1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/Metadata.h" 116 #include "llvm/IR/Module.h" 117 #include "llvm/IR/Operator.h" 118 #include "llvm/IR/PatternMatch.h" 119 #include "llvm/IR/Type.h" 120 #include "llvm/IR/Use.h" 121 #include "llvm/IR/User.h" 122 #include "llvm/IR/Value.h" 123 #include "llvm/IR/ValueHandle.h" 124 #include "llvm/IR/Verifier.h" 125 #include "llvm/InitializePasses.h" 126 #include "llvm/Pass.h" 127 #include "llvm/Support/Casting.h" 128 #include "llvm/Support/CommandLine.h" 129 #include "llvm/Support/Compiler.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/InstructionCost.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <functional> 147 #include <iterator> 148 #include <limits> 149 #include <memory> 150 #include <string> 151 #include <tuple> 152 #include <utility> 153 154 using namespace llvm; 155 156 #define LV_NAME "loop-vectorize" 157 #define DEBUG_TYPE LV_NAME 158 159 #ifndef NDEBUG 160 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 161 #endif 162 163 /// @{ 164 /// Metadata attribute names 165 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 166 const char LLVMLoopVectorizeFollowupVectorized[] = 167 "llvm.loop.vectorize.followup_vectorized"; 168 const char LLVMLoopVectorizeFollowupEpilogue[] = 169 "llvm.loop.vectorize.followup_epilogue"; 170 /// @} 171 172 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 173 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 174 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 175 176 static cl::opt<bool> EnableEpilogueVectorization( 177 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 178 cl::desc("Enable vectorization of epilogue loops.")); 179 180 static cl::opt<unsigned> EpilogueVectorizationForceVF( 181 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 182 cl::desc("When epilogue vectorization is enabled, and a value greater than " 183 "1 is specified, forces the given VF for all applicable epilogue " 184 "loops.")); 185 186 static cl::opt<unsigned> EpilogueVectorizationMinVF( 187 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 188 cl::desc("Only loops with vectorization factor equal to or larger than " 189 "the specified value are considered for epilogue vectorization.")); 190 191 /// Loops with a known constant trip count below this number are vectorized only 192 /// if no scalar iteration overheads are incurred. 193 static cl::opt<unsigned> TinyTripCountVectorThreshold( 194 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 195 cl::desc("Loops with a constant trip count that is smaller than this " 196 "value are vectorized only if no scalar iteration overheads " 197 "are incurred.")); 198 199 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 200 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 201 cl::desc("The maximum allowed number of runtime memory checks with a " 202 "vectorize(enable) pragma.")); 203 204 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 205 // that predication is preferred, and this lists all options. I.e., the 206 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 207 // and predicate the instructions accordingly. If tail-folding fails, there are 208 // different fallback strategies depending on these values: 209 namespace PreferPredicateTy { 210 enum Option { 211 ScalarEpilogue = 0, 212 PredicateElseScalarEpilogue, 213 PredicateOrDontVectorize 214 }; 215 } // namespace PreferPredicateTy 216 217 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 218 "prefer-predicate-over-epilogue", 219 cl::init(PreferPredicateTy::ScalarEpilogue), 220 cl::Hidden, 221 cl::desc("Tail-folding and predication preferences over creating a scalar " 222 "epilogue loop."), 223 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 224 "scalar-epilogue", 225 "Don't tail-predicate loops, create scalar epilogue"), 226 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 227 "predicate-else-scalar-epilogue", 228 "prefer tail-folding, create scalar epilogue if tail " 229 "folding fails."), 230 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 231 "predicate-dont-vectorize", 232 "prefers tail-folding, don't attempt vectorization if " 233 "tail-folding fails."))); 234 235 static cl::opt<bool> MaximizeBandwidth( 236 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 237 cl::desc("Maximize bandwidth when selecting vectorization factor which " 238 "will be determined by the smallest type in loop.")); 239 240 static cl::opt<bool> EnableInterleavedMemAccesses( 241 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 242 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 243 244 /// An interleave-group may need masking if it resides in a block that needs 245 /// predication, or in order to mask away gaps. 246 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 247 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 248 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 249 250 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 251 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 252 cl::desc("We don't interleave loops with a estimated constant trip count " 253 "below this number")); 254 255 static cl::opt<unsigned> ForceTargetNumScalarRegs( 256 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 257 cl::desc("A flag that overrides the target's number of scalar registers.")); 258 259 static cl::opt<unsigned> ForceTargetNumVectorRegs( 260 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 261 cl::desc("A flag that overrides the target's number of vector registers.")); 262 263 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 264 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 265 cl::desc("A flag that overrides the target's max interleave factor for " 266 "scalar loops.")); 267 268 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 269 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 270 cl::desc("A flag that overrides the target's max interleave factor for " 271 "vectorized loops.")); 272 273 static cl::opt<unsigned> ForceTargetInstructionCost( 274 "force-target-instruction-cost", cl::init(0), cl::Hidden, 275 cl::desc("A flag that overrides the target's expected cost for " 276 "an instruction to a single constant value. Mostly " 277 "useful for getting consistent testing.")); 278 279 static cl::opt<bool> ForceTargetSupportsScalableVectors( 280 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 281 cl::desc( 282 "Pretend that scalable vectors are supported, even if the target does " 283 "not support them. This flag should only be used for testing.")); 284 285 static cl::opt<unsigned> SmallLoopCost( 286 "small-loop-cost", cl::init(20), cl::Hidden, 287 cl::desc( 288 "The cost of a loop that is considered 'small' by the interleaver.")); 289 290 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 291 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 292 cl::desc("Enable the use of the block frequency analysis to access PGO " 293 "heuristics minimizing code growth in cold regions and being more " 294 "aggressive in hot regions.")); 295 296 // Runtime interleave loops for load/store throughput. 297 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 298 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 299 cl::desc( 300 "Enable runtime interleaving until load/store ports are saturated")); 301 302 /// Interleave small loops with scalar reductions. 303 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 304 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 305 cl::desc("Enable interleaving for loops with small iteration counts that " 306 "contain scalar reductions to expose ILP.")); 307 308 /// The number of stores in a loop that are allowed to need predication. 309 static cl::opt<unsigned> NumberOfStoresToPredicate( 310 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 311 cl::desc("Max number of stores to be predicated behind an if.")); 312 313 static cl::opt<bool> EnableIndVarRegisterHeur( 314 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 315 cl::desc("Count the induction variable only once when interleaving")); 316 317 static cl::opt<bool> EnableCondStoresVectorization( 318 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 319 cl::desc("Enable if predication of stores during vectorization.")); 320 321 static cl::opt<unsigned> MaxNestedScalarReductionIC( 322 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 323 cl::desc("The maximum interleave count to use when interleaving a scalar " 324 "reduction in a nested loop.")); 325 326 static cl::opt<bool> 327 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 328 cl::Hidden, 329 cl::desc("Prefer in-loop vector reductions, " 330 "overriding the targets preference.")); 331 332 static cl::opt<bool> ForceOrderedReductions( 333 "force-ordered-reductions", cl::init(false), cl::Hidden, 334 cl::desc("Enable the vectorisation of loops with in-order (strict) " 335 "FP reductions")); 336 337 static cl::opt<bool> PreferPredicatedReductionSelect( 338 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 339 cl::desc( 340 "Prefer predicating a reduction operation over an after loop select.")); 341 342 cl::opt<bool> EnableVPlanNativePath( 343 "enable-vplan-native-path", cl::init(false), cl::Hidden, 344 cl::desc("Enable VPlan-native vectorization path with " 345 "support for outer loop vectorization.")); 346 347 // FIXME: Remove this switch once we have divergence analysis. Currently we 348 // assume divergent non-backedge branches when this switch is true. 349 cl::opt<bool> EnableVPlanPredication( 350 "enable-vplan-predication", cl::init(false), cl::Hidden, 351 cl::desc("Enable VPlan-native vectorization path predicator with " 352 "support for outer loop vectorization.")); 353 354 // This flag enables the stress testing of the VPlan H-CFG construction in the 355 // VPlan-native vectorization path. It must be used in conjuction with 356 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 357 // verification of the H-CFGs built. 358 static cl::opt<bool> VPlanBuildStressTest( 359 "vplan-build-stress-test", cl::init(false), cl::Hidden, 360 cl::desc( 361 "Build VPlan for every supported loop nest in the function and bail " 362 "out right after the build (stress test the VPlan H-CFG construction " 363 "in the VPlan-native vectorization path).")); 364 365 cl::opt<bool> llvm::EnableLoopInterleaving( 366 "interleave-loops", cl::init(true), cl::Hidden, 367 cl::desc("Enable loop interleaving in Loop vectorization passes")); 368 cl::opt<bool> llvm::EnableLoopVectorization( 369 "vectorize-loops", cl::init(true), cl::Hidden, 370 cl::desc("Run the Loop vectorization passes")); 371 372 cl::opt<bool> PrintVPlansInDotFormat( 373 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 374 cl::desc("Use dot format instead of plain text when dumping VPlans")); 375 376 /// A helper function that returns true if the given type is irregular. The 377 /// type is irregular if its allocated size doesn't equal the store size of an 378 /// element of the corresponding vector type. 379 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 380 // Determine if an array of N elements of type Ty is "bitcast compatible" 381 // with a <N x Ty> vector. 382 // This is only true if there is no padding between the array elements. 383 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 384 } 385 386 /// A helper function that returns the reciprocal of the block probability of 387 /// predicated blocks. If we return X, we are assuming the predicated block 388 /// will execute once for every X iterations of the loop header. 389 /// 390 /// TODO: We should use actual block probability here, if available. Currently, 391 /// we always assume predicated blocks have a 50% chance of executing. 392 static unsigned getReciprocalPredBlockProb() { return 2; } 393 394 /// A helper function that returns an integer or floating-point constant with 395 /// value C. 396 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 397 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 398 : ConstantFP::get(Ty, C); 399 } 400 401 /// Returns "best known" trip count for the specified loop \p L as defined by 402 /// the following procedure: 403 /// 1) Returns exact trip count if it is known. 404 /// 2) Returns expected trip count according to profile data if any. 405 /// 3) Returns upper bound estimate if it is known. 406 /// 4) Returns None if all of the above failed. 407 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 408 // Check if exact trip count is known. 409 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 410 return ExpectedTC; 411 412 // Check if there is an expected trip count available from profile data. 413 if (LoopVectorizeWithBlockFrequency) 414 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 415 return EstimatedTC; 416 417 // Check if upper bound estimate is known. 418 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 419 return ExpectedTC; 420 421 return None; 422 } 423 424 // Forward declare GeneratedRTChecks. 425 class GeneratedRTChecks; 426 427 namespace llvm { 428 429 AnalysisKey ShouldRunExtraVectorPasses::Key; 430 431 /// InnerLoopVectorizer vectorizes loops which contain only one basic 432 /// block to a specified vectorization factor (VF). 433 /// This class performs the widening of scalars into vectors, or multiple 434 /// scalars. This class also implements the following features: 435 /// * It inserts an epilogue loop for handling loops that don't have iteration 436 /// counts that are known to be a multiple of the vectorization factor. 437 /// * It handles the code generation for reduction variables. 438 /// * Scalarization (implementation using scalars) of un-vectorizable 439 /// instructions. 440 /// InnerLoopVectorizer does not perform any vectorization-legality 441 /// checks, and relies on the caller to check for the different legality 442 /// aspects. The InnerLoopVectorizer relies on the 443 /// LoopVectorizationLegality class to provide information about the induction 444 /// and reduction variables that were found to a given vectorization factor. 445 class InnerLoopVectorizer { 446 public: 447 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 448 LoopInfo *LI, DominatorTree *DT, 449 const TargetLibraryInfo *TLI, 450 const TargetTransformInfo *TTI, AssumptionCache *AC, 451 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 452 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 453 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 454 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 455 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 456 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 457 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 458 PSI(PSI), RTChecks(RTChecks) { 459 // Query this against the original loop and save it here because the profile 460 // of the original loop header may change as the transformation happens. 461 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 462 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 463 } 464 465 virtual ~InnerLoopVectorizer() = default; 466 467 /// Create a new empty loop that will contain vectorized instructions later 468 /// on, while the old loop will be used as the scalar remainder. Control flow 469 /// is generated around the vectorized (and scalar epilogue) loops consisting 470 /// of various checks and bypasses. Return the pre-header block of the new 471 /// loop and the start value for the canonical induction, if it is != 0. The 472 /// latter is the case when vectorizing the epilogue loop. In the case of 473 /// epilogue vectorization, this function is overriden to handle the more 474 /// complex control flow around the loops. 475 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 476 477 /// Widen a single call instruction within the innermost loop. 478 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 479 VPTransformState &State); 480 481 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 482 void fixVectorizedLoop(VPTransformState &State); 483 484 // Return true if any runtime check is added. 485 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 486 487 /// A type for vectorized values in the new loop. Each value from the 488 /// original loop, when vectorized, is represented by UF vector values in the 489 /// new unrolled loop, where UF is the unroll factor. 490 using VectorParts = SmallVector<Value *, 2>; 491 492 /// Vectorize a single first-order recurrence or pointer induction PHINode in 493 /// a block. This method handles the induction variable canonicalization. It 494 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 495 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 496 VPTransformState &State); 497 498 /// A helper function to scalarize a single Instruction in the innermost loop. 499 /// Generates a sequence of scalar instances for each lane between \p MinLane 500 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 501 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 502 /// Instr's operands. 503 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 504 const VPIteration &Instance, bool IfPredicateInstr, 505 VPTransformState &State); 506 507 /// Construct the vector value of a scalarized value \p V one lane at a time. 508 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 509 VPTransformState &State); 510 511 /// Try to vectorize interleaved access group \p Group with the base address 512 /// given in \p Addr, optionally masking the vector operations if \p 513 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 514 /// values in the vectorized loop. 515 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 516 ArrayRef<VPValue *> VPDefs, 517 VPTransformState &State, VPValue *Addr, 518 ArrayRef<VPValue *> StoredValues, 519 VPValue *BlockInMask = nullptr); 520 521 /// Set the debug location in the builder \p Ptr using the debug location in 522 /// \p V. If \p Ptr is None then it uses the class member's Builder. 523 void setDebugLocFromInst(const Value *V, 524 Optional<IRBuilderBase *> CustomBuilder = None); 525 526 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 527 void fixNonInductionPHIs(VPTransformState &State); 528 529 /// Returns true if the reordering of FP operations is not allowed, but we are 530 /// able to vectorize with strict in-order reductions for the given RdxDesc. 531 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 532 533 /// Create a broadcast instruction. This method generates a broadcast 534 /// instruction (shuffle) for loop invariant values and for the induction 535 /// value. If this is the induction variable then we extend it to N, N+1, ... 536 /// this is needed because each iteration in the loop corresponds to a SIMD 537 /// element. 538 virtual Value *getBroadcastInstrs(Value *V); 539 540 /// Add metadata from one instruction to another. 541 /// 542 /// This includes both the original MDs from \p From and additional ones (\see 543 /// addNewMetadata). Use this for *newly created* instructions in the vector 544 /// loop. 545 void addMetadata(Instruction *To, Instruction *From); 546 547 /// Similar to the previous function but it adds the metadata to a 548 /// vector of instructions. 549 void addMetadata(ArrayRef<Value *> To, Instruction *From); 550 551 // Returns the resume value (bc.merge.rdx) for a reduction as 552 // generated by fixReduction. 553 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 554 555 protected: 556 friend class LoopVectorizationPlanner; 557 558 /// A small list of PHINodes. 559 using PhiVector = SmallVector<PHINode *, 4>; 560 561 /// A type for scalarized values in the new loop. Each value from the 562 /// original loop, when scalarized, is represented by UF x VF scalar values 563 /// in the new unrolled loop, where UF is the unroll factor and VF is the 564 /// vectorization factor. 565 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 566 567 /// Set up the values of the IVs correctly when exiting the vector loop. 568 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 569 Value *CountRoundDown, Value *EndValue, 570 BasicBlock *MiddleBlock, BasicBlock *VectorHeader); 571 572 /// Introduce a conditional branch (on true, condition to be set later) at the 573 /// end of the header=latch connecting it to itself (across the backedge) and 574 /// to the exit block of \p L. 575 void createHeaderBranch(Loop *L); 576 577 /// Handle all cross-iteration phis in the header. 578 void fixCrossIterationPHIs(VPTransformState &State); 579 580 /// Create the exit value of first order recurrences in the middle block and 581 /// update their users. 582 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 583 VPTransformState &State); 584 585 /// Create code for the loop exit value of the reduction. 586 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 587 588 /// Clear NSW/NUW flags from reduction instructions if necessary. 589 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 590 VPTransformState &State); 591 592 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 593 /// means we need to add the appropriate incoming value from the middle 594 /// block as exiting edges from the scalar epilogue loop (if present) are 595 /// already in place, and we exit the vector loop exclusively to the middle 596 /// block. 597 void fixLCSSAPHIs(VPTransformState &State); 598 599 /// Iteratively sink the scalarized operands of a predicated instruction into 600 /// the block that was created for it. 601 void sinkScalarOperands(Instruction *PredInst); 602 603 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 604 /// represented as. 605 void truncateToMinimalBitwidths(VPTransformState &State); 606 607 /// Returns (and creates if needed) the original loop trip count. 608 Value *getOrCreateTripCount(BasicBlock *InsertBlock); 609 610 /// Returns (and creates if needed) the trip count of the widened loop. 611 Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); 612 613 /// Returns a bitcasted value to the requested vector type. 614 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 615 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 616 const DataLayout &DL); 617 618 /// Emit a bypass check to see if the vector trip count is zero, including if 619 /// it overflows. 620 void emitMinimumIterationCountCheck(BasicBlock *Bypass); 621 622 /// Emit a bypass check to see if all of the SCEV assumptions we've 623 /// had to make are correct. Returns the block containing the checks or 624 /// nullptr if no checks have been added. 625 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 626 627 /// Emit bypass checks to check any memory assumptions we may have made. 628 /// Returns the block containing the checks or nullptr if no checks have been 629 /// added. 630 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); 631 632 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 633 /// vector loop preheader, middle block and scalar preheader. Also 634 /// allocate a loop object for the new vector loop and return it. 635 Loop *createVectorLoopSkeleton(StringRef Prefix); 636 637 /// Create new phi nodes for the induction variables to resume iteration count 638 /// in the scalar epilogue, from where the vectorized loop left off. 639 /// In cases where the loop skeleton is more complicated (eg. epilogue 640 /// vectorization) and the resume values can come from an additional bypass 641 /// block, the \p AdditionalBypass pair provides information about the bypass 642 /// block and the end value on the edge from bypass to this loop. 643 void createInductionResumeValues( 644 Loop *L, 645 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 646 647 /// Complete the loop skeleton by adding debug MDs, creating appropriate 648 /// conditional branches in the middle block, preparing the builder and 649 /// running the verifier. Take in the vector loop \p L as argument, and return 650 /// the preheader of the completed vector loop. 651 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 652 653 /// Add additional metadata to \p To that was not present on \p Orig. 654 /// 655 /// Currently this is used to add the noalias annotations based on the 656 /// inserted memchecks. Use this for instructions that are *cloned* into the 657 /// vector loop. 658 void addNewMetadata(Instruction *To, const Instruction *Orig); 659 660 /// Collect poison-generating recipes that may generate a poison value that is 661 /// used after vectorization, even when their operands are not poison. Those 662 /// recipes meet the following conditions: 663 /// * Contribute to the address computation of a recipe generating a widen 664 /// memory load/store (VPWidenMemoryInstructionRecipe or 665 /// VPInterleaveRecipe). 666 /// * Such a widen memory load/store has at least one underlying Instruction 667 /// that is in a basic block that needs predication and after vectorization 668 /// the generated instruction won't be predicated. 669 void collectPoisonGeneratingRecipes(VPTransformState &State); 670 671 /// Allow subclasses to override and print debug traces before/after vplan 672 /// execution, when trace information is requested. 673 virtual void printDebugTracesAtStart(){}; 674 virtual void printDebugTracesAtEnd(){}; 675 676 /// The original loop. 677 Loop *OrigLoop; 678 679 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 680 /// dynamic knowledge to simplify SCEV expressions and converts them to a 681 /// more usable form. 682 PredicatedScalarEvolution &PSE; 683 684 /// Loop Info. 685 LoopInfo *LI; 686 687 /// Dominator Tree. 688 DominatorTree *DT; 689 690 /// Alias Analysis. 691 AAResults *AA; 692 693 /// Target Library Info. 694 const TargetLibraryInfo *TLI; 695 696 /// Target Transform Info. 697 const TargetTransformInfo *TTI; 698 699 /// Assumption Cache. 700 AssumptionCache *AC; 701 702 /// Interface to emit optimization remarks. 703 OptimizationRemarkEmitter *ORE; 704 705 /// LoopVersioning. It's only set up (non-null) if memchecks were 706 /// used. 707 /// 708 /// This is currently only used to add no-alias metadata based on the 709 /// memchecks. The actually versioning is performed manually. 710 std::unique_ptr<LoopVersioning> LVer; 711 712 /// The vectorization SIMD factor to use. Each vector will have this many 713 /// vector elements. 714 ElementCount VF; 715 716 /// The vectorization unroll factor to use. Each scalar is vectorized to this 717 /// many different vector instructions. 718 unsigned UF; 719 720 /// The builder that we use 721 IRBuilder<> Builder; 722 723 // --- Vectorization state --- 724 725 /// The vector-loop preheader. 726 BasicBlock *LoopVectorPreHeader; 727 728 /// The scalar-loop preheader. 729 BasicBlock *LoopScalarPreHeader; 730 731 /// Middle Block between the vector and the scalar. 732 BasicBlock *LoopMiddleBlock; 733 734 /// The unique ExitBlock of the scalar loop if one exists. Note that 735 /// there can be multiple exiting edges reaching this block. 736 BasicBlock *LoopExitBlock; 737 738 /// The scalar loop body. 739 BasicBlock *LoopScalarBody; 740 741 /// A list of all bypass blocks. The first block is the entry of the loop. 742 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 743 744 /// Store instructions that were predicated. 745 SmallVector<Instruction *, 4> PredicatedInstructions; 746 747 /// Trip count of the original loop. 748 Value *TripCount = nullptr; 749 750 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 751 Value *VectorTripCount = nullptr; 752 753 /// The legality analysis. 754 LoopVectorizationLegality *Legal; 755 756 /// The profitablity analysis. 757 LoopVectorizationCostModel *Cost; 758 759 // Record whether runtime checks are added. 760 bool AddedSafetyChecks = false; 761 762 // Holds the end values for each induction variable. We save the end values 763 // so we can later fix-up the external users of the induction variables. 764 DenseMap<PHINode *, Value *> IVEndValues; 765 766 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 767 // fixed up at the end of vector code generation. 768 SmallVector<PHINode *, 8> OrigPHIsToFix; 769 770 /// BFI and PSI are used to check for profile guided size optimizations. 771 BlockFrequencyInfo *BFI; 772 ProfileSummaryInfo *PSI; 773 774 // Whether this loop should be optimized for size based on profile guided size 775 // optimizatios. 776 bool OptForSizeBasedOnProfile; 777 778 /// Structure to hold information about generated runtime checks, responsible 779 /// for cleaning the checks, if vectorization turns out unprofitable. 780 GeneratedRTChecks &RTChecks; 781 782 // Holds the resume values for reductions in the loops, used to set the 783 // correct start value of reduction PHIs when vectorizing the epilogue. 784 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 785 ReductionResumeValues; 786 }; 787 788 class InnerLoopUnroller : public InnerLoopVectorizer { 789 public: 790 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 791 LoopInfo *LI, DominatorTree *DT, 792 const TargetLibraryInfo *TLI, 793 const TargetTransformInfo *TTI, AssumptionCache *AC, 794 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 795 LoopVectorizationLegality *LVL, 796 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 797 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 798 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 799 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 800 BFI, PSI, Check) {} 801 802 private: 803 Value *getBroadcastInstrs(Value *V) override; 804 }; 805 806 /// Encapsulate information regarding vectorization of a loop and its epilogue. 807 /// This information is meant to be updated and used across two stages of 808 /// epilogue vectorization. 809 struct EpilogueLoopVectorizationInfo { 810 ElementCount MainLoopVF = ElementCount::getFixed(0); 811 unsigned MainLoopUF = 0; 812 ElementCount EpilogueVF = ElementCount::getFixed(0); 813 unsigned EpilogueUF = 0; 814 BasicBlock *MainLoopIterationCountCheck = nullptr; 815 BasicBlock *EpilogueIterationCountCheck = nullptr; 816 BasicBlock *SCEVSafetyCheck = nullptr; 817 BasicBlock *MemSafetyCheck = nullptr; 818 Value *TripCount = nullptr; 819 Value *VectorTripCount = nullptr; 820 821 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 822 ElementCount EVF, unsigned EUF) 823 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 824 assert(EUF == 1 && 825 "A high UF for the epilogue loop is likely not beneficial."); 826 } 827 }; 828 829 /// An extension of the inner loop vectorizer that creates a skeleton for a 830 /// vectorized loop that has its epilogue (residual) also vectorized. 831 /// The idea is to run the vplan on a given loop twice, firstly to setup the 832 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 833 /// from the first step and vectorize the epilogue. This is achieved by 834 /// deriving two concrete strategy classes from this base class and invoking 835 /// them in succession from the loop vectorizer planner. 836 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 837 public: 838 InnerLoopAndEpilogueVectorizer( 839 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 840 DominatorTree *DT, const TargetLibraryInfo *TLI, 841 const TargetTransformInfo *TTI, AssumptionCache *AC, 842 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 843 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 844 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 845 GeneratedRTChecks &Checks) 846 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 847 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 848 Checks), 849 EPI(EPI) {} 850 851 // Override this function to handle the more complex control flow around the 852 // three loops. 853 std::pair<BasicBlock *, Value *> 854 createVectorizedLoopSkeleton() final override { 855 return createEpilogueVectorizedLoopSkeleton(); 856 } 857 858 /// The interface for creating a vectorized skeleton using one of two 859 /// different strategies, each corresponding to one execution of the vplan 860 /// as described above. 861 virtual std::pair<BasicBlock *, Value *> 862 createEpilogueVectorizedLoopSkeleton() = 0; 863 864 /// Holds and updates state information required to vectorize the main loop 865 /// and its epilogue in two separate passes. This setup helps us avoid 866 /// regenerating and recomputing runtime safety checks. It also helps us to 867 /// shorten the iteration-count-check path length for the cases where the 868 /// iteration count of the loop is so small that the main vector loop is 869 /// completely skipped. 870 EpilogueLoopVectorizationInfo &EPI; 871 }; 872 873 /// A specialized derived class of inner loop vectorizer that performs 874 /// vectorization of *main* loops in the process of vectorizing loops and their 875 /// epilogues. 876 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 877 public: 878 EpilogueVectorizerMainLoop( 879 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 880 DominatorTree *DT, const TargetLibraryInfo *TLI, 881 const TargetTransformInfo *TTI, AssumptionCache *AC, 882 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 883 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 884 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 885 GeneratedRTChecks &Check) 886 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 887 EPI, LVL, CM, BFI, PSI, Check) {} 888 /// Implements the interface for creating a vectorized skeleton using the 889 /// *main loop* strategy (ie the first pass of vplan execution). 890 std::pair<BasicBlock *, Value *> 891 createEpilogueVectorizedLoopSkeleton() final override; 892 893 protected: 894 /// Emits an iteration count bypass check once for the main loop (when \p 895 /// ForEpilogue is false) and once for the epilogue loop (when \p 896 /// ForEpilogue is true). 897 BasicBlock *emitMinimumIterationCountCheck(BasicBlock *Bypass, 898 bool ForEpilogue); 899 void printDebugTracesAtStart() override; 900 void printDebugTracesAtEnd() override; 901 }; 902 903 // A specialized derived class of inner loop vectorizer that performs 904 // vectorization of *epilogue* loops in the process of vectorizing loops and 905 // their epilogues. 906 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 907 public: 908 EpilogueVectorizerEpilogueLoop( 909 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 910 DominatorTree *DT, const TargetLibraryInfo *TLI, 911 const TargetTransformInfo *TTI, AssumptionCache *AC, 912 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 913 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 914 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 915 GeneratedRTChecks &Checks) 916 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 917 EPI, LVL, CM, BFI, PSI, Checks) {} 918 /// Implements the interface for creating a vectorized skeleton using the 919 /// *epilogue loop* strategy (ie the second pass of vplan execution). 920 std::pair<BasicBlock *, Value *> 921 createEpilogueVectorizedLoopSkeleton() final override; 922 923 protected: 924 /// Emits an iteration count bypass check after the main vector loop has 925 /// finished to see if there are any iterations left to execute by either 926 /// the vector epilogue or the scalar epilogue. 927 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 928 BasicBlock *Bypass, 929 BasicBlock *Insert); 930 void printDebugTracesAtStart() override; 931 void printDebugTracesAtEnd() override; 932 }; 933 } // end namespace llvm 934 935 /// Look for a meaningful debug location on the instruction or it's 936 /// operands. 937 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 938 if (!I) 939 return I; 940 941 DebugLoc Empty; 942 if (I->getDebugLoc() != Empty) 943 return I; 944 945 for (Use &Op : I->operands()) { 946 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 947 if (OpInst->getDebugLoc() != Empty) 948 return OpInst; 949 } 950 951 return I; 952 } 953 954 void InnerLoopVectorizer::setDebugLocFromInst( 955 const Value *V, Optional<IRBuilderBase *> CustomBuilder) { 956 IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 957 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 958 const DILocation *DIL = Inst->getDebugLoc(); 959 960 // When a FSDiscriminator is enabled, we don't need to add the multiply 961 // factors to the discriminators. 962 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 963 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 964 // FIXME: For scalable vectors, assume vscale=1. 965 auto NewDIL = 966 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 967 if (NewDIL) 968 B->SetCurrentDebugLocation(NewDIL.getValue()); 969 else 970 LLVM_DEBUG(dbgs() 971 << "Failed to create new discriminator: " 972 << DIL->getFilename() << " Line: " << DIL->getLine()); 973 } else 974 B->SetCurrentDebugLocation(DIL); 975 } else 976 B->SetCurrentDebugLocation(DebugLoc()); 977 } 978 979 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 980 /// is passed, the message relates to that particular instruction. 981 #ifndef NDEBUG 982 static void debugVectorizationMessage(const StringRef Prefix, 983 const StringRef DebugMsg, 984 Instruction *I) { 985 dbgs() << "LV: " << Prefix << DebugMsg; 986 if (I != nullptr) 987 dbgs() << " " << *I; 988 else 989 dbgs() << '.'; 990 dbgs() << '\n'; 991 } 992 #endif 993 994 /// Create an analysis remark that explains why vectorization failed 995 /// 996 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 997 /// RemarkName is the identifier for the remark. If \p I is passed it is an 998 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 999 /// the location of the remark. \return the remark object that can be 1000 /// streamed to. 1001 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1002 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1003 Value *CodeRegion = TheLoop->getHeader(); 1004 DebugLoc DL = TheLoop->getStartLoc(); 1005 1006 if (I) { 1007 CodeRegion = I->getParent(); 1008 // If there is no debug location attached to the instruction, revert back to 1009 // using the loop's. 1010 if (I->getDebugLoc()) 1011 DL = I->getDebugLoc(); 1012 } 1013 1014 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1015 } 1016 1017 namespace llvm { 1018 1019 /// Return a value for Step multiplied by VF. 1020 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 1021 int64_t Step) { 1022 assert(Ty->isIntegerTy() && "Expected an integer step"); 1023 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1024 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1025 } 1026 1027 /// Return the runtime value for VF. 1028 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 1029 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1030 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1031 } 1032 1033 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 1034 ElementCount VF) { 1035 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1036 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1037 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1038 return B.CreateUIToFP(RuntimeVF, FTy); 1039 } 1040 1041 void reportVectorizationFailure(const StringRef DebugMsg, 1042 const StringRef OREMsg, const StringRef ORETag, 1043 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1044 Instruction *I) { 1045 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1046 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1047 ORE->emit( 1048 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1049 << "loop not vectorized: " << OREMsg); 1050 } 1051 1052 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1053 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1054 Instruction *I) { 1055 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1056 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1057 ORE->emit( 1058 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1059 << Msg); 1060 } 1061 1062 } // end namespace llvm 1063 1064 #ifndef NDEBUG 1065 /// \return string containing a file name and a line # for the given loop. 1066 static std::string getDebugLocString(const Loop *L) { 1067 std::string Result; 1068 if (L) { 1069 raw_string_ostream OS(Result); 1070 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1071 LoopDbgLoc.print(OS); 1072 else 1073 // Just print the module name. 1074 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1075 OS.flush(); 1076 } 1077 return Result; 1078 } 1079 #endif 1080 1081 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1082 const Instruction *Orig) { 1083 // If the loop was versioned with memchecks, add the corresponding no-alias 1084 // metadata. 1085 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1086 LVer->annotateInstWithNoAlias(To, Orig); 1087 } 1088 1089 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1090 VPTransformState &State) { 1091 1092 // Collect recipes in the backward slice of `Root` that may generate a poison 1093 // value that is used after vectorization. 1094 SmallPtrSet<VPRecipeBase *, 16> Visited; 1095 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1096 SmallVector<VPRecipeBase *, 16> Worklist; 1097 Worklist.push_back(Root); 1098 1099 // Traverse the backward slice of Root through its use-def chain. 1100 while (!Worklist.empty()) { 1101 VPRecipeBase *CurRec = Worklist.back(); 1102 Worklist.pop_back(); 1103 1104 if (!Visited.insert(CurRec).second) 1105 continue; 1106 1107 // Prune search if we find another recipe generating a widen memory 1108 // instruction. Widen memory instructions involved in address computation 1109 // will lead to gather/scatter instructions, which don't need to be 1110 // handled. 1111 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1112 isa<VPInterleaveRecipe>(CurRec) || 1113 isa<VPScalarIVStepsRecipe>(CurRec) || 1114 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1115 continue; 1116 1117 // This recipe contributes to the address computation of a widen 1118 // load/store. Collect recipe if its underlying instruction has 1119 // poison-generating flags. 1120 Instruction *Instr = CurRec->getUnderlyingInstr(); 1121 if (Instr && Instr->hasPoisonGeneratingFlags()) 1122 State.MayGeneratePoisonRecipes.insert(CurRec); 1123 1124 // Add new definitions to the worklist. 1125 for (VPValue *operand : CurRec->operands()) 1126 if (VPDef *OpDef = operand->getDef()) 1127 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1128 } 1129 }); 1130 1131 // Traverse all the recipes in the VPlan and collect the poison-generating 1132 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1133 // VPInterleaveRecipe. 1134 auto Iter = depth_first( 1135 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1136 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1137 for (VPRecipeBase &Recipe : *VPBB) { 1138 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1139 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1140 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1141 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1142 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1143 collectPoisonGeneratingInstrsInBackwardSlice( 1144 cast<VPRecipeBase>(AddrDef)); 1145 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1146 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1147 if (AddrDef) { 1148 // Check if any member of the interleave group needs predication. 1149 const InterleaveGroup<Instruction> *InterGroup = 1150 InterleaveRec->getInterleaveGroup(); 1151 bool NeedPredication = false; 1152 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1153 I < NumMembers; ++I) { 1154 Instruction *Member = InterGroup->getMember(I); 1155 if (Member) 1156 NeedPredication |= 1157 Legal->blockNeedsPredication(Member->getParent()); 1158 } 1159 1160 if (NeedPredication) 1161 collectPoisonGeneratingInstrsInBackwardSlice( 1162 cast<VPRecipeBase>(AddrDef)); 1163 } 1164 } 1165 } 1166 } 1167 } 1168 1169 void InnerLoopVectorizer::addMetadata(Instruction *To, 1170 Instruction *From) { 1171 propagateMetadata(To, From); 1172 addNewMetadata(To, From); 1173 } 1174 1175 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1176 Instruction *From) { 1177 for (Value *V : To) { 1178 if (Instruction *I = dyn_cast<Instruction>(V)) 1179 addMetadata(I, From); 1180 } 1181 } 1182 1183 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1184 const RecurrenceDescriptor &RdxDesc) { 1185 auto It = ReductionResumeValues.find(&RdxDesc); 1186 assert(It != ReductionResumeValues.end() && 1187 "Expected to find a resume value for the reduction."); 1188 return It->second; 1189 } 1190 1191 namespace llvm { 1192 1193 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1194 // lowered. 1195 enum ScalarEpilogueLowering { 1196 1197 // The default: allowing scalar epilogues. 1198 CM_ScalarEpilogueAllowed, 1199 1200 // Vectorization with OptForSize: don't allow epilogues. 1201 CM_ScalarEpilogueNotAllowedOptSize, 1202 1203 // A special case of vectorisation with OptForSize: loops with a very small 1204 // trip count are considered for vectorization under OptForSize, thereby 1205 // making sure the cost of their loop body is dominant, free of runtime 1206 // guards and scalar iteration overheads. 1207 CM_ScalarEpilogueNotAllowedLowTripLoop, 1208 1209 // Loop hint predicate indicating an epilogue is undesired. 1210 CM_ScalarEpilogueNotNeededUsePredicate, 1211 1212 // Directive indicating we must either tail fold or not vectorize 1213 CM_ScalarEpilogueNotAllowedUsePredicate 1214 }; 1215 1216 /// ElementCountComparator creates a total ordering for ElementCount 1217 /// for the purposes of using it in a set structure. 1218 struct ElementCountComparator { 1219 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1220 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1221 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1222 } 1223 }; 1224 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1225 1226 /// LoopVectorizationCostModel - estimates the expected speedups due to 1227 /// vectorization. 1228 /// In many cases vectorization is not profitable. This can happen because of 1229 /// a number of reasons. In this class we mainly attempt to predict the 1230 /// expected speedup/slowdowns due to the supported instruction set. We use the 1231 /// TargetTransformInfo to query the different backends for the cost of 1232 /// different operations. 1233 class LoopVectorizationCostModel { 1234 public: 1235 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1236 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1237 LoopVectorizationLegality *Legal, 1238 const TargetTransformInfo &TTI, 1239 const TargetLibraryInfo *TLI, DemandedBits *DB, 1240 AssumptionCache *AC, 1241 OptimizationRemarkEmitter *ORE, const Function *F, 1242 const LoopVectorizeHints *Hints, 1243 InterleavedAccessInfo &IAI) 1244 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1245 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1246 Hints(Hints), InterleaveInfo(IAI) {} 1247 1248 /// \return An upper bound for the vectorization factors (both fixed and 1249 /// scalable). If the factors are 0, vectorization and interleaving should be 1250 /// avoided up front. 1251 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1252 1253 /// \return True if runtime checks are required for vectorization, and false 1254 /// otherwise. 1255 bool runtimeChecksRequired(); 1256 1257 /// \return The most profitable vectorization factor and the cost of that VF. 1258 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1259 /// then this vectorization factor will be selected if vectorization is 1260 /// possible. 1261 VectorizationFactor 1262 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1263 1264 VectorizationFactor 1265 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1266 const LoopVectorizationPlanner &LVP); 1267 1268 /// Setup cost-based decisions for user vectorization factor. 1269 /// \return true if the UserVF is a feasible VF to be chosen. 1270 bool selectUserVectorizationFactor(ElementCount UserVF) { 1271 collectUniformsAndScalars(UserVF); 1272 collectInstsToScalarize(UserVF); 1273 return expectedCost(UserVF).first.isValid(); 1274 } 1275 1276 /// \return The size (in bits) of the smallest and widest types in the code 1277 /// that needs to be vectorized. We ignore values that remain scalar such as 1278 /// 64 bit loop indices. 1279 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1280 1281 /// \return The desired interleave count. 1282 /// If interleave count has been specified by metadata it will be returned. 1283 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1284 /// are the selected vectorization factor and the cost of the selected VF. 1285 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1286 1287 /// Memory access instruction may be vectorized in more than one way. 1288 /// Form of instruction after vectorization depends on cost. 1289 /// This function takes cost-based decisions for Load/Store instructions 1290 /// and collects them in a map. This decisions map is used for building 1291 /// the lists of loop-uniform and loop-scalar instructions. 1292 /// The calculated cost is saved with widening decision in order to 1293 /// avoid redundant calculations. 1294 void setCostBasedWideningDecision(ElementCount VF); 1295 1296 /// A struct that represents some properties of the register usage 1297 /// of a loop. 1298 struct RegisterUsage { 1299 /// Holds the number of loop invariant values that are used in the loop. 1300 /// The key is ClassID of target-provided register class. 1301 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1302 /// Holds the maximum number of concurrent live intervals in the loop. 1303 /// The key is ClassID of target-provided register class. 1304 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1305 }; 1306 1307 /// \return Returns information about the register usages of the loop for the 1308 /// given vectorization factors. 1309 SmallVector<RegisterUsage, 8> 1310 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1311 1312 /// Collect values we want to ignore in the cost model. 1313 void collectValuesToIgnore(); 1314 1315 /// Collect all element types in the loop for which widening is needed. 1316 void collectElementTypesForWidening(); 1317 1318 /// Split reductions into those that happen in the loop, and those that happen 1319 /// outside. In loop reductions are collected into InLoopReductionChains. 1320 void collectInLoopReductions(); 1321 1322 /// Returns true if we should use strict in-order reductions for the given 1323 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1324 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1325 /// of FP operations. 1326 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1327 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1328 } 1329 1330 /// \returns The smallest bitwidth each instruction can be represented with. 1331 /// The vector equivalents of these instructions should be truncated to this 1332 /// type. 1333 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1334 return MinBWs; 1335 } 1336 1337 /// \returns True if it is more profitable to scalarize instruction \p I for 1338 /// vectorization factor \p VF. 1339 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1340 assert(VF.isVector() && 1341 "Profitable to scalarize relevant only for VF > 1."); 1342 1343 // Cost model is not run in the VPlan-native path - return conservative 1344 // result until this changes. 1345 if (EnableVPlanNativePath) 1346 return false; 1347 1348 auto Scalars = InstsToScalarize.find(VF); 1349 assert(Scalars != InstsToScalarize.end() && 1350 "VF not yet analyzed for scalarization profitability"); 1351 return Scalars->second.find(I) != Scalars->second.end(); 1352 } 1353 1354 /// Returns true if \p I is known to be uniform after vectorization. 1355 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1356 if (VF.isScalar()) 1357 return true; 1358 1359 // Cost model is not run in the VPlan-native path - return conservative 1360 // result until this changes. 1361 if (EnableVPlanNativePath) 1362 return false; 1363 1364 auto UniformsPerVF = Uniforms.find(VF); 1365 assert(UniformsPerVF != Uniforms.end() && 1366 "VF not yet analyzed for uniformity"); 1367 return UniformsPerVF->second.count(I); 1368 } 1369 1370 /// Returns true if \p I is known to be scalar after vectorization. 1371 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1372 if (VF.isScalar()) 1373 return true; 1374 1375 // Cost model is not run in the VPlan-native path - return conservative 1376 // result until this changes. 1377 if (EnableVPlanNativePath) 1378 return false; 1379 1380 auto ScalarsPerVF = Scalars.find(VF); 1381 assert(ScalarsPerVF != Scalars.end() && 1382 "Scalar values are not calculated for VF"); 1383 return ScalarsPerVF->second.count(I); 1384 } 1385 1386 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1387 /// for vectorization factor \p VF. 1388 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1389 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1390 !isProfitableToScalarize(I, VF) && 1391 !isScalarAfterVectorization(I, VF); 1392 } 1393 1394 /// Decision that was taken during cost calculation for memory instruction. 1395 enum InstWidening { 1396 CM_Unknown, 1397 CM_Widen, // For consecutive accesses with stride +1. 1398 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1399 CM_Interleave, 1400 CM_GatherScatter, 1401 CM_Scalarize 1402 }; 1403 1404 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1405 /// instruction \p I and vector width \p VF. 1406 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1407 InstructionCost Cost) { 1408 assert(VF.isVector() && "Expected VF >=2"); 1409 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1410 } 1411 1412 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1413 /// interleaving group \p Grp and vector width \p VF. 1414 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1415 ElementCount VF, InstWidening W, 1416 InstructionCost Cost) { 1417 assert(VF.isVector() && "Expected VF >=2"); 1418 /// Broadcast this decicion to all instructions inside the group. 