypass) {
3197   Value *Count = getOrCreateTripCount(L);
3198   // Reuse existing vector loop preheader for TC checks.
3199   // Note that new preheader block is generated for vector loop.
3200   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3201   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3202 
3203   // Generate code to check if the loop's trip count is less than VF * UF, or
3204   // equal to it in case a scalar epilogue is required; this implies that the
3205   // vector trip count is zero. This check also covers the case where adding one
3206   // to the backedge-taken count overflowed leading to an incorrect trip count
3207   // of zero. In this case we will also jump to the scalar loop.
3208   auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
3209                                           : ICmpInst::ICMP_ULT;
3210 
3211   // If tail is to be folded, vector loop takes care of all iterations.
3212   Value *CheckMinIters = Builder.getFalse();
3213   if (!Cost->foldTailByMasking()) {
3214     Value *Step =
3215         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3216     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3217   }
3218   // Create new preheader for vector loop.
3219   LoopVectorPreHeader =
3220       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3221                  "vector.ph");
3222 
3223   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3224                                DT->getNode(Bypass)->getIDom()) &&
3225          "TC check is expected to dominate Bypass");
3226 
3227   // Update dominator for Bypass & LoopExit.
3228   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3229   DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3230 
3231   ReplaceInstWithInst(
3232       TCCheckBlock->getTerminator(),
3233       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3234   LoopBypassBlocks.push_back(TCCheckBlock);
3235 }
3236 
3237 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3238 
3239   BasicBlock *const SCEVCheckBlock =
3240       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3241   if (!SCEVCheckBlock)
3242     return nullptr;
3243 
3244   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3245            (OptForSizeBasedOnProfile &&
3246             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3247          "Cannot SCEV check stride or overflow when optimizing for size");
3248 
3249 
3250   // Update dominator only if this is first RT check.
3251   if (LoopBypassBlocks.empty()) {
3252     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3253     DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3254   }
3255 
3256   LoopBypassBlocks.push_back(SCEVCheckBlock);
3257   AddedSafetyChecks = true;
3258   return SCEVCheckBlock;
3259 }
3260 
3261 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3262                                                       BasicBlock *Bypass) {
3263   // VPlan-native path does not do any analysis for runtime checks currently.
3264   if (EnableVPlanNativePath)
3265     return nullptr;
3266 
3267   BasicBlock *const MemCheckBlock =
3268       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3269 
3270   // Check if we generated code that checks in runtime if arrays overlap. We put
3271   // the checks into a separate block to make the more common case of few
3272   // elements faster.
3273   if (!MemCheckBlock)
3274     return nullptr;
3275 
3276   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3277     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3278            "Cannot emit memory checks when optimizing for size, unless forced "
3279            "to vectorize.");
3280     ORE->emit([&]() {
3281       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3282                                         L->getStartLoc(), L->getHeader())
3283              << "Code-size may be reduced by not forcing "
3284                 "vectorization, or by source-code modifications "
3285                 "eliminating the need for runtime checks "
3286                 "(e.g., adding 'restrict').";
3287     });
3288   }
3289 
3290   LoopBypassBlocks.push_back(MemCheckBlock);
3291 
3292   AddedSafetyChecks = true;
3293 
3294   // We currently don't use LoopVersioning for the actual loop cloning but we
3295   // still use it to add the noalias metadata.
3296   LVer = std::make_unique<LoopVersioning>(
3297       *Legal->getLAI(),
3298       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3299       DT, PSE.getSE());
3300   LVer->prepareNoAliasMetadata();
3301   return MemCheckBlock;
3302 }
3303 
3304 Value *InnerLoopVectorizer::emitTransformedIndex(
3305     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3306     const InductionDescriptor &ID) const {
3307 
3308   SCEVExpander Exp(*SE, DL, "induction");
3309   auto Step = ID.getStep();
3310   auto StartValue = ID.getStartValue();
3311   assert(Index->getType() == Step->getType() &&
3312          "Index type does not match StepValue type");
3313 
3314   // Note: the IR at this point is broken. We cannot use SE to create any new
3315   // SCEV and then expand it, hoping that SCEV's simplification will give us
3316   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3317   // lead to various SCEV crashes. So all we can do is to use builder and rely
3318   // on InstCombine for future simplifications. Here we handle some trivial
3319   // cases only.
3320   auto CreateAdd = [&B](Value *X, Value *Y) {
3321     assert(X->getType() == Y->getType() && "Types don't match!");
3322     if (auto *CX = dyn_cast<ConstantInt>(X))
3323       if (CX->isZero())
3324         return Y;
3325     if (auto *CY = dyn_cast<ConstantInt>(Y))
3326       if (CY->isZero())
3327         return X;
3328     return B.CreateAdd(X, Y);
3329   };
3330 
3331   auto CreateMul = [&B](Value *X, Value *Y) {
3332     assert(X->getType() == Y->getType() && "Types don't match!");
3333     if (auto *CX = dyn_cast<ConstantInt>(X))
3334       if (CX->isOne())
3335         return Y;
3336     if (auto *CY = dyn_cast<ConstantInt>(Y))
3337       if (CY->isOne())
3338         return X;
3339     return B.CreateMul(X, Y);
3340   };
3341 
3342   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3343   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3344   // the DomTree is not kept up-to-date for additional blocks generated in the
3345   // vector loop. By using the header as insertion point, we guarantee that the
3346   // expanded instructions dominate all their uses.
3347   auto GetInsertPoint = [this, &B]() {
3348     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3349     if (InsertBB != LoopVectorBody &&
3350         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3351       return LoopVectorBody->getTerminator();
3352     return &*B.GetInsertPoint();
3353   };
3354 
3355   switch (ID.getKind()) {
3356   case InductionDescriptor::IK_IntInduction: {
3357     assert(Index->getType() == StartValue->getType() &&
3358            "Index type does not match StartValue type");
3359     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3360       return B.CreateSub(StartValue, Index);
3361     auto *Offset = CreateMul(
3362         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3363     return CreateAdd(StartValue, Offset);
3364   }
3365   case InductionDescriptor::IK_PtrInduction: {
3366     assert(isa<SCEVConstant>(Step) &&
3367            "Expected constant step for pointer induction");
3368     return B.CreateGEP(
3369         StartValue->getType()->getPointerElementType(), StartValue,
3370         CreateMul(Index,
3371                   Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())));
3372   }
3373   case InductionDescriptor::IK_FpInduction: {
3374     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3375     auto InductionBinOp = ID.getInductionBinOp();
3376     assert(InductionBinOp &&
3377            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3378             InductionBinOp->getOpcode() == Instruction::FSub) &&
3379            "Original bin op should be defined for FP induction");
3380 
3381     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3382     Value *MulExp = B.CreateFMul(StepValue, Index);
3383     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3384                          "induction");
3385   }
3386   case InductionDescriptor::IK_NoInduction:
3387     return nullptr;
3388   }
3389   llvm_unreachable("invalid enum");
3390 }
3391 
3392 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3393   LoopScalarBody = OrigLoop->getHeader();
3394   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3395   LoopExitBlock = OrigLoop->getUniqueExitBlock();
3396   assert(LoopExitBlock && "Must have an exit block");
3397   assert(LoopVectorPreHeader && "Invalid loop structure");
3398 
3399   LoopMiddleBlock =
3400       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3401                  LI, nullptr, Twine(Prefix) + "middle.block");
3402   LoopScalarPreHeader =
3403       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3404                  nullptr, Twine(Prefix) + "scalar.ph");
3405 
3406   // Set up branch from middle block to the exit and scalar preheader blocks.
3407   // completeLoopSkeleton will update the condition to use an iteration check,
3408   // if required to decide whether to execute the remainder.
3409   BranchInst *BrInst =
3410       BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue());
3411   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3412   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3413   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3414 
3415   // We intentionally don't let SplitBlock to update LoopInfo since
3416   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3417   // LoopVectorBody is explicitly added to the correct place few lines later.
3418   LoopVectorBody =
3419       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3420                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3421 
3422   // Update dominator for loop exit.
3423   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3424 
3425   // Create and register the new vector loop.
3426   Loop *Lp = LI->AllocateLoop();
3427   Loop *ParentLoop = OrigLoop->getParentLoop();
3428 
3429   // Insert the new loop into the loop nest and register the new basic blocks
3430   // before calling any utilities such as SCEV that require valid LoopInfo.
3431   if (ParentLoop) {
3432     ParentLoop->addChildLoop(Lp);
3433   } else {
3434     LI->addTopLevelLoop(Lp);
3435   }
3436   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3437   return Lp;
3438 }
3439 
3440 void InnerLoopVectorizer::createInductionResumeValues(
3441     Loop *L, Value *VectorTripCount,
3442     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3443   assert(VectorTripCount && L && "Expected valid arguments");
3444   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3445           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3446          "Inconsistent information about additional bypass.");
3447   // We are going to resume the execution of the scalar loop.
3448   // Go over all of the induction variables that we found and fix the
3449   // PHIs that are left in the scalar version of the loop.
3450   // The starting values of PHI nodes depend on the counter of the last
3451   // iteration in the vectorized loop.
3452   // If we come from a bypass edge then we need to start from the original
3453   // start value.
3454   for (auto &InductionEntry : Legal->getInductionVars()) {
3455     PHINode *OrigPhi = InductionEntry.first;
3456     InductionDescriptor II = InductionEntry.second;
3457 
3458     // Create phi nodes to merge from the  backedge-taken check block.
3459     PHINode *BCResumeVal =
3460         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3461                         LoopScalarPreHeader->getTerminator());
3462     // Copy original phi DL over to the new one.
3463     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3464     Value *&EndValue = IVEndValues[OrigPhi];
3465     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3466     if (OrigPhi == OldInduction) {
3467       // We know what the end value is.
3468       EndValue = VectorTripCount;
3469     } else {
3470       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3471 
3472       // Fast-math-flags propagate from the original induction instruction.
3473       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3474         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3475 
3476       Type *StepType = II.getStep()->getType();
3477       Instruction::CastOps CastOp =
3478           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3479       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3480       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3481       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3482       EndValue->setName("ind.end");
3483 
3484       // Compute the end value for the additional bypass (if applicable).
3485       if (AdditionalBypass.first) {
3486         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3487         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3488                                          StepType, true);
3489         CRD =
3490             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3491         EndValueFromAdditionalBypass =
3492             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3493         EndValueFromAdditionalBypass->setName("ind.end");
3494       }
3495     }
3496     // The new PHI merges the original incoming value, in case of a bypass,
3497     // or the value at the end of the vectorized loop.
3498     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3499 
3500     // Fix the scalar body counter (PHI node).
3501     // The old induction's phi node in the scalar body needs the truncated
3502     // value.
3503     for (BasicBlock *BB : LoopBypassBlocks)
3504       BCResumeVal->addIncoming(II.getStartValue(), BB);
3505 
3506     if (AdditionalBypass.first)
3507       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3508                                             EndValueFromAdditionalBypass);
3509 
3510     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3511   }
3512 }
3513 
3514 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3515                                                       MDNode *OrigLoopID) {
3516   assert(L && "Expected valid loop.");
3517 
3518   // The trip counts should be cached by now.
3519   Value *Count = getOrCreateTripCount(L);
3520   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3521 
3522   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3523 
3524   // Add a check in the middle block to see if we have completed
3525   // all of the iterations in the first vector loop.
3526   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3527   // If tail is to be folded, we know we don't need to run the remainder.
3528   if (!Cost->foldTailByMasking()) {
3529     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3530                                         Count, VectorTripCount, "cmp.n",
3531                                         LoopMiddleBlock->getTerminator());
3532 
3533     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3534     // of the corresponding compare because they may have ended up with
3535     // different line numbers and we want to avoid awkward line stepping while
3536     // debugging. Eg. if the compare has got a line number inside the loop.
3537     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3538     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3539   }
3540 
3541   // Get ready to start creating new instructions into the vectorized body.
3542   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3543          "Inconsistent vector loop preheader");
3544   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3545 
3546   Optional<MDNode *> VectorizedLoopID =
3547       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3548                                       LLVMLoopVectorizeFollowupVectorized});
3549   if (VectorizedLoopID.hasValue()) {
3550     L->setLoopID(VectorizedLoopID.getValue());
3551 
3552     // Do not setAlreadyVectorized if loop attributes have been defined
3553     // explicitly.
3554     return LoopVectorPreHeader;
3555   }
3556 
3557   // Keep all loop hints from the original loop on the vector loop (we'll
3558   // replace the vectorizer-specific hints below).
3559   if (MDNode *LID = OrigLoop->getLoopID())
3560     L->setLoopID(LID);
3561 
3562   LoopVectorizeHints Hints(L, true, *ORE);
3563   Hints.setAlreadyVectorized();
3564 
3565 #ifdef EXPENSIVE_CHECKS
3566   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3567   LI->verify(*DT);
3568 #endif
3569 
3570   return LoopVectorPreHeader;
3571 }
3572 
3573 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3574   /*
3575    In this function we generate a new loop. The new loop will contain
3576    the vectorized instructions while the old loop will continue to run the
3577    scalar remainder.
3578 
3579        [ ] <-- loop iteration number check.
3580     /   |
3581    /    v
3582   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3583   |  /  |
3584   | /   v
3585   ||   [ ]     <-- vector pre header.
3586   |/    |
3587   |     v
3588   |    [  ] \
3589   |    [  ]_|   <-- vector loop.
3590   |     |
3591   |     v
3592   |   -[ ]   <--- middle-block.
3593   |  /  |
3594   | /   v
3595   -|- >[ ]     <--- new preheader.
3596    |    |
3597    |    v
3598    |   [ ] \
3599    |   [ ]_|   <-- old scalar loop to handle remainder.
3600     \   |
3601      \  v
3602       >[ ]     <-- exit block.
3603    ...
3604    */
3605 
3606   // Get the metadata of the original loop before it gets modified.
3607   MDNode *OrigLoopID = OrigLoop->getLoopID();
3608 
3609   // Create an empty vector loop, and prepare basic blocks for the runtime
3610   // checks.
3611   Loop *Lp = createVectorLoopSkeleton("");
3612 
3613   // Now, compare the new count to zero. If it is zero skip the vector loop and
3614   // jump to the scalar loop. This check also covers the case where the
3615   // backedge-taken count is uint##_max: adding one to it will overflow leading
3616   // to an incorrect trip count of zero. In this (rare) case we will also jump
3617   // to the scalar loop.
3618   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3619 
3620   // Generate the code to check any assumptions that we've made for SCEV
3621   // expressions.
3622   emitSCEVChecks(Lp, LoopScalarPreHeader);
3623 
3624   // Generate the code that checks in runtime if arrays overlap. We put the
3625   // checks into a separate block to make the more common case of few elements
3626   // faster.
3627   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3628 
3629   // Some loops have a single integer induction variable, while other loops
3630   // don't. One example is c++ iterators that often have multiple pointer
3631   // induction variables. In the code below we also support a case where we
3632   // don't have a single induction variable.
3633   //
3634   // We try to obtain an induction variable from the original loop as hard
3635   // as possible. However if we don't find one that:
3636   //   - is an integer
3637   //   - counts from zero, stepping by one
3638   //   - is the size of the widest induction variable type
3639   // then we create a new one.
3640   OldInduction = Legal->getPrimaryInduction();
3641   Type *IdxTy = Legal->getWidestInductionType();
3642   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3643   // The loop step is equal to the vectorization factor (num of SIMD elements)
3644   // times the unroll factor (num of SIMD instructions).
3645   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3646   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3647   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3648   Induction =
3649       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3650                               getDebugLocFromInstOrOperands(OldInduction));
3651 
3652   // Emit phis for the new starting index of the scalar loop.
3653   createInductionResumeValues(Lp, CountRoundDown);
3654 
3655   return completeLoopSkeleton(Lp, OrigLoopID);
3656 }
3657 
3658 // Fix up external users of the induction variable. At this point, we are
3659 // in LCSSA form, with all external PHIs that use the IV having one input value,
3660 // coming from the remainder loop. We need those PHIs to also have a correct
3661 // value for the IV when arriving directly from the middle block.
3662 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3663                                        const InductionDescriptor &II,
3664                                        Value *CountRoundDown, Value *EndValue,
3665                                        BasicBlock *MiddleBlock) {
3666   // There are two kinds of external IV usages - those that use the value
3667   // computed in the last iteration (the PHI) and those that use the penultimate
3668   // value (the value that feeds into the phi from the loop latch).
3669   // We allow both, but they, obviously, have different values.
3670 
3671   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3672 
3673   DenseMap<Value *, Value *> MissingVals;
3674 
3675   // An external user of the last iteration's value should see the value that
3676   // the remainder loop uses to initialize its own IV.
3677   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3678   for (User *U : PostInc->users()) {
3679     Instruction *UI = cast<Instruction>(U);
3680     if (!OrigLoop->contains(UI)) {
3681       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3682       MissingVals[UI] = EndValue;
3683     }
3684   }
3685 
3686   // An external user of the penultimate value need to see EndValue - Step.
3687   // The simplest way to get this is to recompute it from the constituent SCEVs,
3688   // that is Start + (Step * (CRD - 1)).
3689   for (User *U : OrigPhi->users()) {
3690     auto *UI = cast<Instruction>(U);
3691     if (!OrigLoop->contains(UI)) {
3692       const DataLayout &DL =
3693           OrigLoop->getHeader()->getModule()->getDataLayout();
3694       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3695 
3696       IRBuilder<> B(MiddleBlock->getTerminator());
3697 
3698       // Fast-math-flags propagate from the original induction instruction.
3699       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3700         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3701 
3702       Value *CountMinusOne = B.CreateSub(
3703           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3704       Value *CMO =
3705           !II.getStep()->getType()->isIntegerTy()
3706               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3707                              II.getStep()->getType())
3708               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3709       CMO->setName("cast.cmo");
3710       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3711       Escape->setName("ind.escape");
3712       MissingVals[UI] = Escape;
3713     }
3714   }
3715 
3716   for (auto &I : MissingVals) {
3717     PHINode *PHI = cast<PHINode>(I.first);
3718     // One corner case we have to handle is two IVs "chasing" each-other,
3719     // that is %IV2 = phi [...], [ %IV1, %latch ]
3720     // In this case, if IV1 has an external use, we need to avoid adding both
3721     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3722     // don't already have an incoming value for the middle block.
3723     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3724       PHI->addIncoming(I.second, MiddleBlock);
3725   }
3726 }
3727 
3728 namespace {
3729 
3730 struct CSEDenseMapInfo {
3731   static bool canHandle(const Instruction *I) {
3732     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3733            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3734   }
3735 
3736   static inline Instruction *getEmptyKey() {
3737     return DenseMapInfo<Instruction *>::getEmptyKey();
3738   }
3739 
3740   static inline Instruction *getTombstoneKey() {
3741     return DenseMapInfo<Instruction *>::getTombstoneKey();
3742   }
3743 
3744   static unsigned getHashValue(const Instruction *I) {
3745     assert(canHandle(I) && "Unknown instruction!");
3746     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3747                                                            I->value_op_end()));
3748   }
3749 
3750   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3751     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3752         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3753       return LHS == RHS;
3754     return LHS->isIdenticalTo(RHS);
3755   }
3756 };
3757 
3758 } // end anonymous namespace
3759 
3760 ///Perform cse of induction variable instructions.
3761 static void cse(BasicBlock *BB) {
3762   // Perform simple cse.
3763   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3764   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3765     Instruction *In = &*I++;
3766 
3767     if (!CSEDenseMapInfo::canHandle(In))
3768       continue;
3769 
3770     // Check if we can replace this instruction with any of the
3771     // visited instructions.
3772     if (Instruction *V = CSEMap.lookup(In)) {
3773       In->replaceAllUsesWith(V);
3774       In->eraseFromParent();
3775       continue;
3776     }
3777 
3778     CSEMap[In] = In;
3779   }
3780 }
3781 
3782 InstructionCost
3783 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3784                                               bool &NeedToScalarize) const {
3785   Function *F = CI->getCalledFunction();
3786   Type *ScalarRetTy = CI->getType();
3787   SmallVector<Type *, 4> Tys, ScalarTys;
3788   for (auto &ArgOp : CI->arg_operands())
3789     ScalarTys.push_back(ArgOp->getType());
3790 
3791   // Estimate cost of scalarized vector call. The source operands are assumed
3792   // to be vectors, so we need to extract individual elements from there,
3793   // execute VF scalar calls, and then gather the result into the vector return
3794   // value.
3795   InstructionCost ScalarCallCost =
3796       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3797   if (VF.isScalar())
3798     return ScalarCallCost;
3799 
3800   // Compute corresponding vector type for return value and arguments.
3801   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3802   for (Type *ScalarTy : ScalarTys)
3803     Tys.push_back(ToVectorTy(ScalarTy, VF));
3804 
3805   // Compute costs of unpacking argument values for the scalar calls and
3806   // packing the return values to a vector.
3807   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3808 
3809   InstructionCost Cost =
3810       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3811 
3812   // If we can't emit a vector call for this function, then the currently found
3813   // cost is the cost we need to return.
3814   NeedToScalarize = true;
3815   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3816   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3817 
3818   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3819     return Cost;
3820 
3821   // If the corresponding vector cost is cheaper, return its cost.
3822   InstructionCost VectorCallCost =
3823       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3824   if (VectorCallCost < Cost) {
3825     NeedToScalarize = false;
3826     Cost = VectorCallCost;
3827   }
3828   return Cost;
3829 }
3830 
3831 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3832   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3833     return Elt;
3834   return VectorType::get(Elt, VF);
3835 }
3836 
3837 InstructionCost
3838 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3839                                                    ElementCount VF) const {
3840   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3841   assert(ID && "Expected intrinsic call!");
3842   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3843   FastMathFlags FMF;
3844   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3845     FMF = FPMO->getFastMathFlags();
3846 
3847   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3848   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3849   SmallVector<Type *> ParamTys;
3850   std::transform(FTy->param_begin(), FTy->param_end(),
3851                  std::back_inserter(ParamTys),
3852                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3853 
3854   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3855                                     dyn_cast<IntrinsicInst>(CI));
3856   return TTI.getIntrinsicInstrCost(CostAttrs,
3857                                    TargetTransformInfo::TCK_RecipThroughput);
3858 }
3859 
3860 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3861   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3862   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3863   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3864 }
3865 
3866 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3867   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3868   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3869   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3870 }
3871 
3872 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3873   // For every instruction `I` in MinBWs, truncate the operands, create a
3874   // truncated version of `I` and reextend its result. InstCombine runs
3875   // later and will remove any ext/trunc pairs.
3876   SmallPtrSet<Value *, 4> Erased;
3877   for (const auto &KV : Cost->getMinimalBitwidths()) {
3878     // If the value wasn't vectorized, we must maintain the original scalar
3879     // type. The absence of the value from State indicates that it
3880     // wasn't vectorized.
3881     VPValue *Def = State.Plan->getVPValue(KV.first);
3882     if (!State.hasAnyVectorValue(Def))
3883       continue;
3884     for (unsigned Part = 0; Part < UF; ++Part) {
3885       Value *I = State.get(Def, Part);
3886       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3887         continue;
3888       Type *OriginalTy = I->getType();
3889       Type *ScalarTruncatedTy =
3890           IntegerType::get(OriginalTy->getContext(), KV.second);
3891       auto *TruncatedTy = FixedVectorType::get(
3892           ScalarTruncatedTy,
3893           cast<FixedVectorType>(OriginalTy)->getNumElements());
3894       if (TruncatedTy == OriginalTy)
3895         continue;
3896 
3897       IRBuilder<> B(cast<Instruction>(I));
3898       auto ShrinkOperand = [&](Value *V) -> Value * {
3899         if (auto *ZI = dyn_cast<ZExtInst>(V))
3900           if (ZI->getSrcTy() == TruncatedTy)
3901             return ZI->getOperand(0);
3902         return B.CreateZExtOrTrunc(V, TruncatedTy);
3903       };
3904 
3905       // The actual instruction modification depends on the instruction type,
3906       // unfortunately.
3907       Value *NewI = nullptr;
3908       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3909         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3910                              ShrinkOperand(BO->getOperand(1)));
3911 
3912         // Any wrapping introduced by shrinking this operation shouldn't be
3913         // considered undefined behavior. So, we can't unconditionally copy
3914         // arithmetic wrapping flags to NewI.
3915         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3916       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3917         NewI =
3918             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3919                          ShrinkOperand(CI->getOperand(1)));
3920       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3921         NewI = B.CreateSelect(SI->getCondition(),
3922                               ShrinkOperand(SI->getTrueValue()),
3923                               ShrinkOperand(SI->getFalseValue()));
3924       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3925         switch (CI->getOpcode()) {
3926         default:
3927           llvm_unreachable("Unhandled cast!");
3928         case Instruction::Trunc:
3929           NewI = ShrinkOperand(CI->getOperand(0));
3930           break;
3931         case Instruction::SExt:
3932           NewI = B.CreateSExtOrTrunc(
3933               CI->getOperand(0),
3934               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3935           break;
3936         case Instruction::ZExt:
3937           NewI = B.CreateZExtOrTrunc(
3938               CI->getOperand(0),
3939               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3940           break;
3941         }
3942       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3943         auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType())
3944                              ->getNumElements();
3945         auto *O0 = B.CreateZExtOrTrunc(
3946             SI->getOperand(0),
3947             FixedVectorType::get(ScalarTruncatedTy, Elements0));
3948         auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType())
3949                              ->getNumElements();
3950         auto *O1 = B.CreateZExtOrTrunc(
3951             SI->getOperand(1),
3952             FixedVectorType::get(ScalarTruncatedTy, Elements1));
3953 
3954         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3955       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3956         // Don't do anything with the operands, just extend the result.
3957         continue;
3958       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3959         auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType())
3960                             ->getNumElements();
3961         auto *O0 = B.CreateZExtOrTrunc(
3962             IE->getOperand(0),
3963             FixedVectorType::get(ScalarTruncatedTy, Elements));
3964         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3965         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3966       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3967         auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType())
3968                             ->getNumElements();
3969         auto *O0 = B.CreateZExtOrTrunc(
3970             EE->getOperand(0),
3971             FixedVectorType::get(ScalarTruncatedTy, Elements));
3972         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3973       } else {
3974         // If we don't know what to do, be conservative and don't do anything.
3975         continue;
3976       }
3977 
3978       // Lastly, extend the result.
3979       NewI->takeName(cast<Instruction>(I));
3980       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3981       I->replaceAllUsesWith(Res);
3982       cast<Instruction>(I)->eraseFromParent();
3983       Erased.insert(I);
3984       State.reset(Def, Res, Part);
3985     }
3986   }
3987 
3988   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3989   for (const auto &KV : Cost->getMinimalBitwidths()) {
3990     // If the value wasn't vectorized, we must maintain the original scalar
3991     // type. The absence of the value from State indicates that it
3992     // wasn't vectorized.
3993     VPValue *Def = State.Plan->getVPValue(KV.first);
3994     if (!State.hasAnyVectorValue(Def))
3995       continue;
3996     for (unsigned Part = 0; Part < UF; ++Part) {
3997       Value *I = State.get(Def, Part);
3998       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3999       if (Inst && Inst->use_empty()) {
4000         Value *NewI = Inst->getOperand(0);
4001         Inst->eraseFromParent();
4002         State.reset(Def, NewI, Part);
4003       }
4004     }
4005   }
4006 }
4007 
4008 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4009   // Insert truncates and extends for any truncated instructions as hints to
4010   // InstCombine.
4011   if (VF.isVector())
4012     truncateToMinimalBitwidths(State);
4013 
4014   // Fix widened non-induction PHIs by setting up the PHI operands.
4015   if (OrigPHIsToFix.size()) {
4016     assert(EnableVPlanNativePath &&
4017            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4018     fixNonInductionPHIs(State);
4019   }
4020 
4021   // At this point every instruction in the original loop is widened to a
4022   // vector form. Now we need to fix the recurrences in the loop. These PHI
4023   // nodes are currently empty because we did not want to introduce cycles.
4024   // This is the second stage of vectorizing recurrences.
4025   fixCrossIterationPHIs(State);
4026 
4027   // Forget the original basic block.
4028   PSE.getSE()->forgetLoop(OrigLoop);
4029 
4030   // Fix-up external users of the induction variables.
4031   for (auto &Entry : Legal->getInductionVars())
4032     fixupIVUsers(Entry.first, Entry.second,
4033                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4034                  IVEndValues[Entry.first], LoopMiddleBlock);
4035 
4036   fixLCSSAPHIs(State);
4037   for (Instruction *PI : PredicatedInstructions)
4038     sinkScalarOperands(&*PI);
4039 
4040   // Remove redundant induction instructions.
4041   cse(LoopVectorBody);
4042 
4043   // Set/update profile weights for the vector and remainder loops as original
4044   // loop iterations are now distributed among them. Note that original loop
4045   // represented by LoopScalarBody becomes remainder loop after vectorization.
4046   //
4047   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4048   // end up getting slightly roughened result but that should be OK since
4049   // profile is not inherently precise anyway. Note also possible bypass of
4050   // vector code caused by legality checks is ignored, assigning all the weight
4051   // to the vector loop, optimistically.
4052   //
4053   // For scalable vectorization we can't know at compile time how many iterations
4054   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4055   // vscale of '1'.
4056   setProfileInfoAfterUnrolling(
4057       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4058       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4059 }
4060 
4061 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4062   // In order to support recurrences we need to be able to vectorize Phi nodes.
4063   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4064   // stage #2: We now need to fix the recurrences by adding incoming edges to
4065   // the currently empty PHI nodes. At this point every instruction in the
4066   // original loop is widened to a vector form so we can use them to construct
4067   // the incoming edges.
4068   for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
4069     // Handle first-order recurrences and reductions that need to be fixed.
