1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallVector.h"
74 #include "llvm/ADT/Statistic.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/ADT/Twine.h"
77 #include "llvm/ADT/iterator_range.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/BasicAliasAnalysis.h"
80 #include "llvm/Analysis/BlockFrequencyInfo.h"
81 #include "llvm/Analysis/CFG.h"
82 #include "llvm/Analysis/CodeMetrics.h"
83 #include "llvm/Analysis/DemandedBits.h"
84 #include "llvm/Analysis/GlobalsModRef.h"
85 #include "llvm/Analysis/LoopAccessAnalysis.h"
86 #include "llvm/Analysis/LoopAnalysisManager.h"
87 #include "llvm/Analysis/LoopInfo.h"
88 #include "llvm/Analysis/LoopIterator.h"
89 #include "llvm/Analysis/MemorySSA.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 cl::opt<bool> EnableStrictReductions(
335     "enable-strict-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns the type of loaded or stored value.
379 static Type *getMemInstValueType(Value *I) {
380   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
381          "Expected Load or Store instruction");
382   if (auto *LI = dyn_cast<LoadInst>(I))
383     return LI->getType();
384   return cast<StoreInst>(I)->getValueOperand()->getType();
385 }
386 
387 /// A helper function that returns true if the given type is irregular. The
388 /// type is irregular if its allocated size doesn't equal the store size of an
389 /// element of the corresponding vector type.
390 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
391   // Determine if an array of N elements of type Ty is "bitcast compatible"
392   // with a <N x Ty> vector.
393   // This is only true if there is no padding between the array elements.
394   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
395 }
396 
397 /// A helper function that returns the reciprocal of the block probability of
398 /// predicated blocks. If we return X, we are assuming the predicated block
399 /// will execute once for every X iterations of the loop header.
400 ///
401 /// TODO: We should use actual block probability here, if available. Currently,
402 ///       we always assume predicated blocks have a 50% chance of executing.
403 static unsigned getReciprocalPredBlockProb() { return 2; }
404 
405 /// A helper function that returns an integer or floating-point constant with
406 /// value C.
407 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
408   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
409                            : ConstantFP::get(Ty, C);
410 }
411 
412 /// Returns "best known" trip count for the specified loop \p L as defined by
413 /// the following procedure:
414 ///   1) Returns exact trip count if it is known.
415 ///   2) Returns expected trip count according to profile data if any.
416 ///   3) Returns upper bound estimate if it is known.
417 ///   4) Returns None if all of the above failed.
418 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
419   // Check if exact trip count is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
421     return ExpectedTC;
422 
423   // Check if there is an expected trip count available from profile data.
424   if (LoopVectorizeWithBlockFrequency)
425     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
426       return EstimatedTC;
427 
428   // Check if upper bound estimate is known.
429   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
430     return ExpectedTC;
431 
432   return None;
433 }
434 
435 // Forward declare GeneratedRTChecks.
436 class GeneratedRTChecks;
437 
438 namespace llvm {
439 
440 /// InnerLoopVectorizer vectorizes loops which contain only one basic
441 /// block to a specified vectorization factor (VF).
442 /// This class performs the widening of scalars into vectors, or multiple
443 /// scalars. This class also implements the following features:
444 /// * It inserts an epilogue loop for handling loops that don't have iteration
445 ///   counts that are known to be a multiple of the vectorization factor.
446 /// * It handles the code generation for reduction variables.
447 /// * Scalarization (implementation using scalars) of un-vectorizable
448 ///   instructions.
449 /// InnerLoopVectorizer does not perform any vectorization-legality
450 /// checks, and relies on the caller to check for the different legality
451 /// aspects. The InnerLoopVectorizer relies on the
452 /// LoopVectorizationLegality class to provide information about the induction
453 /// and reduction variables that were found to a given vectorization factor.
454 class InnerLoopVectorizer {
455 public:
456   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
457                       LoopInfo *LI, DominatorTree *DT,
458                       const TargetLibraryInfo *TLI,
459                       const TargetTransformInfo *TTI, AssumptionCache *AC,
460                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
461                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
462                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
463                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
464       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
465         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
466         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
467         PSI(PSI), RTChecks(RTChecks) {
468     // Query this against the original loop and save it here because the profile
469     // of the original loop header may change as the transformation happens.
470     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
471         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
472   }
473 
474   virtual ~InnerLoopVectorizer() = default;
475 
476   /// Create a new empty loop that will contain vectorized instructions later
477   /// on, while the old loop will be used as the scalar remainder. Control flow
478   /// is generated around the vectorized (and scalar epilogue) loops consisting
479   /// of various checks and bypasses. Return the pre-header block of the new
480   /// loop.
481   /// In the case of epilogue vectorization, this function is overriden to
482   /// handle the more complex control flow around the loops.
483   virtual BasicBlock *createVectorizedLoopSkeleton();
484 
485   /// Widen a single instruction within the innermost loop.
486   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
487                         VPTransformState &State);
488 
489   /// Widen a single call instruction within the innermost loop.
490   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
491                             VPTransformState &State);
492 
493   /// Widen a single select instruction within the innermost loop.
494   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
495                               bool InvariantCond, VPTransformState &State);
496 
497   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
498   void fixVectorizedLoop(VPTransformState &State);
499 
500   // Return true if any runtime check is added.
501   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
502 
503   /// A type for vectorized values in the new loop. Each value from the
504   /// original loop, when vectorized, is represented by UF vector values in the
505   /// new unrolled loop, where UF is the unroll factor.
506   using VectorParts = SmallVector<Value *, 2>;
507 
508   /// Vectorize a single GetElementPtrInst based on information gathered and
509   /// decisions taken during planning.
510   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
511                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
512                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
513 
514   /// Vectorize a single PHINode in a block. This method handles the induction
515   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
516   /// arbitrary length vectors.
517   void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc,
518                            VPWidenPHIRecipe *PhiR, VPTransformState &State);
519 
520   /// A helper function to scalarize a single Instruction in the innermost loop.
521   /// Generates a sequence of scalar instances for each lane between \p MinLane
522   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
523   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
524   /// Instr's operands.
525   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
526                             const VPIteration &Instance, bool IfPredicateInstr,
527                             VPTransformState &State);
528 
529   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
530   /// is provided, the integer induction variable will first be truncated to
531   /// the corresponding type.
532   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
533                              VPValue *Def, VPValue *CastDef,
534                              VPTransformState &State);
535 
536   /// Construct the vector value of a scalarized value \p V one lane at a time.
537   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
538                                  VPTransformState &State);
539 
540   /// Try to vectorize interleaved access group \p Group with the base address
541   /// given in \p Addr, optionally masking the vector operations if \p
542   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
543   /// values in the vectorized loop.
544   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
545                                 ArrayRef<VPValue *> VPDefs,
546                                 VPTransformState &State, VPValue *Addr,
547                                 ArrayRef<VPValue *> StoredValues,
548                                 VPValue *BlockInMask = nullptr);
549 
550   /// Vectorize Load and Store instructions with the base address given in \p
551   /// Addr, optionally masking the vector operations if \p BlockInMask is
552   /// non-null. Use \p State to translate given VPValues to IR values in the
553   /// vectorized loop.
554   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
555                                   VPValue *Def, VPValue *Addr,
556                                   VPValue *StoredValue, VPValue *BlockInMask);
557 
558   /// Set the debug location in the builder using the debug location in
559   /// the instruction.
560   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
561 
562   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
563   void fixNonInductionPHIs(VPTransformState &State);
564 
565   /// Create a broadcast instruction. This method generates a broadcast
566   /// instruction (shuffle) for loop invariant values and for the induction
567   /// value. If this is the induction variable then we extend it to N, N+1, ...
568   /// this is needed because each iteration in the loop corresponds to a SIMD
569   /// element.
570   virtual Value *getBroadcastInstrs(Value *V);
571 
572 protected:
573   friend class LoopVectorizationPlanner;
574 
575   /// A small list of PHINodes.
576   using PhiVector = SmallVector<PHINode *, 4>;
577 
578   /// A type for scalarized values in the new loop. Each value from the
579   /// original loop, when scalarized, is represented by UF x VF scalar values
580   /// in the new unrolled loop, where UF is the unroll factor and VF is the
581   /// vectorization factor.
582   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
583 
584   /// Set up the values of the IVs correctly when exiting the vector loop.
585   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
586                     Value *CountRoundDown, Value *EndValue,
587                     BasicBlock *MiddleBlock);
588 
589   /// Create a new induction variable inside L.
590   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
591                                    Value *Step, Instruction *DL);
592 
593   /// Handle all cross-iteration phis in the header.
594   void fixCrossIterationPHIs(VPTransformState &State);
595 
596   /// Fix a first-order recurrence. This is the second phase of vectorizing
597   /// this phi node.
598   void fixFirstOrderRecurrence(PHINode *Phi, VPTransformState &State);
599 
600   /// Fix a reduction cross-iteration phi. This is the second phase of
601   /// vectorizing this phi node.
602   void fixReduction(VPWidenPHIRecipe *Phi, VPTransformState &State);
603 
604   /// Clear NSW/NUW flags from reduction instructions if necessary.
605   void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc,
606                                VPTransformState &State);
607 
608   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
609   /// means we need to add the appropriate incoming value from the middle
610   /// block as exiting edges from the scalar epilogue loop (if present) are
611   /// already in place, and we exit the vector loop exclusively to the middle
612   /// block.
613   void fixLCSSAPHIs(VPTransformState &State);
614 
615   /// Iteratively sink the scalarized operands of a predicated instruction into
616   /// the block that was created for it.
617   void sinkScalarOperands(Instruction *PredInst);
618 
619   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
620   /// represented as.
621   void truncateToMinimalBitwidths(VPTransformState &State);
622 
623   /// This function adds
624   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
625   /// to each vector element of Val. The sequence starts at StartIndex.
626   /// \p Opcode is relevant for FP induction variable.
627   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
628                                Instruction::BinaryOps Opcode =
629                                Instruction::BinaryOpsEnd);
630 
631   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
632   /// variable on which to base the steps, \p Step is the size of the step, and
633   /// \p EntryVal is the value from the original loop that maps to the steps.
634   /// Note that \p EntryVal doesn't have to be an induction variable - it
635   /// can also be a truncate instruction.
636   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
637                         const InductionDescriptor &ID, VPValue *Def,
638                         VPValue *CastDef, VPTransformState &State);
639 
640   /// Create a vector induction phi node based on an existing scalar one. \p
641   /// EntryVal is the value from the original loop that maps to the vector phi
642   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
643   /// truncate instruction, instead of widening the original IV, we widen a
644   /// version of the IV truncated to \p EntryVal's type.
645   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
646                                        Value *Step, Value *Start,
647                                        Instruction *EntryVal, VPValue *Def,
648                                        VPValue *CastDef,
649                                        VPTransformState &State);
650 
651   /// Returns true if an instruction \p I should be scalarized instead of
652   /// vectorized for the chosen vectorization factor.
653   bool shouldScalarizeInstruction(Instruction *I) const;
654 
655   /// Returns true if we should generate a scalar version of \p IV.
656   bool needsScalarInduction(Instruction *IV) const;
657 
658   /// If there is a cast involved in the induction variable \p ID, which should
659   /// be ignored in the vectorized loop body, this function records the
660   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
661   /// cast. We had already proved that the casted Phi is equal to the uncasted
662   /// Phi in the vectorized loop (under a runtime guard), and therefore
663   /// there is no need to vectorize the cast - the same value can be used in the
664   /// vector loop for both the Phi and the cast.
665   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
666   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
667   ///
668   /// \p EntryVal is the value from the original loop that maps to the vector
669   /// phi node and is used to distinguish what is the IV currently being
670   /// processed - original one (if \p EntryVal is a phi corresponding to the
671   /// original IV) or the "newly-created" one based on the proof mentioned above
672   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
673   /// latter case \p EntryVal is a TruncInst and we must not record anything for
674   /// that IV, but it's error-prone to expect callers of this routine to care
675   /// about that, hence this explicit parameter.
676   void recordVectorLoopValueForInductionCast(
677       const InductionDescriptor &ID, const Instruction *EntryVal,
678       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
679       unsigned Part, unsigned Lane = UINT_MAX);
680 
681   /// Generate a shuffle sequence that will reverse the vector Vec.
682   virtual Value *reverseVector(Value *Vec);
683 
684   /// Returns (and creates if needed) the original loop trip count.
685   Value *getOrCreateTripCount(Loop *NewLoop);
686 
687   /// Returns (and creates if needed) the trip count of the widened loop.
688   Value *getOrCreateVectorTripCount(Loop *NewLoop);
689 
690   /// Returns a bitcasted value to the requested vector type.
691   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
692   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
693                                 const DataLayout &DL);
694 
695   /// Emit a bypass check to see if the vector trip count is zero, including if
696   /// it overflows.
697   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
698 
699   /// Emit a bypass check to see if all of the SCEV assumptions we've
700   /// had to make are correct. Returns the block containing the checks or
701   /// nullptr if no checks have been added.
702   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
703 
704   /// Emit bypass checks to check any memory assumptions we may have made.
705   /// Returns the block containing the checks or nullptr if no checks have been
706   /// added.
707   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
708 
709   /// Compute the transformed value of Index at offset StartValue using step
710   /// StepValue.
711   /// For integer induction, returns StartValue + Index * StepValue.
712   /// For pointer induction, returns StartValue[Index * StepValue].
713   /// FIXME: The newly created binary instructions should contain nsw/nuw
714   /// flags, which can be found from the original scalar operations.
715   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
716                               const DataLayout &DL,
717                               const InductionDescriptor &ID) const;
718 
719   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
720   /// vector loop preheader, middle block and scalar preheader. Also
721   /// allocate a loop object for the new vector loop and return it.
722   Loop *createVectorLoopSkeleton(StringRef Prefix);
723 
724   /// Create new phi nodes for the induction variables to resume iteration count
725   /// in the scalar epilogue, from where the vectorized loop left off (given by
726   /// \p VectorTripCount).
727   /// In cases where the loop skeleton is more complicated (eg. epilogue
728   /// vectorization) and the resume values can come from an additional bypass
729   /// block, the \p AdditionalBypass pair provides information about the bypass
730   /// block and the end value on the edge from bypass to this loop.
731   void createInductionResumeValues(
732       Loop *L, Value *VectorTripCount,
733       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
734 
735   /// Complete the loop skeleton by adding debug MDs, creating appropriate
736   /// conditional branches in the middle block, preparing the builder and
737   /// running the verifier. Take in the vector loop \p L as argument, and return
738   /// the preheader of the completed vector loop.
739   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
740 
741   /// Add additional metadata to \p To that was not present on \p Orig.
742   ///
743   /// Currently this is used to add the noalias annotations based on the
744   /// inserted memchecks.  Use this for instructions that are *cloned* into the
745   /// vector loop.
746   void addNewMetadata(Instruction *To, const Instruction *Orig);
747 
748   /// Add metadata from one instruction to another.
749   ///
750   /// This includes both the original MDs from \p From and additional ones (\see
751   /// addNewMetadata).  Use this for *newly created* instructions in the vector
752   /// loop.
753   void addMetadata(Instruction *To, Instruction *From);
754 
755   /// Similar to the previous function but it adds the metadata to a
756   /// vector of instructions.
757   void addMetadata(ArrayRef<Value *> To, Instruction *From);
758 
759   /// Allow subclasses to override and print debug traces before/after vplan
760   /// execution, when trace information is requested.
761   virtual void printDebugTracesAtStart(){};
762   virtual void printDebugTracesAtEnd(){};
763 
764   /// The original loop.
765   Loop *OrigLoop;
766 
767   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
768   /// dynamic knowledge to simplify SCEV expressions and converts them to a
769   /// more usable form.
770   PredicatedScalarEvolution &PSE;
771 
772   /// Loop Info.
773   LoopInfo *LI;
774 
775   /// Dominator Tree.
776   DominatorTree *DT;
777 
778   /// Alias Analysis.
779   AAResults *AA;
780 
781   /// Target Library Info.
782   const TargetLibraryInfo *TLI;
783 
784   /// Target Transform Info.
785   const TargetTransformInfo *TTI;
786 
787   /// Assumption Cache.
788   AssumptionCache *AC;
789 
790   /// Interface to emit optimization remarks.
791   OptimizationRemarkEmitter *ORE;
792 
793   /// LoopVersioning.  It's only set up (non-null) if memchecks were
794   /// used.
795   ///
796   /// This is currently only used to add no-alias metadata based on the
797   /// memchecks.  The actually versioning is performed manually.
798   std::unique_ptr<LoopVersioning> LVer;
799 
800   /// The vectorization SIMD factor to use. Each vector will have this many
801   /// vector elements.
802   ElementCount VF;
803 
804   /// The vectorization unroll factor to use. Each scalar is vectorized to this
805   /// many different vector instructions.
806   unsigned UF;
807 
808   /// The builder that we use
809   IRBuilder<> Builder;
810 
811   // --- Vectorization state ---
812 
813   /// The vector-loop preheader.
814   BasicBlock *LoopVectorPreHeader;
815 
816   /// The scalar-loop preheader.
817   BasicBlock *LoopScalarPreHeader;
818 
819   /// Middle Block between the vector and the scalar.
820   BasicBlock *LoopMiddleBlock;
821 
822   /// The (unique) ExitBlock of the scalar loop.  Note that
823   /// there can be multiple exiting edges reaching this block.
824   BasicBlock *LoopExitBlock;
825 
826   /// The vector loop body.
827   BasicBlock *LoopVectorBody;
828 
829   /// The scalar loop body.
830   BasicBlock *LoopScalarBody;
831 
832   /// A list of all bypass blocks. The first block is the entry of the loop.
833   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
834 
835   /// The new Induction variable which was added to the new block.
836   PHINode *Induction = nullptr;
837 
838   /// The induction variable of the old basic block.
839   PHINode *OldInduction = nullptr;
840 
841   /// Store instructions that were predicated.
842   SmallVector<Instruction *, 4> PredicatedInstructions;
843 
844   /// Trip count of the original loop.
845   Value *TripCount = nullptr;
846 
847   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
848   Value *VectorTripCount = nullptr;
849 
850   /// The legality analysis.
851   LoopVectorizationLegality *Legal;
852 
853   /// The profitablity analysis.
854   LoopVectorizationCostModel *Cost;
855 
856   // Record whether runtime checks are added.
857   bool AddedSafetyChecks = false;
858 
859   // Holds the end values for each induction variable. We save the end values
860   // so we can later fix-up the external users of the induction variables.
861   DenseMap<PHINode *, Value *> IVEndValues;
862 
863   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
864   // fixed up at the end of vector code generation.
865   SmallVector<PHINode *, 8> OrigPHIsToFix;
866 
867   /// BFI and PSI are used to check for profile guided size optimizations.
868   BlockFrequencyInfo *BFI;
869   ProfileSummaryInfo *PSI;
870 
871   // Whether this loop should be optimized for size based on profile guided size
872   // optimizatios.
873   bool OptForSizeBasedOnProfile;
874 
875   /// Structure to hold information about generated runtime checks, responsible
876   /// for cleaning the checks, if vectorization turns out unprofitable.
877   GeneratedRTChecks &RTChecks;
878 };
879 
880 class InnerLoopUnroller : public InnerLoopVectorizer {
881 public:
882   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
883                     LoopInfo *LI, DominatorTree *DT,
884                     const TargetLibraryInfo *TLI,
885                     const TargetTransformInfo *TTI, AssumptionCache *AC,
886                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
887                     LoopVectorizationLegality *LVL,
888                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
889                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
890       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
891                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
892                             BFI, PSI, Check) {}
893 
894 private:
895   Value *getBroadcastInstrs(Value *V) override;
896   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
897                        Instruction::BinaryOps Opcode =
898                        Instruction::BinaryOpsEnd) override;
899   Value *reverseVector(Value *Vec) override;
900 };
901 
902 /// Encapsulate information regarding vectorization of a loop and its epilogue.
903 /// This information is meant to be updated and used across two stages of
904 /// epilogue vectorization.
905 struct EpilogueLoopVectorizationInfo {
906   ElementCount MainLoopVF = ElementCount::getFixed(0);
907   unsigned MainLoopUF = 0;
908   ElementCount EpilogueVF = ElementCount::getFixed(0);
909   unsigned EpilogueUF = 0;
910   BasicBlock *MainLoopIterationCountCheck = nullptr;
911   BasicBlock *EpilogueIterationCountCheck = nullptr;
912   BasicBlock *SCEVSafetyCheck = nullptr;
913   BasicBlock *MemSafetyCheck = nullptr;
914   Value *TripCount = nullptr;
915   Value *VectorTripCount = nullptr;
916 
917   EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF,
918                                 unsigned EUF)
919       : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF),
920         EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) {
921     assert(EUF == 1 &&
922            "A high UF for the epilogue loop is likely not beneficial.");
923   }
924 };
925 
926 /// An extension of the inner loop vectorizer that creates a skeleton for a
927 /// vectorized loop that has its epilogue (residual) also vectorized.