1419 /// But the cost will be assigned to one instruction only. 1420 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1421 if (auto *I = Grp->getMember(i)) { 1422 if (Grp->getInsertPos() == I) 1423 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1424 else 1425 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1426 } 1427 } 1428 } 1429 1430 /// Return the cost model decision for the given instruction \p I and vector 1431 /// width \p VF. Return CM_Unknown if this instruction did not pass 1432 /// through the cost modeling. 1433 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1434 assert(VF.isVector() && "Expected VF to be a vector VF"); 1435 // Cost model is not run in the VPlan-native path - return conservative 1436 // result until this changes. 1437 if (EnableVPlanNativePath) 1438 return CM_GatherScatter; 1439 1440 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1441 auto Itr = WideningDecisions.find(InstOnVF); 1442 if (Itr == WideningDecisions.end()) 1443 return CM_Unknown; 1444 return Itr->second.first; 1445 } 1446 1447 /// Return the vectorization cost for the given instruction \p I and vector 1448 /// width \p VF. 1449 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1450 assert(VF.isVector() && "Expected VF >=2"); 1451 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1452 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1453 "The cost is not calculated"); 1454 return WideningDecisions[InstOnVF].second; 1455 } 1456 1457 /// Return True if instruction \p I is an optimizable truncate whose operand 1458 /// is an induction variable. Such a truncate will be removed by adding a new 1459 /// induction variable with the destination type. 1460 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1461 // If the instruction is not a truncate, return false. 1462 auto *Trunc = dyn_cast<TruncInst>(I); 1463 if (!Trunc) 1464 return false; 1465 1466 // Get the source and destination types of the truncate. 1467 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1468 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1469 1470 // If the truncate is free for the given types, return false. Replacing a 1471 // free truncate with an induction variable would add an induction variable 1472 // update instruction to each iteration of the loop. We exclude from this 1473 // check the primary induction variable since it will need an update 1474 // instruction regardless. 1475 Value *Op = Trunc->getOperand(0); 1476 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1477 return false; 1478 1479 // If the truncated value is not an induction variable, return false. 1480 return Legal->isInductionPhi(Op); 1481 } 1482 1483 /// Collects the instructions to scalarize for each predicated instruction in 1484 /// the loop. 1485 void collectInstsToScalarize(ElementCount VF); 1486 1487 /// Collect Uniform and Scalar values for the given \p VF. 1488 /// The sets depend on CM decision for Load/Store instructions 1489 /// that may be vectorized as interleave, gather-scatter or scalarized. 1490 void collectUniformsAndScalars(ElementCount VF) { 1491 // Do the analysis once. 1492 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1493 return; 1494 setCostBasedWideningDecision(VF); 1495 collectLoopUniforms(VF); 1496 collectLoopScalars(VF); 1497 } 1498 1499 /// Returns true if the target machine supports masked store operation 1500 /// for the given \p DataType and kind of access to \p Ptr. 1501 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1502 return Legal->isConsecutivePtr(DataType, Ptr) && 1503 TTI.isLegalMaskedStore(DataType, Alignment); 1504 } 1505 1506 /// Returns true if the target machine supports masked load operation 1507 /// for the given \p DataType and kind of access to \p Ptr. 1508 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1509 return Legal->isConsecutivePtr(DataType, Ptr) && 1510 TTI.isLegalMaskedLoad(DataType, Alignment); 1511 } 1512 1513 /// Returns true if the target machine can represent \p V as a masked gather 1514 /// or scatter operation. 1515 bool isLegalGatherOrScatter(Value *V, 1516 ElementCount VF = ElementCount::getFixed(1)) { 1517 bool LI = isa<LoadInst>(V); 1518 bool SI = isa<StoreInst>(V); 1519 if (!LI && !SI) 1520 return false; 1521 auto *Ty = getLoadStoreType(V); 1522 Align Align = getLoadStoreAlignment(V); 1523 if (VF.isVector()) 1524 Ty = VectorType::get(Ty, VF); 1525 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1526 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1527 } 1528 1529 /// Returns true if the target machine supports all of the reduction 1530 /// variables found for the given VF. 1531 bool canVectorizeReductions(ElementCount VF) const { 1532 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1533 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1534 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1535 })); 1536 } 1537 1538 /// Returns true if \p I is an instruction that will be scalarized with 1539 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1540 /// instructions include conditional stores and instructions that may divide 1541 /// by zero. 1542 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1543 1544 // Returns true if \p I is an instruction that will be predicated either 1545 // through scalar predication or masked load/store or masked gather/scatter. 1546 // \p VF is the vectorization factor that will be used to vectorize \p I. 1547 // Superset of instructions that return true for isScalarWithPredication. 1548 bool isPredicatedInst(Instruction *I, ElementCount VF, 1549 bool IsKnownUniform = false) { 1550 // When we know the load is uniform and the original scalar loop was not 1551 // predicated we don't need to mark it as a predicated instruction. Any 1552 // vectorised blocks created when tail-folding are something artificial we 1553 // have introduced and we know there is always at least one active lane. 1554 // That's why we call Legal->blockNeedsPredication here because it doesn't 1555 // query tail-folding. 1556 if (IsKnownUniform && isa<LoadInst>(I) && 1557 !Legal->blockNeedsPredication(I->getParent())) 1558 return false; 1559 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1560 return false; 1561 // Loads and stores that need some form of masked operation are predicated 1562 // instructions. 1563 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1564 return Legal->isMaskRequired(I); 1565 return isScalarWithPredication(I, VF); 1566 } 1567 1568 /// Returns true if \p I is a memory instruction with consecutive memory 1569 /// access that can be widened. 1570 bool 1571 memoryInstructionCanBeWidened(Instruction *I, 1572 ElementCount VF = ElementCount::getFixed(1)); 1573 1574 /// Returns true if \p I is a memory instruction in an interleaved-group 1575 /// of memory accesses that can be vectorized with wide vector loads/stores 1576 /// and shuffles. 1577 bool 1578 interleavedAccessCanBeWidened(Instruction *I, 1579 ElementCount VF = ElementCount::getFixed(1)); 1580 1581 /// Check if \p Instr belongs to any interleaved access group. 1582 bool isAccessInterleaved(Instruction *Instr) { 1583 return InterleaveInfo.isInterleaved(Instr); 1584 } 1585 1586 /// Get the interleaved access group that \p Instr belongs to. 1587 const InterleaveGroup<Instruction> * 1588 getInterleavedAccessGroup(Instruction *Instr) { 1589 return InterleaveInfo.getInterleaveGroup(Instr); 1590 } 1591 1592 /// Returns true if we're required to use a scalar epilogue for at least 1593 /// the final iteration of the original loop. 1594 bool requiresScalarEpilogue(ElementCount VF) const { 1595 if (!isScalarEpilogueAllowed()) 1596 return false; 1597 // If we might exit from anywhere but the latch, must run the exiting 1598 // iteration in scalar form. 1599 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1600 return true; 1601 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1602 } 1603 1604 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1605 /// loop hint annotation. 1606 bool isScalarEpilogueAllowed() const { 1607 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1608 } 1609 1610 /// Returns true if all loop blocks should be masked to fold tail loop. 1611 bool foldTailByMasking() const { return FoldTailByMasking; } 1612 1613 /// Returns true if the instructions in this block requires predication 1614 /// for any reason, e.g. because tail folding now requires a predicate 1615 /// or because the block in the original loop was predicated. 1616 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1617 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1618 } 1619 1620 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1621 /// nodes to the chain of instructions representing the reductions. Uses a 1622 /// MapVector to ensure deterministic iteration order. 1623 using ReductionChainMap = 1624 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1625 1626 /// Return the chain of instructions representing an inloop reduction. 1627 const ReductionChainMap &getInLoopReductionChains() const { 1628 return InLoopReductionChains; 1629 } 1630 1631 /// Returns true if the Phi is part of an inloop reduction. 1632 bool isInLoopReduction(PHINode *Phi) const { 1633 return InLoopReductionChains.count(Phi); 1634 } 1635 1636 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1637 /// with factor VF. Return the cost of the instruction, including 1638 /// scalarization overhead if it's needed. 1639 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1640 1641 /// Estimate cost of a call instruction CI if it were vectorized with factor 1642 /// VF. Return the cost of the instruction, including scalarization overhead 1643 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1644 /// scalarized - 1645 /// i.e. either vector version isn't available, or is too expensive. 1646 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1647 bool &NeedToScalarize) const; 1648 1649 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1650 /// that of B. 1651 bool isMoreProfitable(const VectorizationFactor &A, 1652 const VectorizationFactor &B) const; 1653 1654 /// Invalidates decisions already taken by the cost model. 1655 void invalidateCostModelingDecisions() { 1656 WideningDecisions.clear(); 1657 Uniforms.clear(); 1658 Scalars.clear(); 1659 } 1660 1661 private: 1662 unsigned NumPredStores = 0; 1663 1664 /// Convenience function that returns the value of vscale_range iff 1665 /// vscale_range.min == vscale_range.max or otherwise returns the value 1666 /// returned by the corresponding TLI method. 1667 Optional<unsigned> getVScaleForTuning() const; 1668 1669 /// \return An upper bound for the vectorization factors for both 1670 /// fixed and scalable vectorization, where the minimum-known number of 1671 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1672 /// disabled or unsupported, then the scalable part will be equal to 1673 /// ElementCount::getScalable(0). 1674 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1675 ElementCount UserVF, 1676 bool FoldTailByMasking); 1677 1678 /// \return the maximized element count based on the targets vector 1679 /// registers and the loop trip-count, but limited to a maximum safe VF. 1680 /// This is a helper function of computeFeasibleMaxVF. 1681 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1682 /// issue that occurred on one of the buildbots which cannot be reproduced 1683 /// without having access to the properietary compiler (see comments on 1684 /// D98509). The issue is currently under investigation and this workaround 1685 /// will be removed as soon as possible. 1686 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1687 unsigned SmallestType, 1688 unsigned WidestType, 1689 const ElementCount &MaxSafeVF, 1690 bool FoldTailByMasking); 1691 1692 /// \return the maximum legal scalable VF, based on the safe max number 1693 /// of elements. 1694 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1695 1696 /// The vectorization cost is a combination of the cost itself and a boolean 1697 /// indicating whether any of the contributing operations will actually 1698 /// operate on vector values after type legalization in the backend. If this 1699 /// latter value is false, then all operations will be scalarized (i.e. no 1700 /// vectorization has actually taken place). 1701 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1702 1703 /// Returns the expected execution cost. The unit of the cost does 1704 /// not matter because we use the 'cost' units to compare different 1705 /// vector widths. The cost that is returned is *not* normalized by 1706 /// the factor width. If \p Invalid is not nullptr, this function 1707 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1708 /// each instruction that has an Invalid cost for the given VF. 1709 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1710 VectorizationCostTy 1711 expectedCost(ElementCount VF, 1712 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1713 1714 /// Returns the execution time cost of an instruction for a given vector 1715 /// width. Vector width of one means scalar. 1716 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1717 1718 /// The cost-computation logic from getInstructionCost which provides 1719 /// the vector type as an output parameter. 1720 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1721 Type *&VectorTy); 1722 1723 /// Return the cost of instructions in an inloop reduction pattern, if I is 1724 /// part of that pattern. 1725 Optional<InstructionCost> 1726 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1727 TTI::TargetCostKind CostKind); 1728 1729 /// Calculate vectorization cost of memory instruction \p I. 1730 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1731 1732 /// The cost computation for scalarized memory instruction. 1733 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1734 1735 /// The cost computation for interleaving group of memory instructions. 1736 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1737 1738 /// The cost computation for Gather/Scatter instruction. 1739 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1740 1741 /// The cost computation for widening instruction \p I with consecutive 1742 /// memory access. 1743 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1744 1745 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1746 /// Load: scalar load + broadcast. 1747 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1748 /// element) 1749 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1750 1751 /// Estimate the overhead of scalarizing an instruction. This is a 1752 /// convenience wrapper for the type-based getScalarizationOverhead API. 1753 InstructionCost getScalarizationOverhead(Instruction *I, 1754 ElementCount VF) const; 1755 1756 /// Returns whether the instruction is a load or store and will be a emitted 1757 /// as a vector operation. 1758 bool isConsecutiveLoadOrStore(Instruction *I); 1759 1760 /// Returns true if an artificially high cost for emulated masked memrefs 1761 /// should be used. 1762 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1763 1764 /// Map of scalar integer values to the smallest bitwidth they can be legally 1765 /// represented as. The vector equivalents of these values should be truncated 1766 /// to this type. 1767 MapVector<Instruction *, uint64_t> MinBWs; 1768 1769 /// A type representing the costs for instructions if they were to be 1770 /// scalarized rather than vectorized. The entries are Instruction-Cost 1771 /// pairs. 1772 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1773 1774 /// A set containing all BasicBlocks that are known to present after 1775 /// vectorization as a predicated block. 1776 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1777 1778 /// Records whether it is allowed to have the original scalar loop execute at 1779 /// least once. This may be needed as a fallback loop in case runtime 1780 /// aliasing/dependence checks fail, or to handle the tail/remainder 1781 /// iterations when the trip count is unknown or doesn't divide by the VF, 1782 /// or as a peel-loop to handle gaps in interleave-groups. 1783 /// Under optsize and when the trip count is very small we don't allow any 1784 /// iterations to execute in the scalar loop. 1785 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1786 1787 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1788 bool FoldTailByMasking = false; 1789 1790 /// A map holding scalar costs for different vectorization factors. The 1791 /// presence of a cost for an instruction in the mapping indicates that the 1792 /// instruction will be scalarized when vectorizing with the associated 1793 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1794 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1795 1796 /// Holds the instructions known to be uniform after vectorization. 1797 /// The data is collected per VF. 1798 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1799 1800 /// Holds the instructions known to be scalar after vectorization. 1801 /// The data is collected per VF. 1802 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1803 1804 /// Holds the instructions (address computations) that are forced to be 1805 /// scalarized. 1806 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1807 1808 /// PHINodes of the reductions that should be expanded in-loop along with 1809 /// their associated chains of reduction operations, in program order from top 1810 /// (PHI) to bottom 1811 ReductionChainMap InLoopReductionChains; 1812 1813 /// A Map of inloop reduction operations and their immediate chain operand. 1814 /// FIXME: This can be removed once reductions can be costed correctly in 1815 /// vplan. This was added to allow quick lookup to the inloop operations, 1816 /// without having to loop through InLoopReductionChains. 1817 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1818 1819 /// Returns the expected difference in cost from scalarizing the expression 1820 /// feeding a predicated instruction \p PredInst. The instructions to 1821 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1822 /// non-negative return value implies the expression will be scalarized. 1823 /// Currently, only single-use chains are considered for scalarization. 1824 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1825 ElementCount VF); 1826 1827 /// Collect the instructions that are uniform after vectorization. An 1828 /// instruction is uniform if we represent it with a single scalar value in 1829 /// the vectorized loop corresponding to each vector iteration. Examples of 1830 /// uniform instructions include pointer operands of consecutive or 1831 /// interleaved memory accesses. Note that although uniformity implies an 1832 /// instruction will be scalar, the reverse is not true. In general, a 1833 /// scalarized instruction will be represented by VF scalar values in the 1834 /// vectorized loop, each corresponding to an iteration of the original 1835 /// scalar loop. 1836 void collectLoopUniforms(ElementCount VF); 1837 1838 /// Collect the instructions that are scalar after vectorization. An 1839 /// instruction is scalar if it is known to be uniform or will be scalarized 1840 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1841 /// to the list if they are used by a load/store instruction that is marked as 1842 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1843 /// VF values in the vectorized loop, each corresponding to an iteration of 1844 /// the original scalar loop. 1845 void collectLoopScalars(ElementCount VF); 1846 1847 /// Keeps cost model vectorization decision and cost for instructions. 1848 /// Right now it is used for memory instructions only. 1849 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1850 std::pair<InstWidening, InstructionCost>>; 1851 1852 DecisionList WideningDecisions; 1853 1854 /// Returns true if \p V is expected to be vectorized and it needs to be 1855 /// extracted. 1856 bool needsExtract(Value *V, ElementCount VF) const { 1857 Instruction *I = dyn_cast<Instruction>(V); 1858 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1859 TheLoop->isLoopInvariant(I)) 1860 return false; 1861 1862 // Assume we can vectorize V (and hence we need extraction) if the 1863 // scalars are not computed yet. This can happen, because it is called 1864 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1865 // the scalars are collected. That should be a safe assumption in most 1866 // cases, because we check if the operands have vectorizable types 1867 // beforehand in LoopVectorizationLegality. 1868 return Scalars.find(VF) == Scalars.end() || 1869 !isScalarAfterVectorization(I, VF); 1870 }; 1871 1872 /// Returns a range containing only operands needing to be extracted. 1873 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1874 ElementCount VF) const { 1875 return SmallVector<Value *, 4>(make_filter_range( 1876 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1877 } 1878 1879 /// Determines if we have the infrastructure to vectorize loop \p L and its 1880 /// epilogue, assuming the main loop is vectorized by \p VF. 1881 bool isCandidateForEpilogueVectorization(const Loop &L, 1882 const ElementCount VF) const; 1883 1884 /// Returns true if epilogue vectorization is considered profitable, and 1885 /// false otherwise. 1886 /// \p VF is the vectorization factor chosen for the original loop. 1887 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1888 1889 public: 1890 /// The loop that we evaluate. 1891 Loop *TheLoop; 1892 1893 /// Predicated scalar evolution analysis. 1894 PredicatedScalarEvolution &PSE; 1895 1896 /// Loop Info analysis. 1897 LoopInfo *LI; 1898 1899 /// Vectorization legality. 1900 LoopVectorizationLegality *Legal; 1901 1902 /// Vector target information. 1903 const TargetTransformInfo &TTI; 1904 1905 /// Target Library Info. 1906 const TargetLibraryInfo *TLI; 1907 1908 /// Demanded bits analysis. 1909 DemandedBits *DB; 1910 1911 /// Assumption cache. 1912 AssumptionCache *AC; 1913 1914 /// Interface to emit optimization remarks. 1915 OptimizationRemarkEmitter *ORE; 1916 1917 const Function *TheFunction; 1918 1919 /// Loop Vectorize Hint. 1920 const LoopVectorizeHints *Hints; 1921 1922 /// The interleave access information contains groups of interleaved accesses 1923 /// with the same stride and close to each other. 1924 InterleavedAccessInfo &InterleaveInfo; 1925 1926 /// Values to ignore in the cost model. 1927 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1928 1929 /// Values to ignore in the cost model when VF > 1. 1930 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1931 1932 /// All element types found in the loop. 1933 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1934 1935 /// Profitable vector factors. 1936 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1937 }; 1938 } // end namespace llvm 1939 1940 /// Helper struct to manage generating runtime checks for vectorization. 1941 /// 1942 /// The runtime checks are created up-front in temporary blocks to allow better 1943 /// estimating the cost and un-linked from the existing IR. After deciding to 1944 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1945 /// temporary blocks are completely removed. 1946 class GeneratedRTChecks { 1947 /// Basic block which contains the generated SCEV checks, if any. 1948 BasicBlock *SCEVCheckBlock = nullptr; 1949 1950 /// The value representing the result of the generated SCEV checks. If it is 1951 /// nullptr, either no SCEV checks have been generated or they have been used. 1952 Value *SCEVCheckCond = nullptr; 1953 1954 /// Basic block which contains the generated memory runtime checks, if any. 1955 BasicBlock *MemCheckBlock = nullptr; 1956 1957 /// The value representing the result of the generated memory runtime checks. 1958 /// If it is nullptr, either no memory runtime checks have been generated or 1959 /// they have been used. 1960 Value *MemRuntimeCheckCond = nullptr; 1961 1962 DominatorTree *DT; 1963 LoopInfo *LI; 1964 1965 SCEVExpander SCEVExp; 1966 SCEVExpander MemCheckExp; 1967 1968 public: 1969 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1970 const DataLayout &DL) 1971 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1972 MemCheckExp(SE, DL, "scev.check") {} 1973 1974 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1975 /// accurately estimate the cost of the runtime checks. The blocks are 1976 /// un-linked from the IR and is added back during vector code generation. If 1977 /// there is no vector code generation, the check blocks are removed 1978 /// completely. 1979 void Create(Loop *L, const LoopAccessInfo &LAI, 1980 const SCEVPredicate &Pred) { 1981 1982 BasicBlock *LoopHeader = L->getHeader(); 1983 BasicBlock *Preheader = L->getLoopPreheader(); 1984 1985 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1986 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1987 // may be used by SCEVExpander. The blocks will be un-linked from their 1988 // predecessors and removed from LI & DT at the end of the function. 1989 if (!Pred.isAlwaysTrue()) { 1990 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1991 nullptr, "vector.scevcheck"); 1992 1993 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1994 &Pred, SCEVCheckBlock->getTerminator()); 1995 } 1996 1997 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1998 if (RtPtrChecking.Need) { 1999 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 2000 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 2001 "vector.memcheck"); 2002 2003 MemRuntimeCheckCond = 2004 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 2005 RtPtrChecking.getChecks(), MemCheckExp); 2006 assert(MemRuntimeCheckCond && 2007 "no RT checks generated although RtPtrChecking " 2008 "claimed checks are required"); 2009 } 2010 2011 if (!MemCheckBlock && !SCEVCheckBlock) 2012 return; 2013 2014 // Unhook the temporary block with the checks, update various places 2015 // accordingly. 2016 if (SCEVCheckBlock) 2017 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2018 if (MemCheckBlock) 2019 MemCheckBlock->replaceAllUsesWith(Preheader); 2020 2021 if (SCEVCheckBlock) { 2022 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2023 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2024 Preheader->getTerminator()->eraseFromParent(); 2025 } 2026 if (MemCheckBlock) { 2027 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2028 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2029 Preheader->getTerminator()->eraseFromParent(); 2030 } 2031 2032 DT->changeImmediateDominator(LoopHeader, Preheader); 2033 if (MemCheckBlock) { 2034 DT->eraseNode(MemCheckBlock); 2035 LI->removeBlock(MemCheckBlock); 2036 } 2037 if (SCEVCheckBlock) { 2038 DT->eraseNode(SCEVCheckBlock); 2039 LI->removeBlock(SCEVCheckBlock); 2040 } 2041 } 2042 2043 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2044 /// unused. 2045 ~GeneratedRTChecks() { 2046 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2047 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2048 if (!SCEVCheckCond) 2049 SCEVCleaner.markResultUsed(); 2050 2051 if (!MemRuntimeCheckCond) 2052 MemCheckCleaner.markResultUsed(); 2053 2054 if (MemRuntimeCheckCond) { 2055 auto &SE = *MemCheckExp.getSE(); 2056 // Memory runtime check generation creates compares that use expanded 2057 // values. Remove them before running the SCEVExpanderCleaners. 2058 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2059 if (MemCheckExp.isInsertedInstruction(&I)) 2060 continue; 2061 SE.forgetValue(&I); 2062 I.eraseFromParent(); 2063 } 2064 } 2065 MemCheckCleaner.cleanup(); 2066 SCEVCleaner.cleanup(); 2067 2068 if (SCEVCheckCond) 2069 SCEVCheckBlock->eraseFromParent(); 2070 if (MemRuntimeCheckCond) 2071 MemCheckBlock->eraseFromParent(); 2072 } 2073 2074 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2075 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2076 /// depending on the generated condition. 2077 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2078 BasicBlock *LoopVectorPreHeader, 2079 BasicBlock *LoopExitBlock) { 2080 if (!SCEVCheckCond) 2081 return nullptr; 2082 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2083 if (C->isZero()) 2084 return nullptr; 2085 2086 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2087 2088 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2089 // Create new preheader for vector loop. 2090 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2091 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2092 2093 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2094 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2095 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2096 SCEVCheckBlock); 2097 2098 DT->addNewBlock(SCEVCheckBlock, Pred); 2099 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2100 2101 ReplaceInstWithInst( 2102 SCEVCheckBlock->getTerminator(), 2103 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2104 // Mark the check as used, to prevent it from being removed during cleanup. 2105 SCEVCheckCond = nullptr; 2106 return SCEVCheckBlock; 2107 } 2108 2109 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2110 /// the branches to branch to the vector preheader or \p Bypass, depending on 2111 /// the generated condition. 2112 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, 2113 BasicBlock *LoopVectorPreHeader) { 2114 // Check if we generated code that checks in runtime if arrays overlap. 2115 if (!MemRuntimeCheckCond) 2116 return nullptr; 2117 2118 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2119 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2120 MemCheckBlock); 2121 2122 DT->addNewBlock(MemCheckBlock, Pred); 2123 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2124 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2125 2126 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2127 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2128 2129 ReplaceInstWithInst( 2130 MemCheckBlock->getTerminator(), 2131 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2132 MemCheckBlock->getTerminator()->setDebugLoc( 2133 Pred->getTerminator()->getDebugLoc()); 2134 2135 // Mark the check as used, to prevent it from being removed during cleanup. 2136 MemRuntimeCheckCond = nullptr; 2137 return MemCheckBlock; 2138 } 2139 }; 2140 2141 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2142 // vectorization. The loop needs to be annotated with #pragma omp simd 2143 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2144 // vector length information is not provided, vectorization is not considered 2145 // explicit. Interleave hints are not allowed either. These limitations will be 2146 // relaxed in the future. 2147 // Please, note that we are currently forced to abuse the pragma 'clang 2148 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2149 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2150 // provides *explicit vectorization hints* (LV can bypass legal checks and 2151 // assume that vectorization is legal). However, both hints are implemented 2152 // using the same metadata (llvm.loop.vectorize, processed by 2153 // LoopVectorizeHints). This will be fixed in the future when the native IR 2154 // representation for pragma 'omp simd' is introduced. 2155 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2156 OptimizationRemarkEmitter *ORE) { 2157 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2158 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2159 2160 // Only outer loops with an explicit vectorization hint are supported. 2161 // Unannotated outer loops are ignored. 2162 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2163 return false; 2164 2165 Function *Fn = OuterLp->getHeader()->getParent(); 2166 if (!Hints.allowVectorization(Fn, OuterLp, 2167 true /*VectorizeOnlyWhenForced*/)) { 2168 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2169 return false; 2170 } 2171 2172 if (Hints.getInterleave() > 1) { 2173 // TODO: Interleave support is future work. 2174 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2175 "outer loops.\n"); 2176 Hints.emitRemarkWithHints(); 2177 return false; 2178 } 2179 2180 return true; 2181 } 2182 2183 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2184 OptimizationRemarkEmitter *ORE, 2185 SmallVectorImpl<Loop *> &V) { 2186 // Collect inner loops and outer loops without irreducible control flow. For 2187 // now, only collect outer loops that have explicit vectorization hints. If we 2188 // are stress testing the VPlan H-CFG construction, we collect the outermost 2189 // loop of every loop nest. 2190 if (L.isInnermost() || VPlanBuildStressTest || 2191 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2192 LoopBlocksRPO RPOT(&L); 2193 RPOT.perform(LI); 2194 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2195 V.push_back(&L); 2196 // TODO: Collect inner loops inside marked outer loops in case 2197 // vectorization fails for the outer loop. Do not invoke 2198 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2199 // already known to be reducible. We can use an inherited attribute for 2200 // that. 2201 return; 2202 } 2203 } 2204 for (Loop *InnerL : L) 2205 collectSupportedLoops(*InnerL, LI, ORE, V); 2206 } 2207 2208 namespace { 2209 2210 /// The LoopVectorize Pass. 2211 struct LoopVectorize : public FunctionPass { 2212 /// Pass identification, replacement for typeid 2213 static char ID; 2214 2215 LoopVectorizePass Impl; 2216 2217 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2218 bool VectorizeOnlyWhenForced = false) 2219 : FunctionPass(ID), 2220 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2221 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2222 } 2223 2224 bool runOnFunction(Function &F) override { 2225 if (skipFunction(F)) 2226 return false; 2227 2228 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2229 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2230 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2231 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2232 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2233 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2234 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2235 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2236 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2237 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2238 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2239 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2240 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2241 2242 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2243 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2244 2245 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2246 GetLAA, *ORE, PSI).MadeAnyChange; 2247 } 2248 2249 void getAnalysisUsage(AnalysisUsage &AU) const override { 2250 AU.addRequired<AssumptionCacheTracker>(); 2251 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2252 AU.addRequired<DominatorTreeWrapperPass>(); 2253 AU.addRequired<LoopInfoWrapperPass>(); 2254 AU.addRequired<ScalarEvolutionWrapperPass>(); 2255 AU.addRequired<TargetTransformInfoWrapperPass>(); 2256 AU.addRequired<AAResultsWrapperPass>(); 2257 AU.addRequired<LoopAccessLegacyAnalysis>(); 2258 AU.addRequired<DemandedBitsWrapperPass>(); 2259 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2260 AU.addRequired<InjectTLIMappingsLegacy>(); 2261 2262 // We currently do not preserve loopinfo/dominator analyses with outer loop 2263 // vectorization. Until this is addressed, mark these analyses as preserved 2264 // only for non-VPlan-native path. 2265 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2266 if (!EnableVPlanNativePath) { 2267 AU.addPreserved<LoopInfoWrapperPass>(); 2268 AU.addPreserved<DominatorTreeWrapperPass>(); 2269 } 2270 2271 AU.addPreserved<BasicAAWrapperPass>(); 2272 AU.addPreserved<GlobalsAAWrapperPass>(); 2273 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2274 } 2275 }; 2276 2277 } // end anonymous namespace 2278 2279 //===----------------------------------------------------------------------===// 2280 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2281 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2282 //===----------------------------------------------------------------------===// 2283 2284 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2285 // We need to place the broadcast of invariant variables outside the loop, 2286 // but only if it's proven safe to do so. Else, broadcast will be inside 2287 // vector loop body. 2288 Instruction *Instr = dyn_cast<Instruction>(V); 2289 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2290 (!Instr || 2291 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2292 // Place the code for broadcasting invariant variables in the new preheader. 2293 IRBuilder<>::InsertPointGuard Guard(Builder); 2294 if (SafeToHoist) 2295 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2296 2297 // Broadcast the scalar into all locations in the vector. 2298 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2299 2300 return Shuf; 2301 } 2302 2303 /// This function adds 2304 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2305 /// to each vector element of Val. The sequence starts at StartIndex. 2306 /// \p Opcode is relevant for FP induction variable. 2307 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2308 Instruction::BinaryOps BinOp, ElementCount VF, 2309 IRBuilderBase &Builder) { 2310 assert(VF.isVector() && "only vector VFs are supported"); 2311 2312 // Create and check the types. 2313 auto *ValVTy = cast<VectorType>(Val->getType()); 2314 ElementCount VLen = ValVTy->getElementCount(); 2315 2316 Type *STy = Val->getType()->getScalarType(); 2317 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2318 "Induction Step must be an integer or FP"); 2319 assert(Step->getType() == STy && "Step has wrong type"); 2320 2321 SmallVector<Constant *, 8> Indices; 2322 2323 // Create a vector of consecutive numbers from zero to VF. 2324 VectorType *InitVecValVTy = ValVTy; 2325 if (STy->isFloatingPointTy()) { 2326 Type *InitVecValSTy = 2327 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2328 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2329 } 2330 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2331 2332 // Splat the StartIdx 2333 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2334 2335 if (STy->isIntegerTy()) { 2336 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2337 Step = Builder.CreateVectorSplat(VLen, Step); 2338 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2339 // FIXME: The newly created binary instructions should contain nsw/nuw 2340 // flags, which can be found from the original scalar operations. 2341 Step = Builder.CreateMul(InitVec, Step); 2342 return Builder.CreateAdd(Val, Step, "induction"); 2343 } 2344 2345 // Floating point induction. 2346 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2347 "Binary Opcode should be specified for FP induction"); 2348 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2349 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2350 2351 Step = Builder.CreateVectorSplat(VLen, Step); 2352 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2353 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2354 } 2355 2356 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 2357 /// variable on which to base the steps, \p Step is the size of the step. 2358 static void buildScalarSteps(Value *ScalarIV, Value *Step, 2359 const InductionDescriptor &ID, VPValue *Def, 2360 VPTransformState &State) { 2361 IRBuilderBase &Builder = State.Builder; 2362 // We shouldn't have to build scalar steps if we aren't vectorizing. 2363 assert(State.VF.isVector() && "VF should be greater than one"); 2364 // Get the value type and ensure it and the step have the same integer type. 2365 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2366 assert(ScalarIVTy == Step->getType() && 2367 "Val and Step should have the same type"); 2368 2369 // We build scalar steps for both integer and floating-point induction 2370 // variables. Here, we determine the kind of arithmetic we will perform. 2371 Instruction::BinaryOps AddOp; 2372 Instruction::BinaryOps MulOp; 2373 if (ScalarIVTy->isIntegerTy()) { 2374 AddOp = Instruction::Add; 2375 MulOp = Instruction::Mul; 2376 } else { 2377 AddOp = ID.getInductionOpcode(); 2378 MulOp = Instruction::FMul; 2379 } 2380 2381 // Determine the number of scalars we need to generate for each unroll 2382 // iteration. 2383 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2384 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2385 // Compute the scalar steps and save the results in State. 2386 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2387 ScalarIVTy->getScalarSizeInBits()); 2388 Type *VecIVTy = nullptr; 2389 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2390 if (!FirstLaneOnly && State.VF.isScalable()) { 2391 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2392 UnitStepVec = 2393 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2394 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2395 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2396 } 2397 2398 for (unsigned Part = 0; Part < State.UF; ++Part) { 2399 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2400 2401 if (!FirstLaneOnly && State.VF.isScalable()) { 2402 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2403 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2404 if (ScalarIVTy->isFloatingPointTy()) 2405 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2406 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2407 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2408 State.set(Def, Add, Part); 2409 // It's useful to record the lane values too for the known minimum number 2410 // of elements so we do those below. This improves the code quality when 2411 // trying to extract the first element, for example. 2412 } 2413 2414 if (ScalarIVTy->isFloatingPointTy()) 2415 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2416 2417 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2418 Value *StartIdx = Builder.CreateBinOp( 2419 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2420 // The step returned by `createStepForVF` is a runtime-evaluated value 2421 // when VF is scalable. Otherwise, it should be folded into a Constant. 2422 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2423 "Expected StartIdx to be folded to a constant when VF is not " 2424 "scalable"); 2425 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2426 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2427 State.set(Def, Add, VPIteration(Part, Lane)); 2428 } 2429 } 2430 } 2431 2432 // Generate code for the induction step. Note that induction steps are 2433 // required to be loop-invariant 2434 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, 2435 Instruction *InsertBefore, 2436 Loop *OrigLoop = nullptr) { 2437 const DataLayout &DL = SE.getDataLayout(); 2438 assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && 2439 "Induction step should be loop invariant"); 2440 if (auto *E = dyn_cast<SCEVUnknown>(Step)) 2441 return E->getValue(); 2442 2443 SCEVExpander Exp(SE, DL, "induction"); 2444 return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); 2445 } 2446 2447 /// Compute the transformed value of Index at offset StartValue using step 2448 /// StepValue. 2449 /// For integer induction, returns StartValue + Index * StepValue. 2450 /// For pointer induction, returns StartValue[Index * StepValue]. 2451 /// FIXME: The newly created binary instructions should contain nsw/nuw 2452 /// flags, which can be found from the original scalar operations. 2453 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, 2454 Value *StartValue, Value *Step, 2455 const InductionDescriptor &ID) { 2456 assert(Index->getType()->getScalarType() == Step->getType() && 2457 "Index scalar type does not match StepValue type"); 2458 2459 // Note: the IR at this point is broken. We cannot use SE to create any new 2460 // SCEV and then expand it, hoping that SCEV's simplification will give us 2461 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2462 // lead to various SCEV crashes. So all we can do is to use builder and rely 2463 // on InstCombine for future simplifications. Here we handle some trivial 2464 // cases only. 2465 auto CreateAdd = [&B](Value *X, Value *Y) { 2466 assert(X->getType() == Y->getType() && "Types don't match!"); 2467 if (auto *CX = dyn_cast<ConstantInt>(X)) 2468 if (CX->isZero()) 2469 return Y; 2470 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2471 if (CY->isZero()) 2472 return X; 2473 return B.CreateAdd(X, Y); 2474 }; 2475 2476 // We allow X to be a vector type, in which case Y will potentially be 2477 // splatted into a vector with the same element count. 2478 auto CreateMul = [&B](Value *X, Value *Y) { 2479 assert(X->getType()->getScalarType() == Y->getType() && 2480 "Types don't match!"); 2481 if (auto *CX = dyn_cast<ConstantInt>(X)) 2482 if (CX->isOne()) 2483 return Y; 2484 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2485 if (CY->isOne()) 2486 return X; 2487 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2488 if (XVTy && !isa<VectorType>(Y->getType())) 2489 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2490 return B.CreateMul(X, Y); 2491 }; 2492 2493 switch (ID.getKind()) { 2494 case InductionDescriptor::IK_IntInduction: { 2495 assert(!isa<VectorType>(Index->getType()) && 2496 "Vector indices not supported for integer inductions yet"); 2497 assert(Index->getType() == StartValue->getType() && 2498 "Index type does not match StartValue type"); 2499 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2500 return B.CreateSub(StartValue, Index); 2501 auto *Offset = CreateMul(Index, Step); 2502 return CreateAdd(StartValue, Offset); 2503 } 2504 case InductionDescriptor::IK_PtrInduction: { 2505 assert(isa<Constant>(Step) && 2506 "Expected constant step for pointer induction"); 2507 return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); 2508 } 2509 case InductionDescriptor::IK_FpInduction: { 2510 assert(!isa<VectorType>(Index->getType()) && 2511 "Vector indices not supported for FP inductions yet"); 2512 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2513 auto InductionBinOp = ID.getInductionBinOp(); 2514 assert(InductionBinOp && 2515 (InductionBinOp->getOpcode() == Instruction::FAdd || 2516 InductionBinOp->getOpcode() == Instruction::FSub) && 2517 "Original bin op should be defined for FP induction"); 2518 2519 Value *MulExp = B.CreateFMul(Step, Index); 2520 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2521 "induction"); 2522 } 2523 case InductionDescriptor::IK_NoInduction: 2524 return nullptr; 2525 } 2526 llvm_unreachable("invalid enum"); 2527 } 2528 2529 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2530 const VPIteration &Instance, 2531 VPTransformState &State) { 2532 Value *ScalarInst = State.get(Def, Instance); 2533 Value *VectorValue = State.get(Def, Instance.Part); 2534 VectorValue = Builder.CreateInsertElement( 2535 VectorValue, ScalarInst, 2536 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2537 State.set(Def, VectorValue, Instance.Part); 2538 } 2539 2540 // Return whether we allow using masked interleave-groups (for dealing with 2541 // strided loads/stores that reside in predicated blocks, or for dealing 2542 // with gaps). 2543 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2544 // If an override option has been passed in for interleaved accesses, use it. 2545 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2546 return EnableMaskedInterleavedMemAccesses; 2547 2548 return TTI.enableMaskedInterleavedAccessVectorization(); 2549 } 2550 2551 // Try to vectorize the interleave group that \p Instr belongs to. 2552 // 2553 // E.g. Translate following interleaved load group (factor = 3): 2554 // for (i = 0; i < N; i+=3) { 2555 // R = Pic[i]; // Member of index 0 2556 // G = Pic[i+1]; // Member of index 1 2557 // B = Pic[i+2]; // Member of index 2 2558 // ... // do something to R, G, B 2559 // } 2560 // To: 2561 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2562 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2563 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2564 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2565 // 2566 // Or translate following interleaved store group (factor = 3): 2567 // for (i = 0; i < N; i+=3) { 2568 // ... do something to R, G, B 2569 // Pic[i] = R; // Member of index 0 2570 // Pic[i+1] = G; // Member of index 1 2571 // Pic[i+2] = B; // Member of index 2 2572 // } 2573 // To: 2574 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2575 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2576 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2577 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2578 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2579 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2580 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2581 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2582 VPValue *BlockInMask) { 2583 Instruction *Instr = Group->getInsertPos(); 2584 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2585 2586 // Prepare for the vector type of the interleaved load/store. 2587 Type *ScalarTy = getLoadStoreType(Instr); 2588 unsigned InterleaveFactor = Group->getFactor(); 2589 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2590 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2591 2592 // Prepare for the new pointers. 2593 SmallVector<Value *, 2> AddrParts; 2594 unsigned Index = Group->getIndex(Instr); 2595 2596 // TODO: extend the masked interleaved-group support to reversed access. 2597 assert((!BlockInMask || !Group->isReverse()) && 2598 "Reversed masked interleave-group not supported."); 2599 2600 // If the group is reverse, adjust the index to refer to the last vector lane 2601 // instead of the first. We adjust the index from the first vector lane, 2602 // rather than directly getting the pointer for lane VF - 1, because the 2603 // pointer operand of the interleaved access is supposed to be uniform. For 2604 // uniform instructions, we're only required to generate a value for the 2605 // first vector lane in each unroll iteration. 2606 if (Group->isReverse()) 2607 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2608 2609 for (unsigned Part = 0; Part < UF; Part++) { 2610 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2611 setDebugLocFromInst(AddrPart); 2612 2613 // Notice current instruction could be any index. Need to adjust the address 2614 // to the member of index 0. 2615 // 2616 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2617 // b = A[i]; // Member of index 0 2618 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2619 // 2620 // E.g. A[i+1] = a; // Member of index 1 2621 // A[i] = b; // Member of index 0 2622 // A[i+2] = c; // Member of index 2 (Current instruction) 2623 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2624 2625 bool InBounds = false; 2626 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2627 InBounds = gep->isInBounds(); 2628 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2629 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2630 2631 // Cast to the vector pointer type. 2632 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2633 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2634 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2635 } 2636 2637 setDebugLocFromInst(Instr); 2638 Value *PoisonVec = PoisonValue::get(VecTy); 2639 2640 Value *MaskForGaps = nullptr; 2641 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2642 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2643 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2644 } 2645 2646 // Vectorize the interleaved load group. 2647 if (isa<LoadInst>(Instr)) { 2648 // For each unroll part, create a wide load for the group. 2649 SmallVector<Value *, 2> NewLoads; 2650 for (unsigned Part = 0; Part < UF; Part++) { 2651 Instruction *NewLoad; 2652 if (BlockInMask || MaskForGaps) { 2653 assert(useMaskedInterleavedAccesses(*TTI) && 2654 "masked interleaved groups are not allowed."); 2655 Value *GroupMask = MaskForGaps; 2656 if (BlockInMask) { 2657 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2658 Value *ShuffledMask = Builder.CreateShuffleVector( 2659 BlockInMaskPart, 2660 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2661 "interleaved.mask"); 2662 GroupMask = MaskForGaps 2663 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2664 MaskForGaps) 2665 : ShuffledMask; 2666 } 2667 NewLoad = 2668 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2669 GroupMask, PoisonVec, "wide.masked.vec"); 2670 } 2671 else 2672 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2673 Group->getAlign(), "wide.vec"); 2674 Group->addMetadata(NewLoad); 2675 NewLoads.push_back(NewLoad); 2676 } 2677 2678 // For each member in the group, shuffle out the appropriate data from the 2679 // wide loads. 2680 unsigned J = 0; 2681 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2682 Instruction *Member = Group->getMember(I); 2683 2684 // Skip the gaps in the group. 2685 if (!Member) 2686 continue; 2687 2688 auto StrideMask = 2689 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2690 for (unsigned Part = 0; Part < UF; Part++) { 2691 Value *StridedVec = Builder.CreateShuffleVector( 2692 NewLoads[Part], StrideMask, "strided.vec"); 2693 2694 // If this member has different type, cast the result type. 2695 if (Member->getType() != ScalarTy) { 2696 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2697 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2698 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2699 } 2700 2701 if (Group->isReverse()) 2702 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2703 2704 State.set(VPDefs[J], StridedVec, Part); 2705 } 2706 ++J; 2707 } 2708 return; 2709 } 2710 2711 // The sub vector type for current instruction. 2712 auto *SubVT = VectorType::get(ScalarTy, VF); 2713 2714 // Vectorize the interleaved store group. 