4070     if (Legal->isFirstOrderRecurrence(&Phi))
4071       fixFirstOrderRecurrence(&Phi, State);
4072     else if (Legal->isReductionVariable(&Phi))
4073       fixReduction(&Phi, State);
4074   }
4075 }
4076 
4077 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi,
4078                                                   VPTransformState &State) {
4079   // This is the second phase of vectorizing first-order recurrences. An
4080   // overview of the transformation is described below. Suppose we have the
4081   // following loop.
4082   //
4083   //   for (int i = 0; i < n; ++i)
4084   //     b[i] = a[i] - a[i - 1];
4085   //
4086   // There is a first-order recurrence on "a". For this loop, the shorthand
4087   // scalar IR looks like:
4088   //
4089   //   scalar.ph:
4090   //     s_init = a[-1]
4091   //     br scalar.body
4092   //
4093   //   scalar.body:
4094   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4095   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4096   //     s2 = a[i]
4097   //     b[i] = s2 - s1
4098   //     br cond, scalar.body, ...
4099   //
4100   // In this example, s1 is a recurrence because it's value depends on the
4101   // previous iteration. In the first phase of vectorization, we created a
4102   // temporary value for s1. We now complete the vectorization and produce the
4103   // shorthand vector IR shown below (for VF = 4, UF = 1).
4104   //
4105   //   vector.ph:
4106   //     v_init = vector(..., ..., ..., a[-1])
4107   //     br vector.body
4108   //
4109   //   vector.body
4110   //     i = phi [0, vector.ph], [i+4, vector.body]
4111   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4112   //     v2 = a[i, i+1, i+2, i+3];
4113   //     v3 = vector(v1(3), v2(0, 1, 2))
4114   //     b[i, i+1, i+2, i+3] = v2 - v3
4115   //     br cond, vector.body, middle.block
4116   //
4117   //   middle.block:
4118   //     x = v2(3)
4119   //     br scalar.ph
4120   //
4121   //   scalar.ph:
4122   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4123   //     br scalar.body
4124   //
4125   // After execution completes the vector loop, we extract the next value of
4126   // the recurrence (x) to use as the initial value in the scalar loop.
4127 
4128   // Get the original loop preheader and single loop latch.
4129   auto *Preheader = OrigLoop->getLoopPreheader();
4130   auto *Latch = OrigLoop->getLoopLatch();
4131 
4132   // Get the initial and previous values of the scalar recurrence.
4133   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
4134   auto *Previous = Phi->getIncomingValueForBlock(Latch);
4135 
4136   // Create a vector from the initial value.
4137   auto *VectorInit = ScalarInit;
4138   if (VF.isVector()) {
4139     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4140     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
4141     VectorInit = Builder.CreateInsertElement(
4142         PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
4143         Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init");
4144   }
4145 
4146   VPValue *PhiDef = State.Plan->getVPValue(Phi);
4147   VPValue *PreviousDef = State.Plan->getVPValue(Previous);
4148   // We constructed a temporary phi node in the first phase of vectorization.
4149   // This phi node will eventually be deleted.
4150   Builder.SetInsertPoint(cast<Instruction>(State.get(PhiDef, 0)));
4151 
4152   // Create a phi node for the new recurrence. The current value will either be
4153   // the initial value inserted into a vector or loop-varying vector value.
4154   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
4155   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
4156 
4157   // Get the vectorized previous value of the last part UF - 1. It appears last
4158   // among all unrolled iterations, due to the order of their construction.
4159   Value *PreviousLastPart = State.get(PreviousDef, UF - 1);
4160 
4161   // Find and set the insertion point after the previous value if it is an
4162   // instruction.
4163   BasicBlock::iterator InsertPt;
4164   // Note that the previous value may have been constant-folded so it is not
4165   // guaranteed to be an instruction in the vector loop.
4166   // FIXME: Loop invariant values do not form recurrences. We should deal with
4167   //        them earlier.
4168   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart))
4169     InsertPt = LoopVectorBody->getFirstInsertionPt();
4170   else {
4171     Instruction *PreviousInst = cast<Instruction>(PreviousLastPart);
4172     if (isa<PHINode>(PreviousLastPart))
4173       // If the previous value is a phi node, we should insert after all the phi
4174       // nodes in the block containing the PHI to avoid breaking basic block
4175       // verification. Note that the basic block may be different to
4176       // LoopVectorBody, in case we predicate the loop.
4177       InsertPt = PreviousInst->getParent()->getFirstInsertionPt();
4178     else
4179       InsertPt = ++PreviousInst->getIterator();
4180   }
4181   Builder.SetInsertPoint(&*InsertPt);
4182 
4183   // We will construct a vector for the recurrence by combining the values for
4184   // the current and previous iterations. This is the required shuffle mask.
4185   assert(!VF.isScalable());
4186   SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue());
4187   ShuffleMask[0] = VF.getKnownMinValue() - 1;
4188   for (unsigned I = 1; I < VF.getKnownMinValue(); ++I)
4189     ShuffleMask[I] = I + VF.getKnownMinValue() - 1;
4190 
4191   // The vector from which to take the initial value for the current iteration
4192   // (actual or unrolled). Initially, this is the vector phi node.
4193   Value *Incoming = VecPhi;
4194 
4195   // Shuffle the current and previous vector and update the vector parts.
4196   for (unsigned Part = 0; Part < UF; ++Part) {
4197     Value *PreviousPart = State.get(PreviousDef, Part);
4198     Value *PhiPart = State.get(PhiDef, Part);
4199     auto *Shuffle =
4200         VF.isVector()
4201             ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask)
4202             : Incoming;
4203     PhiPart->replaceAllUsesWith(Shuffle);
4204     cast<Instruction>(PhiPart)->eraseFromParent();
4205     State.reset(PhiDef, Shuffle, Part);
4206     Incoming = PreviousPart;
4207   }
4208 
4209   // Fix the latch value of the new recurrence in the vector loop.
4210   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4211 
4212   // Extract the last vector element in the middle block. This will be the
4213   // initial value for the recurrence when jumping to the scalar loop.
4214   auto *ExtractForScalar = Incoming;
4215   if (VF.isVector()) {
4216     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4217     ExtractForScalar = Builder.CreateExtractElement(
4218         ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1),
4219         "vector.recur.extract");
4220   }
4221   // Extract the second last element in the middle block if the
4222   // Phi is used outside the loop. We need to extract the phi itself
4223   // and not the last element (the phi update in the current iteration). This
4224   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4225   // when the scalar loop is not run at all.
4226   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4227   if (VF.isVector())
4228     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4229         Incoming, Builder.getInt32(VF.getKnownMinValue() - 2),
4230         "vector.recur.extract.for.phi");
4231   // When loop is unrolled without vectorizing, initialize
4232   // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
4233   // `Incoming`. This is analogous to the vectorized case above: extracting the
4234   // second last element when VF > 1.
4235   else if (UF > 1)
4236     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4237 
4238   // Fix the initial value of the original recurrence in the scalar loop.
4239   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4240   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4241   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4242     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4243     Start->addIncoming(Incoming, BB);
4244   }
4245 
4246   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4247   Phi->setName("scalar.recur");
4248 
4249   // Finally, fix users of the recurrence outside the loop. The users will need
4250   // either the last value of the scalar recurrence or the last value of the
4251   // vector recurrence we extracted in the middle block. Since the loop is in
4252   // LCSSA form, we just need to find all the phi nodes for the original scalar
4253   // recurrence in the exit block, and then add an edge for the middle block.
4254   // Note that LCSSA does not imply single entry when the original scalar loop
4255   // had multiple exiting edges (as we always run the last iteration in the
4256   // scalar epilogue); in that case, the exiting path through middle will be
4257   // dynamically dead and the value picked for the phi doesn't matter.
4258   for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4259     if (any_of(LCSSAPhi.incoming_values(),
4260                [Phi](Value *V) { return V == Phi; }))
4261       LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4262 }
4263 
4264 static bool useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4265   return EnableStrictReductions && RdxDesc.isOrdered();
4266 }
4267 
4268 void InnerLoopVectorizer::fixReduction(PHINode *Phi, VPTransformState &State) {
4269   // Get it's reduction variable descriptor.
4270   assert(Legal->isReductionVariable(Phi) &&
4271          "Unable to find the reduction variable");
4272   RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi];
4273 
4274   RecurKind RK = RdxDesc.getRecurrenceKind();
4275   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4276   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4277   setDebugLocFromInst(Builder, ReductionStartValue);
4278   bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi);
4279 
4280   VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst);
4281   // This is the vector-clone of the value that leaves the loop.
4282   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4283 
4284   // Wrap flags are in general invalid after vectorization, clear them.
4285   clearReductionWrapFlags(RdxDesc, State);
4286 
4287   // Fix the vector-loop phi.
4288 
4289   // Reductions do not have to start at zero. They can start with
4290   // any loop invariant values.
4291   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
4292   Value *OrigLoopVal = Phi->getIncomingValueForBlock(OrigLatch);
4293   BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4294 
4295   bool IsOrdered = State.VF.isVector() && IsInLoopReductionPhi &&
4296                    useOrderedReductions(RdxDesc);
4297 
4298   for (unsigned Part = 0; Part < UF; ++Part) {
4299     if (IsOrdered && Part > 0)
4300       break;
4301     Value *VecRdxPhi = State.get(State.Plan->getVPValue(Phi), Part);
4302     Value *Val = State.get(State.Plan->getVPValue(OrigLoopVal), Part);
4303     if (IsOrdered)
4304       Val = State.get(State.Plan->getVPValue(OrigLoopVal), UF - 1);
4305     cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch);
4306   }
4307 
4308   // Before each round, move the insertion point right between
4309   // the PHIs and the values we are going to write.
4310   // This allows us to write both PHINodes and the extractelement
4311   // instructions.
4312   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4313 
4314   setDebugLocFromInst(Builder, LoopExitInst);
4315 
4316   Type *PhiTy = Phi->getType();
4317   // If tail is folded by masking, the vector value to leave the loop should be
4318   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4319   // instead of the former. For an inloop reduction the reduction will already
4320   // be predicated, and does not need to be handled here.
4321   if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) {
4322     for (unsigned Part = 0; Part < UF; ++Part) {
4323       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4324       Value *Sel = nullptr;
4325       for (User *U : VecLoopExitInst->users()) {
4326         if (isa<SelectInst>(U)) {
4327           assert(!Sel && "Reduction exit feeding two selects");
4328           Sel = U;
4329         } else
4330           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4331       }
4332       assert(Sel && "Reduction exit feeds no select");
4333       State.reset(LoopExitInstDef, Sel, Part);
4334 
4335       // If the target can create a predicated operator for the reduction at no
4336       // extra cost in the loop (for example a predicated vadd), it can be
4337       // cheaper for the select to remain in the loop than be sunk out of it,
4338       // and so use the select value for the phi instead of the old
4339       // LoopExitValue.
4340       if (PreferPredicatedReductionSelect ||
4341           TTI->preferPredicatedReductionSelect(
4342               RdxDesc.getOpcode(), PhiTy,
4343               TargetTransformInfo::ReductionFlags())) {
4344         auto *VecRdxPhi =
4345             cast<PHINode>(State.get(State.Plan->getVPValue(Phi), Part));
4346         VecRdxPhi->setIncomingValueForBlock(
4347             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4348       }
4349     }
4350   }
4351 
4352   // If the vector reduction can be performed in a smaller type, we truncate
4353   // then extend the loop exit value to enable InstCombine to evaluate the
4354   // entire expression in the smaller type.
4355   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4356     assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!");
4357     assert(!VF.isScalable() && "scalable vectors not yet supported.");
4358     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4359     Builder.SetInsertPoint(
4360         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4361     VectorParts RdxParts(UF);
4362     for (unsigned Part = 0; Part < UF; ++Part) {
4363       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4364       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4365       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4366                                         : Builder.CreateZExt(Trunc, VecTy);
4367       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4368            UI != RdxParts[Part]->user_end();)
4369         if (*UI != Trunc) {
4370           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4371           RdxParts[Part] = Extnd;
4372         } else {
4373           ++UI;
4374         }
4375     }
4376     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4377     for (unsigned Part = 0; Part < UF; ++Part) {
4378       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4379       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4380     }
4381   }
4382 
4383   // Reduce all of the unrolled parts into a single vector.
4384   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4385   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4386 
4387   // The middle block terminator has already been assigned a DebugLoc here (the
4388   // OrigLoop's single latch terminator). We want the whole middle block to
4389   // appear to execute on this line because: (a) it is all compiler generated,
4390   // (b) these instructions are always executed after evaluating the latch
4391   // conditional branch, and (c) other passes may add new predecessors which
4392   // terminate on this line. This is the easiest way to ensure we don't
4393   // accidentally cause an extra step back into the loop while debugging.
4394   setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator());
4395   if (IsOrdered)
4396     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4397   else {
4398     // Floating-point operations should have some FMF to enable the reduction.
4399     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4400     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4401     for (unsigned Part = 1; Part < UF; ++Part) {
4402       Value *RdxPart = State.get(LoopExitInstDef, Part);
4403       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4404         ReducedPartRdx = Builder.CreateBinOp(
4405             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4406       } else {
4407         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4408       }
4409     }
4410   }
4411 
4412   // Create the reduction after the loop. Note that inloop reductions create the
4413   // target reduction in the loop using a Reduction recipe.
4414   if (VF.isVector() && !IsInLoopReductionPhi) {
4415     ReducedPartRdx =
4416         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4417     // If the reduction can be performed in a smaller type, we need to extend
4418     // the reduction to the wider type before we branch to the original loop.
4419     if (PhiTy != RdxDesc.getRecurrenceType())
4420       ReducedPartRdx = RdxDesc.isSigned()
4421                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4422                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4423   }
4424 
4425   // Create a phi node that merges control-flow from the backedge-taken check
4426   // block and the middle block.
4427   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4428                                         LoopScalarPreHeader->getTerminator());
4429   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4430     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4431   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4432 
4433   // Now, we need to fix the users of the reduction variable
4434   // inside and outside of the scalar remainder loop.
4435 
4436   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4437   // in the exit blocks.  See comment on analogous loop in
4438   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4439   for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4440     if (any_of(LCSSAPhi.incoming_values(),
4441                [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4442       LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4443 
4444   // Fix the scalar loop reduction variable with the incoming reduction sum
4445   // from the vector body and from the backedge value.
4446   int IncomingEdgeBlockIdx =
4447     Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4448   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4449   // Pick the other block.
4450   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4451   Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4452   Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4453 }
4454 
4455 void InnerLoopVectorizer::clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc,
4456                                                   VPTransformState &State) {
4457   RecurKind RK = RdxDesc.getRecurrenceKind();
4458   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4459     return;
4460 
4461   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4462   assert(LoopExitInstr && "null loop exit instruction");
4463   SmallVector<Instruction *, 8> Worklist;
4464   SmallPtrSet<Instruction *, 8> Visited;
4465   Worklist.push_back(LoopExitInstr);
4466   Visited.insert(LoopExitInstr);
4467 
4468   while (!Worklist.empty()) {
4469     Instruction *Cur = Worklist.pop_back_val();
4470     if (isa<OverflowingBinaryOperator>(Cur))
4471       for (unsigned Part = 0; Part < UF; ++Part) {
4472         Value *V = State.get(State.Plan->getVPValue(Cur), Part);
4473         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4474       }
4475 
4476     for (User *U : Cur->users()) {
4477       Instruction *UI = cast<Instruction>(U);
4478       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4479           Visited.insert(UI).second)
4480         Worklist.push_back(UI);
4481     }
4482   }
4483 }
4484 
4485 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4486   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4487     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4488       // Some phis were already hand updated by the reduction and recurrence
4489       // code above, leave them alone.
4490       continue;
4491 
4492     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4493     // Non-instruction incoming values will have only one value.
4494 
4495     VPLane Lane = VPLane::getFirstLane();
4496     if (isa<Instruction>(IncomingValue) &&
4497         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4498                                            VF))
4499       Lane = VPLane::getLastLaneForVF(VF);
4500 
4501     // Can be a loop invariant incoming value or the last scalar value to be
4502     // extracted from the vectorized loop.
4503     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4504     Value *lastIncomingValue =
4505         OrigLoop->isLoopInvariant(IncomingValue)
4506             ? IncomingValue
4507             : State.get(State.Plan->getVPValue(IncomingValue),
4508                         VPIteration(UF - 1, Lane));
4509     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4510   }
4511 }
4512 
4513 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4514   // The basic block and loop containing the predicated instruction.
4515   auto *PredBB = PredInst->getParent();
4516   auto *VectorLoop = LI->getLoopFor(PredBB);
4517 
4518   // Initialize a worklist with the operands of the predicated instruction.
4519   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4520 
4521   // Holds instructions that we need to analyze again. An instruction may be
4522   // reanalyzed if we don't yet know if we can sink it or not.
4523   SmallVector<Instruction *, 8> InstsToReanalyze;
4524 
4525   // Returns true if a given use occurs in the predicated block. Phi nodes use
4526   // their operands in their corresponding predecessor blocks.
4527   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4528     auto *I = cast<Instruction>(U.getUser());
4529     BasicBlock *BB = I->getParent();
4530     if (auto *Phi = dyn_cast<PHINode>(I))
4531       BB = Phi->getIncomingBlock(
4532           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4533     return BB == PredBB;
4534   };
4535 
4536   // Iteratively sink the scalarized operands of the predicated instruction
4537   // into the block we created for it. When an instruction is sunk, it's
4538   // operands are then added to the worklist. The algorithm ends after one pass
4539   // through the worklist doesn't sink a single instruction.
4540   bool Changed;
4541   do {
4542     // Add the instructions that need to be reanalyzed to the worklist, and
4543     // reset the changed indicator.
4544     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4545     InstsToReanalyze.clear();
4546     Changed = false;
4547 
4548     while (!Worklist.empty()) {
4549       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4550 
4551       // We can't sink an instruction if it is a phi node, is already in the
4552       // predicated block, is not in the loop, or may have side effects.
4553       if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4554           !VectorLoop->contains(I) || I->mayHaveSideEffects())
4555         continue;
4556 
4557       // It's legal to sink the instruction if all its uses occur in the
4558       // predicated block. Otherwise, there's nothing to do yet, and we may
4559       // need to reanalyze the instruction.
4560       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4561         InstsToReanalyze.push_back(I);
4562         continue;
4563       }
4564 
4565       // Move the instruction to the beginning of the predicated block, and add
4566       // it's operands to the worklist.
4567       I->moveBefore(&*PredBB->getFirstInsertionPt());
4568       Worklist.insert(I->op_begin(), I->op_end());
4569 
4570       // The sinking may have enabled other instructions to be sunk, so we will
4571       // need to iterate.
4572       Changed = true;
4573     }
4574   } while (Changed);
4575 }
4576 
4577 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4578   for (PHINode *OrigPhi : OrigPHIsToFix) {
4579     VPWidenPHIRecipe *VPPhi =
4580         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4581     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4582     // Make sure the builder has a valid insert point.
4583     Builder.SetInsertPoint(NewPhi);
4584     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4585       VPValue *Inc = VPPhi->getIncomingValue(i);
4586       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4587       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4588     }
4589   }
4590 }
4591 
4592 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4593                                    VPUser &Operands, unsigned UF,
4594                                    ElementCount VF, bool IsPtrLoopInvariant,
4595                                    SmallBitVector &IsIndexLoopInvariant,
4596                                    VPTransformState &State) {
4597   // Construct a vector GEP by widening the operands of the scalar GEP as
4598   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4599   // results in a vector of pointers when at least one operand of the GEP
4600   // is vector-typed. Thus, to keep the representation compact, we only use
4601   // vector-typed operands for loop-varying values.
4602 
4603   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4604     // If we are vectorizing, but the GEP has only loop-invariant operands,
4605     // the GEP we build (by only using vector-typed operands for
4606     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4607     // produce a vector of pointers, we need to either arbitrarily pick an
4608     // operand to broadcast, or broadcast a clone of the original GEP.
4609     // Here, we broadcast a clone of the original.
4610     //
4611     // TODO: If at some point we decide to scalarize instructions having
4612     //       loop-invariant operands, this special case will no longer be
4613     //       required. We would add the scalarization decision to
4614     //       collectLoopScalars() and teach getVectorValue() to broadcast
4615     //       the lane-zero scalar value.
4616     auto *Clone = Builder.Insert(GEP->clone());
4617     for (unsigned Part = 0; Part < UF; ++Part) {
4618       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4619       State.set(VPDef, EntryPart, Part);
4620       addMetadata(EntryPart, GEP);
4621     }
4622   } else {
4623     // If the GEP has at least one loop-varying operand, we are sure to
4624     // produce a vector of pointers. But if we are only unrolling, we want
4625     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4626     // produce with the code below will be scalar (if VF == 1) or vector
4627     // (otherwise). Note that for the unroll-only case, we still maintain
4628     // values in the vector mapping with initVector, as we do for other
4629     // instructions.
4630     for (unsigned Part = 0; Part < UF; ++Part) {
4631       // The pointer operand of the new GEP. If it's loop-invariant, we
4632       // won't broadcast it.
4633       auto *Ptr = IsPtrLoopInvariant
4634                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4635                       : State.get(Operands.getOperand(0), Part);
4636 
4637       // Collect all the indices for the new GEP. If any index is
4638       // loop-invariant, we won't broadcast it.
4639       SmallVector<Value *, 4> Indices;
4640       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4641         VPValue *Operand = Operands.getOperand(I);
4642         if (IsIndexLoopInvariant[I - 1])
4643           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4644         else
4645           Indices.push_back(State.get(Operand, Part));
4646       }
4647 
4648       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4649       // but it should be a vector, otherwise.
4650       auto *NewGEP =
4651           GEP->isInBounds()
4652               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4653                                           Indices)
4654               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4655       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4656              "NewGEP is not a pointer vector");
4657       State.set(VPDef, NewGEP, Part);
4658       addMetadata(NewGEP, GEP);
4659     }
4660   }
4661 }
4662 
4663 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4664                                               RecurrenceDescriptor *RdxDesc,
4665                                               VPWidenPHIRecipe *PhiR,
4666                                               VPTransformState &State) {
4667   PHINode *P = cast<PHINode>(PN);
4668   if (EnableVPlanNativePath) {
4669     // Currently we enter here in the VPlan-native path for non-induction
4670     // PHIs where all control flow is uniform. We simply widen these PHIs.
4671     // Create a vector phi with no operands - the vector phi operands will be
4672     // set at the end of vector code generation.
4673     Type *VecTy = (State.VF.isScalar())
4674                       ? PN->getType()
4675                       : VectorType::get(PN->getType(), State.VF);
4676     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4677     State.set(PhiR, VecPhi, 0);
4678     OrigPHIsToFix.push_back(P);
4679 
4680     return;
4681   }
4682 
4683   assert(PN->getParent() == OrigLoop->getHeader() &&
4684          "Non-header phis should have been handled elsewhere");
4685 
4686   VPValue *StartVPV = PhiR->getStartValue();
4687   Value *StartV = StartVPV ? StartVPV->getLiveInIRValue() : nullptr;
4688   // In order to support recurrences we need to be able to vectorize Phi nodes.
4689   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4690   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4691   // this value when we vectorize all of the instructions that use the PHI.
4692   if (RdxDesc || Legal->isFirstOrderRecurrence(P)) {
4693     Value *Iden = nullptr;
4694     bool ScalarPHI =
4695         (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN));
4696     Type *VecTy =
4697         ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF);
4698 
4699     if (RdxDesc) {
4700       assert(Legal->isReductionVariable(P) && StartV &&
4701              "RdxDesc should only be set for reduction variables; in that case "
4702              "a StartV is also required");
4703       RecurKind RK = RdxDesc->getRecurrenceKind();
4704       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) {
4705         // MinMax reduction have the start value as their identify.
4706         if (ScalarPHI) {
4707           Iden = StartV;
4708         } else {
4709           IRBuilderBase::InsertPointGuard IPBuilder(Builder);
4710           Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4711           StartV = Iden =
4712               Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
4713         }
4714       } else {
4715         Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity(
4716             RK, VecTy->getScalarType(), RdxDesc->getFastMathFlags());
4717         Iden = IdenC;
4718 
4719         if (!ScalarPHI) {
4720           Iden = ConstantVector::getSplat(State.VF, IdenC);
4721           IRBuilderBase::InsertPointGuard IPBuilder(Builder);
4722           Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4723           Constant *Zero = Builder.getInt32(0);
4724           StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
4725         }
4726       }
4727     }
4728 
4729     bool IsOrdered = State.VF.isVector() &&
4730                      Cost->isInLoopReduction(cast<PHINode>(PN)) &&
4731                      useOrderedReductions(*RdxDesc);
4732 
4733     for (unsigned Part = 0; Part < State.UF; ++Part) {
4734       // This is phase one of vectorizing PHIs.
4735       if (Part > 0 && IsOrdered)
4736         return;
4737       Value *EntryPart = PHINode::Create(
4738           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4739       State.set(PhiR, EntryPart, Part);
4740       if (StartV) {
4741         // Make sure to add the reduction start value only to the
4742         // first unroll part.
4743         Value *StartVal = (Part == 0) ? StartV : Iden;
4744         cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader);
4745       }
4746     }
4747     return;
4748   }
4749 
4750   assert(!Legal->isReductionVariable(P) &&
4751          "reductions should be handled above");
4752 
4753   setDebugLocFromInst(Builder, P);
4754 
4755   // This PHINode must be an induction variable.
4756   // Make sure that we know about it.
4757   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4758 
4759   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4760   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4761 
4762   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4763   // which can be found from the original scalar operations.
4764   switch (II.getKind()) {
4765   case InductionDescriptor::IK_NoInduction:
4766     llvm_unreachable("Unknown induction");
4767   case InductionDescriptor::IK_IntInduction:
4768   case InductionDescriptor::IK_FpInduction:
4769     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4770   case InductionDescriptor::IK_PtrInduction: {
4771     // Handle the pointer induction variable case.
4772     assert(P->getType()->isPointerTy() && "Unexpected type.");
4773 
4774     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4775       // This is the normalized GEP that starts counting at zero.
4776       Value *PtrInd =
4777           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4778       // Determine the number of scalars we need to generate for each unroll
4779       // iteration. If the instruction is uniform, we only need to generate the
4780       // first lane. Otherwise, we generate all VF values.
4781       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4782       assert((IsUniform || !VF.isScalable()) &&
4783              "Currently unsupported for scalable vectors");
4784       unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
4785 
4786       for (unsigned Part = 0; Part < UF; ++Part) {
4787         Value *PartStart = createStepForVF(
4788             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4789         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4790           Value *Idx = Builder.CreateAdd(
4791               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4792           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4793           Value *SclrGep =
4794               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4795           SclrGep->setName("next.gep");
4796           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4797         }
4798       }
4799       return;
4800     }
4801     assert(isa<SCEVConstant>(II.getStep()) &&
4802            "Induction step not a SCEV constant!");
4803     Type *PhiType = II.getStep()->getType();
4804 
4805     // Build a pointer phi
4806     Value *ScalarStartValue = II.getStartValue();
4807     Type *ScStValueType = ScalarStartValue->getType();
4808     PHINode *NewPointerPhi =
4809         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4810     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4811 
4812     // A pointer induction, performed by using a gep
4813     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4814     Instruction *InductionLoc = LoopLatch->getTerminator();
4815     const SCEV *ScalarStep = II.getStep();
4816     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4817     Value *ScalarStepValue =
4818         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4819     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4820     Value *NumUnrolledElems =
4821         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4822     Value *InductionGEP = GetElementPtrInst::Create(
4823         ScStValueType->getPointerElementType(), NewPointerPhi,
4824         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4825         InductionLoc);
4826     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4827 
4828     // Create UF many actual address geps that use the pointer
4829     // phi as base and a vectorized version of the step value
4830     // (<step*0, ..., step*N>) as offset.
4831     for (unsigned Part = 0; Part < State.UF; ++Part) {
4832       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4833       Value *StartOffsetScalar =
4834           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4835       Value *StartOffset =
4836           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4837       // Create a vector of consecutive numbers from zero to VF.
4838       StartOffset =
4839           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4840 
4841       Value *GEP = Builder.CreateGEP(
4842           ScStValueType->getPointerElementType(), NewPointerPhi,
4843           Builder.CreateMul(
4844               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4845               "vector.gep"));
4846       State.set(PhiR, GEP, Part);
4847     }
4848   }
4849   }
4850 }
4851 
4852 /// A helper function for checking whether an integer division-related
4853 /// instruction may divide by zero (in which case it must be predicated if
4854 /// executed conditionally in the scalar code).
4855 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4856 /// Non-zero divisors that are non compile-time constants will not be
4857 /// converted into multiplication, so we will still end up scalarizing
4858 /// the division, but can do so w/o predication.
4859 static bool mayDivideByZero(Instruction &I) {
4860   assert((I.getOpcode() == Instruction::UDiv ||
4861           I.getOpcode() == Instruction::SDiv ||
4862           I.getOpcode() == Instruction::URem ||
4863           I.getOpcode() == Instruction::SRem) &&
4864          "Unexpected instruction");
4865   Value *Divisor = I.getOperand(1);
4866   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4867   return !CInt || CInt->isZero();
4868 }
4869 
4870 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4871                                            VPUser &User,
4872                                            VPTransformState &State) {
4873   switch (I.getOpcode()) {
4874   case Instruction::Call:
4875   case Instruction::Br:
4876   case Instruction::PHI:
4877   case Instruction::GetElementPtr:
4878   case Instruction::Select:
4879     llvm_unreachable("This instruction is handled by a different recipe.");
4880   case Instruction::UDiv:
4881   case Instruction::SDiv:
4882   case Instruction::SRem:
4883   case Instruction::URem:
4884   case Instruction::Add:
4885   case Instruction::FAdd:
4886   case Instruction::Sub:
4887   case Instruction::FSub:
4888   case Instruction::FNeg:
4889   case Instruction::Mul:
4890   case Instruction::FMul:
4891   case Instruction::FDiv:
4892   case Instruction::FRem:
4893   case Instruction::Shl:
4894   case Instruction::LShr:
4895   case Instruction::AShr:
4896   case Instruction::And:
4897   case Instruction::Or:
4898   case Instruction::Xor: {
4899     // Just widen unops and binops.