928 /// The idea is to run the vplan on a given loop twice, firstly to setup the
929 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
930 /// from the first step and vectorize the epilogue.  This is achieved by
931 /// deriving two concrete strategy classes from this base class and invoking
932 /// them in succession from the loop vectorizer planner.
933 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
934 public:
935   InnerLoopAndEpilogueVectorizer(
936       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
937       DominatorTree *DT, const TargetLibraryInfo *TLI,
938       const TargetTransformInfo *TTI, AssumptionCache *AC,
939       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
940       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
941       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
942       GeneratedRTChecks &Checks)
943       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
944                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
945                             Checks),
946         EPI(EPI) {}
947 
948   // Override this function to handle the more complex control flow around the
949   // three loops.
950   BasicBlock *createVectorizedLoopSkeleton() final override {
951     return createEpilogueVectorizedLoopSkeleton();
952   }
953 
954   /// The interface for creating a vectorized skeleton using one of two
955   /// different strategies, each corresponding to one execution of the vplan
956   /// as described above.
957   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
958 
959   /// Holds and updates state information required to vectorize the main loop
960   /// and its epilogue in two separate passes. This setup helps us avoid
961   /// regenerating and recomputing runtime safety checks. It also helps us to
962   /// shorten the iteration-count-check path length for the cases where the
963   /// iteration count of the loop is so small that the main vector loop is
964   /// completely skipped.
965   EpilogueLoopVectorizationInfo &EPI;
966 };
967 
968 /// A specialized derived class of inner loop vectorizer that performs
969 /// vectorization of *main* loops in the process of vectorizing loops and their
970 /// epilogues.
971 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
972 public:
973   EpilogueVectorizerMainLoop(
974       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
975       DominatorTree *DT, const TargetLibraryInfo *TLI,
976       const TargetTransformInfo *TTI, AssumptionCache *AC,
977       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
978       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
979       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
980       GeneratedRTChecks &Check)
981       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
982                                        EPI, LVL, CM, BFI, PSI, Check) {}
983   /// Implements the interface for creating a vectorized skeleton using the
984   /// *main loop* strategy (ie the first pass of vplan execution).
985   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
986 
987 protected:
988   /// Emits an iteration count bypass check once for the main loop (when \p
989   /// ForEpilogue is false) and once for the epilogue loop (when \p
990   /// ForEpilogue is true).
991   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
992                                              bool ForEpilogue);
993   void printDebugTracesAtStart() override;
994   void printDebugTracesAtEnd() override;
995 };
996 
997 // A specialized derived class of inner loop vectorizer that performs
998 // vectorization of *epilogue* loops in the process of vectorizing loops and
999 // their epilogues.
1000 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
1001 public:
1002   EpilogueVectorizerEpilogueLoop(
1003       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
1004       DominatorTree *DT, const TargetLibraryInfo *TLI,
1005       const TargetTransformInfo *TTI, AssumptionCache *AC,
1006       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1007       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1008       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1009       GeneratedRTChecks &Checks)
1010       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1011                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1012   /// Implements the interface for creating a vectorized skeleton using the
1013   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1014   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1015 
1016 protected:
1017   /// Emits an iteration count bypass check after the main vector loop has
1018   /// finished to see if there are any iterations left to execute by either
1019   /// the vector epilogue or the scalar epilogue.
1020   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1021                                                       BasicBlock *Bypass,
1022                                                       BasicBlock *Insert);
1023   void printDebugTracesAtStart() override;
1024   void printDebugTracesAtEnd() override;
1025 };
1026 } // end namespace llvm
1027 
1028 /// Look for a meaningful debug location on the instruction or it's
1029 /// operands.
1030 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1031   if (!I)
1032     return I;
1033 
1034   DebugLoc Empty;
1035   if (I->getDebugLoc() != Empty)
1036     return I;
1037 
1038   for (Use &Op : I->operands()) {
1039     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1040       if (OpInst->getDebugLoc() != Empty)
1041         return OpInst;
1042   }
1043 
1044   return I;
1045 }
1046 
1047 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
1048   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
1049     const DILocation *DIL = Inst->getDebugLoc();
1050 
1051     // When a FSDiscriminator is enabled, we don't need to add the multiply
1052     // factors to the discriminators.
1053     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1054         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1055       // FIXME: For scalable vectors, assume vscale=1.
1056       auto NewDIL =
1057           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1058       if (NewDIL)
1059         B.SetCurrentDebugLocation(NewDIL.getValue());
1060       else
1061         LLVM_DEBUG(dbgs()
1062                    << "Failed to create new discriminator: "
1063                    << DIL->getFilename() << " Line: " << DIL->getLine());
1064     } else
1065       B.SetCurrentDebugLocation(DIL);
1066   } else
1067     B.SetCurrentDebugLocation(DebugLoc());
1068 }
1069 
1070 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1071 /// is passed, the message relates to that particular instruction.
1072 #ifndef NDEBUG
1073 static void debugVectorizationMessage(const StringRef Prefix,
1074                                       const StringRef DebugMsg,
1075                                       Instruction *I) {
1076   dbgs() << "LV: " << Prefix << DebugMsg;
1077   if (I != nullptr)
1078     dbgs() << " " << *I;
1079   else
1080     dbgs() << '.';
1081   dbgs() << '\n';
1082 }
1083 #endif
1084 
1085 /// Create an analysis remark that explains why vectorization failed
1086 ///
1087 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1088 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1089 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1090 /// the location of the remark.  \return the remark object that can be
1091 /// streamed to.
1092 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1093     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1094   Value *CodeRegion = TheLoop->getHeader();
1095   DebugLoc DL = TheLoop->getStartLoc();
1096 
1097   if (I) {
1098     CodeRegion = I->getParent();
1099     // If there is no debug location attached to the instruction, revert back to
1100     // using the loop's.
1101     if (I->getDebugLoc())
1102       DL = I->getDebugLoc();
1103   }
1104 
1105   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1106 }
1107 
1108 /// Return a value for Step multiplied by VF.
1109 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1110   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1111   Constant *StepVal = ConstantInt::get(
1112       Step->getType(),
1113       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1114   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1115 }
1116 
1117 namespace llvm {
1118 
1119 /// Return the runtime value for VF.
1120 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1121   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1122   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1123 }
1124 
1125 void reportVectorizationFailure(const StringRef DebugMsg,
1126                                 const StringRef OREMsg, const StringRef ORETag,
1127                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1128                                 Instruction *I) {
1129   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1130   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1131   ORE->emit(
1132       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1133       << "loop not vectorized: " << OREMsg);
1134 }
1135 
1136 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1137                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1138                              Instruction *I) {
1139   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1140   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1141   ORE->emit(
1142       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1143       << Msg);
1144 }
1145 
1146 } // end namespace llvm
1147 
1148 #ifndef NDEBUG
1149 /// \return string containing a file name and a line # for the given loop.
1150 static std::string getDebugLocString(const Loop *L) {
1151   std::string Result;
1152   if (L) {
1153     raw_string_ostream OS(Result);
1154     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1155       LoopDbgLoc.print(OS);
1156     else
1157       // Just print the module name.
1158       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1159     OS.flush();
1160   }
1161   return Result;
1162 }
1163 #endif
1164 
1165 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1166                                          const Instruction *Orig) {
1167   // If the loop was versioned with memchecks, add the corresponding no-alias
1168   // metadata.
1169   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1170     LVer->annotateInstWithNoAlias(To, Orig);
1171 }
1172 
1173 void InnerLoopVectorizer::addMetadata(Instruction *To,
1174                                       Instruction *From) {
1175   propagateMetadata(To, From);
1176   addNewMetadata(To, From);
1177 }
1178 
1179 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1180                                       Instruction *From) {
1181   for (Value *V : To) {
1182     if (Instruction *I = dyn_cast<Instruction>(V))
1183       addMetadata(I, From);
1184   }
1185 }
1186 
1187 namespace llvm {
1188 
1189 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1190 // lowered.
1191 enum ScalarEpilogueLowering {
1192 
1193   // The default: allowing scalar epilogues.
1194   CM_ScalarEpilogueAllowed,
1195 
1196   // Vectorization with OptForSize: don't allow epilogues.
1197   CM_ScalarEpilogueNotAllowedOptSize,
1198 
1199   // A special case of vectorisation with OptForSize: loops with a very small
1200   // trip count are considered for vectorization under OptForSize, thereby
1201   // making sure the cost of their loop body is dominant, free of runtime
1202   // guards and scalar iteration overheads.
1203   CM_ScalarEpilogueNotAllowedLowTripLoop,
1204 
1205   // Loop hint predicate indicating an epilogue is undesired.
1206   CM_ScalarEpilogueNotNeededUsePredicate,
1207 
1208   // Directive indicating we must either tail fold or not vectorize
1209   CM_ScalarEpilogueNotAllowedUsePredicate
1210 };
1211 
1212 /// LoopVectorizationCostModel - estimates the expected speedups due to
1213 /// vectorization.
1214 /// In many cases vectorization is not profitable. This can happen because of
1215 /// a number of reasons. In this class we mainly attempt to predict the
1216 /// expected speedup/slowdowns due to the supported instruction set. We use the
1217 /// TargetTransformInfo to query the different backends for the cost of
1218 /// different operations.
1219 class LoopVectorizationCostModel {
1220 public:
1221   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1222                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1223                              LoopVectorizationLegality *Legal,
1224                              const TargetTransformInfo &TTI,
1225                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1226                              AssumptionCache *AC,
1227                              OptimizationRemarkEmitter *ORE, const Function *F,
1228                              const LoopVectorizeHints *Hints,
1229                              InterleavedAccessInfo &IAI)
1230       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1231         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1232         Hints(Hints), InterleaveInfo(IAI) {}
1233 
1234   /// \return An upper bound for the vectorization factors (both fixed and
1235   /// scalable). If the factors are 0, vectorization and interleaving should be
1236   /// avoided up front.
1237   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1238 
1239   /// \return True if runtime checks are required for vectorization, and false
1240   /// otherwise.
1241   bool runtimeChecksRequired();
1242 
1243   /// \return The most profitable vectorization factor and the cost of that VF.
1244   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
1245   /// then this vectorization factor will be selected if vectorization is
1246   /// possible.
1247   VectorizationFactor selectVectorizationFactor(ElementCount MaxVF);
1248   VectorizationFactor
1249   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1250                                     const LoopVectorizationPlanner &LVP);
1251 
1252   /// Setup cost-based decisions for user vectorization factor.
1253   void selectUserVectorizationFactor(ElementCount UserVF) {
1254     collectUniformsAndScalars(UserVF);
1255     collectInstsToScalarize(UserVF);
1256   }
1257 
1258   /// \return The size (in bits) of the smallest and widest types in the code
1259   /// that needs to be vectorized. We ignore values that remain scalar such as
1260   /// 64 bit loop indices.
1261   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1262 
1263   /// \return The desired interleave count.
1264   /// If interleave count has been specified by metadata it will be returned.
1265   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1266   /// are the selected vectorization factor and the cost of the selected VF.
1267   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1268 
1269   /// Memory access instruction may be vectorized in more than one way.
1270   /// Form of instruction after vectorization depends on cost.
1271   /// This function takes cost-based decisions for Load/Store instructions
1272   /// and collects them in a map. This decisions map is used for building
1273   /// the lists of loop-uniform and loop-scalar instructions.
1274   /// The calculated cost is saved with widening decision in order to
1275   /// avoid redundant calculations.
1276   void setCostBasedWideningDecision(ElementCount VF);
1277 
1278   /// A struct that represents some properties of the register usage
1279   /// of a loop.
1280   struct RegisterUsage {
1281     /// Holds the number of loop invariant values that are used in the loop.
1282     /// The key is ClassID of target-provided register class.
1283     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1284     /// Holds the maximum number of concurrent live intervals in the loop.
1285     /// The key is ClassID of target-provided register class.
1286     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1287   };
1288 
1289   /// \return Returns information about the register usages of the loop for the
1290   /// given vectorization factors.
1291   SmallVector<RegisterUsage, 8>
1292   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1293 
1294   /// Collect values we want to ignore in the cost model.
1295   void collectValuesToIgnore();
1296 
1297   /// Split reductions into those that happen in the loop, and those that happen
1298   /// outside. In loop reductions are collected into InLoopReductionChains.
1299   void collectInLoopReductions();
1300 
1301   /// \returns The smallest bitwidth each instruction can be represented with.
1302   /// The vector equivalents of these instructions should be truncated to this
1303   /// type.
1304   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1305     return MinBWs;
1306   }
1307 
1308   /// \returns True if it is more profitable to scalarize instruction \p I for
1309   /// vectorization factor \p VF.
1310   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1311     assert(VF.isVector() &&
1312            "Profitable to scalarize relevant only for VF > 1.");
1313 
1314     // Cost model is not run in the VPlan-native path - return conservative
1315     // result until this changes.
1316     if (EnableVPlanNativePath)
1317       return false;
1318 
1319     auto Scalars = InstsToScalarize.find(VF);
1320     assert(Scalars != InstsToScalarize.end() &&
1321            "VF not yet analyzed for scalarization profitability");
1322     return Scalars->second.find(I) != Scalars->second.end();
1323   }
1324 
1325   /// Returns true if \p I is known to be uniform after vectorization.
1326   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1327     if (VF.isScalar())
1328       return true;
1329 
1330     // Cost model is not run in the VPlan-native path - return conservative
1331     // result until this changes.
1332     if (EnableVPlanNativePath)
1333       return false;
1334 
1335     auto UniformsPerVF = Uniforms.find(VF);
1336     assert(UniformsPerVF != Uniforms.end() &&
1337            "VF not yet analyzed for uniformity");
1338     return UniformsPerVF->second.count(I);
1339   }
1340 
1341   /// Returns true if \p I is known to be scalar after vectorization.
1342   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1343     if (VF.isScalar())
1344       return true;
1345 
1346     // Cost model is not run in the VPlan-native path - return conservative
1347     // result until this changes.
1348     if (EnableVPlanNativePath)
1349       return false;
1350 
1351     auto ScalarsPerVF = Scalars.find(VF);
1352     assert(ScalarsPerVF != Scalars.end() &&
1353            "Scalar values are not calculated for VF");
1354     return ScalarsPerVF->second.count(I);
1355   }
1356 
1357   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1358   /// for vectorization factor \p VF.
1359   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1360     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1361            !isProfitableToScalarize(I, VF) &&
1362            !isScalarAfterVectorization(I, VF);
1363   }
1364 
1365   /// Decision that was taken during cost calculation for memory instruction.
1366   enum InstWidening {
1367     CM_Unknown,
1368     CM_Widen,         // For consecutive accesses with stride +1.
1369     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1370     CM_Interleave,
1371     CM_GatherScatter,
1372     CM_Scalarize
1373   };
1374 
1375   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1376   /// instruction \p I and vector width \p VF.
1377   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1378                            InstructionCost Cost) {
1379     assert(VF.isVector() && "Expected VF >=2");
1380     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1381   }
1382 
1383   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1384   /// interleaving group \p Grp and vector width \p VF.
1385   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1386                            ElementCount VF, InstWidening W,
1387                            InstructionCost Cost) {
1388     assert(VF.isVector() && "Expected VF >=2");
1389     /// Broadcast this decicion to all instructions inside the group.
1390     /// But the cost will be assigned to one instruction only.
1391     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1392       if (auto *I = Grp->getMember(i)) {
1393         if (Grp->getInsertPos() == I)
1394           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1395         else
1396           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1397       }
1398     }
1399   }
1400 
1401   /// Return the cost model decision for the given instruction \p I and vector
1402   /// width \p VF. Return CM_Unknown if this instruction did not pass
1403   /// through the cost modeling.
1404   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1405     assert(VF.isVector() && "Expected VF to be a vector VF");
1406     // Cost model is not run in the VPlan-native path - return conservative
1407     // result until this changes.
1408     if (EnableVPlanNativePath)
1409       return CM_GatherScatter;
1410 
1411     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1412     auto Itr = WideningDecisions.find(InstOnVF);
1413     if (Itr == WideningDecisions.end())
1414       return CM_Unknown;
1415     return Itr->second.first;
1416   }
1417 
1418   /// Return the vectorization cost for the given instruction \p I and vector
1419   /// width \p VF.
1420   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1421     assert(VF.isVector() && "Expected VF >=2");
1422     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1423     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1424            "The cost is not calculated");
1425     return WideningDecisions[InstOnVF].second;
1426   }
1427 
1428   /// Return True if instruction \p I is an optimizable truncate whose operand
1429   /// is an induction variable. Such a truncate will be removed by adding a new
1430   /// induction variable with the destination type.
1431   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1432     // If the instruction is not a truncate, return false.
1433     auto *Trunc = dyn_cast<TruncInst>(I);
1434     if (!Trunc)
1435       return false;
1436 
1437     // Get the source and destination types of the truncate.
1438     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1439     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1440 
1441     // If the truncate is free for the given types, return false. Replacing a
1442     // free truncate with an induction variable would add an induction variable
1443     // update instruction to each iteration of the loop. We exclude from this
1444     // check the primary induction variable since it will need an update
1445     // instruction regardless.
1446     Value *Op = Trunc->getOperand(0);
1447     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1448       return false;
1449 
1450     // If the truncated value is not an induction variable, return false.
1451     return Legal->isInductionPhi(Op);
1452   }
1453 
1454   /// Collects the instructions to scalarize for each predicated instruction in
1455   /// the loop.
1456   void collectInstsToScalarize(ElementCount VF);
1457 
1458   /// Collect Uniform and Scalar values for the given \p VF.
1459   /// The sets depend on CM decision for Load/Store instructions
1460   /// that may be vectorized as interleave, gather-scatter or scalarized.
1461   void collectUniformsAndScalars(ElementCount VF) {
1462     // Do the analysis once.
1463     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1464       return;
1465     setCostBasedWideningDecision(VF);
1466     collectLoopUniforms(VF);
1467     collectLoopScalars(VF);
1468   }
1469 
1470   /// Returns true if the target machine supports masked store operation
1471   /// for the given \p DataType and kind of access to \p Ptr.
1472   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1473     return Legal->isConsecutivePtr(Ptr) &&
1474            TTI.isLegalMaskedStore(DataType, Alignment);
1475   }
1476 
1477   /// Returns true if the target machine supports masked load operation
1478   /// for the given \p DataType and kind of access to \p Ptr.
1479   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1480     return Legal->isConsecutivePtr(Ptr) &&
1481            TTI.isLegalMaskedLoad(DataType, Alignment);
1482   }
1483 
1484   /// Returns true if the target machine supports masked scatter operation
1485   /// for the given \p DataType.
1486   bool isLegalMaskedScatter(Type *DataType, Align Alignment) const {
1487     return TTI.isLegalMaskedScatter(DataType, Alignment);
1488   }
1489 
1490   /// Returns true if the target machine supports masked gather operation
1491   /// for the given \p DataType.
1492   bool isLegalMaskedGather(Type *DataType, Align Alignment) const {
1493     return TTI.isLegalMaskedGather(DataType, Alignment);
1494   }
1495 
1496   /// Returns true if the target machine can represent \p V as a masked gather
1497   /// or scatter operation.
1498   bool isLegalGatherOrScatter(Value *V) {
1499     bool LI = isa<LoadInst>(V);
1500     bool SI = isa<StoreInst>(V);
1501     if (!LI && !SI)
1502       return false;
1503     auto *Ty = getMemInstValueType(V);
1504     Align Align = getLoadStoreAlignment(V);
1505     return (LI && isLegalMaskedGather(Ty, Align)) ||
1506            (SI && isLegalMaskedScatter(Ty, Align));
1507   }
1508 
1509   /// Returns true if the target machine supports all of the reduction
1510   /// variables found for the given VF.
1511   bool canVectorizeReductions(ElementCount VF) {
1512     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1513       RecurrenceDescriptor RdxDesc = Reduction.second;
1514       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1515     }));
1516   }
1517 
1518   /// Returns true if \p I is an instruction that will be scalarized with
1519   /// predication. Such instructions include conditional stores and
1520   /// instructions that may divide by zero.
1521   /// If a non-zero VF has been calculated, we check if I will be scalarized
1522   /// predication for that VF.
1523   bool isScalarWithPredication(Instruction *I) const;
1524 
1525   // Returns true if \p I is an instruction that will be predicated either
1526   // through scalar predication or masked load/store or masked gather/scatter.