2715 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2716 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2717 "masked interleaved groups are not allowed."); 2718 assert((!MaskForGaps || !VF.isScalable()) && 2719 "masking gaps for scalable vectors is not yet supported."); 2720 for (unsigned Part = 0; Part < UF; Part++) { 2721 // Collect the stored vector from each member. 2722 SmallVector<Value *, 4> StoredVecs; 2723 for (unsigned i = 0; i < InterleaveFactor; i++) { 2724 assert((Group->getMember(i) || MaskForGaps) && 2725 "Fail to get a member from an interleaved store group"); 2726 Instruction *Member = Group->getMember(i); 2727 2728 // Skip the gaps in the group. 2729 if (!Member) { 2730 Value *Undef = PoisonValue::get(SubVT); 2731 StoredVecs.push_back(Undef); 2732 continue; 2733 } 2734 2735 Value *StoredVec = State.get(StoredValues[i], Part); 2736 2737 if (Group->isReverse()) 2738 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2739 2740 // If this member has different type, cast it to a unified type. 2741 2742 if (StoredVec->getType() != SubVT) 2743 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2744 2745 StoredVecs.push_back(StoredVec); 2746 } 2747 2748 // Concatenate all vectors into a wide vector. 2749 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2750 2751 // Interleave the elements in the wide vector. 2752 Value *IVec = Builder.CreateShuffleVector( 2753 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2754 "interleaved.vec"); 2755 2756 Instruction *NewStoreInstr; 2757 if (BlockInMask || MaskForGaps) { 2758 Value *GroupMask = MaskForGaps; 2759 if (BlockInMask) { 2760 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2761 Value *ShuffledMask = Builder.CreateShuffleVector( 2762 BlockInMaskPart, 2763 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2764 "interleaved.mask"); 2765 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2766 ShuffledMask, MaskForGaps) 2767 : ShuffledMask; 2768 } 2769 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2770 Group->getAlign(), GroupMask); 2771 } else 2772 NewStoreInstr = 2773 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2774 2775 Group->addMetadata(NewStoreInstr); 2776 } 2777 } 2778 2779 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2780 VPReplicateRecipe *RepRecipe, 2781 const VPIteration &Instance, 2782 bool IfPredicateInstr, 2783 VPTransformState &State) { 2784 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2785 2786 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2787 // the first lane and part. 2788 if (isa<NoAliasScopeDeclInst>(Instr)) 2789 if (!Instance.isFirstIteration()) 2790 return; 2791 2792 setDebugLocFromInst(Instr); 2793 2794 // Does this instruction return a value ? 2795 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2796 2797 Instruction *Cloned = Instr->clone(); 2798 if (!IsVoidRetTy) 2799 Cloned->setName(Instr->getName() + ".cloned"); 2800 2801 // If the scalarized instruction contributes to the address computation of a 2802 // widen masked load/store which was in a basic block that needed predication 2803 // and is not predicated after vectorization, we can't propagate 2804 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2805 // instruction could feed a poison value to the base address of the widen 2806 // load/store. 2807 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2808 Cloned->dropPoisonGeneratingFlags(); 2809 2810 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 2811 Builder.GetInsertPoint()); 2812 // Replace the operands of the cloned instructions with their scalar 2813 // equivalents in the new loop. 2814 for (auto &I : enumerate(RepRecipe->operands())) { 2815 auto InputInstance = Instance; 2816 VPValue *Operand = I.value(); 2817 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2818 if (OperandR && OperandR->isUniform()) 2819 InputInstance.Lane = VPLane::getFirstLane(); 2820 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2821 } 2822 addNewMetadata(Cloned, Instr); 2823 2824 // Place the cloned scalar in the new loop. 2825 Builder.Insert(Cloned); 2826 2827 State.set(RepRecipe, Cloned, Instance); 2828 2829 // If we just cloned a new assumption, add it the assumption cache. 2830 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2831 AC->registerAssumption(II); 2832 2833 // End if-block. 2834 if (IfPredicateInstr) 2835 PredicatedInstructions.push_back(Cloned); 2836 } 2837 2838 void InnerLoopVectorizer::createHeaderBranch(Loop *L) { 2839 BasicBlock *Header = L->getHeader(); 2840 assert(!L->getLoopLatch() && "loop should not have a latch at this point"); 2841 2842 IRBuilder<> B(Header->getTerminator()); 2843 Instruction *OldInst = 2844 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 2845 setDebugLocFromInst(OldInst, &B); 2846 2847 // Connect the header to the exit and header blocks and replace the old 2848 // terminator. 2849 B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header); 2850 2851 // Now we have two terminators. Remove the old one from the block. 2852 Header->getTerminator()->eraseFromParent(); 2853 } 2854 2855 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) { 2856 if (TripCount) 2857 return TripCount; 2858 2859 assert(InsertBlock); 2860 IRBuilder<> Builder(InsertBlock->getTerminator()); 2861 // Find the loop boundaries. 2862 ScalarEvolution *SE = PSE.getSE(); 2863 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2864 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2865 "Invalid loop count"); 2866 2867 Type *IdxTy = Legal->getWidestInductionType(); 2868 assert(IdxTy && "No type for induction"); 2869 2870 // The exit count might have the type of i64 while the phi is i32. This can 2871 // happen if we have an induction variable that is sign extended before the 2872 // compare. The only way that we get a backedge taken count is that the 2873 // induction variable was signed and as such will not overflow. In such a case 2874 // truncation is legal. 2875 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2876 IdxTy->getPrimitiveSizeInBits()) 2877 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2878 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2879 2880 // Get the total trip count from the count by adding 1. 2881 const SCEV *ExitCount = SE->getAddExpr( 2882 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2883 2884 const DataLayout &DL = InsertBlock->getModule()->getDataLayout(); 2885 2886 // Expand the trip count and place the new instructions in the preheader. 2887 // Notice that the pre-header does not change, only the loop body. 2888 SCEVExpander Exp(*SE, DL, "induction"); 2889 2890 // Count holds the overall loop count (N). 2891 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2892 InsertBlock->getTerminator()); 2893 2894 if (TripCount->getType()->isPointerTy()) 2895 TripCount = 2896 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2897 InsertBlock->getTerminator()); 2898 2899 return TripCount; 2900 } 2901 2902 Value * 2903 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { 2904 if (VectorTripCount) 2905 return VectorTripCount; 2906 2907 Value *TC = getOrCreateTripCount(InsertBlock); 2908 IRBuilder<> Builder(InsertBlock->getTerminator()); 2909 2910 Type *Ty = TC->getType(); 2911 // This is where we can make the step a runtime constant. 2912 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2913 2914 // If the tail is to be folded by masking, round the number of iterations N 2915 // up to a multiple of Step instead of rounding down. This is done by first 2916 // adding Step-1 and then rounding down. Note that it's ok if this addition 2917 // overflows: the vector induction variable will eventually wrap to zero given 2918 // that it starts at zero and its Step is a power of two; the loop will then 2919 // exit, with the last early-exit vector comparison also producing all-true. 2920 if (Cost->foldTailByMasking()) { 2921 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2922 "VF*UF must be a power of 2 when folding tail by masking"); 2923 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 2924 TC = Builder.CreateAdd( 2925 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 2926 } 2927 2928 // Now we need to generate the expression for the part of the loop that the 2929 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2930 // iterations are not required for correctness, or N - Step, otherwise. Step 2931 // is equal to the vectorization factor (number of SIMD elements) times the 2932 // unroll factor (number of SIMD instructions). 2933 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2934 2935 // There are cases where we *must* run at least one iteration in the remainder 2936 // loop. See the cost model for when this can happen. If the step evenly 2937 // divides the trip count, we set the remainder to be equal to the step. If 2938 // the step does not evenly divide the trip count, no adjustment is necessary 2939 // since there will already be scalar iterations. Note that the minimum 2940 // iterations check ensures that N >= Step. 2941 if (Cost->requiresScalarEpilogue(VF)) { 2942 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2943 R = Builder.CreateSelect(IsZero, Step, R); 2944 } 2945 2946 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2947 2948 return VectorTripCount; 2949 } 2950 2951 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2952 const DataLayout &DL) { 2953 // Verify that V is a vector type with same number of elements as DstVTy. 2954 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2955 unsigned VF = DstFVTy->getNumElements(); 2956 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2957 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2958 Type *SrcElemTy = SrcVecTy->getElementType(); 2959 Type *DstElemTy = DstFVTy->getElementType(); 2960 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2961 "Vector elements must have same size"); 2962 2963 // Do a direct cast if element types are castable. 2964 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2965 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2966 } 2967 // V cannot be directly casted to desired vector type. 2968 // May happen when V is a floating point vector but DstVTy is a vector of 2969 // pointers or vice-versa. Handle this using a two-step bitcast using an 2970 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2971 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2972 "Only one type should be a pointer type"); 2973 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2974 "Only one type should be a floating point type"); 2975 Type *IntTy = 2976 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2977 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2978 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2979 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2980 } 2981 2982 void InnerLoopVectorizer::emitMinimumIterationCountCheck(BasicBlock *Bypass) { 2983 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 2984 // Reuse existing vector loop preheader for TC checks. 2985 // Note that new preheader block is generated for vector loop. 2986 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2987 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2988 2989 // Generate code to check if the loop's trip count is less than VF * UF, or 2990 // equal to it in case a scalar epilogue is required; this implies that the 2991 // vector trip count is zero. This check also covers the case where adding one 2992 // to the backedge-taken count overflowed leading to an incorrect trip count 2993 // of zero. In this case we will also jump to the scalar loop. 2994 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 2995 : ICmpInst::ICMP_ULT; 2996 2997 // If tail is to be folded, vector loop takes care of all iterations. 2998 Value *CheckMinIters = Builder.getFalse(); 2999 if (!Cost->foldTailByMasking()) { 3000 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 3001 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3002 } 3003 // Create new preheader for vector loop. 3004 LoopVectorPreHeader = 3005 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3006 "vector.ph"); 3007 3008 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3009 DT->getNode(Bypass)->getIDom()) && 3010 "TC check is expected to dominate Bypass"); 3011 3012 // Update dominator for Bypass & LoopExit (if needed). 3013 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3014 if (!Cost->requiresScalarEpilogue(VF)) 3015 // If there is an epilogue which must run, there's no edge from the 3016 // middle block to exit blocks and thus no need to update the immediate 3017 // dominator of the exit blocks. 3018 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3019 3020 ReplaceInstWithInst( 3021 TCCheckBlock->getTerminator(), 3022 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3023 LoopBypassBlocks.push_back(TCCheckBlock); 3024 } 3025 3026 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 3027 3028 BasicBlock *const SCEVCheckBlock = 3029 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); 3030 if (!SCEVCheckBlock) 3031 return nullptr; 3032 3033 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3034 (OptForSizeBasedOnProfile && 3035 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3036 "Cannot SCEV check stride or overflow when optimizing for size"); 3037 3038 3039 // Update dominator only if this is first RT check. 3040 if (LoopBypassBlocks.empty()) { 3041 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3042 if (!Cost->requiresScalarEpilogue(VF)) 3043 // If there is an epilogue which must run, there's no edge from the 3044 // middle block to exit blocks and thus no need to update the immediate 3045 // dominator of the exit blocks. 3046 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3047 } 3048 3049 LoopBypassBlocks.push_back(SCEVCheckBlock); 3050 AddedSafetyChecks = true; 3051 return SCEVCheckBlock; 3052 } 3053 3054 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { 3055 // VPlan-native path does not do any analysis for runtime checks currently. 3056 if (EnableVPlanNativePath) 3057 return nullptr; 3058 3059 BasicBlock *const MemCheckBlock = 3060 RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); 3061 3062 // Check if we generated code that checks in runtime if arrays overlap. We put 3063 // the checks into a separate block to make the more common case of few 3064 // elements faster. 3065 if (!MemCheckBlock) 3066 return nullptr; 3067 3068 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3069 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3070 "Cannot emit memory checks when optimizing for size, unless forced " 3071 "to vectorize."); 3072 ORE->emit([&]() { 3073 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3074 OrigLoop->getStartLoc(), 3075 OrigLoop->getHeader()) 3076 << "Code-size may be reduced by not forcing " 3077 "vectorization, or by source-code modifications " 3078 "eliminating the need for runtime checks " 3079 "(e.g., adding 'restrict')."; 3080 }); 3081 } 3082 3083 LoopBypassBlocks.push_back(MemCheckBlock); 3084 3085 AddedSafetyChecks = true; 3086 3087 // We currently don't use LoopVersioning for the actual loop cloning but we 3088 // still use it to add the noalias metadata. 3089 LVer = std::make_unique<LoopVersioning>( 3090 *Legal->getLAI(), 3091 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3092 DT, PSE.getSE()); 3093 LVer->prepareNoAliasMetadata(); 3094 return MemCheckBlock; 3095 } 3096 3097 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3098 LoopScalarBody = OrigLoop->getHeader(); 3099 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3100 assert(LoopVectorPreHeader && "Invalid loop structure"); 3101 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3102 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3103 "multiple exit loop without required epilogue?"); 3104 3105 LoopMiddleBlock = 3106 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3107 LI, nullptr, Twine(Prefix) + "middle.block"); 3108 LoopScalarPreHeader = 3109 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3110 nullptr, Twine(Prefix) + "scalar.ph"); 3111 3112 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3113 3114 // Set up the middle block terminator. Two cases: 3115 // 1) If we know that we must execute the scalar epilogue, emit an 3116 // unconditional branch. 3117 // 2) Otherwise, we must have a single unique exit block (due to how we 3118 // implement the multiple exit case). In this case, set up a conditonal 3119 // branch from the middle block to the loop scalar preheader, and the 3120 // exit block. completeLoopSkeleton will update the condition to use an 3121 // iteration check, if required to decide whether to execute the remainder. 3122 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3123 BranchInst::Create(LoopScalarPreHeader) : 3124 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3125 Builder.getTrue()); 3126 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3127 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3128 3129 // We intentionally don't let SplitBlock to update LoopInfo since 3130 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3131 // LoopVectorBody is explicitly added to the correct place few lines later. 3132 BasicBlock *LoopVectorBody = 3133 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3134 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3135 3136 // Update dominator for loop exit. 3137 if (!Cost->requiresScalarEpilogue(VF)) 3138 // If there is an epilogue which must run, there's no edge from the 3139 // middle block to exit blocks and thus no need to update the immediate 3140 // dominator of the exit blocks. 3141 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3142 3143 // Create and register the new vector loop. 3144 Loop *Lp = LI->AllocateLoop(); 3145 Loop *ParentLoop = OrigLoop->getParentLoop(); 3146 3147 // Insert the new loop into the loop nest and register the new basic blocks 3148 // before calling any utilities such as SCEV that require valid LoopInfo. 3149 if (ParentLoop) { 3150 ParentLoop->addChildLoop(Lp); 3151 } else { 3152 LI->addTopLevelLoop(Lp); 3153 } 3154 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3155 return Lp; 3156 } 3157 3158 void InnerLoopVectorizer::createInductionResumeValues( 3159 Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) { 3160 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3161 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3162 "Inconsistent information about additional bypass."); 3163 3164 Value *VectorTripCount = getOrCreateVectorTripCount(L->getLoopPreheader()); 3165 assert(VectorTripCount && L && "Expected valid arguments"); 3166 // We are going to resume the execution of the scalar loop. 3167 // Go over all of the induction variables that we found and fix the 3168 // PHIs that are left in the scalar version of the loop. 3169 // The starting values of PHI nodes depend on the counter of the last 3170 // iteration in the vectorized loop. 3171 // If we come from a bypass edge then we need to start from the original 3172 // start value. 3173 Instruction *OldInduction = Legal->getPrimaryInduction(); 3174 for (auto &InductionEntry : Legal->getInductionVars()) { 3175 PHINode *OrigPhi = InductionEntry.first; 3176 InductionDescriptor II = InductionEntry.second; 3177 3178 // Create phi nodes to merge from the backedge-taken check block. 3179 PHINode *BCResumeVal = 3180 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3181 LoopScalarPreHeader->getTerminator()); 3182 // Copy original phi DL over to the new one. 3183 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3184 Value *&EndValue = IVEndValues[OrigPhi]; 3185 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3186 if (OrigPhi == OldInduction) { 3187 // We know what the end value is. 3188 EndValue = VectorTripCount; 3189 } else { 3190 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3191 3192 // Fast-math-flags propagate from the original induction instruction. 3193 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3194 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3195 3196 Type *StepType = II.getStep()->getType(); 3197 Instruction::CastOps CastOp = 3198 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3199 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3200 Value *Step = 3201 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3202 EndValue = emitTransformedIndex(B, CRD, II.getStartValue(), Step, II); 3203 EndValue->setName("ind.end"); 3204 3205 // Compute the end value for the additional bypass (if applicable). 3206 if (AdditionalBypass.first) { 3207 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3208 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3209 StepType, true); 3210 Value *Step = 3211 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3212 CRD = 3213 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3214 EndValueFromAdditionalBypass = 3215 emitTransformedIndex(B, CRD, II.getStartValue(), Step, II); 3216 EndValueFromAdditionalBypass->setName("ind.end"); 3217 } 3218 } 3219 // The new PHI merges the original incoming value, in case of a bypass, 3220 // or the value at the end of the vectorized loop. 3221 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3222 3223 // Fix the scalar body counter (PHI node). 3224 // The old induction's phi node in the scalar body needs the truncated 3225 // value. 3226 for (BasicBlock *BB : LoopBypassBlocks) 3227 BCResumeVal->addIncoming(II.getStartValue(), BB); 3228 3229 if (AdditionalBypass.first) 3230 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3231 EndValueFromAdditionalBypass); 3232 3233 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3234 } 3235 } 3236 3237 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3238 MDNode *OrigLoopID) { 3239 assert(L && "Expected valid loop."); 3240 3241 // The trip counts should be cached by now. 3242 Value *Count = getOrCreateTripCount(L->getLoopPreheader()); 3243 Value *VectorTripCount = getOrCreateVectorTripCount(L->getLoopPreheader()); 3244 3245 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3246 3247 // Add a check in the middle block to see if we have completed 3248 // all of the iterations in the first vector loop. Three cases: 3249 // 1) If we require a scalar epilogue, there is no conditional branch as 3250 // we unconditionally branch to the scalar preheader. Do nothing. 3251 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3252 // Thus if tail is to be folded, we know we don't need to run the 3253 // remainder and we can use the previous value for the condition (true). 3254 // 3) Otherwise, construct a runtime check. 3255 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3256 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3257 Count, VectorTripCount, "cmp.n", 3258 LoopMiddleBlock->getTerminator()); 3259 3260 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3261 // of the corresponding compare because they may have ended up with 3262 // different line numbers and we want to avoid awkward line stepping while 3263 // debugging. Eg. if the compare has got a line number inside the loop. 3264 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3265 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3266 } 3267 3268 // Get ready to start creating new instructions into the vectorized body. 3269 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3270 "Inconsistent vector loop preheader"); 3271 3272 #ifdef EXPENSIVE_CHECKS 3273 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3274 LI->verify(*DT); 3275 #endif 3276 3277 return LoopVectorPreHeader; 3278 } 3279 3280 std::pair<BasicBlock *, Value *> 3281 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3282 /* 3283 In this function we generate a new loop. The new loop will contain 3284 the vectorized instructions while the old loop will continue to run the 3285 scalar remainder. 3286 3287 [ ] <-- loop iteration number check. 3288 / | 3289 / v 3290 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3291 | / | 3292 | / v 3293 || [ ] <-- vector pre header. 3294 |/ | 3295 | v 3296 | [ ] \ 3297 | [ ]_| <-- vector loop. 3298 | | 3299 | v 3300 \ -[ ] <--- middle-block. 3301 \/ | 3302 /\ v 3303 | ->[ ] <--- new preheader. 3304 | | 3305 (opt) v <-- edge from middle to exit iff epilogue is not required. 3306 | [ ] \ 3307 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3308 \ | 3309 \ v 3310 >[ ] <-- exit block(s). 3311 ... 3312 */ 3313 3314 // Get the metadata of the original loop before it gets modified. 3315 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3316 3317 // Workaround! Compute the trip count of the original loop and cache it 3318 // before we start modifying the CFG. This code has a systemic problem 3319 // wherein it tries to run analysis over partially constructed IR; this is 3320 // wrong, and not simply for SCEV. The trip count of the original loop 3321 // simply happens to be prone to hitting this in practice. In theory, we 3322 // can hit the same issue for any SCEV, or ValueTracking query done during 3323 // mutation. See PR49900. 3324 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 3325 3326 // Create an empty vector loop, and prepare basic blocks for the runtime 3327 // checks. 3328 Loop *Lp = createVectorLoopSkeleton(""); 3329 3330 // Now, compare the new count to zero. If it is zero skip the vector loop and 3331 // jump to the scalar loop. This check also covers the case where the 3332 // backedge-taken count is uint##_max: adding one to it will overflow leading 3333 // to an incorrect trip count of zero. In this (rare) case we will also jump 3334 // to the scalar loop. 3335 emitMinimumIterationCountCheck(LoopScalarPreHeader); 3336 3337 // Generate the code to check any assumptions that we've made for SCEV 3338 // expressions. 3339 emitSCEVChecks(LoopScalarPreHeader); 3340 3341 // Generate the code that checks in runtime if arrays overlap. We put the 3342 // checks into a separate block to make the more common case of few elements 3343 // faster. 3344 emitMemRuntimeChecks(LoopScalarPreHeader); 3345 3346 createHeaderBranch(Lp); 3347 3348 // Emit phis for the new starting index of the scalar loop. 3349 createInductionResumeValues(Lp); 3350 3351 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 3352 } 3353 3354 // Fix up external users of the induction variable. At this point, we are 3355 // in LCSSA form, with all external PHIs that use the IV having one input value, 3356 // coming from the remainder loop. We need those PHIs to also have a correct 3357 // value for the IV when arriving directly from the middle block. 3358 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3359 const InductionDescriptor &II, 3360 Value *CountRoundDown, Value *EndValue, 3361 BasicBlock *MiddleBlock, 3362 BasicBlock *VectorHeader) { 3363 // There are two kinds of external IV usages - those that use the value 3364 // computed in the last iteration (the PHI) and those that use the penultimate 3365 // value (the value that feeds into the phi from the loop latch). 3366 // We allow both, but they, obviously, have different values. 3367 3368 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3369 3370 DenseMap<Value *, Value *> MissingVals; 3371 3372 // An external user of the last iteration's value should see the value that 3373 // the remainder loop uses to initialize its own IV. 3374 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3375 for (User *U : PostInc->users()) { 3376 Instruction *UI = cast<Instruction>(U); 3377 if (!OrigLoop->contains(UI)) { 3378 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3379 MissingVals[UI] = EndValue; 3380 } 3381 } 3382 3383 // An external user of the penultimate value need to see EndValue - Step. 3384 // The simplest way to get this is to recompute it from the constituent SCEVs, 3385 // that is Start + (Step * (CRD - 1)). 3386 for (User *U : OrigPhi->users()) { 3387 auto *UI = cast<Instruction>(U); 3388 if (!OrigLoop->contains(UI)) { 3389 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3390 3391 IRBuilder<> B(MiddleBlock->getTerminator()); 3392 3393 // Fast-math-flags propagate from the original induction instruction. 3394 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3395 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3396 3397 Value *CountMinusOne = B.CreateSub( 3398 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3399 Value *CMO = 3400 !II.getStep()->getType()->isIntegerTy() 3401 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3402 II.getStep()->getType()) 3403 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3404 CMO->setName("cast.cmo"); 3405 3406 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 3407 VectorHeader->getTerminator()); 3408 Value *Escape = 3409 emitTransformedIndex(B, CMO, II.getStartValue(), Step, II); 3410 Escape->setName("ind.escape"); 3411 MissingVals[UI] = Escape; 3412 } 3413 } 3414 3415 for (auto &I : MissingVals) { 3416 PHINode *PHI = cast<PHINode>(I.first); 3417 // One corner case we have to handle is two IVs "chasing" each-other, 3418 // that is %IV2 = phi [...], [ %IV1, %latch ] 3419 // In this case, if IV1 has an external use, we need to avoid adding both 3420 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3421 // don't already have an incoming value for the middle block. 3422 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3423 PHI->addIncoming(I.second, MiddleBlock); 3424 } 3425 } 3426 3427 namespace { 3428 3429 struct CSEDenseMapInfo { 3430 static bool canHandle(const Instruction *I) { 3431 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3432 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3433 } 3434 3435 static inline Instruction *getEmptyKey() { 3436 return DenseMapInfo<Instruction *>::getEmptyKey(); 3437 } 3438 3439 static inline Instruction *getTombstoneKey() { 3440 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3441 } 3442 3443 static unsigned getHashValue(const Instruction *I) { 3444 assert(canHandle(I) && "Unknown instruction!"); 3445 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3446 I->value_op_end())); 3447 } 3448 3449 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3450 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3451 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3452 return LHS == RHS; 3453 return LHS->isIdenticalTo(RHS); 3454 } 3455 }; 3456 3457 } // end anonymous namespace 3458 3459 ///Perform cse of induction variable instructions. 3460 static void cse(BasicBlock *BB) { 3461 // Perform simple cse. 3462 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3463 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3464 if (!CSEDenseMapInfo::canHandle(&In)) 3465 continue; 3466 3467 // Check if we can replace this instruction with any of the 3468 // visited instructions. 3469 if (Instruction *V = CSEMap.lookup(&In)) { 3470 In.replaceAllUsesWith(V); 3471 In.eraseFromParent(); 3472 continue; 3473 } 3474 3475 CSEMap[&In] = &In; 3476 } 3477 } 3478 3479 InstructionCost 3480 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3481 bool &NeedToScalarize) const { 3482 Function *F = CI->getCalledFunction(); 3483 Type *ScalarRetTy = CI->getType(); 3484 SmallVector<Type *, 4> Tys, ScalarTys; 3485 for (auto &ArgOp : CI->args()) 3486 ScalarTys.push_back(ArgOp->getType()); 3487 3488 // Estimate cost of scalarized vector call. The source operands are assumed 3489 // to be vectors, so we need to extract individual elements from there, 3490 // execute VF scalar calls, and then gather the result into the vector return 3491 // value. 3492 InstructionCost ScalarCallCost = 3493 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3494 if (VF.isScalar()) 3495 return ScalarCallCost; 3496 3497 // Compute corresponding vector type for return value and arguments. 3498 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3499 for (Type *ScalarTy : ScalarTys) 3500 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3501 3502 // Compute costs of unpacking argument values for the scalar calls and 3503 // packing the return values to a vector. 3504 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3505 3506 InstructionCost Cost = 3507 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3508 3509 // If we can't emit a vector call for this function, then the currently found 3510 // cost is the cost we need to return. 3511 NeedToScalarize = true; 3512 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3513 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3514 3515 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3516 return Cost; 3517 3518 // If the corresponding vector cost is cheaper, return its cost. 3519 InstructionCost VectorCallCost = 3520 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3521 if (VectorCallCost < Cost) { 3522 NeedToScalarize = false; 3523 Cost = VectorCallCost; 3524 } 3525 return Cost; 3526 } 3527 3528 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3529 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3530 return Elt; 3531 return VectorType::get(Elt, VF); 3532 } 3533 3534 InstructionCost 3535 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3536 ElementCount VF) const { 3537 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3538 assert(ID && "Expected intrinsic call!"); 3539 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3540 FastMathFlags FMF; 3541 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3542 FMF = FPMO->getFastMathFlags(); 3543 3544 SmallVector<const Value *> Arguments(CI->args()); 3545 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3546 SmallVector<Type *> ParamTys; 3547 std::transform(FTy->param_begin(), FTy->param_end(), 3548 std::back_inserter(ParamTys), 3549 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3550 3551 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3552 dyn_cast<IntrinsicInst>(CI)); 3553 return TTI.getIntrinsicInstrCost(CostAttrs, 3554 TargetTransformInfo::TCK_RecipThroughput); 3555 } 3556 3557 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3558 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3559 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3560 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3561 } 3562 3563 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3564 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3565 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3566 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3567 } 3568 3569 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3570 // For every instruction `I` in MinBWs, truncate the operands, create a 3571 // truncated version of `I` and reextend its result. InstCombine runs 3572 // later and will remove any ext/trunc pairs. 3573 SmallPtrSet<Value *, 4> Erased; 3574 for (const auto &KV : Cost->getMinimalBitwidths()) { 3575 // If the value wasn't vectorized, we must maintain the original scalar 3576 // type. The absence of the value from State indicates that it 3577 // wasn't vectorized. 3578 // FIXME: Should not rely on getVPValue at this point. 3579 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3580 if (!State.hasAnyVectorValue(Def)) 3581 continue; 3582 for (unsigned Part = 0; Part < UF; ++Part) { 3583 Value *I = State.get(Def, Part); 3584 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3585 continue; 3586 Type *OriginalTy = I->getType(); 3587 Type *ScalarTruncatedTy = 3588 IntegerType::get(OriginalTy->getContext(), KV.second); 3589 auto *TruncatedTy = VectorType::get( 3590 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3591 if (TruncatedTy == OriginalTy) 3592 continue; 3593 3594 IRBuilder<> B(cast<Instruction>(I)); 3595 auto ShrinkOperand = [&](Value *V) -> Value * { 3596 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3597 if (ZI->getSrcTy() == TruncatedTy) 3598 return ZI->getOperand(0); 3599 return B.CreateZExtOrTrunc(V, TruncatedTy); 3600 }; 3601 3602 // The actual instruction modification depends on the instruction type, 3603 // unfortunately. 3604 Value *NewI = nullptr; 3605 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3606 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3607 ShrinkOperand(BO->getOperand(1))); 3608 3609 // Any wrapping introduced by shrinking this operation shouldn't be 3610 // considered undefined behavior. So, we can't unconditionally copy 3611 // arithmetic wrapping flags to NewI. 3612 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3613 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3614 NewI = 3615 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3616 ShrinkOperand(CI->getOperand(1))); 3617 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3618 NewI = B.CreateSelect(SI->getCondition(), 3619 ShrinkOperand(SI->getTrueValue()), 3620 ShrinkOperand(SI->getFalseValue())); 3621 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3622 switch (CI->getOpcode()) { 3623 default: 3624 llvm_unreachable("Unhandled cast!"); 3625 case Instruction::Trunc: 3626 NewI = ShrinkOperand(CI->getOperand(0)); 3627 break; 3628 case Instruction::SExt: 3629 NewI = B.CreateSExtOrTrunc( 3630 CI->getOperand(0), 3631 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3632 break; 3633 case Instruction::ZExt: 3634 NewI = B.CreateZExtOrTrunc( 3635 CI->getOperand(0), 3636 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3637 break; 3638 } 3639 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3640 auto Elements0 = 3641 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3642 auto *O0 = B.CreateZExtOrTrunc( 3643 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3644 auto Elements1 = 3645 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3646 auto *O1 = B.CreateZExtOrTrunc( 3647 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3648 3649 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3650 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3651 // Don't do anything with the operands, just extend the result. 3652 continue; 3653 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3654 auto Elements = 3655 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3656 auto *O0 = B.CreateZExtOrTrunc( 3657 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3658 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3659 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3660 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3661 auto Elements = 3662 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3663 auto *O0 = B.CreateZExtOrTrunc( 3664 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3665 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3666 } else { 3667 // If we don't know what to do, be conservative and don't do anything. 3668 continue; 3669 } 3670 3671 // Lastly, extend the result. 3672 NewI->takeName(cast<Instruction>(I)); 3673 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3674 I->replaceAllUsesWith(Res); 3675 cast<Instruction>(I)->eraseFromParent(); 3676 Erased.insert(I); 3677 State.reset(Def, Res, Part); 3678 } 3679 } 3680 3681 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3682 for (const auto &KV : Cost->getMinimalBitwidths()) { 3683 // If the value wasn't vectorized, we must maintain the original scalar 3684 // type. The absence of the value from State indicates that it 3685 // wasn't vectorized. 3686 // FIXME: Should not rely on getVPValue at this point. 3687 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3688 if (!State.hasAnyVectorValue(Def)) 3689 continue; 3690 for (unsigned Part = 0; Part < UF; ++Part) { 3691 Value *I = State.get(Def, Part); 3692 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3693 if (Inst && Inst->use_empty()) { 3694 Value *NewI = Inst->getOperand(0); 3695 Inst->eraseFromParent(); 3696 State.reset(Def, NewI, Part); 3697 } 3698 } 3699 } 3700 } 3701 3702 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3703 // Insert truncates and extends for any truncated instructions as hints to 3704 // InstCombine. 3705 if (VF.isVector()) 3706 truncateToMinimalBitwidths(State); 3707 3708 // Fix widened non-induction PHIs by setting up the PHI operands. 3709 if (OrigPHIsToFix.size()) { 3710 assert(EnableVPlanNativePath && 3711 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3712 fixNonInductionPHIs(State); 3713 } 3714 3715 // At this point every instruction in the original loop is widened to a 3716 // vector form. Now we need to fix the recurrences in the loop. These PHI 3717 // nodes are currently empty because we did not want to introduce cycles. 3718 // This is the second stage of vectorizing recurrences. 3719 fixCrossIterationPHIs(State); 3720 3721 // Forget the original basic block. 3722 PSE.getSE()->forgetLoop(OrigLoop); 3723 3724 Loop *VectorLoop = LI->getLoopFor(State.CFG.PrevBB); 3725 // If we inserted an edge from the middle block to the unique exit block, 3726 // update uses outside the loop (phis) to account for the newly inserted 3727 // edge. 3728 if (!Cost->requiresScalarEpilogue(VF)) { 3729 // Fix-up external users of the induction variables. 3730 for (auto &Entry : Legal->getInductionVars()) 3731 fixupIVUsers(Entry.first, Entry.second, 3732 getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()), 3733 IVEndValues[Entry.first], LoopMiddleBlock, 3734 VectorLoop->getHeader()); 3735 3736 fixLCSSAPHIs(State); 3737 } 3738 3739 for (Instruction *PI : PredicatedInstructions) 3740 sinkScalarOperands(&*PI); 3741 3742 // Remove redundant induction instructions. 3743 cse(VectorLoop->getHeader()); 3744 3745 // Set/update profile weights for the vector and remainder loops as original 3746 // loop iterations are now distributed among them. Note that original loop 3747 // represented by LoopScalarBody becomes remainder loop after vectorization. 3748 // 3749 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3750 // end up getting slightly roughened result but that should be OK since 3751 // profile is not inherently precise anyway. Note also possible bypass of 3752 // vector code caused by legality checks is ignored, assigning all the weight 3753 // to the vector loop, optimistically. 3754 // 3755 // For scalable vectorization we can't know at compile time how many iterations 3756 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3757 // vscale of '1'. 3758 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, 3759 LI->getLoopFor(LoopScalarBody), 3760 VF.getKnownMinValue() * UF); 3761 } 3762 3763 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3764 // In order to support recurrences we need to be able to vectorize Phi nodes. 3765 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3766 // stage #2: We now need to fix the recurrences by adding incoming edges to 3767 // the currently empty PHI nodes. At this point every instruction in the 3768 // original loop is widened to a vector form so we can use them to construct 3769 // the incoming edges. 3770 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 3771 for (VPRecipeBase &R : Header->phis()) { 3772 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3773 fixReduction(ReductionPhi, State); 3774 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3775 fixFirstOrderRecurrence(FOR, State); 3776 } 3777 } 3778 3779 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3780 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3781 // This is the second phase of vectorizing first-order recurrences. An 3782 // overview of the transformation is described below. Suppose we have the 3783 // following loop. 3784 // 3785 // for (int i = 0; i < n; ++i) 3786 // b[i] = a[i] - a[i - 1]; 3787 // 3788 // There is a first-order recurrence on "a". For this loop, the shorthand 3789 // scalar IR looks like: 3790 // 3791 // scalar.ph: 3792 // s_init = a[-1] 3793 // br scalar.body 3794 // 3795 // scalar.body: 3796 // i = phi [0, scalar.ph], [i+1, scalar.body] 3797 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3798 // s2 = a[i] 3799 // b[i] = s2 - s1 3800 // br cond, scalar.body, ... 3801 // 3802 // In this example, s1 is a recurrence because it's value depends on the 3803 // previous iteration. In the first phase of vectorization, we created a 3804 // vector phi v1 for s1. We now complete the vectorization and produce the 3805 // shorthand vector IR shown below (for VF = 4, UF = 1). 3806 // 3807 // vector.ph: 3808 // v_init = vector(..., ..., ..., a[-1]) 3809 // br vector.body 3810 // 3811 // vector.body 3812 // i = phi [0, vector.ph], [i+4, vector.body] 3813 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3814 // v2 = a[i, i+1, i+2, i+3]; 3815 // v3 = vector(v1(3), v2(0, 1, 2)) 3816 // b[i, i+1, i+2, i+3] = v2 - v3 3817 // br cond, vector.body, middle.block 3818 // 3819 // middle.block: 3820 // x = v2(3) 3821 // br scalar.ph 3822 // 3823 // scalar.ph: 3824 // s_init = phi [x, middle.block], [a[-1], otherwise] 3825 // br scalar.body 3826 // 3827 // After execution completes the vector loop, we extract the next value of 3828 // the recurrence (x) to use as the initial value in the scalar loop. 3829 3830 // Extract the last vector element in the middle block. This will be the 3831 // initial value for the recurrence when jumping to the scalar loop. 3832 VPValue *PreviousDef = PhiR->getBackedgeValue(); 3833 Value *Incoming = State.get(PreviousDef, UF - 1); 3834 auto *ExtractForScalar = Incoming; 3835 auto *IdxTy = Builder.getInt32Ty(); 3836 if (VF.isVector()) { 3837 auto *One = ConstantInt::get(IdxTy, 1); 3838 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3839 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3840 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 3841 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 3842 "vector.recur.extract"); 3843 } 3844 // Extract the second last element in the middle block if the 3845 // Phi is used outside the loop. We need to extract the phi itself 3846 // and not the last element (the phi update in the current iteration). This 3847 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3848 // when the scalar loop is not run at all. 3849 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3850 if (VF.isVector()) { 3851 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3852 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 3853 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3854 Incoming, Idx, "vector.recur.extract.for.phi"); 3855 } else if (UF > 1) 3856 // When loop is unrolled without vectorizing, initialize 3857 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 3858 // of `Incoming`. This is analogous to the vectorized case above: extracting 3859 // the second last element when VF > 1. 3860 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 3861 3862 // Fix the initial value of the original recurrence in the scalar loop. 3863 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3864 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 3865 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3866 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 3867 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3868 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3869 Start->addIncoming(Incoming, BB); 3870 } 3871 3872 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3873 Phi->setName("scalar.recur"); 3874 3875 // Finally, fix users of the recurrence outside the loop. The users will need 3876 // either the last value of the scalar recurrence or the last value of the 3877 // vector recurrence we extracted in the middle block. Since the loop is in 3878 // LCSSA form, we just need to find all the phi nodes for the original scalar 3879 // recurrence in the exit block, and then add an edge for the middle block. 3880 // Note that LCSSA does not imply single entry when the original scalar loop 3881 // had multiple exiting edges (as we always run the last iteration in the 3882 // scalar epilogue); in that case, there is no edge from middle to exit and 3883 // and thus no phis which needed updated. 3884 if (!Cost->requiresScalarEpilogue(VF)) 3885 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 3886 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 3887 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3888 } 3889 3890 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 3891 VPTransformState &State) { 3892 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 3893 // Get it's reduction variable descriptor. 3894 assert(Legal->isReductionVariable(OrigPhi) && 3895 "Unable to find the reduction variable"); 3896 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 3897 3898 RecurKind RK = RdxDesc.getRecurrenceKind(); 3899 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3900 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3901 setDebugLocFromInst(ReductionStartValue); 3902 3903 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 3904 // This is the vector-clone of the value that leaves the loop. 3905 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 3906 3907 // Wrap flags are in general invalid after vectorization, clear them. 3908 clearReductionWrapFlags(RdxDesc, State); 3909 3910 // Before each round, move the insertion point right between 3911 // the PHIs and the values we are going to write. 3912 // This allows us to write both PHINodes and the extractelement 3913 // instructions. 3914 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3915 3916 setDebugLocFromInst(LoopExitInst); 3917 3918 Type *PhiTy = OrigPhi->getType(); 3919 BasicBlock *VectorLoopLatch = 3920 LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch(); 3921 // If tail is folded by masking, the vector value to leave the loop should be 3922 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3923 // instead of the former. For an inloop reduction the reduction will already 3924 // be predicated, and does not need to be handled here. 3925 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 3926 for (unsigned Part = 0; Part < UF; ++Part) { 3927 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 3928 Value *Sel = nullptr; 3929 for (User *U : VecLoopExitInst->users()) { 3930 if (isa<SelectInst>(U)) { 3931 assert(!Sel && "Reduction exit feeding two selects"); 3932 Sel = U; 3933 } else 3934 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3935 } 3936 assert(Sel && "Reduction exit feeds no select"); 3937 State.reset(LoopExitInstDef, Sel, Part); 3938 3939 // If the target can create a predicated operator for the reduction at no 3940 // extra cost in the loop (for example a predicated vadd), it can be 3941 // cheaper for the select to remain in the loop than be sunk out of it, 3942 // and so use the select value for the phi instead of the old 3943 // LoopExitValue. 3944 if (PreferPredicatedReductionSelect || 3945 TTI->preferPredicatedReductionSelect( 3946 RdxDesc.getOpcode(), PhiTy, 3947 TargetTransformInfo::ReductionFlags())) { 3948 auto *VecRdxPhi = 3949 cast<PHINode>(State.get(PhiR, Part)); 3950 VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); 3951 } 3952 } 3953 } 3954 3955 // If the vector reduction can be performed in a smaller type, we truncate 3956 // then extend the loop exit value to enable InstCombine to evaluate the 3957 // entire expression in the smaller type. 3958 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 3959 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 3960 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3961 Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); 3962 VectorParts RdxParts(UF); 3963 for (unsigned Part = 0; Part < UF; ++Part) { 3964 RdxParts[Part] = State.get(LoopExitInstDef, Part); 3965 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3966 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3967 : Builder.CreateZExt(Trunc, VecTy); 3968 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 3969 if (U != Trunc) { 3970 U->replaceUsesOfWith(RdxParts[Part], Extnd); 3971 RdxParts[Part] = Extnd; 3972 } 3973 } 3974 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3975 for (unsigned Part = 0; Part < UF; ++Part) { 3976 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3977 State.reset(LoopExitInstDef, RdxParts[Part], Part); 3978 } 3979 } 3980 3981 // Reduce all of the unrolled parts into a single vector. 3982 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 3983 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 3984 3985 // The middle block terminator has already been assigned a DebugLoc here (the 3986 // OrigLoop's single latch terminator). We want the whole middle block to 3987 // appear to execute on this line because: (a) it is all compiler generated, 3988 // (b) these instructions are always executed after evaluating the latch 3989 // conditional branch, and (c) other passes may add new predecessors which 3990 // terminate on this line. This is the easiest way to ensure we don't 3991 // accidentally cause an extra step back into the loop while debugging. 3992 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 3993 if (PhiR->isOrdered()) 3994 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 3995 else { 3996 // Floating-point operations should have some FMF to enable the reduction. 3997 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 3998 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 3999 for (unsigned Part = 1; Part < UF; ++Part) { 4000 Value *RdxPart = State.get(LoopExitInstDef, Part); 4001 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4002 ReducedPartRdx = Builder.CreateBinOp( 4003 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4004 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 4005 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 4006 ReducedPartRdx, RdxPart); 4007 else 4008 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4009 } 4010 } 4011 4012 // Create the reduction after the loop. Note that inloop reductions create the 4013 // target reduction in the loop using a Reduction recipe. 4014 if (VF.isVector() && !PhiR->isInLoop()) { 4015 ReducedPartRdx = 4016 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4017 // If the reduction can be performed in a smaller type, we need to extend 4018 // the reduction to the wider type before we branch to the original loop. 4019 if (PhiTy != RdxDesc.getRecurrenceType()) 4020 ReducedPartRdx = RdxDesc.isSigned() 4021 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4022 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4023 } 4024 4025 PHINode *ResumePhi = 4026 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 4027 4028 // Create a phi node that merges control-flow from the backedge-taken check 4029 // block and the middle block. 