4900     setDebugLocFromInst(Builder, &I);
4901 
4902     for (unsigned Part = 0; Part < UF; ++Part) {
4903       SmallVector<Value *, 2> Ops;
4904       for (VPValue *VPOp : User.operands())
4905         Ops.push_back(State.get(VPOp, Part));
4906 
4907       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4908 
4909       if (auto *VecOp = dyn_cast<Instruction>(V))
4910         VecOp->copyIRFlags(&I);
4911 
4912       // Use this vector value for all users of the original instruction.
4913       State.set(Def, V, Part);
4914       addMetadata(V, &I);
4915     }
4916 
4917     break;
4918   }
4919   case Instruction::ICmp:
4920   case Instruction::FCmp: {
4921     // Widen compares. Generate vector compares.
4922     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4923     auto *Cmp = cast<CmpInst>(&I);
4924     setDebugLocFromInst(Builder, Cmp);
4925     for (unsigned Part = 0; Part < UF; ++Part) {
4926       Value *A = State.get(User.getOperand(0), Part);
4927       Value *B = State.get(User.getOperand(1), Part);
4928       Value *C = nullptr;
4929       if (FCmp) {
4930         // Propagate fast math flags.
4931         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4932         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4933         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4934       } else {
4935         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4936       }
4937       State.set(Def, C, Part);
4938       addMetadata(C, &I);
4939     }
4940 
4941     break;
4942   }
4943 
4944   case Instruction::ZExt:
4945   case Instruction::SExt:
4946   case Instruction::FPToUI:
4947   case Instruction::FPToSI:
4948   case Instruction::FPExt:
4949   case Instruction::PtrToInt:
4950   case Instruction::IntToPtr:
4951   case Instruction::SIToFP:
4952   case Instruction::UIToFP:
4953   case Instruction::Trunc:
4954   case Instruction::FPTrunc:
4955   case Instruction::BitCast: {
4956     auto *CI = cast<CastInst>(&I);
4957     setDebugLocFromInst(Builder, CI);
4958 
4959     /// Vectorize casts.
4960     Type *DestTy =
4961         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4962 
4963     for (unsigned Part = 0; Part < UF; ++Part) {
4964       Value *A = State.get(User.getOperand(0), Part);
4965       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4966       State.set(Def, Cast, Part);
4967       addMetadata(Cast, &I);
4968     }
4969     break;
4970   }
4971   default:
4972     // This instruction is not vectorized by simple widening.
4973     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4974     llvm_unreachable("Unhandled instruction!");
4975   } // end of switch.
4976 }
4977 
4978 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4979                                                VPUser &ArgOperands,
4980                                                VPTransformState &State) {
4981   assert(!isa<DbgInfoIntrinsic>(I) &&
4982          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4983   setDebugLocFromInst(Builder, &I);
4984 
4985   Module *M = I.getParent()->getParent()->getParent();
4986   auto *CI = cast<CallInst>(&I);
4987 
4988   SmallVector<Type *, 4> Tys;
4989   for (Value *ArgOperand : CI->arg_operands())
4990     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4991 
4992   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4993 
4994   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4995   // version of the instruction.
4996   // Is it beneficial to perform intrinsic call compared to lib call?
4997   bool NeedToScalarize = false;
4998   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4999   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
5000   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
5001   assert((UseVectorIntrinsic || !NeedToScalarize) &&
5002          "Instruction should be scalarized elsewhere.");
5003   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
5004          "Either the intrinsic cost or vector call cost must be valid");
5005 
5006   for (unsigned Part = 0; Part < UF; ++Part) {
5007     SmallVector<Value *, 4> Args;
5008     for (auto &I : enumerate(ArgOperands.operands())) {
5009       // Some intrinsics have a scalar argument - don't replace it with a
5010       // vector.
5011       Value *Arg;
5012       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5013         Arg = State.get(I.value(), Part);
5014       else
5015         Arg = State.get(I.value(), VPIteration(0, 0));
5016       Args.push_back(Arg);
5017     }
5018 
5019     Function *VectorF;
5020     if (UseVectorIntrinsic) {
5021       // Use vector version of the intrinsic.
5022       Type *TysForDecl[] = {CI->getType()};
5023       if (VF.isVector())
5024         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5025       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5026       assert(VectorF && "Can't retrieve vector intrinsic.");
5027     } else {
5028       // Use vector version of the function call.
5029       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5030 #ifndef NDEBUG
5031       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5032              "Can't create vector function.");
5033 #endif
5034         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5035     }
5036       SmallVector<OperandBundleDef, 1> OpBundles;
5037       CI->getOperandBundlesAsDefs(OpBundles);
5038       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5039 
5040       if (isa<FPMathOperator>(V))
5041         V->copyFastMathFlags(CI);
5042 
5043       State.set(Def, V, Part);
5044       addMetadata(V, &I);
5045   }
5046 }
5047 
5048 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5049                                                  VPUser &Operands,
5050                                                  bool InvariantCond,
5051                                                  VPTransformState &State) {
5052   setDebugLocFromInst(Builder, &I);
5053 
5054   // The condition can be loop invariant  but still defined inside the
5055   // loop. This means that we can't just use the original 'cond' value.
5056   // We have to take the 'vectorized' value and pick the first lane.
5057   // Instcombine will make this a no-op.
5058   auto *InvarCond = InvariantCond
5059                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5060                         : nullptr;
5061 
5062   for (unsigned Part = 0; Part < UF; ++Part) {
5063     Value *Cond =
5064         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5065     Value *Op0 = State.get(Operands.getOperand(1), Part);
5066     Value *Op1 = State.get(Operands.getOperand(2), Part);
5067     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5068     State.set(VPDef, Sel, Part);
5069     addMetadata(Sel, &I);
5070   }
5071 }
5072 
5073 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5074   // We should not collect Scalars more than once per VF. Right now, this
5075   // function is called from collectUniformsAndScalars(), which already does
5076   // this check. Collecting Scalars for VF=1 does not make any sense.
5077   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5078          "This function should not be visited twice for the same VF");
5079 
5080   SmallSetVector<Instruction *, 8> Worklist;
5081 
5082   // These sets are used to seed the analysis with pointers used by memory
5083   // accesses that will remain scalar.
5084   SmallSetVector<Instruction *, 8> ScalarPtrs;
5085   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5086   auto *Latch = TheLoop->getLoopLatch();
5087 
5088   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5089   // The pointer operands of loads and stores will be scalar as long as the
5090   // memory access is not a gather or scatter operation. The value operand of a
5091   // store will remain scalar if the store is scalarized.
5092   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5093     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5094     assert(WideningDecision != CM_Unknown &&
5095            "Widening decision should be ready at this moment");
5096     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5097       if (Ptr == Store->getValueOperand())
5098         return WideningDecision == CM_Scalarize;
5099     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5100            "Ptr is neither a value or pointer operand");
5101     return WideningDecision != CM_GatherScatter;
5102   };
5103 
5104   // A helper that returns true if the given value is a bitcast or
5105   // getelementptr instruction contained in the loop.
5106   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5107     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5108             isa<GetElementPtrInst>(V)) &&
5109            !TheLoop->isLoopInvariant(V);
5110   };
5111 
5112   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5113     if (!isa<PHINode>(Ptr) ||
5114         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5115       return false;
5116     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5117     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5118       return false;
5119     return isScalarUse(MemAccess, Ptr);
5120   };
5121 
5122   // A helper that evaluates a memory access's use of a pointer. If the
5123   // pointer is actually the pointer induction of a loop, it is being
5124   // inserted into Worklist. If the use will be a scalar use, and the
5125   // pointer is only used by memory accesses, we place the pointer in
5126   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5127   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5128     if (isScalarPtrInduction(MemAccess, Ptr)) {
5129       Worklist.insert(cast<Instruction>(Ptr));
5130       Instruction *Update = cast<Instruction>(
5131           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5132       Worklist.insert(Update);
5133       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5134                         << "\n");
5135       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update
5136                         << "\n");
5137       return;
5138     }
5139     // We only care about bitcast and getelementptr instructions contained in
5140     // the loop.
5141     if (!isLoopVaryingBitCastOrGEP(Ptr))
5142       return;
5143 
5144     // If the pointer has already been identified as scalar (e.g., if it was
5145     // also identified as uniform), there's nothing to do.
5146     auto *I = cast<Instruction>(Ptr);
5147     if (Worklist.count(I))
5148       return;
5149 
5150     // If the use of the pointer will be a scalar use, and all users of the
5151     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5152     // place the pointer in PossibleNonScalarPtrs.
5153     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5154           return isa<LoadInst>(U) || isa<StoreInst>(U);
5155         }))
5156       ScalarPtrs.insert(I);
5157     else
5158       PossibleNonScalarPtrs.insert(I);
5159   };
5160 
5161   // We seed the scalars analysis with three classes of instructions: (1)
5162   // instructions marked uniform-after-vectorization and (2) bitcast,
5163   // getelementptr and (pointer) phi instructions used by memory accesses
5164   // requiring a scalar use.
5165   //
5166   // (1) Add to the worklist all instructions that have been identified as
5167   // uniform-after-vectorization.
5168   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5169 
5170   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5171   // memory accesses requiring a scalar use. The pointer operands of loads and
5172   // stores will be scalar as long as the memory accesses is not a gather or
5173   // scatter operation. The value operand of a store will remain scalar if the
5174   // store is scalarized.
5175   for (auto *BB : TheLoop->blocks())
5176     for (auto &I : *BB) {
5177       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5178         evaluatePtrUse(Load, Load->getPointerOperand());
5179       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5180         evaluatePtrUse(Store, Store->getPointerOperand());
5181         evaluatePtrUse(Store, Store->getValueOperand());
5182       }
5183     }
5184   for (auto *I : ScalarPtrs)
5185     if (!PossibleNonScalarPtrs.count(I)) {
5186       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5187       Worklist.insert(I);
5188     }
5189 
5190   // Insert the forced scalars.
5191   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5192   // induction variable when the PHI user is scalarized.
5193   auto ForcedScalar = ForcedScalars.find(VF);
5194   if (ForcedScalar != ForcedScalars.end())
5195     for (auto *I : ForcedScalar->second)
5196       Worklist.insert(I);
5197 
5198   // Expand the worklist by looking through any bitcasts and getelementptr
5199   // instructions we've already identified as scalar. This is similar to the
5200   // expansion step in collectLoopUniforms(); however, here we're only
5201   // expanding to include additional bitcasts and getelementptr instructions.
5202   unsigned Idx = 0;
5203   while (Idx != Worklist.size()) {
5204     Instruction *Dst = Worklist[Idx++];
5205     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5206       continue;
5207     auto *Src = cast<Instruction>(Dst->getOperand(0));
5208     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5209           auto *J = cast<Instruction>(U);
5210           return !TheLoop->contains(J) || Worklist.count(J) ||
5211                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5212                   isScalarUse(J, Src));
5213         })) {
5214       Worklist.insert(Src);
5215       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5216     }
5217   }
5218 
5219   // An induction variable will remain scalar if all users of the induction
5220   // variable and induction variable update remain scalar.
5221   for (auto &Induction : Legal->getInductionVars()) {
5222     auto *Ind = Induction.first;
5223     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5224 
5225     // If tail-folding is applied, the primary induction variable will be used
5226     // to feed a vector compare.
5227     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5228       continue;
5229 
5230     // Determine if all users of the induction variable are scalar after
5231     // vectorization.
5232     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5233       auto *I = cast<Instruction>(U);
5234       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5235     });
5236     if (!ScalarInd)
5237       continue;
5238 
5239     // Determine if all users of the induction variable update instruction are
5240     // scalar after vectorization.
5241     auto ScalarIndUpdate =
5242         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5243           auto *I = cast<Instruction>(U);
5244           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5245         });
5246     if (!ScalarIndUpdate)
5247       continue;
5248 
5249     // The induction variable and its update instruction will remain scalar.
5250     Worklist.insert(Ind);
5251     Worklist.insert(IndUpdate);
5252     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5253     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5254                       << "\n");
5255   }
5256 
5257   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5258 }
5259 
5260 bool LoopVectorizationCostModel::isScalarWithPredication(
5261     Instruction *I, ElementCount VF) const {
5262   if (!blockNeedsPredication(I->getParent()))
5263     return false;
5264   switch(I->getOpcode()) {
5265   default:
5266     break;
5267   case Instruction::Load:
5268   case Instruction::Store: {
5269     if (!Legal->isMaskRequired(I))
5270       return false;
5271     auto *Ptr = getLoadStorePointerOperand(I);
5272     auto *Ty = getMemInstValueType(I);
5273     // We have already decided how to vectorize this instruction, get that
5274     // result.
5275     if (VF.isVector()) {
5276       InstWidening WideningDecision = getWideningDecision(I, VF);
5277       assert(WideningDecision != CM_Unknown &&
5278              "Widening decision should be ready at this moment");
5279       return WideningDecision == CM_Scalarize;
5280     }
5281     const Align Alignment = getLoadStoreAlignment(I);
5282     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5283                                 isLegalMaskedGather(Ty, Alignment))
5284                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5285                                 isLegalMaskedScatter(Ty, Alignment));
5286   }
5287   case Instruction::UDiv:
5288   case Instruction::SDiv:
5289   case Instruction::SRem:
5290   case Instruction::URem:
5291     return mayDivideByZero(*I);
5292   }
5293   return false;
5294 }
5295 
5296 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5297     Instruction *I, ElementCount VF) {
5298   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5299   assert(getWideningDecision(I, VF) == CM_Unknown &&
5300          "Decision should not be set yet.");
5301   auto *Group = getInterleavedAccessGroup(I);
5302   assert(Group && "Must have a group.");
5303 
5304   // If the instruction's allocated size doesn't equal it's type size, it
5305   // requires padding and will be scalarized.
5306   auto &DL = I->getModule()->getDataLayout();
5307   auto *ScalarTy = getMemInstValueType(I);
5308   if (hasIrregularType(ScalarTy, DL))
5309     return false;
5310 
5311   // Check if masking is required.
5312   // A Group may need masking for one of two reasons: it resides in a block that
5313   // needs predication, or it was decided to use masking to deal with gaps.
5314   bool PredicatedAccessRequiresMasking =
5315       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5316   bool AccessWithGapsRequiresMasking =
5317       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5318   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
5319     return true;
5320 
5321   // If masked interleaving is required, we expect that the user/target had
5322   // enabled it, because otherwise it either wouldn't have been created or
5323   // it should have been invalidated by the CostModel.
5324   assert(useMaskedInterleavedAccesses(TTI) &&
5325          "Masked interleave-groups for predicated accesses are not enabled.");
5326 
5327   auto *Ty = getMemInstValueType(I);
5328   const Align Alignment = getLoadStoreAlignment(I);
5329   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5330                           : TTI.isLegalMaskedStore(Ty, Alignment);
5331 }
5332 
5333 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5334     Instruction *I, ElementCount VF) {
5335   // Get and ensure we have a valid memory instruction.
5336   LoadInst *LI = dyn_cast<LoadInst>(I);
5337   StoreInst *SI = dyn_cast<StoreInst>(I);
5338   assert((LI || SI) && "Invalid memory instruction");
5339 
5340   auto *Ptr = getLoadStorePointerOperand(I);
5341 
5342   // In order to be widened, the pointer should be consecutive, first of all.
5343   if (!Legal->isConsecutivePtr(Ptr))
5344     return false;
5345 
5346   // If the instruction is a store located in a predicated block, it will be
5347   // scalarized.
5348   if (isScalarWithPredication(I))
5349     return false;
5350 
5351   // If the instruction's allocated size doesn't equal it's type size, it
5352   // requires padding and will be scalarized.
5353   auto &DL = I->getModule()->getDataLayout();
5354   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5355   if (hasIrregularType(ScalarTy, DL))
5356     return false;
5357 
5358   return true;
5359 }
5360 
5361 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5362   // We should not collect Uniforms more than once per VF. Right now,
5363   // this function is called from collectUniformsAndScalars(), which
5364   // already does this check. Collecting Uniforms for VF=1 does not make any
5365   // sense.
5366 
5367   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5368          "This function should not be visited twice for the same VF");
5369 
5370   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5371   // not analyze again.  Uniforms.count(VF) will return 1.
5372   Uniforms[VF].clear();
5373 
5374   // We now know that the loop is vectorizable!
5375   // Collect instructions inside the loop that will remain uniform after
5376   // vectorization.
5377 
5378   // Global values, params and instructions outside of current loop are out of
5379   // scope.
5380   auto isOutOfScope = [&](Value *V) -> bool {
5381     Instruction *I = dyn_cast<Instruction>(V);
5382     return (!I || !TheLoop->contains(I));
5383   };
5384 
5385   SetVector<Instruction *> Worklist;
5386   BasicBlock *Latch = TheLoop->getLoopLatch();
5387 
5388   // Instructions that are scalar with predication must not be considered
5389   // uniform after vectorization, because that would create an erroneous
5390   // replicating region where only a single instance out of VF should be formed.
5391   // TODO: optimize such seldom cases if found important, see PR40816.
5392   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5393     if (isOutOfScope(I)) {
5394       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5395                         << *I << "\n");
5396       return;
5397     }
5398     if (isScalarWithPredication(I, VF)) {
5399       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5400                         << *I << "\n");
5401       return;
5402     }
5403     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5404     Worklist.insert(I);
5405   };
5406 
5407   // Start with the conditional branch. If the branch condition is an
5408   // instruction contained in the loop that is only used by the branch, it is
5409   // uniform.
5410   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5411   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5412     addToWorklistIfAllowed(Cmp);
5413 
5414   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5415     InstWidening WideningDecision = getWideningDecision(I, VF);
5416     assert(WideningDecision != CM_Unknown &&
5417            "Widening decision should be ready at this moment");
5418 
5419     // A uniform memory op is itself uniform.  We exclude uniform stores
5420     // here as they demand the last lane, not the first one.
5421     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5422       assert(WideningDecision == CM_Scalarize);
5423       return true;
5424     }
5425 
5426     return (WideningDecision == CM_Widen ||
5427             WideningDecision == CM_Widen_Reverse ||
5428             WideningDecision == CM_Interleave);
5429   };
5430 
5431 
5432   // Returns true if Ptr is the pointer operand of a memory access instruction
5433   // I, and I is known to not require scalarization.
5434   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5435     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5436   };
5437 
5438   // Holds a list of values which are known to have at least one uniform use.
5439   // Note that there may be other uses which aren't uniform.  A "uniform use"
5440   // here is something which only demands lane 0 of the unrolled iterations;
5441   // it does not imply that all lanes produce the same value (e.g. this is not
5442   // the usual meaning of uniform)
5443   SetVector<Value *> HasUniformUse;
5444 
5445   // Scan the loop for instructions which are either a) known to have only
5446   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5447   for (auto *BB : TheLoop->blocks())
5448     for (auto &I : *BB) {
5449       // If there's no pointer operand, there's nothing to do.
5450       auto *Ptr = getLoadStorePointerOperand(&I);
5451       if (!Ptr)
5452         continue;
5453 
5454       // A uniform memory op is itself uniform.  We exclude uniform stores
5455       // here as they demand the last lane, not the first one.
5456       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5457         addToWorklistIfAllowed(&I);
5458 
5459       if (isUniformDecision(&I, VF)) {
5460         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5461         HasUniformUse.insert(Ptr);
5462       }
5463     }
5464 
5465   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5466   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5467   // disallows uses outside the loop as well.
5468   for (auto *V : HasUniformUse) {
5469     if (isOutOfScope(V))
5470       continue;
5471     auto *I = cast<Instruction>(V);
5472     auto UsersAreMemAccesses =
5473       llvm::all_of(I->users(), [&](User *U) -> bool {
5474         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5475       });
5476     if (UsersAreMemAccesses)
5477       addToWorklistIfAllowed(I);
5478   }
5479 
5480   // Expand Worklist in topological order: whenever a new instruction
5481   // is added , its users should be already inside Worklist.  It ensures
5482   // a uniform instruction will only be used by uniform instructions.
5483   unsigned idx = 0;
5484   while (idx != Worklist.size()) {
5485     Instruction *I = Worklist[idx++];
5486 
5487     for (auto OV : I->operand_values()) {
5488       // isOutOfScope operands cannot be uniform instructions.
5489       if (isOutOfScope(OV))
5490         continue;
5491       // First order recurrence Phi's should typically be considered
5492       // non-uniform.
5493       auto *OP = dyn_cast<PHINode>(OV);
5494       if (OP && Legal->isFirstOrderRecurrence(OP))
5495         continue;
5496       // If all the users of the operand are uniform, then add the
5497       // operand into the uniform worklist.
5498       auto *OI = cast<Instruction>(OV);
5499       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5500             auto *J = cast<Instruction>(U);
5501             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5502           }))
5503         addToWorklistIfAllowed(OI);
5504     }
5505   }
5506 
5507   // For an instruction to be added into Worklist above, all its users inside
5508   // the loop should also be in Worklist. However, this condition cannot be
5509   // true for phi nodes that form a cyclic dependence. We must process phi
5510   // nodes separately. An induction variable will remain uniform if all users
5511   // of the induction variable and induction variable update remain uniform.
5512   // The code below handles both pointer and non-pointer induction variables.
5513   for (auto &Induction : Legal->getInductionVars()) {
5514     auto *Ind = Induction.first;
5515     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5516 
5517     // Determine if all users of the induction variable are uniform after
5518     // vectorization.
5519     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5520       auto *I = cast<Instruction>(U);
5521       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5522              isVectorizedMemAccessUse(I, Ind);
5523     });
5524     if (!UniformInd)
5525       continue;
5526 
5527     // Determine if all users of the induction variable update instruction are
5528     // uniform after vectorization.
5529     auto UniformIndUpdate =
5530         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5531           auto *I = cast<Instruction>(U);
5532           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5533                  isVectorizedMemAccessUse(I, IndUpdate);
5534         });
5535     if (!UniformIndUpdate)
5536       continue;
5537 
5538     // The induction variable and its update instruction will remain uniform.
5539     addToWorklistIfAllowed(Ind);
5540     addToWorklistIfAllowed(IndUpdate);
5541   }
5542 
5543   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5544 }
5545 
5546 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5547   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5548 
5549   if (Legal->getRuntimePointerChecking()->Need) {
5550     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5551         "runtime pointer checks needed. Enable vectorization of this "
5552         "loop with '#pragma clang loop vectorize(enable)' when "
5553         "compiling with -Os/-Oz",
5554         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5555     return true;
5556   }
5557 
5558   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5559     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5560         "runtime SCEV checks needed. Enable vectorization of this "
5561         "loop with '#pragma clang loop vectorize(enable)' when "
5562         "compiling with -Os/-Oz",
5563         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5564     return true;
5565   }
5566 
5567   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5568   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5569     reportVectorizationFailure("Runtime stride check for small trip count",
5570         "runtime stride == 1 checks needed. Enable vectorization of "
5571         "this loop without such check by compiling with -Os/-Oz",
5572         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5573     return true;
5574   }
5575 
5576   return false;
5577 }
5578 
5579 Optional<ElementCount>
5580 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5581   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5582     // TODO: It may by useful to do since it's still likely to be dynamically
5583     // uniform if the target can skip.
5584     reportVectorizationFailure(
5585         "Not inserting runtime ptr check for divergent target",
5586         "runtime pointer checks needed. Not enabled for divergent target",
5587         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5588     return None;
5589   }
5590 
5591   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5592   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5593   if (TC == 1) {
5594     reportVectorizationFailure("Single iteration (non) loop",
5595         "loop trip count is one, irrelevant for vectorization",
5596         "SingleIterationLoop", ORE, TheLoop);
5597     return None;
5598   }
5599 
5600   switch (ScalarEpilogueStatus) {
5601   case CM_ScalarEpilogueAllowed:
5602     return computeFeasibleMaxVF(TC, UserVF);
5603   case CM_ScalarEpilogueNotAllowedUsePredicate:
5604     LLVM_FALLTHROUGH;
5605   case CM_ScalarEpilogueNotNeededUsePredicate:
5606     LLVM_DEBUG(
5607         dbgs() << "LV: vector predicate hint/switch found.\n"
5608                << "LV: Not allowing scalar epilogue, creating predicated "
5609                << "vector loop.\n");
5610     break;
5611   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5612     // fallthrough as a special case of OptForSize
5613   case CM_ScalarEpilogueNotAllowedOptSize:
5614     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5615       LLVM_DEBUG(
5616           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5617     else
5618       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5619                         << "count.\n");
5620 
5621     // Bail if runtime checks are required, which are not good when optimising
5622     // for size.
5623     if (runtimeChecksRequired())
5624       return None;
5625 
5626     break;
5627   }
5628 
5629   // The only loops we can vectorize without a scalar epilogue, are loops with
5630   // a bottom-test and a single exiting block. We'd have to handle the fact
5631   // that not every instruction executes on the last iteration.  This will
5632   // require a lane mask which varies through the vector loop body.  (TODO)
5633   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5634     // If there was a tail-folding hint/switch, but we can't fold the tail by
5635     // masking, fallback to a vectorization with a scalar epilogue.
5636     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5637       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5638                            "scalar epilogue instead.\n");
5639       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5640       return computeFeasibleMaxVF(TC, UserVF);
5641     }
5642     return None;
5643   }
5644 
5645   // Now try the tail folding
5646 
5647   // Invalidate interleave groups that require an epilogue if we can't mask
5648   // the interleave-group.
5649   if (!useMaskedInterleavedAccesses(TTI)) {
5650     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5651            "No decisions should have been taken at this point");
5652     // Note: There is no need to invalidate any cost modeling decisions here, as
5653     // non where taken so far.
5654     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5655   }
5656 
5657   ElementCount MaxVF = computeFeasibleMaxVF(TC, UserVF);
5658   assert(!MaxVF.isScalable() &&
5659          "Scalable vectors do not yet support tail folding");
5660   assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) &&
5661          "MaxVF must be a power of 2");
5662   unsigned MaxVFtimesIC =
5663       UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue();
5664   // Avoid tail folding if the trip count is known to be a multiple of any VF we
5665   // chose.
5666   ScalarEvolution *SE = PSE.getSE();
5667   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5668   const SCEV *ExitCount = SE->getAddExpr(
5669       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5670   const SCEV *Rem = SE->getURemExpr(
5671       SE->applyLoopGuards(ExitCount, TheLoop),
5672       SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5673   if (Rem->isZero()) {
5674     // Accept MaxVF if we do not have a tail.
5675     LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5676     return MaxVF;
5677   }
5678 
5679   // If we don't know the precise trip count, or if the trip count that we
5680   // found modulo the vectorization factor is not zero, try to fold the tail
5681   // by masking.
5682   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5683   if (Legal->prepareToFoldTailByMasking()) {
5684     FoldTailByMasking = true;
5685     return MaxVF;
5686   }
5687 
5688   // If there was a tail-folding hint/switch, but we can't fold the tail by
5689   // masking, fallback to a vectorization with a scalar epilogue.
5690   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5691     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5692                          "scalar epilogue instead.\n");
5693     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5694     return MaxVF;
5695   }
5696 
5697   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5698     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5699     return None;
5700   }
5701 
5702   if (TC == 0) {
5703     reportVectorizationFailure(
5704         "Unable to calculate the loop count due to complex control flow",
5705         "unable to calculate the loop count due to complex control flow",
5706         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5707     return None;
5708   }
5709 
5710   reportVectorizationFailure(
5711       "Cannot optimize for size and vectorize at the same time.",
5712       "cannot optimize for size and vectorize at the same time. "
5713       "Enable vectorization of this loop with '#pragma clang loop "
5714       "vectorize(enable)' when compiling with -Os/-Oz",
5715       "NoTailLoopWithOptForSize", ORE, TheLoop);
5716   return None;
5717 }
5718 
5719 ElementCount
5720 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5721                                                  ElementCount UserVF) {
5722   bool IgnoreScalableUserVF = UserVF.isScalable() &&
5723                               !TTI.supportsScalableVectors() &&
5724                               !ForceTargetSupportsScalableVectors;
5725   if (IgnoreScalableUserVF) {
5726     LLVM_DEBUG(
5727         dbgs() << "LV: Ignoring VF=" << UserVF
5728                << " because target does not support scalable vectors.\n");
5729     ORE->emit([&]() {
5730       return OptimizationRemarkAnalysis(DEBUG_TYPE, "IgnoreScalableUserVF",
5731                                         TheLoop->getStartLoc(),
5732                                         TheLoop->getHeader())
5733              << "Ignoring VF=" << ore::NV("UserVF", UserVF)
5734              << " because target does not support scalable vectors.";
5735     });
5736   }
5737 
5738   // Beyond this point two scenarios are handled. If UserVF isn't specified
5739   // then a suitable VF is chosen. If UserVF is specified and there are
5740   // dependencies, check if it's legal. However, if a UserVF is specified and
5741   // there are no dependencies, then there's nothing to do.
5742   if (UserVF.isNonZero() && !IgnoreScalableUserVF) {
5743     if (!canVectorizeReductions(UserVF)) {
5744       reportVectorizationFailure(
5745           "LV: Scalable vectorization not supported for the reduction "
5746           "operations found in this loop. Using fixed-width "
5747           "vectorization instead.",
5748           "Scalable vectorization not supported for the reduction operations "
5749           "found in this loop. Using fixed-width vectorization instead.",
5750           "ScalableVFUnfeasible", ORE, TheLoop);
5751       return computeFeasibleMaxVF(
5752           ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue()));
5753     }
5754 
5755     if (Legal->isSafeForAnyVectorWidth())
5756       return UserVF;
5757   }
5758 
5759   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5760   unsigned SmallestType, WidestType;
5761   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5762   unsigned WidestRegister =
5763       TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
5764           .getFixedSize();
5765 
5766   // Get the maximum safe dependence distance in bits computed by LAA.