1527   // Superset of instructions that return true for isScalarWithPredication.
1528   bool isPredicatedInst(Instruction *I) {
1529     if (!blockNeedsPredication(I->getParent()))
1530       return false;
1531     // Loads and stores that need some form of masked operation are predicated
1532     // instructions.
1533     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1534       return Legal->isMaskRequired(I);
1535     return isScalarWithPredication(I);
1536   }
1537 
1538   /// Returns true if \p I is a memory instruction with consecutive memory
1539   /// access that can be widened.
1540   bool
1541   memoryInstructionCanBeWidened(Instruction *I,
1542                                 ElementCount VF = ElementCount::getFixed(1));
1543 
1544   /// Returns true if \p I is a memory instruction in an interleaved-group
1545   /// of memory accesses that can be vectorized with wide vector loads/stores
1546   /// and shuffles.
1547   bool
1548   interleavedAccessCanBeWidened(Instruction *I,
1549                                 ElementCount VF = ElementCount::getFixed(1));
1550 
1551   /// Check if \p Instr belongs to any interleaved access group.
1552   bool isAccessInterleaved(Instruction *Instr) {
1553     return InterleaveInfo.isInterleaved(Instr);
1554   }
1555 
1556   /// Get the interleaved access group that \p Instr belongs to.
1557   const InterleaveGroup<Instruction> *
1558   getInterleavedAccessGroup(Instruction *Instr) {
1559     return InterleaveInfo.getInterleaveGroup(Instr);
1560   }
1561 
1562   /// Returns true if we're required to use a scalar epilogue for at least
1563   /// the final iteration of the original loop.
1564   bool requiresScalarEpilogue() const {
1565     if (!isScalarEpilogueAllowed())
1566       return false;
1567     // If we might exit from anywhere but the latch, must run the exiting
1568     // iteration in scalar form.
1569     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1570       return true;
1571     return InterleaveInfo.requiresScalarEpilogue();
1572   }
1573 
1574   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1575   /// loop hint annotation.
1576   bool isScalarEpilogueAllowed() const {
1577     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1578   }
1579 
1580   /// Returns true if all loop blocks should be masked to fold tail loop.
1581   bool foldTailByMasking() const { return FoldTailByMasking; }
1582 
1583   bool blockNeedsPredication(BasicBlock *BB) const {
1584     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1585   }
1586 
1587   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1588   /// nodes to the chain of instructions representing the reductions. Uses a
1589   /// MapVector to ensure deterministic iteration order.
1590   using ReductionChainMap =
1591       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1592 
1593   /// Return the chain of instructions representing an inloop reduction.
1594   const ReductionChainMap &getInLoopReductionChains() const {
1595     return InLoopReductionChains;
1596   }
1597 
1598   /// Returns true if the Phi is part of an inloop reduction.
1599   bool isInLoopReduction(PHINode *Phi) const {
1600     return InLoopReductionChains.count(Phi);
1601   }
1602 
1603   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1604   /// with factor VF.  Return the cost of the instruction, including
1605   /// scalarization overhead if it's needed.
1606   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1607 
1608   /// Estimate cost of a call instruction CI if it were vectorized with factor
1609   /// VF. Return the cost of the instruction, including scalarization overhead
1610   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1611   /// scalarized -
1612   /// i.e. either vector version isn't available, or is too expensive.
1613   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1614                                     bool &NeedToScalarize) const;
1615 
1616   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1617   /// that of B.
1618   bool isMoreProfitable(const VectorizationFactor &A,
1619                         const VectorizationFactor &B) const;
1620 
1621   /// Invalidates decisions already taken by the cost model.
1622   void invalidateCostModelingDecisions() {
1623     WideningDecisions.clear();
1624     Uniforms.clear();
1625     Scalars.clear();
1626   }
1627 
1628 private:
1629   unsigned NumPredStores = 0;
1630 
1631   /// \return An upper bound for the vectorization factors for both
1632   /// fixed and scalable vectorization, where the minimum-known number of
1633   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1634   /// disabled or unsupported, then the scalable part will be equal to
1635   /// ElementCount::getScalable(0).
1636   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1637                                            ElementCount UserVF);
1638 
1639   /// \return the maximized element count based on the targets vector
1640   /// registers and the loop trip-count, but limited to a maximum safe VF.
1641   /// This is a helper function of computeFeasibleMaxVF.
1642   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1643   /// issue that occurred on one of the buildbots which cannot be reproduced
1644   /// without having access to the properietary compiler (see comments on
1645   /// D98509). The issue is currently under investigation and this workaround
1646   /// will be removed as soon as possible.
1647   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1648                                        unsigned SmallestType,
1649                                        unsigned WidestType,
1650                                        const ElementCount &MaxSafeVF);
1651 
1652   /// \return the maximum legal scalable VF, based on the safe max number
1653   /// of elements.
1654   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1655 
1656   /// The vectorization cost is a combination of the cost itself and a boolean
1657   /// indicating whether any of the contributing operations will actually
1658   /// operate on
1659   /// vector values after type legalization in the backend. If this latter value
1660   /// is
1661   /// false, then all operations will be scalarized (i.e. no vectorization has
1662   /// actually taken place).
1663   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1664 
1665   /// Returns the expected execution cost. The unit of the cost does
1666   /// not matter because we use the 'cost' units to compare different
1667   /// vector widths. The cost that is returned is *not* normalized by
1668   /// the factor width.
1669   VectorizationCostTy expectedCost(ElementCount VF);
1670 
1671   /// Returns the execution time cost of an instruction for a given vector
1672   /// width. Vector width of one means scalar.
1673   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1674 
1675   /// The cost-computation logic from getInstructionCost which provides
1676   /// the vector type as an output parameter.
1677   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1678                                      Type *&VectorTy);
1679 
1680   /// Return the cost of instructions in an inloop reduction pattern, if I is
1681   /// part of that pattern.
1682   InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF,
1683                                           Type *VectorTy,
1684                                           TTI::TargetCostKind CostKind);
1685 
1686   /// Calculate vectorization cost of memory instruction \p I.
1687   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1688 
1689   /// The cost computation for scalarized memory instruction.
1690   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1691 
1692   /// The cost computation for interleaving group of memory instructions.
1693   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1694 
1695   /// The cost computation for Gather/Scatter instruction.
1696   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1697 
1698   /// The cost computation for widening instruction \p I with consecutive
1699   /// memory access.
1700   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1701 
1702   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1703   /// Load: scalar load + broadcast.
1704   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1705   /// element)
1706   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1707 
1708   /// Estimate the overhead of scalarizing an instruction. This is a
1709   /// convenience wrapper for the type-based getScalarizationOverhead API.
1710   InstructionCost getScalarizationOverhead(Instruction *I,
1711                                            ElementCount VF) const;
1712 
1713   /// Returns whether the instruction is a load or store and will be a emitted
1714   /// as a vector operation.
1715   bool isConsecutiveLoadOrStore(Instruction *I);
1716 
1717   /// Returns true if an artificially high cost for emulated masked memrefs
1718   /// should be used.
1719   bool useEmulatedMaskMemRefHack(Instruction *I);
1720 
1721   /// Map of scalar integer values to the smallest bitwidth they can be legally
1722   /// represented as. The vector equivalents of these values should be truncated
1723   /// to this type.
1724   MapVector<Instruction *, uint64_t> MinBWs;
1725 
1726   /// A type representing the costs for instructions if they were to be
1727   /// scalarized rather than vectorized. The entries are Instruction-Cost
1728   /// pairs.
1729   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1730 
1731   /// A set containing all BasicBlocks that are known to present after
1732   /// vectorization as a predicated block.
1733   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1734 
1735   /// Records whether it is allowed to have the original scalar loop execute at
1736   /// least once. This may be needed as a fallback loop in case runtime
1737   /// aliasing/dependence checks fail, or to handle the tail/remainder
1738   /// iterations when the trip count is unknown or doesn't divide by the VF,
1739   /// or as a peel-loop to handle gaps in interleave-groups.
1740   /// Under optsize and when the trip count is very small we don't allow any
1741   /// iterations to execute in the scalar loop.
1742   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1743 
1744   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1745   bool FoldTailByMasking = false;
1746 
1747   /// A map holding scalar costs for different vectorization factors. The
1748   /// presence of a cost for an instruction in the mapping indicates that the
1749   /// instruction will be scalarized when vectorizing with the associated
1750   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1751   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1752 
1753   /// Holds the instructions known to be uniform after vectorization.
1754   /// The data is collected per VF.
1755   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1756 
1757   /// Holds the instructions known to be scalar after vectorization.
1758   /// The data is collected per VF.
1759   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1760 
1761   /// Holds the instructions (address computations) that are forced to be
1762   /// scalarized.
1763   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1764 
1765   /// PHINodes of the reductions that should be expanded in-loop along with
1766   /// their associated chains of reduction operations, in program order from top
1767   /// (PHI) to bottom
1768   ReductionChainMap InLoopReductionChains;
1769 
1770   /// A Map of inloop reduction operations and their immediate chain operand.
1771   /// FIXME: This can be removed once reductions can be costed correctly in
1772   /// vplan. This was added to allow quick lookup to the inloop operations,
1773   /// without having to loop through InLoopReductionChains.
1774   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1775 
1776   /// Returns the expected difference in cost from scalarizing the expression
1777   /// feeding a predicated instruction \p PredInst. The instructions to
1778   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1779   /// non-negative return value implies the expression will be scalarized.
1780   /// Currently, only single-use chains are considered for scalarization.
1781   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1782                               ElementCount VF);
1783 
1784   /// Collect the instructions that are uniform after vectorization. An
1785   /// instruction is uniform if we represent it with a single scalar value in
1786   /// the vectorized loop corresponding to each vector iteration. Examples of
1787   /// uniform instructions include pointer operands of consecutive or
1788   /// interleaved memory accesses. Note that although uniformity implies an
1789   /// instruction will be scalar, the reverse is not true. In general, a
1790   /// scalarized instruction will be represented by VF scalar values in the
1791   /// vectorized loop, each corresponding to an iteration of the original
1792   /// scalar loop.
1793   void collectLoopUniforms(ElementCount VF);
1794 
1795   /// Collect the instructions that are scalar after vectorization. An
1796   /// instruction is scalar if it is known to be uniform or will be scalarized
1797   /// during vectorization. Non-uniform scalarized instructions will be
1798   /// represented by VF values in the vectorized loop, each corresponding to an
1799   /// iteration of the original scalar loop.
1800   void collectLoopScalars(ElementCount VF);
1801 
1802   /// Keeps cost model vectorization decision and cost for instructions.
1803   /// Right now it is used for memory instructions only.
1804   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1805                                 std::pair<InstWidening, InstructionCost>>;
1806 
1807   DecisionList WideningDecisions;
1808 
1809   /// Returns true if \p V is expected to be vectorized and it needs to be
1810   /// extracted.
1811   bool needsExtract(Value *V, ElementCount VF) const {
1812     Instruction *I = dyn_cast<Instruction>(V);
1813     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1814         TheLoop->isLoopInvariant(I))
1815       return false;
1816 
1817     // Assume we can vectorize V (and hence we need extraction) if the
1818     // scalars are not computed yet. This can happen, because it is called
1819     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1820     // the scalars are collected. That should be a safe assumption in most
1821     // cases, because we check if the operands have vectorizable types
1822     // beforehand in LoopVectorizationLegality.
1823     return Scalars.find(VF) == Scalars.end() ||
1824            !isScalarAfterVectorization(I, VF);
1825   };
1826 
1827   /// Returns a range containing only operands needing to be extracted.
1828   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1829                                                    ElementCount VF) const {
1830     return SmallVector<Value *, 4>(make_filter_range(
1831         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1832   }
1833 
1834   /// Determines if we have the infrastructure to vectorize loop \p L and its
1835   /// epilogue, assuming the main loop is vectorized by \p VF.
1836   bool isCandidateForEpilogueVectorization(const Loop &L,
1837                                            const ElementCount VF) const;
1838 
1839   /// Returns true if epilogue vectorization is considered profitable, and
1840   /// false otherwise.
1841   /// \p VF is the vectorization factor chosen for the original loop.
1842   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1843 
1844 public:
1845   /// The loop that we evaluate.
1846   Loop *TheLoop;
1847 
1848   /// Predicated scalar evolution analysis.
1849   PredicatedScalarEvolution &PSE;
1850 
1851   /// Loop Info analysis.
1852   LoopInfo *LI;
1853 
1854   /// Vectorization legality.
1855   LoopVectorizationLegality *Legal;
1856 
1857   /// Vector target information.
1858   const TargetTransformInfo &TTI;
1859 
1860   /// Target Library Info.
1861   const TargetLibraryInfo *TLI;
1862 
1863   /// Demanded bits analysis.
1864   DemandedBits *DB;
1865 
1866   /// Assumption cache.
1867   AssumptionCache *AC;
1868 
1869   /// Interface to emit optimization remarks.
1870   OptimizationRemarkEmitter *ORE;
1871 
1872   const Function *TheFunction;
1873 
1874   /// Loop Vectorize Hint.
1875   const LoopVectorizeHints *Hints;
1876 
1877   /// The interleave access information contains groups of interleaved accesses
1878   /// with the same stride and close to each other.
1879   InterleavedAccessInfo &InterleaveInfo;
1880 
1881   /// Values to ignore in the cost model.
1882   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1883 
1884   /// Values to ignore in the cost model when VF > 1.
1885   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1886 
1887   /// Profitable vector factors.
1888   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1889 };
1890 } // end namespace llvm
1891 
1892 /// Helper struct to manage generating runtime checks for vectorization.
1893 ///
1894 /// The runtime checks are created up-front in temporary blocks to allow better
1895 /// estimating the cost and un-linked from the existing IR. After deciding to
1896 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1897 /// temporary blocks are completely removed.
1898 class GeneratedRTChecks {
1899   /// Basic block which contains the generated SCEV checks, if any.
1900   BasicBlock *SCEVCheckBlock = nullptr;
1901 
1902   /// The value representing the result of the generated SCEV checks. If it is
1903   /// nullptr, either no SCEV checks have been generated or they have been used.
1904   Value *SCEVCheckCond = nullptr;
1905 
1906   /// Basic block which contains the generated memory runtime checks, if any.
1907   BasicBlock *MemCheckBlock = nullptr;
1908 
1909   /// The value representing the result of the generated memory runtime checks.
1910   /// If it is nullptr, either no memory runtime checks have been generated or
1911   /// they have been used.
1912   Instruction *MemRuntimeCheckCond = nullptr;
1913 
1914   DominatorTree *DT;
1915   LoopInfo *LI;
1916 
1917   SCEVExpander SCEVExp;
1918   SCEVExpander MemCheckExp;
1919 
1920 public:
1921   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1922                     const DataLayout &DL)
1923       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1924         MemCheckExp(SE, DL, "scev.check") {}
1925 
1926   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1927   /// accurately estimate the cost of the runtime checks. The blocks are
1928   /// un-linked from the IR and is added back during vector code generation. If
1929   /// there is no vector code generation, the check blocks are removed
1930   /// completely.
1931   void Create(Loop *L, const LoopAccessInfo &LAI,
1932               const SCEVUnionPredicate &UnionPred) {
1933 
1934     BasicBlock *LoopHeader = L->getHeader();
1935     BasicBlock *Preheader = L->getLoopPreheader();
1936 
1937     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1938     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1939     // may be used by SCEVExpander. The blocks will be un-linked from their
1940     // predecessors and removed from LI & DT at the end of the function.
1941     if (!UnionPred.isAlwaysTrue()) {
1942       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1943                                   nullptr, "vector.scevcheck");
1944 
1945       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1946           &UnionPred, SCEVCheckBlock->getTerminator());
1947     }
1948 
1949     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1950     if (RtPtrChecking.Need) {
1951       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1952       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1953                                  "vector.memcheck");
1954 
1955       std::tie(std::ignore, MemRuntimeCheckCond) =
1956           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1957                            RtPtrChecking.getChecks(), MemCheckExp);
1958       assert(MemRuntimeCheckCond &&
1959              "no RT checks generated although RtPtrChecking "
1960              "claimed checks are required");
1961     }
1962 
1963     if (!MemCheckBlock && !SCEVCheckBlock)
1964       return;
1965 
1966     // Unhook the temporary block with the checks, update various places
1967     // accordingly.
1968     if (SCEVCheckBlock)
1969       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1970     if (MemCheckBlock)
1971       MemCheckBlock->replaceAllUsesWith(Preheader);
1972 
1973     if (SCEVCheckBlock) {
1974       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1975       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1976       Preheader->getTerminator()->eraseFromParent();
1977     }
1978     if (MemCheckBlock) {
1979       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1980       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1981       Preheader->getTerminator()->eraseFromParent();
1982     }
1983 
1984     DT->changeImmediateDominator(LoopHeader, Preheader);
1985     if (MemCheckBlock) {
1986       DT->eraseNode(MemCheckBlock);
1987       LI->removeBlock(MemCheckBlock);
1988     }
1989     if (SCEVCheckBlock) {
1990       DT->eraseNode(SCEVCheckBlock);
1991       LI->removeBlock(SCEVCheckBlock);
1992     }
1993   }
1994 
1995   /// Remove the created SCEV & memory runtime check blocks & instructions, if
1996   /// unused.
1997   ~GeneratedRTChecks() {
1998     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
1999     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2000     if (!SCEVCheckCond)
2001       SCEVCleaner.markResultUsed();
2002 
2003     if (!MemRuntimeCheckCond)
2004       MemCheckCleaner.markResultUsed();
2005 
2006     if (MemRuntimeCheckCond) {
2007       auto &SE = *MemCheckExp.getSE();
2008       // Memory runtime check generation creates compares that use expanded
2009       // values. Remove them before running the SCEVExpanderCleaners.
2010       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2011         if (MemCheckExp.isInsertedInstruction(&I))
2012           continue;
2013         SE.forgetValue(&I);
2014         SE.eraseValueFromMap(&I);
2015         I.eraseFromParent();
2016       }
2017     }
2018     MemCheckCleaner.cleanup();
2019     SCEVCleaner.cleanup();
2020 
2021     if (SCEVCheckCond)
2022       SCEVCheckBlock->eraseFromParent();
2023     if (MemRuntimeCheckCond)
2024       MemCheckBlock->eraseFromParent();
2025   }
2026 
2027   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2028   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2029   /// depending on the generated condition.
2030   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2031                              BasicBlock *LoopVectorPreHeader,
2032                              BasicBlock *LoopExitBlock) {
2033     if (!SCEVCheckCond)
2034       return nullptr;
2035     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2036       if (C->isZero())
2037         return nullptr;
2038 
2039     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2040 
2041     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2042     // Create new preheader for vector loop.
2043     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2044       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2045 
2046     SCEVCheckBlock->getTerminator()->eraseFromParent();
2047     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2048     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2049                                                 SCEVCheckBlock);
2050 
2051     DT->addNewBlock(SCEVCheckBlock, Pred);
2052     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2053 
2054     ReplaceInstWithInst(
2055         SCEVCheckBlock->getTerminator(),
2056         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2057     // Mark the check as used, to prevent it from being removed during cleanup.
2058     SCEVCheckCond = nullptr;
2059     return SCEVCheckBlock;
2060   }
2061 
2062   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2063   /// the branches to branch to the vector preheader or \p Bypass, depending on
2064   /// the generated condition.
2065   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2066                                    BasicBlock *LoopVectorPreHeader) {
2067     // Check if we generated code that checks in runtime if arrays overlap.
2068     if (!MemRuntimeCheckCond)
2069       return nullptr;
2070 
2071     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2072     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2073                                                 MemCheckBlock);
2074 
2075     DT->addNewBlock(MemCheckBlock, Pred);
2076     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2077     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2078 
2079     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2080       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2081 
2082     ReplaceInstWithInst(
2083         MemCheckBlock->getTerminator(),
2084         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2085     MemCheckBlock->getTerminator()->setDebugLoc(
2086         Pred->getTerminator()->getDebugLoc());
2087 
2088     // Mark the check as used, to prevent it from being removed during cleanup.
2089     MemRuntimeCheckCond = nullptr;
2090     return MemCheckBlock;
2091   }
2092 };
2093 
2094 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2095 // vectorization. The loop needs to be annotated with #pragma omp simd
2096 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2097 // vector length information is not provided, vectorization is not considered
2098 // explicit. Interleave hints are not allowed either. These limitations will be
2099 // relaxed in the future.