4030 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4031 LoopScalarPreHeader->getTerminator()); 4032 4033 // If we are fixing reductions in the epilogue loop then we should already 4034 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 4035 // we carry over the incoming values correctly. 4036 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 4037 if (Incoming == LoopMiddleBlock) 4038 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 4039 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 4040 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 4041 Incoming); 4042 else 4043 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 4044 } 4045 4046 // Set the resume value for this reduction 4047 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4048 4049 // Now, we need to fix the users of the reduction variable 4050 // inside and outside of the scalar remainder loop. 4051 4052 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4053 // in the exit blocks. See comment on analogous loop in 4054 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4055 if (!Cost->requiresScalarEpilogue(VF)) 4056 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4057 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4058 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4059 4060 // Fix the scalar loop reduction variable with the incoming reduction sum 4061 // from the vector body and from the backedge value. 4062 int IncomingEdgeBlockIdx = 4063 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4064 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4065 // Pick the other block. 4066 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4067 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4068 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4069 } 4070 4071 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4072 VPTransformState &State) { 4073 RecurKind RK = RdxDesc.getRecurrenceKind(); 4074 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4075 return; 4076 4077 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4078 assert(LoopExitInstr && "null loop exit instruction"); 4079 SmallVector<Instruction *, 8> Worklist; 4080 SmallPtrSet<Instruction *, 8> Visited; 4081 Worklist.push_back(LoopExitInstr); 4082 Visited.insert(LoopExitInstr); 4083 4084 while (!Worklist.empty()) { 4085 Instruction *Cur = Worklist.pop_back_val(); 4086 if (isa<OverflowingBinaryOperator>(Cur)) 4087 for (unsigned Part = 0; Part < UF; ++Part) { 4088 // FIXME: Should not rely on getVPValue at this point. 4089 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4090 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4091 } 4092 4093 for (User *U : Cur->users()) { 4094 Instruction *UI = cast<Instruction>(U); 4095 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4096 Visited.insert(UI).second) 4097 Worklist.push_back(UI); 4098 } 4099 } 4100 } 4101 4102 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4103 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4104 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4105 // Some phis were already hand updated by the reduction and recurrence 4106 // code above, leave them alone. 4107 continue; 4108 4109 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4110 // Non-instruction incoming values will have only one value. 4111 4112 VPLane Lane = VPLane::getFirstLane(); 4113 if (isa<Instruction>(IncomingValue) && 4114 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4115 VF)) 4116 Lane = VPLane::getLastLaneForVF(VF); 4117 4118 // Can be a loop invariant incoming value or the last scalar value to be 4119 // extracted from the vectorized loop. 4120 // FIXME: Should not rely on getVPValue at this point. 4121 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4122 Value *lastIncomingValue = 4123 OrigLoop->isLoopInvariant(IncomingValue) 4124 ? IncomingValue 4125 : State.get(State.Plan->getVPValue(IncomingValue, true), 4126 VPIteration(UF - 1, Lane)); 4127 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4128 } 4129 } 4130 4131 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4132 // The basic block and loop containing the predicated instruction. 4133 auto *PredBB = PredInst->getParent(); 4134 auto *VectorLoop = LI->getLoopFor(PredBB); 4135 4136 // Initialize a worklist with the operands of the predicated instruction. 4137 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4138 4139 // Holds instructions that we need to analyze again. An instruction may be 4140 // reanalyzed if we don't yet know if we can sink it or not. 4141 SmallVector<Instruction *, 8> InstsToReanalyze; 4142 4143 // Returns true if a given use occurs in the predicated block. Phi nodes use 4144 // their operands in their corresponding predecessor blocks. 4145 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4146 auto *I = cast<Instruction>(U.getUser()); 4147 BasicBlock *BB = I->getParent(); 4148 if (auto *Phi = dyn_cast<PHINode>(I)) 4149 BB = Phi->getIncomingBlock( 4150 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4151 return BB == PredBB; 4152 }; 4153 4154 // Iteratively sink the scalarized operands of the predicated instruction 4155 // into the block we created for it. When an instruction is sunk, it's 4156 // operands are then added to the worklist. The algorithm ends after one pass 4157 // through the worklist doesn't sink a single instruction. 4158 bool Changed; 4159 do { 4160 // Add the instructions that need to be reanalyzed to the worklist, and 4161 // reset the changed indicator. 4162 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4163 InstsToReanalyze.clear(); 4164 Changed = false; 4165 4166 while (!Worklist.empty()) { 4167 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4168 4169 // We can't sink an instruction if it is a phi node, is not in the loop, 4170 // or may have side effects. 4171 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4172 I->mayHaveSideEffects()) 4173 continue; 4174 4175 // If the instruction is already in PredBB, check if we can sink its 4176 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4177 // sinking the scalar instruction I, hence it appears in PredBB; but it 4178 // may have failed to sink I's operands (recursively), which we try 4179 // (again) here. 4180 if (I->getParent() == PredBB) { 4181 Worklist.insert(I->op_begin(), I->op_end()); 4182 continue; 4183 } 4184 4185 // It's legal to sink the instruction if all its uses occur in the 4186 // predicated block. Otherwise, there's nothing to do yet, and we may 4187 // need to reanalyze the instruction. 4188 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4189 InstsToReanalyze.push_back(I); 4190 continue; 4191 } 4192 4193 // Move the instruction to the beginning of the predicated block, and add 4194 // it's operands to the worklist. 4195 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4196 Worklist.insert(I->op_begin(), I->op_end()); 4197 4198 // The sinking may have enabled other instructions to be sunk, so we will 4199 // need to iterate. 4200 Changed = true; 4201 } 4202 } while (Changed); 4203 } 4204 4205 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4206 for (PHINode *OrigPhi : OrigPHIsToFix) { 4207 VPWidenPHIRecipe *VPPhi = 4208 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4209 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4210 // Make sure the builder has a valid insert point. 4211 Builder.SetInsertPoint(NewPhi); 4212 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4213 VPValue *Inc = VPPhi->getIncomingValue(i); 4214 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4215 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4216 } 4217 } 4218 } 4219 4220 bool InnerLoopVectorizer::useOrderedReductions( 4221 const RecurrenceDescriptor &RdxDesc) { 4222 return Cost->useOrderedReductions(RdxDesc); 4223 } 4224 4225 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4226 VPWidenPHIRecipe *PhiR, 4227 VPTransformState &State) { 4228 PHINode *P = cast<PHINode>(PN); 4229 if (EnableVPlanNativePath) { 4230 // Currently we enter here in the VPlan-native path for non-induction 4231 // PHIs where all control flow is uniform. We simply widen these PHIs. 4232 // Create a vector phi with no operands - the vector phi operands will be 4233 // set at the end of vector code generation. 4234 Type *VecTy = (State.VF.isScalar()) 4235 ? PN->getType() 4236 : VectorType::get(PN->getType(), State.VF); 4237 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4238 State.set(PhiR, VecPhi, 0); 4239 OrigPHIsToFix.push_back(P); 4240 4241 return; 4242 } 4243 4244 assert(PN->getParent() == OrigLoop->getHeader() && 4245 "Non-header phis should have been handled elsewhere"); 4246 4247 // In order to support recurrences we need to be able to vectorize Phi nodes. 4248 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4249 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4250 // this value when we vectorize all of the instructions that use the PHI. 4251 4252 assert(!Legal->isReductionVariable(P) && 4253 "reductions should be handled elsewhere"); 4254 4255 setDebugLocFromInst(P); 4256 4257 // This PHINode must be an induction variable. 4258 // Make sure that we know about it. 4259 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4260 4261 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4262 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4263 4264 auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV(); 4265 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 4266 4267 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4268 // which can be found from the original scalar operations. 4269 switch (II.getKind()) { 4270 case InductionDescriptor::IK_NoInduction: 4271 llvm_unreachable("Unknown induction"); 4272 case InductionDescriptor::IK_IntInduction: 4273 case InductionDescriptor::IK_FpInduction: 4274 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4275 case InductionDescriptor::IK_PtrInduction: { 4276 // Handle the pointer induction variable case. 4277 assert(P->getType()->isPointerTy() && "Unexpected type."); 4278 4279 if (all_of(PhiR->users(), [PhiR](const VPUser *U) { 4280 return cast<VPRecipeBase>(U)->usesScalars(PhiR); 4281 })) { 4282 // This is the normalized GEP that starts counting at zero. 4283 Value *PtrInd = 4284 Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType()); 4285 // Determine the number of scalars we need to generate for each unroll 4286 // iteration. If the instruction is uniform, we only need to generate the 4287 // first lane. Otherwise, we generate all VF values. 4288 bool IsUniform = vputils::onlyFirstLaneUsed(PhiR); 4289 assert((IsUniform || !State.VF.isScalable()) && 4290 "Cannot scalarize a scalable VF"); 4291 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 4292 4293 for (unsigned Part = 0; Part < UF; ++Part) { 4294 Value *PartStart = 4295 createStepForVF(Builder, PtrInd->getType(), VF, Part); 4296 4297 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4298 Value *Idx = Builder.CreateAdd( 4299 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4300 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4301 4302 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 4303 State.CFG.PrevBB->getTerminator()); 4304 Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, 4305 II.getStartValue(), Step, II); 4306 SclrGep->setName("next.gep"); 4307 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4308 } 4309 } 4310 return; 4311 } 4312 assert(isa<SCEVConstant>(II.getStep()) && 4313 "Induction step not a SCEV constant!"); 4314 Type *PhiType = II.getStep()->getType(); 4315 4316 // Build a pointer phi 4317 Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue(); 4318 Type *ScStValueType = ScalarStartValue->getType(); 4319 PHINode *NewPointerPhi = 4320 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 4321 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4322 4323 // A pointer induction, performed by using a gep 4324 BasicBlock *LoopLatch = LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch(); 4325 Instruction *InductionLoc = LoopLatch->getTerminator(); 4326 const SCEV *ScalarStep = II.getStep(); 4327 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4328 Value *ScalarStepValue = 4329 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4330 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4331 Value *NumUnrolledElems = 4332 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4333 Value *InductionGEP = GetElementPtrInst::Create( 4334 II.getElementType(), NewPointerPhi, 4335 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4336 InductionLoc); 4337 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4338 4339 // Create UF many actual address geps that use the pointer 4340 // phi as base and a vectorized version of the step value 4341 // (<step*0, ..., step*N>) as offset. 4342 for (unsigned Part = 0; Part < State.UF; ++Part) { 4343 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4344 Value *StartOffsetScalar = 4345 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4346 Value *StartOffset = 4347 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4348 // Create a vector of consecutive numbers from zero to VF. 4349 StartOffset = 4350 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4351 4352 Value *GEP = Builder.CreateGEP( 4353 II.getElementType(), NewPointerPhi, 4354 Builder.CreateMul( 4355 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4356 "vector.gep")); 4357 State.set(PhiR, GEP, Part); 4358 } 4359 } 4360 } 4361 } 4362 4363 /// A helper function for checking whether an integer division-related 4364 /// instruction may divide by zero (in which case it must be predicated if 4365 /// executed conditionally in the scalar code). 4366 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4367 /// Non-zero divisors that are non compile-time constants will not be 4368 /// converted into multiplication, so we will still end up scalarizing 4369 /// the division, but can do so w/o predication. 4370 static bool mayDivideByZero(Instruction &I) { 4371 assert((I.getOpcode() == Instruction::UDiv || 4372 I.getOpcode() == Instruction::SDiv || 4373 I.getOpcode() == Instruction::URem || 4374 I.getOpcode() == Instruction::SRem) && 4375 "Unexpected instruction"); 4376 Value *Divisor = I.getOperand(1); 4377 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4378 return !CInt || CInt->isZero(); 4379 } 4380 4381 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4382 VPUser &ArgOperands, 4383 VPTransformState &State) { 4384 assert(!isa<DbgInfoIntrinsic>(I) && 4385 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4386 setDebugLocFromInst(&I); 4387 4388 Module *M = I.getParent()->getParent()->getParent(); 4389 auto *CI = cast<CallInst>(&I); 4390 4391 SmallVector<Type *, 4> Tys; 4392 for (Value *ArgOperand : CI->args()) 4393 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4394 4395 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4396 4397 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4398 // version of the instruction. 4399 // Is it beneficial to perform intrinsic call compared to lib call? 4400 bool NeedToScalarize = false; 4401 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4402 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4403 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4404 assert((UseVectorIntrinsic || !NeedToScalarize) && 4405 "Instruction should be scalarized elsewhere."); 4406 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4407 "Either the intrinsic cost or vector call cost must be valid"); 4408 4409 for (unsigned Part = 0; Part < UF; ++Part) { 4410 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4411 SmallVector<Value *, 4> Args; 4412 for (auto &I : enumerate(ArgOperands.operands())) { 4413 // Some intrinsics have a scalar argument - don't replace it with a 4414 // vector. 4415 Value *Arg; 4416 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4417 Arg = State.get(I.value(), Part); 4418 else { 4419 Arg = State.get(I.value(), VPIteration(0, 0)); 4420 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 4421 TysForDecl.push_back(Arg->getType()); 4422 } 4423 Args.push_back(Arg); 4424 } 4425 4426 Function *VectorF; 4427 if (UseVectorIntrinsic) { 4428 // Use vector version of the intrinsic. 4429 if (VF.isVector()) 4430 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4431 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4432 assert(VectorF && "Can't retrieve vector intrinsic."); 4433 } else { 4434 // Use vector version of the function call. 4435 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4436 #ifndef NDEBUG 4437 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4438 "Can't create vector function."); 4439 #endif 4440 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4441 } 4442 SmallVector<OperandBundleDef, 1> OpBundles; 4443 CI->getOperandBundlesAsDefs(OpBundles); 4444 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4445 4446 if (isa<FPMathOperator>(V)) 4447 V->copyFastMathFlags(CI); 4448 4449 State.set(Def, V, Part); 4450 addMetadata(V, &I); 4451 } 4452 } 4453 4454 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4455 // We should not collect Scalars more than once per VF. Right now, this 4456 // function is called from collectUniformsAndScalars(), which already does 4457 // this check. Collecting Scalars for VF=1 does not make any sense. 4458 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4459 "This function should not be visited twice for the same VF"); 4460 4461 // This avoids any chances of creating a REPLICATE recipe during planning 4462 // since that would result in generation of scalarized code during execution, 4463 // which is not supported for scalable vectors. 4464 if (VF.isScalable()) { 4465 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4466 return; 4467 } 4468 4469 SmallSetVector<Instruction *, 8> Worklist; 4470 4471 // These sets are used to seed the analysis with pointers used by memory 4472 // accesses that will remain scalar. 4473 SmallSetVector<Instruction *, 8> ScalarPtrs; 4474 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4475 auto *Latch = TheLoop->getLoopLatch(); 4476 4477 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4478 // The pointer operands of loads and stores will be scalar as long as the 4479 // memory access is not a gather or scatter operation. The value operand of a 4480 // store will remain scalar if the store is scalarized. 4481 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4482 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4483 assert(WideningDecision != CM_Unknown && 4484 "Widening decision should be ready at this moment"); 4485 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4486 if (Ptr == Store->getValueOperand()) 4487 return WideningDecision == CM_Scalarize; 4488 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4489 "Ptr is neither a value or pointer operand"); 4490 return WideningDecision != CM_GatherScatter; 4491 }; 4492 4493 // A helper that returns true if the given value is a bitcast or 4494 // getelementptr instruction contained in the loop. 4495 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4496 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4497 isa<GetElementPtrInst>(V)) && 4498 !TheLoop->isLoopInvariant(V); 4499 }; 4500 4501 // A helper that evaluates a memory access's use of a pointer. If the use will 4502 // be a scalar use and the pointer is only used by memory accesses, we place 4503 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4504 // PossibleNonScalarPtrs. 4505 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4506 // We only care about bitcast and getelementptr instructions contained in 4507 // the loop. 4508 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4509 return; 4510 4511 // If the pointer has already been identified as scalar (e.g., if it was 4512 // also identified as uniform), there's nothing to do. 4513 auto *I = cast<Instruction>(Ptr); 4514 if (Worklist.count(I)) 4515 return; 4516 4517 // If the use of the pointer will be a scalar use, and all users of the 4518 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4519 // place the pointer in PossibleNonScalarPtrs. 4520 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4521 return isa<LoadInst>(U) || isa<StoreInst>(U); 4522 })) 4523 ScalarPtrs.insert(I); 4524 else 4525 PossibleNonScalarPtrs.insert(I); 4526 }; 4527 4528 // We seed the scalars analysis with three classes of instructions: (1) 4529 // instructions marked uniform-after-vectorization and (2) bitcast, 4530 // getelementptr and (pointer) phi instructions used by memory accesses 4531 // requiring a scalar use. 4532 // 4533 // (1) Add to the worklist all instructions that have been identified as 4534 // uniform-after-vectorization. 4535 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4536 4537 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4538 // memory accesses requiring a scalar use. The pointer operands of loads and 4539 // stores will be scalar as long as the memory accesses is not a gather or 4540 // scatter operation. The value operand of a store will remain scalar if the 4541 // store is scalarized. 4542 for (auto *BB : TheLoop->blocks()) 4543 for (auto &I : *BB) { 4544 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4545 evaluatePtrUse(Load, Load->getPointerOperand()); 4546 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4547 evaluatePtrUse(Store, Store->getPointerOperand()); 4548 evaluatePtrUse(Store, Store->getValueOperand()); 4549 } 4550 } 4551 for (auto *I : ScalarPtrs) 4552 if (!PossibleNonScalarPtrs.count(I)) { 4553 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4554 Worklist.insert(I); 4555 } 4556 4557 // Insert the forced scalars. 4558 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4559 // induction variable when the PHI user is scalarized. 4560 auto ForcedScalar = ForcedScalars.find(VF); 4561 if (ForcedScalar != ForcedScalars.end()) 4562 for (auto *I : ForcedScalar->second) 4563 Worklist.insert(I); 4564 4565 // Expand the worklist by looking through any bitcasts and getelementptr 4566 // instructions we've already identified as scalar. This is similar to the 4567 // expansion step in collectLoopUniforms(); however, here we're only 4568 // expanding to include additional bitcasts and getelementptr instructions. 4569 unsigned Idx = 0; 4570 while (Idx != Worklist.size()) { 4571 Instruction *Dst = Worklist[Idx++]; 4572 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4573 continue; 4574 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4575 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4576 auto *J = cast<Instruction>(U); 4577 return !TheLoop->contains(J) || Worklist.count(J) || 4578 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4579 isScalarUse(J, Src)); 4580 })) { 4581 Worklist.insert(Src); 4582 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4583 } 4584 } 4585 4586 // An induction variable will remain scalar if all users of the induction 4587 // variable and induction variable update remain scalar. 4588 for (auto &Induction : Legal->getInductionVars()) { 4589 auto *Ind = Induction.first; 4590 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4591 4592 // If tail-folding is applied, the primary induction variable will be used 4593 // to feed a vector compare. 4594 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4595 continue; 4596 4597 // Returns true if \p Indvar is a pointer induction that is used directly by 4598 // load/store instruction \p I. 4599 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4600 Instruction *I) { 4601 return Induction.second.getKind() == 4602 InductionDescriptor::IK_PtrInduction && 4603 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4604 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4605 }; 4606 4607 // Determine if all users of the induction variable are scalar after 4608 // vectorization. 4609 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4610 auto *I = cast<Instruction>(U); 4611 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4612 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4613 }); 4614 if (!ScalarInd) 4615 continue; 4616 4617 // Determine if all users of the induction variable update instruction are 4618 // scalar after vectorization. 4619 auto ScalarIndUpdate = 4620 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4621 auto *I = cast<Instruction>(U); 4622 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4623 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4624 }); 4625 if (!ScalarIndUpdate) 4626 continue; 4627 4628 // The induction variable and its update instruction will remain scalar. 4629 Worklist.insert(Ind); 4630 Worklist.insert(IndUpdate); 4631 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4632 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4633 << "\n"); 4634 } 4635 4636 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4637 } 4638 4639 bool LoopVectorizationCostModel::isScalarWithPredication( 4640 Instruction *I, ElementCount VF) const { 4641 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4642 return false; 4643 switch(I->getOpcode()) { 4644 default: 4645 break; 4646 case Instruction::Load: 4647 case Instruction::Store: { 4648 if (!Legal->isMaskRequired(I)) 4649 return false; 4650 auto *Ptr = getLoadStorePointerOperand(I); 4651 auto *Ty = getLoadStoreType(I); 4652 Type *VTy = Ty; 4653 if (VF.isVector()) 4654 VTy = VectorType::get(Ty, VF); 4655 const Align Alignment = getLoadStoreAlignment(I); 4656 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4657 TTI.isLegalMaskedGather(VTy, Alignment)) 4658 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4659 TTI.isLegalMaskedScatter(VTy, Alignment)); 4660 } 4661 case Instruction::UDiv: 4662 case Instruction::SDiv: 4663 case Instruction::SRem: 4664 case Instruction::URem: 4665 return mayDivideByZero(*I); 4666 } 4667 return false; 4668 } 4669 4670 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4671 Instruction *I, ElementCount VF) { 4672 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4673 assert(getWideningDecision(I, VF) == CM_Unknown && 4674 "Decision should not be set yet."); 4675 auto *Group = getInterleavedAccessGroup(I); 4676 assert(Group && "Must have a group."); 4677 4678 // If the instruction's allocated size doesn't equal it's type size, it 4679 // requires padding and will be scalarized. 4680 auto &DL = I->getModule()->getDataLayout(); 4681 auto *ScalarTy = getLoadStoreType(I); 4682 if (hasIrregularType(ScalarTy, DL)) 4683 return false; 4684 4685 // Check if masking is required. 4686 // A Group may need masking for one of two reasons: it resides in a block that 4687 // needs predication, or it was decided to use masking to deal with gaps 4688 // (either a gap at the end of a load-access that may result in a speculative 4689 // load, or any gaps in a store-access). 4690 bool PredicatedAccessRequiresMasking = 4691 blockNeedsPredicationForAnyReason(I->getParent()) && 4692 Legal->isMaskRequired(I); 4693 bool LoadAccessWithGapsRequiresEpilogMasking = 4694 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4695 !isScalarEpilogueAllowed(); 4696 bool StoreAccessWithGapsRequiresMasking = 4697 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4698 if (!PredicatedAccessRequiresMasking && 4699 !LoadAccessWithGapsRequiresEpilogMasking && 4700 !StoreAccessWithGapsRequiresMasking) 4701 return true; 4702 4703 // If masked interleaving is required, we expect that the user/target had 4704 // enabled it, because otherwise it either wouldn't have been created or 4705 // it should have been invalidated by the CostModel. 4706 assert(useMaskedInterleavedAccesses(TTI) && 4707 "Masked interleave-groups for predicated accesses are not enabled."); 4708 4709 if (Group->isReverse()) 4710 return false; 4711 4712 auto *Ty = getLoadStoreType(I); 4713 const Align Alignment = getLoadStoreAlignment(I); 4714 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4715 : TTI.isLegalMaskedStore(Ty, Alignment); 4716 } 4717 4718 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4719 Instruction *I, ElementCount VF) { 4720 // Get and ensure we have a valid memory instruction. 4721 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4722 4723 auto *Ptr = getLoadStorePointerOperand(I); 4724 auto *ScalarTy = getLoadStoreType(I); 4725 4726 // In order to be widened, the pointer should be consecutive, first of all. 4727 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4728 return false; 4729 4730 // If the instruction is a store located in a predicated block, it will be 4731 // scalarized. 4732 if (isScalarWithPredication(I, VF)) 4733 return false; 4734 4735 // If the instruction's allocated size doesn't equal it's type size, it 4736 // requires padding and will be scalarized. 4737 auto &DL = I->getModule()->getDataLayout(); 4738 if (hasIrregularType(ScalarTy, DL)) 4739 return false; 4740 4741 return true; 4742 } 4743 4744 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4745 // We should not collect Uniforms more than once per VF. Right now, 4746 // this function is called from collectUniformsAndScalars(), which 4747 // already does this check. Collecting Uniforms for VF=1 does not make any 4748 // sense. 4749 4750 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4751 "This function should not be visited twice for the same VF"); 4752 4753 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4754 // not analyze again. Uniforms.count(VF) will return 1. 4755 Uniforms[VF].clear(); 4756 4757 // We now know that the loop is vectorizable! 4758 // Collect instructions inside the loop that will remain uniform after 4759 // vectorization. 4760 4761 // Global values, params and instructions outside of current loop are out of 4762 // scope. 4763 auto isOutOfScope = [&](Value *V) -> bool { 4764 Instruction *I = dyn_cast<Instruction>(V); 4765 return (!I || !TheLoop->contains(I)); 4766 }; 4767 4768 // Worklist containing uniform instructions demanding lane 0. 4769 SetVector<Instruction *> Worklist; 4770 BasicBlock *Latch = TheLoop->getLoopLatch(); 4771 4772 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4773 // that are scalar with predication must not be considered uniform after 4774 // vectorization, because that would create an erroneous replicating region 4775 // where only a single instance out of VF should be formed. 4776 // TODO: optimize such seldom cases if found important, see PR40816. 4777 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4778 if (isOutOfScope(I)) { 4779 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4780 << *I << "\n"); 4781 return; 4782 } 4783 if (isScalarWithPredication(I, VF)) { 4784 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4785 << *I << "\n"); 4786 return; 4787 } 4788 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4789 Worklist.insert(I); 4790 }; 4791 4792 // Start with the conditional branch. If the branch condition is an 4793 // instruction contained in the loop that is only used by the branch, it is 4794 // uniform. 4795 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4796 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4797 addToWorklistIfAllowed(Cmp); 4798 4799 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 4800 InstWidening WideningDecision = getWideningDecision(I, VF); 4801 assert(WideningDecision != CM_Unknown && 4802 "Widening decision should be ready at this moment"); 4803 4804 // A uniform memory op is itself uniform. We exclude uniform stores 4805 // here as they demand the last lane, not the first one. 4806 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 4807 assert(WideningDecision == CM_Scalarize); 4808 return true; 4809 } 4810 4811 return (WideningDecision == CM_Widen || 4812 WideningDecision == CM_Widen_Reverse || 4813 WideningDecision == CM_Interleave); 4814 }; 4815 4816 4817 // Returns true if Ptr is the pointer operand of a memory access instruction 4818 // I, and I is known to not require scalarization. 4819 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4820 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4821 }; 4822 4823 // Holds a list of values which are known to have at least one uniform use. 4824 // Note that there may be other uses which aren't uniform. A "uniform use" 4825 // here is something which only demands lane 0 of the unrolled iterations; 4826 // it does not imply that all lanes produce the same value (e.g. this is not 4827 // the usual meaning of uniform) 4828 SetVector<Value *> HasUniformUse; 4829 4830 // Scan the loop for instructions which are either a) known to have only 4831 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 4832 for (auto *BB : TheLoop->blocks()) 4833 for (auto &I : *BB) { 4834 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 4835 switch (II->getIntrinsicID()) { 4836 case Intrinsic::sideeffect: 4837 case Intrinsic::experimental_noalias_scope_decl: 4838 case Intrinsic::assume: 4839 case Intrinsic::lifetime_start: 4840 case Intrinsic::lifetime_end: 4841 if (TheLoop->hasLoopInvariantOperands(&I)) 4842 addToWorklistIfAllowed(&I); 4843 break; 4844 default: 4845 break; 4846 } 4847 } 4848 4849 // ExtractValue instructions must be uniform, because the operands are 4850 // known to be loop-invariant. 4851 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 4852 assert(isOutOfScope(EVI->getAggregateOperand()) && 4853 "Expected aggregate value to be loop invariant"); 4854 addToWorklistIfAllowed(EVI); 4855 continue; 4856 } 4857 4858 // If there's no pointer operand, there's nothing to do. 4859 auto *Ptr = getLoadStorePointerOperand(&I); 4860 if (!Ptr) 4861 continue; 4862 4863 // A uniform memory op is itself uniform. We exclude uniform stores 4864 // here as they demand the last lane, not the first one. 4865 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 4866 addToWorklistIfAllowed(&I); 4867 4868 if (isUniformDecision(&I, VF)) { 4869 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 4870 HasUniformUse.insert(Ptr); 4871 } 4872 } 4873 4874 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 4875 // demanding) users. Since loops are assumed to be in LCSSA form, this 4876 // disallows uses outside the loop as well. 4877 for (auto *V : HasUniformUse) { 4878 if (isOutOfScope(V)) 4879 continue; 4880 auto *I = cast<Instruction>(V); 4881 auto UsersAreMemAccesses = 4882 llvm::all_of(I->users(), [&](User *U) -> bool { 4883 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 4884 }); 4885 if (UsersAreMemAccesses) 4886 addToWorklistIfAllowed(I); 4887 } 4888 4889 // Expand Worklist in topological order: whenever a new instruction 4890 // is added , its users should be already inside Worklist. It ensures 4891 // a uniform instruction will only be used by uniform instructions. 4892 unsigned idx = 0; 4893 while (idx != Worklist.size()) { 4894 Instruction *I = Worklist[idx++]; 4895 4896 for (auto OV : I->operand_values()) { 4897 // isOutOfScope operands cannot be uniform instructions. 4898 if (isOutOfScope(OV)) 4899 continue; 4900 // First order recurrence Phi's should typically be considered 4901 // non-uniform. 4902 auto *OP = dyn_cast<PHINode>(OV); 4903 if (OP && Legal->isFirstOrderRecurrence(OP)) 4904 continue; 4905 // If all the users of the operand are uniform, then add the 4906 // operand into the uniform worklist. 4907 auto *OI = cast<Instruction>(OV); 4908 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4909 auto *J = cast<Instruction>(U); 4910 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 4911 })) 4912 addToWorklistIfAllowed(OI); 4913 } 4914 } 4915 4916 // For an instruction to be added into Worklist above, all its users inside 4917 // the loop should also be in Worklist. However, this condition cannot be 4918 // true for phi nodes that form a cyclic dependence. We must process phi 4919 // nodes separately. An induction variable will remain uniform if all users 4920 // of the induction variable and induction variable update remain uniform. 4921 // The code below handles both pointer and non-pointer induction variables. 4922 for (auto &Induction : Legal->getInductionVars()) { 4923 auto *Ind = Induction.first; 4924 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4925 4926 // Determine if all users of the induction variable are uniform after 4927 // vectorization. 4928 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4929 auto *I = cast<Instruction>(U); 4930 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4931 isVectorizedMemAccessUse(I, Ind); 4932 }); 4933 if (!UniformInd) 4934 continue; 4935 4936 // Determine if all users of the induction variable update instruction are 4937 // uniform after vectorization. 4938 auto UniformIndUpdate = 4939 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4940 auto *I = cast<Instruction>(U); 4941 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4942 isVectorizedMemAccessUse(I, IndUpdate); 4943 }); 4944 if (!UniformIndUpdate) 4945 continue; 4946 4947 // The induction variable and its update instruction will remain uniform. 4948 addToWorklistIfAllowed(Ind); 4949 addToWorklistIfAllowed(IndUpdate); 4950 } 4951 4952 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4953 } 4954 4955 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4956 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4957 4958 if (Legal->getRuntimePointerChecking()->Need) { 4959 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4960 "runtime pointer checks needed. Enable vectorization of this " 4961 "loop with '#pragma clang loop vectorize(enable)' when " 4962 "compiling with -Os/-Oz", 4963 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4964 return true; 4965 } 4966 4967 if (!PSE.getPredicate().isAlwaysTrue()) { 4968 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4969 "runtime SCEV checks needed. Enable vectorization of this " 4970 "loop with '#pragma clang loop vectorize(enable)' when " 4971 "compiling with -Os/-Oz", 4972 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4973 return true; 4974 } 4975 4976 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4977 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4978 reportVectorizationFailure("Runtime stride check for small trip count", 4979 "runtime stride == 1 checks needed. Enable vectorization of " 4980 "this loop without such check by compiling with -Os/-Oz", 4981 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4982 return true; 4983 } 4984 4985 return false; 4986 } 4987 4988 ElementCount 4989 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 4990 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 4991 return ElementCount::getScalable(0); 4992 4993 if (Hints->isScalableVectorizationDisabled()) { 4994 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 4995 "ScalableVectorizationDisabled", ORE, TheLoop); 4996 return ElementCount::getScalable(0); 4997 } 4998 4999 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5000 5001 auto MaxScalableVF = ElementCount::getScalable( 5002 std::numeric_limits<ElementCount::ScalarTy>::max()); 5003 5004 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5005 // FIXME: While for scalable vectors this is currently sufficient, this should 5006 // be replaced by a more detailed mechanism that filters out specific VFs, 5007 // instead of invalidating vectorization for a whole set of VFs based on the 5008 // MaxVF. 5009 5010 // Disable scalable vectorization if the loop contains unsupported reductions. 5011 if (!canVectorizeReductions(MaxScalableVF)) { 5012 reportVectorizationInfo( 5013 "Scalable vectorization not supported for the reduction " 5014 "operations found in this loop.", 5015 "ScalableVFUnfeasible", ORE, TheLoop); 5016 return ElementCount::getScalable(0); 5017 } 5018 5019 // Disable scalable vectorization if the loop contains any instructions 5020 // with element types not supported for scalable vectors. 5021 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5022 return !Ty->isVoidTy() && 5023 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5024 })) { 5025 reportVectorizationInfo("Scalable vectorization is not supported " 5026 "for all element types found in this loop.", 5027 "ScalableVFUnfeasible", ORE, TheLoop); 5028 return ElementCount::getScalable(0); 5029 } 5030 5031 if (Legal->isSafeForAnyVectorWidth()) 5032 return MaxScalableVF; 5033 5034 // Limit MaxScalableVF by the maximum safe dependence distance. 5035 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5036 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 5037 MaxVScale = 5038 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 5039 MaxScalableVF = ElementCount::getScalable( 5040 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5041 if (!MaxScalableVF) 5042 reportVectorizationInfo( 5043 "Max legal vector width too small, scalable vectorization " 5044 "unfeasible.", 5045 "ScalableVFUnfeasible", ORE, TheLoop); 5046 5047 return MaxScalableVF; 5048 } 5049 5050 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 5051 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 5052 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5053 unsigned SmallestType, WidestType; 5054 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5055 5056 // Get the maximum safe dependence distance in bits computed by LAA. 5057 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5058 // the memory accesses that is most restrictive (involved in the smallest 5059 // dependence distance). 5060 unsigned MaxSafeElements = 5061 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5062 5063 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5064 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5065 5066 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5067 << ".\n"); 5068 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5069 << ".\n"); 5070 5071 // First analyze the UserVF, fall back if the UserVF should be ignored. 5072 if (UserVF) { 5073 auto MaxSafeUserVF = 5074 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5075 5076 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5077 // If `VF=vscale x N` is safe, then so is `VF=N` 5078 if (UserVF.isScalable()) 5079 return FixedScalableVFPair( 5080 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5081 else 5082 return UserVF; 5083 } 5084 5085 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5086 5087 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5088 // is better to ignore the hint and let the compiler choose a suitable VF. 5089 if (!UserVF.isScalable()) { 5090 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5091 << " is unsafe, clamping to max safe VF=" 5092 << MaxSafeFixedVF << ".\n"); 5093 ORE->emit([&]() { 5094 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5095 TheLoop->getStartLoc(), 5096 TheLoop->getHeader()) 5097 << "User-specified vectorization factor " 5098 << ore::NV("UserVectorizationFactor", UserVF) 5099 << " is unsafe, clamping to maximum safe vectorization factor " 5100 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5101 }); 5102 return MaxSafeFixedVF; 5103 } 5104 5105 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5106 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5107 << " is ignored because scalable vectors are not " 5108 "available.\n"); 5109 ORE->emit([&]() { 5110 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5111 TheLoop->getStartLoc(), 5112 TheLoop->getHeader()) 5113 << "User-specified vectorization factor " 5114 << ore::NV("UserVectorizationFactor", UserVF) 5115 << " is ignored because the target does not support scalable " 5116 "vectors. The compiler will pick a more suitable value."; 5117 }); 5118 } else { 5119 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5120 << " is unsafe. Ignoring scalable UserVF.\n"); 5121 ORE->emit([&]() { 5122 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5123 TheLoop->getStartLoc(), 5124 TheLoop->getHeader()) 5125 << "User-specified vectorization factor " 5126 << ore::NV("UserVectorizationFactor", UserVF) 5127 << " is unsafe. Ignoring the hint to let the compiler pick a " 5128 "more suitable value."; 5129 }); 5130 } 5131 } 5132 5133 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5134 << " / " << WidestType << " bits.\n"); 5135 5136 FixedScalableVFPair Result(ElementCount::getFixed(1), 5137 ElementCount::getScalable(0)); 5138 if (auto MaxVF = 5139 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5140 MaxSafeFixedVF, FoldTailByMasking)) 5141 Result.FixedVF = MaxVF; 5142 5143 if (auto MaxVF = 5144 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5145 MaxSafeScalableVF, FoldTailByMasking)) 5146 if (MaxVF.isScalable()) { 5147 Result.ScalableVF = MaxVF; 5148 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5149 << "\n"); 5150 } 5151 5152 return Result; 5153 } 5154 5155 FixedScalableVFPair 5156 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5157 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5158 // TODO: It may by useful to do since it's still likely to be dynamically 5159 // uniform if the target can skip. 5160 reportVectorizationFailure( 5161 "Not inserting runtime ptr check for divergent target", 5162 "runtime pointer checks needed. Not enabled for divergent target", 5163 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5164 return FixedScalableVFPair::getNone(); 5165 } 5166 5167 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5168 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5169 if (TC == 1) { 5170 reportVectorizationFailure("Single iteration (non) loop", 5171 "loop trip count is one, irrelevant for vectorization", 5172 "SingleIterationLoop", ORE, TheLoop); 5173 return FixedScalableVFPair::getNone(); 5174 } 5175 5176 switch (ScalarEpilogueStatus) { 5177 case CM_ScalarEpilogueAllowed: 5178 return computeFeasibleMaxVF(TC, UserVF, false); 5179 case CM_ScalarEpilogueNotAllowedUsePredicate: 5180 LLVM_FALLTHROUGH; 5181 case CM_ScalarEpilogueNotNeededUsePredicate: 5182 LLVM_DEBUG( 5183 dbgs() << "LV: vector predicate hint/switch found.\n" 5184 << "LV: Not allowing scalar epilogue, creating predicated " 5185 << "vector loop.\n"); 5186 break; 5187 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5188 // fallthrough as a special case of OptForSize 5189 case CM_ScalarEpilogueNotAllowedOptSize: 5190 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5191 LLVM_DEBUG( 5192 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5193 else 5194 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5195 << "count.\n"); 5196 5197 // Bail if runtime checks are required, which are not good when optimising 5198 // for size. 5199 if (runtimeChecksRequired()) 5200 return FixedScalableVFPair::getNone(); 5201 5202 break; 5203 } 5204 5205 // The only loops we can vectorize without a scalar epilogue, are loops with 5206 // a bottom-test and a single exiting block. We'd have to handle the fact 5207 // that not every instruction executes on the last iteration. This will 5208 // require a lane mask which varies through the vector loop body. (TODO) 5209 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5210 // If there was a tail-folding hint/switch, but we can't fold the tail by 5211 // masking, fallback to a vectorization with a scalar epilogue. 5212 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5213 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5214 "scalar epilogue instead.\n"); 5215 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5216 return computeFeasibleMaxVF(TC, UserVF, false); 5217 } 5218 return FixedScalableVFPair::getNone(); 5219 } 5220 5221 // Now try the tail folding 5222 5223 // Invalidate interleave groups that require an epilogue if we can't mask 5224 // the interleave-group. 5225 if (!useMaskedInterleavedAccesses(TTI)) { 5226 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5227 "No decisions should have been taken at this point"); 5228 // Note: There is no need to invalidate any cost modeling decisions here, as 5229 // non where taken so far. 5230 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5231 } 5232 5233 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5234 // Avoid tail folding if the trip count is known to be a multiple of any VF 5235 // we chose. 5236 // FIXME: The condition below pessimises the case for fixed-width vectors, 5237 // when scalable VFs are also candidates for vectorization. 5238 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5239 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5240 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5241 "MaxFixedVF must be a power of 2"); 5242 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5243 : MaxFixedVF.getFixedValue(); 5244 ScalarEvolution *SE = PSE.getSE(); 5245 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5246 const SCEV *ExitCount = SE->getAddExpr( 5247 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5248 const SCEV *Rem = SE->getURemExpr( 5249 SE->applyLoopGuards(ExitCount, TheLoop), 5250 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5251 if (Rem->isZero()) { 5252 // Accept MaxFixedVF if we do not have a tail. 5253 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5254 return MaxFactors; 5255 } 5256 } 5257 5258 // For scalable vectors don't use tail folding for low trip counts or 5259 // optimizing for code size. We only permit this if the user has explicitly 5260 // requested it. 5261 if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate && 5262 ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate && 5263 MaxFactors.ScalableVF.isVector()) 5264 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5265 5266 // If we don't know the precise trip count, or if the trip count that we 5267 // found modulo the vectorization factor is not zero, try to fold the tail 5268 // by masking. 5269 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5270 if (Legal->prepareToFoldTailByMasking()) { 5271 FoldTailByMasking = true; 5272 return MaxFactors; 5273 } 5274 5275 // If there was a tail-folding hint/switch, but we can't fold the tail by 5276 // masking, fallback to a vectorization with a scalar epilogue. 5277 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5278 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5279 "scalar epilogue instead.\n"); 5280 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5281 return MaxFactors; 5282 } 5283 5284 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5285 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5286 return FixedScalableVFPair::getNone(); 5287 } 5288 5289 if (TC == 0) { 5290 reportVectorizationFailure( 5291 "Unable to calculate the loop count due to complex control flow", 5292 "unable to calculate the loop count due to complex control flow", 5293 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5294 return FixedScalableVFPair::getNone(); 5295 } 5296 5297 reportVectorizationFailure( 5298 "Cannot optimize for size and vectorize at the same time.", 5299 "cannot optimize for size and vectorize at the same time. " 5300 "Enable vectorization of this loop with '#pragma clang loop " 5301 "vectorize(enable)' when compiling with -Os/-Oz", 5302 "NoTailLoopWithOptForSize", ORE, TheLoop); 5303 return FixedScalableVFPair::getNone(); 5304 } 5305 5306 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5307 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5308 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5309 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5310 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5311 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5312 : TargetTransformInfo::RGK_FixedWidthVector); 5313 5314 // Convenience function to return the minimum of two ElementCounts. 5315 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5316 assert((LHS.isScalable() == RHS.isScalable()) && 5317 "Scalable flags must match"); 5318 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5319 }; 5320 5321 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5322 // Note that both WidestRegister and WidestType may not be a powers of 2. 5323 auto MaxVectorElementCount = ElementCount::get( 5324 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5325 ComputeScalableMaxVF); 5326 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5327 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5328 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5329 5330 if (!MaxVectorElementCount) { 5331 LLVM_DEBUG(dbgs() << "LV: The target has no " 5332 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5333 << " vector registers.\n"); 5334 return ElementCount::getFixed(1); 5335 } 5336 5337 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5338 if (ConstTripCount && 5339 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5340 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5341 // If loop trip count (TC) is known at compile time there is no point in 5342 // choosing VF greater than TC (as done in the loop below). Select maximum 5343 // power of two which doesn't exceed TC. 5344 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5345 // when the TC is less than or equal to the known number of lanes. 5346 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5347 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5348 "exceeding the constant trip count: " 5349 << ClampedConstTripCount << "\n"); 5350 return ElementCount::getFixed(ClampedConstTripCount); 5351 } 5352 5353 ElementCount MaxVF = MaxVectorElementCount; 5354 if (TTI.shouldMaximizeVectorBandwidth() || 5355 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5356 auto MaxVectorElementCountMaxBW = ElementCount::get( 5357 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5358 ComputeScalableMaxVF); 5359 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5360 5361 // Collect all viable vectorization factors larger than the default MaxVF 5362 // (i.e. MaxVectorElementCount). 