5767   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5768   // the memory accesses that is most restrictive (involved in the smallest
5769   // dependence distance).
5770   unsigned MaxSafeVectorWidthInBits = Legal->getMaxSafeVectorWidthInBits();
5771 
5772   // If the user vectorization factor is legally unsafe, clamp it to a safe
5773   // value. Otherwise, return as is.
5774   if (UserVF.isNonZero() && !IgnoreScalableUserVF) {
5775     unsigned MaxSafeElements =
5776         PowerOf2Floor(MaxSafeVectorWidthInBits / WidestType);
5777     ElementCount MaxSafeVF = ElementCount::getFixed(MaxSafeElements);
5778 
5779     if (UserVF.isScalable()) {
5780       Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5781 
5782       // Scale VF by vscale before checking if it's safe.
5783       MaxSafeVF = ElementCount::getScalable(
5784           MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5785 
5786       if (MaxSafeVF.isZero()) {
5787         // The dependence distance is too small to use scalable vectors,
5788         // fallback on fixed.
5789         LLVM_DEBUG(
5790             dbgs()
5791             << "LV: Max legal vector width too small, scalable vectorization "
5792                "unfeasible. Using fixed-width vectorization instead.\n");
5793         ORE->emit([&]() {
5794           return OptimizationRemarkAnalysis(DEBUG_TYPE, "ScalableVFUnfeasible",
5795                                             TheLoop->getStartLoc(),
5796                                             TheLoop->getHeader())
5797                  << "Max legal vector width too small, scalable vectorization "
5798                  << "unfeasible. Using fixed-width vectorization instead.";
5799         });
5800         return computeFeasibleMaxVF(
5801             ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue()));
5802       }
5803     }
5804 
5805     LLVM_DEBUG(dbgs() << "LV: The max safe VF is: " << MaxSafeVF << ".\n");
5806 
5807     if (ElementCount::isKnownLE(UserVF, MaxSafeVF))
5808       return UserVF;
5809 
5810     LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5811                       << " is unsafe, clamping to max safe VF=" << MaxSafeVF
5812                       << ".\n");
5813     ORE->emit([&]() {
5814       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5815                                         TheLoop->getStartLoc(),
5816                                         TheLoop->getHeader())
5817              << "User-specified vectorization factor "
5818              << ore::NV("UserVectorizationFactor", UserVF)
5819              << " is unsafe, clamping to maximum safe vectorization factor "
5820              << ore::NV("VectorizationFactor", MaxSafeVF);
5821     });
5822     return MaxSafeVF;
5823   }
5824 
5825   WidestRegister = std::min(WidestRegister, MaxSafeVectorWidthInBits);
5826 
5827   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5828   // Note that both WidestRegister and WidestType may not be a powers of 2.
5829   auto MaxVectorSize =
5830       ElementCount::getFixed(PowerOf2Floor(WidestRegister / WidestType));
5831 
5832   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5833                     << " / " << WidestType << " bits.\n");
5834   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5835                     << WidestRegister << " bits.\n");
5836 
5837   assert(MaxVectorSize.getFixedValue() <= WidestRegister &&
5838          "Did not expect to pack so many elements"
5839          " into one vector!");
5840   if (MaxVectorSize.getFixedValue() == 0) {
5841     LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5842     return ElementCount::getFixed(1);
5843   } else if (ConstTripCount && ConstTripCount < MaxVectorSize.getFixedValue() &&
5844              isPowerOf2_32(ConstTripCount)) {
5845     // We need to clamp the VF to be the ConstTripCount. There is no point in
5846     // choosing a higher viable VF as done in the loop below.
5847     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5848                       << ConstTripCount << "\n");
5849     return ElementCount::getFixed(ConstTripCount);
5850   }
5851 
5852   ElementCount MaxVF = MaxVectorSize;
5853   if (TTI.shouldMaximizeVectorBandwidth() ||
5854       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5855     // Collect all viable vectorization factors larger than the default MaxVF
5856     // (i.e. MaxVectorSize).
5857     SmallVector<ElementCount, 8> VFs;
5858     auto MaxVectorSizeMaxBW =
5859         ElementCount::getFixed(WidestRegister / SmallestType);
5860     for (ElementCount VS = MaxVectorSize * 2;
5861          ElementCount::isKnownLE(VS, MaxVectorSizeMaxBW); VS *= 2)
5862       VFs.push_back(VS);
5863 
5864     // For each VF calculate its register usage.
5865     auto RUs = calculateRegisterUsage(VFs);
5866 
5867     // Select the largest VF which doesn't require more registers than existing
5868     // ones.
5869     for (int i = RUs.size() - 1; i >= 0; --i) {
5870       bool Selected = true;
5871       for (auto &pair : RUs[i].MaxLocalUsers) {
5872         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5873         if (pair.second > TargetNumRegisters)
5874           Selected = false;
5875       }
5876       if (Selected) {
5877         MaxVF = VFs[i];
5878         break;
5879       }
5880     }
5881     if (ElementCount MinVF =
5882             TTI.getMinimumVF(SmallestType, /*IsScalable=*/false)) {
5883       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5884         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5885                           << ") with target's minimum: " << MinVF << '\n');
5886         MaxVF = MinVF;
5887       }
5888     }
5889   }
5890   return MaxVF;
5891 }
5892 
5893 bool LoopVectorizationCostModel::isMoreProfitable(
5894     const VectorizationFactor &A, const VectorizationFactor &B) const {
5895   InstructionCost::CostType CostA = *A.Cost.getValue();
5896   InstructionCost::CostType CostB = *B.Cost.getValue();
5897 
5898   // To avoid the need for FP division:
5899   //      (CostA / A.Width) < (CostB / B.Width)
5900   // <=>  (CostA * B.Width) < (CostB * A.Width)
5901   return (CostA * B.Width.getKnownMinValue()) <
5902          (CostB * A.Width.getKnownMinValue());
5903 }
5904 
5905 VectorizationFactor
5906 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) {
5907   // FIXME: This can be fixed for scalable vectors later, because at this stage
5908   // the LoopVectorizer will only consider vectorizing a loop with scalable
5909   // vectors when the loop has a hint to enable vectorization for a given VF.
5910   assert(!MaxVF.isScalable() && "scalable vectors not yet supported");
5911 
5912   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5913   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5914   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5915 
5916   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5917   VectorizationFactor ChosenFactor = ScalarCost;
5918 
5919   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5920   if (ForceVectorization && MaxVF.isVector()) {
5921     // Ignore scalar width, because the user explicitly wants vectorization.
5922     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5923     // evaluation.
5924     ChosenFactor.Cost = std::numeric_limits<InstructionCost::CostType>::max();
5925   }
5926 
5927   for (auto i = ElementCount::getFixed(2); ElementCount::isKnownLE(i, MaxVF);
5928        i *= 2) {
5929     // Notice that the vector loop needs to be executed less times, so
5930     // we need to divide the cost of the vector loops by the width of
5931     // the vector elements.
5932     VectorizationCostTy C = expectedCost(i);
5933 
5934     assert(C.first.isValid() && "Unexpected invalid cost for vector loop");
5935     VectorizationFactor Candidate(i, C.first);
5936     LLVM_DEBUG(
5937         dbgs() << "LV: Vector loop of width " << i << " costs: "
5938                << (*Candidate.Cost.getValue() / Candidate.Width.getFixedValue())
5939                << ".\n");
5940 
5941     if (!C.second && !ForceVectorization) {
5942       LLVM_DEBUG(
5943           dbgs() << "LV: Not considering vector loop of width " << i
5944                  << " because it will not generate any vector instructions.\n");
5945       continue;
5946     }
5947 
5948     // If profitable add it to ProfitableVF list.
5949     if (isMoreProfitable(Candidate, ScalarCost))
5950       ProfitableVFs.push_back(Candidate);
5951 
5952     if (isMoreProfitable(Candidate, ChosenFactor))
5953       ChosenFactor = Candidate;
5954   }
5955 
5956   if (!EnableCondStoresVectorization && NumPredStores) {
5957     reportVectorizationFailure("There are conditional stores.",
5958         "store that is conditionally executed prevents vectorization",
5959         "ConditionalStore", ORE, TheLoop);
5960     ChosenFactor = ScalarCost;
5961   }
5962 
5963   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5964                  *ChosenFactor.Cost.getValue() >= *ScalarCost.Cost.getValue())
5965                  dbgs()
5966              << "LV: Vectorization seems to be not beneficial, "
5967              << "but was forced by a user.\n");
5968   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5969   return ChosenFactor;
5970 }
5971 
5972 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5973     const Loop &L, ElementCount VF) const {
5974   // Cross iteration phis such as reductions need special handling and are
5975   // currently unsupported.
5976   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
5977         return Legal->isFirstOrderRecurrence(&Phi) ||
5978                Legal->isReductionVariable(&Phi);
5979       }))
5980     return false;
5981 
5982   // Phis with uses outside of the loop require special handling and are
5983   // currently unsupported.
5984   for (auto &Entry : Legal->getInductionVars()) {
5985     // Look for uses of the value of the induction at the last iteration.
5986     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5987     for (User *U : PostInc->users())
5988       if (!L.contains(cast<Instruction>(U)))
5989         return false;
5990     // Look for uses of penultimate value of the induction.
5991     for (User *U : Entry.first->users())
5992       if (!L.contains(cast<Instruction>(U)))
5993         return false;
5994   }
5995 
5996   // Induction variables that are widened require special handling that is
5997   // currently not supported.
5998   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5999         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6000                  this->isProfitableToScalarize(Entry.first, VF));
6001       }))
6002     return false;
6003 
6004   return true;
6005 }
6006 
6007 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6008     const ElementCount VF) const {
6009   // FIXME: We need a much better cost-model to take different parameters such
6010   // as register pressure, code size increase and cost of extra branches into
6011   // account. For now we apply a very crude heuristic and only consider loops
6012   // with vectorization factors larger than a certain value.
6013   // We also consider epilogue vectorization unprofitable for targets that don't
6014   // consider interleaving beneficial (eg. MVE).
6015   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6016     return false;
6017   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6018     return true;
6019   return false;
6020 }
6021 
6022 VectorizationFactor
6023 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6024     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6025   VectorizationFactor Result = VectorizationFactor::Disabled();
6026   if (!EnableEpilogueVectorization) {
6027     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6028     return Result;
6029   }
6030 
6031   if (!isScalarEpilogueAllowed()) {
6032     LLVM_DEBUG(
6033         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6034                   "allowed.\n";);
6035     return Result;
6036   }
6037 
6038   // FIXME: This can be fixed for scalable vectors later, because at this stage
6039   // the LoopVectorizer will only consider vectorizing a loop with scalable
6040   // vectors when the loop has a hint to enable vectorization for a given VF.
6041   if (MainLoopVF.isScalable()) {
6042     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6043                          "yet supported.\n");
6044     return Result;
6045   }
6046 
6047   // Not really a cost consideration, but check for unsupported cases here to
6048   // simplify the logic.
6049   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6050     LLVM_DEBUG(
6051         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6052                   "not a supported candidate.\n";);
6053     return Result;
6054   }
6055 
6056   if (EpilogueVectorizationForceVF > 1) {
6057     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6058     if (LVP.hasPlanWithVFs(
6059             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
6060       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
6061     else {
6062       LLVM_DEBUG(
6063           dbgs()
6064               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6065       return Result;
6066     }
6067   }
6068 
6069   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6070       TheLoop->getHeader()->getParent()->hasMinSize()) {
6071     LLVM_DEBUG(
6072         dbgs()
6073             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6074     return Result;
6075   }
6076 
6077   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6078     return Result;
6079 
6080   for (auto &NextVF : ProfitableVFs)
6081     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6082         (Result.Width.getFixedValue() == 1 ||
6083          isMoreProfitable(NextVF, Result)) &&
6084         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6085       Result = NextVF;
6086 
6087   if (Result != VectorizationFactor::Disabled())
6088     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6089                       << Result.Width.getFixedValue() << "\n";);
6090   return Result;
6091 }
6092 
6093 std::pair<unsigned, unsigned>
6094 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6095   unsigned MinWidth = -1U;
6096   unsigned MaxWidth = 8;
6097   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6098 
6099   // For each block.
6100   for (BasicBlock *BB : TheLoop->blocks()) {
6101     // For each instruction in the loop.
6102     for (Instruction &I : BB->instructionsWithoutDebug()) {
6103       Type *T = I.getType();
6104 
6105       // Skip ignored values.
6106       if (ValuesToIgnore.count(&I))
6107         continue;
6108 
6109       // Only examine Loads, Stores and PHINodes.
6110       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6111         continue;
6112 
6113       // Examine PHI nodes that are reduction variables. Update the type to
6114       // account for the recurrence type.
6115       if (auto *PN = dyn_cast<PHINode>(&I)) {
6116         if (!Legal->isReductionVariable(PN))
6117           continue;
6118         RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN];
6119         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6120             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6121                                       RdxDesc.getRecurrenceType(),
6122                                       TargetTransformInfo::ReductionFlags()))
6123           continue;
6124         T = RdxDesc.getRecurrenceType();
6125       }
6126 
6127       // Examine the stored values.
6128       if (auto *ST = dyn_cast<StoreInst>(&I))
6129         T = ST->getValueOperand()->getType();
6130 
6131       // Ignore loaded pointer types and stored pointer types that are not
6132       // vectorizable.
6133       //
6134       // FIXME: The check here attempts to predict whether a load or store will
6135       //        be vectorized. We only know this for certain after a VF has
6136       //        been selected. Here, we assume that if an access can be
6137       //        vectorized, it will be. We should also look at extending this
6138       //        optimization to non-pointer types.
6139       //
6140       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6141           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6142         continue;
6143 
6144       MinWidth = std::min(MinWidth,
6145                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6146       MaxWidth = std::max(MaxWidth,
6147                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6148     }
6149   }
6150 
6151   return {MinWidth, MaxWidth};
6152 }
6153 
6154 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6155                                                            unsigned LoopCost) {
6156   // -- The interleave heuristics --
6157   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6158   // There are many micro-architectural considerations that we can't predict
6159   // at this level. For example, frontend pressure (on decode or fetch) due to
6160   // code size, or the number and capabilities of the execution ports.
6161   //
6162   // We use the following heuristics to select the interleave count:
6163   // 1. If the code has reductions, then we interleave to break the cross
6164   // iteration dependency.
6165   // 2. If the loop is really small, then we interleave to reduce the loop
6166   // overhead.
6167   // 3. We don't interleave if we think that we will spill registers to memory
6168   // due to the increased register pressure.
6169 
6170   if (!isScalarEpilogueAllowed())
6171     return 1;
6172 
6173   // We used the distance for the interleave count.
6174   if (Legal->getMaxSafeDepDistBytes() != -1U)
6175     return 1;
6176 
6177   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6178   const bool HasReductions = !Legal->getReductionVars().empty();
6179   // Do not interleave loops with a relatively small known or estimated trip
6180   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6181   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6182   // because with the above conditions interleaving can expose ILP and break
6183   // cross iteration dependences for reductions.
6184   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6185       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6186     return 1;
6187 
6188   RegisterUsage R = calculateRegisterUsage({VF})[0];
6189   // We divide by these constants so assume that we have at least one
6190   // instruction that uses at least one register.
6191   for (auto& pair : R.MaxLocalUsers) {
6192     pair.second = std::max(pair.second, 1U);
6193   }
6194 
6195   // We calculate the interleave count using the following formula.
6196   // Subtract the number of loop invariants from the number of available
6197   // registers. These registers are used by all of the interleaved instances.
6198   // Next, divide the remaining registers by the number of registers that is
6199   // required by the loop, in order to estimate how many parallel instances
6200   // fit without causing spills. All of this is rounded down if necessary to be
6201   // a power of two. We want power of two interleave count to simplify any
6202   // addressing operations or alignment considerations.
6203   // We also want power of two interleave counts to ensure that the induction
6204   // variable of the vector loop wraps to zero, when tail is folded by masking;
6205   // this currently happens when OptForSize, in which case IC is set to 1 above.
6206   unsigned IC = UINT_MAX;
6207 
6208   for (auto& pair : R.MaxLocalUsers) {
6209     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6210     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6211                       << " registers of "
6212                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6213     if (VF.isScalar()) {
6214       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6215         TargetNumRegisters = ForceTargetNumScalarRegs;
6216     } else {
6217       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6218         TargetNumRegisters = ForceTargetNumVectorRegs;
6219     }
6220     unsigned MaxLocalUsers = pair.second;
6221     unsigned LoopInvariantRegs = 0;
6222     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6223       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6224 
6225     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6226     // Don't count the induction variable as interleaved.
6227     if (EnableIndVarRegisterHeur) {
6228       TmpIC =
6229           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6230                         std::max(1U, (MaxLocalUsers - 1)));
6231     }
6232 
6233     IC = std::min(IC, TmpIC);
6234   }
6235 
6236   // Clamp the interleave ranges to reasonable counts.
6237   unsigned MaxInterleaveCount =
6238       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6239 
6240   // Check if the user has overridden the max.
6241   if (VF.isScalar()) {
6242     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6243       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6244   } else {
6245     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6246       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6247   }
6248 
6249   // If trip count is known or estimated compile time constant, limit the
6250   // interleave count to be less than the trip count divided by VF, provided it
6251   // is at least 1.
6252   //
6253   // For scalable vectors we can't know if interleaving is beneficial. It may
6254   // not be beneficial for small loops if none of the lanes in the second vector
6255   // iterations is enabled. However, for larger loops, there is likely to be a
6256   // similar benefit as for fixed-width vectors. For now, we choose to leave
6257   // the InterleaveCount as if vscale is '1', although if some information about
6258   // the vector is known (e.g. min vector size), we can make a better decision.
6259   if (BestKnownTC) {
6260     MaxInterleaveCount =
6261         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6262     // Make sure MaxInterleaveCount is greater than 0.
6263     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6264   }
6265 
6266   assert(MaxInterleaveCount > 0 &&
6267          "Maximum interleave count must be greater than 0");
6268 
6269   // Clamp the calculated IC to be between the 1 and the max interleave count
6270   // that the target and trip count allows.
6271   if (IC > MaxInterleaveCount)
6272     IC = MaxInterleaveCount;
6273   else
6274     // Make sure IC is greater than 0.
6275     IC = std::max(1u, IC);
6276 
6277   assert(IC > 0 && "Interleave count must be greater than 0.");
6278 
6279   // If we did not calculate the cost for VF (because the user selected the VF)
6280   // then we calculate the cost of VF here.
6281   if (LoopCost == 0) {
6282     assert(expectedCost(VF).first.isValid() && "Expected a valid cost");
6283     LoopCost = *expectedCost(VF).first.getValue();
6284   }
6285 
6286   assert(LoopCost && "Non-zero loop cost expected");
6287 
6288   // Interleave if we vectorized this loop and there is a reduction that could
6289   // benefit from interleaving.
6290   if (VF.isVector() && HasReductions) {
6291     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6292     return IC;
6293   }
6294 
6295   // Note that if we've already vectorized the loop we will have done the
6296   // runtime check and so interleaving won't require further checks.
6297   bool InterleavingRequiresRuntimePointerCheck =
6298       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6299 
6300   // We want to interleave small loops in order to reduce the loop overhead and
6301   // potentially expose ILP opportunities.
6302   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6303                     << "LV: IC is " << IC << '\n'
6304                     << "LV: VF is " << VF << '\n');
6305   const bool AggressivelyInterleaveReductions =
6306       TTI.enableAggressiveInterleaving(HasReductions);
6307   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6308     // We assume that the cost overhead is 1 and we use the cost model
6309     // to estimate the cost of the loop and interleave until the cost of the
6310     // loop overhead is about 5% of the cost of the loop.
6311     unsigned SmallIC =
6312         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6313 
6314     // Interleave until store/load ports (estimated by max interleave count) are
6315     // saturated.
6316     unsigned NumStores = Legal->getNumStores();
6317     unsigned NumLoads = Legal->getNumLoads();
6318     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6319     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6320 
6321     // If we have a scalar reduction (vector reductions are already dealt with
6322     // by this point), we can increase the critical path length if the loop
6323     // we're interleaving is inside another loop. Limit, by default to 2, so the
6324     // critical path only gets increased by one reduction operation.
6325     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6326       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6327       SmallIC = std::min(SmallIC, F);
6328       StoresIC = std::min(StoresIC, F);
6329       LoadsIC = std::min(LoadsIC, F);
6330     }
6331 
6332     if (EnableLoadStoreRuntimeInterleave &&
6333         std::max(StoresIC, LoadsIC) > SmallIC) {
6334       LLVM_DEBUG(
6335           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6336       return std::max(StoresIC, LoadsIC);
6337     }
6338 
6339     // If there are scalar reductions and TTI has enabled aggressive
6340     // interleaving for reductions, we will interleave to expose ILP.
6341     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6342         AggressivelyInterleaveReductions) {
6343       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6344       // Interleave no less than SmallIC but not as aggressive as the normal IC
6345       // to satisfy the rare situation when resources are too limited.
6346       return std::max(IC / 2, SmallIC);
6347     } else {
6348       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6349       return SmallIC;
6350     }
6351   }
6352 
6353   // Interleave if this is a large loop (small loops are already dealt with by
6354   // this point) that could benefit from interleaving.
6355   if (AggressivelyInterleaveReductions) {
6356     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6357     return IC;
6358   }
6359 
6360   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6361   return 1;
6362 }
6363 
6364 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6365 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6366   // This function calculates the register usage by measuring the highest number
6367   // of values that are alive at a single location. Obviously, this is a very
6368   // rough estimation. We scan the loop in a topological order in order and
6369   // assign a number to each instruction. We use RPO to ensure that defs are
6370   // met before their users. We assume that each instruction that has in-loop
6371   // users starts an interval. We record every time that an in-loop value is
6372   // used, so we have a list of the first and last occurrences of each
6373   // instruction. Next, we transpose this data structure into a multi map that
6374   // holds the list of intervals that *end* at a specific location. This multi
6375   // map allows us to perform a linear search. We scan the instructions linearly
6376   // and record each time that a new interval starts, by placing it in a set.
6377   // If we find this value in the multi-map then we remove it from the set.
6378   // The max register usage is the maximum size of the set.
6379   // We also search for instructions that are defined outside the loop, but are
6380   // used inside the loop. We need this number separately from the max-interval
6381   // usage number because when we unroll, loop-invariant values do not take
6382   // more register.
6383   LoopBlocksDFS DFS(TheLoop);
6384   DFS.perform(LI);
6385 
6386   RegisterUsage RU;
6387 
6388   // Each 'key' in the map opens a new interval. The values
6389   // of the map are the index of the 'last seen' usage of the
6390   // instruction that is the key.
6391   using IntervalMap = DenseMap<Instruction *, unsigned>;
6392 
6393   // Maps instruction to its index.
6394   SmallVector<Instruction *, 64> IdxToInstr;
6395   // Marks the end of each interval.
6396   IntervalMap EndPoint;
6397   // Saves the list of instruction indices that are used in the loop.
6398   SmallPtrSet<Instruction *, 8> Ends;
6399   // Saves the list of values that are used in the loop but are
6400   // defined outside the loop, such as arguments and constants.
6401   SmallPtrSet<Value *, 8> LoopInvariants;
6402 
6403   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6404     for (Instruction &I : BB->instructionsWithoutDebug()) {
6405       IdxToInstr.push_back(&I);
6406 
6407       // Save the end location of each USE.
6408       for (Value *U : I.operands()) {
6409         auto *Instr = dyn_cast<Instruction>(U);
6410 
6411         // Ignore non-instruction values such as arguments, constants, etc.
6412         if (!Instr)
6413           continue;
6414 
6415         // If this instruction is outside the loop then record it and continue.
6416         if (!TheLoop->contains(Instr)) {
6417           LoopInvariants.insert(Instr);
6418           continue;
6419         }
6420 
6421         // Overwrite previous end points.
6422         EndPoint[Instr] = IdxToInstr.size();
6423         Ends.insert(Instr);
6424       }
6425     }
6426   }
6427 
6428   // Saves the list of intervals that end with the index in 'key'.
6429   using InstrList = SmallVector<Instruction *, 2>;
6430   DenseMap<unsigned, InstrList> TransposeEnds;
6431 
6432   // Transpose the EndPoints to a list of values that end at each index.
6433   for (auto &Interval : EndPoint)
6434     TransposeEnds[Interval.second].push_back(Interval.first);
6435 
6436   SmallPtrSet<Instruction *, 8> OpenIntervals;
6437   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6438   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6439 
6440   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6441 
6442   // A lambda that gets the register usage for the given type and VF.
6443   const auto &TTICapture = TTI;
6444   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) {
6445     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6446       return 0U;
6447     return TTICapture.getRegUsageForType(VectorType::get(Ty, VF));
6448   };
6449 
6450   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6451     Instruction *I = IdxToInstr[i];
6452 
6453     // Remove all of the instructions that end at this location.
6454     InstrList &List = TransposeEnds[i];
6455     for (Instruction *ToRemove : List)
6456       OpenIntervals.erase(ToRemove);
6457 
6458     // Ignore instructions that are never used within the loop.
6459     if (!Ends.count(I))
6460       continue;
6461 
6462     // Skip ignored values.
6463     if (ValuesToIgnore.count(I))
6464       continue;
6465 
6466     // For each VF find the maximum usage of registers.
6467     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6468       // Count the number of live intervals.
6469       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6470 
6471       if (VFs[j].isScalar()) {
6472         for (auto Inst : OpenIntervals) {
6473           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6474           if (RegUsage.find(ClassID) == RegUsage.end())
6475             RegUsage[ClassID] = 1;
6476           else
6477             RegUsage[ClassID] += 1;
6478         }
6479       } else {
6480         collectUniformsAndScalars(VFs[j]);
6481         for (auto Inst : OpenIntervals) {
6482           // Skip ignored values for VF > 1.
6483           if (VecValuesToIgnore.count(Inst))
6484             continue;
6485           if (isScalarAfterVectorization(Inst, VFs[j])) {
6486             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6487             if (RegUsage.find(ClassID) == RegUsage.end())
6488               RegUsage[ClassID] = 1;
6489             else
6490               RegUsage[ClassID] += 1;
6491           } else {
6492             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6493             if (RegUsage.find(ClassID) == RegUsage.end())
6494               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6495             else
6496               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6497           }
6498         }
6499       }
6500 
6501       for (auto& pair : RegUsage) {
6502         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6503           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6504         else
6505           MaxUsages[j][pair.first] = pair.second;
6506       }
6507     }
6508 
6509     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6510                       << OpenIntervals.size() << '\n');
6511 
6512     // Add the current instruction to the list of open intervals.
6513     OpenIntervals.insert(I);
6514   }
6515 
6516   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6517     SmallMapVector<unsigned, unsigned, 4> Invariant;
6518 
6519     for (auto Inst : LoopInvariants) {
6520       unsigned Usage =
6521           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6522       unsigned ClassID =
6523           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6524       if (Invariant.find(ClassID) == Invariant.end())
6525         Invariant[ClassID] = Usage;
6526       else
6527         Invariant[ClassID] += Usage;
6528     }
6529 
6530     LLVM_DEBUG({
6531       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6532       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6533              << " item\n";
6534       for (const auto &pair : MaxUsages[i]) {
6535         dbgs() << "LV(REG): RegisterClass: "
6536                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6537                << " registers\n";
6538       }
6539       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6540              << " item\n";
6541       for (const auto &pair : Invariant) {
6542         dbgs() << "LV(REG): RegisterClass: "
6543                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6544                << " registers\n";
6545       }
6546     });
6547 
6548     RU.LoopInvariantRegs = Invariant;
6549     RU.MaxLocalUsers = MaxUsages[i];
6550     RUs[i] = RU;
6551   }
6552 
6553   return RUs;
6554 }
6555 
6556 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6557   // TODO: Cost model for emulated masked load/store is completely
6558   // broken. This hack guides the cost model to use an artificially
6559   // high enough value to practically disable vectorization with such
6560   // operations, except where previously deployed legality hack allowed
6561   // using very low cost values. This is to avoid regressions coming simply
6562   // from moving "masked load/store" check from legality to cost model.
6563   // Masked Load/Gather emulation was previously never allowed.
6564   // Limited number of Masked Store/Scatter emulation was allowed.
6565   assert(isPredicatedInst(I, ElementCount::getFixed(1)) &&
6566          "Expecting a scalar emulated instruction");
6567   return isa<LoadInst>(I) ||
6568          (isa<StoreInst>(I) &&
6569           NumPredStores > NumberOfStoresToPredicate);
6570 }
6571 
6572 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6573   // If we aren't vectorizing the loop, or if we've already collected the
6574   // instructions to scalarize, there's nothing to do. Collection may already
6575   // have occurred if we have a user-selected VF and are now computing the
6576   // expected cost for interleaving.
6577   if (VF.isScalar() || VF.isZero() ||
6578       InstsToScalarize.find(VF) != InstsToScalarize.end())
6579     return;
6580 
6581   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6582   // not profitable to scalarize any instructions, the presence of VF in the
6583   // map will indicate that we've analyzed it already.
6584   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6585 
6586   // Find all the instructions that are scalar with predication in the loop and
6587   // determine if it would be better to not if-convert the blocks they are in.
6588   // If so, we also record the instructions to scalarize.