2100 // Please, note that we are currently forced to abuse the pragma 'clang
2101 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2102 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2103 // provides *explicit vectorization hints* (LV can bypass legal checks and
2104 // assume that vectorization is legal). However, both hints are implemented
2105 // using the same metadata (llvm.loop.vectorize, processed by
2106 // LoopVectorizeHints). This will be fixed in the future when the native IR
2107 // representation for pragma 'omp simd' is introduced.
2108 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2109                                    OptimizationRemarkEmitter *ORE) {
2110   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2111   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2112 
2113   // Only outer loops with an explicit vectorization hint are supported.
2114   // Unannotated outer loops are ignored.
2115   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2116     return false;
2117 
2118   Function *Fn = OuterLp->getHeader()->getParent();
2119   if (!Hints.allowVectorization(Fn, OuterLp,
2120                                 true /*VectorizeOnlyWhenForced*/)) {
2121     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2122     return false;
2123   }
2124 
2125   if (Hints.getInterleave() > 1) {
2126     // TODO: Interleave support is future work.
2127     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2128                          "outer loops.\n");
2129     Hints.emitRemarkWithHints();
2130     return false;
2131   }
2132 
2133   return true;
2134 }
2135 
2136 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2137                                   OptimizationRemarkEmitter *ORE,
2138                                   SmallVectorImpl<Loop *> &V) {
2139   // Collect inner loops and outer loops without irreducible control flow. For
2140   // now, only collect outer loops that have explicit vectorization hints. If we
2141   // are stress testing the VPlan H-CFG construction, we collect the outermost
2142   // loop of every loop nest.
2143   if (L.isInnermost() || VPlanBuildStressTest ||
2144       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2145     LoopBlocksRPO RPOT(&L);
2146     RPOT.perform(LI);
2147     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2148       V.push_back(&L);
2149       // TODO: Collect inner loops inside marked outer loops in case
2150       // vectorization fails for the outer loop. Do not invoke
2151       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2152       // already known to be reducible. We can use an inherited attribute for
2153       // that.
2154       return;
2155     }
2156   }
2157   for (Loop *InnerL : L)
2158     collectSupportedLoops(*InnerL, LI, ORE, V);
2159 }
2160 
2161 namespace {
2162 
2163 /// The LoopVectorize Pass.
2164 struct LoopVectorize : public FunctionPass {
2165   /// Pass identification, replacement for typeid
2166   static char ID;
2167 
2168   LoopVectorizePass Impl;
2169 
2170   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2171                          bool VectorizeOnlyWhenForced = false)
2172       : FunctionPass(ID),
2173         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2174     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2175   }
2176 
2177   bool runOnFunction(Function &F) override {
2178     if (skipFunction(F))
2179       return false;
2180 
2181     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2182     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2183     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2184     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2185     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2186     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2187     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2188     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2189     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2190     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2191     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2192     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2193     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2194 
2195     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2196         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2197 
2198     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2199                         GetLAA, *ORE, PSI).MadeAnyChange;
2200   }
2201 
2202   void getAnalysisUsage(AnalysisUsage &AU) const override {
2203     AU.addRequired<AssumptionCacheTracker>();
2204     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2205     AU.addRequired<DominatorTreeWrapperPass>();
2206     AU.addRequired<LoopInfoWrapperPass>();
2207     AU.addRequired<ScalarEvolutionWrapperPass>();
2208     AU.addRequired<TargetTransformInfoWrapperPass>();
2209     AU.addRequired<AAResultsWrapperPass>();
2210     AU.addRequired<LoopAccessLegacyAnalysis>();
2211     AU.addRequired<DemandedBitsWrapperPass>();
2212     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2213     AU.addRequired<InjectTLIMappingsLegacy>();
2214 
2215     // We currently do not preserve loopinfo/dominator analyses with outer loop
2216     // vectorization. Until this is addressed, mark these analyses as preserved
2217     // only for non-VPlan-native path.
2218     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2219     if (!EnableVPlanNativePath) {
2220       AU.addPreserved<LoopInfoWrapperPass>();
2221       AU.addPreserved<DominatorTreeWrapperPass>();
2222     }
2223 
2224     AU.addPreserved<BasicAAWrapperPass>();
2225     AU.addPreserved<GlobalsAAWrapperPass>();
2226     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2227   }
2228 };
2229 
2230 } // end anonymous namespace
2231 
2232 //===----------------------------------------------------------------------===//
2233 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2234 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2235 //===----------------------------------------------------------------------===//
2236 
2237 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2238   // We need to place the broadcast of invariant variables outside the loop,
2239   // but only if it's proven safe to do so. Else, broadcast will be inside
2240   // vector loop body.
2241   Instruction *Instr = dyn_cast<Instruction>(V);
2242   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2243                      (!Instr ||
2244                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2245   // Place the code for broadcasting invariant variables in the new preheader.
2246   IRBuilder<>::InsertPointGuard Guard(Builder);
2247   if (SafeToHoist)
2248     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2249 
2250   // Broadcast the scalar into all locations in the vector.
2251   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2252 
2253   return Shuf;
2254 }
2255 
2256 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2257     const InductionDescriptor &II, Value *Step, Value *Start,
2258     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2259     VPTransformState &State) {
2260   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2261          "Expected either an induction phi-node or a truncate of it!");
2262 
2263   // Construct the initial value of the vector IV in the vector loop preheader
2264   auto CurrIP = Builder.saveIP();
2265   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2266   if (isa<TruncInst>(EntryVal)) {
2267     assert(Start->getType()->isIntegerTy() &&
2268            "Truncation requires an integer type");
2269     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2270     Step = Builder.CreateTrunc(Step, TruncType);
2271     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2272   }
2273   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2274   Value *SteppedStart =
2275       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2276 
2277   // We create vector phi nodes for both integer and floating-point induction
2278   // variables. Here, we determine the kind of arithmetic we will perform.
2279   Instruction::BinaryOps AddOp;
2280   Instruction::BinaryOps MulOp;
2281   if (Step->getType()->isIntegerTy()) {
2282     AddOp = Instruction::Add;
2283     MulOp = Instruction::Mul;
2284   } else {
2285     AddOp = II.getInductionOpcode();
2286     MulOp = Instruction::FMul;
2287   }
2288 
2289   // Multiply the vectorization factor by the step using integer or
2290   // floating-point arithmetic as appropriate.
2291   Type *StepType = Step->getType();
2292   if (Step->getType()->isFloatingPointTy())
2293     StepType = IntegerType::get(StepType->getContext(),
2294                                 StepType->getScalarSizeInBits());
2295   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2296   if (Step->getType()->isFloatingPointTy())
2297     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2298   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2299 
2300   // Create a vector splat to use in the induction update.
2301   //
2302   // FIXME: If the step is non-constant, we create the vector splat with
2303   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2304   //        handle a constant vector splat.
2305   Value *SplatVF = isa<Constant>(Mul)
2306                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2307                        : Builder.CreateVectorSplat(VF, Mul);
2308   Builder.restoreIP(CurrIP);
2309 
2310   // We may need to add the step a number of times, depending on the unroll
2311   // factor. The last of those goes into the PHI.
2312   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2313                                     &*LoopVectorBody->getFirstInsertionPt());
2314   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2315   Instruction *LastInduction = VecInd;
2316   for (unsigned Part = 0; Part < UF; ++Part) {
2317     State.set(Def, LastInduction, Part);
2318 
2319     if (isa<TruncInst>(EntryVal))
2320       addMetadata(LastInduction, EntryVal);
2321     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2322                                           State, Part);
2323 
2324     LastInduction = cast<Instruction>(
2325         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2326     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2327   }
2328 
2329   // Move the last step to the end of the latch block. This ensures consistent
2330   // placement of all induction updates.
2331   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2332   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2333   auto *ICmp = cast<Instruction>(Br->getCondition());
2334   LastInduction->moveBefore(ICmp);
2335   LastInduction->setName("vec.ind.next");
2336 
2337   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2338   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2339 }
2340 
2341 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2342   return Cost->isScalarAfterVectorization(I, VF) ||
2343          Cost->isProfitableToScalarize(I, VF);
2344 }
2345 
2346 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2347   if (shouldScalarizeInstruction(IV))
2348     return true;
2349   auto isScalarInst = [&](User *U) -> bool {
2350     auto *I = cast<Instruction>(U);
2351     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2352   };
2353   return llvm::any_of(IV->users(), isScalarInst);
2354 }
2355 
2356 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2357     const InductionDescriptor &ID, const Instruction *EntryVal,
2358     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2359     unsigned Part, unsigned Lane) {
2360   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2361          "Expected either an induction phi-node or a truncate of it!");
2362 
2363   // This induction variable is not the phi from the original loop but the
2364   // newly-created IV based on the proof that casted Phi is equal to the
2365   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2366   // re-uses the same InductionDescriptor that original IV uses but we don't
2367   // have to do any recording in this case - that is done when original IV is
2368   // processed.
2369   if (isa<TruncInst>(EntryVal))
2370     return;
2371 
2372   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2373   if (Casts.empty())
2374     return;
2375   // Only the first Cast instruction in the Casts vector is of interest.
2376   // The rest of the Casts (if exist) have no uses outside the
2377   // induction update chain itself.
2378   if (Lane < UINT_MAX)
2379     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2380   else
2381     State.set(CastDef, VectorLoopVal, Part);
2382 }
2383 
2384 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2385                                                 TruncInst *Trunc, VPValue *Def,
2386                                                 VPValue *CastDef,
2387                                                 VPTransformState &State) {
2388   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2389          "Primary induction variable must have an integer type");
2390 
2391   auto II = Legal->getInductionVars().find(IV);
2392   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2393 
2394   auto ID = II->second;
2395   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2396 
2397   // The value from the original loop to which we are mapping the new induction
2398   // variable.
2399   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2400 
2401   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2402 
2403   // Generate code for the induction step. Note that induction steps are
2404   // required to be loop-invariant
2405   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2406     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2407            "Induction step should be loop invariant");
2408     if (PSE.getSE()->isSCEVable(IV->getType())) {
2409       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2410       return Exp.expandCodeFor(Step, Step->getType(),
2411                                LoopVectorPreHeader->getTerminator());
2412     }
2413     return cast<SCEVUnknown>(Step)->getValue();
2414   };
2415 
2416   // The scalar value to broadcast. This is derived from the canonical
2417   // induction variable. If a truncation type is given, truncate the canonical
2418   // induction variable and step. Otherwise, derive these values from the
2419   // induction descriptor.
2420   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2421     Value *ScalarIV = Induction;
2422     if (IV != OldInduction) {
2423       ScalarIV = IV->getType()->isIntegerTy()
2424                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2425                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2426                                           IV->getType());
2427       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2428       ScalarIV->setName("offset.idx");
2429     }
2430     if (Trunc) {
2431       auto *TruncType = cast<IntegerType>(Trunc->getType());
2432       assert(Step->getType()->isIntegerTy() &&
2433              "Truncation requires an integer step");
2434       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2435       Step = Builder.CreateTrunc(Step, TruncType);
2436     }
2437     return ScalarIV;
2438   };
2439 
2440   // Create the vector values from the scalar IV, in the absence of creating a
2441   // vector IV.
2442   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2443     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2444     for (unsigned Part = 0; Part < UF; ++Part) {
2445       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2446       Value *EntryPart =
2447           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2448                         ID.getInductionOpcode());
2449       State.set(Def, EntryPart, Part);
2450       if (Trunc)
2451         addMetadata(EntryPart, Trunc);
2452       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2453                                             State, Part);
2454     }
2455   };
2456 
2457   // Fast-math-flags propagate from the original induction instruction.
2458   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2459   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2460     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2461 
2462   // Now do the actual transformations, and start with creating the step value.
2463   Value *Step = CreateStepValue(ID.getStep());
2464   if (VF.isZero() || VF.isScalar()) {
2465     Value *ScalarIV = CreateScalarIV(Step);
2466     CreateSplatIV(ScalarIV, Step);
2467     return;
2468   }
2469 
2470   // Determine if we want a scalar version of the induction variable. This is
2471   // true if the induction variable itself is not widened, or if it has at
2472   // least one user in the loop that is not widened.
2473   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2474   if (!NeedsScalarIV) {
2475     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2476                                     State);
2477     return;
2478   }
2479 
2480   // Try to create a new independent vector induction variable. If we can't
2481   // create the phi node, we will splat the scalar induction variable in each
2482   // loop iteration.
2483   if (!shouldScalarizeInstruction(EntryVal)) {
2484     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2485                                     State);
2486     Value *ScalarIV = CreateScalarIV(Step);
2487     // Create scalar steps that can be used by instructions we will later
2488     // scalarize. Note that the addition of the scalar steps will not increase
2489     // the number of instructions in the loop in the common case prior to
2490     // InstCombine. We will be trading one vector extract for each scalar step.
2491     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2492     return;
2493   }
2494 
2495   // All IV users are scalar instructions, so only emit a scalar IV, not a
2496   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2497   // predicate used by the masked loads/stores.
2498   Value *ScalarIV = CreateScalarIV(Step);
2499   if (!Cost->isScalarEpilogueAllowed())
2500     CreateSplatIV(ScalarIV, Step);
2501   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2502 }
2503 
2504 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2505                                           Instruction::BinaryOps BinOp) {
2506   // Create and check the types.
2507   auto *ValVTy = cast<VectorType>(Val->getType());
2508   ElementCount VLen = ValVTy->getElementCount();
2509 
2510   Type *STy = Val->getType()->getScalarType();
2511   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2512          "Induction Step must be an integer or FP");
2513   assert(Step->getType() == STy && "Step has wrong type");
2514 
2515   SmallVector<Constant *, 8> Indices;
2516 
2517   // Create a vector of consecutive numbers from zero to VF.
2518   VectorType *InitVecValVTy = ValVTy;
2519   Type *InitVecValSTy = STy;
2520   if (STy->isFloatingPointTy()) {
2521     InitVecValSTy =
2522         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2523     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2524   }
2525   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2526 
2527   // Add on StartIdx
2528   Value *StartIdxSplat = Builder.CreateVectorSplat(
2529       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2530   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2531 
2532   if (STy->isIntegerTy()) {
2533     Step = Builder.CreateVectorSplat(VLen, Step);
2534     assert(Step->getType() == Val->getType() && "Invalid step vec");
2535     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2536     // which can be found from the original scalar operations.
2537     Step = Builder.CreateMul(InitVec, Step);
2538     return Builder.CreateAdd(Val, Step, "induction");
2539   }
2540 
2541   // Floating point induction.
2542   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2543          "Binary Opcode should be specified for FP induction");
2544   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2545   Step = Builder.CreateVectorSplat(VLen, Step);
2546   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2547   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2548 }
2549 
2550 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2551                                            Instruction *EntryVal,
2552                                            const InductionDescriptor &ID,
2553                                            VPValue *Def, VPValue *CastDef,
2554                                            VPTransformState &State) {
2555   // We shouldn't have to build scalar steps if we aren't vectorizing.
2556   assert(VF.isVector() && "VF should be greater than one");
2557   // Get the value type and ensure it and the step have the same integer type.
2558   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2559   assert(ScalarIVTy == Step->getType() &&
2560          "Val and Step should have the same type");
2561 
2562   // We build scalar steps for both integer and floating-point induction
2563   // variables. Here, we determine the kind of arithmetic we will perform.
2564   Instruction::BinaryOps AddOp;
2565   Instruction::BinaryOps MulOp;
2566   if (ScalarIVTy->isIntegerTy()) {
2567     AddOp = Instruction::Add;
2568     MulOp = Instruction::Mul;
2569   } else {
2570     AddOp = ID.getInductionOpcode();
2571     MulOp = Instruction::FMul;
2572   }
2573 
2574   // Determine the number of scalars we need to generate for each unroll
2575   // iteration. If EntryVal is uniform, we only need to generate the first
2576   // lane. Otherwise, we generate all VF values.
2577   bool IsUniform =
2578       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2579   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2580   // Compute the scalar steps and save the results in State.
2581   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2582                                      ScalarIVTy->getScalarSizeInBits());
2583   Type *VecIVTy = nullptr;
2584   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2585   if (!IsUniform && VF.isScalable()) {
2586     VecIVTy = VectorType::get(ScalarIVTy, VF);
2587     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2588     SplatStep = Builder.CreateVectorSplat(VF, Step);
2589     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2590   }
2591 
2592   for (unsigned Part = 0; Part < UF; ++Part) {
2593     Value *StartIdx0 =
2594         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2595 
2596     if (!IsUniform && VF.isScalable()) {
2597       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2598       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2599       if (ScalarIVTy->isFloatingPointTy())
2600         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2601       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2602       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2603       State.set(Def, Add, Part);
2604       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2605                                             Part);
2606       // It's useful to record the lane values too for the known minimum number
2607       // of elements so we do those below. This improves the code quality when
2608       // trying to extract the first element, for example.
2609     }
2610 
2611     if (ScalarIVTy->isFloatingPointTy())
2612       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2613 
2614     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2615       Value *StartIdx = Builder.CreateBinOp(
2616           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2617       // The step returned by `createStepForVF` is a runtime-evaluated value
2618       // when VF is scalable. Otherwise, it should be folded into a Constant.
2619       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2620              "Expected StartIdx to be folded to a constant when VF is not "
2621              "scalable");
2622       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2623       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2624       State.set(Def, Add, VPIteration(Part, Lane));
2625       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2626                                             Part, Lane);
2627     }
2628   }
2629 }
2630 
2631 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2632                                                     const VPIteration &Instance,
2633                                                     VPTransformState &State) {
2634   Value *ScalarInst = State.get(Def, Instance);
2635   Value *VectorValue = State.get(Def, Instance.Part);
2636   VectorValue = Builder.CreateInsertElement(
2637       VectorValue, ScalarInst,
2638       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2639   State.set(Def, VectorValue, Instance.Part);
2640 }
2641 
2642 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2643   assert(Vec->getType()->isVectorTy() && "Invalid type");
2644   return Builder.CreateVectorReverse(Vec, "reverse");
2645 }
2646 
2647 // Return whether we allow using masked interleave-groups (for dealing with
2648 // strided loads/stores that reside in predicated blocks, or for dealing
2649 // with gaps).
2650 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2651   // If an override option has been passed in for interleaved accesses, use it.
2652   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2653     return EnableMaskedInterleavedMemAccesses;
2654 
2655   return TTI.enableMaskedInterleavedAccessVectorization();
2656 }
2657 
2658 // Try to vectorize the interleave group that \p Instr belongs to.
2659 //
2660 // E.g. Translate following interleaved load group (factor = 3):
2661 //   for (i = 0; i < N; i+=3) {
2662 //     R = Pic[i];             // Member of index 0
2663 //     G = Pic[i+1];           // Member of index 1
2664 //     B = Pic[i+2];           // Member of index 2
2665 //     ... // do something to R, G, B
2666 //   }
2667 // To:
2668 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2669 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2670 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2671 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2672 //
2673 // Or translate following interleaved store group (factor = 3):
2674 //   for (i = 0; i < N; i+=3) {
2675 //     ... do something to R, G, B
2676 //     Pic[i]   = R;           // Member of index 0
2677 //     Pic[i+1] = G;           // Member of index 1
2678 //     Pic[i+2] = B;           // Member of index 2
2679 //   }
2680 // To:
2681 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2682 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2683 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2684 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2685 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2686 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2687     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2688     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2689     VPValue *BlockInMask) {
2690   Instruction *Instr = Group->getInsertPos();
2691   const DataLayout &DL = Instr->getModule()->getDataLayout();
2692 
2693   // Prepare for the vector type of the interleaved load/store.
2694   Type *ScalarTy = getMemInstValueType(Instr);
2695   unsigned InterleaveFactor = Group->getFactor();
2696   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2697   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2698 
2699   // Prepare for the new pointers.
2700   SmallVector<Value *, 2> AddrParts;
2701   unsigned Index = Group->getIndex(Instr);
2702 
2703   // TODO: extend the masked interleaved-group support to reversed access.
2704   assert((!BlockInMask || !Group->isReverse()) &&
2705          "Reversed masked interleave-group not supported.");
2706 
2707   // If the group is reverse, adjust the index to refer to the last vector lane
2708   // instead of the first. We adjust the index from the first vector lane,
2709   // rather than directly getting the pointer for lane VF - 1, because the
2710   // pointer operand of the interleaved access is supposed to be uniform. For
2711   // uniform instructions, we're only required to generate a value for the
2712   // first vector lane in each unroll iteration.
2713   if (Group->isReverse())
2714     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2715 
2716   for (unsigned Part = 0; Part < UF; Part++) {
2717     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2718     setDebugLocFromInst(Builder, AddrPart);
2719 
2720     // Notice current instruction could be any index. Need to adjust the address
2721     // to the member of index 0.
2722     //
2723     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2724     //       b = A[i];       // Member of index 0
2725     // Current pointer is pointed to A[i+1], adjust it to A[i].