5363 SmallVector<ElementCount, 8> VFs; 5364 for (ElementCount VS = MaxVectorElementCount * 2; 5365 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5366 VFs.push_back(VS); 5367 5368 // For each VF calculate its register usage. 5369 auto RUs = calculateRegisterUsage(VFs); 5370 5371 // Select the largest VF which doesn't require more registers than existing 5372 // ones. 5373 for (int i = RUs.size() - 1; i >= 0; --i) { 5374 bool Selected = true; 5375 for (auto &pair : RUs[i].MaxLocalUsers) { 5376 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5377 if (pair.second > TargetNumRegisters) 5378 Selected = false; 5379 } 5380 if (Selected) { 5381 MaxVF = VFs[i]; 5382 break; 5383 } 5384 } 5385 if (ElementCount MinVF = 5386 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5387 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5388 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5389 << ") with target's minimum: " << MinVF << '\n'); 5390 MaxVF = MinVF; 5391 } 5392 } 5393 } 5394 return MaxVF; 5395 } 5396 5397 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5398 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5399 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5400 auto Min = Attr.getVScaleRangeMin(); 5401 auto Max = Attr.getVScaleRangeMax(); 5402 if (Max && Min == Max) 5403 return Max; 5404 } 5405 5406 return TTI.getVScaleForTuning(); 5407 } 5408 5409 bool LoopVectorizationCostModel::isMoreProfitable( 5410 const VectorizationFactor &A, const VectorizationFactor &B) const { 5411 InstructionCost CostA = A.Cost; 5412 InstructionCost CostB = B.Cost; 5413 5414 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5415 5416 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5417 MaxTripCount) { 5418 // If we are folding the tail and the trip count is a known (possibly small) 5419 // constant, the trip count will be rounded up to an integer number of 5420 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5421 // which we compare directly. When not folding the tail, the total cost will 5422 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5423 // approximated with the per-lane cost below instead of using the tripcount 5424 // as here. 5425 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5426 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5427 return RTCostA < RTCostB; 5428 } 5429 5430 // Improve estimate for the vector width if it is scalable. 5431 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5432 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5433 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5434 if (A.Width.isScalable()) 5435 EstimatedWidthA *= VScale.getValue(); 5436 if (B.Width.isScalable()) 5437 EstimatedWidthB *= VScale.getValue(); 5438 } 5439 5440 // Assume vscale may be larger than 1 (or the value being tuned for), 5441 // so that scalable vectorization is slightly favorable over fixed-width 5442 // vectorization. 5443 if (A.Width.isScalable() && !B.Width.isScalable()) 5444 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5445 5446 // To avoid the need for FP division: 5447 // (CostA / A.Width) < (CostB / B.Width) 5448 // <=> (CostA * B.Width) < (CostB * A.Width) 5449 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5450 } 5451 5452 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5453 const ElementCountSet &VFCandidates) { 5454 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5455 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5456 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5457 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5458 "Expected Scalar VF to be a candidate"); 5459 5460 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5461 VectorizationFactor ChosenFactor = ScalarCost; 5462 5463 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5464 if (ForceVectorization && VFCandidates.size() > 1) { 5465 // Ignore scalar width, because the user explicitly wants vectorization. 5466 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5467 // evaluation. 5468 ChosenFactor.Cost = InstructionCost::getMax(); 5469 } 5470 5471 SmallVector<InstructionVFPair> InvalidCosts; 5472 for (const auto &i : VFCandidates) { 5473 // The cost for scalar VF=1 is already calculated, so ignore it. 5474 if (i.isScalar()) 5475 continue; 5476 5477 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5478 VectorizationFactor Candidate(i, C.first); 5479 5480 #ifndef NDEBUG 5481 unsigned AssumedMinimumVscale = 1; 5482 if (Optional<unsigned> VScale = getVScaleForTuning()) 5483 AssumedMinimumVscale = VScale.getValue(); 5484 unsigned Width = 5485 Candidate.Width.isScalable() 5486 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5487 : Candidate.Width.getFixedValue(); 5488 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5489 << " costs: " << (Candidate.Cost / Width)); 5490 if (i.isScalable()) 5491 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5492 << AssumedMinimumVscale << ")"); 5493 LLVM_DEBUG(dbgs() << ".\n"); 5494 #endif 5495 5496 if (!C.second && !ForceVectorization) { 5497 LLVM_DEBUG( 5498 dbgs() << "LV: Not considering vector loop of width " << i 5499 << " because it will not generate any vector instructions.\n"); 5500 continue; 5501 } 5502 5503 // If profitable add it to ProfitableVF list. 5504 if (isMoreProfitable(Candidate, ScalarCost)) 5505 ProfitableVFs.push_back(Candidate); 5506 5507 if (isMoreProfitable(Candidate, ChosenFactor)) 5508 ChosenFactor = Candidate; 5509 } 5510 5511 // Emit a report of VFs with invalid costs in the loop. 5512 if (!InvalidCosts.empty()) { 5513 // Group the remarks per instruction, keeping the instruction order from 5514 // InvalidCosts. 5515 std::map<Instruction *, unsigned> Numbering; 5516 unsigned I = 0; 5517 for (auto &Pair : InvalidCosts) 5518 if (!Numbering.count(Pair.first)) 5519 Numbering[Pair.first] = I++; 5520 5521 // Sort the list, first on instruction(number) then on VF. 5522 llvm::sort(InvalidCosts, 5523 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5524 if (Numbering[A.first] != Numbering[B.first]) 5525 return Numbering[A.first] < Numbering[B.first]; 5526 ElementCountComparator ECC; 5527 return ECC(A.second, B.second); 5528 }); 5529 5530 // For a list of ordered instruction-vf pairs: 5531 // [(load, vf1), (load, vf2), (store, vf1)] 5532 // Group the instructions together to emit separate remarks for: 5533 // load (vf1, vf2) 5534 // store (vf1) 5535 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5536 auto Subset = ArrayRef<InstructionVFPair>(); 5537 do { 5538 if (Subset.empty()) 5539 Subset = Tail.take_front(1); 5540 5541 Instruction *I = Subset.front().first; 5542 5543 // If the next instruction is different, or if there are no other pairs, 5544 // emit a remark for the collated subset. e.g. 5545 // [(load, vf1), (load, vf2))] 5546 // to emit: 5547 // remark: invalid costs for 'load' at VF=(vf, vf2) 5548 if (Subset == Tail || Tail[Subset.size()].first != I) { 5549 std::string OutString; 5550 raw_string_ostream OS(OutString); 5551 assert(!Subset.empty() && "Unexpected empty range"); 5552 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5553 for (auto &Pair : Subset) 5554 OS << (Pair.second == Subset.front().second ? "" : ", ") 5555 << Pair.second; 5556 OS << "):"; 5557 if (auto *CI = dyn_cast<CallInst>(I)) 5558 OS << " call to " << CI->getCalledFunction()->getName(); 5559 else 5560 OS << " " << I->getOpcodeName(); 5561 OS.flush(); 5562 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5563 Tail = Tail.drop_front(Subset.size()); 5564 Subset = {}; 5565 } else 5566 // Grow the subset by one element 5567 Subset = Tail.take_front(Subset.size() + 1); 5568 } while (!Tail.empty()); 5569 } 5570 5571 if (!EnableCondStoresVectorization && NumPredStores) { 5572 reportVectorizationFailure("There are conditional stores.", 5573 "store that is conditionally executed prevents vectorization", 5574 "ConditionalStore", ORE, TheLoop); 5575 ChosenFactor = ScalarCost; 5576 } 5577 5578 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5579 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5580 << "LV: Vectorization seems to be not beneficial, " 5581 << "but was forced by a user.\n"); 5582 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5583 return ChosenFactor; 5584 } 5585 5586 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5587 const Loop &L, ElementCount VF) const { 5588 // Cross iteration phis such as reductions need special handling and are 5589 // currently unsupported. 5590 if (any_of(L.getHeader()->phis(), 5591 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5592 return false; 5593 5594 // Phis with uses outside of the loop require special handling and are 5595 // currently unsupported. 5596 for (auto &Entry : Legal->getInductionVars()) { 5597 // Look for uses of the value of the induction at the last iteration. 5598 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5599 for (User *U : PostInc->users()) 5600 if (!L.contains(cast<Instruction>(U))) 5601 return false; 5602 // Look for uses of penultimate value of the induction. 5603 for (User *U : Entry.first->users()) 5604 if (!L.contains(cast<Instruction>(U))) 5605 return false; 5606 } 5607 5608 // Induction variables that are widened require special handling that is 5609 // currently not supported. 5610 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5611 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5612 this->isProfitableToScalarize(Entry.first, VF)); 5613 })) 5614 return false; 5615 5616 // Epilogue vectorization code has not been auditted to ensure it handles 5617 // non-latch exits properly. It may be fine, but it needs auditted and 5618 // tested. 5619 if (L.getExitingBlock() != L.getLoopLatch()) 5620 return false; 5621 5622 return true; 5623 } 5624 5625 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5626 const ElementCount VF) const { 5627 // FIXME: We need a much better cost-model to take different parameters such 5628 // as register pressure, code size increase and cost of extra branches into 5629 // account. For now we apply a very crude heuristic and only consider loops 5630 // with vectorization factors larger than a certain value. 5631 // We also consider epilogue vectorization unprofitable for targets that don't 5632 // consider interleaving beneficial (eg. MVE). 5633 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5634 return false; 5635 // FIXME: We should consider changing the threshold for scalable 5636 // vectors to take VScaleForTuning into account. 5637 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5638 return true; 5639 return false; 5640 } 5641 5642 VectorizationFactor 5643 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5644 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5645 VectorizationFactor Result = VectorizationFactor::Disabled(); 5646 if (!EnableEpilogueVectorization) { 5647 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5648 return Result; 5649 } 5650 5651 if (!isScalarEpilogueAllowed()) { 5652 LLVM_DEBUG( 5653 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5654 "allowed.\n";); 5655 return Result; 5656 } 5657 5658 // Not really a cost consideration, but check for unsupported cases here to 5659 // simplify the logic. 5660 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5661 LLVM_DEBUG( 5662 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5663 "not a supported candidate.\n";); 5664 return Result; 5665 } 5666 5667 if (EpilogueVectorizationForceVF > 1) { 5668 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5669 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5670 if (LVP.hasPlanWithVF(ForcedEC)) 5671 return {ForcedEC, 0}; 5672 else { 5673 LLVM_DEBUG( 5674 dbgs() 5675 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5676 return Result; 5677 } 5678 } 5679 5680 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5681 TheLoop->getHeader()->getParent()->hasMinSize()) { 5682 LLVM_DEBUG( 5683 dbgs() 5684 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5685 return Result; 5686 } 5687 5688 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5689 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5690 "this loop\n"); 5691 return Result; 5692 } 5693 5694 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5695 // the main loop handles 8 lanes per iteration. We could still benefit from 5696 // vectorizing the epilogue loop with VF=4. 5697 ElementCount EstimatedRuntimeVF = MainLoopVF; 5698 if (MainLoopVF.isScalable()) { 5699 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5700 if (Optional<unsigned> VScale = getVScaleForTuning()) 5701 EstimatedRuntimeVF *= VScale.getValue(); 5702 } 5703 5704 for (auto &NextVF : ProfitableVFs) 5705 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5706 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5707 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5708 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5709 LVP.hasPlanWithVF(NextVF.Width)) 5710 Result = NextVF; 5711 5712 if (Result != VectorizationFactor::Disabled()) 5713 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5714 << Result.Width << "\n";); 5715 return Result; 5716 } 5717 5718 std::pair<unsigned, unsigned> 5719 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5720 unsigned MinWidth = -1U; 5721 unsigned MaxWidth = 8; 5722 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5723 // For in-loop reductions, no element types are added to ElementTypesInLoop 5724 // if there are no loads/stores in the loop. In this case, check through the 5725 // reduction variables to determine the maximum width. 5726 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5727 // Reset MaxWidth so that we can find the smallest type used by recurrences 5728 // in the loop. 5729 MaxWidth = -1U; 5730 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5731 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5732 // When finding the min width used by the recurrence we need to account 5733 // for casts on the input operands of the recurrence. 5734 MaxWidth = std::min<unsigned>( 5735 MaxWidth, std::min<unsigned>( 5736 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5737 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5738 } 5739 } else { 5740 for (Type *T : ElementTypesInLoop) { 5741 MinWidth = std::min<unsigned>( 5742 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5743 MaxWidth = std::max<unsigned>( 5744 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5745 } 5746 } 5747 return {MinWidth, MaxWidth}; 5748 } 5749 5750 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5751 ElementTypesInLoop.clear(); 5752 // For each block. 5753 for (BasicBlock *BB : TheLoop->blocks()) { 5754 // For each instruction in the loop. 5755 for (Instruction &I : BB->instructionsWithoutDebug()) { 5756 Type *T = I.getType(); 5757 5758 // Skip ignored values. 5759 if (ValuesToIgnore.count(&I)) 5760 continue; 5761 5762 // Only examine Loads, Stores and PHINodes. 5763 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5764 continue; 5765 5766 // Examine PHI nodes that are reduction variables. Update the type to 5767 // account for the recurrence type. 5768 if (auto *PN = dyn_cast<PHINode>(&I)) { 5769 if (!Legal->isReductionVariable(PN)) 5770 continue; 5771 const RecurrenceDescriptor &RdxDesc = 5772 Legal->getReductionVars().find(PN)->second; 5773 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5774 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5775 RdxDesc.getRecurrenceType(), 5776 TargetTransformInfo::ReductionFlags())) 5777 continue; 5778 T = RdxDesc.getRecurrenceType(); 5779 } 5780 5781 // Examine the stored values. 5782 if (auto *ST = dyn_cast<StoreInst>(&I)) 5783 T = ST->getValueOperand()->getType(); 5784 5785 assert(T->isSized() && 5786 "Expected the load/store/recurrence type to be sized"); 5787 5788 ElementTypesInLoop.insert(T); 5789 } 5790 } 5791 } 5792 5793 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5794 unsigned LoopCost) { 5795 // -- The interleave heuristics -- 5796 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5797 // There are many micro-architectural considerations that we can't predict 5798 // at this level. For example, frontend pressure (on decode or fetch) due to 5799 // code size, or the number and capabilities of the execution ports. 5800 // 5801 // We use the following heuristics to select the interleave count: 5802 // 1. If the code has reductions, then we interleave to break the cross 5803 // iteration dependency. 5804 // 2. If the loop is really small, then we interleave to reduce the loop 5805 // overhead. 5806 // 3. We don't interleave if we think that we will spill registers to memory 5807 // due to the increased register pressure. 5808 5809 if (!isScalarEpilogueAllowed()) 5810 return 1; 5811 5812 // We used the distance for the interleave count. 5813 if (Legal->getMaxSafeDepDistBytes() != -1U) 5814 return 1; 5815 5816 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5817 const bool HasReductions = !Legal->getReductionVars().empty(); 5818 // Do not interleave loops with a relatively small known or estimated trip 5819 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5820 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5821 // because with the above conditions interleaving can expose ILP and break 5822 // cross iteration dependences for reductions. 5823 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5824 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5825 return 1; 5826 5827 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5828 // We divide by these constants so assume that we have at least one 5829 // instruction that uses at least one register. 5830 for (auto& pair : R.MaxLocalUsers) { 5831 pair.second = std::max(pair.second, 1U); 5832 } 5833 5834 // We calculate the interleave count using the following formula. 5835 // Subtract the number of loop invariants from the number of available 5836 // registers. These registers are used by all of the interleaved instances. 5837 // Next, divide the remaining registers by the number of registers that is 5838 // required by the loop, in order to estimate how many parallel instances 5839 // fit without causing spills. All of this is rounded down if necessary to be 5840 // a power of two. We want power of two interleave count to simplify any 5841 // addressing operations or alignment considerations. 5842 // We also want power of two interleave counts to ensure that the induction 5843 // variable of the vector loop wraps to zero, when tail is folded by masking; 5844 // this currently happens when OptForSize, in which case IC is set to 1 above. 5845 unsigned IC = UINT_MAX; 5846 5847 for (auto& pair : R.MaxLocalUsers) { 5848 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5849 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5850 << " registers of " 5851 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5852 if (VF.isScalar()) { 5853 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5854 TargetNumRegisters = ForceTargetNumScalarRegs; 5855 } else { 5856 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5857 TargetNumRegisters = ForceTargetNumVectorRegs; 5858 } 5859 unsigned MaxLocalUsers = pair.second; 5860 unsigned LoopInvariantRegs = 0; 5861 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5862 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5863 5864 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5865 // Don't count the induction variable as interleaved. 5866 if (EnableIndVarRegisterHeur) { 5867 TmpIC = 5868 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5869 std::max(1U, (MaxLocalUsers - 1))); 5870 } 5871 5872 IC = std::min(IC, TmpIC); 5873 } 5874 5875 // Clamp the interleave ranges to reasonable counts. 5876 unsigned MaxInterleaveCount = 5877 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5878 5879 // Check if the user has overridden the max. 5880 if (VF.isScalar()) { 5881 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5882 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5883 } else { 5884 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5885 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5886 } 5887 5888 // If trip count is known or estimated compile time constant, limit the 5889 // interleave count to be less than the trip count divided by VF, provided it 5890 // is at least 1. 5891 // 5892 // For scalable vectors we can't know if interleaving is beneficial. It may 5893 // not be beneficial for small loops if none of the lanes in the second vector 5894 // iterations is enabled. However, for larger loops, there is likely to be a 5895 // similar benefit as for fixed-width vectors. For now, we choose to leave 5896 // the InterleaveCount as if vscale is '1', although if some information about 5897 // the vector is known (e.g. min vector size), we can make a better decision. 5898 if (BestKnownTC) { 5899 MaxInterleaveCount = 5900 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5901 // Make sure MaxInterleaveCount is greater than 0. 5902 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5903 } 5904 5905 assert(MaxInterleaveCount > 0 && 5906 "Maximum interleave count must be greater than 0"); 5907 5908 // Clamp the calculated IC to be between the 1 and the max interleave count 5909 // that the target and trip count allows. 5910 if (IC > MaxInterleaveCount) 5911 IC = MaxInterleaveCount; 5912 else 5913 // Make sure IC is greater than 0. 5914 IC = std::max(1u, IC); 5915 5916 assert(IC > 0 && "Interleave count must be greater than 0."); 5917 5918 // If we did not calculate the cost for VF (because the user selected the VF) 5919 // then we calculate the cost of VF here. 5920 if (LoopCost == 0) { 5921 InstructionCost C = expectedCost(VF).first; 5922 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 5923 LoopCost = *C.getValue(); 5924 } 5925 5926 assert(LoopCost && "Non-zero loop cost expected"); 5927 5928 // Interleave if we vectorized this loop and there is a reduction that could 5929 // benefit from interleaving. 5930 if (VF.isVector() && HasReductions) { 5931 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5932 return IC; 5933 } 5934 5935 // For any scalar loop that either requires runtime checks or predication we 5936 // are better off leaving this to the unroller. Note that if we've already 5937 // vectorized the loop we will have done the runtime check and so interleaving 5938 // won't require further checks. 5939 bool ScalarInterleavingRequiresPredication = 5940 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5941 return Legal->blockNeedsPredication(BB); 5942 })); 5943 bool ScalarInterleavingRequiresRuntimePointerCheck = 5944 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5945 5946 // We want to interleave small loops in order to reduce the loop overhead and 5947 // potentially expose ILP opportunities. 5948 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5949 << "LV: IC is " << IC << '\n' 5950 << "LV: VF is " << VF << '\n'); 5951 const bool AggressivelyInterleaveReductions = 5952 TTI.enableAggressiveInterleaving(HasReductions); 5953 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5954 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5955 // We assume that the cost overhead is 1 and we use the cost model 5956 // to estimate the cost of the loop and interleave until the cost of the 5957 // loop overhead is about 5% of the cost of the loop. 5958 unsigned SmallIC = 5959 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5960 5961 // Interleave until store/load ports (estimated by max interleave count) are 5962 // saturated. 5963 unsigned NumStores = Legal->getNumStores(); 5964 unsigned NumLoads = Legal->getNumLoads(); 5965 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5966 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5967 5968 // There is little point in interleaving for reductions containing selects 5969 // and compares when VF=1 since it may just create more overhead than it's 5970 // worth for loops with small trip counts. This is because we still have to 5971 // do the final reduction after the loop. 5972 bool HasSelectCmpReductions = 5973 HasReductions && 5974 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5975 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5976 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 5977 RdxDesc.getRecurrenceKind()); 5978 }); 5979 if (HasSelectCmpReductions) { 5980 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5981 return 1; 5982 } 5983 5984 // If we have a scalar reduction (vector reductions are already dealt with 5985 // by this point), we can increase the critical path length if the loop 5986 // we're interleaving is inside another loop. For tree-wise reductions 5987 // set the limit to 2, and for ordered reductions it's best to disable 5988 // interleaving entirely. 5989 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5990 bool HasOrderedReductions = 5991 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5992 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5993 return RdxDesc.isOrdered(); 5994 }); 5995 if (HasOrderedReductions) { 5996 LLVM_DEBUG( 5997 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5998 return 1; 5999 } 6000 6001 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6002 SmallIC = std::min(SmallIC, F); 6003 StoresIC = std::min(StoresIC, F); 6004 LoadsIC = std::min(LoadsIC, F); 6005 } 6006 6007 if (EnableLoadStoreRuntimeInterleave && 6008 std::max(StoresIC, LoadsIC) > SmallIC) { 6009 LLVM_DEBUG( 6010 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6011 return std::max(StoresIC, LoadsIC); 6012 } 6013 6014 // If there are scalar reductions and TTI has enabled aggressive 6015 // interleaving for reductions, we will interleave to expose ILP. 6016 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6017 AggressivelyInterleaveReductions) { 6018 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6019 // Interleave no less than SmallIC but not as aggressive as the normal IC 6020 // to satisfy the rare situation when resources are too limited. 6021 return std::max(IC / 2, SmallIC); 6022 } else { 6023 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6024 return SmallIC; 6025 } 6026 } 6027 6028 // Interleave if this is a large loop (small loops are already dealt with by 6029 // this point) that could benefit from interleaving. 6030 if (AggressivelyInterleaveReductions) { 6031 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6032 return IC; 6033 } 6034 6035 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6036 return 1; 6037 } 6038 6039 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6040 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6041 // This function calculates the register usage by measuring the highest number 6042 // of values that are alive at a single location. Obviously, this is a very 6043 // rough estimation. We scan the loop in a topological order in order and 6044 // assign a number to each instruction. We use RPO to ensure that defs are 6045 // met before their users. We assume that each instruction that has in-loop 6046 // users starts an interval. We record every time that an in-loop value is 6047 // used, so we have a list of the first and last occurrences of each 6048 // instruction. Next, we transpose this data structure into a multi map that 6049 // holds the list of intervals that *end* at a specific location. This multi 6050 // map allows us to perform a linear search. We scan the instructions linearly 6051 // and record each time that a new interval starts, by placing it in a set. 6052 // If we find this value in the multi-map then we remove it from the set. 6053 // The max register usage is the maximum size of the set. 6054 // We also search for instructions that are defined outside the loop, but are 6055 // used inside the loop. We need this number separately from the max-interval 6056 // usage number because when we unroll, loop-invariant values do not take 6057 // more register. 6058 LoopBlocksDFS DFS(TheLoop); 6059 DFS.perform(LI); 6060 6061 RegisterUsage RU; 6062 6063 // Each 'key' in the map opens a new interval. The values 6064 // of the map are the index of the 'last seen' usage of the 6065 // instruction that is the key. 6066 using IntervalMap = DenseMap<Instruction *, unsigned>; 6067 6068 // Maps instruction to its index. 6069 SmallVector<Instruction *, 64> IdxToInstr; 6070 // Marks the end of each interval. 6071 IntervalMap EndPoint; 6072 // Saves the list of instruction indices that are used in the loop. 6073 SmallPtrSet<Instruction *, 8> Ends; 6074 // Saves the list of values that are used in the loop but are 6075 // defined outside the loop, such as arguments and constants. 6076 SmallPtrSet<Value *, 8> LoopInvariants; 6077 6078 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6079 for (Instruction &I : BB->instructionsWithoutDebug()) { 6080 IdxToInstr.push_back(&I); 6081 6082 // Save the end location of each USE. 6083 for (Value *U : I.operands()) { 6084 auto *Instr = dyn_cast<Instruction>(U); 6085 6086 // Ignore non-instruction values such as arguments, constants, etc. 6087 if (!Instr) 6088 continue; 6089 6090 // If this instruction is outside the loop then record it and continue. 6091 if (!TheLoop->contains(Instr)) { 6092 LoopInvariants.insert(Instr); 6093 continue; 6094 } 6095 6096 // Overwrite previous end points. 6097 EndPoint[Instr] = IdxToInstr.size(); 6098 Ends.insert(Instr); 6099 } 6100 } 6101 } 6102 6103 // Saves the list of intervals that end with the index in 'key'. 6104 using InstrList = SmallVector<Instruction *, 2>; 6105 DenseMap<unsigned, InstrList> TransposeEnds; 6106 6107 // Transpose the EndPoints to a list of values that end at each index. 6108 for (auto &Interval : EndPoint) 6109 TransposeEnds[Interval.second].push_back(Interval.first); 6110 6111 SmallPtrSet<Instruction *, 8> OpenIntervals; 6112 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6113 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6114 6115 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6116 6117 // A lambda that gets the register usage for the given type and VF. 6118 const auto &TTICapture = TTI; 6119 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6120 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6121 return 0; 6122 InstructionCost::CostType RegUsage = 6123 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6124 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6125 "Nonsensical values for register usage."); 6126 return RegUsage; 6127 }; 6128 6129 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6130 Instruction *I = IdxToInstr[i]; 6131 6132 // Remove all of the instructions that end at this location. 6133 InstrList &List = TransposeEnds[i]; 6134 for (Instruction *ToRemove : List) 6135 OpenIntervals.erase(ToRemove); 6136 6137 // Ignore instructions that are never used within the loop. 6138 if (!Ends.count(I)) 6139 continue; 6140 6141 // Skip ignored values. 6142 if (ValuesToIgnore.count(I)) 6143 continue; 6144 6145 // For each VF find the maximum usage of registers. 6146 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6147 // Count the number of live intervals. 6148 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6149 6150 if (VFs[j].isScalar()) { 6151 for (auto Inst : OpenIntervals) { 6152 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6153 if (RegUsage.find(ClassID) == RegUsage.end()) 6154 RegUsage[ClassID] = 1; 6155 else 6156 RegUsage[ClassID] += 1; 6157 } 6158 } else { 6159 collectUniformsAndScalars(VFs[j]); 6160 for (auto Inst : OpenIntervals) { 6161 // Skip ignored values for VF > 1. 6162 if (VecValuesToIgnore.count(Inst)) 6163 continue; 6164 if (isScalarAfterVectorization(Inst, VFs[j])) { 6165 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6166 if (RegUsage.find(ClassID) == RegUsage.end()) 6167 RegUsage[ClassID] = 1; 6168 else 6169 RegUsage[ClassID] += 1; 6170 } else { 6171 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6172 if (RegUsage.find(ClassID) == RegUsage.end()) 6173 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6174 else 6175 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6176 } 6177 } 6178 } 6179 6180 for (auto& pair : RegUsage) { 6181 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6182 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6183 else 6184 MaxUsages[j][pair.first] = pair.second; 6185 } 6186 } 6187 6188 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6189 << OpenIntervals.size() << '\n'); 6190 6191 // Add the current instruction to the list of open intervals. 6192 OpenIntervals.insert(I); 6193 } 6194 6195 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6196 SmallMapVector<unsigned, unsigned, 4> Invariant; 6197 6198 for (auto Inst : LoopInvariants) { 6199 unsigned Usage = 6200 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6201 unsigned ClassID = 6202 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6203 if (Invariant.find(ClassID) == Invariant.end()) 6204 Invariant[ClassID] = Usage; 6205 else 6206 Invariant[ClassID] += Usage; 6207 } 6208 6209 LLVM_DEBUG({ 6210 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6211 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6212 << " item\n"; 6213 for (const auto &pair : MaxUsages[i]) { 6214 dbgs() << "LV(REG): RegisterClass: " 6215 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6216 << " registers\n"; 6217 } 6218 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6219 << " item\n"; 6220 for (const auto &pair : Invariant) { 6221 dbgs() << "LV(REG): RegisterClass: " 6222 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6223 << " registers\n"; 6224 } 6225 }); 6226 6227 RU.LoopInvariantRegs = Invariant; 6228 RU.MaxLocalUsers = MaxUsages[i]; 6229 RUs[i] = RU; 6230 } 6231 6232 return RUs; 6233 } 6234 6235 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6236 ElementCount VF) { 6237 // TODO: Cost model for emulated masked load/store is completely 6238 // broken. This hack guides the cost model to use an artificially 6239 // high enough value to practically disable vectorization with such 6240 // operations, except where previously deployed legality hack allowed 6241 // using very low cost values. This is to avoid regressions coming simply 6242 // from moving "masked load/store" check from legality to cost model. 6243 // Masked Load/Gather emulation was previously never allowed. 6244 // Limited number of Masked Store/Scatter emulation was allowed. 6245 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6246 return isa<LoadInst>(I) || 6247 (isa<StoreInst>(I) && 6248 NumPredStores > NumberOfStoresToPredicate); 6249 } 6250 6251 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6252 // If we aren't vectorizing the loop, or if we've already collected the 6253 // instructions to scalarize, there's nothing to do. Collection may already 6254 // have occurred if we have a user-selected VF and are now computing the 6255 // expected cost for interleaving. 6256 if (VF.isScalar() || VF.isZero() || 6257 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6258 return; 6259 6260 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6261 // not profitable to scalarize any instructions, the presence of VF in the 6262 // map will indicate that we've analyzed it already. 6263 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6264 6265 // Find all the instructions that are scalar with predication in the loop and 6266 // determine if it would be better to not if-convert the blocks they are in. 6267 // If so, we also record the instructions to scalarize. 6268 for (BasicBlock *BB : TheLoop->blocks()) { 6269 if (!blockNeedsPredicationForAnyReason(BB)) 6270 continue; 6271 for (Instruction &I : *BB) 6272 if (isScalarWithPredication(&I, VF)) { 6273 ScalarCostsTy ScalarCosts; 6274 // Do not apply discount if scalable, because that would lead to 6275 // invalid scalarization costs. 6276 // Do not apply discount logic if hacked cost is needed 6277 // for emulated masked memrefs. 6278 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6279 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6280 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6281 // Remember that BB will remain after vectorization. 6282 PredicatedBBsAfterVectorization.insert(BB); 6283 } 6284 } 6285 } 6286 6287 int LoopVectorizationCostModel::computePredInstDiscount( 6288 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6289 assert(!isUniformAfterVectorization(PredInst, VF) && 6290 "Instruction marked uniform-after-vectorization will be predicated"); 6291 6292 // Initialize the discount to zero, meaning that the scalar version and the 6293 // vector version cost the same. 6294 InstructionCost Discount = 0; 6295 6296 // Holds instructions to analyze. The instructions we visit are mapped in 6297 // ScalarCosts. Those instructions are the ones that would be scalarized if 6298 // we find that the scalar version costs less. 6299 SmallVector<Instruction *, 8> Worklist; 6300 6301 // Returns true if the given instruction can be scalarized. 6302 auto canBeScalarized = [&](Instruction *I) -> bool { 6303 // We only attempt to scalarize instructions forming a single-use chain 6304 // from the original predicated block that would otherwise be vectorized. 6305 // Although not strictly necessary, we give up on instructions we know will 6306 // already be scalar to avoid traversing chains that are unlikely to be 6307 // beneficial. 6308 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6309 isScalarAfterVectorization(I, VF)) 6310 return false; 6311 6312 // If the instruction is scalar with predication, it will be analyzed 6313 // separately. We ignore it within the context of PredInst. 6314 if (isScalarWithPredication(I, VF)) 6315 return false; 6316 6317 // If any of the instruction's operands are uniform after vectorization, 6318 // the instruction cannot be scalarized. This prevents, for example, a 6319 // masked load from being scalarized. 6320 // 6321 // We assume we will only emit a value for lane zero of an instruction 6322 // marked uniform after vectorization, rather than VF identical values. 6323 // Thus, if we scalarize an instruction that uses a uniform, we would 6324 // create uses of values corresponding to the lanes we aren't emitting code 6325 // for. This behavior can be changed by allowing getScalarValue to clone 6326 // the lane zero values for uniforms rather than asserting. 6327 for (Use &U : I->operands()) 6328 if (auto *J = dyn_cast<Instruction>(U.get())) 6329 if (isUniformAfterVectorization(J, VF)) 6330 return false; 6331 6332 // Otherwise, we can scalarize the instruction. 6333 return true; 6334 }; 6335 6336 // Compute the expected cost discount from scalarizing the entire expression 6337 // feeding the predicated instruction. We currently only consider expressions 6338 // that are single-use instruction chains. 6339 Worklist.push_back(PredInst); 6340 while (!Worklist.empty()) { 6341 Instruction *I = Worklist.pop_back_val(); 6342 6343 // If we've already analyzed the instruction, there's nothing to do. 6344 if (ScalarCosts.find(I) != ScalarCosts.end()) 6345 continue; 6346 6347 // Compute the cost of the vector instruction. Note that this cost already 6348 // includes the scalarization overhead of the predicated instruction. 6349 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6350 6351 // Compute the cost of the scalarized instruction. This cost is the cost of 6352 // the instruction as if it wasn't if-converted and instead remained in the 6353 // predicated block. We will scale this cost by block probability after 6354 // computing the scalarization overhead. 6355 InstructionCost ScalarCost = 6356 VF.getFixedValue() * 6357 getInstructionCost(I, ElementCount::getFixed(1)).first; 6358 6359 // Compute the scalarization overhead of needed insertelement instructions 6360 // and phi nodes. 6361 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6362 ScalarCost += TTI.getScalarizationOverhead( 6363 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6364 APInt::getAllOnes(VF.getFixedValue()), true, false); 6365 ScalarCost += 6366 VF.getFixedValue() * 6367 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6368 } 6369 6370 // Compute the scalarization overhead of needed extractelement 6371 // instructions. For each of the instruction's operands, if the operand can 6372 // be scalarized, add it to the worklist; otherwise, account for the 6373 // overhead. 6374 for (Use &U : I->operands()) 6375 if (auto *J = dyn_cast<Instruction>(U.get())) { 6376 assert(VectorType::isValidElementType(J->getType()) && 6377 "Instruction has non-scalar type"); 6378 if (canBeScalarized(J)) 6379 Worklist.push_back(J); 6380 else if (needsExtract(J, VF)) { 6381 ScalarCost += TTI.getScalarizationOverhead( 6382 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6383 APInt::getAllOnes(VF.getFixedValue()), false, true); 6384 } 6385 } 6386 6387 // Scale the total scalar cost by block probability. 6388 ScalarCost /= getReciprocalPredBlockProb(); 6389 6390 // Compute the discount. A non-negative discount means the vector version 6391 // of the instruction costs more, and scalarizing would be beneficial. 6392 Discount += VectorCost - ScalarCost; 6393 ScalarCosts[I] = ScalarCost; 6394 } 6395 6396 return *Discount.getValue(); 6397 } 6398 6399 LoopVectorizationCostModel::VectorizationCostTy 6400 LoopVectorizationCostModel::expectedCost( 6401 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6402 VectorizationCostTy Cost; 6403 6404 // For each block. 6405 for (BasicBlock *BB : TheLoop->blocks()) { 6406 VectorizationCostTy BlockCost; 6407 6408 // For each instruction in the old loop. 6409 for (Instruction &I : BB->instructionsWithoutDebug()) { 6410 // Skip ignored values. 6411 if (ValuesToIgnore.count(&I) || 6412 (VF.isVector() && VecValuesToIgnore.count(&I))) 6413 continue; 6414 6415 VectorizationCostTy C = getInstructionCost(&I, VF); 6416 6417 // Check if we should override the cost. 6418 if (C.first.isValid() && 6419 ForceTargetInstructionCost.getNumOccurrences() > 0) 6420 C.first = InstructionCost(ForceTargetInstructionCost); 6421 6422 // Keep a list of instructions with invalid costs. 6423 if (Invalid && !C.first.isValid()) 6424 Invalid->emplace_back(&I, VF); 6425 6426 BlockCost.first += C.first; 6427 BlockCost.second |= C.second; 6428 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6429 << " for VF " << VF << " For instruction: " << I 6430 << '\n'); 6431 } 6432 6433 // If we are vectorizing a predicated block, it will have been 6434 // if-converted. This means that the block's instructions (aside from 6435 // stores and instructions that may divide by zero) will now be 6436 // unconditionally executed. For the scalar case, we may not always execute 6437 // the predicated block, if it is an if-else block. Thus, scale the block's 6438 // cost by the probability of executing it. blockNeedsPredication from 6439 // Legal is used so as to not include all blocks in tail folded loops. 6440 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6441 BlockCost.first /= getReciprocalPredBlockProb(); 6442 6443 Cost.first += BlockCost.first; 6444 Cost.second |= BlockCost.second; 6445 } 6446 6447 return Cost; 6448 } 6449 6450 /// Gets Address Access SCEV after verifying that the access pattern 6451 /// is loop invariant except the induction variable dependence. 6452 /// 6453 /// This SCEV can be sent to the Target in order to estimate the address 6454 /// calculation cost. 6455 static const SCEV *getAddressAccessSCEV( 6456 Value *Ptr, 6457 LoopVectorizationLegality *Legal, 6458 PredicatedScalarEvolution &PSE, 6459 const Loop *TheLoop) { 6460 6461 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6462 if (!Gep) 6463 return nullptr; 6464 6465 // We are looking for a gep with all loop invariant indices except for one 6466 // which should be an induction variable. 6467 auto SE = PSE.getSE(); 6468 unsigned NumOperands = Gep->getNumOperands(); 6469 for (unsigned i = 1; i < NumOperands; ++i) { 6470 Value *Opd = Gep->getOperand(i); 6471 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6472 !Legal->isInductionVariable(Opd)) 6473 return nullptr; 6474 } 6475 6476 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6477 return PSE.getSCEV(Ptr); 6478 } 6479 6480 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6481 return Legal->hasStride(I->getOperand(0)) || 6482 Legal->hasStride(I->getOperand(1)); 6483 } 6484 6485 InstructionCost 6486 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6487 ElementCount VF) { 6488 assert(VF.isVector() && 6489 "Scalarization cost of instruction implies vectorization."); 6490 if (VF.isScalable()) 6491 return InstructionCost::getInvalid(); 6492 6493 Type *ValTy = getLoadStoreType(I); 6494 auto SE = PSE.getSE(); 6495 6496 unsigned AS = getLoadStoreAddressSpace(I); 6497 Value *Ptr = getLoadStorePointerOperand(I); 6498 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6499 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6500 // that it is being called from this specific place. 6501 6502 // Figure out whether the access is strided and get the stride value 6503 // if it's known in compile time 6504 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6505 6506 // Get the cost of the scalar memory instruction and address computation. 6507 InstructionCost Cost = 6508 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6509 6510 // Don't pass *I here, since it is scalar but will actually be part of a 6511 // vectorized loop where the user of it is a vectorized instruction. 6512 const Align Alignment = getLoadStoreAlignment(I); 6513 Cost += VF.getKnownMinValue() * 6514 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6515 AS, TTI::TCK_RecipThroughput); 6516 6517 // Get the overhead of the extractelement and insertelement instructions 6518 // we might create due to scalarization. 6519 Cost += getScalarizationOverhead(I, VF); 6520 6521 // If we have a predicated load/store, it will need extra i1 extracts and 6522 // conditional branches, but may not be executed for each vector lane. Scale 6523 // the cost by the probability of executing the predicated block. 6524 if (isPredicatedInst(I, VF)) { 6525 Cost /= getReciprocalPredBlockProb(); 6526 6527 // Add the cost of an i1 extract and a branch 6528 auto *Vec_i1Ty = 6529 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6530 Cost += TTI.getScalarizationOverhead( 6531 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6532 /*Insert=*/false, /*Extract=*/true); 6533 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6534 6535 if (useEmulatedMaskMemRefHack(I, VF)) 6536 // Artificially setting to a high enough value to practically disable 6537 // vectorization with such operations. 6538 Cost = 3000000; 6539 } 6540 6541 return Cost; 6542 } 6543 6544 InstructionCost 6545 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6546 ElementCount VF) { 6547 Type *ValTy = getLoadStoreType(I); 6548 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6549 Value *Ptr = getLoadStorePointerOperand(I); 6550 unsigned AS = getLoadStoreAddressSpace(I); 6551 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6552 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6553 6554 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6555 "Stride should be 1 or -1 for consecutive memory access"); 6556 const Align Alignment = getLoadStoreAlignment(I); 6557 InstructionCost Cost = 0; 6558 if (Legal->isMaskRequired(I)) 6559 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6560 CostKind); 6561 else 6562 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6563 CostKind, I); 6564 6565 bool Reverse = ConsecutiveStride < 0; 6566 if (Reverse) 6567 Cost += 6568 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6569 return Cost; 6570 } 6571 6572 InstructionCost 6573 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6574 ElementCount VF) { 6575 assert(Legal->isUniformMemOp(*I)); 6576 6577 Type *ValTy = getLoadStoreType(I); 6578 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6579 const Align Alignment = getLoadStoreAlignment(I); 6580 unsigned AS = getLoadStoreAddressSpace(I); 6581 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6582 if (isa<LoadInst>(I)) { 6583 return TTI.getAddressComputationCost(ValTy) + 6584 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6585 CostKind) + 6586 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6587 } 6588 StoreInst *SI = cast<StoreInst>(I); 6589 6590 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6591 return TTI.getAddressComputationCost(ValTy) + 6592 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6593 CostKind) + 6594 (isLoopInvariantStoreValue 6595 ? 0 6596 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6597 VF.getKnownMinValue() - 1)); 6598 } 6599 6600 InstructionCost 6601 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6602 ElementCount VF) { 6603 Type *ValTy = getLoadStoreType(I); 6604 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6605 const Align Alignment = getLoadStoreAlignment(I); 6606 const Value *Ptr = getLoadStorePointerOperand(I); 6607 6608 return TTI.getAddressComputationCost(VectorTy) + 6609 TTI.getGatherScatterOpCost( 6610 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6611 TargetTransformInfo::TCK_RecipThroughput, I); 6612 } 6613 6614 InstructionCost 6615 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6616 ElementCount VF) { 6617 // TODO: Once we have support for interleaving with scalable vectors 6618 // we can calculate the cost properly here. 6619 if (VF.isScalable()) 6620 return InstructionCost::getInvalid(); 6621 6622 Type *ValTy = getLoadStoreType(I); 6623 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6624 unsigned AS = getLoadStoreAddressSpace(I); 6625 6626 auto Group = getInterleavedAccessGroup(I); 6627 assert(Group && "Fail to get an interleaved access group."); 6628 6629 unsigned InterleaveFactor = Group->getFactor(); 6630 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6631 6632 // Holds the indices of existing members in the interleaved group. 6633 SmallVector<unsigned, 4> Indices; 6634 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6635 if (Group->getMember(IF)) 6636 Indices.push_back(IF); 6637 6638 // Calculate the cost of the whole interleaved group. 6639 bool UseMaskForGaps = 6640 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6641 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6642 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6643 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6644 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6645 6646 if (Group->isReverse()) { 6647 // TODO: Add support for reversed masked interleaved access. 6648 assert(!Legal->isMaskRequired(I) && 6649 "Reverse masked interleaved access not supported."); 6650 Cost += 6651 Group->getNumMembers() * 6652 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6653 } 6654 return Cost; 6655 } 6656 6657 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6658 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6659 using namespace llvm::PatternMatch; 6660 // Early exit for no inloop reductions 6661 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6662 return None; 6663 auto *VectorTy = cast<VectorType>(Ty); 6664 6665 // We are looking for a pattern of, and finding the minimal acceptable cost: 6666 // reduce(mul(ext(A), ext(B))) or 6667 // reduce(mul(A, B)) or 6668 // reduce(ext(A)) or 6669 // reduce(A). 6670 // The basic idea is that we walk down the tree to do that, finding the root 6671 // reduction instruction in InLoopReductionImmediateChains. From there we find 6672 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6673 // of the components. If the reduction cost is lower then we return it for the 6674 // reduction instruction and 0 for the other instructions in the pattern. If 6675 // it is not we return an invalid cost specifying the orignal cost method 6676 // should be used. 6677 Instruction *RetI = I; 6678 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6679 if (!RetI->hasOneUser()) 6680 return None; 6681 RetI = RetI->user_back(); 6682 } 6683 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6684 RetI->user_back()->getOpcode() == Instruction::Add) { 6685 if (!RetI->hasOneUser()) 6686 return None; 6687 RetI = RetI->user_back(); 6688 } 6689 6690 // Test if the found instruction is a reduction, and if not return an invalid 6691 // cost specifying the parent to use the original cost modelling. 6692 if (!InLoopReductionImmediateChains.count(RetI)) 6693 return None; 6694 6695 // Find the reduction this chain is a part of and calculate the basic cost of 6696 // the reduction on its own. 6697 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6698 Instruction *ReductionPhi = LastChain; 6699 while (!isa<PHINode>(ReductionPhi)) 6700 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6701 6702 const RecurrenceDescriptor &RdxDesc = 6703 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6704 6705 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6706 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6707 6708 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6709 // normal fmul instruction to the cost of the fadd reduction. 6710 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6711 BaseCost += 6712 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6713 6714 // If we're using ordered reductions then we can just return the base cost 6715 // here, since getArithmeticReductionCost calculates the full ordered 6716 // reduction cost when FP reassociation is not allowed. 6717 if (useOrderedReductions(RdxDesc)) 6718 return BaseCost; 6719 6720 // Get the operand that was not the reduction chain and match it to one of the 6721 // patterns, returning the better cost if it is found. 