6589   for (BasicBlock *BB : TheLoop->blocks()) {
6590     if (!blockNeedsPredication(BB))
6591       continue;
6592     for (Instruction &I : *BB)
6593       if (isScalarWithPredication(&I)) {
6594         ScalarCostsTy ScalarCosts;
6595         // Do not apply discount logic if hacked cost is needed
6596         // for emulated masked memrefs.
6597         if (!useEmulatedMaskMemRefHack(&I) &&
6598             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6599           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6600         // Remember that BB will remain after vectorization.
6601         PredicatedBBsAfterVectorization.insert(BB);
6602       }
6603   }
6604 }
6605 
6606 int LoopVectorizationCostModel::computePredInstDiscount(
6607     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6608   assert(!isUniformAfterVectorization(PredInst, VF) &&
6609          "Instruction marked uniform-after-vectorization will be predicated");
6610 
6611   // Initialize the discount to zero, meaning that the scalar version and the
6612   // vector version cost the same.
6613   InstructionCost Discount = 0;
6614 
6615   // Holds instructions to analyze. The instructions we visit are mapped in
6616   // ScalarCosts. Those instructions are the ones that would be scalarized if
6617   // we find that the scalar version costs less.
6618   SmallVector<Instruction *, 8> Worklist;
6619 
6620   // Returns true if the given instruction can be scalarized.
6621   auto canBeScalarized = [&](Instruction *I) -> bool {
6622     // We only attempt to scalarize instructions forming a single-use chain
6623     // from the original predicated block that would otherwise be vectorized.
6624     // Although not strictly necessary, we give up on instructions we know will
6625     // already be scalar to avoid traversing chains that are unlikely to be
6626     // beneficial.
6627     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6628         isScalarAfterVectorization(I, VF))
6629       return false;
6630 
6631     // If the instruction is scalar with predication, it will be analyzed
6632     // separately. We ignore it within the context of PredInst.
6633     if (isScalarWithPredication(I))
6634       return false;
6635 
6636     // If any of the instruction's operands are uniform after vectorization,
6637     // the instruction cannot be scalarized. This prevents, for example, a
6638     // masked load from being scalarized.
6639     //
6640     // We assume we will only emit a value for lane zero of an instruction
6641     // marked uniform after vectorization, rather than VF identical values.
6642     // Thus, if we scalarize an instruction that uses a uniform, we would
6643     // create uses of values corresponding to the lanes we aren't emitting code
6644     // for. This behavior can be changed by allowing getScalarValue to clone
6645     // the lane zero values for uniforms rather than asserting.
6646     for (Use &U : I->operands())
6647       if (auto *J = dyn_cast<Instruction>(U.get()))
6648         if (isUniformAfterVectorization(J, VF))
6649           return false;
6650 
6651     // Otherwise, we can scalarize the instruction.
6652     return true;
6653   };
6654 
6655   // Compute the expected cost discount from scalarizing the entire expression
6656   // feeding the predicated instruction. We currently only consider expressions
6657   // that are single-use instruction chains.
6658   Worklist.push_back(PredInst);
6659   while (!Worklist.empty()) {
6660     Instruction *I = Worklist.pop_back_val();
6661 
6662     // If we've already analyzed the instruction, there's nothing to do.
6663     if (ScalarCosts.find(I) != ScalarCosts.end())
6664       continue;
6665 
6666     // Compute the cost of the vector instruction. Note that this cost already
6667     // includes the scalarization overhead of the predicated instruction.
6668     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6669 
6670     // Compute the cost of the scalarized instruction. This cost is the cost of
6671     // the instruction as if it wasn't if-converted and instead remained in the
6672     // predicated block. We will scale this cost by block probability after
6673     // computing the scalarization overhead.
6674     assert(!VF.isScalable() && "scalable vectors not yet supported.");
6675     InstructionCost ScalarCost =
6676         VF.getKnownMinValue() *
6677         getInstructionCost(I, ElementCount::getFixed(1)).first;
6678 
6679     // Compute the scalarization overhead of needed insertelement instructions
6680     // and phi nodes.
6681     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6682       ScalarCost += TTI.getScalarizationOverhead(
6683           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6684           APInt::getAllOnesValue(VF.getKnownMinValue()), true, false);
6685       assert(!VF.isScalable() && "scalable vectors not yet supported.");
6686       ScalarCost +=
6687           VF.getKnownMinValue() *
6688           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6689     }
6690 
6691     // Compute the scalarization overhead of needed extractelement
6692     // instructions. For each of the instruction's operands, if the operand can
6693     // be scalarized, add it to the worklist; otherwise, account for the
6694     // overhead.
6695     for (Use &U : I->operands())
6696       if (auto *J = dyn_cast<Instruction>(U.get())) {
6697         assert(VectorType::isValidElementType(J->getType()) &&
6698                "Instruction has non-scalar type");
6699         if (canBeScalarized(J))
6700           Worklist.push_back(J);
6701         else if (needsExtract(J, VF)) {
6702           assert(!VF.isScalable() && "scalable vectors not yet supported.");
6703           ScalarCost += TTI.getScalarizationOverhead(
6704               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6705               APInt::getAllOnesValue(VF.getKnownMinValue()), false, true);
6706         }
6707       }
6708 
6709     // Scale the total scalar cost by block probability.
6710     ScalarCost /= getReciprocalPredBlockProb();
6711 
6712     // Compute the discount. A non-negative discount means the vector version
6713     // of the instruction costs more, and scalarizing would be beneficial.
6714     Discount += VectorCost - ScalarCost;
6715     ScalarCosts[I] = ScalarCost;
6716   }
6717 
6718   return *Discount.getValue();
6719 }
6720 
6721 LoopVectorizationCostModel::VectorizationCostTy
6722 LoopVectorizationCostModel::expectedCost(ElementCount VF) {
6723   VectorizationCostTy Cost;
6724 
6725   // For each block.
6726   for (BasicBlock *BB : TheLoop->blocks()) {
6727     VectorizationCostTy BlockCost;
6728 
6729     // For each instruction in the old loop.
6730     for (Instruction &I : BB->instructionsWithoutDebug()) {
6731       // Skip ignored values.
6732       if (ValuesToIgnore.count(&I) ||
6733           (VF.isVector() && VecValuesToIgnore.count(&I)))
6734         continue;
6735 
6736       VectorizationCostTy C = getInstructionCost(&I, VF);
6737 
6738       // Check if we should override the cost.
6739       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
6740         C.first = InstructionCost(ForceTargetInstructionCost);
6741 
6742       BlockCost.first += C.first;
6743       BlockCost.second |= C.second;
6744       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6745                         << " for VF " << VF << " For instruction: " << I
6746                         << '\n');
6747     }
6748 
6749     // If we are vectorizing a predicated block, it will have been
6750     // if-converted. This means that the block's instructions (aside from
6751     // stores and instructions that may divide by zero) will now be
6752     // unconditionally executed. For the scalar case, we may not always execute
6753     // the predicated block, if it is an if-else block. Thus, scale the block's
6754     // cost by the probability of executing it. blockNeedsPredication from
6755     // Legal is used so as to not include all blocks in tail folded loops.
6756     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6757       BlockCost.first /= getReciprocalPredBlockProb();
6758 
6759     Cost.first += BlockCost.first;
6760     Cost.second |= BlockCost.second;
6761   }
6762 
6763   return Cost;
6764 }
6765 
6766 /// Gets Address Access SCEV after verifying that the access pattern
6767 /// is loop invariant except the induction variable dependence.
6768 ///
6769 /// This SCEV can be sent to the Target in order to estimate the address
6770 /// calculation cost.
6771 static const SCEV *getAddressAccessSCEV(
6772               Value *Ptr,
6773               LoopVectorizationLegality *Legal,
6774               PredicatedScalarEvolution &PSE,
6775               const Loop *TheLoop) {
6776 
6777   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6778   if (!Gep)
6779     return nullptr;
6780 
6781   // We are looking for a gep with all loop invariant indices except for one
6782   // which should be an induction variable.
6783   auto SE = PSE.getSE();
6784   unsigned NumOperands = Gep->getNumOperands();
6785   for (unsigned i = 1; i < NumOperands; ++i) {
6786     Value *Opd = Gep->getOperand(i);
6787     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6788         !Legal->isInductionVariable(Opd))
6789       return nullptr;
6790   }
6791 
6792   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6793   return PSE.getSCEV(Ptr);
6794 }
6795 
6796 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6797   return Legal->hasStride(I->getOperand(0)) ||
6798          Legal->hasStride(I->getOperand(1));
6799 }
6800 
6801 InstructionCost
6802 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6803                                                         ElementCount VF) {
6804   assert(VF.isVector() &&
6805          "Scalarization cost of instruction implies vectorization.");
6806   if (VF.isScalable())
6807     return InstructionCost::getInvalid();
6808 
6809   Type *ValTy = getMemInstValueType(I);
6810   auto SE = PSE.getSE();
6811 
6812   unsigned AS = getLoadStoreAddressSpace(I);
6813   Value *Ptr = getLoadStorePointerOperand(I);
6814   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6815 
6816   // Figure out whether the access is strided and get the stride value
6817   // if it's known in compile time
6818   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6819 
6820   // Get the cost of the scalar memory instruction and address computation.
6821   InstructionCost Cost =
6822       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6823 
6824   // Don't pass *I here, since it is scalar but will actually be part of a
6825   // vectorized loop where the user of it is a vectorized instruction.
6826   const Align Alignment = getLoadStoreAlignment(I);
6827   Cost += VF.getKnownMinValue() *
6828           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6829                               AS, TTI::TCK_RecipThroughput);
6830 
6831   // Get the overhead of the extractelement and insertelement instructions
6832   // we might create due to scalarization.
6833   Cost += getScalarizationOverhead(I, VF);
6834 
6835   // If we have a predicated load/store, it will need extra i1 extracts and
6836   // conditional branches, but may not be executed for each vector lane. Scale
6837   // the cost by the probability of executing the predicated block.
6838   if (isPredicatedInst(I, ElementCount::getFixed(1))) {
6839     Cost /= getReciprocalPredBlockProb();
6840 
6841     // Add the cost of an i1 extract and a branch
6842     auto *Vec_i1Ty =
6843         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6844     Cost += TTI.getScalarizationOverhead(
6845         Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
6846         /*Insert=*/false, /*Extract=*/true);
6847     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6848 
6849     if (useEmulatedMaskMemRefHack(I))
6850       // Artificially setting to a high enough value to practically disable
6851       // vectorization with such operations.
6852       Cost = 3000000;
6853   }
6854 
6855   return Cost;
6856 }
6857 
6858 InstructionCost
6859 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6860                                                     ElementCount VF) {
6861   Type *ValTy = getMemInstValueType(I);
6862   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6863   Value *Ptr = getLoadStorePointerOperand(I);
6864   unsigned AS = getLoadStoreAddressSpace(I);
6865   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
6866   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6867 
6868   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6869          "Stride should be 1 or -1 for consecutive memory access");
6870   const Align Alignment = getLoadStoreAlignment(I);
6871   InstructionCost Cost = 0;
6872   if (Legal->isMaskRequired(I))
6873     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6874                                       CostKind);
6875   else
6876     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6877                                 CostKind, I);
6878 
6879   bool Reverse = ConsecutiveStride < 0;
6880   if (Reverse)
6881     Cost +=
6882         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6883   return Cost;
6884 }
6885 
6886 InstructionCost
6887 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6888                                                 ElementCount VF) {
6889   assert(Legal->isUniformMemOp(*I));
6890 
6891   Type *ValTy = getMemInstValueType(I);
6892   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6893   const Align Alignment = getLoadStoreAlignment(I);
6894   unsigned AS = getLoadStoreAddressSpace(I);
6895   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6896   if (isa<LoadInst>(I)) {
6897     return TTI.getAddressComputationCost(ValTy) +
6898            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6899                                CostKind) +
6900            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6901   }
6902   StoreInst *SI = cast<StoreInst>(I);
6903 
6904   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6905   return TTI.getAddressComputationCost(ValTy) +
6906          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6907                              CostKind) +
6908          (isLoopInvariantStoreValue
6909               ? 0
6910               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6911                                        VF.getKnownMinValue() - 1));
6912 }
6913 
6914 InstructionCost
6915 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6916                                                  ElementCount VF) {
6917   Type *ValTy = getMemInstValueType(I);
6918   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6919   const Align Alignment = getLoadStoreAlignment(I);
6920   const Value *Ptr = getLoadStorePointerOperand(I);
6921 
6922   return TTI.getAddressComputationCost(VectorTy) +
6923          TTI.getGatherScatterOpCost(
6924              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6925              TargetTransformInfo::TCK_RecipThroughput, I);
6926 }
6927 
6928 InstructionCost
6929 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6930                                                    ElementCount VF) {
6931   // TODO: Once we have support for interleaving with scalable vectors
6932   // we can calculate the cost properly here.
6933   if (VF.isScalable())
6934     return InstructionCost::getInvalid();
6935 
6936   Type *ValTy = getMemInstValueType(I);
6937   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6938   unsigned AS = getLoadStoreAddressSpace(I);
6939 
6940   auto Group = getInterleavedAccessGroup(I);
6941   assert(Group && "Fail to get an interleaved access group.");
6942 
6943   unsigned InterleaveFactor = Group->getFactor();
6944   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6945 
6946   // Holds the indices of existing members in an interleaved load group.
6947   // An interleaved store group doesn't need this as it doesn't allow gaps.
6948   SmallVector<unsigned, 4> Indices;
6949   if (isa<LoadInst>(I)) {
6950     for (unsigned i = 0; i < InterleaveFactor; i++)
6951       if (Group->getMember(i))
6952         Indices.push_back(i);
6953   }
6954 
6955   // Calculate the cost of the whole interleaved group.
6956   bool UseMaskForGaps =
6957       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
6958   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6959       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6960       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6961 
6962   if (Group->isReverse()) {
6963     // TODO: Add support for reversed masked interleaved access.
6964     assert(!Legal->isMaskRequired(I) &&
6965            "Reverse masked interleaved access not supported.");
6966     Cost +=
6967         Group->getNumMembers() *
6968         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6969   }
6970   return Cost;
6971 }
6972 
6973 InstructionCost LoopVectorizationCostModel::getReductionPatternCost(
6974     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6975   // Early exit for no inloop reductions
6976   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6977     return InstructionCost::getInvalid();
6978   auto *VectorTy = cast<VectorType>(Ty);
6979 
6980   // We are looking for a pattern of, and finding the minimal acceptable cost:
6981   //  reduce(mul(ext(A), ext(B))) or
6982   //  reduce(mul(A, B)) or
6983   //  reduce(ext(A)) or
6984   //  reduce(A).
6985   // The basic idea is that we walk down the tree to do that, finding the root
6986   // reduction instruction in InLoopReductionImmediateChains. From there we find
6987   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6988   // of the components. If the reduction cost is lower then we return it for the
6989   // reduction instruction and 0 for the other instructions in the pattern. If
6990   // it is not we return an invalid cost specifying the orignal cost method
6991   // should be used.
6992   Instruction *RetI = I;
6993   if ((RetI->getOpcode() == Instruction::SExt ||
6994        RetI->getOpcode() == Instruction::ZExt)) {
6995     if (!RetI->hasOneUser())
6996       return InstructionCost::getInvalid();
6997     RetI = RetI->user_back();
6998   }
6999   if (RetI->getOpcode() == Instruction::Mul &&
7000       RetI->user_back()->getOpcode() == Instruction::Add) {
7001     if (!RetI->hasOneUser())
7002       return InstructionCost::getInvalid();
7003     RetI = RetI->user_back();
7004   }
7005 
7006   // Test if the found instruction is a reduction, and if not return an invalid
7007   // cost specifying the parent to use the original cost modelling.
7008   if (!InLoopReductionImmediateChains.count(RetI))
7009     return InstructionCost::getInvalid();
7010 
7011   // Find the reduction this chain is a part of and calculate the basic cost of
7012   // the reduction on its own.
7013   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7014   Instruction *ReductionPhi = LastChain;
7015   while (!isa<PHINode>(ReductionPhi))
7016     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7017 
7018   RecurrenceDescriptor RdxDesc =
7019       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7020   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7021       RdxDesc.getOpcode(), VectorTy, false, CostKind);
7022 
7023   // Get the operand that was not the reduction chain and match it to one of the
7024   // patterns, returning the better cost if it is found.
7025   Instruction *RedOp = RetI->getOperand(1) == LastChain
7026                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7027                            : dyn_cast<Instruction>(RetI->getOperand(1));
7028 
7029   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7030 
7031   if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) &&
7032       !TheLoop->isLoopInvariant(RedOp)) {
7033     bool IsUnsigned = isa<ZExtInst>(RedOp);
7034     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7035     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7036         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7037         CostKind);
7038 
7039     InstructionCost ExtCost =
7040         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7041                              TTI::CastContextHint::None, CostKind, RedOp);
7042     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7043       return I == RetI ? *RedCost.getValue() : 0;
7044   } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) {
7045     Instruction *Mul = RedOp;
7046     Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0));
7047     Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1));
7048     if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) &&
7049         Op0->getOpcode() == Op1->getOpcode() &&
7050         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7051         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7052       bool IsUnsigned = isa<ZExtInst>(Op0);
7053       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7054       // reduce(mul(ext, ext))
7055       InstructionCost ExtCost =
7056           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7057                                TTI::CastContextHint::None, CostKind, Op0);
7058       InstructionCost MulCost =
7059           TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind);
7060 
7061       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7062           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7063           CostKind);
7064 
7065       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7066         return I == RetI ? *RedCost.getValue() : 0;
7067     } else {
7068       InstructionCost MulCost =
7069           TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind);
7070 
7071       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7072           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7073           CostKind);
7074 
7075       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7076         return I == RetI ? *RedCost.getValue() : 0;
7077     }
7078   }
7079 
7080   return I == RetI ? BaseCost : InstructionCost::getInvalid();
7081 }
7082 
7083 InstructionCost
7084 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7085                                                      ElementCount VF) {
7086   // Calculate scalar cost only. Vectorization cost should be ready at this
7087   // moment.
7088   if (VF.isScalar()) {
7089     Type *ValTy = getMemInstValueType(I);
7090     const Align Alignment = getLoadStoreAlignment(I);
7091     unsigned AS = getLoadStoreAddressSpace(I);
7092 
7093     return TTI.getAddressComputationCost(ValTy) +
7094            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7095                                TTI::TCK_RecipThroughput, I);
7096   }
7097   return getWideningCost(I, VF);
7098 }
7099 
7100 LoopVectorizationCostModel::VectorizationCostTy
7101 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7102                                                ElementCount VF) {
7103   // If we know that this instruction will remain uniform, check the cost of
7104   // the scalar version.
7105   if (isUniformAfterVectorization(I, VF))
7106     VF = ElementCount::getFixed(1);
7107 
7108   if (VF.isVector() && isProfitableToScalarize(I, VF))
7109     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7110 
7111   // Forced scalars do not have any scalarization overhead.
7112   auto ForcedScalar = ForcedScalars.find(VF);
7113   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7114     auto InstSet = ForcedScalar->second;
7115     if (InstSet.count(I))
7116       return VectorizationCostTy(
7117           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7118            VF.getKnownMinValue()),
7119           false);
7120   }
7121 
7122   Type *VectorTy;
7123   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7124 
7125   bool TypeNotScalarized =
7126       VF.isVector() && VectorTy->isVectorTy() &&
7127       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7128   return VectorizationCostTy(C, TypeNotScalarized);
7129 }
7130 
7131 InstructionCost
7132 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7133                                                      ElementCount VF) const {
7134 
7135   if (VF.isScalable())
7136     return InstructionCost::getInvalid();
7137 
7138   if (VF.isScalar())
7139     return 0;
7140 
7141   InstructionCost Cost = 0;
7142   Type *RetTy = ToVectorTy(I->getType(), VF);
7143   if (!RetTy->isVoidTy() &&
7144       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7145     Cost += TTI.getScalarizationOverhead(
7146         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()),
7147         true, false);
7148 
7149   // Some targets keep addresses scalar.
7150   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7151     return Cost;
7152 
7153   // Some targets support efficient element stores.
7154   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7155     return Cost;
7156 
7157   // Collect operands to consider.
7158   CallInst *CI = dyn_cast<CallInst>(I);
7159   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
7160 
7161   // Skip operands that do not require extraction/scalarization and do not incur
7162   // any overhead.
7163   SmallVector<Type *> Tys;
7164   for (auto *V : filterExtractingOperands(Ops, VF))
7165     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7166   return Cost + TTI.getOperandsScalarizationOverhead(
7167                     filterExtractingOperands(Ops, VF), Tys);
7168 }
7169 
7170 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7171   if (VF.isScalar())
7172     return;
7173   NumPredStores = 0;
7174   for (BasicBlock *BB : TheLoop->blocks()) {
7175     // For each instruction in the old loop.
7176     for (Instruction &I : *BB) {
7177       Value *Ptr =  getLoadStorePointerOperand(&I);
7178       if (!Ptr)
7179         continue;
7180 
7181       // TODO: We should generate better code and update the cost model for
7182       // predicated uniform stores. Today they are treated as any other
7183       // predicated store (see added test cases in
7184       // invariant-store-vectorization.ll).
7185       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7186         NumPredStores++;
7187 
7188       if (Legal->isUniformMemOp(I)) {
7189         // TODO: Avoid replicating loads and stores instead of
7190         // relying on instcombine to remove them.
7191         // Load: Scalar load + broadcast
7192         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7193         InstructionCost Cost = getUniformMemOpCost(&I, VF);
7194         setWideningDecision(&I, VF, CM_Scalarize, Cost);
7195         continue;
7196       }
7197 
7198       // We assume that widening is the best solution when possible.
7199       if (memoryInstructionCanBeWidened(&I, VF)) {
7200         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7201         int ConsecutiveStride =
7202                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
7203         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7204                "Expected consecutive stride.");
7205         InstWidening Decision =
7206             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7207         setWideningDecision(&I, VF, Decision, Cost);
7208         continue;
7209       }
7210 
7211       // Choose between Interleaving, Gather/Scatter or Scalarization.
7212       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7213       unsigned NumAccesses = 1;
7214       if (isAccessInterleaved(&I)) {
7215         auto Group = getInterleavedAccessGroup(&I);
7216         assert(Group && "Fail to get an interleaved access group.");
7217 
7218         // Make one decision for the whole group.
7219         if (getWideningDecision(&I, VF) != CM_Unknown)
7220           continue;
7221 
7222         NumAccesses = Group->getNumMembers();
7223         if (interleavedAccessCanBeWidened(&I, VF))
7224           InterleaveCost = getInterleaveGroupCost(&I, VF);
7225       }
7226 
7227       InstructionCost GatherScatterCost =
7228           isLegalGatherOrScatter(&I)
7229               ? getGatherScatterCost(&I, VF) * NumAccesses
7230               : InstructionCost::getInvalid();
7231 
7232       InstructionCost ScalarizationCost =
7233           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7234 
7235       // Choose better solution for the current VF,
7236       // write down this decision and use it during vectorization.
7237       InstructionCost Cost;
7238       InstWidening Decision;
7239       if (InterleaveCost <= GatherScatterCost &&
7240           InterleaveCost < ScalarizationCost) {
7241         Decision = CM_Interleave;
7242         Cost = InterleaveCost;
7243       } else if (GatherScatterCost < ScalarizationCost) {
7244         Decision = CM_GatherScatter;
7245         Cost = GatherScatterCost;
7246       } else {
7247         assert(!VF.isScalable() &&
7248                "We cannot yet scalarise for scalable vectors");
7249         Decision = CM_Scalarize;
7250         Cost = ScalarizationCost;
7251       }
7252       // If the instructions belongs to an interleave group, the whole group
7253       // receives the same decision. The whole group receives the cost, but
7254       // the cost will actually be assigned to one instruction.
7255       if (auto Group = getInterleavedAccessGroup(&I))
7256         setWideningDecision(Group, VF, Decision, Cost);
7257       else
7258         setWideningDecision(&I, VF, Decision, Cost);
7259     }
7260   }
7261 
7262   // Make sure that any load of address and any other address computation
7263   // remains scalar unless there is gather/scatter support. This avoids
7264   // inevitable extracts into address registers, and also has the benefit of
7265   // activating LSR more, since that pass can't optimize vectorized
7266   // addresses.
7267   if (TTI.prefersVectorizedAddressing())
7268     return;
7269 
7270   // Start with all scalar pointer uses.
7271   SmallPtrSet<Instruction *, 8> AddrDefs;
7272   for (BasicBlock *BB : TheLoop->blocks())
7273     for (Instruction &I : *BB) {
7274       Instruction *PtrDef =
7275         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7276       if (PtrDef && TheLoop->contains(PtrDef) &&
7277           getWideningDecision(&I, VF) != CM_GatherScatter)
7278         AddrDefs.insert(PtrDef);
7279     }
7280 
7281   // Add all instructions used to generate the addresses.
7282   SmallVector<Instruction *, 4> Worklist;
7283   append_range(Worklist, AddrDefs);
7284   while (!Worklist.empty()) {
7285     Instruction *I = Worklist.pop_back_val();
7286     for (auto &Op : I->operands())
7287       if (auto *InstOp = dyn_cast<Instruction>(Op))
7288         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7289             AddrDefs.insert(InstOp).second)
7290           Worklist.push_back(InstOp);
7291   }
7292 
7293   for (auto *I : AddrDefs) {
7294     if (isa<LoadInst>(I)) {
7295       // Setting the desired widening decision should ideally be handled in
7296       // by cost functions, but since this involves the task of finding out
7297       // if the loaded register is involved in an address computation, it is
7298       // instead changed here when we know this is the case.
7299       InstWidening Decision = getWideningDecision(I, VF);
7300       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7301         // Scalarize a widened load of address.
7302         setWideningDecision(
7303             I, VF, CM_Scalarize,
7304             (VF.getKnownMinValue() *
7305              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7306       else if (auto Group = getInterleavedAccessGroup(I)) {
7307         // Scalarize an interleave group of address loads.
7308         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7309           if (Instruction *Member = Group->getMember(I))
7310             setWideningDecision(
7311                 Member, VF, CM_Scalarize,
7312                 (VF.getKnownMinValue() *
7313                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7314         }
7315       }
7316     } else
7317       // Make sure I gets scalarized and a cost estimate without
7318       // scalarization overhead.
7319       ForcedScalars[VF].insert(I);
7320   }
7321 }
7322 
7323 InstructionCost
7324 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7325                                                Type *&VectorTy) {
7326   Type *RetTy = I->getType();
7327   if (canTruncateToMinimalBitwidth(I, VF))
7328     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7329   auto SE = PSE.getSE();
7330   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7331 
7332   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7333                                                 ElementCount VF) -> bool {
7334     if (VF.isScalar())
7335       return true;
7336 
7337     auto Scalarized = InstsToScalarize.find(VF);
7338     assert(Scalarized != InstsToScalarize.end() &&
7339            "VF not yet analyzed for scalarization profitability");
7340     return !Scalarized->second.count(I) &&
7341            llvm::all_of(I->users(), [&](User *U) {
7342              auto *UI = cast<Instruction>(U);
7343              return !Scalarized->second.count(UI);
7344            });
7345   };
7346   (void) hasSingleCopyAfterVectorization;
7347 
7348   if (isScalarAfterVectorization(I, VF)) {
7349     // With the exception of GEPs and PHIs, after scalarization there should
7350     // only be one copy of the instruction generated in the loop. This is
7351     // because the VF is either 1, or any instructions that need scalarizing
7352     // have already been dealt with by the the time we get here. As a result,
7353     // it means we don't have to multiply the instruction cost by VF.
7354     assert(I->getOpcode() == Instruction::GetElementPtr ||
7355            I->getOpcode() == Instruction::PHI ||
7356            (I->getOpcode() == Instruction::BitCast &&
7357             I->getType()->isPointerTy()) ||
7358            hasSingleCopyAfterVectorization(I, VF));
7359     VectorTy = RetTy;
7360   } else
7361     VectorTy = ToVectorTy(RetTy, VF);
7362 
7363   // TODO: We need to estimate the cost of intrinsic calls.
7364   switch (I->getOpcode()) {
7365   case Instruction::GetElementPtr:
7366     // We mark this instruction as zero-cost because the cost of GEPs in
7367     // vectorized code depends on whether the corresponding memory instruction
7368     // is scalarized or not. Therefore, we handle GEPs with the memory
7369     // instruction cost.
7370     return 0;
7371   case Instruction::Br: {
7372     // In cases of scalarized and predicated instructions, there will be VF
7373     // predicated blocks in the vectorized loop. Each branch around these
7374     // blocks requires also an extract of its vector compare i1 element.
7375     bool ScalarPredicatedBB = false;
7376     BranchInst *BI = cast<BranchInst>(I);
7377     if (VF.isVector() && BI->isConditional() &&
7378         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7379          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7380       ScalarPredicatedBB = true;
7381 
7382     if (ScalarPredicatedBB) {
7383       // Return cost for branches around scalarized and predicated blocks.
7384       assert(!VF.isScalable() && "scalable vectors not yet supported.");
7385       auto *Vec_i1Ty =
7386           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7387       return (TTI.getScalarizationOverhead(
7388                   Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
7389                   false, true) +
7390               (TTI.getCFInstrCost(Instruction::Br, CostKind) *
7391                VF.getKnownMinValue()));
7392     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7393       // The back-edge branch will remain, as will all scalar branches.
7394       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7395     else
7396       // This branch will be eliminated by if-conversion.
7397       return 0;
7398     // Note: We currently assume zero cost for an unconditional branch inside
7399     // a predicated block since it will become a fall-through, although we
7400     // may decide in the future to call TTI for all branches.
7401   }
7402   case Instruction::PHI: {
7403     auto *Phi = cast<PHINode>(I);
7404 
7405     // First-order recurrences are replaced by vector shuffles inside the loop.