2726     //
2727     // E.g.  A[i+1] = a;     // Member of index 1
2728     //       A[i]   = b;     // Member of index 0
2729     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2730     // Current pointer is pointed to A[i+2], adjust it to A[i].
2731 
2732     bool InBounds = false;
2733     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2734       InBounds = gep->isInBounds();
2735     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2736     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2737 
2738     // Cast to the vector pointer type.
2739     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2740     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2741     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2742   }
2743 
2744   setDebugLocFromInst(Builder, Instr);
2745   Value *PoisonVec = PoisonValue::get(VecTy);
2746 
2747   Value *MaskForGaps = nullptr;
2748   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2749     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2750     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2751   }
2752 
2753   // Vectorize the interleaved load group.
2754   if (isa<LoadInst>(Instr)) {
2755     // For each unroll part, create a wide load for the group.
2756     SmallVector<Value *, 2> NewLoads;
2757     for (unsigned Part = 0; Part < UF; Part++) {
2758       Instruction *NewLoad;
2759       if (BlockInMask || MaskForGaps) {
2760         assert(useMaskedInterleavedAccesses(*TTI) &&
2761                "masked interleaved groups are not allowed.");
2762         Value *GroupMask = MaskForGaps;
2763         if (BlockInMask) {
2764           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2765           Value *ShuffledMask = Builder.CreateShuffleVector(
2766               BlockInMaskPart,
2767               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2768               "interleaved.mask");
2769           GroupMask = MaskForGaps
2770                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2771                                                 MaskForGaps)
2772                           : ShuffledMask;
2773         }
2774         NewLoad =
2775             Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(),
2776                                      GroupMask, PoisonVec, "wide.masked.vec");
2777       }
2778       else
2779         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2780                                             Group->getAlign(), "wide.vec");
2781       Group->addMetadata(NewLoad);
2782       NewLoads.push_back(NewLoad);
2783     }
2784 
2785     // For each member in the group, shuffle out the appropriate data from the
2786     // wide loads.
2787     unsigned J = 0;
2788     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2789       Instruction *Member = Group->getMember(I);
2790 
2791       // Skip the gaps in the group.
2792       if (!Member)
2793         continue;
2794 
2795       auto StrideMask =
2796           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2797       for (unsigned Part = 0; Part < UF; Part++) {
2798         Value *StridedVec = Builder.CreateShuffleVector(
2799             NewLoads[Part], StrideMask, "strided.vec");
2800 
2801         // If this member has different type, cast the result type.
2802         if (Member->getType() != ScalarTy) {
2803           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2804           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2805           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2806         }
2807 
2808         if (Group->isReverse())
2809           StridedVec = reverseVector(StridedVec);
2810 
2811         State.set(VPDefs[J], StridedVec, Part);
2812       }
2813       ++J;
2814     }
2815     return;
2816   }
2817 
2818   // The sub vector type for current instruction.
2819   auto *SubVT = VectorType::get(ScalarTy, VF);
2820 
2821   // Vectorize the interleaved store group.
2822   for (unsigned Part = 0; Part < UF; Part++) {
2823     // Collect the stored vector from each member.
2824     SmallVector<Value *, 4> StoredVecs;
2825     for (unsigned i = 0; i < InterleaveFactor; i++) {
2826       // Interleaved store group doesn't allow a gap, so each index has a member
2827       assert(Group->getMember(i) && "Fail to get a member from an interleaved store group");
2828 
2829       Value *StoredVec = State.get(StoredValues[i], Part);
2830 
2831       if (Group->isReverse())
2832         StoredVec = reverseVector(StoredVec);
2833 
2834       // If this member has different type, cast it to a unified type.
2835 
2836       if (StoredVec->getType() != SubVT)
2837         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2838 
2839       StoredVecs.push_back(StoredVec);
2840     }
2841 
2842     // Concatenate all vectors into a wide vector.
2843     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2844 
2845     // Interleave the elements in the wide vector.
2846     Value *IVec = Builder.CreateShuffleVector(
2847         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2848         "interleaved.vec");
2849 
2850     Instruction *NewStoreInstr;
2851     if (BlockInMask) {
2852       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2853       Value *ShuffledMask = Builder.CreateShuffleVector(
2854           BlockInMaskPart,
2855           createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2856           "interleaved.mask");
2857       NewStoreInstr = Builder.CreateMaskedStore(
2858           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2859     }
2860     else
2861       NewStoreInstr =
2862           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2863 
2864     Group->addMetadata(NewStoreInstr);
2865   }
2866 }
2867 
2868 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2869     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2870     VPValue *StoredValue, VPValue *BlockInMask) {
2871   // Attempt to issue a wide load.
2872   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2873   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2874 
2875   assert((LI || SI) && "Invalid Load/Store instruction");
2876   assert((!SI || StoredValue) && "No stored value provided for widened store");
2877   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2878 
2879   LoopVectorizationCostModel::InstWidening Decision =
2880       Cost->getWideningDecision(Instr, VF);
2881   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2882           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2883           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2884          "CM decision is not to widen the memory instruction");
2885 
2886   Type *ScalarDataTy = getMemInstValueType(Instr);
2887 
2888   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2889   const Align Alignment = getLoadStoreAlignment(Instr);
2890 
2891   // Determine if the pointer operand of the access is either consecutive or
2892   // reverse consecutive.
2893   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2894   bool ConsecutiveStride =
2895       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2896   bool CreateGatherScatter =
2897       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2898 
2899   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2900   // gather/scatter. Otherwise Decision should have been to Scalarize.
2901   assert((ConsecutiveStride || CreateGatherScatter) &&
2902          "The instruction should be scalarized");
2903   (void)ConsecutiveStride;
2904 
2905   VectorParts BlockInMaskParts(UF);
2906   bool isMaskRequired = BlockInMask;
2907   if (isMaskRequired)
2908     for (unsigned Part = 0; Part < UF; ++Part)
2909       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2910 
2911   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2912     // Calculate the pointer for the specific unroll-part.
2913     GetElementPtrInst *PartPtr = nullptr;
2914 
2915     bool InBounds = false;
2916     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2917       InBounds = gep->isInBounds();
2918     if (Reverse) {
2919       // If the address is consecutive but reversed, then the
2920       // wide store needs to start at the last vector element.
2921       // RunTimeVF =  VScale * VF.getKnownMinValue()
2922       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2923       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2924       // NumElt = -Part * RunTimeVF
2925       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2926       // LastLane = 1 - RunTimeVF
2927       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2928       PartPtr =
2929           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2930       PartPtr->setIsInBounds(InBounds);
2931       PartPtr = cast<GetElementPtrInst>(
2932           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2933       PartPtr->setIsInBounds(InBounds);
2934       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2935         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2936     } else {
2937       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2938       PartPtr = cast<GetElementPtrInst>(
2939           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2940       PartPtr->setIsInBounds(InBounds);
2941     }
2942 
2943     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2944     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2945   };
2946 
2947   // Handle Stores:
2948   if (SI) {
2949     setDebugLocFromInst(Builder, SI);
2950 
2951     for (unsigned Part = 0; Part < UF; ++Part) {
2952       Instruction *NewSI = nullptr;
2953       Value *StoredVal = State.get(StoredValue, Part);
2954       if (CreateGatherScatter) {
2955         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2956         Value *VectorGep = State.get(Addr, Part);
2957         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2958                                             MaskPart);
2959       } else {
2960         if (Reverse) {
2961           // If we store to reverse consecutive memory locations, then we need
2962           // to reverse the order of elements in the stored value.
2963           StoredVal = reverseVector(StoredVal);
2964           // We don't want to update the value in the map as it might be used in
2965           // another expression. So don't call resetVectorValue(StoredVal).
2966         }
2967         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2968         if (isMaskRequired)
2969           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2970                                             BlockInMaskParts[Part]);
2971         else
2972           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2973       }
2974       addMetadata(NewSI, SI);
2975     }
2976     return;
2977   }
2978 
2979   // Handle loads.
2980   assert(LI && "Must have a load instruction");
2981   setDebugLocFromInst(Builder, LI);
2982   for (unsigned Part = 0; Part < UF; ++Part) {
2983     Value *NewLI;
2984     if (CreateGatherScatter) {
2985       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2986       Value *VectorGep = State.get(Addr, Part);
2987       NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
2988                                          nullptr, "wide.masked.gather");
2989       addMetadata(NewLI, LI);
2990     } else {
2991       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2992       if (isMaskRequired)
2993         NewLI = Builder.CreateMaskedLoad(
2994             VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy),
2995             "wide.masked.load");
2996       else
2997         NewLI =
2998             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
2999 
3000       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3001       addMetadata(NewLI, LI);
3002       if (Reverse)
3003         NewLI = reverseVector(NewLI);
3004     }
3005 
3006     State.set(Def, NewLI, Part);
3007   }
3008 }
3009 
3010 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3011                                                VPUser &User,
3012                                                const VPIteration &Instance,
3013                                                bool IfPredicateInstr,
3014                                                VPTransformState &State) {
3015   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3016 
3017   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3018   // the first lane and part.
3019   if (isa<NoAliasScopeDeclInst>(Instr))
3020     if (!Instance.isFirstIteration())
3021       return;
3022 
3023   setDebugLocFromInst(Builder, Instr);
3024 
3025   // Does this instruction return a value ?
3026   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3027 
3028   Instruction *Cloned = Instr->clone();
3029   if (!IsVoidRetTy)
3030     Cloned->setName(Instr->getName() + ".cloned");
3031 
3032   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3033                                Builder.GetInsertPoint());
3034   // Replace the operands of the cloned instructions with their scalar
3035   // equivalents in the new loop.
3036   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3037     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3038     auto InputInstance = Instance;
3039     if (!Operand || !OrigLoop->contains(Operand) ||
3040         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3041       InputInstance.Lane = VPLane::getFirstLane();
3042     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3043     Cloned->setOperand(op, NewOp);
3044   }
3045   addNewMetadata(Cloned, Instr);
3046 
3047   // Place the cloned scalar in the new loop.
3048   Builder.Insert(Cloned);
3049 
3050   State.set(Def, Cloned, Instance);
3051 
3052   // If we just cloned a new assumption, add it the assumption cache.
3053   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3054     AC->registerAssumption(II);
3055 
3056   // End if-block.
3057   if (IfPredicateInstr)
3058     PredicatedInstructions.push_back(Cloned);
3059 }
3060 
3061 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3062                                                       Value *End, Value *Step,
3063                                                       Instruction *DL) {
3064   BasicBlock *Header = L->getHeader();
3065   BasicBlock *Latch = L->getLoopLatch();
3066   // As we're just creating this loop, it's possible no latch exists
3067   // yet. If so, use the header as this will be a single block loop.
3068   if (!Latch)
3069     Latch = Header;
3070 
3071   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
3072   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3073   setDebugLocFromInst(Builder, OldInst);
3074   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
3075 
3076   Builder.SetInsertPoint(Latch->getTerminator());
3077   setDebugLocFromInst(Builder, OldInst);
3078 
3079   // Create i+1 and fill the PHINode.
3080   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
3081   Induction->addIncoming(Start, L->getLoopPreheader());
3082   Induction->addIncoming(Next, Latch);
3083   // Create the compare.
3084   Value *ICmp = Builder.CreateICmpEQ(Next, End);
3085   Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3086 
3087   // Now we have two terminators. Remove the old one from the block.
3088   Latch->getTerminator()->eraseFromParent();
3089 
3090   return Induction;
3091 }
3092 
3093 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3094   if (TripCount)
3095     return TripCount;
3096 
3097   assert(L && "Create Trip Count for null loop.");
3098   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3099   // Find the loop boundaries.
3100   ScalarEvolution *SE = PSE.getSE();
3101   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3102   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3103          "Invalid loop count");
3104 
3105   Type *IdxTy = Legal->getWidestInductionType();
3106   assert(IdxTy && "No type for induction");
3107 
3108   // The exit count might have the type of i64 while the phi is i32. This can
3109   // happen if we have an induction variable that is sign extended before the
3110   // compare. The only way that we get a backedge taken count is that the
3111   // induction variable was signed and as such will not overflow. In such a case
3112   // truncation is legal.
3113   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3114       IdxTy->getPrimitiveSizeInBits())
3115     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3116   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3117 
3118   // Get the total trip count from the count by adding 1.
3119   const SCEV *ExitCount = SE->getAddExpr(
3120       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3121 
3122   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3123 
3124   // Expand the trip count and place the new instructions in the preheader.
3125   // Notice that the pre-header does not change, only the loop body.
3126   SCEVExpander Exp(*SE, DL, "induction");
3127 
3128   // Count holds the overall loop count (N).
3129   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3130                                 L->getLoopPreheader()->getTerminator());
3131 
3132   if (TripCount->getType()->isPointerTy())
3133     TripCount =
3134         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3135                                     L->getLoopPreheader()->getTerminator());
3136 
3137   return TripCount;
3138 }
3139 
3140 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3141   if (VectorTripCount)
3142     return VectorTripCount;
3143 
3144   Value *TC = getOrCreateTripCount(L);
3145   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3146 
3147   Type *Ty = TC->getType();
3148   // This is where we can make the step a runtime constant.
3149   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3150 
3151   // If the tail is to be folded by masking, round the number of iterations N
3152   // up to a multiple of Step instead of rounding down. This is done by first
3153   // adding Step-1 and then rounding down. Note that it's ok if this addition
3154   // overflows: the vector induction variable will eventually wrap to zero given
3155   // that it starts at zero and its Step is a power of two; the loop will then
3156   // exit, with the last early-exit vector comparison also producing all-true.
3157   if (Cost->foldTailByMasking()) {
3158     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3159            "VF*UF must be a power of 2 when folding tail by masking");
3160     assert(!VF.isScalable() &&
3161            "Tail folding not yet supported for scalable vectors");
3162     TC = Builder.CreateAdd(
3163         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3164   }
3165 
3166   // Now we need to generate the expression for the part of the loop that the
3167   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3168   // iterations are not required for correctness, or N - Step, otherwise. Step
3169   // is equal to the vectorization factor (number of SIMD elements) times the
3170   // unroll factor (number of SIMD instructions).
3171   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3172 
3173   // There are two cases where we need to ensure (at least) the last iteration
3174   // runs in the scalar remainder loop. Thus, if the step evenly divides
3175   // the trip count, we set the remainder to be equal to the step. If the step
3176   // does not evenly divide the trip count, no adjustment is necessary since
3177   // there will already be scalar iterations. Note that the minimum iterations
3178   // check ensures that N >= Step. The cases are:
3179   // 1) If there is a non-reversed interleaved group that may speculatively
3180   //    access memory out-of-bounds.
3181   // 2) If any instruction may follow a conditionally taken exit. That is, if
3182   //    the loop contains multiple exiting blocks, or a single exiting block
3183   //    which is not the latch.
3184   if (VF.isVector() && Cost->requiresScalarEpilogue()) {
3185     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3186     R = Builder.CreateSelect(IsZero, Step, R);
3187   }
3188 
3189   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3190 
3191   return VectorTripCount;
3192 }
3193 
3194 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3195                                                    const DataLayout &DL) {
3196   // Verify that V is a vector type with same number of elements as DstVTy.
3197   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3198   unsigned VF = DstFVTy->getNumElements();
3199   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3200   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3201   Type *SrcElemTy = SrcVecTy->getElementType();
3202   Type *DstElemTy = DstFVTy->getElementType();
3203   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3204          "Vector elements must have same size");
3205 
3206   // Do a direct cast if element types are castable.
3207   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3208     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3209   }
3210   // V cannot be directly casted to desired vector type.
3211   // May happen when V is a floating point vector but DstVTy is a vector of
3212   // pointers or vice-versa. Handle this using a two-step bitcast using an
3213   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3214   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3215          "Only one type should be a pointer type");
3216   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3217          "Only one type should be a floating point type");
3218   Type *IntTy =
3219       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3220   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3221   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3222   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3223 }
3224 
3225 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3226                                                          BasicBlock *Bypass) {
3227   Value *Count = getOrCreateTripCount(L);
3228   // Reuse existing vector loop preheader for TC checks.
3229   // Note that new preheader block is generated for vector loop.
3230   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3231   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3232 
3233   // Generate code to check if the loop's trip count is less than VF * UF, or
3234   // equal to it in case a scalar epilogue is required; this implies that the
3235   // vector trip count is zero. This check also covers the case where adding one
3236   // to the backedge-taken count overflowed leading to an incorrect trip count
3237   // of zero. In this case we will also jump to the scalar loop.
3238   auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
3239                                           : ICmpInst::ICMP_ULT;
3240 
3241   // If tail is to be folded, vector loop takes care of all iterations.
3242   Value *CheckMinIters = Builder.getFalse();
3243   if (!Cost->foldTailByMasking()) {
3244     Value *Step =
3245         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3246     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3247   }
3248   // Create new preheader for vector loop.
3249   LoopVectorPreHeader =
3250       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3251                  "vector.ph");
3252 
3253   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3254                                DT->getNode(Bypass)->getIDom()) &&
3255          "TC check is expected to dominate Bypass");
3256 
3257   // Update dominator for Bypass & LoopExit.
3258   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3259   DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3260 
3261   ReplaceInstWithInst(
3262       TCCheckBlock->getTerminator(),
3263       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3264   LoopBypassBlocks.push_back(TCCheckBlock);
3265 }
3266 
3267 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3268 
3269   BasicBlock *const SCEVCheckBlock =
3270       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3271   if (!SCEVCheckBlock)
3272     return nullptr;
3273 
3274   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3275            (OptForSizeBasedOnProfile &&
3276             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3277          "Cannot SCEV check stride or overflow when optimizing for size");
3278 
3279 
3280   // Update dominator only if this is first RT check.
3281   if (LoopBypassBlocks.empty()) {
3282     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3283     DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3284   }
3285 
3286   LoopBypassBlocks.push_back(SCEVCheckBlock);
3287   AddedSafetyChecks = true;
3288   return SCEVCheckBlock;
3289 }
3290 
3291 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3292                                                       BasicBlock *Bypass) {
3293   // VPlan-native path does not do any analysis for runtime checks currently.
3294   if (EnableVPlanNativePath)
3295     return nullptr;
3296 
3297   BasicBlock *const MemCheckBlock =
3298       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3299 
3300   // Check if we generated code that checks in runtime if arrays overlap. We put
3301   // the checks into a separate block to make the more common case of few
3302   // elements faster.
3303   if (!MemCheckBlock)
3304     return nullptr;
3305 
3306   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3307     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3308            "Cannot emit memory checks when optimizing for size, unless forced "
3309            "to vectorize.");
3310     ORE->emit([&]() {
3311       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3312                                         L->getStartLoc(), L->getHeader())
3313              << "Code-size may be reduced by not forcing "
3314                 "vectorization, or by source-code modifications "
3315                 "eliminating the need for runtime checks "
3316                 "(e.g., adding 'restrict').";
3317     });
3318   }
3319 
3320   LoopBypassBlocks.push_back(MemCheckBlock);
3321 
3322   AddedSafetyChecks = true;
3323 
3324   // We currently don't use LoopVersioning for the actual loop cloning but we
3325   // still use it to add the noalias metadata.
3326   LVer = std::make_unique<LoopVersioning>(
3327       *Legal->getLAI(),
3328       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3329       DT, PSE.getSE());
3330   LVer->prepareNoAliasMetadata();
3331   return MemCheckBlock;
3332 }
3333 
3334 Value *InnerLoopVectorizer::emitTransformedIndex(
3335     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3336     const InductionDescriptor &ID) const {
3337 
3338   SCEVExpander Exp(*SE, DL, "induction");
3339   auto Step = ID.getStep();
3340   auto StartValue = ID.getStartValue();
3341   assert(Index->getType()->getScalarType() == Step->getType() &&
3342          "Index scalar type does not match StepValue type");
3343 
3344   // Note: the IR at this point is broken. We cannot use SE to create any new
3345   // SCEV and then expand it, hoping that SCEV's simplification will give us
3346   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3347   // lead to various SCEV crashes. So all we can do is to use builder and rely
3348   // on InstCombine for future simplifications. Here we handle some trivial
3349   // cases only.
3350   auto CreateAdd = [&B](Value *X, Value *Y) {
3351     assert(X->getType() == Y->getType() && "Types don't match!");
3352     if (auto *CX = dyn_cast<ConstantInt>(X))
3353       if (CX->isZero())
3354         return Y;
3355     if (auto *CY = dyn_cast<ConstantInt>(Y))
3356       if (CY->isZero())
3357         return X;
3358     return B.CreateAdd(X, Y);
3359   };
3360 
3361   // We allow X to be a vector type, in which case Y will potentially be
3362   // splatted into a vector with the same element count.