6722 Instruction *RedOp = RetI->getOperand(1) == LastChain 6723 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6724 : dyn_cast<Instruction>(RetI->getOperand(1)); 6725 6726 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6727 6728 Instruction *Op0, *Op1; 6729 if (RedOp && 6730 match(RedOp, 6731 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6732 match(Op0, m_ZExtOrSExt(m_Value())) && 6733 Op0->getOpcode() == Op1->getOpcode() && 6734 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6735 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6736 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6737 6738 // Matched reduce(ext(mul(ext(A), ext(B))) 6739 // Note that the extend opcodes need to all match, or if A==B they will have 6740 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6741 // which is equally fine. 6742 bool IsUnsigned = isa<ZExtInst>(Op0); 6743 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6744 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6745 6746 InstructionCost ExtCost = 6747 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6748 TTI::CastContextHint::None, CostKind, Op0); 6749 InstructionCost MulCost = 6750 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6751 InstructionCost Ext2Cost = 6752 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6753 TTI::CastContextHint::None, CostKind, RedOp); 6754 6755 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6756 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6757 CostKind); 6758 6759 if (RedCost.isValid() && 6760 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6761 return I == RetI ? RedCost : 0; 6762 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6763 !TheLoop->isLoopInvariant(RedOp)) { 6764 // Matched reduce(ext(A)) 6765 bool IsUnsigned = isa<ZExtInst>(RedOp); 6766 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6767 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6768 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6769 CostKind); 6770 6771 InstructionCost ExtCost = 6772 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6773 TTI::CastContextHint::None, CostKind, RedOp); 6774 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6775 return I == RetI ? RedCost : 0; 6776 } else if (RedOp && 6777 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6778 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6779 Op0->getOpcode() == Op1->getOpcode() && 6780 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6781 bool IsUnsigned = isa<ZExtInst>(Op0); 6782 Type *Op0Ty = Op0->getOperand(0)->getType(); 6783 Type *Op1Ty = Op1->getOperand(0)->getType(); 6784 Type *LargestOpTy = 6785 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6786 : Op0Ty; 6787 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6788 6789 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6790 // different sizes. We take the largest type as the ext to reduce, and add 6791 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6792 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6793 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6794 TTI::CastContextHint::None, CostKind, Op0); 6795 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6796 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6797 TTI::CastContextHint::None, CostKind, Op1); 6798 InstructionCost MulCost = 6799 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6800 6801 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6802 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6803 CostKind); 6804 InstructionCost ExtraExtCost = 0; 6805 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6806 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6807 ExtraExtCost = TTI.getCastInstrCost( 6808 ExtraExtOp->getOpcode(), ExtType, 6809 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6810 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6811 } 6812 6813 if (RedCost.isValid() && 6814 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6815 return I == RetI ? RedCost : 0; 6816 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6817 // Matched reduce(mul()) 6818 InstructionCost MulCost = 6819 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6820 6821 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6822 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6823 CostKind); 6824 6825 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6826 return I == RetI ? RedCost : 0; 6827 } 6828 } 6829 6830 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 6831 } 6832 6833 InstructionCost 6834 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6835 ElementCount VF) { 6836 // Calculate scalar cost only. Vectorization cost should be ready at this 6837 // moment. 6838 if (VF.isScalar()) { 6839 Type *ValTy = getLoadStoreType(I); 6840 const Align Alignment = getLoadStoreAlignment(I); 6841 unsigned AS = getLoadStoreAddressSpace(I); 6842 6843 return TTI.getAddressComputationCost(ValTy) + 6844 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6845 TTI::TCK_RecipThroughput, I); 6846 } 6847 return getWideningCost(I, VF); 6848 } 6849 6850 LoopVectorizationCostModel::VectorizationCostTy 6851 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6852 ElementCount VF) { 6853 // If we know that this instruction will remain uniform, check the cost of 6854 // the scalar version. 6855 if (isUniformAfterVectorization(I, VF)) 6856 VF = ElementCount::getFixed(1); 6857 6858 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6859 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6860 6861 // Forced scalars do not have any scalarization overhead. 6862 auto ForcedScalar = ForcedScalars.find(VF); 6863 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6864 auto InstSet = ForcedScalar->second; 6865 if (InstSet.count(I)) 6866 return VectorizationCostTy( 6867 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6868 VF.getKnownMinValue()), 6869 false); 6870 } 6871 6872 Type *VectorTy; 6873 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6874 6875 bool TypeNotScalarized = false; 6876 if (VF.isVector() && VectorTy->isVectorTy()) { 6877 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 6878 if (NumParts) 6879 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 6880 else 6881 C = InstructionCost::getInvalid(); 6882 } 6883 return VectorizationCostTy(C, TypeNotScalarized); 6884 } 6885 6886 InstructionCost 6887 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6888 ElementCount VF) const { 6889 6890 // There is no mechanism yet to create a scalable scalarization loop, 6891 // so this is currently Invalid. 6892 if (VF.isScalable()) 6893 return InstructionCost::getInvalid(); 6894 6895 if (VF.isScalar()) 6896 return 0; 6897 6898 InstructionCost Cost = 0; 6899 Type *RetTy = ToVectorTy(I->getType(), VF); 6900 if (!RetTy->isVoidTy() && 6901 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6902 Cost += TTI.getScalarizationOverhead( 6903 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 6904 false); 6905 6906 // Some targets keep addresses scalar. 6907 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6908 return Cost; 6909 6910 // Some targets support efficient element stores. 6911 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6912 return Cost; 6913 6914 // Collect operands to consider. 6915 CallInst *CI = dyn_cast<CallInst>(I); 6916 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6917 6918 // Skip operands that do not require extraction/scalarization and do not incur 6919 // any overhead. 6920 SmallVector<Type *> Tys; 6921 for (auto *V : filterExtractingOperands(Ops, VF)) 6922 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 6923 return Cost + TTI.getOperandsScalarizationOverhead( 6924 filterExtractingOperands(Ops, VF), Tys); 6925 } 6926 6927 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6928 if (VF.isScalar()) 6929 return; 6930 NumPredStores = 0; 6931 for (BasicBlock *BB : TheLoop->blocks()) { 6932 // For each instruction in the old loop. 6933 for (Instruction &I : *BB) { 6934 Value *Ptr = getLoadStorePointerOperand(&I); 6935 if (!Ptr) 6936 continue; 6937 6938 // TODO: We should generate better code and update the cost model for 6939 // predicated uniform stores. Today they are treated as any other 6940 // predicated store (see added test cases in 6941 // invariant-store-vectorization.ll). 6942 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6943 NumPredStores++; 6944 6945 if (Legal->isUniformMemOp(I)) { 6946 // TODO: Avoid replicating loads and stores instead of 6947 // relying on instcombine to remove them. 6948 // Load: Scalar load + broadcast 6949 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6950 InstructionCost Cost; 6951 if (isa<StoreInst>(&I) && VF.isScalable() && 6952 isLegalGatherOrScatter(&I, VF)) { 6953 Cost = getGatherScatterCost(&I, VF); 6954 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 6955 } else { 6956 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 6957 "Cannot yet scalarize uniform stores"); 6958 Cost = getUniformMemOpCost(&I, VF); 6959 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6960 } 6961 continue; 6962 } 6963 6964 // We assume that widening is the best solution when possible. 6965 if (memoryInstructionCanBeWidened(&I, VF)) { 6966 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6967 int ConsecutiveStride = Legal->isConsecutivePtr( 6968 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6969 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6970 "Expected consecutive stride."); 6971 InstWidening Decision = 6972 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6973 setWideningDecision(&I, VF, Decision, Cost); 6974 continue; 6975 } 6976 6977 // Choose between Interleaving, Gather/Scatter or Scalarization. 6978 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6979 unsigned NumAccesses = 1; 6980 if (isAccessInterleaved(&I)) { 6981 auto Group = getInterleavedAccessGroup(&I); 6982 assert(Group && "Fail to get an interleaved access group."); 6983 6984 // Make one decision for the whole group. 6985 if (getWideningDecision(&I, VF) != CM_Unknown) 6986 continue; 6987 6988 NumAccesses = Group->getNumMembers(); 6989 if (interleavedAccessCanBeWidened(&I, VF)) 6990 InterleaveCost = getInterleaveGroupCost(&I, VF); 6991 } 6992 6993 InstructionCost GatherScatterCost = 6994 isLegalGatherOrScatter(&I, VF) 6995 ? getGatherScatterCost(&I, VF) * NumAccesses 6996 : InstructionCost::getInvalid(); 6997 6998 InstructionCost ScalarizationCost = 6999 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7000 7001 // Choose better solution for the current VF, 7002 // write down this decision and use it during vectorization. 7003 InstructionCost Cost; 7004 InstWidening Decision; 7005 if (InterleaveCost <= GatherScatterCost && 7006 InterleaveCost < ScalarizationCost) { 7007 Decision = CM_Interleave; 7008 Cost = InterleaveCost; 7009 } else if (GatherScatterCost < ScalarizationCost) { 7010 Decision = CM_GatherScatter; 7011 Cost = GatherScatterCost; 7012 } else { 7013 Decision = CM_Scalarize; 7014 Cost = ScalarizationCost; 7015 } 7016 // If the instructions belongs to an interleave group, the whole group 7017 // receives the same decision. The whole group receives the cost, but 7018 // the cost will actually be assigned to one instruction. 7019 if (auto Group = getInterleavedAccessGroup(&I)) 7020 setWideningDecision(Group, VF, Decision, Cost); 7021 else 7022 setWideningDecision(&I, VF, Decision, Cost); 7023 } 7024 } 7025 7026 // Make sure that any load of address and any other address computation 7027 // remains scalar unless there is gather/scatter support. This avoids 7028 // inevitable extracts into address registers, and also has the benefit of 7029 // activating LSR more, since that pass can't optimize vectorized 7030 // addresses. 7031 if (TTI.prefersVectorizedAddressing()) 7032 return; 7033 7034 // Start with all scalar pointer uses. 7035 SmallPtrSet<Instruction *, 8> AddrDefs; 7036 for (BasicBlock *BB : TheLoop->blocks()) 7037 for (Instruction &I : *BB) { 7038 Instruction *PtrDef = 7039 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7040 if (PtrDef && TheLoop->contains(PtrDef) && 7041 getWideningDecision(&I, VF) != CM_GatherScatter) 7042 AddrDefs.insert(PtrDef); 7043 } 7044 7045 // Add all instructions used to generate the addresses. 7046 SmallVector<Instruction *, 4> Worklist; 7047 append_range(Worklist, AddrDefs); 7048 while (!Worklist.empty()) { 7049 Instruction *I = Worklist.pop_back_val(); 7050 for (auto &Op : I->operands()) 7051 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7052 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7053 AddrDefs.insert(InstOp).second) 7054 Worklist.push_back(InstOp); 7055 } 7056 7057 for (auto *I : AddrDefs) { 7058 if (isa<LoadInst>(I)) { 7059 // Setting the desired widening decision should ideally be handled in 7060 // by cost functions, but since this involves the task of finding out 7061 // if the loaded register is involved in an address computation, it is 7062 // instead changed here when we know this is the case. 7063 InstWidening Decision = getWideningDecision(I, VF); 7064 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7065 // Scalarize a widened load of address. 7066 setWideningDecision( 7067 I, VF, CM_Scalarize, 7068 (VF.getKnownMinValue() * 7069 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7070 else if (auto Group = getInterleavedAccessGroup(I)) { 7071 // Scalarize an interleave group of address loads. 7072 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7073 if (Instruction *Member = Group->getMember(I)) 7074 setWideningDecision( 7075 Member, VF, CM_Scalarize, 7076 (VF.getKnownMinValue() * 7077 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7078 } 7079 } 7080 } else 7081 // Make sure I gets scalarized and a cost estimate without 7082 // scalarization overhead. 7083 ForcedScalars[VF].insert(I); 7084 } 7085 } 7086 7087 InstructionCost 7088 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7089 Type *&VectorTy) { 7090 Type *RetTy = I->getType(); 7091 if (canTruncateToMinimalBitwidth(I, VF)) 7092 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7093 auto SE = PSE.getSE(); 7094 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7095 7096 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7097 ElementCount VF) -> bool { 7098 if (VF.isScalar()) 7099 return true; 7100 7101 auto Scalarized = InstsToScalarize.find(VF); 7102 assert(Scalarized != InstsToScalarize.end() && 7103 "VF not yet analyzed for scalarization profitability"); 7104 return !Scalarized->second.count(I) && 7105 llvm::all_of(I->users(), [&](User *U) { 7106 auto *UI = cast<Instruction>(U); 7107 return !Scalarized->second.count(UI); 7108 }); 7109 }; 7110 (void) hasSingleCopyAfterVectorization; 7111 7112 if (isScalarAfterVectorization(I, VF)) { 7113 // With the exception of GEPs and PHIs, after scalarization there should 7114 // only be one copy of the instruction generated in the loop. This is 7115 // because the VF is either 1, or any instructions that need scalarizing 7116 // have already been dealt with by the the time we get here. As a result, 7117 // it means we don't have to multiply the instruction cost by VF. 7118 assert(I->getOpcode() == Instruction::GetElementPtr || 7119 I->getOpcode() == Instruction::PHI || 7120 (I->getOpcode() == Instruction::BitCast && 7121 I->getType()->isPointerTy()) || 7122 hasSingleCopyAfterVectorization(I, VF)); 7123 VectorTy = RetTy; 7124 } else 7125 VectorTy = ToVectorTy(RetTy, VF); 7126 7127 // TODO: We need to estimate the cost of intrinsic calls. 7128 switch (I->getOpcode()) { 7129 case Instruction::GetElementPtr: 7130 // We mark this instruction as zero-cost because the cost of GEPs in 7131 // vectorized code depends on whether the corresponding memory instruction 7132 // is scalarized or not. Therefore, we handle GEPs with the memory 7133 // instruction cost. 7134 return 0; 7135 case Instruction::Br: { 7136 // In cases of scalarized and predicated instructions, there will be VF 7137 // predicated blocks in the vectorized loop. Each branch around these 7138 // blocks requires also an extract of its vector compare i1 element. 7139 bool ScalarPredicatedBB = false; 7140 BranchInst *BI = cast<BranchInst>(I); 7141 if (VF.isVector() && BI->isConditional() && 7142 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7143 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7144 ScalarPredicatedBB = true; 7145 7146 if (ScalarPredicatedBB) { 7147 // Not possible to scalarize scalable vector with predicated instructions. 7148 if (VF.isScalable()) 7149 return InstructionCost::getInvalid(); 7150 // Return cost for branches around scalarized and predicated blocks. 7151 auto *Vec_i1Ty = 7152 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7153 return ( 7154 TTI.getScalarizationOverhead( 7155 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7156 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7157 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7158 // The back-edge branch will remain, as will all scalar branches. 7159 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7160 else 7161 // This branch will be eliminated by if-conversion. 7162 return 0; 7163 // Note: We currently assume zero cost for an unconditional branch inside 7164 // a predicated block since it will become a fall-through, although we 7165 // may decide in the future to call TTI for all branches. 7166 } 7167 case Instruction::PHI: { 7168 auto *Phi = cast<PHINode>(I); 7169 7170 // First-order recurrences are replaced by vector shuffles inside the loop. 7171 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7172 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7173 return TTI.getShuffleCost( 7174 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7175 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7176 7177 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7178 // converted into select instructions. We require N - 1 selects per phi 7179 // node, where N is the number of incoming values. 7180 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7181 return (Phi->getNumIncomingValues() - 1) * 7182 TTI.getCmpSelInstrCost( 7183 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7184 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7185 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7186 7187 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7188 } 7189 case Instruction::UDiv: 7190 case Instruction::SDiv: 7191 case Instruction::URem: 7192 case Instruction::SRem: 7193 // If we have a predicated instruction, it may not be executed for each 7194 // vector lane. Get the scalarization cost and scale this amount by the 7195 // probability of executing the predicated block. If the instruction is not 7196 // predicated, we fall through to the next case. 7197 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7198 InstructionCost Cost = 0; 7199 7200 // These instructions have a non-void type, so account for the phi nodes 7201 // that we will create. This cost is likely to be zero. The phi node 7202 // cost, if any, should be scaled by the block probability because it 7203 // models a copy at the end of each predicated block. 7204 Cost += VF.getKnownMinValue() * 7205 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7206 7207 // The cost of the non-predicated instruction. 7208 Cost += VF.getKnownMinValue() * 7209 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7210 7211 // The cost of insertelement and extractelement instructions needed for 7212 // scalarization. 7213 Cost += getScalarizationOverhead(I, VF); 7214 7215 // Scale the cost by the probability of executing the predicated blocks. 7216 // This assumes the predicated block for each vector lane is equally 7217 // likely. 7218 return Cost / getReciprocalPredBlockProb(); 7219 } 7220 LLVM_FALLTHROUGH; 7221 case Instruction::Add: 7222 case Instruction::FAdd: 7223 case Instruction::Sub: 7224 case Instruction::FSub: 7225 case Instruction::Mul: 7226 case Instruction::FMul: 7227 case Instruction::FDiv: 7228 case Instruction::FRem: 7229 case Instruction::Shl: 7230 case Instruction::LShr: 7231 case Instruction::AShr: 7232 case Instruction::And: 7233 case Instruction::Or: 7234 case Instruction::Xor: { 7235 // Since we will replace the stride by 1 the multiplication should go away. 7236 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7237 return 0; 7238 7239 // Detect reduction patterns 7240 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7241 return *RedCost; 7242 7243 // Certain instructions can be cheaper to vectorize if they have a constant 7244 // second vector operand. One example of this are shifts on x86. 7245 Value *Op2 = I->getOperand(1); 7246 TargetTransformInfo::OperandValueProperties Op2VP; 7247 TargetTransformInfo::OperandValueKind Op2VK = 7248 TTI.getOperandInfo(Op2, Op2VP); 7249 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7250 Op2VK = TargetTransformInfo::OK_UniformValue; 7251 7252 SmallVector<const Value *, 4> Operands(I->operand_values()); 7253 return TTI.getArithmeticInstrCost( 7254 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7255 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7256 } 7257 case Instruction::FNeg: { 7258 return TTI.getArithmeticInstrCost( 7259 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7260 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7261 TargetTransformInfo::OP_None, I->getOperand(0), I); 7262 } 7263 case Instruction::Select: { 7264 SelectInst *SI = cast<SelectInst>(I); 7265 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7266 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7267 7268 const Value *Op0, *Op1; 7269 using namespace llvm::PatternMatch; 7270 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7271 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7272 // select x, y, false --> x & y 7273 // select x, true, y --> x | y 7274 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7275 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7276 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7277 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7278 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7279 Op1->getType()->getScalarSizeInBits() == 1); 7280 7281 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7282 return TTI.getArithmeticInstrCost( 7283 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7284 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7285 } 7286 7287 Type *CondTy = SI->getCondition()->getType(); 7288 if (!ScalarCond) 7289 CondTy = VectorType::get(CondTy, VF); 7290 7291 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7292 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7293 Pred = Cmp->getPredicate(); 7294 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7295 CostKind, I); 7296 } 7297 case Instruction::ICmp: 7298 case Instruction::FCmp: { 7299 Type *ValTy = I->getOperand(0)->getType(); 7300 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7301 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7302 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7303 VectorTy = ToVectorTy(ValTy, VF); 7304 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7305 cast<CmpInst>(I)->getPredicate(), CostKind, 7306 I); 7307 } 7308 case Instruction::Store: 7309 case Instruction::Load: { 7310 ElementCount Width = VF; 7311 if (Width.isVector()) { 7312 InstWidening Decision = getWideningDecision(I, Width); 7313 assert(Decision != CM_Unknown && 7314 "CM decision should be taken at this point"); 7315 if (Decision == CM_Scalarize) 7316 Width = ElementCount::getFixed(1); 7317 } 7318 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7319 return getMemoryInstructionCost(I, VF); 7320 } 7321 case Instruction::BitCast: 7322 if (I->getType()->isPointerTy()) 7323 return 0; 7324 LLVM_FALLTHROUGH; 7325 case Instruction::ZExt: 7326 case Instruction::SExt: 7327 case Instruction::FPToUI: 7328 case Instruction::FPToSI: 7329 case Instruction::FPExt: 7330 case Instruction::PtrToInt: 7331 case Instruction::IntToPtr: 7332 case Instruction::SIToFP: 7333 case Instruction::UIToFP: 7334 case Instruction::Trunc: 7335 case Instruction::FPTrunc: { 7336 // Computes the CastContextHint from a Load/Store instruction. 7337 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7338 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7339 "Expected a load or a store!"); 7340 7341 if (VF.isScalar() || !TheLoop->contains(I)) 7342 return TTI::CastContextHint::Normal; 7343 7344 switch (getWideningDecision(I, VF)) { 7345 case LoopVectorizationCostModel::CM_GatherScatter: 7346 return TTI::CastContextHint::GatherScatter; 7347 case LoopVectorizationCostModel::CM_Interleave: 7348 return TTI::CastContextHint::Interleave; 7349 case LoopVectorizationCostModel::CM_Scalarize: 7350 case LoopVectorizationCostModel::CM_Widen: 7351 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7352 : TTI::CastContextHint::Normal; 7353 case LoopVectorizationCostModel::CM_Widen_Reverse: 7354 return TTI::CastContextHint::Reversed; 7355 case LoopVectorizationCostModel::CM_Unknown: 7356 llvm_unreachable("Instr did not go through cost modelling?"); 7357 } 7358 7359 llvm_unreachable("Unhandled case!"); 7360 }; 7361 7362 unsigned Opcode = I->getOpcode(); 7363 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7364 // For Trunc, the context is the only user, which must be a StoreInst. 7365 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7366 if (I->hasOneUse()) 7367 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7368 CCH = ComputeCCH(Store); 7369 } 7370 // For Z/Sext, the context is the operand, which must be a LoadInst. 7371 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7372 Opcode == Instruction::FPExt) { 7373 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7374 CCH = ComputeCCH(Load); 7375 } 7376 7377 // We optimize the truncation of induction variables having constant 7378 // integer steps. The cost of these truncations is the same as the scalar 7379 // operation. 7380 if (isOptimizableIVTruncate(I, VF)) { 7381 auto *Trunc = cast<TruncInst>(I); 7382 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7383 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7384 } 7385 7386 // Detect reduction patterns 7387 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7388 return *RedCost; 7389 7390 Type *SrcScalarTy = I->getOperand(0)->getType(); 7391 Type *SrcVecTy = 7392 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7393 if (canTruncateToMinimalBitwidth(I, VF)) { 7394 // This cast is going to be shrunk. This may remove the cast or it might 7395 // turn it into slightly different cast. For example, if MinBW == 16, 7396 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7397 // 7398 // Calculate the modified src and dest types. 7399 Type *MinVecTy = VectorTy; 7400 if (Opcode == Instruction::Trunc) { 7401 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7402 VectorTy = 7403 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7404 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7405 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7406 VectorTy = 7407 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7408 } 7409 } 7410 7411 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7412 } 7413 case Instruction::Call: { 7414 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7415 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7416 return *RedCost; 7417 bool NeedToScalarize; 7418 CallInst *CI = cast<CallInst>(I); 7419 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7420 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7421 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7422 return std::min(CallCost, IntrinsicCost); 7423 } 7424 return CallCost; 7425 } 7426 case Instruction::ExtractValue: 7427 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7428 case Instruction::Alloca: 7429 // We cannot easily widen alloca to a scalable alloca, as 7430 // the result would need to be a vector of pointers. 7431 if (VF.isScalable()) 7432 return InstructionCost::getInvalid(); 7433 LLVM_FALLTHROUGH; 7434 default: 7435 // This opcode is unknown. Assume that it is the same as 'mul'. 7436 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7437 } // end of switch. 7438 } 7439 7440 char LoopVectorize::ID = 0; 7441 7442 static const char lv_name[] = "Loop Vectorization"; 7443 7444 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7445 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7446 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7447 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7448 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7449 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7450 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7451 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7452 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7453 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7454 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7455 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7456 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7457 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7458 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7459 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7460 7461 namespace llvm { 7462 7463 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7464 7465 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7466 bool VectorizeOnlyWhenForced) { 7467 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7468 } 7469 7470 } // end namespace llvm 7471 7472 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7473 // Check if the pointer operand of a load or store instruction is 7474 // consecutive. 7475 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7476 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7477 return false; 7478 } 7479 7480 void LoopVectorizationCostModel::collectValuesToIgnore() { 7481 // Ignore ephemeral values. 7482 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7483 7484 // Ignore type-promoting instructions we identified during reduction 7485 // detection. 7486 for (auto &Reduction : Legal->getReductionVars()) { 7487 const RecurrenceDescriptor &RedDes = Reduction.second; 7488 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7489 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7490 } 7491 // Ignore type-casting instructions we identified during induction 7492 // detection. 7493 for (auto &Induction : Legal->getInductionVars()) { 7494 const InductionDescriptor &IndDes = Induction.second; 7495 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7496 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7497 } 7498 } 7499 7500 void LoopVectorizationCostModel::collectInLoopReductions() { 7501 for (auto &Reduction : Legal->getReductionVars()) { 7502 PHINode *Phi = Reduction.first; 7503 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7504 7505 // We don't collect reductions that are type promoted (yet). 7506 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7507 continue; 7508 7509 // If the target would prefer this reduction to happen "in-loop", then we 7510 // want to record it as such. 7511 unsigned Opcode = RdxDesc.getOpcode(); 7512 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7513 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7514 TargetTransformInfo::ReductionFlags())) 7515 continue; 7516 7517 // Check that we can correctly put the reductions into the loop, by 7518 // finding the chain of operations that leads from the phi to the loop 7519 // exit value. 7520 SmallVector<Instruction *, 4> ReductionOperations = 7521 RdxDesc.getReductionOpChain(Phi, TheLoop); 7522 bool InLoop = !ReductionOperations.empty(); 7523 if (InLoop) { 7524 InLoopReductionChains[Phi] = ReductionOperations; 7525 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7526 Instruction *LastChain = Phi; 7527 for (auto *I : ReductionOperations) { 7528 InLoopReductionImmediateChains[I] = LastChain; 7529 LastChain = I; 7530 } 7531 } 7532 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7533 << " reduction for phi: " << *Phi << "\n"); 7534 } 7535 } 7536 7537 // TODO: we could return a pair of values that specify the max VF and 7538 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7539 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7540 // doesn't have a cost model that can choose which plan to execute if 7541 // more than one is generated. 7542 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7543 LoopVectorizationCostModel &CM) { 7544 unsigned WidestType; 7545 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7546 return WidestVectorRegBits / WidestType; 7547 } 7548 7549 VectorizationFactor 7550 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7551 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7552 ElementCount VF = UserVF; 7553 // Outer loop handling: They may require CFG and instruction level 7554 // transformations before even evaluating whether vectorization is profitable. 7555 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7556 // the vectorization pipeline. 7557 if (!OrigLoop->isInnermost()) { 7558 // If the user doesn't provide a vectorization factor, determine a 7559 // reasonable one. 7560 if (UserVF.isZero()) { 7561 VF = ElementCount::getFixed(determineVPlanVF( 7562 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7563 .getFixedSize(), 7564 CM)); 7565 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7566 7567 // Make sure we have a VF > 1 for stress testing. 7568 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7569 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7570 << "overriding computed VF.\n"); 7571 VF = ElementCount::getFixed(4); 7572 } 7573 } 7574 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7575 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7576 "VF needs to be a power of two"); 7577 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7578 << "VF " << VF << " to build VPlans.\n"); 7579 buildVPlans(VF, VF); 7580 7581 // For VPlan build stress testing, we bail out after VPlan construction. 7582 if (VPlanBuildStressTest) 7583 return VectorizationFactor::Disabled(); 7584 7585 return {VF, 0 /*Cost*/}; 7586 } 7587 7588 LLVM_DEBUG( 7589 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7590 "VPlan-native path.\n"); 7591 return VectorizationFactor::Disabled(); 7592 } 7593 7594 Optional<VectorizationFactor> 7595 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7596 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7597 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7598 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7599 return None; 7600 7601 // Invalidate interleave groups if all blocks of loop will be predicated. 7602 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7603 !useMaskedInterleavedAccesses(*TTI)) { 7604 LLVM_DEBUG( 7605 dbgs() 7606 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7607 "which requires masked-interleaved support.\n"); 7608 if (CM.InterleaveInfo.invalidateGroups()) 7609 // Invalidating interleave groups also requires invalidating all decisions 7610 // based on them, which includes widening decisions and uniform and scalar 7611 // values. 7612 CM.invalidateCostModelingDecisions(); 7613 } 7614 7615 ElementCount MaxUserVF = 7616 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7617 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7618 if (!UserVF.isZero() && UserVFIsLegal) { 7619 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7620 "VF needs to be a power of two"); 7621 // Collect the instructions (and their associated costs) that will be more 7622 // profitable to scalarize. 7623 if (CM.selectUserVectorizationFactor(UserVF)) { 7624 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7625 CM.collectInLoopReductions(); 7626 buildVPlansWithVPRecipes(UserVF, UserVF); 7627 LLVM_DEBUG(printPlans(dbgs())); 7628 return {{UserVF, 0}}; 7629 } else 7630 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7631 "InvalidCost", ORE, OrigLoop); 7632 } 7633 7634 // Populate the set of Vectorization Factor Candidates. 7635 ElementCountSet VFCandidates; 7636 for (auto VF = ElementCount::getFixed(1); 7637 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7638 VFCandidates.insert(VF); 7639 for (auto VF = ElementCount::getScalable(1); 7640 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7641 VFCandidates.insert(VF); 7642 7643 for (const auto &VF : VFCandidates) { 7644 // Collect Uniform and Scalar instructions after vectorization with VF. 7645 CM.collectUniformsAndScalars(VF); 7646 7647 // Collect the instructions (and their associated costs) that will be more 7648 // profitable to scalarize. 7649 if (VF.isVector()) 7650 CM.collectInstsToScalarize(VF); 7651 } 7652 7653 CM.collectInLoopReductions(); 7654 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7655 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7656 7657 LLVM_DEBUG(printPlans(dbgs())); 7658 if (!MaxFactors.hasVector()) 7659 return VectorizationFactor::Disabled(); 7660 7661 // Select the optimal vectorization factor. 7662 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7663 7664 // Check if it is profitable to vectorize with runtime checks. 7665 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7666 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7667 bool PragmaThresholdReached = 7668 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7669 bool ThresholdReached = 7670 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7671 if ((ThresholdReached && !Hints.allowReordering()) || 7672 PragmaThresholdReached) { 7673 ORE->emit([&]() { 7674 return OptimizationRemarkAnalysisAliasing( 7675 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7676 OrigLoop->getHeader()) 7677 << "loop not vectorized: cannot prove it is safe to reorder " 7678 "memory operations"; 7679 }); 7680 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7681 Hints.emitRemarkWithHints(); 7682 return VectorizationFactor::Disabled(); 7683 } 7684 } 7685 return SelectedVF; 7686 } 7687 7688 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7689 assert(count_if(VPlans, 7690 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7691 1 && 7692 "Best VF has not a single VPlan."); 7693 7694 for (const VPlanPtr &Plan : VPlans) { 7695 if (Plan->hasVF(VF)) 7696 return *Plan.get(); 7697 } 7698 llvm_unreachable("No plan found!"); 7699 } 7700 7701 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7702 SmallVector<Metadata *, 4> MDs; 7703 // Reserve first location for self reference to the LoopID metadata node. 7704 MDs.push_back(nullptr); 7705 bool IsUnrollMetadata = false; 7706 MDNode *LoopID = L->getLoopID(); 7707 if (LoopID) { 7708 // First find existing loop unrolling disable metadata. 7709 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7710 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7711 if (MD) { 7712 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7713 IsUnrollMetadata = 7714 S && S->getString().startswith("llvm.loop.unroll.disable"); 7715 } 7716 MDs.push_back(LoopID->getOperand(i)); 7717 } 7718 } 7719 7720 if (!IsUnrollMetadata) { 7721 // Add runtime unroll disable metadata. 7722 LLVMContext &Context = L->getHeader()->getContext(); 7723 SmallVector<Metadata *, 1> DisableOperands; 7724 DisableOperands.push_back( 7725 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7726 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7727 MDs.push_back(DisableNode); 7728 MDNode *NewLoopID = MDNode::get(Context, MDs); 7729 // Set operand 0 to refer to the loop id itself. 7730 NewLoopID->replaceOperandWith(0, NewLoopID); 7731 L->setLoopID(NewLoopID); 7732 } 7733 } 7734 7735 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7736 VPlan &BestVPlan, 7737 InnerLoopVectorizer &ILV, 7738 DominatorTree *DT) { 7739 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7740 << '\n'); 7741 7742 // Perform the actual loop transformation. 7743 7744 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7745 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7746 Value *CanonicalIVStartValue; 7747 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7748 ILV.createVectorizedLoopSkeleton(); 7749 ILV.collectPoisonGeneratingRecipes(State); 7750 7751 ILV.printDebugTracesAtStart(); 7752 7753 //===------------------------------------------------===// 7754 // 7755 // Notice: any optimization or new instruction that go 7756 // into the code below should also be implemented in 7757 // the cost-model. 7758 // 7759 //===------------------------------------------------===// 7760 7761 // 2. Copy and widen instructions from the old loop into the new loop. 7762 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7763 ILV.getOrCreateVectorTripCount(nullptr), 7764 CanonicalIVStartValue, State); 7765 BestVPlan.execute(&State); 7766 7767 // Keep all loop hints from the original loop on the vector loop (we'll 7768 // replace the vectorizer-specific hints below). 7769 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7770 7771 Optional<MDNode *> VectorizedLoopID = 7772 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7773 LLVMLoopVectorizeFollowupVectorized}); 7774 7775 Loop *L = LI->getLoopFor(State.CFG.PrevBB); 7776 if (VectorizedLoopID.hasValue()) 7777 L->setLoopID(VectorizedLoopID.getValue()); 7778 else { 7779 // Keep all loop hints from the original loop on the vector loop (we'll 7780 // replace the vectorizer-specific hints below). 7781 if (MDNode *LID = OrigLoop->getLoopID()) 7782 L->setLoopID(LID); 7783 7784 LoopVectorizeHints Hints(L, true, *ORE); 7785 Hints.setAlreadyVectorized(); 7786 } 7787 // Disable runtime unrolling when vectorizing the epilogue loop. 7788 if (CanonicalIVStartValue) 7789 AddRuntimeUnrollDisableMetaData(L); 7790 7791 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7792 // predication, updating analyses. 7793 ILV.fixVectorizedLoop(State); 7794 7795 ILV.printDebugTracesAtEnd(); 7796 } 7797 7798 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7799 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7800 for (const auto &Plan : VPlans) 7801 if (PrintVPlansInDotFormat) 7802 Plan->printDOT(O); 7803 else 7804 Plan->print(O); 7805 } 7806 #endif 7807 7808 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7809 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7810 7811 // We create new control-flow for the vectorized loop, so the original exit 7812 // conditions will be dead after vectorization if it's only used by the 7813 // terminator 7814 SmallVector<BasicBlock*> ExitingBlocks; 7815 OrigLoop->getExitingBlocks(ExitingBlocks); 7816 for (auto *BB : ExitingBlocks) { 7817 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7818 if (!Cmp || !Cmp->hasOneUse()) 7819 continue; 7820 7821 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7822 if (!DeadInstructions.insert(Cmp).second) 7823 continue; 7824 7825 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7826 // TODO: can recurse through operands in general 7827 for (Value *Op : Cmp->operands()) { 7828 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7829 DeadInstructions.insert(cast<Instruction>(Op)); 7830 } 7831 } 7832 7833 // We create new "steps" for induction variable updates to which the original 7834 // induction variables map. An original update instruction will be dead if 7835 // all its users except the induction variable are dead. 7836 auto *Latch = OrigLoop->getLoopLatch(); 7837 for (auto &Induction : Legal->getInductionVars()) { 7838 PHINode *Ind = Induction.first; 7839 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7840 7841 // If the tail is to be folded by masking, the primary induction variable, 7842 // if exists, isn't dead: it will be used for masking. Don't kill it. 7843 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7844 continue; 7845 7846 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7847 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7848 })) 7849 DeadInstructions.insert(IndUpdate); 7850 } 7851 } 7852 7853 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7854 7855 //===--------------------------------------------------------------------===// 7856 // EpilogueVectorizerMainLoop 7857 //===--------------------------------------------------------------------===// 7858 7859 /// This function is partially responsible for generating the control flow 7860 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7861 std::pair<BasicBlock *, Value *> 7862 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7863 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7864 Loop *Lp = createVectorLoopSkeleton(""); 7865 7866 // Generate the code to check the minimum iteration count of the vector 7867 // epilogue (see below). 7868 EPI.EpilogueIterationCountCheck = 7869 emitMinimumIterationCountCheck(LoopScalarPreHeader, true); 7870 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7871 7872 // Generate the code to check any assumptions that we've made for SCEV 7873 // expressions. 7874 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7875 7876 // Generate the code that checks at runtime if arrays overlap. We put the 7877 // checks into a separate block to make the more common case of few elements 7878 // faster. 7879 EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); 7880 7881 // Generate the iteration count check for the main loop, *after* the check 7882 // for the epilogue loop, so that the path-length is shorter for the case 7883 // that goes directly through the vector epilogue. The longer-path length for 7884 // the main loop is compensated for, by the gain from vectorizing the larger 7885 // trip count. Note: the branch will get updated later on when we vectorize 7886 // the epilogue. 7887 EPI.MainLoopIterationCountCheck = 7888 emitMinimumIterationCountCheck(LoopScalarPreHeader, false); 7889 7890 // Generate the induction variable. 7891 Value *CountRoundDown = getOrCreateVectorTripCount(LoopVectorPreHeader); 7892 EPI.VectorTripCount = CountRoundDown; 7893 createHeaderBranch(Lp); 7894 7895 // Skip induction resume value creation here because they will be created in 7896 // the second pass. If we created them here, they wouldn't be used anyway, 7897 // because the vplan in the second pass still contains the inductions from the 7898 // original loop. 7899 7900 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 7901 } 7902 7903 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7904 LLVM_DEBUG({ 7905 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7906 << "Main Loop VF:" << EPI.MainLoopVF 7907 << ", Main Loop UF:" << EPI.MainLoopUF 7908 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7909 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7910 }); 7911 } 7912 7913 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7914 DEBUG_WITH_TYPE(VerboseDebug, { 7915 dbgs() << "intermediate fn:\n" 7916 << *OrigLoop->getHeader()->getParent() << "\n"; 7917 }); 7918 } 7919 7920 BasicBlock * 7921 EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(BasicBlock *Bypass, 7922 bool ForEpilogue) { 7923 assert(Bypass && "Expected valid bypass basic block."); 7924 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7925 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7926 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 7927 // Reuse existing vector loop preheader for TC checks. 7928 // Note that new preheader block is generated for vector loop. 7929 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7930 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7931 7932 // Generate code to check if the loop's trip count is less than VF * UF of the 7933 // main vector loop. 7934 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 7935 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7936 7937 Value *CheckMinIters = Builder.CreateICmp( 7938 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7939 "min.iters.check"); 7940 7941 if (!ForEpilogue) 7942 TCCheckBlock->setName("vector.main.loop.iter.check"); 7943 7944 // Create new preheader for vector loop. 7945 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7946 DT, LI, nullptr, "vector.ph"); 7947 7948 if (ForEpilogue) { 7949 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7950 DT->getNode(Bypass)->getIDom()) && 7951 "TC check is expected to dominate Bypass"); 7952 7953 // Update dominator for Bypass & LoopExit. 7954 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7955 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7956 // For loops with multiple exits, there's no edge from the middle block 7957 // to exit blocks (as the epilogue must run) and thus no need to update 7958 // the immediate dominator of the exit blocks. 7959 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7960 7961 LoopBypassBlocks.push_back(TCCheckBlock); 7962 7963 // Save the trip count so we don't have to regenerate it in the 7964 // vec.epilog.iter.check. This is safe to do because the trip count 7965 // generated here dominates the vector epilog iter check. 7966 EPI.TripCount = Count; 7967 } 7968 7969 ReplaceInstWithInst( 7970 TCCheckBlock->getTerminator(), 7971 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7972 7973 return TCCheckBlock; 7974 } 7975 7976 //===--------------------------------------------------------------------===// 7977 // EpilogueVectorizerEpilogueLoop 7978 //===--------------------------------------------------------------------===// 7979 7980 /// This function is partially responsible for generating the control flow 7981 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7982 std::pair<BasicBlock *, Value *> 7983 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7984 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7985 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 7986 7987 // Now, compare the remaining count and if there aren't enough iterations to 7988 // execute the vectorized epilogue skip to the scalar part. 7989 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7990 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7991 LoopVectorPreHeader = 7992 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7993 LI, nullptr, "vec.epilog.ph"); 7994 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 7995 VecEpilogueIterationCountCheck); 7996 7997 // Adjust the control flow taking the state info from the main loop 7998 // vectorization into account. 7999 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8000 "expected this to be saved from the previous pass."); 8001 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8002 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8003 8004 DT->changeImmediateDominator(LoopVectorPreHeader, 8005 EPI.MainLoopIterationCountCheck); 8006 8007 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8008 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8009 8010 if (EPI.SCEVSafetyCheck) 8011 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8012 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8013 if (EPI.MemSafetyCheck) 8014 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8015 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8016 8017 DT->changeImmediateDominator( 8018 VecEpilogueIterationCountCheck, 8019 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8020 8021 DT->changeImmediateDominator(LoopScalarPreHeader, 8022 EPI.EpilogueIterationCountCheck); 8023 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8024 // If there is an epilogue which must run, there's no edge from the 8025 // middle block to exit blocks and thus no need to update the immediate 8026 // dominator of the exit blocks. 8027 DT->changeImmediateDominator(LoopExitBlock, 8028 EPI.EpilogueIterationCountCheck); 8029 8030 // Keep track of bypass blocks, as they feed start values to the induction 8031 // phis in the scalar loop preheader. 8032 if (EPI.SCEVSafetyCheck) 8033 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8034 if (EPI.MemSafetyCheck) 8035 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8036 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8037 8038 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 8039 // merge control-flow from the latch block and the middle block. Update the 8040 // incoming values here and move the Phi into the preheader. 8041 SmallVector<PHINode *, 4> PhisInBlock; 8042 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 8043 PhisInBlock.push_back(&Phi); 8044 8045 for (PHINode *Phi : PhisInBlock) { 8046 Phi->replaceIncomingBlockWith( 8047 VecEpilogueIterationCountCheck->getSinglePredecessor(), 8048 VecEpilogueIterationCountCheck); 8049 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 8050 if (EPI.SCEVSafetyCheck) 8051 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 8052 if (EPI.MemSafetyCheck) 8053 Phi->removeIncomingValue(EPI.MemSafetyCheck); 8054 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 8055 } 8056 8057 // Generate a resume induction for the vector epilogue and put it in the 8058 // vector epilogue preheader 8059 Type *IdxTy = Legal->getWidestInductionType(); 8060 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8061 LoopVectorPreHeader->getFirstNonPHI()); 8062 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8063 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8064 EPI.MainLoopIterationCountCheck); 8065 8066 // Generate the induction variable. 8067 createHeaderBranch(Lp); 8068 8069 // Generate induction resume values. These variables save the new starting 8070 // indexes for the scalar loop. They are used to test if there are any tail 8071 // iterations left once the vector loop has completed. 8072 // Note that when the vectorized epilogue is skipped due to iteration count 8073 // check, then the resume value for the induction variable comes from 8074 // the trip count of the main vector loop, hence passing the AdditionalBypass 8075 // argument. 