7406     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7407     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7408       return TTI.getShuffleCost(
7409           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7410           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7411 
7412     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7413     // converted into select instructions. We require N - 1 selects per phi
7414     // node, where N is the number of incoming values.
7415     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7416       return (Phi->getNumIncomingValues() - 1) *
7417              TTI.getCmpSelInstrCost(
7418                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7419                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7420                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7421 
7422     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7423   }
7424   case Instruction::UDiv:
7425   case Instruction::SDiv:
7426   case Instruction::URem:
7427   case Instruction::SRem:
7428     // If we have a predicated instruction, it may not be executed for each
7429     // vector lane. Get the scalarization cost and scale this amount by the
7430     // probability of executing the predicated block. If the instruction is not
7431     // predicated, we fall through to the next case.
7432     if (VF.isVector() && isScalarWithPredication(I)) {
7433       InstructionCost Cost = 0;
7434 
7435       // These instructions have a non-void type, so account for the phi nodes
7436       // that we will create. This cost is likely to be zero. The phi node
7437       // cost, if any, should be scaled by the block probability because it
7438       // models a copy at the end of each predicated block.
7439       Cost += VF.getKnownMinValue() *
7440               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7441 
7442       // The cost of the non-predicated instruction.
7443       Cost += VF.getKnownMinValue() *
7444               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7445 
7446       // The cost of insertelement and extractelement instructions needed for
7447       // scalarization.
7448       Cost += getScalarizationOverhead(I, VF);
7449 
7450       // Scale the cost by the probability of executing the predicated blocks.
7451       // This assumes the predicated block for each vector lane is equally
7452       // likely.
7453       return Cost / getReciprocalPredBlockProb();
7454     }
7455     LLVM_FALLTHROUGH;
7456   case Instruction::Add:
7457   case Instruction::FAdd:
7458   case Instruction::Sub:
7459   case Instruction::FSub:
7460   case Instruction::Mul:
7461   case Instruction::FMul:
7462   case Instruction::FDiv:
7463   case Instruction::FRem:
7464   case Instruction::Shl:
7465   case Instruction::LShr:
7466   case Instruction::AShr:
7467   case Instruction::And:
7468   case Instruction::Or:
7469   case Instruction::Xor: {
7470     // Since we will replace the stride by 1 the multiplication should go away.
7471     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7472       return 0;
7473 
7474     // Detect reduction patterns
7475     InstructionCost RedCost;
7476     if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7477             .isValid())
7478       return RedCost;
7479 
7480     // Certain instructions can be cheaper to vectorize if they have a constant
7481     // second vector operand. One example of this are shifts on x86.
7482     Value *Op2 = I->getOperand(1);
7483     TargetTransformInfo::OperandValueProperties Op2VP;
7484     TargetTransformInfo::OperandValueKind Op2VK =
7485         TTI.getOperandInfo(Op2, Op2VP);
7486     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7487       Op2VK = TargetTransformInfo::OK_UniformValue;
7488 
7489     SmallVector<const Value *, 4> Operands(I->operand_values());
7490     return TTI.getArithmeticInstrCost(
7491         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7492         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7493   }
7494   case Instruction::FNeg: {
7495     return TTI.getArithmeticInstrCost(
7496         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7497         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7498         TargetTransformInfo::OP_None, I->getOperand(0), I);
7499   }
7500   case Instruction::Select: {
7501     SelectInst *SI = cast<SelectInst>(I);
7502     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7503     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7504 
7505     const Value *Op0, *Op1;
7506     using namespace llvm::PatternMatch;
7507     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7508                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7509       // select x, y, false --> x & y
7510       // select x, true, y --> x | y
7511       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7512       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7513       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7514       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7515       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7516               Op1->getType()->getScalarSizeInBits() == 1);
7517 
7518       SmallVector<const Value *, 2> Operands{Op0, Op1};
7519       return TTI.getArithmeticInstrCost(
7520           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7521           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7522     }
7523 
7524     Type *CondTy = SI->getCondition()->getType();
7525     if (!ScalarCond)
7526       CondTy = VectorType::get(CondTy, VF);
7527     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7528                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7529   }
7530   case Instruction::ICmp:
7531   case Instruction::FCmp: {
7532     Type *ValTy = I->getOperand(0)->getType();
7533     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7534     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7535       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7536     VectorTy = ToVectorTy(ValTy, VF);
7537     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7538                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7539   }
7540   case Instruction::Store:
7541   case Instruction::Load: {
7542     ElementCount Width = VF;
7543     if (Width.isVector()) {
7544       InstWidening Decision = getWideningDecision(I, Width);
7545       assert(Decision != CM_Unknown &&
7546              "CM decision should be taken at this point");
7547       if (Decision == CM_Scalarize)
7548         Width = ElementCount::getFixed(1);
7549     }
7550     VectorTy = ToVectorTy(getMemInstValueType(I), Width);
7551     return getMemoryInstructionCost(I, VF);
7552   }
7553   case Instruction::BitCast:
7554     if (I->getType()->isPointerTy())
7555       return 0;
7556     LLVM_FALLTHROUGH;
7557   case Instruction::ZExt:
7558   case Instruction::SExt:
7559   case Instruction::FPToUI:
7560   case Instruction::FPToSI:
7561   case Instruction::FPExt:
7562   case Instruction::PtrToInt:
7563   case Instruction::IntToPtr:
7564   case Instruction::SIToFP:
7565   case Instruction::UIToFP:
7566   case Instruction::Trunc:
7567   case Instruction::FPTrunc: {
7568     // Computes the CastContextHint from a Load/Store instruction.
7569     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7570       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7571              "Expected a load or a store!");
7572 
7573       if (VF.isScalar() || !TheLoop->contains(I))
7574         return TTI::CastContextHint::Normal;
7575 
7576       switch (getWideningDecision(I, VF)) {
7577       case LoopVectorizationCostModel::CM_GatherScatter:
7578         return TTI::CastContextHint::GatherScatter;
7579       case LoopVectorizationCostModel::CM_Interleave:
7580         return TTI::CastContextHint::Interleave;
7581       case LoopVectorizationCostModel::CM_Scalarize:
7582       case LoopVectorizationCostModel::CM_Widen:
7583         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7584                                         : TTI::CastContextHint::Normal;
7585       case LoopVectorizationCostModel::CM_Widen_Reverse:
7586         return TTI::CastContextHint::Reversed;
7587       case LoopVectorizationCostModel::CM_Unknown:
7588         llvm_unreachable("Instr did not go through cost modelling?");
7589       }
7590 
7591       llvm_unreachable("Unhandled case!");
7592     };
7593 
7594     unsigned Opcode = I->getOpcode();
7595     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7596     // For Trunc, the context is the only user, which must be a StoreInst.
7597     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7598       if (I->hasOneUse())
7599         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7600           CCH = ComputeCCH(Store);
7601     }
7602     // For Z/Sext, the context is the operand, which must be a LoadInst.
7603     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7604              Opcode == Instruction::FPExt) {
7605       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7606         CCH = ComputeCCH(Load);
7607     }
7608 
7609     // We optimize the truncation of induction variables having constant
7610     // integer steps. The cost of these truncations is the same as the scalar
7611     // operation.
7612     if (isOptimizableIVTruncate(I, VF)) {
7613       auto *Trunc = cast<TruncInst>(I);
7614       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7615                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7616     }
7617 
7618     // Detect reduction patterns
7619     InstructionCost RedCost;
7620     if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7621             .isValid())
7622       return RedCost;
7623 
7624     Type *SrcScalarTy = I->getOperand(0)->getType();
7625     Type *SrcVecTy =
7626         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7627     if (canTruncateToMinimalBitwidth(I, VF)) {
7628       // This cast is going to be shrunk. This may remove the cast or it might
7629       // turn it into slightly different cast. For example, if MinBW == 16,
7630       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7631       //
7632       // Calculate the modified src and dest types.
7633       Type *MinVecTy = VectorTy;
7634       if (Opcode == Instruction::Trunc) {
7635         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7636         VectorTy =
7637             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7638       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7639         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7640         VectorTy =
7641             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7642       }
7643     }
7644 
7645     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7646   }
7647   case Instruction::Call: {
7648     bool NeedToScalarize;
7649     CallInst *CI = cast<CallInst>(I);
7650     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7651     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7652       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7653       return std::min(CallCost, IntrinsicCost);
7654     }
7655     return CallCost;
7656   }
7657   case Instruction::ExtractValue:
7658     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7659   default:
7660     // This opcode is unknown. Assume that it is the same as 'mul'.
7661     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7662   } // end of switch.
7663 }
7664 
7665 char LoopVectorize::ID = 0;
7666 
7667 static const char lv_name[] = "Loop Vectorization";
7668 
7669 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7670 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7671 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7672 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7673 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7674 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7675 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7676 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7677 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7678 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7679 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7680 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7681 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7682 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7683 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7684 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7685 
7686 namespace llvm {
7687 
7688 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7689 
7690 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7691                               bool VectorizeOnlyWhenForced) {
7692   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7693 }
7694 
7695 } // end namespace llvm
7696 
7697 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7698   // Check if the pointer operand of a load or store instruction is
7699   // consecutive.
7700   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7701     return Legal->isConsecutivePtr(Ptr);
7702   return false;
7703 }
7704 
7705 void LoopVectorizationCostModel::collectValuesToIgnore() {
7706   // Ignore ephemeral values.
7707   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7708 
7709   // Ignore type-promoting instructions we identified during reduction
7710   // detection.
7711   for (auto &Reduction : Legal->getReductionVars()) {
7712     RecurrenceDescriptor &RedDes = Reduction.second;
7713     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7714     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7715   }
7716   // Ignore type-casting instructions we identified during induction
7717   // detection.
7718   for (auto &Induction : Legal->getInductionVars()) {
7719     InductionDescriptor &IndDes = Induction.second;
7720     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7721     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7722   }
7723 }
7724 
7725 void LoopVectorizationCostModel::collectInLoopReductions() {
7726   for (auto &Reduction : Legal->getReductionVars()) {
7727     PHINode *Phi = Reduction.first;
7728     RecurrenceDescriptor &RdxDesc = Reduction.second;
7729 
7730     // We don't collect reductions that are type promoted (yet).
7731     if (RdxDesc.getRecurrenceType() != Phi->getType())
7732       continue;
7733 
7734     // If the target would prefer this reduction to happen "in-loop", then we
7735     // want to record it as such.
7736     unsigned Opcode = RdxDesc.getOpcode();
7737     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7738         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7739                                    TargetTransformInfo::ReductionFlags()))
7740       continue;
7741 
7742     // Check that we can correctly put the reductions into the loop, by
7743     // finding the chain of operations that leads from the phi to the loop
7744     // exit value.
7745     SmallVector<Instruction *, 4> ReductionOperations =
7746         RdxDesc.getReductionOpChain(Phi, TheLoop);
7747     bool InLoop = !ReductionOperations.empty();
7748     if (InLoop) {
7749       InLoopReductionChains[Phi] = ReductionOperations;
7750       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7751       Instruction *LastChain = Phi;
7752       for (auto *I : ReductionOperations) {
7753         InLoopReductionImmediateChains[I] = LastChain;
7754         LastChain = I;
7755       }
7756     }
7757     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7758                       << " reduction for phi: " << *Phi << "\n");
7759   }
7760 }
7761 
7762 // TODO: we could return a pair of values that specify the max VF and
7763 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7764 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7765 // doesn't have a cost model that can choose which plan to execute if
7766 // more than one is generated.
7767 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7768                                  LoopVectorizationCostModel &CM) {
7769   unsigned WidestType;
7770   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7771   return WidestVectorRegBits / WidestType;
7772 }
7773 
7774 VectorizationFactor
7775 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7776   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7777   ElementCount VF = UserVF;
7778   // Outer loop handling: They may require CFG and instruction level
7779   // transformations before even evaluating whether vectorization is profitable.
7780   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7781   // the vectorization pipeline.
7782   if (!OrigLoop->isInnermost()) {
7783     // If the user doesn't provide a vectorization factor, determine a
7784     // reasonable one.
7785     if (UserVF.isZero()) {
7786       VF = ElementCount::getFixed(determineVPlanVF(
7787           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7788               .getFixedSize(),
7789           CM));
7790       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7791 
7792       // Make sure we have a VF > 1 for stress testing.
7793       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7794         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7795                           << "overriding computed VF.\n");
7796         VF = ElementCount::getFixed(4);
7797       }
7798     }
7799     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7800     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7801            "VF needs to be a power of two");
7802     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7803                       << "VF " << VF << " to build VPlans.\n");
7804     buildVPlans(VF, VF);
7805 
7806     // For VPlan build stress testing, we bail out after VPlan construction.
7807     if (VPlanBuildStressTest)
7808       return VectorizationFactor::Disabled();
7809 
7810     return {VF, 0 /*Cost*/};
7811   }
7812 
7813   LLVM_DEBUG(
7814       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7815                 "VPlan-native path.\n");
7816   return VectorizationFactor::Disabled();
7817 }
7818 
7819 Optional<VectorizationFactor>
7820 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7821   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7822   Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC);
7823   if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved.
7824     return None;
7825 
7826   // Invalidate interleave groups if all blocks of loop will be predicated.
7827   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
7828       !useMaskedInterleavedAccesses(*TTI)) {
7829     LLVM_DEBUG(
7830         dbgs()
7831         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7832            "which requires masked-interleaved support.\n");
7833     if (CM.InterleaveInfo.invalidateGroups())
7834       // Invalidating interleave groups also requires invalidating all decisions
7835       // based on them, which includes widening decisions and uniform and scalar
7836       // values.
7837       CM.invalidateCostModelingDecisions();
7838   }
7839 
7840   ElementCount MaxVF = MaybeMaxVF.getValue();
7841   assert(MaxVF.isNonZero() && "MaxVF is zero.");
7842 
7843   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxVF);
7844   if (!UserVF.isZero() &&
7845       (UserVFIsLegal || (UserVF.isScalable() && MaxVF.isScalable()))) {
7846     // FIXME: MaxVF is temporarily used inplace of UserVF for illegal scalable
7847     // VFs here, this should be reverted to only use legal UserVFs once the
7848     // loop below supports scalable VFs.
7849     ElementCount VF = UserVFIsLegal ? UserVF : MaxVF;
7850     LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max")
7851                       << " VF " << VF << ".\n");
7852     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7853            "VF needs to be a power of two");
7854     // Collect the instructions (and their associated costs) that will be more
7855     // profitable to scalarize.
7856     CM.selectUserVectorizationFactor(VF);
7857     CM.collectInLoopReductions();
7858     buildVPlansWithVPRecipes(VF, VF);
7859     LLVM_DEBUG(printPlans(dbgs()));
7860     return {{VF, 0}};
7861   }
7862 
7863   assert(!MaxVF.isScalable() &&
7864          "Scalable vectors not yet supported beyond this point");
7865 
7866   for (ElementCount VF = ElementCount::getFixed(1);
7867        ElementCount::isKnownLE(VF, MaxVF); VF *= 2) {
7868     // Collect Uniform and Scalar instructions after vectorization with VF.
7869     CM.collectUniformsAndScalars(VF);
7870 
7871     // Collect the instructions (and their associated costs) that will be more
7872     // profitable to scalarize.
7873     if (VF.isVector())
7874       CM.collectInstsToScalarize(VF);
7875   }
7876 
7877   CM.collectInLoopReductions();
7878 
7879   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF);
7880   LLVM_DEBUG(printPlans(dbgs()));
7881   if (MaxVF.isScalar())
7882     return VectorizationFactor::Disabled();
7883 
7884   // Select the optimal vectorization factor.
7885   auto SelectedVF = CM.selectVectorizationFactor(MaxVF);
7886 
7887   // Check if it is profitable to vectorize with runtime checks.
7888   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7889   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
7890     bool PragmaThresholdReached =
7891         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7892     bool ThresholdReached =
7893         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
7894     if ((ThresholdReached && !Hints.allowReordering()) ||
7895         PragmaThresholdReached) {
7896       ORE->emit([&]() {
7897         return OptimizationRemarkAnalysisAliasing(
7898                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
7899                    OrigLoop->getHeader())
7900                << "loop not vectorized: cannot prove it is safe to reorder "
7901                   "memory operations";
7902       });
7903       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
7904       Hints.emitRemarkWithHints();
7905       return VectorizationFactor::Disabled();
7906     }
7907   }
7908   return SelectedVF;
7909 }
7910 
7911 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
7912   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
7913                     << '\n');
7914   BestVF = VF;
7915   BestUF = UF;
7916 
7917   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
7918     return !Plan->hasVF(VF);
7919   });
7920   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
7921 }
7922 
7923 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
7924                                            DominatorTree *DT) {
7925   // Perform the actual loop transformation.
7926 
7927   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7928   assert(BestVF.hasValue() && "Vectorization Factor is missing");
7929   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
7930 
7931   VPTransformState State{
7932       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
7933   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7934   State.TripCount = ILV.getOrCreateTripCount(nullptr);
7935   State.CanonicalIV = ILV.Induction;
7936 
7937   ILV.printDebugTracesAtStart();
7938 
7939   //===------------------------------------------------===//
7940   //
7941   // Notice: any optimization or new instruction that go
7942   // into the code below should also be implemented in
7943   // the cost-model.
7944   //
7945   //===------------------------------------------------===//
7946 
7947   // 2. Copy and widen instructions from the old loop into the new loop.
7948   VPlans.front()->execute(&State);
7949 
7950   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7951   //    predication, updating analyses.
7952   ILV.fixVectorizedLoop(State);
7953 
7954   ILV.printDebugTracesAtEnd();
7955 }
7956 
7957 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7958 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7959   for (const auto &Plan : VPlans)
7960     if (PrintVPlansInDotFormat)
7961       Plan->printDOT(O);
7962     else
7963       Plan->print(O);
7964 }
7965 #endif
7966 
7967 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7968     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7969 
7970   // We create new control-flow for the vectorized loop, so the original exit
7971   // conditions will be dead after vectorization if it's only used by the
7972   // terminator
7973   SmallVector<BasicBlock*> ExitingBlocks;
7974   OrigLoop->getExitingBlocks(ExitingBlocks);
7975   for (auto *BB : ExitingBlocks) {
7976     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7977     if (!Cmp || !Cmp->hasOneUse())
7978       continue;
7979 
7980     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7981     if (!DeadInstructions.insert(Cmp).second)
7982       continue;
7983 
7984     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7985     // TODO: can recurse through operands in general
7986     for (Value *Op : Cmp->operands()) {
7987       if (isa<TruncInst>(Op) && Op->hasOneUse())
7988           DeadInstructions.insert(cast<Instruction>(Op));
7989     }
7990   }
7991 
7992   // We create new "steps" for induction variable updates to which the original
7993   // induction variables map. An original update instruction will be dead if
7994   // all its users except the induction variable are dead.
7995   auto *Latch = OrigLoop->getLoopLatch();
7996   for (auto &Induction : Legal->getInductionVars()) {
7997     PHINode *Ind = Induction.first;
7998     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7999 
8000     // If the tail is to be folded by masking, the primary induction variable,
8001     // if exists, isn't dead: it will be used for masking. Don't kill it.
8002     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8003       continue;
8004 
8005     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8006           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8007         }))
8008       DeadInstructions.insert(IndUpdate);
8009 
8010     // We record as "Dead" also the type-casting instructions we had identified
8011     // during induction analysis. We don't need any handling for them in the
8012     // vectorized loop because we have proven that, under a proper runtime
8013     // test guarding the vectorized loop, the value of the phi, and the casted
8014     // value of the phi, are the same. The last instruction in this casting chain
8015     // will get its scalar/vector/widened def from the scalar/vector/widened def
8016     // of the respective phi node. Any other casts in the induction def-use chain
8017     // have no other uses outside the phi update chain, and will be ignored.
8018     InductionDescriptor &IndDes = Induction.second;
8019     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8020     DeadInstructions.insert(Casts.begin(), Casts.end());
8021   }
8022 }
8023 
8024 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8025 
8026 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8027 
8028 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
8029                                         Instruction::BinaryOps BinOp) {
8030   // When unrolling and the VF is 1, we only need to add a simple scalar.
8031   Type *Ty = Val->getType();
8032   assert(!Ty->isVectorTy() && "Val must be a scalar");
8033 
8034   if (Ty->isFloatingPointTy()) {
8035     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
8036 
8037     // Floating-point operations inherit FMF via the builder's flags.
8038     Value *MulOp = Builder.CreateFMul(C, Step);
8039     return Builder.CreateBinOp(BinOp, Val, MulOp);
8040   }
8041   Constant *C = ConstantInt::get(Ty, StartIdx);
8042   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
8043 }
8044 
8045 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8046   SmallVector<Metadata *, 4> MDs;
8047   // Reserve first location for self reference to the LoopID metadata node.
8048   MDs.push_back(nullptr);
8049   bool IsUnrollMetadata = false;
8050   MDNode *LoopID = L->getLoopID();
8051   if (LoopID) {
8052     // First find existing loop unrolling disable metadata.
8053     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8054       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8055       if (MD) {
8056         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8057         IsUnrollMetadata =
8058             S && S->getString().startswith("llvm.loop.unroll.disable");
8059       }
8060       MDs.push_back(LoopID->getOperand(i));
8061     }
8062   }
8063 
8064   if (!IsUnrollMetadata) {
8065     // Add runtime unroll disable metadata.
8066     LLVMContext &Context = L->getHeader()->getContext();
8067     SmallVector<Metadata *, 1> DisableOperands;
8068     DisableOperands.push_back(
8069         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8070     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8071     MDs.push_back(DisableNode);
8072     MDNode *NewLoopID = MDNode::get(Context, MDs);
8073     // Set operand 0 to refer to the loop id itself.
8074     NewLoopID->replaceOperandWith(0, NewLoopID);
8075     L->setLoopID(NewLoopID);
8076   }
8077 }
8078 
8079 //===--------------------------------------------------------------------===//
8080 // EpilogueVectorizerMainLoop
8081 //===--------------------------------------------------------------------===//
8082 
8083 /// This function is partially responsible for generating the control flow
8084 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8085 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8086   MDNode *OrigLoopID = OrigLoop->getLoopID();
8087   Loop *Lp = createVectorLoopSkeleton("");
8088 
8089   // Generate the code to check the minimum iteration count of the vector
8090   // epilogue (see below).
8091   EPI.EpilogueIterationCountCheck =
8092       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8093   EPI.EpilogueIterationCountCheck->setName("iter.check");
8094 
8095   // Generate the code to check any assumptions that we've made for SCEV
8096   // expressions.
8097   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8098 
8099   // Generate the code that checks at runtime if arrays overlap. We put the
8100   // checks into a separate block to make the more common case of few elements
8101   // faster.
8102   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8103 
8104   // Generate the iteration count check for the main loop, *after* the check
8105   // for the epilogue loop, so that the path-length is shorter for the case
8106   // that goes directly through the vector epilogue. The longer-path length for
8107   // the main loop is compensated for, by the gain from vectorizing the larger
8108   // trip count. Note: the branch will get updated later on when we vectorize
8109   // the epilogue.
8110   EPI.MainLoopIterationCountCheck =
8111       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8112 
8113   // Generate the induction variable.
8114   OldInduction = Legal->getPrimaryInduction();
8115   Type *IdxTy = Legal->getWidestInductionType();
8116   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8117   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8118   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8119   EPI.VectorTripCount = CountRoundDown;
8120   Induction =
8121       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8122                               getDebugLocFromInstOrOperands(OldInduction));
8123 
8124   // Skip induction resume value creation here because they will be created in
8125   // the second pass. If we created them here, they wouldn't be used anyway,
8126   // because the vplan in the second pass still contains the inductions from the
8127   // original loop.
8128 
8129   return completeLoopSkeleton(Lp, OrigLoopID);
8130 }
8131 
8132 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8133   LLVM_DEBUG({
8134     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8135            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8136            << ", Main Loop UF:" << EPI.MainLoopUF
8137            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8138            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8139   });
8140 }
8141 
8142 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8143   DEBUG_WITH_TYPE(VerboseDebug, {
8144     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8145   });
8146 }
8147 
8148 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8149     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8150   assert(L && "Expected valid Loop.");
8151   assert(Bypass && "Expected valid bypass basic block.");
8152   unsigned VFactor =
8153       ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue();
8154   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8155   Value *Count = getOrCreateTripCount(L);
8156   // Reuse existing vector loop preheader for TC checks.
8157   // Note that new preheader block is generated for vector loop.
8158   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8159   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8160 
8161   // Generate code to check if the loop's trip count is less than VF * UF of the
8162   // main vector loop.
8163   auto P =
8164       Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8165 
8166   Value *CheckMinIters = Builder.CreateICmp(
8167       P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor),
8168       "min.iters.check");
8169 
8170   if (!ForEpilogue)
8171     TCCheckBlock->setName("vector.main.loop.iter.check");
8172 
8173   // Create new preheader for vector loop.
8174   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8175                                    DT, LI, nullptr, "vector.ph");
8176 
8177   if (ForEpilogue) {
8178     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8179                                  DT->getNode(Bypass)->getIDom()) &&
8180            "TC check is expected to dominate Bypass");
8181 
8182     // Update dominator for Bypass & LoopExit.
8183     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8184     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8185 
8186     LoopBypassBlocks.push_back(TCCheckBlock);
8187 
8188     // Save the trip count so we don't have to regenerate it in the
8189     // vec.epilog.iter.check. This is safe to do because the trip count
8190     // generated here dominates the vector epilog iter check.
8191     EPI.TripCount = Count;
8192   }
8193 
8194   ReplaceInstWithInst(
8195       TCCheckBlock->getTerminator(),
8196       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8197 
8198   return TCCheckBlock;
8199 }
8200 
8201 //===--------------------------------------------------------------------===//
8202 // EpilogueVectorizerEpilogueLoop
8203 //===--------------------------------------------------------------------===//
8204 
8205 /// This function is partially responsible for generating the control flow
8206 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8207 BasicBlock *
8208 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8209   MDNode *OrigLoopID = OrigLoop->getLoopID();
8210   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8211 
8212   // Now, compare the remaining count and if there aren't enough iterations to
8213   // execute the vectorized epilogue skip to the scalar part.
8214   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8215   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8216   LoopVectorPreHeader =
8217       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8218                  LI, nullptr, "vec.epilog.ph");
8219   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8220                                           VecEpilogueIterationCountCheck);
8221 
8222   // Adjust the control flow taking the state info from the main loop
8223   // vectorization into account.
8224   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8225          "expected this to be saved from the previous pass.");
8226   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8227       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8228 
8229   DT->changeImmediateDominator(LoopVectorPreHeader,
8230                                EPI.MainLoopIterationCountCheck);
8231 
8232   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8233       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8234 
8235   if (EPI.SCEVSafetyCheck)
8236     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8237         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8238   if (EPI.MemSafetyCheck)
8239     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8240         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8241 
8242   DT->changeImmediateDominator(
8243       VecEpilogueIterationCountCheck,
8244       VecEpilogueIterationCountCheck->getSinglePredecessor());
8245 
8246   DT->changeImmediateDominator(LoopScalarPreHeader,
8247                                EPI.EpilogueIterationCountCheck);
8248   DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck);
8249 
8250   // Keep track of bypass blocks, as they feed start values to the induction
8251   // phis in the scalar loop preheader.
8252   if (EPI.SCEVSafetyCheck)
8253     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8254   if (EPI.MemSafetyCheck)
8255     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8256   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8257 
8258   // Generate a resume induction for the vector epilogue and put it in the
8259   // vector epilogue preheader
8260   Type *IdxTy = Legal->getWidestInductionType();
8261   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8262                                          LoopVectorPreHeader->getFirstNonPHI());
8263   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8264   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8265                            EPI.MainLoopIterationCountCheck);
8266 
8267   // Generate the induction variable.
8268   OldInduction = Legal->getPrimaryInduction();
8269   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8270   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8271   Value *StartIdx = EPResumeVal;
8272   Induction =
8273       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8274                               getDebugLocFromInstOrOperands(OldInduction));
8275 
8276   // Generate induction resume values. These variables save the new starting
8277   // indexes for the scalar loop. They are used to test if there are any tail
8278   // iterations left once the vector loop has completed.
8279   // Note that when the vectorized epilogue is skipped due to iteration count
8280   // check, then the resume value for the induction variable comes from
8281   // the trip count of the main vector loop, hence passing the AdditionalBypass
8282   // argument.
8283   createInductionResumeValues(Lp, CountRoundDown,
8284                               {VecEpilogueIterationCountCheck,
8285                                EPI.VectorTripCount} /* AdditionalBypass */);
8286 
8287   AddRuntimeUnrollDisableMetaData(Lp);
8288   return completeLoopSkeleton(Lp, OrigLoopID);
8289 }
8290 
8291 BasicBlock *
8292 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8293     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8294 
8295   assert(EPI.TripCount &&
8296          "Expected trip count to have been safed in the first pass.");
8297   assert(
8298       (!isa<Instruction>(EPI.TripCount) ||
8299        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8300       "saved trip count does not dominate insertion point.");
8301   Value *TC = EPI.TripCount;
8302   IRBuilder<> Builder(Insert->getTerminator());
8303   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8304 
8305   // Generate code to check if the loop's trip count is less than VF * UF of the
8306   // vector epilogue loop.
8307   auto P =
8308       Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8309 
8310   Value *CheckMinIters = Builder.CreateICmp(
8311       P, Count,
8312       ConstantInt::get(Count->getType(),
8313                        EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF),
8314       "min.epilog.iters.check");
8315 
8316   ReplaceInstWithInst(
8317       Insert->getTerminator(),
8318       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8319 
8320   LoopBypassBlocks.push_back(Insert);
8321   return Insert;
8322 }
8323 
8324 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8325   LLVM_DEBUG({
8326     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8327            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8328            << ", Main Loop UF:" << EPI.MainLoopUF
8329            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8330            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8331   });
8332 }
8333 
8334 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8335   DEBUG_WITH_TYPE(VerboseDebug, {
8336     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8337   });
8338 }
8339 
8340 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8341     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8342   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8343   bool PredicateAtRangeStart = Predicate(Range.Start);
8344 
8345   for (ElementCount TmpVF = Range.Start * 2;
8346        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8347     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8348       Range.End = TmpVF;
8349       break;
8350     }
8351 
8352   return PredicateAtRangeStart;
8353 }
8354 
8355 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8356 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8357 /// of VF's starting at a given VF and extending it as much as possible. Each
8358 /// vectorization decision can potentially shorten this sub-range during
8359 /// buildVPlan().