3363   auto CreateMul = [&B](Value *X, Value *Y) {
3364     assert(X->getType()->getScalarType() == Y->getType() &&
3365            "Types don't match!");
3366     if (auto *CX = dyn_cast<ConstantInt>(X))
3367       if (CX->isOne())
3368         return Y;
3369     if (auto *CY = dyn_cast<ConstantInt>(Y))
3370       if (CY->isOne())
3371         return X;
3372     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3373     if (XVTy && !isa<VectorType>(Y->getType()))
3374       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3375     return B.CreateMul(X, Y);
3376   };
3377 
3378   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3379   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3380   // the DomTree is not kept up-to-date for additional blocks generated in the
3381   // vector loop. By using the header as insertion point, we guarantee that the
3382   // expanded instructions dominate all their uses.
3383   auto GetInsertPoint = [this, &B]() {
3384     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3385     if (InsertBB != LoopVectorBody &&
3386         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3387       return LoopVectorBody->getTerminator();
3388     return &*B.GetInsertPoint();
3389   };
3390 
3391   switch (ID.getKind()) {
3392   case InductionDescriptor::IK_IntInduction: {
3393     assert(!isa<VectorType>(Index->getType()) &&
3394            "Vector indices not supported for integer inductions yet");
3395     assert(Index->getType() == StartValue->getType() &&
3396            "Index type does not match StartValue type");
3397     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3398       return B.CreateSub(StartValue, Index);
3399     auto *Offset = CreateMul(
3400         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3401     return CreateAdd(StartValue, Offset);
3402   }
3403   case InductionDescriptor::IK_PtrInduction: {
3404     assert(isa<SCEVConstant>(Step) &&
3405            "Expected constant step for pointer induction");
3406     return B.CreateGEP(
3407         StartValue->getType()->getPointerElementType(), StartValue,
3408         CreateMul(Index,
3409                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3410                                     GetInsertPoint())));
3411   }
3412   case InductionDescriptor::IK_FpInduction: {
3413     assert(!isa<VectorType>(Index->getType()) &&
3414            "Vector indices not supported for FP inductions yet");
3415     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3416     auto InductionBinOp = ID.getInductionBinOp();
3417     assert(InductionBinOp &&
3418            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3419             InductionBinOp->getOpcode() == Instruction::FSub) &&
3420            "Original bin op should be defined for FP induction");
3421 
3422     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3423     Value *MulExp = B.CreateFMul(StepValue, Index);
3424     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3425                          "induction");
3426   }
3427   case InductionDescriptor::IK_NoInduction:
3428     return nullptr;
3429   }
3430   llvm_unreachable("invalid enum");
3431 }
3432 
3433 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3434   LoopScalarBody = OrigLoop->getHeader();
3435   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3436   LoopExitBlock = OrigLoop->getUniqueExitBlock();
3437   assert(LoopExitBlock && "Must have an exit block");
3438   assert(LoopVectorPreHeader && "Invalid loop structure");
3439 
3440   LoopMiddleBlock =
3441       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3442                  LI, nullptr, Twine(Prefix) + "middle.block");
3443   LoopScalarPreHeader =
3444       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3445                  nullptr, Twine(Prefix) + "scalar.ph");
3446 
3447   // Set up branch from middle block to the exit and scalar preheader blocks.
3448   // completeLoopSkeleton will update the condition to use an iteration check,
3449   // if required to decide whether to execute the remainder.
3450   BranchInst *BrInst =
3451       BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue());
3452   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3453   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3454   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3455 
3456   // We intentionally don't let SplitBlock to update LoopInfo since
3457   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3458   // LoopVectorBody is explicitly added to the correct place few lines later.
3459   LoopVectorBody =
3460       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3461                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3462 
3463   // Update dominator for loop exit.
3464   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3465 
3466   // Create and register the new vector loop.
3467   Loop *Lp = LI->AllocateLoop();
3468   Loop *ParentLoop = OrigLoop->getParentLoop();
3469 
3470   // Insert the new loop into the loop nest and register the new basic blocks
3471   // before calling any utilities such as SCEV that require valid LoopInfo.
3472   if (ParentLoop) {
3473     ParentLoop->addChildLoop(Lp);
3474   } else {
3475     LI->addTopLevelLoop(Lp);
3476   }
3477   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3478   return Lp;
3479 }
3480 
3481 void InnerLoopVectorizer::createInductionResumeValues(
3482     Loop *L, Value *VectorTripCount,
3483     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3484   assert(VectorTripCount && L && "Expected valid arguments");
3485   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3486           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3487          "Inconsistent information about additional bypass.");
3488   // We are going to resume the execution of the scalar loop.
3489   // Go over all of the induction variables that we found and fix the
3490   // PHIs that are left in the scalar version of the loop.
3491   // The starting values of PHI nodes depend on the counter of the last
3492   // iteration in the vectorized loop.
3493   // If we come from a bypass edge then we need to start from the original
3494   // start value.
3495   for (auto &InductionEntry : Legal->getInductionVars()) {
3496     PHINode *OrigPhi = InductionEntry.first;
3497     InductionDescriptor II = InductionEntry.second;
3498 
3499     // Create phi nodes to merge from the  backedge-taken check block.
3500     PHINode *BCResumeVal =
3501         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3502                         LoopScalarPreHeader->getTerminator());
3503     // Copy original phi DL over to the new one.
3504     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3505     Value *&EndValue = IVEndValues[OrigPhi];
3506     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3507     if (OrigPhi == OldInduction) {
3508       // We know what the end value is.
3509       EndValue = VectorTripCount;
3510     } else {
3511       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3512 
3513       // Fast-math-flags propagate from the original induction instruction.
3514       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3515         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3516 
3517       Type *StepType = II.getStep()->getType();
3518       Instruction::CastOps CastOp =
3519           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3520       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3521       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3522       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3523       EndValue->setName("ind.end");
3524 
3525       // Compute the end value for the additional bypass (if applicable).
3526       if (AdditionalBypass.first) {
3527         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3528         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3529                                          StepType, true);
3530         CRD =
3531             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3532         EndValueFromAdditionalBypass =
3533             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3534         EndValueFromAdditionalBypass->setName("ind.end");
3535       }
3536     }
3537     // The new PHI merges the original incoming value, in case of a bypass,
3538     // or the value at the end of the vectorized loop.
3539     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3540 
3541     // Fix the scalar body counter (PHI node).
3542     // The old induction's phi node in the scalar body needs the truncated
3543     // value.
3544     for (BasicBlock *BB : LoopBypassBlocks)
3545       BCResumeVal->addIncoming(II.getStartValue(), BB);
3546 
3547     if (AdditionalBypass.first)
3548       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3549                                             EndValueFromAdditionalBypass);
3550 
3551     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3552   }
3553 }
3554 
3555 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3556                                                       MDNode *OrigLoopID) {
3557   assert(L && "Expected valid loop.");
3558 
3559   // The trip counts should be cached by now.
3560   Value *Count = getOrCreateTripCount(L);
3561   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3562 
3563   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3564 
3565   // Add a check in the middle block to see if we have completed
3566   // all of the iterations in the first vector loop.
3567   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3568   // If tail is to be folded, we know we don't need to run the remainder.
3569   if (!Cost->foldTailByMasking()) {
3570     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3571                                         Count, VectorTripCount, "cmp.n",
3572                                         LoopMiddleBlock->getTerminator());
3573 
3574     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3575     // of the corresponding compare because they may have ended up with
3576     // different line numbers and we want to avoid awkward line stepping while
3577     // debugging. Eg. if the compare has got a line number inside the loop.
3578     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3579     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3580   }
3581 
3582   // Get ready to start creating new instructions into the vectorized body.
3583   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3584          "Inconsistent vector loop preheader");
3585   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3586 
3587   Optional<MDNode *> VectorizedLoopID =
3588       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3589                                       LLVMLoopVectorizeFollowupVectorized});
3590   if (VectorizedLoopID.hasValue()) {
3591     L->setLoopID(VectorizedLoopID.getValue());
3592 
3593     // Do not setAlreadyVectorized if loop attributes have been defined
3594     // explicitly.
3595     return LoopVectorPreHeader;
3596   }
3597 
3598   // Keep all loop hints from the original loop on the vector loop (we'll
3599   // replace the vectorizer-specific hints below).
3600   if (MDNode *LID = OrigLoop->getLoopID())
3601     L->setLoopID(LID);
3602 
3603   LoopVectorizeHints Hints(L, true, *ORE);
3604   Hints.setAlreadyVectorized();
3605 
3606 #ifdef EXPENSIVE_CHECKS
3607   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3608   LI->verify(*DT);
3609 #endif
3610 
3611   return LoopVectorPreHeader;
3612 }
3613 
3614 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3615   /*
3616    In this function we generate a new loop. The new loop will contain
3617    the vectorized instructions while the old loop will continue to run the
3618    scalar remainder.
3619 
3620        [ ] <-- loop iteration number check.
3621     /   |
3622    /    v
3623   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3624   |  /  |
3625   | /   v
3626   ||   [ ]     <-- vector pre header.
3627   |/    |
3628   |     v
3629   |    [  ] \
3630   |    [  ]_|   <-- vector loop.
3631   |     |
3632   |     v
3633   |   -[ ]   <--- middle-block.
3634   |  /  |
3635   | /   v
3636   -|- >[ ]     <--- new preheader.
3637    |    |
3638    |    v
3639    |   [ ] \
3640    |   [ ]_|   <-- old scalar loop to handle remainder.
3641     \   |
3642      \  v
3643       >[ ]     <-- exit block.
3644    ...
3645    */
3646 
3647   // Get the metadata of the original loop before it gets modified.
3648   MDNode *OrigLoopID = OrigLoop->getLoopID();
3649 
3650   // Workaround!  Compute the trip count of the original loop and cache it
3651   // before we start modifying the CFG.  This code has a systemic problem
3652   // wherein it tries to run analysis over partially constructed IR; this is
3653   // wrong, and not simply for SCEV.  The trip count of the original loop
3654   // simply happens to be prone to hitting this in practice.  In theory, we
3655   // can hit the same issue for any SCEV, or ValueTracking query done during
3656   // mutation.  See PR49900.
3657   getOrCreateTripCount(OrigLoop);
3658 
3659   // Create an empty vector loop, and prepare basic blocks for the runtime
3660   // checks.
3661   Loop *Lp = createVectorLoopSkeleton("");
3662 
3663   // Now, compare the new count to zero. If it is zero skip the vector loop and
3664   // jump to the scalar loop. This check also covers the case where the
3665   // backedge-taken count is uint##_max: adding one to it will overflow leading
3666   // to an incorrect trip count of zero. In this (rare) case we will also jump
3667   // to the scalar loop.
3668   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3669 
3670   // Generate the code to check any assumptions that we've made for SCEV
3671   // expressions.
3672   emitSCEVChecks(Lp, LoopScalarPreHeader);
3673 
3674   // Generate the code that checks in runtime if arrays overlap. We put the
3675   // checks into a separate block to make the more common case of few elements
3676   // faster.
3677   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3678 
3679   // Some loops have a single integer induction variable, while other loops
3680   // don't. One example is c++ iterators that often have multiple pointer
3681   // induction variables. In the code below we also support a case where we
3682   // don't have a single induction variable.
3683   //
3684   // We try to obtain an induction variable from the original loop as hard
3685   // as possible. However if we don't find one that:
3686   //   - is an integer
3687   //   - counts from zero, stepping by one
3688   //   - is the size of the widest induction variable type
3689   // then we create a new one.
3690   OldInduction = Legal->getPrimaryInduction();
3691   Type *IdxTy = Legal->getWidestInductionType();
3692   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3693   // The loop step is equal to the vectorization factor (num of SIMD elements)
3694   // times the unroll factor (num of SIMD instructions).
3695   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3696   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3697   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3698   Induction =
3699       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3700                               getDebugLocFromInstOrOperands(OldInduction));
3701 
3702   // Emit phis for the new starting index of the scalar loop.
3703   createInductionResumeValues(Lp, CountRoundDown);
3704 
3705   return completeLoopSkeleton(Lp, OrigLoopID);
3706 }
3707 
3708 // Fix up external users of the induction variable. At this point, we are
3709 // in LCSSA form, with all external PHIs that use the IV having one input value,
3710 // coming from the remainder loop. We need those PHIs to also have a correct
3711 // value for the IV when arriving directly from the middle block.
3712 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3713                                        const InductionDescriptor &II,
3714                                        Value *CountRoundDown, Value *EndValue,
3715                                        BasicBlock *MiddleBlock) {
3716   // There are two kinds of external IV usages - those that use the value
3717   // computed in the last iteration (the PHI) and those that use the penultimate
3718   // value (the value that feeds into the phi from the loop latch).
3719   // We allow both, but they, obviously, have different values.
3720 
3721   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3722 
3723   DenseMap<Value *, Value *> MissingVals;
3724 
3725   // An external user of the last iteration's value should see the value that
3726   // the remainder loop uses to initialize its own IV.
3727   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3728   for (User *U : PostInc->users()) {
3729     Instruction *UI = cast<Instruction>(U);
3730     if (!OrigLoop->contains(UI)) {
3731       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3732       MissingVals[UI] = EndValue;
3733     }
3734   }
3735 
3736   // An external user of the penultimate value need to see EndValue - Step.
3737   // The simplest way to get this is to recompute it from the constituent SCEVs,
3738   // that is Start + (Step * (CRD - 1)).
3739   for (User *U : OrigPhi->users()) {
3740     auto *UI = cast<Instruction>(U);
3741     if (!OrigLoop->contains(UI)) {
3742       const DataLayout &DL =
3743           OrigLoop->getHeader()->getModule()->getDataLayout();
3744       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3745 
3746       IRBuilder<> B(MiddleBlock->getTerminator());
3747 
3748       // Fast-math-flags propagate from the original induction instruction.
3749       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3750         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3751 
3752       Value *CountMinusOne = B.CreateSub(
3753           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3754       Value *CMO =
3755           !II.getStep()->getType()->isIntegerTy()
3756               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3757                              II.getStep()->getType())
3758               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3759       CMO->setName("cast.cmo");
3760       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3761       Escape->setName("ind.escape");
3762       MissingVals[UI] = Escape;
3763     }
3764   }
3765 
3766   for (auto &I : MissingVals) {
3767     PHINode *PHI = cast<PHINode>(I.first);
3768     // One corner case we have to handle is two IVs "chasing" each-other,
3769     // that is %IV2 = phi [...], [ %IV1, %latch ]
3770     // In this case, if IV1 has an external use, we need to avoid adding both
3771     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3772     // don't already have an incoming value for the middle block.
3773     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3774       PHI->addIncoming(I.second, MiddleBlock);
3775   }
3776 }
3777 
3778 namespace {
3779 
3780 struct CSEDenseMapInfo {
3781   static bool canHandle(const Instruction *I) {
3782     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3783            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3784   }
3785 
3786   static inline Instruction *getEmptyKey() {
3787     return DenseMapInfo<Instruction *>::getEmptyKey();
3788   }
3789 
3790   static inline Instruction *getTombstoneKey() {
3791     return DenseMapInfo<Instruction *>::getTombstoneKey();
3792   }
3793 
3794   static unsigned getHashValue(const Instruction *I) {
3795     assert(canHandle(I) && "Unknown instruction!");
3796     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3797                                                            I->value_op_end()));
3798   }
3799 
3800   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3801     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3802         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3803       return LHS == RHS;
3804     return LHS->isIdenticalTo(RHS);
3805   }
3806 };
3807 
3808 } // end anonymous namespace
3809 
3810 ///Perform cse of induction variable instructions.
3811 static void cse(BasicBlock *BB) {
3812   // Perform simple cse.
3813   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3814   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3815     Instruction *In = &*I++;
3816 
3817     if (!CSEDenseMapInfo::canHandle(In))
3818       continue;
3819 
3820     // Check if we can replace this instruction with any of the
3821     // visited instructions.
3822     if (Instruction *V = CSEMap.lookup(In)) {
3823       In->replaceAllUsesWith(V);
3824       In->eraseFromParent();
3825       continue;
3826     }
3827 
3828     CSEMap[In] = In;
3829   }
3830 }
3831 
3832 InstructionCost
3833 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3834                                               bool &NeedToScalarize) const {
3835   Function *F = CI->getCalledFunction();
3836   Type *ScalarRetTy = CI->getType();
3837   SmallVector<Type *, 4> Tys, ScalarTys;
3838   for (auto &ArgOp : CI->arg_operands())
3839     ScalarTys.push_back(ArgOp->getType());
3840 
3841   // Estimate cost of scalarized vector call. The source operands are assumed
3842   // to be vectors, so we need to extract individual elements from there,
3843   // execute VF scalar calls, and then gather the result into the vector return
3844   // value.
3845   InstructionCost ScalarCallCost =
3846       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3847   if (VF.isScalar())
3848     return ScalarCallCost;
3849 
3850   // Compute corresponding vector type for return value and arguments.
3851   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3852   for (Type *ScalarTy : ScalarTys)
3853     Tys.push_back(ToVectorTy(ScalarTy, VF));
3854 
3855   // Compute costs of unpacking argument values for the scalar calls and
3856   // packing the return values to a vector.
3857   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3858 
3859   InstructionCost Cost =
3860       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3861 
3862   // If we can't emit a vector call for this function, then the currently found
3863   // cost is the cost we need to return.
3864   NeedToScalarize = true;
3865   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3866   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3867 
3868   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3869     return Cost;
3870 
3871   // If the corresponding vector cost is cheaper, return its cost.
3872   InstructionCost VectorCallCost =
3873       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3874   if (VectorCallCost < Cost) {
3875     NeedToScalarize = false;
3876     Cost = VectorCallCost;
3877   }
3878   return Cost;
3879 }
3880 
3881 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3882   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3883     return Elt;
3884   return VectorType::get(Elt, VF);
3885 }
3886 
3887 InstructionCost
3888 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3889                                                    ElementCount VF) const {
3890   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3891   assert(ID && "Expected intrinsic call!");
3892   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3893   FastMathFlags FMF;
3894   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3895     FMF = FPMO->getFastMathFlags();
3896 
3897   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3898   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3899   SmallVector<Type *> ParamTys;
3900   std::transform(FTy->param_begin(), FTy->param_end(),
3901                  std::back_inserter(ParamTys),
3902                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3903 
3904   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3905                                     dyn_cast<IntrinsicInst>(CI));
3906   return TTI.getIntrinsicInstrCost(CostAttrs,
3907                                    TargetTransformInfo::TCK_RecipThroughput);
3908 }
3909 
3910 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3911   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3912   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3913   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3914 }
3915 
3916 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3917   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3918   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3919   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3920 }
3921 
3922 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3923   // For every instruction `I` in MinBWs, truncate the operands, create a
3924   // truncated version of `I` and reextend its result. InstCombine runs
3925   // later and will remove any ext/trunc pairs.
3926   SmallPtrSet<Value *, 4> Erased;
3927   for (const auto &KV : Cost->getMinimalBitwidths()) {
3928     // If the value wasn't vectorized, we must maintain the original scalar
3929     // type. The absence of the value from State indicates that it
3930     // wasn't vectorized.
3931     VPValue *Def = State.Plan->getVPValue(KV.first);
3932     if (!State.hasAnyVectorValue(Def))
3933       continue;
3934     for (unsigned Part = 0; Part < UF; ++Part) {
3935       Value *I = State.get(Def, Part);
3936       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3937         continue;
3938       Type *OriginalTy = I->getType();
3939       Type *ScalarTruncatedTy =
3940           IntegerType::get(OriginalTy->getContext(), KV.second);
3941       auto *TruncatedTy = FixedVectorType::get(
3942           ScalarTruncatedTy,
3943           cast<FixedVectorType>(OriginalTy)->getNumElements());
3944       if (TruncatedTy == OriginalTy)
3945         continue;
3946 
3947       IRBuilder<> B(cast<Instruction>(I));
3948       auto ShrinkOperand = [&](Value *V) -> Value * {
3949         if (auto *ZI = dyn_cast<ZExtInst>(V))
3950           if (ZI->getSrcTy() == TruncatedTy)
3951             return ZI->getOperand(0);
3952         return B.CreateZExtOrTrunc(V, TruncatedTy);
3953       };
3954 
3955       // The actual instruction modification depends on the instruction type,
3956       // unfortunately.
3957       Value *NewI = nullptr;
3958       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3959         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3960                              ShrinkOperand(BO->getOperand(1)));
3961 
3962         // Any wrapping introduced by shrinking this operation shouldn't be
3963         // considered undefined behavior. So, we can't unconditionally copy
3964         // arithmetic wrapping flags to NewI.