8076 createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck, 8077 EPI.VectorTripCount} /* AdditionalBypass */); 8078 8079 return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal}; 8080 } 8081 8082 BasicBlock * 8083 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8084 BasicBlock *Bypass, BasicBlock *Insert) { 8085 8086 assert(EPI.TripCount && 8087 "Expected trip count to have been safed in the first pass."); 8088 assert( 8089 (!isa<Instruction>(EPI.TripCount) || 8090 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8091 "saved trip count does not dominate insertion point."); 8092 Value *TC = EPI.TripCount; 8093 IRBuilder<> Builder(Insert->getTerminator()); 8094 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8095 8096 // Generate code to check if the loop's trip count is less than VF * UF of the 8097 // vector epilogue loop. 8098 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8099 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8100 8101 Value *CheckMinIters = 8102 Builder.CreateICmp(P, Count, 8103 createStepForVF(Builder, Count->getType(), 8104 EPI.EpilogueVF, EPI.EpilogueUF), 8105 "min.epilog.iters.check"); 8106 8107 ReplaceInstWithInst( 8108 Insert->getTerminator(), 8109 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8110 8111 LoopBypassBlocks.push_back(Insert); 8112 return Insert; 8113 } 8114 8115 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8116 LLVM_DEBUG({ 8117 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8118 << "Epilogue Loop VF:" << EPI.EpilogueVF 8119 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8120 }); 8121 } 8122 8123 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8124 DEBUG_WITH_TYPE(VerboseDebug, { 8125 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8126 }); 8127 } 8128 8129 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8130 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8131 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8132 bool PredicateAtRangeStart = Predicate(Range.Start); 8133 8134 for (ElementCount TmpVF = Range.Start * 2; 8135 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8136 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8137 Range.End = TmpVF; 8138 break; 8139 } 8140 8141 return PredicateAtRangeStart; 8142 } 8143 8144 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8145 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8146 /// of VF's starting at a given VF and extending it as much as possible. Each 8147 /// vectorization decision can potentially shorten this sub-range during 8148 /// buildVPlan(). 8149 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8150 ElementCount MaxVF) { 8151 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8152 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8153 VFRange SubRange = {VF, MaxVFPlusOne}; 8154 VPlans.push_back(buildVPlan(SubRange)); 8155 VF = SubRange.End; 8156 } 8157 } 8158 8159 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8160 VPlanPtr &Plan) { 8161 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8162 8163 // Look for cached value. 8164 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8165 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8166 if (ECEntryIt != EdgeMaskCache.end()) 8167 return ECEntryIt->second; 8168 8169 VPValue *SrcMask = createBlockInMask(Src, Plan); 8170 8171 // The terminator has to be a branch inst! 8172 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8173 assert(BI && "Unexpected terminator found"); 8174 8175 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8176 return EdgeMaskCache[Edge] = SrcMask; 8177 8178 // If source is an exiting block, we know the exit edge is dynamically dead 8179 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8180 // adding uses of an otherwise potentially dead instruction. 8181 if (OrigLoop->isLoopExiting(Src)) 8182 return EdgeMaskCache[Edge] = SrcMask; 8183 8184 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8185 assert(EdgeMask && "No Edge Mask found for condition"); 8186 8187 if (BI->getSuccessor(0) != Dst) 8188 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8189 8190 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8191 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8192 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8193 // The select version does not introduce new UB if SrcMask is false and 8194 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8195 VPValue *False = Plan->getOrAddVPValue( 8196 ConstantInt::getFalse(BI->getCondition()->getType())); 8197 EdgeMask = 8198 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8199 } 8200 8201 return EdgeMaskCache[Edge] = EdgeMask; 8202 } 8203 8204 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8205 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8206 8207 // Look for cached value. 8208 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8209 if (BCEntryIt != BlockMaskCache.end()) 8210 return BCEntryIt->second; 8211 8212 // All-one mask is modelled as no-mask following the convention for masked 8213 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8214 VPValue *BlockMask = nullptr; 8215 8216 if (OrigLoop->getHeader() == BB) { 8217 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8218 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8219 8220 // Introduce the early-exit compare IV <= BTC to form header block mask. 8221 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8222 // constructing the desired canonical IV in the header block as its first 8223 // non-phi instructions. 8224 assert(CM.foldTailByMasking() && "must fold the tail"); 8225 VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock(); 8226 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8227 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8228 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8229 8230 VPBuilder::InsertPointGuard Guard(Builder); 8231 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8232 if (CM.TTI.emitGetActiveLaneMask()) { 8233 VPValue *TC = Plan->getOrCreateTripCount(); 8234 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8235 } else { 8236 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8237 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8238 } 8239 return BlockMaskCache[BB] = BlockMask; 8240 } 8241 8242 // This is the block mask. We OR all incoming edges. 8243 for (auto *Predecessor : predecessors(BB)) { 8244 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8245 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8246 return BlockMaskCache[BB] = EdgeMask; 8247 8248 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8249 BlockMask = EdgeMask; 8250 continue; 8251 } 8252 8253 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8254 } 8255 8256 return BlockMaskCache[BB] = BlockMask; 8257 } 8258 8259 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8260 ArrayRef<VPValue *> Operands, 8261 VFRange &Range, 8262 VPlanPtr &Plan) { 8263 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8264 "Must be called with either a load or store"); 8265 8266 auto willWiden = [&](ElementCount VF) -> bool { 8267 if (VF.isScalar()) 8268 return false; 8269 LoopVectorizationCostModel::InstWidening Decision = 8270 CM.getWideningDecision(I, VF); 8271 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8272 "CM decision should be taken at this point."); 8273 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8274 return true; 8275 if (CM.isScalarAfterVectorization(I, VF) || 8276 CM.isProfitableToScalarize(I, VF)) 8277 return false; 8278 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8279 }; 8280 8281 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8282 return nullptr; 8283 8284 VPValue *Mask = nullptr; 8285 if (Legal->isMaskRequired(I)) 8286 Mask = createBlockInMask(I->getParent(), Plan); 8287 8288 // Determine if the pointer operand of the access is either consecutive or 8289 // reverse consecutive. 8290 LoopVectorizationCostModel::InstWidening Decision = 8291 CM.getWideningDecision(I, Range.Start); 8292 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8293 bool Consecutive = 8294 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8295 8296 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8297 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8298 Consecutive, Reverse); 8299 8300 StoreInst *Store = cast<StoreInst>(I); 8301 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8302 Mask, Consecutive, Reverse); 8303 } 8304 8305 static VPWidenIntOrFpInductionRecipe * 8306 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc, 8307 VPValue *Start, const InductionDescriptor &IndDesc, 8308 LoopVectorizationCostModel &CM, ScalarEvolution &SE, 8309 Loop &OrigLoop, VFRange &Range) { 8310 // Returns true if an instruction \p I should be scalarized instead of 8311 // vectorized for the chosen vectorization factor. 8312 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8313 return CM.isScalarAfterVectorization(I, VF) || 8314 CM.isProfitableToScalarize(I, VF); 8315 }; 8316 8317 bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange( 8318 [&](ElementCount VF) { 8319 // Returns true if we should generate a scalar version of \p IV. 8320 if (ShouldScalarizeInstruction(PhiOrTrunc, VF)) 8321 return true; 8322 auto isScalarInst = [&](User *U) -> bool { 8323 auto *I = cast<Instruction>(U); 8324 return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF); 8325 }; 8326 return any_of(PhiOrTrunc->users(), isScalarInst); 8327 }, 8328 Range); 8329 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8330 [&](ElementCount VF) { 8331 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8332 }, 8333 Range); 8334 assert(IndDesc.getStartValue() == 8335 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8336 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8337 "step must be loop invariant"); 8338 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8339 return new VPWidenIntOrFpInductionRecipe( 8340 Phi, Start, IndDesc, TruncI, NeedsScalarIV, !NeedsScalarIVOnly, SE); 8341 } 8342 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8343 return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV, 8344 !NeedsScalarIVOnly, SE); 8345 } 8346 8347 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI( 8348 PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const { 8349 8350 // Check if this is an integer or fp induction. If so, build the recipe that 8351 // produces its scalar and vector values. 8352 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8353 return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, 8354 *PSE.getSE(), *OrigLoop, Range); 8355 8356 return nullptr; 8357 } 8358 8359 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8360 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8361 VPlan &Plan) const { 8362 // Optimize the special case where the source is a constant integer 8363 // induction variable. Notice that we can only optimize the 'trunc' case 8364 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8365 // (c) other casts depend on pointer size. 8366 8367 // Determine whether \p K is a truncation based on an induction variable that 8368 // can be optimized. 8369 auto isOptimizableIVTruncate = 8370 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8371 return [=](ElementCount VF) -> bool { 8372 return CM.isOptimizableIVTruncate(K, VF); 8373 }; 8374 }; 8375 8376 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8377 isOptimizableIVTruncate(I), Range)) { 8378 8379 auto *Phi = cast<PHINode>(I->getOperand(0)); 8380 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8381 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8382 return createWidenInductionRecipe(Phi, I, Start, II, CM, *PSE.getSE(), 8383 *OrigLoop, Range); 8384 } 8385 return nullptr; 8386 } 8387 8388 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8389 ArrayRef<VPValue *> Operands, 8390 VPlanPtr &Plan) { 8391 // If all incoming values are equal, the incoming VPValue can be used directly 8392 // instead of creating a new VPBlendRecipe. 8393 VPValue *FirstIncoming = Operands[0]; 8394 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8395 return FirstIncoming == Inc; 8396 })) { 8397 return Operands[0]; 8398 } 8399 8400 unsigned NumIncoming = Phi->getNumIncomingValues(); 8401 // For in-loop reductions, we do not need to create an additional select. 8402 VPValue *InLoopVal = nullptr; 8403 for (unsigned In = 0; In < NumIncoming; In++) { 8404 PHINode *PhiOp = 8405 dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); 8406 if (PhiOp && CM.isInLoopReduction(PhiOp)) { 8407 assert(!InLoopVal && "Found more than one in-loop reduction!"); 8408 InLoopVal = Operands[In]; 8409 } 8410 } 8411 8412 assert((!InLoopVal || NumIncoming == 2) && 8413 "Found an in-loop reduction for PHI with unexpected number of " 8414 "incoming values"); 8415 if (InLoopVal) 8416 return Operands[Operands[0] == InLoopVal ? 1 : 0]; 8417 8418 // We know that all PHIs in non-header blocks are converted into selects, so 8419 // we don't have to worry about the insertion order and we can just use the 8420 // builder. At this point we generate the predication tree. There may be 8421 // duplications since this is a simple recursive scan, but future 8422 // optimizations will clean it up. 8423 SmallVector<VPValue *, 2> OperandsWithMask; 8424 8425 for (unsigned In = 0; In < NumIncoming; In++) { 8426 VPValue *EdgeMask = 8427 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8428 assert((EdgeMask || NumIncoming == 1) && 8429 "Multiple predecessors with one having a full mask"); 8430 OperandsWithMask.push_back(Operands[In]); 8431 if (EdgeMask) 8432 OperandsWithMask.push_back(EdgeMask); 8433 } 8434 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8435 } 8436 8437 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8438 ArrayRef<VPValue *> Operands, 8439 VFRange &Range) const { 8440 8441 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8442 [this, CI](ElementCount VF) { 8443 return CM.isScalarWithPredication(CI, VF); 8444 }, 8445 Range); 8446 8447 if (IsPredicated) 8448 return nullptr; 8449 8450 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8451 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8452 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8453 ID == Intrinsic::pseudoprobe || 8454 ID == Intrinsic::experimental_noalias_scope_decl)) 8455 return nullptr; 8456 8457 auto willWiden = [&](ElementCount VF) -> bool { 8458 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8459 // The following case may be scalarized depending on the VF. 8460 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8461 // version of the instruction. 8462 // Is it beneficial to perform intrinsic call compared to lib call? 8463 bool NeedToScalarize = false; 8464 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8465 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8466 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8467 return UseVectorIntrinsic || !NeedToScalarize; 8468 }; 8469 8470 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8471 return nullptr; 8472 8473 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8474 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8475 } 8476 8477 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8478 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8479 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8480 // Instruction should be widened, unless it is scalar after vectorization, 8481 // scalarization is profitable or it is predicated. 8482 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8483 return CM.isScalarAfterVectorization(I, VF) || 8484 CM.isProfitableToScalarize(I, VF) || 8485 CM.isScalarWithPredication(I, VF); 8486 }; 8487 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8488 Range); 8489 } 8490 8491 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8492 ArrayRef<VPValue *> Operands) const { 8493 auto IsVectorizableOpcode = [](unsigned Opcode) { 8494 switch (Opcode) { 8495 case Instruction::Add: 8496 case Instruction::And: 8497 case Instruction::AShr: 8498 case Instruction::BitCast: 8499 case Instruction::FAdd: 8500 case Instruction::FCmp: 8501 case Instruction::FDiv: 8502 case Instruction::FMul: 8503 case Instruction::FNeg: 8504 case Instruction::FPExt: 8505 case Instruction::FPToSI: 8506 case Instruction::FPToUI: 8507 case Instruction::FPTrunc: 8508 case Instruction::FRem: 8509 case Instruction::FSub: 8510 case Instruction::ICmp: 8511 case Instruction::IntToPtr: 8512 case Instruction::LShr: 8513 case Instruction::Mul: 8514 case Instruction::Or: 8515 case Instruction::PtrToInt: 8516 case Instruction::SDiv: 8517 case Instruction::Select: 8518 case Instruction::SExt: 8519 case Instruction::Shl: 8520 case Instruction::SIToFP: 8521 case Instruction::SRem: 8522 case Instruction::Sub: 8523 case Instruction::Trunc: 8524 case Instruction::UDiv: 8525 case Instruction::UIToFP: 8526 case Instruction::URem: 8527 case Instruction::Xor: 8528 case Instruction::ZExt: 8529 return true; 8530 } 8531 return false; 8532 }; 8533 8534 if (!IsVectorizableOpcode(I->getOpcode())) 8535 return nullptr; 8536 8537 // Success: widen this instruction. 8538 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8539 } 8540 8541 void VPRecipeBuilder::fixHeaderPhis() { 8542 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8543 for (VPHeaderPHIRecipe *R : PhisToFix) { 8544 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8545 VPRecipeBase *IncR = 8546 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8547 R->addOperand(IncR->getVPSingleValue()); 8548 } 8549 } 8550 8551 VPBasicBlock *VPRecipeBuilder::handleReplication( 8552 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8553 VPlanPtr &Plan) { 8554 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8555 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8556 Range); 8557 8558 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8559 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8560 Range); 8561 8562 // Even if the instruction is not marked as uniform, there are certain 8563 // intrinsic calls that can be effectively treated as such, so we check for 8564 // them here. Conservatively, we only do this for scalable vectors, since 8565 // for fixed-width VFs we can always fall back on full scalarization. 8566 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8567 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8568 case Intrinsic::assume: 8569 case Intrinsic::lifetime_start: 8570 case Intrinsic::lifetime_end: 8571 // For scalable vectors if one of the operands is variant then we still 8572 // want to mark as uniform, which will generate one instruction for just 8573 // the first lane of the vector. We can't scalarize the call in the same 8574 // way as for fixed-width vectors because we don't know how many lanes 8575 // there are. 8576 // 8577 // The reasons for doing it this way for scalable vectors are: 8578 // 1. For the assume intrinsic generating the instruction for the first 8579 // lane is still be better than not generating any at all. For 8580 // example, the input may be a splat across all lanes. 8581 // 2. For the lifetime start/end intrinsics the pointer operand only 8582 // does anything useful when the input comes from a stack object, 8583 // which suggests it should always be uniform. For non-stack objects 8584 // the effect is to poison the object, which still allows us to 8585 // remove the call. 8586 IsUniform = true; 8587 break; 8588 default: 8589 break; 8590 } 8591 } 8592 8593 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8594 IsUniform, IsPredicated); 8595 setRecipe(I, Recipe); 8596 Plan->addVPValue(I, Recipe); 8597 8598 // Find if I uses a predicated instruction. If so, it will use its scalar 8599 // value. Avoid hoisting the insert-element which packs the scalar value into 8600 // a vector value, as that happens iff all users use the vector value. 8601 for (VPValue *Op : Recipe->operands()) { 8602 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8603 if (!PredR) 8604 continue; 8605 auto *RepR = 8606 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8607 assert(RepR->isPredicated() && 8608 "expected Replicate recipe to be predicated"); 8609 RepR->setAlsoPack(false); 8610 } 8611 8612 // Finalize the recipe for Instr, first if it is not predicated. 8613 if (!IsPredicated) { 8614 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8615 VPBB->appendRecipe(Recipe); 8616 return VPBB; 8617 } 8618 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8619 8620 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8621 assert(SingleSucc && "VPBB must have a single successor when handling " 8622 "predicated replication."); 8623 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8624 // Record predicated instructions for above packing optimizations. 8625 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8626 VPBlockUtils::insertBlockAfter(Region, VPBB); 8627 auto *RegSucc = new VPBasicBlock(); 8628 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8629 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8630 return RegSucc; 8631 } 8632 8633 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8634 VPRecipeBase *PredRecipe, 8635 VPlanPtr &Plan) { 8636 // Instructions marked for predication are replicated and placed under an 8637 // if-then construct to prevent side-effects. 8638 8639 // Generate recipes to compute the block mask for this region. 8640 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8641 8642 // Build the triangular if-then region. 8643 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8644 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8645 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8646 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8647 auto *PHIRecipe = Instr->getType()->isVoidTy() 8648 ? nullptr 8649 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8650 if (PHIRecipe) { 8651 Plan->removeVPValueFor(Instr); 8652 Plan->addVPValue(Instr, PHIRecipe); 8653 } 8654 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8655 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8656 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8657 8658 // Note: first set Entry as region entry and then connect successors starting 8659 // from it in order, to propagate the "parent" of each VPBasicBlock. 8660 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8661 VPBlockUtils::connectBlocks(Pred, Exit); 8662 8663 return Region; 8664 } 8665 8666 VPRecipeOrVPValueTy 8667 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8668 ArrayRef<VPValue *> Operands, 8669 VFRange &Range, VPlanPtr &Plan) { 8670 // First, check for specific widening recipes that deal with calls, memory 8671 // operations, inductions and Phi nodes. 8672 if (auto *CI = dyn_cast<CallInst>(Instr)) 8673 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8674 8675 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8676 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8677 8678 VPRecipeBase *Recipe; 8679 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8680 if (Phi->getParent() != OrigLoop->getHeader()) 8681 return tryToBlend(Phi, Operands, Plan); 8682 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range))) 8683 return toVPRecipeResult(Recipe); 8684 8685 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8686 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8687 VPValue *StartV = Operands[0]; 8688 if (Legal->isReductionVariable(Phi)) { 8689 const RecurrenceDescriptor &RdxDesc = 8690 Legal->getReductionVars().find(Phi)->second; 8691 assert(RdxDesc.getRecurrenceStartValue() == 8692 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8693 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8694 CM.isInLoopReduction(Phi), 8695 CM.useOrderedReductions(RdxDesc)); 8696 } else { 8697 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8698 } 8699 8700 // Record the incoming value from the backedge, so we can add the incoming 8701 // value from the backedge after all recipes have been created. 8702 recordRecipeOf(cast<Instruction>( 8703 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8704 PhisToFix.push_back(PhiRecipe); 8705 } else { 8706 // TODO: record backedge value for remaining pointer induction phis. 8707 assert(Phi->getType()->isPointerTy() && 8708 "only pointer phis should be handled here"); 8709 assert(Legal->getInductionVars().count(Phi) && 8710 "Not an induction variable"); 8711 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8712 VPValue *Start = Plan->getOrAddVPValue(II.getStartValue()); 8713 PhiRecipe = new VPWidenPHIRecipe(Phi, Start); 8714 } 8715 8716 return toVPRecipeResult(PhiRecipe); 8717 } 8718 8719 if (isa<TruncInst>(Instr) && 8720 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8721 Range, *Plan))) 8722 return toVPRecipeResult(Recipe); 8723 8724 if (!shouldWiden(Instr, Range)) 8725 return nullptr; 8726 8727 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8728 return toVPRecipeResult(new VPWidenGEPRecipe( 8729 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8730 8731 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8732 bool InvariantCond = 8733 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8734 return toVPRecipeResult(new VPWidenSelectRecipe( 8735 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8736 } 8737 8738 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8739 } 8740 8741 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8742 ElementCount MaxVF) { 8743 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8744 8745 // Collect instructions from the original loop that will become trivially dead 8746 // in the vectorized loop. We don't need to vectorize these instructions. For 8747 // example, original induction update instructions can become dead because we 8748 // separately emit induction "steps" when generating code for the new loop. 8749 // Similarly, we create a new latch condition when setting up the structure 8750 // of the new loop, so the old one can become dead. 8751 SmallPtrSet<Instruction *, 4> DeadInstructions; 8752 collectTriviallyDeadInstructions(DeadInstructions); 8753 8754 // Add assume instructions we need to drop to DeadInstructions, to prevent 8755 // them from being added to the VPlan. 8756 // TODO: We only need to drop assumes in blocks that get flattend. If the 8757 // control flow is preserved, we should keep them. 8758 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8759 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8760 8761 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8762 // Dead instructions do not need sinking. Remove them from SinkAfter. 8763 for (Instruction *I : DeadInstructions) 8764 SinkAfter.erase(I); 8765 8766 // Cannot sink instructions after dead instructions (there won't be any 8767 // recipes for them). Instead, find the first non-dead previous instruction. 8768 for (auto &P : Legal->getSinkAfter()) { 8769 Instruction *SinkTarget = P.second; 8770 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8771 (void)FirstInst; 8772 while (DeadInstructions.contains(SinkTarget)) { 8773 assert( 8774 SinkTarget != FirstInst && 8775 "Must find a live instruction (at least the one feeding the " 8776 "first-order recurrence PHI) before reaching beginning of the block"); 8777 SinkTarget = SinkTarget->getPrevNode(); 8778 assert(SinkTarget != P.first && 8779 "sink source equals target, no sinking required"); 8780 } 8781 P.second = SinkTarget; 8782 } 8783 8784 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8785 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8786 VFRange SubRange = {VF, MaxVFPlusOne}; 8787 VPlans.push_back( 8788 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8789 VF = SubRange.End; 8790 } 8791 } 8792 8793 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8794 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8795 // BranchOnCount VPInstruction to the latch. 8796 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8797 bool HasNUW, bool IsVPlanNative) { 8798 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8799 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8800 8801 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8802 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8803 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8804 if (IsVPlanNative) 8805 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 8806 Header->insert(CanonicalIVPHI, Header->begin()); 8807 8808 auto *CanonicalIVIncrement = 8809 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8810 : VPInstruction::CanonicalIVIncrement, 8811 {CanonicalIVPHI}, DL); 8812 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8813 8814 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8815 if (IsVPlanNative) { 8816 EB = cast<VPBasicBlock>(EB->getSinglePredecessor()); 8817 EB->setCondBit(nullptr); 8818 } 8819 EB->appendRecipe(CanonicalIVIncrement); 8820 8821 auto *BranchOnCount = 8822 new VPInstruction(VPInstruction::BranchOnCount, 8823 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8824 EB->appendRecipe(BranchOnCount); 8825 } 8826 8827 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8828 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8829 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8830 8831 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8832 8833 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8834 8835 // --------------------------------------------------------------------------- 8836 // Pre-construction: record ingredients whose recipes we'll need to further 8837 // process after constructing the initial VPlan. 8838 // --------------------------------------------------------------------------- 8839 8840 // Mark instructions we'll need to sink later and their targets as 8841 // ingredients whose recipe we'll need to record. 8842 for (auto &Entry : SinkAfter) { 8843 RecipeBuilder.recordRecipeOf(Entry.first); 8844 RecipeBuilder.recordRecipeOf(Entry.second); 8845 } 8846 for (auto &Reduction : CM.getInLoopReductionChains()) { 8847 PHINode *Phi = Reduction.first; 8848 RecurKind Kind = 8849 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8850 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8851 8852 RecipeBuilder.recordRecipeOf(Phi); 8853 for (auto &R : ReductionOperations) { 8854 RecipeBuilder.recordRecipeOf(R); 8855 // For min/max reducitons, where we have a pair of icmp/select, we also 8856 // need to record the ICmp recipe, so it can be removed later. 8857 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8858 "Only min/max recurrences allowed for inloop reductions"); 8859 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8860 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8861 } 8862 } 8863 8864 // For each interleave group which is relevant for this (possibly trimmed) 8865 // Range, add it to the set of groups to be later applied to the VPlan and add 8866 // placeholders for its members' Recipes which we'll be replacing with a 8867 // single VPInterleaveRecipe. 8868 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8869 auto applyIG = [IG, this](ElementCount VF) -> bool { 8870 return (VF.isVector() && // Query is illegal for VF == 1 8871 CM.getWideningDecision(IG->getInsertPos(), VF) == 8872 LoopVectorizationCostModel::CM_Interleave); 8873 }; 8874 if (!getDecisionAndClampRange(applyIG, Range)) 8875 continue; 8876 InterleaveGroups.insert(IG); 8877 for (unsigned i = 0; i < IG->getFactor(); i++) 8878 if (Instruction *Member = IG->getMember(i)) 8879 RecipeBuilder.recordRecipeOf(Member); 8880 }; 8881 8882 // --------------------------------------------------------------------------- 8883 // Build initial VPlan: Scan the body of the loop in a topological order to 8884 // visit each basic block after having visited its predecessor basic blocks. 8885 // --------------------------------------------------------------------------- 8886 8887 // Create initial VPlan skeleton, with separate header and latch blocks. 8888 VPBasicBlock *HeaderVPBB = new VPBasicBlock(); 8889 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 8890 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 8891 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 8892 auto Plan = std::make_unique<VPlan>(TopRegion); 8893 8894 Instruction *DLInst = 8895 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 8896 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 8897 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 8898 !CM.foldTailByMasking(), false); 8899 8900 // Scan the body of the loop in a topological order to visit each basic block 8901 // after having visited its predecessor basic blocks. 8902 LoopBlocksDFS DFS(OrigLoop); 8903 DFS.perform(LI); 8904 8905 VPBasicBlock *VPBB = HeaderVPBB; 8906 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 8907 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8908 // Relevant instructions from basic block BB will be grouped into VPRecipe 8909 // ingredients and fill a new VPBasicBlock. 8910 unsigned VPBBsForBB = 0; 8911 VPBB->setName(BB->getName()); 8912 Builder.setInsertPoint(VPBB); 8913 8914 // Introduce each ingredient into VPlan. 8915 // TODO: Model and preserve debug instrinsics in VPlan. 8916 for (Instruction &I : BB->instructionsWithoutDebug()) { 8917 Instruction *Instr = &I; 8918 8919 // First filter out irrelevant instructions, to ensure no recipes are 8920 // built for them. 8921 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8922 continue; 8923 8924 SmallVector<VPValue *, 4> Operands; 8925 auto *Phi = dyn_cast<PHINode>(Instr); 8926 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 8927 Operands.push_back(Plan->getOrAddVPValue( 8928 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 8929 } else { 8930 auto OpRange = Plan->mapToVPValues(Instr->operands()); 8931 Operands = {OpRange.begin(), OpRange.end()}; 8932 } 8933 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 8934 Instr, Operands, Range, Plan)) { 8935 // If Instr can be simplified to an existing VPValue, use it. 8936 if (RecipeOrValue.is<VPValue *>()) { 8937 auto *VPV = RecipeOrValue.get<VPValue *>(); 8938 Plan->addVPValue(Instr, VPV); 8939 // If the re-used value is a recipe, register the recipe for the 8940 // instruction, in case the recipe for Instr needs to be recorded. 8941 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 8942 RecipeBuilder.setRecipe(Instr, R); 8943 continue; 8944 } 8945 // Otherwise, add the new recipe. 8946 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8947 for (auto *Def : Recipe->definedValues()) { 8948 auto *UV = Def->getUnderlyingValue(); 8949 Plan->addVPValue(UV, Def); 8950 } 8951 8952 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 8953 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 8954 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 8955 // of the header block. That can happen for truncates of induction 8956 // variables. Those recipes are moved to the phi section of the header 8957 // block after applying SinkAfter, which relies on the original 8958 // position of the trunc. 8959 assert(isa<TruncInst>(Instr)); 8960 InductionsToMove.push_back( 8961 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 8962 } 8963 RecipeBuilder.setRecipe(Instr, Recipe); 8964 VPBB->appendRecipe(Recipe); 8965 continue; 8966 } 8967 8968 // Otherwise, if all widening options failed, Instruction is to be 8969 // replicated. This may create a successor for VPBB. 8970 VPBasicBlock *NextVPBB = 8971 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8972 if (NextVPBB != VPBB) { 8973 VPBB = NextVPBB; 8974 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8975 : ""); 8976 } 8977 } 8978 8979 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 8980 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 8981 } 8982 8983 // Fold the last, empty block into its predecessor. 8984 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 8985 assert(VPBB && "expected to fold last (empty) block"); 8986 // After here, VPBB should not be used. 8987 VPBB = nullptr; 8988 8989 assert(isa<VPRegionBlock>(Plan->getEntry()) && 8990 !Plan->getEntry()->getEntryBasicBlock()->empty() && 8991 "entry block must be set to a VPRegionBlock having a non-empty entry " 8992 "VPBasicBlock"); 8993 RecipeBuilder.fixHeaderPhis(); 8994 8995 // --------------------------------------------------------------------------- 8996 // Transform initial VPlan: Apply previously taken decisions, in order, to 8997 // bring the VPlan to its final state. 8998 // --------------------------------------------------------------------------- 8999 9000 // Apply Sink-After legal constraints. 9001 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9002 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9003 if (Region && Region->isReplicator()) { 9004 assert(Region->getNumSuccessors() == 1 && 9005 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9006 assert(R->getParent()->size() == 1 && 9007 "A recipe in an original replicator region must be the only " 9008 "recipe in its block"); 9009 return Region; 9010 } 9011 return nullptr; 9012 }; 9013 for (auto &Entry : SinkAfter) { 9014 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9015 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9016 9017 auto *TargetRegion = GetReplicateRegion(Target); 9018 auto *SinkRegion = GetReplicateRegion(Sink); 9019 if (!SinkRegion) { 9020 // If the sink source is not a replicate region, sink the recipe directly. 9021 if (TargetRegion) { 9022 // The target is in a replication region, make sure to move Sink to 9023 // the block after it, not into the replication region itself. 9024 VPBasicBlock *NextBlock = 9025 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9026 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9027 } else 9028 Sink->moveAfter(Target); 9029 continue; 9030 } 9031 9032 // The sink source is in a replicate region. Unhook the region from the CFG. 9033 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9034 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9035 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9036 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9037 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9038 9039 if (TargetRegion) { 9040 // The target recipe is also in a replicate region, move the sink region 9041 // after the target region. 9042 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9043 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9044 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9045 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9046 } else { 9047 // The sink source is in a replicate region, we need to move the whole 9048 // replicate region, which should only contain a single recipe in the 9049 // main block. 9050 auto *SplitBlock = 9051 Target->getParent()->splitAt(std::next(Target->getIterator())); 9052 9053 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9054 9055 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9056 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9057 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9058 } 9059 } 9060 9061 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 9062 VPlanTransforms::removeRedundantInductionCasts(*Plan); 9063 9064 // Now that sink-after is done, move induction recipes for optimized truncates 9065 // to the phi section of the header block. 9066 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 9067 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 9068 9069 // Adjust the recipes for any inloop reductions. 9070 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 9071 RecipeBuilder, Range.Start); 9072 9073 // Introduce a recipe to combine the incoming and previous values of a 9074 // first-order recurrence. 9075 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9076 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9077 if (!RecurPhi) 9078 continue; 9079 9080 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9081 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 9082 auto *Region = GetReplicateRegion(PrevRecipe); 9083 if (Region) 9084 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9085 if (Region || PrevRecipe->isPhi()) 9086 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 9087 else 9088 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 9089 9090 auto *RecurSplice = cast<VPInstruction>( 9091 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9092 {RecurPhi, RecurPhi->getBackedgeValue()})); 9093 9094 RecurPhi->replaceAllUsesWith(RecurSplice); 9095 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9096 // all users. 9097 RecurSplice->setOperand(0, RecurPhi); 9098 } 9099 9100 // Interleave memory: for each Interleave Group we marked earlier as relevant 9101 // for this VPlan, replace the Recipes widening its memory instructions with a 9102 // single VPInterleaveRecipe at its insertion point. 9103 for (auto IG : InterleaveGroups) { 9104 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9105 RecipeBuilder.getRecipe(IG->getInsertPos())); 9106 SmallVector<VPValue *, 4> StoredValues; 9107 for (unsigned i = 0; i < IG->getFactor(); ++i) 9108 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9109 auto *StoreR = 9110 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9111 StoredValues.push_back(StoreR->getStoredValue()); 9112 } 9113 9114 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9115 Recipe->getMask()); 9116 VPIG->insertBefore(Recipe); 9117 unsigned J = 0; 9118 for (unsigned i = 0; i < IG->getFactor(); ++i) 9119 if (Instruction *Member = IG->getMember(i)) { 9120 if (!Member->getType()->isVoidTy()) { 9121 VPValue *OriginalV = Plan->getVPValue(Member); 9122 Plan->removeVPValueFor(Member); 9123 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9124 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9125 J++; 9126 } 9127 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9128 } 9129 } 9130 9131 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9132 // in ways that accessing values using original IR values is incorrect. 9133 Plan->disableValue2VPValue(); 9134 9135 VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); 9136 VPlanTransforms::sinkScalarOperands(*Plan); 9137 VPlanTransforms::mergeReplicateRegions(*Plan); 9138 VPlanTransforms::removeDeadRecipes(*Plan, *OrigLoop); 9139 9140 std::string PlanName; 9141 raw_string_ostream RSO(PlanName); 9142 ElementCount VF = Range.Start; 9143 Plan->addVF(VF); 9144 RSO << "Initial VPlan for VF={" << VF; 9145 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9146 Plan->addVF(VF); 9147 RSO << "," << VF; 9148 } 9149 RSO << "},UF>=1"; 9150 RSO.flush(); 9151 Plan->setName(PlanName); 9152 9153 // Fold Exit block into its predecessor if possible. 9154 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9155 // VPBasicBlock as exit. 9156 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9157 9158 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9159 return Plan; 9160 } 9161 9162 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9163 // Outer loop handling: They may require CFG and instruction level 9164 // transformations before even evaluating whether vectorization is profitable. 9165 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9166 // the vectorization pipeline. 9167 assert(!OrigLoop->isInnermost()); 9168 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9169 9170 // Create new empty VPlan 9171 auto Plan = std::make_unique<VPlan>(); 9172 9173 // Build hierarchical CFG 9174 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9175 HCFGBuilder.buildHierarchicalCFG(); 9176 9177 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9178 VF *= 2) 9179 Plan->addVF(VF); 9180 9181 if (EnableVPlanPredication) { 9182 VPlanPredicator VPP(*Plan); 9183 VPP.predicate(); 9184 9185 // Avoid running transformation to recipes until masked code generation in 9186 // VPlan-native path is in place. 9187 return Plan; 9188 } 9189 9190 SmallPtrSet<Instruction *, 1> DeadInstructions; 9191 VPlanTransforms::VPInstructionsToVPRecipes( 9192 OrigLoop, Plan, 9193 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9194 DeadInstructions, *PSE.getSE()); 9195 9196 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9197 true, true); 9198 return Plan; 9199 } 9200 9201 // Adjust the recipes for reductions. For in-loop reductions the chain of 9202 // instructions leading from the loop exit instr to the phi need to be converted 9203 // to reductions, with one operand being vector and the other being the scalar 9204 // reduction chain. For other reductions, a select is introduced between the phi 9205 // and live-out recipes when folding the tail. 9206 void LoopVectorizationPlanner::adjustRecipesForReductions( 9207 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9208 ElementCount MinVF) { 9209 for (auto &Reduction : CM.getInLoopReductionChains()) { 9210 PHINode *Phi = Reduction.first; 9211 const RecurrenceDescriptor &RdxDesc = 9212 Legal->getReductionVars().find(Phi)->second; 9213 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9214 9215 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9216 continue; 9217 9218 // ReductionOperations are orders top-down from the phi's use to the 9219 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9220 // which of the two operands will remain scalar and which will be reduced. 9221 // For minmax the chain will be the select instructions. 9222 Instruction *Chain = Phi; 9223 for (Instruction *R : ReductionOperations) { 9224 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9225 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9226 9227 VPValue *ChainOp = Plan->getVPValue(Chain); 9228 unsigned FirstOpId; 9229 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9230 "Only min/max recurrences allowed for inloop reductions"); 9231 // Recognize a call to the llvm.fmuladd intrinsic. 9232 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9233 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9234 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9235 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9236 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9237 "Expected to replace a VPWidenSelectSC"); 9238 FirstOpId = 1; 9239 } else { 9240 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9241 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9242 "Expected to replace a VPWidenSC"); 9243 FirstOpId = 0; 9244 } 9245 unsigned VecOpId = 9246 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9247 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9248 9249 auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent()) 9250 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9251 : nullptr; 9252 9253 if (IsFMulAdd) { 9254 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9255 // need to create an fmul recipe to use as the vector operand for the 9256 // fadd reduction. 9257 VPInstruction *FMulRecipe = new VPInstruction( 9258 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9259 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9260 WidenRecipe->getParent()->insert(FMulRecipe, 9261 WidenRecipe->getIterator()); 9262 VecOp = FMulRecipe; 9263 } 9264 VPReductionRecipe *RedRecipe = 9265 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9266 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9267 Plan->removeVPValueFor(R); 9268 Plan->addVPValue(R, RedRecipe); 9269 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9270 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9271 WidenRecipe->eraseFromParent(); 9272 9273 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9274 VPRecipeBase *CompareRecipe = 9275 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9276 assert(isa<VPWidenRecipe>(CompareRecipe) && 9277 "Expected to replace a VPWidenSC"); 9278 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9279 "Expected no remaining users"); 9280 CompareRecipe->eraseFromParent(); 9281 } 9282 Chain = R; 9283 } 9284 } 9285 9286 // If tail is folded by masking, introduce selects between the phi 9287 // and the live-out instruction of each reduction, at the beginning of the 9288 // dedicated latch block. 9289 if (CM.foldTailByMasking()) { 9290 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9291 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9292 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9293 if (!PhiR || PhiR->isInLoop()) 9294 continue; 9295 VPValue *Cond = 9296 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9297 VPValue *Red = PhiR->getBackedgeValue(); 9298 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9299 "reduction recipe must be defined before latch"); 9300 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9301 } 9302 } 9303 } 9304 9305 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9306 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9307 VPSlotTracker &SlotTracker) const { 9308 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9309 IG->getInsertPos()->printAsOperand(O, false); 9310 O << ", "; 9311 getAddr()->printAsOperand(O, SlotTracker); 9312 VPValue *Mask = getMask(); 9313 if (Mask) { 9314 O << ", "; 9315 Mask->printAsOperand(O, SlotTracker); 9316 } 9317 9318 unsigned OpIdx = 0; 9319 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9320 if (!IG->getMember(i)) 9321 continue; 9322 if (getNumStoreOperands() > 0) { 9323 O << "\n" << Indent << " store "; 9324 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9325 O << " to index " << i; 9326 } else { 9327 O << "\n" << Indent << " "; 9328 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9329 O << " = load from index " << i; 9330 } 9331 ++OpIdx; 9332 } 9333 } 9334 #endif 9335 9336 void VPWidenCallRecipe::execute(VPTransformState &State) { 9337 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9338 *this, State); 9339 } 9340 9341 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9342 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9343 State.ILV->setDebugLocFromInst(&I); 9344 9345 // The condition can be loop invariant but still defined inside the 9346 // loop. This means that we can't just use the original 'cond' value. 9347 // We have to take the 'vectorized' value and pick the first lane. 9348 // Instcombine will make this a no-op. 9349 auto *InvarCond = 9350 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9351 9352 for (unsigned Part = 0; Part < State.UF; ++Part) { 9353 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9354 Value *Op0 = State.get(getOperand(1), Part); 9355 Value *Op1 = State.get(getOperand(2), Part); 9356 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9357 State.set(this, Sel, Part); 9358 State.ILV->addMetadata(Sel, &I); 9359 } 9360 } 9361 9362 void VPWidenRecipe::execute(VPTransformState &State) { 9363 auto &I = *cast<Instruction>(getUnderlyingValue()); 9364 auto &Builder = State.Builder; 9365 switch (I.getOpcode()) { 9366 case Instruction::Call: 9367 case Instruction::Br: 9368 case Instruction::PHI: 9369 case Instruction::GetElementPtr: 9370 case Instruction::Select: 9371 llvm_unreachable("This instruction is handled by a different recipe."); 9372 case Instruction::UDiv: 9373 case Instruction::SDiv: 9374 case Instruction::SRem: 9375 case Instruction::URem: 9376 case Instruction::Add: 9377 case Instruction::FAdd: 9378 case Instruction::Sub: 9379 case Instruction::FSub: 9380 case Instruction::FNeg: 9381 case Instruction::Mul: 9382 case Instruction::FMul: 9383 case Instruction::FDiv: 9384 case Instruction::FRem: 9385 case Instruction::Shl: 9386 case Instruction::LShr: 9387 case Instruction::AShr: 9388 case Instruction::And: 9389 case Instruction::Or: 9390 case Instruction::Xor: { 9391 // Just widen unops and binops. 9392 State.ILV->setDebugLocFromInst(&I); 9393 9394 for (unsigned Part = 0; Part < State.UF; ++Part) { 9395 SmallVector<Value *, 2> Ops; 9396 for (VPValue *VPOp : operands()) 9397 Ops.push_back(State.get(VPOp, Part)); 9398 9399 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9400 9401 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9402 VecOp->copyIRFlags(&I); 9403 9404 // If the instruction is vectorized and was in a basic block that needed 9405 // predication, we can't propagate poison-generating flags (nuw/nsw, 9406 // exact, etc.). The control flow has been linearized and the 9407 // instruction is no longer guarded by the predicate, which could make 9408 // the flag properties to no longer hold. 9409 if (State.MayGeneratePoisonRecipes.contains(this)) 9410 VecOp->dropPoisonGeneratingFlags(); 9411 } 9412 9413 // Use this vector value for all users of the original instruction. 9414 State.set(this, V, Part); 9415 State.ILV->addMetadata(V, &I); 9416 } 9417 9418 break; 9419 } 9420 case Instruction::ICmp: 9421 case Instruction::FCmp: { 9422 // Widen compares. Generate vector compares. 9423 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9424 auto *Cmp = cast<CmpInst>(&I); 9425 State.ILV->setDebugLocFromInst(Cmp); 9426 for (unsigned Part = 0; Part < State.UF; ++Part) { 9427 Value *A = State.get(getOperand(0), Part); 9428 Value *B = State.get(getOperand(1), Part); 9429 Value *C = nullptr; 9430 if (FCmp) { 9431 // Propagate fast math flags. 9432 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9433 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9434 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9435 } else { 9436 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9437 } 9438 State.set(this, C, Part); 9439 State.ILV->addMetadata(C, &I); 9440 } 9441 9442 break; 9443 } 9444 9445 case Instruction::ZExt: 9446 case Instruction::SExt: 9447 case Instruction::FPToUI: 9448 case Instruction::FPToSI: 9449 case Instruction::FPExt: 9450 case Instruction::PtrToInt: 9451 case Instruction::IntToPtr: 9452 case Instruction::SIToFP: 9453 case Instruction::UIToFP: 9454 case Instruction::Trunc: 9455 case Instruction::FPTrunc: 9456 case Instruction::BitCast: { 9457 auto *CI = cast<CastInst>(&I); 9458 State.ILV->setDebugLocFromInst(CI); 9459 9460 /// Vectorize casts. 9461 Type *DestTy = (State.VF.isScalar()) 9462 ? CI->getType() 9463 : VectorType::get(CI->getType(), State.VF); 9464 9465 for (unsigned Part = 0; Part < State.UF; ++Part) { 9466 Value *A = State.get(getOperand(0), Part); 9467 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9468 State.set(this, Cast, Part); 9469 State.ILV->addMetadata(Cast, &I); 9470 } 9471 break; 9472 } 9473 default: 9474 // This instruction is not vectorized by simple widening. 