8360 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8361                                            ElementCount MaxVF) {
8362   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8363   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8364     VFRange SubRange = {VF, MaxVFPlusOne};
8365     VPlans.push_back(buildVPlan(SubRange));
8366     VF = SubRange.End;
8367   }
8368 }
8369 
8370 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8371                                          VPlanPtr &Plan) {
8372   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8373 
8374   // Look for cached value.
8375   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8376   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8377   if (ECEntryIt != EdgeMaskCache.end())
8378     return ECEntryIt->second;
8379 
8380   VPValue *SrcMask = createBlockInMask(Src, Plan);
8381 
8382   // The terminator has to be a branch inst!
8383   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8384   assert(BI && "Unexpected terminator found");
8385 
8386   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8387     return EdgeMaskCache[Edge] = SrcMask;
8388 
8389   // If source is an exiting block, we know the exit edge is dynamically dead
8390   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8391   // adding uses of an otherwise potentially dead instruction.
8392   if (OrigLoop->isLoopExiting(Src))
8393     return EdgeMaskCache[Edge] = SrcMask;
8394 
8395   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8396   assert(EdgeMask && "No Edge Mask found for condition");
8397 
8398   if (BI->getSuccessor(0) != Dst)
8399     EdgeMask = Builder.createNot(EdgeMask);
8400 
8401   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8402     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8403     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8404     // The select version does not introduce new UB if SrcMask is false and
8405     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8406     VPValue *False = Plan->getOrAddVPValue(
8407         ConstantInt::getFalse(BI->getCondition()->getType()));
8408     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8409   }
8410 
8411   return EdgeMaskCache[Edge] = EdgeMask;
8412 }
8413 
8414 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8415   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8416 
8417   // Look for cached value.
8418   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8419   if (BCEntryIt != BlockMaskCache.end())
8420     return BCEntryIt->second;
8421 
8422   // All-one mask is modelled as no-mask following the convention for masked
8423   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8424   VPValue *BlockMask = nullptr;
8425 
8426   if (OrigLoop->getHeader() == BB) {
8427     if (!CM.blockNeedsPredication(BB))
8428       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8429 
8430     // Create the block in mask as the first non-phi instruction in the block.
8431     VPBuilder::InsertPointGuard Guard(Builder);
8432     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8433     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8434 
8435     // Introduce the early-exit compare IV <= BTC to form header block mask.
8436     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8437     // Start by constructing the desired canonical IV.
8438     VPValue *IV = nullptr;
8439     if (Legal->getPrimaryInduction())
8440       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8441     else {
8442       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8443       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8444       IV = IVRecipe->getVPSingleValue();
8445     }
8446     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8447     bool TailFolded = !CM.isScalarEpilogueAllowed();
8448 
8449     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8450       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8451       // as a second argument, we only pass the IV here and extract the
8452       // tripcount from the transform state where codegen of the VP instructions
8453       // happen.
8454       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8455     } else {
8456       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8457     }
8458     return BlockMaskCache[BB] = BlockMask;
8459   }
8460 
8461   // This is the block mask. We OR all incoming edges.
8462   for (auto *Predecessor : predecessors(BB)) {
8463     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8464     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8465       return BlockMaskCache[BB] = EdgeMask;
8466 
8467     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8468       BlockMask = EdgeMask;
8469       continue;
8470     }
8471 
8472     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8473   }
8474 
8475   return BlockMaskCache[BB] = BlockMask;
8476 }
8477 
8478 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8479                                                 ArrayRef<VPValue *> Operands,
8480                                                 VFRange &Range,
8481                                                 VPlanPtr &Plan) {
8482   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8483          "Must be called with either a load or store");
8484 
8485   auto willWiden = [&](ElementCount VF) -> bool {
8486     if (VF.isScalar())
8487       return false;
8488     LoopVectorizationCostModel::InstWidening Decision =
8489         CM.getWideningDecision(I, VF);
8490     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8491            "CM decision should be taken at this point.");
8492     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8493       return true;
8494     if (CM.isScalarAfterVectorization(I, VF) ||
8495         CM.isProfitableToScalarize(I, VF))
8496       return false;
8497     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8498   };
8499 
8500   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8501     return nullptr;
8502 
8503   VPValue *Mask = nullptr;
8504   if (Legal->isMaskRequired(I))
8505     Mask = createBlockInMask(I->getParent(), Plan);
8506 
8507   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8508     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8509 
8510   StoreInst *Store = cast<StoreInst>(I);
8511   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8512                                             Mask);
8513 }
8514 
8515 VPWidenIntOrFpInductionRecipe *
8516 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8517                                            ArrayRef<VPValue *> Operands) const {
8518   // Check if this is an integer or fp induction. If so, build the recipe that
8519   // produces its scalar and vector values.
8520   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8521   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8522       II.getKind() == InductionDescriptor::IK_FpInduction) {
8523     assert(II.getStartValue() ==
8524            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8525     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8526     return new VPWidenIntOrFpInductionRecipe(
8527         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8528   }
8529 
8530   return nullptr;
8531 }
8532 
8533 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8534     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8535     VPlan &Plan) const {
8536   // Optimize the special case where the source is a constant integer
8537   // induction variable. Notice that we can only optimize the 'trunc' case
8538   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8539   // (c) other casts depend on pointer size.
8540 
8541   // Determine whether \p K is a truncation based on an induction variable that
8542   // can be optimized.
8543   auto isOptimizableIVTruncate =
8544       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8545     return [=](ElementCount VF) -> bool {
8546       return CM.isOptimizableIVTruncate(K, VF);
8547     };
8548   };
8549 
8550   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8551           isOptimizableIVTruncate(I), Range)) {
8552 
8553     InductionDescriptor II =
8554         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8555     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8556     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8557                                              Start, nullptr, I);
8558   }
8559   return nullptr;
8560 }
8561 
8562 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8563                                                 ArrayRef<VPValue *> Operands,
8564                                                 VPlanPtr &Plan) {
8565   // If all incoming values are equal, the incoming VPValue can be used directly
8566   // instead of creating a new VPBlendRecipe.
8567   VPValue *FirstIncoming = Operands[0];
8568   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8569         return FirstIncoming == Inc;
8570       })) {
8571     return Operands[0];
8572   }
8573 
8574   // We know that all PHIs in non-header blocks are converted into selects, so
8575   // we don't have to worry about the insertion order and we can just use the
8576   // builder. At this point we generate the predication tree. There may be
8577   // duplications since this is a simple recursive scan, but future
8578   // optimizations will clean it up.
8579   SmallVector<VPValue *, 2> OperandsWithMask;
8580   unsigned NumIncoming = Phi->getNumIncomingValues();
8581 
8582   for (unsigned In = 0; In < NumIncoming; In++) {
8583     VPValue *EdgeMask =
8584       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8585     assert((EdgeMask || NumIncoming == 1) &&
8586            "Multiple predecessors with one having a full mask");
8587     OperandsWithMask.push_back(Operands[In]);
8588     if (EdgeMask)
8589       OperandsWithMask.push_back(EdgeMask);
8590   }
8591   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8592 }
8593 
8594 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8595                                                    ArrayRef<VPValue *> Operands,
8596                                                    VFRange &Range) const {
8597 
8598   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8599       [this, CI](ElementCount VF) {
8600         return CM.isScalarWithPredication(CI, VF);
8601       },
8602       Range);
8603 
8604   if (IsPredicated)
8605     return nullptr;
8606 
8607   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8608   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8609              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8610              ID == Intrinsic::pseudoprobe ||
8611              ID == Intrinsic::experimental_noalias_scope_decl))
8612     return nullptr;
8613 
8614   auto willWiden = [&](ElementCount VF) -> bool {
8615     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8616     // The following case may be scalarized depending on the VF.
8617     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8618     // version of the instruction.
8619     // Is it beneficial to perform intrinsic call compared to lib call?
8620     bool NeedToScalarize = false;
8621     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8622     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8623     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8624     assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
8625            "Either the intrinsic cost or vector call cost must be valid");
8626     return UseVectorIntrinsic || !NeedToScalarize;
8627   };
8628 
8629   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8630     return nullptr;
8631 
8632   ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands());
8633   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8634 }
8635 
8636 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8637   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8638          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8639   // Instruction should be widened, unless it is scalar after vectorization,
8640   // scalarization is profitable or it is predicated.
8641   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8642     return CM.isScalarAfterVectorization(I, VF) ||
8643            CM.isProfitableToScalarize(I, VF) ||
8644            CM.isScalarWithPredication(I, VF);
8645   };
8646   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8647                                                              Range);
8648 }
8649 
8650 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8651                                            ArrayRef<VPValue *> Operands) const {
8652   auto IsVectorizableOpcode = [](unsigned Opcode) {
8653     switch (Opcode) {
8654     case Instruction::Add:
8655     case Instruction::And:
8656     case Instruction::AShr:
8657     case Instruction::BitCast:
8658     case Instruction::FAdd:
8659     case Instruction::FCmp:
8660     case Instruction::FDiv:
8661     case Instruction::FMul:
8662     case Instruction::FNeg:
8663     case Instruction::FPExt:
8664     case Instruction::FPToSI:
8665     case Instruction::FPToUI:
8666     case Instruction::FPTrunc:
8667     case Instruction::FRem:
8668     case Instruction::FSub:
8669     case Instruction::ICmp:
8670     case Instruction::IntToPtr:
8671     case Instruction::LShr:
8672     case Instruction::Mul:
8673     case Instruction::Or:
8674     case Instruction::PtrToInt:
8675     case Instruction::SDiv:
8676     case Instruction::Select:
8677     case Instruction::SExt:
8678     case Instruction::Shl:
8679     case Instruction::SIToFP:
8680     case Instruction::SRem:
8681     case Instruction::Sub:
8682     case Instruction::Trunc:
8683     case Instruction::UDiv:
8684     case Instruction::UIToFP:
8685     case Instruction::URem:
8686     case Instruction::Xor:
8687     case Instruction::ZExt:
8688       return true;
8689     }
8690     return false;
8691   };
8692 
8693   if (!IsVectorizableOpcode(I->getOpcode()))
8694     return nullptr;
8695 
8696   // Success: widen this instruction.
8697   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8698 }
8699 
8700 VPBasicBlock *VPRecipeBuilder::handleReplication(
8701     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8702     VPlanPtr &Plan) {
8703   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8704       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8705       Range);
8706 
8707   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8708       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF); }, Range);
8709 
8710   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8711                                        IsUniform, IsPredicated);
8712   setRecipe(I, Recipe);
8713   Plan->addVPValue(I, Recipe);
8714 
8715   // Find if I uses a predicated instruction. If so, it will use its scalar
8716   // value. Avoid hoisting the insert-element which packs the scalar value into
8717   // a vector value, as that happens iff all users use the vector value.
8718   for (VPValue *Op : Recipe->operands()) {
8719     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8720     if (!PredR)
8721       continue;
8722     auto *RepR =
8723         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8724     assert(RepR->isPredicated() &&
8725            "expected Replicate recipe to be predicated");
8726     RepR->setAlsoPack(false);
8727   }
8728 
8729   // Finalize the recipe for Instr, first if it is not predicated.
8730   if (!IsPredicated) {
8731     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8732     VPBB->appendRecipe(Recipe);
8733     return VPBB;
8734   }
8735   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8736   assert(VPBB->getSuccessors().empty() &&
8737          "VPBB has successors when handling predicated replication.");
8738   // Record predicated instructions for above packing optimizations.
8739   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8740   VPBlockUtils::insertBlockAfter(Region, VPBB);
8741   auto *RegSucc = new VPBasicBlock();
8742   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8743   return RegSucc;
8744 }
8745 
8746 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8747                                                       VPRecipeBase *PredRecipe,
8748                                                       VPlanPtr &Plan) {
8749   // Instructions marked for predication are replicated and placed under an
8750   // if-then construct to prevent side-effects.
8751 
8752   // Generate recipes to compute the block mask for this region.
8753   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8754 
8755   // Build the triangular if-then region.
8756   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8757   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8758   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8759   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8760   auto *PHIRecipe = Instr->getType()->isVoidTy()
8761                         ? nullptr
8762                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8763   if (PHIRecipe) {
8764     Plan->removeVPValueFor(Instr);
8765     Plan->addVPValue(Instr, PHIRecipe);
8766   }
8767   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8768   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8769   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8770 
8771   // Note: first set Entry as region entry and then connect successors starting
8772   // from it in order, to propagate the "parent" of each VPBasicBlock.
8773   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8774   VPBlockUtils::connectBlocks(Pred, Exit);
8775 
8776   return Region;
8777 }
8778 
8779 VPRecipeOrVPValueTy
8780 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8781                                         ArrayRef<VPValue *> Operands,
8782                                         VFRange &Range, VPlanPtr &Plan) {
8783   // First, check for specific widening recipes that deal with calls, memory
8784   // operations, inductions and Phi nodes.
8785   if (auto *CI = dyn_cast<CallInst>(Instr))
8786     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8787 
8788   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8789     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8790 
8791   VPRecipeBase *Recipe;
8792   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8793     if (Phi->getParent() != OrigLoop->getHeader())
8794       return tryToBlend(Phi, Operands, Plan);
8795     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
8796       return toVPRecipeResult(Recipe);
8797 
8798     if (Legal->isReductionVariable(Phi)) {
8799       RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
8800       assert(RdxDesc.getRecurrenceStartValue() ==
8801              Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8802       VPValue *StartV = Operands[0];
8803       return toVPRecipeResult(new VPWidenPHIRecipe(Phi, RdxDesc, *StartV));
8804     }
8805 
8806     return toVPRecipeResult(new VPWidenPHIRecipe(Phi));
8807   }
8808 
8809   if (isa<TruncInst>(Instr) &&
8810       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8811                                                Range, *Plan)))
8812     return toVPRecipeResult(Recipe);
8813 
8814   if (!shouldWiden(Instr, Range))
8815     return nullptr;
8816 
8817   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8818     return toVPRecipeResult(new VPWidenGEPRecipe(
8819         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8820 
8821   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8822     bool InvariantCond =
8823         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8824     return toVPRecipeResult(new VPWidenSelectRecipe(
8825         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8826   }
8827 
8828   return toVPRecipeResult(tryToWiden(Instr, Operands));
8829 }
8830 
8831 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8832                                                         ElementCount MaxVF) {
8833   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8834 
8835   // Collect instructions from the original loop that will become trivially dead
8836   // in the vectorized loop. We don't need to vectorize these instructions. For
8837   // example, original induction update instructions can become dead because we
8838   // separately emit induction "steps" when generating code for the new loop.
8839   // Similarly, we create a new latch condition when setting up the structure
8840   // of the new loop, so the old one can become dead.
8841   SmallPtrSet<Instruction *, 4> DeadInstructions;
8842   collectTriviallyDeadInstructions(DeadInstructions);
8843 
8844   // Add assume instructions we need to drop to DeadInstructions, to prevent
8845   // them from being added to the VPlan.
8846   // TODO: We only need to drop assumes in blocks that get flattend. If the
8847   // control flow is preserved, we should keep them.
8848   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8849   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8850 
8851   DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8852   // Dead instructions do not need sinking. Remove them from SinkAfter.
8853   for (Instruction *I : DeadInstructions)
8854     SinkAfter.erase(I);
8855 
8856   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8857   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8858     VFRange SubRange = {VF, MaxVFPlusOne};
8859     VPlans.push_back(
8860         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8861     VF = SubRange.End;
8862   }
8863 }
8864 
8865 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8866     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8867     const DenseMap<Instruction *, Instruction *> &SinkAfter) {
8868 
8869   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8870 
8871   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8872 
8873   // ---------------------------------------------------------------------------
8874   // Pre-construction: record ingredients whose recipes we'll need to further
8875   // process after constructing the initial VPlan.
8876   // ---------------------------------------------------------------------------
8877 
8878   // Mark instructions we'll need to sink later and their targets as
8879   // ingredients whose recipe we'll need to record.
8880   for (auto &Entry : SinkAfter) {
8881     RecipeBuilder.recordRecipeOf(Entry.first);
8882     RecipeBuilder.recordRecipeOf(Entry.second);
8883   }
8884   for (auto &Reduction : CM.getInLoopReductionChains()) {
8885     PHINode *Phi = Reduction.first;
8886     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
8887     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8888 
8889     RecipeBuilder.recordRecipeOf(Phi);
8890     for (auto &R : ReductionOperations) {
8891       RecipeBuilder.recordRecipeOf(R);
8892       // For min/max reducitons, where we have a pair of icmp/select, we also
8893       // need to record the ICmp recipe, so it can be removed later.
8894       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8895         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8896     }
8897   }
8898 
8899   // For each interleave group which is relevant for this (possibly trimmed)
8900   // Range, add it to the set of groups to be later applied to the VPlan and add
8901   // placeholders for its members' Recipes which we'll be replacing with a
8902   // single VPInterleaveRecipe.
8903   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8904     auto applyIG = [IG, this](ElementCount VF) -> bool {
8905       return (VF.isVector() && // Query is illegal for VF == 1
8906               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8907                   LoopVectorizationCostModel::CM_Interleave);
8908     };
8909     if (!getDecisionAndClampRange(applyIG, Range))
8910       continue;
8911     InterleaveGroups.insert(IG);
8912     for (unsigned i = 0; i < IG->getFactor(); i++)
8913       if (Instruction *Member = IG->getMember(i))
8914         RecipeBuilder.recordRecipeOf(Member);
8915   };
8916 
8917   // ---------------------------------------------------------------------------
8918   // Build initial VPlan: Scan the body of the loop in a topological order to
8919   // visit each basic block after having visited its predecessor basic blocks.
8920   // ---------------------------------------------------------------------------
8921 
8922   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
8923   auto Plan = std::make_unique<VPlan>();
8924   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
8925   Plan->setEntry(VPBB);
8926 
8927   // Scan the body of the loop in a topological order to visit each basic block
8928   // after having visited its predecessor basic blocks.
8929   LoopBlocksDFS DFS(OrigLoop);
8930   DFS.perform(LI);
8931 
8932   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8933     // Relevant instructions from basic block BB will be grouped into VPRecipe
8934     // ingredients and fill a new VPBasicBlock.
8935     unsigned VPBBsForBB = 0;
8936     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
8937     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
8938     VPBB = FirstVPBBForBB;
8939     Builder.setInsertPoint(VPBB);
8940 
8941     // Introduce each ingredient into VPlan.
8942     // TODO: Model and preserve debug instrinsics in VPlan.
8943     for (Instruction &I : BB->instructionsWithoutDebug()) {
8944       Instruction *Instr = &I;
8945 
8946       // First filter out irrelevant instructions, to ensure no recipes are
8947       // built for them.
8948       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
8949         continue;
8950 
8951       SmallVector<VPValue *, 4> Operands;
8952       auto *Phi = dyn_cast<PHINode>(Instr);
8953       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
8954         Operands.push_back(Plan->getOrAddVPValue(
8955             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
8956       } else {
8957         auto OpRange = Plan->mapToVPValues(Instr->operands());
8958         Operands = {OpRange.begin(), OpRange.end()};
8959       }
8960       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
8961               Instr, Operands, Range, Plan)) {
8962         // If Instr can be simplified to an existing VPValue, use it.
8963         if (RecipeOrValue.is<VPValue *>()) {
8964           Plan->addVPValue(Instr, RecipeOrValue.get<VPValue *>());
8965           continue;
8966         }
8967         // Otherwise, add the new recipe.
8968         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
8969         for (auto *Def : Recipe->definedValues()) {
8970           auto *UV = Def->getUnderlyingValue();
8971           Plan->addVPValue(UV, Def);
8972         }
8973 
8974         RecipeBuilder.setRecipe(Instr, Recipe);
8975         VPBB->appendRecipe(Recipe);
8976         continue;
8977       }
8978 
8979       // Otherwise, if all widening options failed, Instruction is to be
8980       // replicated. This may create a successor for VPBB.
8981       VPBasicBlock *NextVPBB =
8982           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
8983       if (NextVPBB != VPBB) {
8984         VPBB = NextVPBB;
8985         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8986                                     : "");
8987       }
8988     }
8989   }
8990 
8991   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
8992   // may also be empty, such as the last one VPBB, reflecting original
8993   // basic-blocks with no recipes.
8994   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
8995   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
8996   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
8997   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
8998   delete PreEntry;
8999 
9000   // ---------------------------------------------------------------------------
9001   // Transform initial VPlan: Apply previously taken decisions, in order, to
9002   // bring the VPlan to its final state.
9003   // ---------------------------------------------------------------------------
9004 
9005   // Apply Sink-After legal constraints.
9006   for (auto &Entry : SinkAfter) {
9007     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9008     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9009     // If the target is in a replication region, make sure to move Sink to the
9010     // block after it, not into the replication region itself.
9011     if (auto *Region =
9012             dyn_cast_or_null<VPRegionBlock>(Target->getParent()->getParent())) {
9013       if (Region->isReplicator()) {
9014         assert(Region->getNumSuccessors() == 1 && "Expected SESE region!");
9015         VPBasicBlock *NextBlock =
9016             cast<VPBasicBlock>(Region->getSuccessors().front());
9017         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9018         continue;
9019       }
9020     }
9021     Sink->moveAfter(Target);
9022   }
9023 
9024   // Interleave memory: for each Interleave Group we marked earlier as relevant
9025   // for this VPlan, replace the Recipes widening its memory instructions with a
9026   // single VPInterleaveRecipe at its insertion point.
9027   for (auto IG : InterleaveGroups) {
9028     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9029         RecipeBuilder.getRecipe(IG->getInsertPos()));
9030     SmallVector<VPValue *, 4> StoredValues;
9031     for (unsigned i = 0; i < IG->getFactor(); ++i)
9032       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i)))
9033         StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0)));
9034 
9035     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9036                                         Recipe->getMask());
9037     VPIG->insertBefore(Recipe);
9038     unsigned J = 0;
9039     for (unsigned i = 0; i < IG->getFactor(); ++i)
9040       if (Instruction *Member = IG->getMember(i)) {
9041         if (!Member->getType()->isVoidTy()) {
9042           VPValue *OriginalV = Plan->getVPValue(Member);
9043           Plan->removeVPValueFor(Member);
9044           Plan->addVPValue(Member, VPIG->getVPValue(J));
9045           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9046           J++;
9047         }
9048         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9049       }
9050   }
9051 
9052   // Adjust the recipes for any inloop reductions.
9053   if (Range.Start.isVector())
9054     adjustRecipesForInLoopReductions(Plan, RecipeBuilder);
9055 
9056   // Finally, if tail is folded by masking, introduce selects between the phi
9057   // and the live-out instruction of each reduction, at the end of the latch.
9058   if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) {
9059     Builder.setInsertPoint(VPBB);
9060     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9061     for (auto &Reduction : Legal->getReductionVars()) {
9062       if (CM.isInLoopReduction(Reduction.first))
9063         continue;
9064       VPValue *Phi = Plan->getOrAddVPValue(Reduction.first);
9065       VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr());
9066       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
9067     }
9068   }
9069 
9070   std::string PlanName;
9071   raw_string_ostream RSO(PlanName);
9072   ElementCount VF = Range.Start;
9073   Plan->addVF(VF);
9074   RSO << "Initial VPlan for VF={" << VF;
9075   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9076     Plan->addVF(VF);
9077     RSO << "," << VF;
9078   }
9079   RSO << "},UF>=1";
9080   RSO.flush();
9081   Plan->setName(PlanName);
9082 
9083   return Plan;
9084 }
9085 
9086 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9087   // Outer loop handling: They may require CFG and instruction level
9088   // transformations before even evaluating whether vectorization is profitable.
9089   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9090   // the vectorization pipeline.
9091   assert(!OrigLoop->isInnermost());
9092   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9093 
9094   // Create new empty VPlan
9095   auto Plan = std::make_unique<VPlan>();
9096 
9097   // Build hierarchical CFG
9098   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9099   HCFGBuilder.buildHierarchicalCFG();
9100 
9101   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9102        VF *= 2)
9103     Plan->addVF(VF);
9104 
9105   if (EnableVPlanPredication) {
9106     VPlanPredicator VPP(*Plan);
9107     VPP.predicate();
9108 
9109     // Avoid running transformation to recipes until masked code generation in
9110     // VPlan-native path is in place.
9111     return Plan;
9112   }
9113 
9114   SmallPtrSet<Instruction *, 1> DeadInstructions;
9115   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9116                                              Legal->getInductionVars(),
9117                                              DeadInstructions, *PSE.getSE());
9118   return Plan;
9119 }
9120 
9121 // Adjust the recipes for any inloop reductions. The chain of instructions
9122 // leading from the loop exit instr to the phi need to be converted to
9123 // reductions, with one operand being vector and the other being the scalar
9124 // reduction chain.
9125 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions(
9126     VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) {
9127   for (auto &Reduction : CM.getInLoopReductionChains()) {
9128     PHINode *Phi = Reduction.first;
9129     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9130     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9131 
9132     // ReductionOperations are orders top-down from the phi's use to the
9133     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9134     // which of the two operands will remain scalar and which will be reduced.
9135     // For minmax the chain will be the select instructions.
9136     Instruction *Chain = Phi;
9137     for (Instruction *R : ReductionOperations) {
9138       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9139       RecurKind Kind = RdxDesc.getRecurrenceKind();
9140 
9141       VPValue *ChainOp = Plan->getVPValue(Chain);
9142       unsigned FirstOpId;
9143       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9144         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9145                "Expected to replace a VPWidenSelectSC");
9146         FirstOpId = 1;
9147       } else {
9148         assert(isa<VPWidenRecipe>(WidenRecipe) &&
9149                "Expected to replace a VPWidenSC");
9150         FirstOpId = 0;
9151       }
9152       unsigned VecOpId =
9153           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9154       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9155 
9156       auto *CondOp = CM.foldTailByMasking()
9157                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9158                          : nullptr;
9159       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9160           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9161       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9162       Plan->removeVPValueFor(R);
9163       Plan->addVPValue(R, RedRecipe);
9164       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9165       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9166       WidenRecipe->eraseFromParent();
9167 
9168       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9169         VPRecipeBase *CompareRecipe =
9170             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9171         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9172                "Expected to replace a VPWidenSC");
9173         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9174                "Expected no remaining users");
9175         CompareRecipe->eraseFromParent();
9176       }
9177       Chain = R;
9178     }
9179   }
9180 }
9181 
9182 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9183 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9184                                VPSlotTracker &SlotTracker) const {
9185   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9186   IG->getInsertPos()->printAsOperand(O, false);
9187   O << ", ";
9188   getAddr()->printAsOperand(O, SlotTracker);
9189   VPValue *Mask = getMask();
9190   if (Mask) {
9191     O << ", ";
9192     Mask->printAsOperand(O, SlotTracker);
9193   }
9194   for (unsigned i = 0; i < IG->getFactor(); ++i)
9195     if (Instruction *I = IG->getMember(i))
9196       O << "\n" << Indent << "  " << VPlanIngredient(I) << " " << i;
9197 }
9198 #endif
9199 
9200 void VPWidenCallRecipe::execute(VPTransformState &State) {
9201   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9202                                   *this, State);
9203 }
9204 
9205 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9206   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9207                                     this, *this, InvariantCond, State);
9208 }
9209 
9210 void VPWidenRecipe::execute(VPTransformState &State) {
9211   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9212 }
9213 
9214 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9215   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9216                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9217                       IsIndexLoopInvariant, State);
9218 }
9219 
9220 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9221   assert(!State.Instance && "Int or FP induction being replicated.");
9222   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9223                                    getTruncInst(), getVPValue(0),
9224                                    getCastValue(), State);
9225 }
9226 
9227 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9228   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc,
9229                                  this, State);
9230 }
9231 
9232 void VPBlendRecipe::execute(VPTransformState &State) {
9233   State.ILV->setDebugLocFromInst(State.Builder, Phi);
9234   // We know that all PHIs in non-header blocks are converted into
9235   // selects, so we don't have to worry about the insertion order and we
9236   // can just use the builder.
9237   // At this point we generate the predication tree. There may be
9238   // duplications since this is a simple recursive scan, but future
9239   // optimizations will clean it up.
9240 
9241   unsigned NumIncoming = getNumIncomingValues();
9242 
9243   // Generate a sequence of selects of the form:
9244   // SELECT(Mask3, In3,
9245   //        SELECT(Mask2, In2,
9246   //               SELECT(Mask1, In1,
9247   //                      In0)))
9248   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9249   // are essentially undef are taken from In0.
9250   InnerLoopVectorizer::VectorParts Entry(State.UF);
9251   for (unsigned In = 0; In < NumIncoming; ++In) {
9252     for (unsigned Part = 0; Part < State.UF; ++Part) {
9253       // We might have single edge PHIs (blocks) - use an identity
9254       // 'select' for the first PHI operand.
9255       Value *In0 = State.get(getIncomingValue(In), Part);
9256       if (In == 0)
9257         Entry[Part] = In0; // Initialize with the first incoming value.
9258       else {
9259         // Select between the current value and the previous incoming edge
9260         // based on the incoming mask.