3965         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3966       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3967         NewI =
3968             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3969                          ShrinkOperand(CI->getOperand(1)));
3970       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3971         NewI = B.CreateSelect(SI->getCondition(),
3972                               ShrinkOperand(SI->getTrueValue()),
3973                               ShrinkOperand(SI->getFalseValue()));
3974       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3975         switch (CI->getOpcode()) {
3976         default:
3977           llvm_unreachable("Unhandled cast!");
3978         case Instruction::Trunc:
3979           NewI = ShrinkOperand(CI->getOperand(0));
3980           break;
3981         case Instruction::SExt:
3982           NewI = B.CreateSExtOrTrunc(
3983               CI->getOperand(0),
3984               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3985           break;
3986         case Instruction::ZExt:
3987           NewI = B.CreateZExtOrTrunc(
3988               CI->getOperand(0),
3989               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3990           break;
3991         }
3992       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3993         auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType())
3994                              ->getNumElements();
3995         auto *O0 = B.CreateZExtOrTrunc(
3996             SI->getOperand(0),
3997             FixedVectorType::get(ScalarTruncatedTy, Elements0));
3998         auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType())
3999                              ->getNumElements();
4000         auto *O1 = B.CreateZExtOrTrunc(
4001             SI->getOperand(1),
4002             FixedVectorType::get(ScalarTruncatedTy, Elements1));
4003 
4004         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4005       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4006         // Don't do anything with the operands, just extend the result.
4007         continue;
4008       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4009         auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType())
4010                             ->getNumElements();
4011         auto *O0 = B.CreateZExtOrTrunc(
4012             IE->getOperand(0),
4013             FixedVectorType::get(ScalarTruncatedTy, Elements));
4014         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4015         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4016       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4017         auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType())
4018                             ->getNumElements();
4019         auto *O0 = B.CreateZExtOrTrunc(
4020             EE->getOperand(0),
4021             FixedVectorType::get(ScalarTruncatedTy, Elements));
4022         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4023       } else {
4024         // If we don't know what to do, be conservative and don't do anything.
4025         continue;
4026       }
4027 
4028       // Lastly, extend the result.
4029       NewI->takeName(cast<Instruction>(I));
4030       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4031       I->replaceAllUsesWith(Res);
4032       cast<Instruction>(I)->eraseFromParent();
4033       Erased.insert(I);
4034       State.reset(Def, Res, Part);
4035     }
4036   }
4037 
4038   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4039   for (const auto &KV : Cost->getMinimalBitwidths()) {
4040     // If the value wasn't vectorized, we must maintain the original scalar
4041     // type. The absence of the value from State indicates that it
4042     // wasn't vectorized.
4043     VPValue *Def = State.Plan->getVPValue(KV.first);
4044     if (!State.hasAnyVectorValue(Def))
4045       continue;
4046     for (unsigned Part = 0; Part < UF; ++Part) {
4047       Value *I = State.get(Def, Part);
4048       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4049       if (Inst && Inst->use_empty()) {
4050         Value *NewI = Inst->getOperand(0);
4051         Inst->eraseFromParent();
4052         State.reset(Def, NewI, Part);
4053       }
4054     }
4055   }
4056 }
4057 
4058 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4059   // Insert truncates and extends for any truncated instructions as hints to
4060   // InstCombine.
4061   if (VF.isVector())
4062     truncateToMinimalBitwidths(State);
4063 
4064   // Fix widened non-induction PHIs by setting up the PHI operands.
4065   if (OrigPHIsToFix.size()) {
4066     assert(EnableVPlanNativePath &&
4067            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4068     fixNonInductionPHIs(State);
4069   }
4070 
4071   // At this point every instruction in the original loop is widened to a
4072   // vector form. Now we need to fix the recurrences in the loop. These PHI
4073   // nodes are currently empty because we did not want to introduce cycles.
4074   // This is the second stage of vectorizing recurrences.
4075   fixCrossIterationPHIs(State);
4076 
4077   // Forget the original basic block.
4078   PSE.getSE()->forgetLoop(OrigLoop);
4079 
4080   // Fix-up external users of the induction variables.
4081   for (auto &Entry : Legal->getInductionVars())
4082     fixupIVUsers(Entry.first, Entry.second,
4083                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4084                  IVEndValues[Entry.first], LoopMiddleBlock);
4085 
4086   fixLCSSAPHIs(State);
4087   for (Instruction *PI : PredicatedInstructions)
4088     sinkScalarOperands(&*PI);
4089 
4090   // Remove redundant induction instructions.
4091   cse(LoopVectorBody);
4092 
4093   // Set/update profile weights for the vector and remainder loops as original
4094   // loop iterations are now distributed among them. Note that original loop
4095   // represented by LoopScalarBody becomes remainder loop after vectorization.
4096   //
4097   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4098   // end up getting slightly roughened result but that should be OK since
4099   // profile is not inherently precise anyway. Note also possible bypass of
4100   // vector code caused by legality checks is ignored, assigning all the weight
4101   // to the vector loop, optimistically.
4102   //
4103   // For scalable vectorization we can't know at compile time how many iterations
4104   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4105   // vscale of '1'.
4106   setProfileInfoAfterUnrolling(
4107       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4108       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4109 }
4110 
4111 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4112   // In order to support recurrences we need to be able to vectorize Phi nodes.
4113   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4114   // stage #2: We now need to fix the recurrences by adding incoming edges to
4115   // the currently empty PHI nodes. At this point every instruction in the
4116   // original loop is widened to a vector form so we can use them to construct
4117   // the incoming edges.
4118   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4119   for (VPRecipeBase &R : Header->phis()) {
4120     auto *PhiR = dyn_cast<VPWidenPHIRecipe>(&R);
4121     if (!PhiR)
4122       continue;
4123     auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4124     if (PhiR->getRecurrenceDescriptor()) {
4125       fixReduction(PhiR, State);
4126     } else if (Legal->isFirstOrderRecurrence(OrigPhi))
4127       fixFirstOrderRecurrence(OrigPhi, State);
4128   }
4129 }
4130 
4131 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi,
4132                                                   VPTransformState &State) {
4133   // This is the second phase of vectorizing first-order recurrences. An
4134   // overview of the transformation is described below. Suppose we have the
4135   // following loop.
4136   //
4137   //   for (int i = 0; i < n; ++i)
4138   //     b[i] = a[i] - a[i - 1];
4139   //
4140   // There is a first-order recurrence on "a". For this loop, the shorthand
4141   // scalar IR looks like:
4142   //
4143   //   scalar.ph:
4144   //     s_init = a[-1]
4145   //     br scalar.body
4146   //
4147   //   scalar.body:
4148   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4149   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4150   //     s2 = a[i]
4151   //     b[i] = s2 - s1
4152   //     br cond, scalar.body, ...
4153   //
4154   // In this example, s1 is a recurrence because it's value depends on the
4155   // previous iteration. In the first phase of vectorization, we created a
4156   // temporary value for s1. We now complete the vectorization and produce the
4157   // shorthand vector IR shown below (for VF = 4, UF = 1).
4158   //
4159   //   vector.ph:
4160   //     v_init = vector(..., ..., ..., a[-1])
4161   //     br vector.body
4162   //
4163   //   vector.body
4164   //     i = phi [0, vector.ph], [i+4, vector.body]
4165   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4166   //     v2 = a[i, i+1, i+2, i+3];
4167   //     v3 = vector(v1(3), v2(0, 1, 2))
4168   //     b[i, i+1, i+2, i+3] = v2 - v3
4169   //     br cond, vector.body, middle.block
4170   //
4171   //   middle.block:
4172   //     x = v2(3)
4173   //     br scalar.ph
4174   //
4175   //   scalar.ph:
4176   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4177   //     br scalar.body
4178   //
4179   // After execution completes the vector loop, we extract the next value of
4180   // the recurrence (x) to use as the initial value in the scalar loop.
4181 
4182   // Get the original loop preheader and single loop latch.
4183   auto *Preheader = OrigLoop->getLoopPreheader();
4184   auto *Latch = OrigLoop->getLoopLatch();
4185 
4186   // Get the initial and previous values of the scalar recurrence.
4187   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
4188   auto *Previous = Phi->getIncomingValueForBlock(Latch);
4189 
4190   auto *IdxTy = Builder.getInt32Ty();
4191   auto *One = ConstantInt::get(IdxTy, 1);
4192 
4193   // Create a vector from the initial value.
4194   auto *VectorInit = ScalarInit;
4195   if (VF.isVector()) {
4196     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4197     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4198     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4199     VectorInit = Builder.CreateInsertElement(
4200         PoisonValue::get(VectorType::get(VectorInit->getType(), VF)),
4201         VectorInit, LastIdx, "vector.recur.init");
4202   }
4203 
4204   VPValue *PhiDef = State.Plan->getVPValue(Phi);
4205   VPValue *PreviousDef = State.Plan->getVPValue(Previous);
4206   // We constructed a temporary phi node in the first phase of vectorization.
4207   // This phi node will eventually be deleted.
4208   Builder.SetInsertPoint(cast<Instruction>(State.get(PhiDef, 0)));
4209 
4210   // Create a phi node for the new recurrence. The current value will either be
4211   // the initial value inserted into a vector or loop-varying vector value.
4212   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
4213   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
4214 
4215   // Get the vectorized previous value of the last part UF - 1. It appears last
4216   // among all unrolled iterations, due to the order of their construction.
4217   Value *PreviousLastPart = State.get(PreviousDef, UF - 1);
4218 
4219   // Find and set the insertion point after the previous value if it is an
4220   // instruction.
4221   BasicBlock::iterator InsertPt;
4222   // Note that the previous value may have been constant-folded so it is not
4223   // guaranteed to be an instruction in the vector loop.
4224   // FIXME: Loop invariant values do not form recurrences. We should deal with
4225   //        them earlier.
4226   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart))
4227     InsertPt = LoopVectorBody->getFirstInsertionPt();
4228   else {
4229     Instruction *PreviousInst = cast<Instruction>(PreviousLastPart);
4230     if (isa<PHINode>(PreviousLastPart))
4231       // If the previous value is a phi node, we should insert after all the phi
4232       // nodes in the block containing the PHI to avoid breaking basic block
4233       // verification. Note that the basic block may be different to
4234       // LoopVectorBody, in case we predicate the loop.
4235       InsertPt = PreviousInst->getParent()->getFirstInsertionPt();
4236     else
4237       InsertPt = ++PreviousInst->getIterator();
4238   }
4239   Builder.SetInsertPoint(&*InsertPt);
4240 
4241   // The vector from which to take the initial value for the current iteration
4242   // (actual or unrolled). Initially, this is the vector phi node.
4243   Value *Incoming = VecPhi;
4244 
4245   // Shuffle the current and previous vector and update the vector parts.
4246   for (unsigned Part = 0; Part < UF; ++Part) {
4247     Value *PreviousPart = State.get(PreviousDef, Part);
4248     Value *PhiPart = State.get(PhiDef, Part);
4249     auto *Shuffle = VF.isVector()
4250                         ? Builder.CreateVectorSplice(Incoming, PreviousPart, -1)
4251                         : Incoming;
4252     PhiPart->replaceAllUsesWith(Shuffle);
4253     cast<Instruction>(PhiPart)->eraseFromParent();
4254     State.reset(PhiDef, Shuffle, Part);
4255     Incoming = PreviousPart;
4256   }
4257 
4258   // Fix the latch value of the new recurrence in the vector loop.
4259   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4260 
4261   // Extract the last vector element in the middle block. This will be the
4262   // initial value for the recurrence when jumping to the scalar loop.
4263   auto *ExtractForScalar = Incoming;
4264   if (VF.isVector()) {
4265     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4266     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4267     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4268     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4269                                                     "vector.recur.extract");
4270   }
4271   // Extract the second last element in the middle block if the
4272   // Phi is used outside the loop. We need to extract the phi itself
4273   // and not the last element (the phi update in the current iteration). This
4274   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4275   // when the scalar loop is not run at all.
4276   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4277   if (VF.isVector()) {
4278     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4279     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4280     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4281         Incoming, Idx, "vector.recur.extract.for.phi");
4282   } else if (UF > 1)
4283     // When loop is unrolled without vectorizing, initialize
4284     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4285     // of `Incoming`. This is analogous to the vectorized case above: extracting
4286     // the second last element when VF > 1.
4287     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4288 
4289   // Fix the initial value of the original recurrence in the scalar loop.
4290   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4291   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4292   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4293     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4294     Start->addIncoming(Incoming, BB);
4295   }
4296 
4297   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4298   Phi->setName("scalar.recur");
4299 
4300   // Finally, fix users of the recurrence outside the loop. The users will need
4301   // either the last value of the scalar recurrence or the last value of the
4302   // vector recurrence we extracted in the middle block. Since the loop is in
4303   // LCSSA form, we just need to find all the phi nodes for the original scalar
4304   // recurrence in the exit block, and then add an edge for the middle block.
4305   // Note that LCSSA does not imply single entry when the original scalar loop
4306   // had multiple exiting edges (as we always run the last iteration in the
4307   // scalar epilogue); in that case, the exiting path through middle will be
4308   // dynamically dead and the value picked for the phi doesn't matter.
4309   for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4310     if (any_of(LCSSAPhi.incoming_values(),
4311                [Phi](Value *V) { return V == Phi; }))
4312       LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4313 }
4314 
4315 static bool useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4316   return EnableStrictReductions && RdxDesc.isOrdered();
4317 }
4318 
4319 void InnerLoopVectorizer::fixReduction(VPWidenPHIRecipe *PhiR,
4320                                        VPTransformState &State) {
4321   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4322   // Get it's reduction variable descriptor.
4323   assert(Legal->isReductionVariable(OrigPhi) &&
4324          "Unable to find the reduction variable");
4325   RecurrenceDescriptor RdxDesc = *PhiR->getRecurrenceDescriptor();
4326 
4327   RecurKind RK = RdxDesc.getRecurrenceKind();
4328   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4329   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4330   setDebugLocFromInst(Builder, ReductionStartValue);
4331   bool IsInLoopReductionPhi = Cost->isInLoopReduction(OrigPhi);
4332 
4333   VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst);
4334   // This is the vector-clone of the value that leaves the loop.
4335   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4336 
4337   // Wrap flags are in general invalid after vectorization, clear them.
4338   clearReductionWrapFlags(RdxDesc, State);
4339 
4340   // Fix the vector-loop phi.
4341 
4342   // Reductions do not have to start at zero. They can start with
4343   // any loop invariant values.
4344   BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4345 
4346   bool IsOrdered = State.VF.isVector() && IsInLoopReductionPhi &&
4347                    useOrderedReductions(RdxDesc);
4348 
4349   for (unsigned Part = 0; Part < UF; ++Part) {
4350     if (IsOrdered && Part > 0)
4351       break;
4352     Value *VecRdxPhi = State.get(PhiR->getVPSingleValue(), Part);
4353     Value *Val = State.get(PhiR->getBackedgeValue(), Part);
4354     if (IsOrdered)
4355       Val = State.get(PhiR->getBackedgeValue(), UF - 1);
4356 
4357     cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch);
4358   }
4359 
4360   // Before each round, move the insertion point right between
4361   // the PHIs and the values we are going to write.
4362   // This allows us to write both PHINodes and the extractelement
4363   // instructions.
4364   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4365 
4366   setDebugLocFromInst(Builder, LoopExitInst);
4367 
4368   Type *PhiTy = OrigPhi->getType();
4369   // If tail is folded by masking, the vector value to leave the loop should be
4370   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4371   // instead of the former. For an inloop reduction the reduction will already
4372   // be predicated, and does not need to be handled here.
4373   if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) {
4374     for (unsigned Part = 0; Part < UF; ++Part) {
4375       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4376       Value *Sel = nullptr;
4377       for (User *U : VecLoopExitInst->users()) {
4378         if (isa<SelectInst>(U)) {
4379           assert(!Sel && "Reduction exit feeding two selects");
4380           Sel = U;
4381         } else
4382           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4383       }
4384       assert(Sel && "Reduction exit feeds no select");
4385       State.reset(LoopExitInstDef, Sel, Part);
4386 
4387       // If the target can create a predicated operator for the reduction at no
4388       // extra cost in the loop (for example a predicated vadd), it can be
4389       // cheaper for the select to remain in the loop than be sunk out of it,
4390       // and so use the select value for the phi instead of the old
4391       // LoopExitValue.
4392       if (PreferPredicatedReductionSelect ||
4393           TTI->preferPredicatedReductionSelect(
4394               RdxDesc.getOpcode(), PhiTy,
4395               TargetTransformInfo::ReductionFlags())) {
4396         auto *VecRdxPhi =
4397             cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part));
4398         VecRdxPhi->setIncomingValueForBlock(
4399             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4400       }
4401     }
4402   }
4403 
4404   // If the vector reduction can be performed in a smaller type, we truncate
4405   // then extend the loop exit value to enable InstCombine to evaluate the
4406   // entire expression in the smaller type.
4407   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4408     assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!");
4409     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4410     Builder.SetInsertPoint(
4411         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4412     VectorParts RdxParts(UF);
4413     for (unsigned Part = 0; Part < UF; ++Part) {
4414       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4415       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4416       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4417                                         : Builder.CreateZExt(Trunc, VecTy);
4418       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4419            UI != RdxParts[Part]->user_end();)
4420         if (*UI != Trunc) {
4421           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4422           RdxParts[Part] = Extnd;
4423         } else {
4424           ++UI;
4425         }
4426     }
4427     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4428     for (unsigned Part = 0; Part < UF; ++Part) {
4429       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4430       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4431     }
4432   }
4433 
4434   // Reduce all of the unrolled parts into a single vector.
4435   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4436   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4437 
4438   // The middle block terminator has already been assigned a DebugLoc here (the
4439   // OrigLoop's single latch terminator). We want the whole middle block to
4440   // appear to execute on this line because: (a) it is all compiler generated,
4441   // (b) these instructions are always executed after evaluating the latch
4442   // conditional branch, and (c) other passes may add new predecessors which
4443   // terminate on this line. This is the easiest way to ensure we don't
4444   // accidentally cause an extra step back into the loop while debugging.
4445   setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator());
4446   if (IsOrdered)
4447     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4448   else {
4449     // Floating-point operations should have some FMF to enable the reduction.
4450     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4451     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4452     for (unsigned Part = 1; Part < UF; ++Part) {
4453       Value *RdxPart = State.get(LoopExitInstDef, Part);
4454       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4455         ReducedPartRdx = Builder.CreateBinOp(
4456             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4457       } else {
4458         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4459       }
4460     }
4461   }
4462 
4463   // Create the reduction after the loop. Note that inloop reductions create the
4464   // target reduction in the loop using a Reduction recipe.
4465   if (VF.isVector() && !IsInLoopReductionPhi) {
4466     ReducedPartRdx =
4467         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4468     // If the reduction can be performed in a smaller type, we need to extend
4469     // the reduction to the wider type before we branch to the original loop.
4470     if (PhiTy != RdxDesc.getRecurrenceType())
4471       ReducedPartRdx = RdxDesc.isSigned()
4472                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4473                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4474   }
4475 
4476   // Create a phi node that merges control-flow from the backedge-taken check
4477   // block and the middle block.
4478   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4479                                         LoopScalarPreHeader->getTerminator());
4480   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4481     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4482   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4483 
4484   // Now, we need to fix the users of the reduction variable
4485   // inside and outside of the scalar remainder loop.
4486 
4487   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4488   // in the exit blocks.  See comment on analogous loop in
4489   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4490   for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4491     if (any_of(LCSSAPhi.incoming_values(),
4492                [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4493       LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4494 
4495   // Fix the scalar loop reduction variable with the incoming reduction sum
4496   // from the vector body and from the backedge value.
4497   int IncomingEdgeBlockIdx =
4498       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4499   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4500   // Pick the other block.
4501   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4502   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4503   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4504 }
4505 
4506 void InnerLoopVectorizer::clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc,
4507                                                   VPTransformState &State) {
4508   RecurKind RK = RdxDesc.getRecurrenceKind();
4509   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4510     return;
4511 
4512   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4513   assert(LoopExitInstr && "null loop exit instruction");
4514   SmallVector<Instruction *, 8> Worklist;
4515   SmallPtrSet<Instruction *, 8> Visited;
4516   Worklist.push_back(LoopExitInstr);
4517   Visited.insert(LoopExitInstr);
4518 
4519   while (!Worklist.empty()) {
4520     Instruction *Cur = Worklist.pop_back_val();
4521     if (isa<OverflowingBinaryOperator>(Cur))
4522       for (unsigned Part = 0; Part < UF; ++Part) {
4523         Value *V = State.get(State.Plan->getVPValue(Cur), Part);
4524         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4525       }
4526 
4527     for (User *U : Cur->users()) {
4528       Instruction *UI = cast<Instruction>(U);
4529       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4530           Visited.insert(UI).second)
4531         Worklist.push_back(UI);
4532     }
4533   }
4534 }
4535 
4536 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4537   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4538     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4539       // Some phis were already hand updated by the reduction and recurrence
4540       // code above, leave them alone.