9475 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9476 llvm_unreachable("Unhandled instruction!"); 9477 } // end of switch. 9478 } 9479 9480 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9481 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9482 // Construct a vector GEP by widening the operands of the scalar GEP as 9483 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9484 // results in a vector of pointers when at least one operand of the GEP 9485 // is vector-typed. Thus, to keep the representation compact, we only use 9486 // vector-typed operands for loop-varying values. 9487 9488 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9489 // If we are vectorizing, but the GEP has only loop-invariant operands, 9490 // the GEP we build (by only using vector-typed operands for 9491 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9492 // produce a vector of pointers, we need to either arbitrarily pick an 9493 // operand to broadcast, or broadcast a clone of the original GEP. 9494 // Here, we broadcast a clone of the original. 9495 // 9496 // TODO: If at some point we decide to scalarize instructions having 9497 // loop-invariant operands, this special case will no longer be 9498 // required. We would add the scalarization decision to 9499 // collectLoopScalars() and teach getVectorValue() to broadcast 9500 // the lane-zero scalar value. 9501 auto *Clone = State.Builder.Insert(GEP->clone()); 9502 for (unsigned Part = 0; Part < State.UF; ++Part) { 9503 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9504 State.set(this, EntryPart, Part); 9505 State.ILV->addMetadata(EntryPart, GEP); 9506 } 9507 } else { 9508 // If the GEP has at least one loop-varying operand, we are sure to 9509 // produce a vector of pointers. But if we are only unrolling, we want 9510 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9511 // produce with the code below will be scalar (if VF == 1) or vector 9512 // (otherwise). Note that for the unroll-only case, we still maintain 9513 // values in the vector mapping with initVector, as we do for other 9514 // instructions. 9515 for (unsigned Part = 0; Part < State.UF; ++Part) { 9516 // The pointer operand of the new GEP. If it's loop-invariant, we 9517 // won't broadcast it. 9518 auto *Ptr = IsPtrLoopInvariant 9519 ? State.get(getOperand(0), VPIteration(0, 0)) 9520 : State.get(getOperand(0), Part); 9521 9522 // Collect all the indices for the new GEP. If any index is 9523 // loop-invariant, we won't broadcast it. 9524 SmallVector<Value *, 4> Indices; 9525 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9526 VPValue *Operand = getOperand(I); 9527 if (IsIndexLoopInvariant[I - 1]) 9528 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9529 else 9530 Indices.push_back(State.get(Operand, Part)); 9531 } 9532 9533 // If the GEP instruction is vectorized and was in a basic block that 9534 // needed predication, we can't propagate the poison-generating 'inbounds' 9535 // flag. The control flow has been linearized and the GEP is no longer 9536 // guarded by the predicate, which could make the 'inbounds' properties to 9537 // no longer hold. 9538 bool IsInBounds = 9539 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9540 9541 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9542 // but it should be a vector, otherwise. 9543 auto *NewGEP = IsInBounds 9544 ? State.Builder.CreateInBoundsGEP( 9545 GEP->getSourceElementType(), Ptr, Indices) 9546 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9547 Ptr, Indices); 9548 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9549 "NewGEP is not a pointer vector"); 9550 State.set(this, NewGEP, Part); 9551 State.ILV->addMetadata(NewGEP, GEP); 9552 } 9553 } 9554 } 9555 9556 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9557 assert(!State.Instance && "Int or FP induction being replicated."); 9558 9559 Value *Start = getStartValue()->getLiveInIRValue(); 9560 const InductionDescriptor &ID = getInductionDescriptor(); 9561 TruncInst *Trunc = getTruncInst(); 9562 IRBuilderBase &Builder = State.Builder; 9563 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 9564 assert(State.VF.isVector() && "must have vector VF"); 9565 9566 // The value from the original loop to which we are mapping the new induction 9567 // variable. 9568 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 9569 9570 auto &DL = EntryVal->getModule()->getDataLayout(); 9571 9572 // Generate code for the induction step. Note that induction steps are 9573 // required to be loop-invariant 9574 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 9575 if (SE.isSCEVable(IV->getType())) { 9576 SCEVExpander Exp(SE, DL, "induction"); 9577 return Exp.expandCodeFor(Step, Step->getType(), 9578 State.CFG.VectorPreHeader->getTerminator()); 9579 } 9580 return cast<SCEVUnknown>(Step)->getValue(); 9581 }; 9582 9583 // Fast-math-flags propagate from the original induction instruction. 9584 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9585 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 9586 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 9587 9588 // Now do the actual transformations, and start with creating the step value. 9589 Value *Step = CreateStepValue(ID.getStep()); 9590 9591 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 9592 "Expected either an induction phi-node or a truncate of it!"); 9593 9594 // Construct the initial value of the vector IV in the vector loop preheader 9595 auto CurrIP = Builder.saveIP(); 9596 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 9597 if (isa<TruncInst>(EntryVal)) { 9598 assert(Start->getType()->isIntegerTy() && 9599 "Truncation requires an integer type"); 9600 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 9601 Step = Builder.CreateTrunc(Step, TruncType); 9602 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 9603 } 9604 9605 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 9606 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 9607 Value *SteppedStart = getStepVector( 9608 SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); 9609 9610 // We create vector phi nodes for both integer and floating-point induction 9611 // variables. Here, we determine the kind of arithmetic we will perform. 9612 Instruction::BinaryOps AddOp; 9613 Instruction::BinaryOps MulOp; 9614 if (Step->getType()->isIntegerTy()) { 9615 AddOp = Instruction::Add; 9616 MulOp = Instruction::Mul; 9617 } else { 9618 AddOp = ID.getInductionOpcode(); 9619 MulOp = Instruction::FMul; 9620 } 9621 9622 // Multiply the vectorization factor by the step using integer or 9623 // floating-point arithmetic as appropriate. 9624 Type *StepType = Step->getType(); 9625 Value *RuntimeVF; 9626 if (Step->getType()->isFloatingPointTy()) 9627 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 9628 else 9629 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 9630 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 9631 9632 // Create a vector splat to use in the induction update. 9633 // 9634 // FIXME: If the step is non-constant, we create the vector splat with 9635 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 9636 // handle a constant vector splat. 9637 Value *SplatVF = isa<Constant>(Mul) 9638 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 9639 : Builder.CreateVectorSplat(State.VF, Mul); 9640 Builder.restoreIP(CurrIP); 9641 9642 // We may need to add the step a number of times, depending on the unroll 9643 // factor. The last of those goes into the PHI. 9644 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 9645 &*State.CFG.PrevBB->getFirstInsertionPt()); 9646 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 9647 Instruction *LastInduction = VecInd; 9648 for (unsigned Part = 0; Part < State.UF; ++Part) { 9649 State.set(this, LastInduction, Part); 9650 9651 if (isa<TruncInst>(EntryVal)) 9652 State.ILV->addMetadata(LastInduction, EntryVal); 9653 9654 LastInduction = cast<Instruction>( 9655 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 9656 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 9657 } 9658 9659 // Move the last step to the end of the latch block. This ensures consistent 9660 // placement of all induction updates. 9661 auto *LoopVectorLatch = 9662 State.LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch(); 9663 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 9664 LastInduction->moveBefore(Br); 9665 LastInduction->setName("vec.ind.next"); 9666 9667 VecInd->addIncoming(SteppedStart, State.CFG.VectorPreHeader); 9668 VecInd->addIncoming(LastInduction, LoopVectorLatch); 9669 } 9670 9671 void VPScalarIVStepsRecipe::execute(VPTransformState &State) { 9672 assert(!State.Instance && "VPScalarIVStepsRecipe being replicated."); 9673 9674 // Fast-math-flags propagate from the original induction instruction. 9675 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9676 if (IndDesc.getInductionBinOp() && 9677 isa<FPMathOperator>(IndDesc.getInductionBinOp())) 9678 State.Builder.setFastMathFlags( 9679 IndDesc.getInductionBinOp()->getFastMathFlags()); 9680 9681 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9682 auto CreateScalarIV = [&](Value *&Step) -> Value * { 9683 Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0)); 9684 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9685 if (!isCanonical() || CanonicalIV->getType() != Ty) { 9686 ScalarIV = 9687 Ty->isIntegerTy() 9688 ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty) 9689 : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty); 9690 ScalarIV = emitTransformedIndex(State.Builder, ScalarIV, 9691 getStartValue()->getLiveInIRValue(), Step, 9692 IndDesc); 9693 ScalarIV->setName("offset.idx"); 9694 } 9695 if (TruncToTy) { 9696 assert(Step->getType()->isIntegerTy() && 9697 "Truncation requires an integer step"); 9698 ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy); 9699 Step = State.Builder.CreateTrunc(Step, TruncToTy); 9700 } 9701 return ScalarIV; 9702 }; 9703 9704 Value *ScalarIV = CreateScalarIV(Step); 9705 if (State.VF.isVector()) { 9706 buildScalarSteps(ScalarIV, Step, IndDesc, this, State); 9707 return; 9708 } 9709 9710 for (unsigned Part = 0; Part < State.UF; ++Part) { 9711 assert(!State.VF.isScalable() && "scalable vectors not yet supported."); 9712 Value *EntryPart; 9713 if (Step->getType()->isFloatingPointTy()) { 9714 Value *StartIdx = 9715 getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part); 9716 // Floating-point operations inherit FMF via the builder's flags. 9717 Value *MulOp = State.Builder.CreateFMul(StartIdx, Step); 9718 EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(), 9719 ScalarIV, MulOp); 9720 } else { 9721 Value *StartIdx = 9722 getRuntimeVF(State.Builder, Step->getType(), State.VF * Part); 9723 EntryPart = State.Builder.CreateAdd( 9724 ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction"); 9725 } 9726 State.set(this, EntryPart, Part); 9727 } 9728 } 9729 9730 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9731 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9732 State); 9733 } 9734 9735 void VPBlendRecipe::execute(VPTransformState &State) { 9736 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9737 // We know that all PHIs in non-header blocks are converted into 9738 // selects, so we don't have to worry about the insertion order and we 9739 // can just use the builder. 9740 // At this point we generate the predication tree. There may be 9741 // duplications since this is a simple recursive scan, but future 9742 // optimizations will clean it up. 9743 9744 unsigned NumIncoming = getNumIncomingValues(); 9745 9746 // Generate a sequence of selects of the form: 9747 // SELECT(Mask3, In3, 9748 // SELECT(Mask2, In2, 9749 // SELECT(Mask1, In1, 9750 // In0))) 9751 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9752 // are essentially undef are taken from In0. 9753 InnerLoopVectorizer::VectorParts Entry(State.UF); 9754 for (unsigned In = 0; In < NumIncoming; ++In) { 9755 for (unsigned Part = 0; Part < State.UF; ++Part) { 9756 // We might have single edge PHIs (blocks) - use an identity 9757 // 'select' for the first PHI operand. 9758 Value *In0 = State.get(getIncomingValue(In), Part); 9759 if (In == 0) 9760 Entry[Part] = In0; // Initialize with the first incoming value. 9761 else { 9762 // Select between the current value and the previous incoming edge 9763 // based on the incoming mask. 9764 Value *Cond = State.get(getMask(In), Part); 9765 Entry[Part] = 9766 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9767 } 9768 } 9769 } 9770 for (unsigned Part = 0; Part < State.UF; ++Part) 9771 State.set(this, Entry[Part], Part); 9772 } 9773 9774 void VPInterleaveRecipe::execute(VPTransformState &State) { 9775 assert(!State.Instance && "Interleave group being replicated."); 9776 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9777 getStoredValues(), getMask()); 9778 } 9779 9780 void VPReductionRecipe::execute(VPTransformState &State) { 9781 assert(!State.Instance && "Reduction being replicated."); 9782 Value *PrevInChain = State.get(getChainOp(), 0); 9783 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9784 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9785 // Propagate the fast-math flags carried by the underlying instruction. 9786 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9787 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9788 for (unsigned Part = 0; Part < State.UF; ++Part) { 9789 Value *NewVecOp = State.get(getVecOp(), Part); 9790 if (VPValue *Cond = getCondOp()) { 9791 Value *NewCond = State.get(Cond, Part); 9792 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9793 Value *Iden = RdxDesc->getRecurrenceIdentity( 9794 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9795 Value *IdenVec = 9796 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9797 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9798 NewVecOp = Select; 9799 } 9800 Value *NewRed; 9801 Value *NextInChain; 9802 if (IsOrdered) { 9803 if (State.VF.isVector()) 9804 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9805 PrevInChain); 9806 else 9807 NewRed = State.Builder.CreateBinOp( 9808 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9809 NewVecOp); 9810 PrevInChain = NewRed; 9811 } else { 9812 PrevInChain = State.get(getChainOp(), Part); 9813 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9814 } 9815 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9816 NextInChain = 9817 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9818 NewRed, PrevInChain); 9819 } else if (IsOrdered) 9820 NextInChain = NewRed; 9821 else 9822 NextInChain = State.Builder.CreateBinOp( 9823 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9824 PrevInChain); 9825 State.set(this, NextInChain, Part); 9826 } 9827 } 9828 9829 void VPReplicateRecipe::execute(VPTransformState &State) { 9830 if (State.Instance) { // Generate a single instance. 9831 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9832 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9833 IsPredicated, State); 9834 // Insert scalar instance packing it into a vector. 9835 if (AlsoPack && State.VF.isVector()) { 9836 // If we're constructing lane 0, initialize to start from poison. 9837 if (State.Instance->Lane.isFirstLane()) { 9838 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9839 Value *Poison = PoisonValue::get( 9840 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9841 State.set(this, Poison, State.Instance->Part); 9842 } 9843 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9844 } 9845 return; 9846 } 9847 9848 // Generate scalar instances for all VF lanes of all UF parts, unless the 9849 // instruction is uniform inwhich case generate only the first lane for each 9850 // of the UF parts. 9851 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9852 assert((!State.VF.isScalable() || IsUniform) && 9853 "Can't scalarize a scalable vector"); 9854 for (unsigned Part = 0; Part < State.UF; ++Part) 9855 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9856 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9857 VPIteration(Part, Lane), IsPredicated, 9858 State); 9859 } 9860 9861 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9862 assert(State.Instance && "Branch on Mask works only on single instance."); 9863 9864 unsigned Part = State.Instance->Part; 9865 unsigned Lane = State.Instance->Lane.getKnownLane(); 9866 9867 Value *ConditionBit = nullptr; 9868 VPValue *BlockInMask = getMask(); 9869 if (BlockInMask) { 9870 ConditionBit = State.get(BlockInMask, Part); 9871 if (ConditionBit->getType()->isVectorTy()) 9872 ConditionBit = State.Builder.CreateExtractElement( 9873 ConditionBit, State.Builder.getInt32(Lane)); 9874 } else // Block in mask is all-one. 9875 ConditionBit = State.Builder.getTrue(); 9876 9877 // Replace the temporary unreachable terminator with a new conditional branch, 9878 // whose two destinations will be set later when they are created. 9879 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9880 assert(isa<UnreachableInst>(CurrentTerminator) && 9881 "Expected to replace unreachable terminator with conditional branch."); 9882 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9883 CondBr->setSuccessor(0, nullptr); 9884 ReplaceInstWithInst(CurrentTerminator, CondBr); 9885 } 9886 9887 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9888 assert(State.Instance && "Predicated instruction PHI works per instance."); 9889 Instruction *ScalarPredInst = 9890 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9891 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9892 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9893 assert(PredicatingBB && "Predicated block has no single predecessor."); 9894 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9895 "operand must be VPReplicateRecipe"); 9896 9897 // By current pack/unpack logic we need to generate only a single phi node: if 9898 // a vector value for the predicated instruction exists at this point it means 9899 // the instruction has vector users only, and a phi for the vector value is 9900 // needed. In this case the recipe of the predicated instruction is marked to 9901 // also do that packing, thereby "hoisting" the insert-element sequence. 9902 // Otherwise, a phi node for the scalar value is needed. 9903 unsigned Part = State.Instance->Part; 9904 if (State.hasVectorValue(getOperand(0), Part)) { 9905 Value *VectorValue = State.get(getOperand(0), Part); 9906 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9907 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9908 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9909 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9910 if (State.hasVectorValue(this, Part)) 9911 State.reset(this, VPhi, Part); 9912 else 9913 State.set(this, VPhi, Part); 9914 // NOTE: Currently we need to update the value of the operand, so the next 9915 // predicated iteration inserts its generated value in the correct vector. 9916 State.reset(getOperand(0), VPhi, Part); 9917 } else { 9918 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9919 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9920 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9921 PredicatingBB); 9922 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9923 if (State.hasScalarValue(this, *State.Instance)) 9924 State.reset(this, Phi, *State.Instance); 9925 else 9926 State.set(this, Phi, *State.Instance); 9927 // NOTE: Currently we need to update the value of the operand, so the next 9928 // predicated iteration inserts its generated value in the correct vector. 9929 State.reset(getOperand(0), Phi, *State.Instance); 9930 } 9931 } 9932 9933 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9934 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9935 9936 // Attempt to issue a wide load. 9937 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9938 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9939 9940 assert((LI || SI) && "Invalid Load/Store instruction"); 9941 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9942 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9943 9944 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9945 9946 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9947 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9948 bool CreateGatherScatter = !Consecutive; 9949 9950 auto &Builder = State.Builder; 9951 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9952 bool isMaskRequired = getMask(); 9953 if (isMaskRequired) 9954 for (unsigned Part = 0; Part < State.UF; ++Part) 9955 BlockInMaskParts[Part] = State.get(getMask(), Part); 9956 9957 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9958 // Calculate the pointer for the specific unroll-part. 9959 GetElementPtrInst *PartPtr = nullptr; 9960 9961 bool InBounds = false; 9962 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9963 InBounds = gep->isInBounds(); 9964 if (Reverse) { 9965 // If the address is consecutive but reversed, then the 9966 // wide store needs to start at the last vector element. 9967 // RunTimeVF = VScale * VF.getKnownMinValue() 9968 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9969 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9970 // NumElt = -Part * RunTimeVF 9971 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9972 // LastLane = 1 - RunTimeVF 9973 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9974 PartPtr = 9975 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9976 PartPtr->setIsInBounds(InBounds); 9977 PartPtr = cast<GetElementPtrInst>( 9978 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9979 PartPtr->setIsInBounds(InBounds); 9980 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9981 BlockInMaskParts[Part] = 9982 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9983 } else { 9984 Value *Increment = 9985 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9986 PartPtr = cast<GetElementPtrInst>( 9987 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9988 PartPtr->setIsInBounds(InBounds); 9989 } 9990 9991 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9992 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9993 }; 9994 9995 // Handle Stores: 9996 if (SI) { 9997 State.ILV->setDebugLocFromInst(SI); 9998 9999 for (unsigned Part = 0; Part < State.UF; ++Part) { 10000 Instruction *NewSI = nullptr; 10001 Value *StoredVal = State.get(StoredValue, Part); 10002 if (CreateGatherScatter) { 10003 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10004 Value *VectorGep = State.get(getAddr(), Part); 10005 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 10006 MaskPart); 10007 } else { 10008 if (Reverse) { 10009 // If we store to reverse consecutive memory locations, then we need 10010 // to reverse the order of elements in the stored value. 10011 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 10012 // We don't want to update the value in the map as it might be used in 10013 // another expression. So don't call resetVectorValue(StoredVal). 10014 } 10015 auto *VecPtr = 10016 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10017 if (isMaskRequired) 10018 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 10019 BlockInMaskParts[Part]); 10020 else 10021 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 10022 } 10023 State.ILV->addMetadata(NewSI, SI); 10024 } 10025 return; 10026 } 10027 10028 // Handle loads. 10029 assert(LI && "Must have a load instruction"); 10030 State.ILV->setDebugLocFromInst(LI); 10031 for (unsigned Part = 0; Part < State.UF; ++Part) { 10032 Value *NewLI; 10033 if (CreateGatherScatter) { 10034 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10035 Value *VectorGep = State.get(getAddr(), Part); 10036 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10037 nullptr, "wide.masked.gather"); 10038 State.ILV->addMetadata(NewLI, LI); 10039 } else { 10040 auto *VecPtr = 10041 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10042 if (isMaskRequired) 10043 NewLI = Builder.CreateMaskedLoad( 10044 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10045 PoisonValue::get(DataTy), "wide.masked.load"); 10046 else 10047 NewLI = 10048 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10049 10050 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10051 State.ILV->addMetadata(NewLI, LI); 10052 if (Reverse) 10053 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10054 } 10055 10056 State.set(this, NewLI, Part); 10057 } 10058 } 10059 10060 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10061 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10062 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10063 // for predication. 10064 static ScalarEpilogueLowering getScalarEpilogueLowering( 10065 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10066 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10067 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10068 LoopVectorizationLegality &LVL) { 10069 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10070 // don't look at hints or options, and don't request a scalar epilogue. 10071 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10072 // LoopAccessInfo (due to code dependency and not being able to reliably get 10073 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10074 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10075 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10076 // back to the old way and vectorize with versioning when forced. See D81345.) 10077 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10078 PGSOQueryType::IRPass) && 10079 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10080 return CM_ScalarEpilogueNotAllowedOptSize; 10081 10082 // 2) If set, obey the directives 10083 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10084 switch (PreferPredicateOverEpilogue) { 10085 case PreferPredicateTy::ScalarEpilogue: 10086 return CM_ScalarEpilogueAllowed; 10087 case PreferPredicateTy::PredicateElseScalarEpilogue: 10088 return CM_ScalarEpilogueNotNeededUsePredicate; 10089 case PreferPredicateTy::PredicateOrDontVectorize: 10090 return CM_ScalarEpilogueNotAllowedUsePredicate; 10091 }; 10092 } 10093 10094 // 3) If set, obey the hints 10095 switch (Hints.getPredicate()) { 10096 case LoopVectorizeHints::FK_Enabled: 10097 return CM_ScalarEpilogueNotNeededUsePredicate; 10098 case LoopVectorizeHints::FK_Disabled: 10099 return CM_ScalarEpilogueAllowed; 10100 }; 10101 10102 // 4) if the TTI hook indicates this is profitable, request predication. 10103 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10104 LVL.getLAI())) 10105 return CM_ScalarEpilogueNotNeededUsePredicate; 10106 10107 return CM_ScalarEpilogueAllowed; 10108 } 10109 10110 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10111 // If Values have been set for this Def return the one relevant for \p Part. 10112 if (hasVectorValue(Def, Part)) 10113 return Data.PerPartOutput[Def][Part]; 10114 10115 if (!hasScalarValue(Def, {Part, 0})) { 10116 Value *IRV = Def->getLiveInIRValue(); 10117 Value *B = ILV->getBroadcastInstrs(IRV); 10118 set(Def, B, Part); 10119 return B; 10120 } 10121 10122 Value *ScalarValue = get(Def, {Part, 0}); 10123 // If we aren't vectorizing, we can just copy the scalar map values over 10124 // to the vector map. 10125 if (VF.isScalar()) { 10126 set(Def, ScalarValue, Part); 10127 return ScalarValue; 10128 } 10129 10130 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10131 bool IsUniform = RepR && RepR->isUniform(); 10132 10133 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10134 // Check if there is a scalar value for the selected lane. 10135 if (!hasScalarValue(Def, {Part, LastLane})) { 10136 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10137 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) || 10138 isa<VPScalarIVStepsRecipe>(Def->getDef())) && 10139 "unexpected recipe found to be invariant"); 10140 IsUniform = true; 10141 LastLane = 0; 10142 } 10143 10144 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10145 // Set the insert point after the last scalarized instruction or after the 10146 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10147 // will directly follow the scalar definitions. 10148 auto OldIP = Builder.saveIP(); 10149 auto NewIP = 10150 isa<PHINode>(LastInst) 10151 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10152 : std::next(BasicBlock::iterator(LastInst)); 10153 Builder.SetInsertPoint(&*NewIP); 10154 10155 // However, if we are vectorizing, we need to construct the vector values. 10156 // If the value is known to be uniform after vectorization, we can just 10157 // broadcast the scalar value corresponding to lane zero for each unroll 10158 // iteration. Otherwise, we construct the vector values using 10159 // insertelement instructions. Since the resulting vectors are stored in 10160 // State, we will only generate the insertelements once. 10161 Value *VectorValue = nullptr; 10162 if (IsUniform) { 10163 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10164 set(Def, VectorValue, Part); 10165 } else { 10166 // Initialize packing with insertelements to start from undef. 10167 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10168 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10169 set(Def, Undef, Part); 10170 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10171 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10172 VectorValue = get(Def, Part); 10173 } 10174 Builder.restoreIP(OldIP); 10175 return VectorValue; 10176 } 10177 10178 // Process the loop in the VPlan-native vectorization path. This path builds 10179 // VPlan upfront in the vectorization pipeline, which allows to apply 10180 // VPlan-to-VPlan transformations from the very beginning without modifying the 10181 // input LLVM IR. 10182 static bool processLoopInVPlanNativePath( 10183 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10184 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10185 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10186 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10187 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10188 LoopVectorizationRequirements &Requirements) { 10189 10190 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10191 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10192 return false; 10193 } 10194 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10195 Function *F = L->getHeader()->getParent(); 10196 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10197 10198 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10199 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10200 10201 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10202 &Hints, IAI); 10203 // Use the planner for outer loop vectorization. 10204 // TODO: CM is not used at this point inside the planner. Turn CM into an 10205 // optional argument if we don't need it in the future. 10206 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10207 Requirements, ORE); 10208 10209 // Get user vectorization factor. 10210 ElementCount UserVF = Hints.getWidth(); 10211 10212 CM.collectElementTypesForWidening(); 10213 10214 // Plan how to best vectorize, return the best VF and its cost. 10215 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10216 10217 // If we are stress testing VPlan builds, do not attempt to generate vector 10218 // code. Masked vector code generation support will follow soon. 10219 // Also, do not attempt to vectorize if no vector code will be produced. 10220 if (VPlanBuildStressTest || EnableVPlanPredication || 10221 VectorizationFactor::Disabled() == VF) 10222 return false; 10223 10224 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10225 10226 { 10227 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10228 F->getParent()->getDataLayout()); 10229 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10230 &CM, BFI, PSI, Checks); 10231 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10232 << L->getHeader()->getParent()->getName() << "\"\n"); 10233 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10234 } 10235 10236 // Mark the loop as already vectorized to avoid vectorizing again. 10237 Hints.setAlreadyVectorized(); 10238 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10239 return true; 10240 } 10241 10242 // Emit a remark if there are stores to floats that required a floating point 10243 // extension. If the vectorized loop was generated with floating point there 10244 // will be a performance penalty from the conversion overhead and the change in 10245 // the vector width. 10246 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10247 SmallVector<Instruction *, 4> Worklist; 10248 for (BasicBlock *BB : L->getBlocks()) { 10249 for (Instruction &Inst : *BB) { 10250 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10251 if (S->getValueOperand()->getType()->isFloatTy()) 10252 Worklist.push_back(S); 10253 } 10254 } 10255 } 10256 10257 // Traverse the floating point stores upwards searching, for floating point 10258 // conversions. 10259 SmallPtrSet<const Instruction *, 4> Visited; 10260 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10261 while (!Worklist.empty()) { 10262 auto *I = Worklist.pop_back_val(); 10263 if (!L->contains(I)) 10264 continue; 10265 if (!Visited.insert(I).second) 10266 continue; 10267 10268 // Emit a remark if the floating point store required a floating 10269 // point conversion. 10270 // TODO: More work could be done to identify the root cause such as a 10271 // constant or a function return type and point the user to it. 10272 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10273 ORE->emit([&]() { 10274 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10275 I->getDebugLoc(), L->getHeader()) 10276 << "floating point conversion changes vector width. " 10277 << "Mixed floating point precision requires an up/down " 10278 << "cast that will negatively impact performance."; 10279 }); 10280 10281 for (Use &Op : I->operands()) 10282 if (auto *OpI = dyn_cast<Instruction>(Op)) 10283 Worklist.push_back(OpI); 10284 } 10285 } 10286 10287 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10288 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10289 !EnableLoopInterleaving), 10290 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10291 !EnableLoopVectorization) {} 10292 10293 bool LoopVectorizePass::processLoop(Loop *L) { 10294 assert((EnableVPlanNativePath || L->isInnermost()) && 10295 "VPlan-native path is not enabled. Only process inner loops."); 10296 10297 #ifndef NDEBUG 10298 const std::string DebugLocStr = getDebugLocString(L); 10299 #endif /* NDEBUG */ 10300 10301 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10302 << L->getHeader()->getParent()->getName() << "' from " 10303 << DebugLocStr << "\n"); 10304 10305 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10306 10307 LLVM_DEBUG( 10308 dbgs() << "LV: Loop hints:" 10309 << " force=" 10310 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10311 ? "disabled" 10312 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10313 ? "enabled" 10314 : "?")) 10315 << " width=" << Hints.getWidth() 10316 << " interleave=" << Hints.getInterleave() << "\n"); 10317 10318 // Function containing loop 10319 Function *F = L->getHeader()->getParent(); 10320 10321 // Looking at the diagnostic output is the only way to determine if a loop 10322 // was vectorized (other than looking at the IR or machine code), so it 10323 // is important to generate an optimization remark for each loop. Most of 10324 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10325 // generated as OptimizationRemark and OptimizationRemarkMissed are 10326 // less verbose reporting vectorized loops and unvectorized loops that may 10327 // benefit from vectorization, respectively. 10328 10329 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10330 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10331 return false; 10332 } 10333 10334 PredicatedScalarEvolution PSE(*SE, *L); 10335 10336 // Check if it is legal to vectorize the loop. 10337 LoopVectorizationRequirements Requirements; 10338 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10339 &Requirements, &Hints, DB, AC, BFI, PSI); 10340 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10341 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10342 Hints.emitRemarkWithHints(); 10343 return false; 10344 } 10345 10346 // Check the function attributes and profiles to find out if this function 10347 // should be optimized for size. 10348 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10349 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10350 10351 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10352 // here. They may require CFG and instruction level transformations before 10353 // even evaluating whether vectorization is profitable. Since we cannot modify 10354 // the incoming IR, we need to build VPlan upfront in the vectorization 10355 // pipeline. 10356 if (!L->isInnermost()) 10357 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10358 ORE, BFI, PSI, Hints, Requirements); 10359 10360 assert(L->isInnermost() && "Inner loop expected."); 10361 10362 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10363 // count by optimizing for size, to minimize overheads. 10364 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10365 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10366 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10367 << "This loop is worth vectorizing only if no scalar " 10368 << "iteration overheads are incurred."); 10369 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10370 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10371 else { 10372 LLVM_DEBUG(dbgs() << "\n"); 10373 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10374 } 10375 } 10376 10377 // Check the function attributes to see if implicit floats are allowed. 10378 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10379 // an integer loop and the vector instructions selected are purely integer 10380 // vector instructions? 10381 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10382 reportVectorizationFailure( 10383 "Can't vectorize when the NoImplicitFloat attribute is used", 10384 "loop not vectorized due to NoImplicitFloat attribute", 10385 "NoImplicitFloat", ORE, L); 10386 Hints.emitRemarkWithHints(); 10387 return false; 10388 } 10389 10390 // Check if the target supports potentially unsafe FP vectorization. 10391 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10392 // for the target we're vectorizing for, to make sure none of the 10393 // additional fp-math flags can help. 10394 if (Hints.isPotentiallyUnsafe() && 10395 TTI->isFPVectorizationPotentiallyUnsafe()) { 10396 reportVectorizationFailure( 10397 "Potentially unsafe FP op prevents vectorization", 10398 "loop not vectorized due to unsafe FP support.", 10399 "UnsafeFP", ORE, L); 10400 Hints.emitRemarkWithHints(); 10401 return false; 10402 } 10403 10404 bool AllowOrderedReductions; 10405 // If the flag is set, use that instead and override the TTI behaviour. 10406 if (ForceOrderedReductions.getNumOccurrences() > 0) 10407 AllowOrderedReductions = ForceOrderedReductions; 10408 else 10409 AllowOrderedReductions = TTI->enableOrderedReductions(); 10410 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10411 ORE->emit([&]() { 10412 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10413 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10414 ExactFPMathInst->getDebugLoc(), 10415 ExactFPMathInst->getParent()) 10416 << "loop not vectorized: cannot prove it is safe to reorder " 10417 "floating-point operations"; 10418 }); 10419 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10420 "reorder floating-point operations\n"); 10421 Hints.emitRemarkWithHints(); 10422 return false; 10423 } 10424 10425 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10426 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10427 10428 // If an override option has been passed in for interleaved accesses, use it. 10429 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10430 UseInterleaved = EnableInterleavedMemAccesses; 10431 10432 // Analyze interleaved memory accesses. 10433 if (UseInterleaved) { 10434 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10435 } 10436 10437 // Use the cost model. 10438 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10439 F, &Hints, IAI); 10440 CM.collectValuesToIgnore(); 10441 CM.collectElementTypesForWidening(); 10442 10443 // Use the planner for vectorization. 10444 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10445 Requirements, ORE); 10446 10447 // Get user vectorization factor and interleave count. 10448 ElementCount UserVF = Hints.getWidth(); 10449 unsigned UserIC = Hints.getInterleave(); 10450 10451 // Plan how to best vectorize, return the best VF and its cost. 10452 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10453 10454 VectorizationFactor VF = VectorizationFactor::Disabled(); 10455 unsigned IC = 1; 10456 10457 if (MaybeVF) { 10458 VF = *MaybeVF; 10459 // Select the interleave count. 10460 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10461 } 10462 10463 // Identify the diagnostic messages that should be produced. 10464 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10465 bool VectorizeLoop = true, InterleaveLoop = true; 10466 if (VF.Width.isScalar()) { 10467 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10468 VecDiagMsg = std::make_pair( 10469 "VectorizationNotBeneficial", 10470 "the cost-model indicates that vectorization is not beneficial"); 10471 VectorizeLoop = false; 10472 } 10473 10474 if (!MaybeVF && UserIC > 1) { 10475 // Tell the user interleaving was avoided up-front, despite being explicitly 10476 // requested. 10477 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10478 "interleaving should be avoided up front\n"); 10479 IntDiagMsg = std::make_pair( 10480 "InterleavingAvoided", 10481 "Ignoring UserIC, because interleaving was avoided up front"); 10482 InterleaveLoop = false; 10483 } else if (IC == 1 && UserIC <= 1) { 10484 // Tell the user interleaving is not beneficial. 10485 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10486 IntDiagMsg = std::make_pair( 10487 "InterleavingNotBeneficial", 10488 "the cost-model indicates that interleaving is not beneficial"); 10489 InterleaveLoop = false; 10490 if (UserIC == 1) { 10491 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10492 IntDiagMsg.second += 10493 " and is explicitly disabled or interleave count is set to 1"; 10494 } 10495 } else if (IC > 1 && UserIC == 1) { 10496 // Tell the user interleaving is beneficial, but it explicitly disabled. 10497 LLVM_DEBUG( 10498 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10499 IntDiagMsg = std::make_pair( 10500 "InterleavingBeneficialButDisabled", 10501 "the cost-model indicates that interleaving is beneficial " 10502 "but is explicitly disabled or interleave count is set to 1"); 10503 InterleaveLoop = false; 10504 } 10505 10506 // Override IC if user provided an interleave count. 10507 IC = UserIC > 0 ? UserIC : IC; 10508 10509 // Emit diagnostic messages, if any. 10510 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10511 if (!VectorizeLoop && !InterleaveLoop) { 10512 // Do not vectorize or interleaving the loop. 10513 ORE->emit([&]() { 10514 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10515 L->getStartLoc(), L->getHeader()) 10516 << VecDiagMsg.second; 10517 }); 10518 ORE->emit([&]() { 10519 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10520 L->getStartLoc(), L->getHeader()) 10521 << IntDiagMsg.second; 10522 }); 10523 return false; 10524 } else if (!VectorizeLoop && InterleaveLoop) { 10525 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10526 ORE->emit([&]() { 10527 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10528 L->getStartLoc(), L->getHeader()) 10529 << VecDiagMsg.second; 10530 }); 10531 } else if (VectorizeLoop && !InterleaveLoop) { 10532 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10533 << ") in " << DebugLocStr << '\n'); 10534 ORE->emit([&]() { 10535 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10536 L->getStartLoc(), L->getHeader()) 10537 << IntDiagMsg.second; 10538 }); 10539 } else if (VectorizeLoop && InterleaveLoop) { 10540 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10541 << ") in " << DebugLocStr << '\n'); 10542 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10543 } 10544 10545 bool DisableRuntimeUnroll = false; 10546 MDNode *OrigLoopID = L->getLoopID(); 10547 { 10548 // Optimistically generate runtime checks. Drop them if they turn out to not 10549 // be profitable. Limit the scope of Checks, so the cleanup happens 10550 // immediately after vector codegeneration is done. 10551 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10552 F->getParent()->getDataLayout()); 10553 if (!VF.Width.isScalar() || IC > 1) 10554 Checks.Create(L, *LVL.getLAI(), PSE.getPredicate()); 10555 10556 using namespace ore; 10557 if (!VectorizeLoop) { 10558 assert(IC > 1 && "interleave count should not be 1 or 0"); 10559 // If we decided that it is not legal to vectorize the loop, then 10560 // interleave it. 10561 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10562 &CM, BFI, PSI, Checks); 10563 10564 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10565 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10566 10567 ORE->emit([&]() { 10568 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10569 L->getHeader()) 10570 << "interleaved loop (interleaved count: " 10571 << NV("InterleaveCount", IC) << ")"; 10572 }); 10573 } else { 10574 // If we decided that it is *legal* to vectorize the loop, then do it. 10575 10576 // Consider vectorizing the epilogue too if it's profitable. 10577 VectorizationFactor EpilogueVF = 10578 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10579 if (EpilogueVF.Width.isVector()) { 10580 10581 // The first pass vectorizes the main loop and creates a scalar epilogue 10582 // to be vectorized by executing the plan (potentially with a different 10583 // factor) again shortly afterwards. 10584 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10585 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10586 EPI, &LVL, &CM, BFI, PSI, Checks); 10587 10588 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10589 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10590 DT); 10591 ++LoopsVectorized; 10592 10593 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10594 formLCSSARecursively(*L, *DT, LI, SE); 10595 10596 // Second pass vectorizes the epilogue and adjusts the control flow 10597 // edges from the first pass. 10598 EPI.MainLoopVF = EPI.EpilogueVF; 10599 EPI.MainLoopUF = EPI.EpilogueUF; 10600 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10601 ORE, EPI, &LVL, &CM, BFI, PSI, 10602 Checks); 10603 10604 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10605 10606 // Ensure that the start values for any VPReductionPHIRecipes are 10607 // updated before vectorising the epilogue loop. 10608 VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock(); 10609 for (VPRecipeBase &R : Header->phis()) { 10610 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10611 if (auto *Resume = MainILV.getReductionResumeValue( 10612 ReductionPhi->getRecurrenceDescriptor())) { 10613 VPValue *StartVal = new VPValue(Resume); 10614 BestEpiPlan.addExternalDef(StartVal); 10615 ReductionPhi->setOperand(0, StartVal); 10616 } 10617 } 10618 } 10619 10620 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10621 DT); 10622 ++LoopsEpilogueVectorized; 10623 10624 if (!MainILV.areSafetyChecksAdded()) 10625 DisableRuntimeUnroll = true; 10626 } else { 10627 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10628 &LVL, &CM, BFI, PSI, Checks); 10629 10630 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10631 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10632 ++LoopsVectorized; 10633 10634 // Add metadata to disable runtime unrolling a scalar loop when there 10635 // are no runtime checks about strides and memory. A scalar loop that is 10636 // rarely used is not worth unrolling. 10637 if (!LB.areSafetyChecksAdded()) 10638 DisableRuntimeUnroll = true; 10639 } 10640 // Report the vectorization decision. 10641 ORE->emit([&]() { 10642 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10643 L->getHeader()) 10644 << "vectorized loop (vectorization width: " 10645 << NV("VectorizationFactor", VF.Width) 10646 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10647 }); 10648 } 10649 10650 if (ORE->allowExtraAnalysis(LV_NAME)) 10651 checkMixedPrecision(L, ORE); 10652 } 10653 10654 Optional<MDNode *> RemainderLoopID = 10655 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10656 LLVMLoopVectorizeFollowupEpilogue}); 10657 if (RemainderLoopID.hasValue()) { 10658 L->setLoopID(RemainderLoopID.getValue()); 10659 } else { 10660 if (DisableRuntimeUnroll) 10661 AddRuntimeUnrollDisableMetaData(L); 10662 10663 // Mark the loop as already vectorized to avoid vectorizing again. 10664 Hints.setAlreadyVectorized(); 10665 } 10666 10667 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10668 return true; 10669 } 10670 10671 LoopVectorizeResult LoopVectorizePass::runImpl( 10672 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10673 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10674 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10675 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10676 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10677 SE = &SE_; 10678 LI = &LI_; 10679 TTI = &TTI_; 10680 DT = &DT_; 10681 BFI = &BFI_; 10682 TLI = TLI_; 10683 AA = &AA_; 10684 AC = &AC_; 10685 GetLAA = &GetLAA_; 10686 DB = &DB_; 10687 ORE = &ORE_; 10688 PSI = PSI_; 10689 10690 // Don't attempt if 10691 // 1. the target claims to have no vector registers, and 10692 // 2. interleaving won't help ILP. 10693 // 10694 // The second condition is necessary because, even if the target has no 10695 // vector registers, loop vectorization may still enable scalar 10696 // interleaving. 10697 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10698 TTI->getMaxInterleaveFactor(1) < 2) 10699 return LoopVectorizeResult(false, false); 10700 10701 bool Changed = false, CFGChanged = false; 10702 10703 // The vectorizer requires loops to be in simplified form. 10704 // Since simplification may add new inner loops, it has to run before the 10705 // legality and profitability checks. This means running the loop vectorizer 10706 // will simplify all loops, regardless of whether anything end up being 10707 // vectorized. 10708 for (auto &L : *LI) 10709 Changed |= CFGChanged |= 10710 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10711 10712 // Build up a worklist of inner-loops to vectorize. This is necessary as 10713 // the act of vectorizing or partially unrolling a loop creates new loops 10714 // and can invalidate iterators across the loops. 10715 SmallVector<Loop *, 8> Worklist; 10716 10717 for (Loop *L : *LI) 10718 collectSupportedLoops(*L, LI, ORE, Worklist); 10719 10720 LoopsAnalyzed += Worklist.size(); 10721 10722 // Now walk the identified inner loops. 10723 while (!Worklist.empty()) { 10724 Loop *L = Worklist.pop_back_val(); 10725 10726 // For the inner loops we actually process, form LCSSA to simplify the 10727 // transform. 10728 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10729 10730 Changed |= CFGChanged |= processLoop(L); 10731 } 10732 10733 // Process each loop nest in the function. 10734 return LoopVectorizeResult(Changed, CFGChanged); 10735 } 10736 10737 PreservedAnalyses LoopVectorizePass::run(Function &F, 10738 FunctionAnalysisManager &AM) { 10739 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10740 auto &LI = AM.getResult<LoopAnalysis>(F); 10741 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10742 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10743 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10744 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10745 auto &AA = AM.getResult<AAManager>(F); 10746 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10747 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10748 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10749 10750 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10751 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10752 [&](Loop &L) -> const LoopAccessInfo & { 10753 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10754 TLI, TTI, nullptr, nullptr, nullptr}; 10755 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10756 }; 10757 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10758 ProfileSummaryInfo *PSI = 10759 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10760 LoopVectorizeResult Result = 10761 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10762 if (!Result.MadeAnyChange) 10763 return PreservedAnalyses::all(); 10764 PreservedAnalyses PA; 10765 10766 // We currently do not preserve loopinfo/dominator analyses with outer loop 10767 // vectorization. Until this is addressed, mark these analyses as preserved 10768 // only for non-VPlan-native path. 10769 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10770 if (!EnableVPlanNativePath) { 10771 PA.preserve<LoopAnalysis>(); 10772 PA.preserve<DominatorTreeAnalysis>(); 10773 } 10774 10775 if (Result.MadeCFGChange) { 10776 // Making CFG changes likely means a loop got vectorized. Indicate that 10777 // extra simplification passes should be run. 10778 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10779 // be run if runtime checks have been added. 10780 AM.getResult<ShouldRunExtraVectorPasses>(F); 10781 PA.preserve<ShouldRunExtraVectorPasses>(); 10782 } else { 10783 PA.preserveSet<CFGAnalyses>(); 10784 } 10785 return PA; 10786 } 10787 10788 void LoopVectorizePass::printPipeline( 10789 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10790 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10791 OS, MapClassName2PassName); 10792 10793 OS << "<"; 10794 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10795 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10796 OS << ">"; 10797 } 10798