9261         Value *Cond = State.get(getMask(In), Part);
9262         Entry[Part] =
9263             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9264       }
9265     }
9266   }
9267   for (unsigned Part = 0; Part < State.UF; ++Part)
9268     State.set(this, Entry[Part], Part);
9269 }
9270 
9271 void VPInterleaveRecipe::execute(VPTransformState &State) {
9272   assert(!State.Instance && "Interleave group being replicated.");
9273   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9274                                       getStoredValues(), getMask());
9275 }
9276 
9277 void VPReductionRecipe::execute(VPTransformState &State) {
9278   assert(!State.Instance && "Reduction being replicated.");
9279   Value *PrevInChain = State.get(getChainOp(), 0);
9280   for (unsigned Part = 0; Part < State.UF; ++Part) {
9281     RecurKind Kind = RdxDesc->getRecurrenceKind();
9282     bool IsOrdered = useOrderedReductions(*RdxDesc);
9283     Value *NewVecOp = State.get(getVecOp(), Part);
9284     if (VPValue *Cond = getCondOp()) {
9285       Value *NewCond = State.get(Cond, Part);
9286       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9287       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9288           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9289       Constant *IdenVec =
9290           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9291       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9292       NewVecOp = Select;
9293     }
9294     Value *NewRed;
9295     Value *NextInChain;
9296     if (IsOrdered) {
9297       NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9298                                       PrevInChain);
9299       PrevInChain = NewRed;
9300     } else {
9301       PrevInChain = State.get(getChainOp(), Part);
9302       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9303     }
9304     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9305       NextInChain =
9306           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9307                          NewRed, PrevInChain);
9308     } else if (IsOrdered)
9309       NextInChain = NewRed;
9310     else {
9311       NextInChain = State.Builder.CreateBinOp(
9312           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9313           PrevInChain);
9314     }
9315     State.set(this, NextInChain, Part);
9316   }
9317 }
9318 
9319 void VPReplicateRecipe::execute(VPTransformState &State) {
9320   if (State.Instance) { // Generate a single instance.
9321     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9322     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9323                                     *State.Instance, IsPredicated, State);
9324     // Insert scalar instance packing it into a vector.
9325     if (AlsoPack && State.VF.isVector()) {
9326       // If we're constructing lane 0, initialize to start from poison.
9327       if (State.Instance->Lane.isFirstLane()) {
9328         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9329         Value *Poison = PoisonValue::get(
9330             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9331         State.set(this, Poison, State.Instance->Part);
9332       }
9333       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9334     }
9335     return;
9336   }
9337 
9338   // Generate scalar instances for all VF lanes of all UF parts, unless the
9339   // instruction is uniform inwhich case generate only the first lane for each
9340   // of the UF parts.
9341   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9342   assert((!State.VF.isScalable() || IsUniform) &&
9343          "Can't scalarize a scalable vector");
9344   for (unsigned Part = 0; Part < State.UF; ++Part)
9345     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9346       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9347                                       VPIteration(Part, Lane), IsPredicated,
9348                                       State);
9349 }
9350 
9351 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9352   assert(State.Instance && "Branch on Mask works only on single instance.");
9353 
9354   unsigned Part = State.Instance->Part;
9355   unsigned Lane = State.Instance->Lane.getKnownLane();
9356 
9357   Value *ConditionBit = nullptr;
9358   VPValue *BlockInMask = getMask();
9359   if (BlockInMask) {
9360     ConditionBit = State.get(BlockInMask, Part);
9361     if (ConditionBit->getType()->isVectorTy())
9362       ConditionBit = State.Builder.CreateExtractElement(
9363           ConditionBit, State.Builder.getInt32(Lane));
9364   } else // Block in mask is all-one.
9365     ConditionBit = State.Builder.getTrue();
9366 
9367   // Replace the temporary unreachable terminator with a new conditional branch,
9368   // whose two destinations will be set later when they are created.
9369   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9370   assert(isa<UnreachableInst>(CurrentTerminator) &&
9371          "Expected to replace unreachable terminator with conditional branch.");
9372   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9373   CondBr->setSuccessor(0, nullptr);
9374   ReplaceInstWithInst(CurrentTerminator, CondBr);
9375 }
9376 
9377 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9378   assert(State.Instance && "Predicated instruction PHI works per instance.");
9379   Instruction *ScalarPredInst =
9380       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9381   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9382   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9383   assert(PredicatingBB && "Predicated block has no single predecessor.");
9384   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9385          "operand must be VPReplicateRecipe");
9386 
9387   // By current pack/unpack logic we need to generate only a single phi node: if
9388   // a vector value for the predicated instruction exists at this point it means
9389   // the instruction has vector users only, and a phi for the vector value is
9390   // needed. In this case the recipe of the predicated instruction is marked to
9391   // also do that packing, thereby "hoisting" the insert-element sequence.
9392   // Otherwise, a phi node for the scalar value is needed.
9393   unsigned Part = State.Instance->Part;
9394   if (State.hasVectorValue(getOperand(0), Part)) {
9395     Value *VectorValue = State.get(getOperand(0), Part);
9396     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9397     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9398     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9399     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9400     if (State.hasVectorValue(this, Part))
9401       State.reset(this, VPhi, Part);
9402     else
9403       State.set(this, VPhi, Part);
9404     // NOTE: Currently we need to update the value of the operand, so the next
9405     // predicated iteration inserts its generated value in the correct vector.
9406     State.reset(getOperand(0), VPhi, Part);
9407   } else {
9408     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9409     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9410     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9411                      PredicatingBB);
9412     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9413     if (State.hasScalarValue(this, *State.Instance))
9414       State.reset(this, Phi, *State.Instance);
9415     else
9416       State.set(this, Phi, *State.Instance);
9417     // NOTE: Currently we need to update the value of the operand, so the next
9418     // predicated iteration inserts its generated value in the correct vector.
9419     State.reset(getOperand(0), Phi, *State.Instance);
9420   }
9421 }
9422 
9423 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9424   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9425   State.ILV->vectorizeMemoryInstruction(
9426       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9427       StoredValue, getMask());
9428 }
9429 
9430 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9431 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9432 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9433 // for predication.
9434 static ScalarEpilogueLowering getScalarEpilogueLowering(
9435     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9436     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9437     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9438     LoopVectorizationLegality &LVL) {
9439   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9440   // don't look at hints or options, and don't request a scalar epilogue.
9441   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9442   // LoopAccessInfo (due to code dependency and not being able to reliably get
9443   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9444   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9445   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9446   // back to the old way and vectorize with versioning when forced. See D81345.)
9447   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9448                                                       PGSOQueryType::IRPass) &&
9449                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9450     return CM_ScalarEpilogueNotAllowedOptSize;
9451 
9452   // 2) If set, obey the directives
9453   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9454     switch (PreferPredicateOverEpilogue) {
9455     case PreferPredicateTy::ScalarEpilogue:
9456       return CM_ScalarEpilogueAllowed;
9457     case PreferPredicateTy::PredicateElseScalarEpilogue:
9458       return CM_ScalarEpilogueNotNeededUsePredicate;
9459     case PreferPredicateTy::PredicateOrDontVectorize:
9460       return CM_ScalarEpilogueNotAllowedUsePredicate;
9461     };
9462   }
9463 
9464   // 3) If set, obey the hints
9465   switch (Hints.getPredicate()) {
9466   case LoopVectorizeHints::FK_Enabled:
9467     return CM_ScalarEpilogueNotNeededUsePredicate;
9468   case LoopVectorizeHints::FK_Disabled:
9469     return CM_ScalarEpilogueAllowed;
9470   };
9471 
9472   // 4) if the TTI hook indicates this is profitable, request predication.
9473   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9474                                        LVL.getLAI()))
9475     return CM_ScalarEpilogueNotNeededUsePredicate;
9476 
9477   return CM_ScalarEpilogueAllowed;
9478 }
9479 
9480 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9481   // If Values have been set for this Def return the one relevant for \p Part.
9482   if (hasVectorValue(Def, Part))
9483     return Data.PerPartOutput[Def][Part];
9484 
9485   if (!hasScalarValue(Def, {Part, 0})) {
9486     Value *IRV = Def->getLiveInIRValue();
9487     Value *B = ILV->getBroadcastInstrs(IRV);
9488     set(Def, B, Part);
9489     return B;
9490   }
9491 
9492   Value *ScalarValue = get(Def, {Part, 0});
9493   // If we aren't vectorizing, we can just copy the scalar map values over
9494   // to the vector map.
9495   if (VF.isScalar()) {
9496     set(Def, ScalarValue, Part);
9497     return ScalarValue;
9498   }
9499 
9500   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9501   bool IsUniform = RepR && RepR->isUniform();
9502 
9503   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9504   // Check if there is a scalar value for the selected lane.
9505   if (!hasScalarValue(Def, {Part, LastLane})) {
9506     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9507     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9508            "unexpected recipe found to be invariant");
9509     IsUniform = true;
9510     LastLane = 0;
9511   }
9512 
9513   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9514 
9515   // Set the insert point after the last scalarized instruction. This
9516   // ensures the insertelement sequence will directly follow the scalar
9517   // definitions.
9518   auto OldIP = Builder.saveIP();
9519   auto NewIP = std::next(BasicBlock::iterator(LastInst));
9520   Builder.SetInsertPoint(&*NewIP);
9521 
9522   // However, if we are vectorizing, we need to construct the vector values.
9523   // If the value is known to be uniform after vectorization, we can just
9524   // broadcast the scalar value corresponding to lane zero for each unroll
9525   // iteration. Otherwise, we construct the vector values using
9526   // insertelement instructions. Since the resulting vectors are stored in
9527   // State, we will only generate the insertelements once.
9528   Value *VectorValue = nullptr;
9529   if (IsUniform) {
9530     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9531     set(Def, VectorValue, Part);
9532   } else {
9533     // Initialize packing with insertelements to start from undef.
9534     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9535     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
9536     set(Def, Undef, Part);
9537     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
9538       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
9539     VectorValue = get(Def, Part);
9540   }
9541   Builder.restoreIP(OldIP);
9542   return VectorValue;
9543 }
9544 
9545 // Process the loop in the VPlan-native vectorization path. This path builds
9546 // VPlan upfront in the vectorization pipeline, which allows to apply
9547 // VPlan-to-VPlan transformations from the very beginning without modifying the
9548 // input LLVM IR.
9549 static bool processLoopInVPlanNativePath(
9550     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
9551     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
9552     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
9553     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
9554     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
9555     LoopVectorizationRequirements &Requirements) {
9556 
9557   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
9558     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9559     return false;
9560   }
9561   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9562   Function *F = L->getHeader()->getParent();
9563   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9564 
9565   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9566       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
9567 
9568   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9569                                 &Hints, IAI);
9570   // Use the planner for outer loop vectorization.
9571   // TODO: CM is not used at this point inside the planner. Turn CM into an
9572   // optional argument if we don't need it in the future.
9573   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
9574                                Requirements, ORE);
9575 
9576   // Get user vectorization factor.
9577   ElementCount UserVF = Hints.getWidth();
9578 
9579   // Plan how to best vectorize, return the best VF and its cost.
9580   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9581 
9582   // If we are stress testing VPlan builds, do not attempt to generate vector
9583   // code. Masked vector code generation support will follow soon.
9584   // Also, do not attempt to vectorize if no vector code will be produced.
9585   if (VPlanBuildStressTest || EnableVPlanPredication ||
9586       VectorizationFactor::Disabled() == VF)
9587     return false;
9588 
9589   LVP.setBestPlan(VF.Width, 1);
9590 
9591   {
9592     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
9593                              F->getParent()->getDataLayout());
9594     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
9595                            &CM, BFI, PSI, Checks);
9596     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9597                       << L->getHeader()->getParent()->getName() << "\"\n");
9598     LVP.executePlan(LB, DT);
9599   }
9600 
9601   // Mark the loop as already vectorized to avoid vectorizing again.
9602   Hints.setAlreadyVectorized();
9603   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9604   return true;
9605 }
9606 
9607 // Emit a remark if there are stores to floats that required a floating point
9608 // extension. If the vectorized loop was generated with floating point there
9609 // will be a performance penalty from the conversion overhead and the change in
9610 // the vector width.
9611 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
9612   SmallVector<Instruction *, 4> Worklist;
9613   for (BasicBlock *BB : L->getBlocks()) {
9614     for (Instruction &Inst : *BB) {
9615       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9616         if (S->getValueOperand()->getType()->isFloatTy())
9617           Worklist.push_back(S);
9618       }
9619     }
9620   }
9621 
9622   // Traverse the floating point stores upwards searching, for floating point
9623   // conversions.
9624   SmallPtrSet<const Instruction *, 4> Visited;
9625   SmallPtrSet<const Instruction *, 4> EmittedRemark;
9626   while (!Worklist.empty()) {
9627     auto *I = Worklist.pop_back_val();
9628     if (!L->contains(I))
9629       continue;
9630     if (!Visited.insert(I).second)
9631       continue;
9632 
9633     // Emit a remark if the floating point store required a floating
9634     // point conversion.
9635     // TODO: More work could be done to identify the root cause such as a
9636     // constant or a function return type and point the user to it.
9637     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9638       ORE->emit([&]() {
9639         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9640                                           I->getDebugLoc(), L->getHeader())
9641                << "floating point conversion changes vector width. "
9642                << "Mixed floating point precision requires an up/down "
9643                << "cast that will negatively impact performance.";
9644       });
9645 
9646     for (Use &Op : I->operands())
9647       if (auto *OpI = dyn_cast<Instruction>(Op))
9648         Worklist.push_back(OpI);
9649   }
9650 }
9651 
9652 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
9653     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9654                                !EnableLoopInterleaving),
9655       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9656                               !EnableLoopVectorization) {}
9657 
9658 bool LoopVectorizePass::processLoop(Loop *L) {
9659   assert((EnableVPlanNativePath || L->isInnermost()) &&
9660          "VPlan-native path is not enabled. Only process inner loops.");
9661 
9662 #ifndef NDEBUG
9663   const std::string DebugLocStr = getDebugLocString(L);
9664 #endif /* NDEBUG */
9665 
9666   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
9667                     << L->getHeader()->getParent()->getName() << "\" from "
9668                     << DebugLocStr << "\n");
9669 
9670   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
9671 
9672   LLVM_DEBUG(
9673       dbgs() << "LV: Loop hints:"
9674              << " force="
9675              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
9676                      ? "disabled"
9677                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
9678                             ? "enabled"
9679                             : "?"))
9680              << " width=" << Hints.getWidth()
9681              << " interleave=" << Hints.getInterleave() << "\n");
9682 
9683   // Function containing loop
9684   Function *F = L->getHeader()->getParent();
9685 
9686   // Looking at the diagnostic output is the only way to determine if a loop
9687   // was vectorized (other than looking at the IR or machine code), so it
9688   // is important to generate an optimization remark for each loop. Most of
9689   // these messages are generated as OptimizationRemarkAnalysis. Remarks
9690   // generated as OptimizationRemark and OptimizationRemarkMissed are
9691   // less verbose reporting vectorized loops and unvectorized loops that may
9692   // benefit from vectorization, respectively.
9693 
9694   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
9695     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
9696     return false;
9697   }
9698 
9699   PredicatedScalarEvolution PSE(*SE, *L);
9700 
9701   // Check if it is legal to vectorize the loop.
9702   LoopVectorizationRequirements Requirements;
9703   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
9704                                 &Requirements, &Hints, DB, AC, BFI, PSI);
9705   if (!LVL.canVectorize(EnableVPlanNativePath)) {
9706     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
9707     Hints.emitRemarkWithHints();
9708     return false;
9709   }
9710 
9711   // Check the function attributes and profiles to find out if this function
9712   // should be optimized for size.
9713   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9714       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
9715 
9716   // Entrance to the VPlan-native vectorization path. Outer loops are processed
9717   // here. They may require CFG and instruction level transformations before
9718   // even evaluating whether vectorization is profitable. Since we cannot modify
9719   // the incoming IR, we need to build VPlan upfront in the vectorization
9720   // pipeline.
9721   if (!L->isInnermost())
9722     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
9723                                         ORE, BFI, PSI, Hints, Requirements);
9724 
9725   assert(L->isInnermost() && "Inner loop expected.");
9726 
9727   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
9728   // count by optimizing for size, to minimize overheads.
9729   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
9730   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
9731     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
9732                       << "This loop is worth vectorizing only if no scalar "
9733                       << "iteration overheads are incurred.");
9734     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
9735       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
9736     else {
9737       LLVM_DEBUG(dbgs() << "\n");
9738       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
9739     }
9740   }
9741 
9742   // Check the function attributes to see if implicit floats are allowed.
9743   // FIXME: This check doesn't seem possibly correct -- what if the loop is
9744   // an integer loop and the vector instructions selected are purely integer
9745   // vector instructions?
9746   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9747     reportVectorizationFailure(
9748         "Can't vectorize when the NoImplicitFloat attribute is used",
9749         "loop not vectorized due to NoImplicitFloat attribute",
9750         "NoImplicitFloat", ORE, L);
9751     Hints.emitRemarkWithHints();
9752     return false;
9753   }
9754 
9755   // Check if the target supports potentially unsafe FP vectorization.
9756   // FIXME: Add a check for the type of safety issue (denormal, signaling)
9757   // for the target we're vectorizing for, to make sure none of the
9758   // additional fp-math flags can help.
9759   if (Hints.isPotentiallyUnsafe() &&
9760       TTI->isFPVectorizationPotentiallyUnsafe()) {
9761     reportVectorizationFailure(
9762         "Potentially unsafe FP op prevents vectorization",
9763         "loop not vectorized due to unsafe FP support.",
9764         "UnsafeFP", ORE, L);
9765     Hints.emitRemarkWithHints();
9766     return false;
9767   }
9768 
9769   if (!Requirements.canVectorizeFPMath(Hints)) {
9770     ORE->emit([&]() {
9771       auto *ExactFPMathInst = Requirements.getExactFPInst();
9772       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
9773                                                  ExactFPMathInst->getDebugLoc(),
9774                                                  ExactFPMathInst->getParent())
9775              << "loop not vectorized: cannot prove it is safe to reorder "
9776                 "floating-point operations";
9777     });
9778     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
9779                          "reorder floating-point operations\n");
9780     Hints.emitRemarkWithHints();
9781     return false;
9782   }
9783 
9784   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
9785   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
9786 
9787   // If an override option has been passed in for interleaved accesses, use it.
9788   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
9789     UseInterleaved = EnableInterleavedMemAccesses;
9790 
9791   // Analyze interleaved memory accesses.
9792   if (UseInterleaved) {
9793     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
9794   }
9795 
9796   // Use the cost model.
9797   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
9798                                 F, &Hints, IAI);
9799   CM.collectValuesToIgnore();
9800 
9801   // Use the planner for vectorization.
9802   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
9803                                Requirements, ORE);
9804 
9805   // Get user vectorization factor and interleave count.
9806   ElementCount UserVF = Hints.getWidth();
9807   unsigned UserIC = Hints.getInterleave();
9808 
9809   // Plan how to best vectorize, return the best VF and its cost.
9810   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
9811 
9812   VectorizationFactor VF = VectorizationFactor::Disabled();
9813   unsigned IC = 1;
9814 
9815   if (MaybeVF) {
9816     VF = *MaybeVF;
9817     // Select the interleave count.
9818     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
9819   }
9820 
9821   // Identify the diagnostic messages that should be produced.
9822   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
9823   bool VectorizeLoop = true, InterleaveLoop = true;
9824   if (VF.Width.isScalar()) {
9825     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
9826     VecDiagMsg = std::make_pair(
9827         "VectorizationNotBeneficial",
9828         "the cost-model indicates that vectorization is not beneficial");
9829     VectorizeLoop = false;
9830   }
9831 
9832   if (!MaybeVF && UserIC > 1) {
9833     // Tell the user interleaving was avoided up-front, despite being explicitly
9834     // requested.
9835     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
9836                          "interleaving should be avoided up front\n");
9837     IntDiagMsg = std::make_pair(
9838         "InterleavingAvoided",
9839         "Ignoring UserIC, because interleaving was avoided up front");
9840     InterleaveLoop = false;
9841   } else if (IC == 1 && UserIC <= 1) {
9842     // Tell the user interleaving is not beneficial.
9843     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
9844     IntDiagMsg = std::make_pair(
9845         "InterleavingNotBeneficial",
9846         "the cost-model indicates that interleaving is not beneficial");
9847     InterleaveLoop = false;
9848     if (UserIC == 1) {
9849       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
9850       IntDiagMsg.second +=
9851           " and is explicitly disabled or interleave count is set to 1";
9852     }
9853   } else if (IC > 1 && UserIC == 1) {
9854     // Tell the user interleaving is beneficial, but it explicitly disabled.
9855     LLVM_DEBUG(
9856         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
9857     IntDiagMsg = std::make_pair(
9858         "InterleavingBeneficialButDisabled",
9859         "the cost-model indicates that interleaving is beneficial "
9860         "but is explicitly disabled or interleave count is set to 1");
9861     InterleaveLoop = false;
9862   }
9863 
9864   // Override IC if user provided an interleave count.
9865   IC = UserIC > 0 ? UserIC : IC;
9866 
9867   // Emit diagnostic messages, if any.
9868   const char *VAPassName = Hints.vectorizeAnalysisPassName();
9869   if (!VectorizeLoop && !InterleaveLoop) {
9870     // Do not vectorize or interleaving the loop.
9871     ORE->emit([&]() {
9872       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
9873                                       L->getStartLoc(), L->getHeader())
9874              << VecDiagMsg.second;
9875     });
9876     ORE->emit([&]() {
9877       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
9878                                       L->getStartLoc(), L->getHeader())
9879              << IntDiagMsg.second;
9880     });
9881     return false;
9882   } else if (!VectorizeLoop && InterleaveLoop) {
9883     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
9884     ORE->emit([&]() {
9885       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
9886                                         L->getStartLoc(), L->getHeader())
9887              << VecDiagMsg.second;
9888     });
9889   } else if (VectorizeLoop && !InterleaveLoop) {
9890     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
9891                       << ") in " << DebugLocStr << '\n');
9892     ORE->emit([&]() {
9893       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
9894                                         L->getStartLoc(), L->getHeader())
9895              << IntDiagMsg.second;
9896     });
9897   } else if (VectorizeLoop && InterleaveLoop) {
9898     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
9899                       << ") in " << DebugLocStr << '\n');
9900     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
9901   }
9902 
9903   bool DisableRuntimeUnroll = false;
9904   MDNode *OrigLoopID = L->getLoopID();
9905   {
9906     // Optimistically generate runtime checks. Drop them if they turn out to not
9907     // be profitable. Limit the scope of Checks, so the cleanup happens
9908     // immediately after vector codegeneration is done.
9909     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
9910                              F->getParent()->getDataLayout());
9911     if (!VF.Width.isScalar() || IC > 1)
9912       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
9913     LVP.setBestPlan(VF.Width, IC);
9914 
9915     using namespace ore;
9916     if (!VectorizeLoop) {
9917       assert(IC > 1 && "interleave count should not be 1 or 0");
9918       // If we decided that it is not legal to vectorize the loop, then
9919       // interleave it.
9920       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
9921                                  &CM, BFI, PSI, Checks);
9922       LVP.executePlan(Unroller, DT);
9923 
9924       ORE->emit([&]() {
9925         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
9926                                   L->getHeader())
9927                << "interleaved loop (interleaved count: "
9928                << NV("InterleaveCount", IC) << ")";
9929       });
9930     } else {
9931       // If we decided that it is *legal* to vectorize the loop, then do it.
9932 
9933       // Consider vectorizing the epilogue too if it's profitable.
9934       VectorizationFactor EpilogueVF =
9935           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
9936       if (EpilogueVF.Width.isVector()) {
9937 
9938         // The first pass vectorizes the main loop and creates a scalar epilogue
9939         // to be vectorized by executing the plan (potentially with a different
9940         // factor) again shortly afterwards.
9941         EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC,
9942                                           EpilogueVF.Width.getKnownMinValue(),
9943                                           1);
9944         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
9945                                            EPI, &LVL, &CM, BFI, PSI, Checks);
9946 
9947         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
9948         LVP.executePlan(MainILV, DT);
9949         ++LoopsVectorized;
9950 
9951         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
9952         formLCSSARecursively(*L, *DT, LI, SE);
9953 
9954         // Second pass vectorizes the epilogue and adjusts the control flow
9955         // edges from the first pass.
9956         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
9957         EPI.MainLoopVF = EPI.EpilogueVF;
9958         EPI.MainLoopUF = EPI.EpilogueUF;
9959         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
9960                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
9961                                                  Checks);
9962         LVP.executePlan(EpilogILV, DT);
9963         ++LoopsEpilogueVectorized;
9964 
9965         if (!MainILV.areSafetyChecksAdded())
9966           DisableRuntimeUnroll = true;
9967       } else {
9968         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
9969                                &LVL, &CM, BFI, PSI, Checks);
9970         LVP.executePlan(LB, DT);
9971         ++LoopsVectorized;
9972 
9973         // Add metadata to disable runtime unrolling a scalar loop when there
9974         // are no runtime checks about strides and memory. A scalar loop that is
9975         // rarely used is not worth unrolling.
9976         if (!LB.areSafetyChecksAdded())
9977           DisableRuntimeUnroll = true;
9978       }
9979       // Report the vectorization decision.
9980       ORE->emit([&]() {
9981         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
9982                                   L->getHeader())
9983                << "vectorized loop (vectorization width: "
9984                << NV("VectorizationFactor", VF.Width)
9985                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
9986       });
9987     }
9988 
9989     if (ORE->allowExtraAnalysis(LV_NAME))
9990       checkMixedPrecision(L, ORE);
9991   }
9992 
9993   Optional<MDNode *> RemainderLoopID =
9994       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
9995                                       LLVMLoopVectorizeFollowupEpilogue});
9996   if (RemainderLoopID.hasValue()) {
9997     L->setLoopID(RemainderLoopID.getValue());
9998   } else {
9999     if (DisableRuntimeUnroll)
10000       AddRuntimeUnrollDisableMetaData(L);
10001 
10002     // Mark the loop as already vectorized to avoid vectorizing again.
10003     Hints.setAlreadyVectorized();
10004   }
10005 
10006   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10007   return true;
10008 }
10009 
10010 LoopVectorizeResult LoopVectorizePass::runImpl(
10011     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10012     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10013     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10014     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10015     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10016   SE = &SE_;
10017   LI = &LI_;
10018   TTI = &TTI_;
10019   DT = &DT_;
10020   BFI = &BFI_;
10021   TLI = TLI_;
10022   AA = &AA_;
10023   AC = &AC_;
10024   GetLAA = &GetLAA_;
10025   DB = &DB_;
10026   ORE = &ORE_;
10027   PSI = PSI_;
10028 
10029   // Don't attempt if
10030   // 1. the target claims to have no vector registers, and
10031   // 2. interleaving won't help ILP.
10032   //
10033   // The second condition is necessary because, even if the target has no
10034   // vector registers, loop vectorization may still enable scalar
10035   // interleaving.
10036   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10037       TTI->getMaxInterleaveFactor(1) < 2)
10038     return LoopVectorizeResult(false, false);
10039 
10040   bool Changed = false, CFGChanged = false;
10041 
10042   // The vectorizer requires loops to be in simplified form.
10043   // Since simplification may add new inner loops, it has to run before the
10044   // legality and profitability checks. This means running the loop vectorizer
10045   // will simplify all loops, regardless of whether anything end up being
10046   // vectorized.
10047   for (auto &L : *LI)
10048     Changed |= CFGChanged |=
10049         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10050 
10051   // Build up a worklist of inner-loops to vectorize. This is necessary as
10052   // the act of vectorizing or partially unrolling a loop creates new loops
10053   // and can invalidate iterators across the loops.
10054   SmallVector<Loop *, 8> Worklist;
10055 
10056   for (Loop *L : *LI)
10057     collectSupportedLoops(*L, LI, ORE, Worklist);
10058 
10059   LoopsAnalyzed += Worklist.size();
10060 
10061   // Now walk the identified inner loops.
10062   while (!Worklist.empty()) {
10063     Loop *L = Worklist.pop_back_val();
10064 
10065     // For the inner loops we actually process, form LCSSA to simplify the
10066     // transform.
10067     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10068 
10069     Changed |= CFGChanged |= processLoop(L);
10070   }
10071 
10072   // Process each loop nest in the function.
10073   return LoopVectorizeResult(Changed, CFGChanged);
10074 }
10075 
10076 PreservedAnalyses LoopVectorizePass::run(Function &F,
10077                                          FunctionAnalysisManager &AM) {
10078     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10079     auto &LI = AM.getResult<LoopAnalysis>(F);
10080     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10081     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10082     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10083     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10084     auto &AA = AM.getResult<AAManager>(F);
10085     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10086     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10087     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10088     MemorySSA *MSSA = EnableMSSALoopDependency
10089                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
10090                           : nullptr;
10091 
10092     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10093     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10094         [&](Loop &L) -> const LoopAccessInfo & {
10095       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
10096                                         TLI, TTI, nullptr, MSSA};
10097       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10098     };
10099     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10100     ProfileSummaryInfo *PSI =
10101         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10102     LoopVectorizeResult Result =
10103         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10104     if (!Result.MadeAnyChange)
10105       return PreservedAnalyses::all();
10106     PreservedAnalyses PA;
10107 
10108     // We currently do not preserve loopinfo/dominator analyses with outer loop
10109     // vectorization. Until this is addressed, mark these analyses as preserved
10110     // only for non-VPlan-native path.
10111     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10112     if (!EnableVPlanNativePath) {
10113       PA.preserve<LoopAnalysis>();
10114       PA.preserve<DominatorTreeAnalysis>();
10115     }
10116     PA.preserve<BasicAA>();
10117     PA.preserve<GlobalsAA>();
10118     if (!Result.MadeCFGChange)
10119       PA.preserveSet<CFGAnalyses>();
10120     return PA;
10121 }
10122