4541       continue;
4542 
4543     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4544     // Non-instruction incoming values will have only one value.
4545 
4546     VPLane Lane = VPLane::getFirstLane();
4547     if (isa<Instruction>(IncomingValue) &&
4548         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4549                                            VF))
4550       Lane = VPLane::getLastLaneForVF(VF);
4551 
4552     // Can be a loop invariant incoming value or the last scalar value to be
4553     // extracted from the vectorized loop.
4554     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4555     Value *lastIncomingValue =
4556         OrigLoop->isLoopInvariant(IncomingValue)
4557             ? IncomingValue
4558             : State.get(State.Plan->getVPValue(IncomingValue),
4559                         VPIteration(UF - 1, Lane));
4560     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4561   }
4562 }
4563 
4564 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4565   // The basic block and loop containing the predicated instruction.
4566   auto *PredBB = PredInst->getParent();
4567   auto *VectorLoop = LI->getLoopFor(PredBB);
4568 
4569   // Initialize a worklist with the operands of the predicated instruction.
4570   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4571 
4572   // Holds instructions that we need to analyze again. An instruction may be
4573   // reanalyzed if we don't yet know if we can sink it or not.
4574   SmallVector<Instruction *, 8> InstsToReanalyze;
4575 
4576   // Returns true if a given use occurs in the predicated block. Phi nodes use
4577   // their operands in their corresponding predecessor blocks.
4578   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4579     auto *I = cast<Instruction>(U.getUser());
4580     BasicBlock *BB = I->getParent();
4581     if (auto *Phi = dyn_cast<PHINode>(I))
4582       BB = Phi->getIncomingBlock(
4583           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4584     return BB == PredBB;
4585   };
4586 
4587   // Iteratively sink the scalarized operands of the predicated instruction
4588   // into the block we created for it. When an instruction is sunk, it's
4589   // operands are then added to the worklist. The algorithm ends after one pass
4590   // through the worklist doesn't sink a single instruction.
4591   bool Changed;
4592   do {
4593     // Add the instructions that need to be reanalyzed to the worklist, and
4594     // reset the changed indicator.
4595     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4596     InstsToReanalyze.clear();
4597     Changed = false;
4598 
4599     while (!Worklist.empty()) {
4600       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4601 
4602       // We can't sink an instruction if it is a phi node, is not in the loop,
4603       // or may have side effects.
4604       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4605           I->mayHaveSideEffects())
4606         continue;
4607 
4608       // If the instruction is already in PredBB, check if we can sink its
4609       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4610       // sinking the scalar instruction I, hence it appears in PredBB; but it
4611       // may have failed to sink I's operands (recursively), which we try
4612       // (again) here.
4613       if (I->getParent() == PredBB) {
4614         Worklist.insert(I->op_begin(), I->op_end());
4615         continue;
4616       }
4617 
4618       // It's legal to sink the instruction if all its uses occur in the
4619       // predicated block. Otherwise, there's nothing to do yet, and we may
4620       // need to reanalyze the instruction.
4621       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4622         InstsToReanalyze.push_back(I);
4623         continue;
4624       }
4625 
4626       // Move the instruction to the beginning of the predicated block, and add
4627       // it's operands to the worklist.
4628       I->moveBefore(&*PredBB->getFirstInsertionPt());
4629       Worklist.insert(I->op_begin(), I->op_end());
4630 
4631       // The sinking may have enabled other instructions to be sunk, so we will
4632       // need to iterate.
4633       Changed = true;
4634     }
4635   } while (Changed);
4636 }
4637 
4638 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4639   for (PHINode *OrigPhi : OrigPHIsToFix) {
4640     VPWidenPHIRecipe *VPPhi =
4641         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4642     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4643     // Make sure the builder has a valid insert point.
4644     Builder.SetInsertPoint(NewPhi);
4645     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4646       VPValue *Inc = VPPhi->getIncomingValue(i);
4647       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4648       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4649     }
4650   }
4651 }
4652 
4653 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4654                                    VPUser &Operands, unsigned UF,
4655                                    ElementCount VF, bool IsPtrLoopInvariant,
4656                                    SmallBitVector &IsIndexLoopInvariant,
4657                                    VPTransformState &State) {
4658   // Construct a vector GEP by widening the operands of the scalar GEP as
4659   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4660   // results in a vector of pointers when at least one operand of the GEP
4661   // is vector-typed. Thus, to keep the representation compact, we only use
4662   // vector-typed operands for loop-varying values.
4663 
4664   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4665     // If we are vectorizing, but the GEP has only loop-invariant operands,
4666     // the GEP we build (by only using vector-typed operands for
4667     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4668     // produce a vector of pointers, we need to either arbitrarily pick an
4669     // operand to broadcast, or broadcast a clone of the original GEP.
4670     // Here, we broadcast a clone of the original.
4671     //
4672     // TODO: If at some point we decide to scalarize instructions having
4673     //       loop-invariant operands, this special case will no longer be
4674     //       required. We would add the scalarization decision to
4675     //       collectLoopScalars() and teach getVectorValue() to broadcast
4676     //       the lane-zero scalar value.
4677     auto *Clone = Builder.Insert(GEP->clone());
4678     for (unsigned Part = 0; Part < UF; ++Part) {
4679       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4680       State.set(VPDef, EntryPart, Part);
4681       addMetadata(EntryPart, GEP);
4682     }
4683   } else {
4684     // If the GEP has at least one loop-varying operand, we are sure to
4685     // produce a vector of pointers. But if we are only unrolling, we want
4686     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4687     // produce with the code below will be scalar (if VF == 1) or vector
4688     // (otherwise). Note that for the unroll-only case, we still maintain
4689     // values in the vector mapping with initVector, as we do for other
4690     // instructions.
4691     for (unsigned Part = 0; Part < UF; ++Part) {
4692       // The pointer operand of the new GEP. If it's loop-invariant, we
4693       // won't broadcast it.
4694       auto *Ptr = IsPtrLoopInvariant
4695                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4696                       : State.get(Operands.getOperand(0), Part);
4697 
4698       // Collect all the indices for the new GEP. If any index is
4699       // loop-invariant, we won't broadcast it.
4700       SmallVector<Value *, 4> Indices;
4701       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4702         VPValue *Operand = Operands.getOperand(I);
4703         if (IsIndexLoopInvariant[I - 1])
4704           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4705         else
4706           Indices.push_back(State.get(Operand, Part));
4707       }
4708 
4709       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4710       // but it should be a vector, otherwise.
4711       auto *NewGEP =
4712           GEP->isInBounds()
4713               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4714                                           Indices)
4715               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4716       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4717              "NewGEP is not a pointer vector");
4718       State.set(VPDef, NewGEP, Part);
4719       addMetadata(NewGEP, GEP);
4720     }
4721   }
4722 }
4723 
4724 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4725                                               RecurrenceDescriptor *RdxDesc,
4726                                               VPWidenPHIRecipe *PhiR,
4727                                               VPTransformState &State) {
4728   PHINode *P = cast<PHINode>(PN);
4729   if (EnableVPlanNativePath) {
4730     // Currently we enter here in the VPlan-native path for non-induction
4731     // PHIs where all control flow is uniform. We simply widen these PHIs.
4732     // Create a vector phi with no operands - the vector phi operands will be
4733     // set at the end of vector code generation.
4734     Type *VecTy = (State.VF.isScalar())
4735                       ? PN->getType()
4736                       : VectorType::get(PN->getType(), State.VF);
4737     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4738     State.set(PhiR, VecPhi, 0);
4739     OrigPHIsToFix.push_back(P);
4740 
4741     return;
4742   }
4743 
4744   assert(PN->getParent() == OrigLoop->getHeader() &&
4745          "Non-header phis should have been handled elsewhere");
4746 
4747   VPValue *StartVPV = PhiR->getStartValue();
4748   Value *StartV = StartVPV ? StartVPV->getLiveInIRValue() : nullptr;
4749   // In order to support recurrences we need to be able to vectorize Phi nodes.
4750   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4751   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4752   // this value when we vectorize all of the instructions that use the PHI.
4753   if (RdxDesc || Legal->isFirstOrderRecurrence(P)) {
4754     Value *Iden = nullptr;
4755     bool ScalarPHI =
4756         (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN));
4757     Type *VecTy =
4758         ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF);
4759 
4760     if (RdxDesc) {
4761       assert(Legal->isReductionVariable(P) && StartV &&
4762              "RdxDesc should only be set for reduction variables; in that case "
4763              "a StartV is also required");
4764       RecurKind RK = RdxDesc->getRecurrenceKind();
4765       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) {
4766         // MinMax reduction have the start value as their identify.
4767         if (ScalarPHI) {
4768           Iden = StartV;
4769         } else {
4770           IRBuilderBase::InsertPointGuard IPBuilder(Builder);
4771           Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4772           StartV = Iden =
4773               Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
4774         }
4775       } else {
4776         Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity(
4777             RK, VecTy->getScalarType(), RdxDesc->getFastMathFlags());
4778         Iden = IdenC;
4779 
4780         if (!ScalarPHI) {
4781           Iden = ConstantVector::getSplat(State.VF, IdenC);
4782           IRBuilderBase::InsertPointGuard IPBuilder(Builder);
4783           Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4784           Constant *Zero = Builder.getInt32(0);
4785           StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
4786         }
4787       }
4788     }
4789 
4790     bool IsOrdered = State.VF.isVector() &&
4791                      Cost->isInLoopReduction(cast<PHINode>(PN)) &&
4792                      useOrderedReductions(*RdxDesc);
4793 
4794     for (unsigned Part = 0; Part < State.UF; ++Part) {
4795       // This is phase one of vectorizing PHIs.
4796       if (Part > 0 && IsOrdered)
4797         return;
4798       Value *EntryPart = PHINode::Create(
4799           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4800       State.set(PhiR, EntryPart, Part);
4801       if (StartV) {
4802         // Make sure to add the reduction start value only to the
4803         // first unroll part.
4804         Value *StartVal = (Part == 0) ? StartV : Iden;
4805         cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader);
4806       }
4807     }
4808     return;
4809   }
4810 
4811   assert(!Legal->isReductionVariable(P) &&
4812          "reductions should be handled above");
4813 
4814   setDebugLocFromInst(Builder, P);
4815 
4816   // This PHINode must be an induction variable.
4817   // Make sure that we know about it.
4818   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4819 
4820   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4821   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4822 
4823   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4824   // which can be found from the original scalar operations.
4825   switch (II.getKind()) {
4826   case InductionDescriptor::IK_NoInduction:
4827     llvm_unreachable("Unknown induction");
4828   case InductionDescriptor::IK_IntInduction:
4829   case InductionDescriptor::IK_FpInduction:
4830     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4831   case InductionDescriptor::IK_PtrInduction: {
4832     // Handle the pointer induction variable case.
4833     assert(P->getType()->isPointerTy() && "Unexpected type.");
4834 
4835     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4836       // This is the normalized GEP that starts counting at zero.
4837       Value *PtrInd =
4838           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4839       // Determine the number of scalars we need to generate for each unroll
4840       // iteration. If the instruction is uniform, we only need to generate the
4841       // first lane. Otherwise, we generate all VF values.
4842       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4843       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4844 
4845       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4846       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4847       if (NeedsVectorIndex) {
4848         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4849         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4850         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4851       }
4852 
4853       for (unsigned Part = 0; Part < UF; ++Part) {
4854         Value *PartStart = createStepForVF(
4855             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4856 
4857         if (NeedsVectorIndex) {
4858           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4859           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4860           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4861           Value *SclrGep =
4862               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4863           SclrGep->setName("next.gep");
4864           State.set(PhiR, SclrGep, Part);
4865           // We've cached the whole vector, which means we can support the
4866           // extraction of any lane.
4867           continue;
4868         }
4869 
4870         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4871           Value *Idx = Builder.CreateAdd(
4872               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4873           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4874           Value *SclrGep =
4875               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4876           SclrGep->setName("next.gep");
4877           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4878         }
4879       }
4880       return;
4881     }
4882     assert(isa<SCEVConstant>(II.getStep()) &&
4883            "Induction step not a SCEV constant!");
4884     Type *PhiType = II.getStep()->getType();
4885 
4886     // Build a pointer phi
4887     Value *ScalarStartValue = II.getStartValue();
4888     Type *ScStValueType = ScalarStartValue->getType();
4889     PHINode *NewPointerPhi =
4890         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4891     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4892 
4893     // A pointer induction, performed by using a gep
4894     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4895     Instruction *InductionLoc = LoopLatch->getTerminator();
4896     const SCEV *ScalarStep = II.getStep();
4897     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4898     Value *ScalarStepValue =
4899         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4900     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4901     Value *NumUnrolledElems =
4902         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4903     Value *InductionGEP = GetElementPtrInst::Create(
4904         ScStValueType->getPointerElementType(), NewPointerPhi,
4905         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4906         InductionLoc);
4907     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4908 
4909     // Create UF many actual address geps that use the pointer
4910     // phi as base and a vectorized version of the step value
4911     // (<step*0, ..., step*N>) as offset.
4912     for (unsigned Part = 0; Part < State.UF; ++Part) {
4913       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4914       Value *StartOffsetScalar =
4915           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4916       Value *StartOffset =
4917           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4918       // Create a vector of consecutive numbers from zero to VF.
4919       StartOffset =
4920           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4921 
4922       Value *GEP = Builder.CreateGEP(
4923           ScStValueType->getPointerElementType(), NewPointerPhi,
4924           Builder.CreateMul(
4925               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4926               "vector.gep"));
4927       State.set(PhiR, GEP, Part);
4928     }
4929   }
4930   }
4931 }
4932 
4933 /// A helper function for checking whether an integer division-related
4934 /// instruction may divide by zero (in which case it must be predicated if
4935 /// executed conditionally in the scalar code).
4936 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4937 /// Non-zero divisors that are non compile-time constants will not be
4938 /// converted into multiplication, so we will still end up scalarizing
4939 /// the division, but can do so w/o predication.
4940 static bool mayDivideByZero(Instruction &I) {
4941   assert((I.getOpcode() == Instruction::UDiv ||
4942           I.getOpcode() == Instruction::SDiv ||
4943           I.getOpcode() == Instruction::URem ||
4944           I.getOpcode() == Instruction::SRem) &&
4945          "Unexpected instruction");
4946   Value *Divisor = I.getOperand(1);
4947   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4948   return !CInt || CInt->isZero();
4949 }
4950 
4951 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4952                                            VPUser &User,
4953                                            VPTransformState &State) {
4954   switch (I.getOpcode()) {
4955   case Instruction::Call:
4956   case Instruction::Br:
4957   case Instruction::PHI:
4958   case Instruction::GetElementPtr:
4959   case Instruction::Select:
4960     llvm_unreachable("This instruction is handled by a different recipe.");
4961   case Instruction::UDiv:
4962   case Instruction::SDiv:
4963   case Instruction::SRem:
4964   case Instruction::URem:
4965   case Instruction::Add:
4966   case Instruction::FAdd:
4967   case Instruction::Sub:
4968   case Instruction::FSub:
4969   case Instruction::FNeg:
4970   case Instruction::Mul:
4971   case Instruction::FMul:
4972   case Instruction::FDiv:
4973   case Instruction::FRem:
4974   case Instruction::Shl:
4975   case Instruction::LShr:
4976   case Instruction::AShr:
4977   case Instruction::And:
4978   case Instruction::Or:
4979   case Instruction::Xor: {
4980     // Just widen unops and binops.
4981     setDebugLocFromInst(Builder, &I);
4982 
4983     for (unsigned Part = 0; Part < UF; ++Part) {
4984       SmallVector<Value *, 2> Ops;
4985       for (VPValue *VPOp : User.operands())
4986         Ops.push_back(State.get(VPOp, Part));
4987 
4988       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4989 
4990       if (auto *VecOp = dyn_cast<Instruction>(V))
4991         VecOp->copyIRFlags(&I);
4992 
4993       // Use this vector value for all users of the original instruction.
4994       State.set(Def, V, Part);
4995       addMetadata(V, &I);
4996     }
4997 
4998     break;
4999   }
5000   case Instruction::ICmp:
5001   case Instruction::FCmp: {
5002     // Widen compares. Generate vector compares.
5003     bool FCmp = (I.getOpcode() == Instruction::FCmp);
5004     auto *Cmp = cast<CmpInst>(&I);
5005     setDebugLocFromInst(Builder, Cmp);
5006     for (unsigned Part = 0; Part < UF; ++Part) {
5007       Value *A = State.get(User.getOperand(0), Part);
5008       Value *B = State.get(User.getOperand(1), Part);
5009       Value *C = nullptr;
5010       if (FCmp) {
5011         // Propagate fast math flags.
5012         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
5013         Builder.setFastMathFlags(Cmp->getFastMathFlags());
5014         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
5015       } else {
5016         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
5017       }
5018       State.set(Def, C, Part);
5019       addMetadata(C, &I);
5020     }
5021 
5022     break;
5023   }
5024 
5025   case Instruction::ZExt:
5026   case Instruction::SExt:
5027   case Instruction::FPToUI:
5028   case Instruction::FPToSI:
5029   case Instruction::FPExt:
5030   case Instruction::PtrToInt:
5031   case Instruction::IntToPtr:
5032   case Instruction::SIToFP:
5033   case Instruction::UIToFP:
5034   case Instruction::Trunc:
5035   case Instruction::FPTrunc:
5036   case Instruction::BitCast: {
5037     auto *CI = cast<CastInst>(&I);
5038     setDebugLocFromInst(Builder, CI);
5039 
5040     /// Vectorize casts.
5041     Type *DestTy =
5042         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
5043 
5044     for (unsigned Part = 0; Part < UF; ++Part) {
5045       Value *A = State.get(User.getOperand(0), Part);
5046       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
5047       State.set(Def, Cast, Part);
5048       addMetadata(Cast, &I);
5049     }
5050     break;
5051   }
5052   default:
5053     // This instruction is not vectorized by simple widening.
5054     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
5055     llvm_unreachable("Unhandled instruction!");
5056   } // end of switch.
5057 }
5058 
5059 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
5060                                                VPUser &ArgOperands,
5061                                                VPTransformState &State) {
5062   assert(!isa<DbgInfoIntrinsic>(I) &&
5063          "DbgInfoIntrinsic should have been dropped during VPlan construction");
5064   setDebugLocFromInst(Builder, &I);
5065 
5066   Module *M = I.getParent()->getParent()->getParent();
5067   auto *CI = cast<CallInst>(&I);
5068 
5069   SmallVector<Type *, 4> Tys;
5070   for (Value *ArgOperand : CI->arg_operands())
5071     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
5072 
5073   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5074 
5075   // The flag shows whether we use Intrinsic or a usual Call for vectorized
5076   // version of the instruction.
5077   // Is it beneficial to perform intrinsic call compared to lib call?
5078   bool NeedToScalarize = false;
5079   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
5080   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
5081   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
5082   assert((UseVectorIntrinsic || !NeedToScalarize) &&
5083          "Instruction should be scalarized elsewhere.");
5084   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
5085          "Either the intrinsic cost or vector call cost must be valid");
5086 
5087   for (unsigned Part = 0; Part < UF; ++Part) {
5088     SmallVector<Value *, 4> Args;
5089     for (auto &I : enumerate(ArgOperands.operands())) {
5090       // Some intrinsics have a scalar argument - don't replace it with a
5091       // vector.
5092       Value *Arg;
5093       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5094         Arg = State.get(I.value(), Part);
5095       else
5096         Arg = State.get(I.value(), VPIteration(0, 0));
5097       Args.push_back(Arg);
5098     }
5099 
5100     Function *VectorF;
5101     if (UseVectorIntrinsic) {
5102       // Use vector version of the intrinsic.
5103       Type *TysForDecl[] = {CI->getType()};
5104       if (VF.isVector())
5105         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5106       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5107       assert(VectorF && "Can't retrieve vector intrinsic.");
5108     } else {
5109       // Use vector version of the function call.
5110       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5111 #ifndef NDEBUG
5112       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5113              "Can't create vector function.");
5114 #endif
5115         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5116     }
5117       SmallVector<OperandBundleDef, 1> OpBundles;
5118       CI->getOperandBundlesAsDefs(OpBundles);
5119       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5120 
5121       if (isa<FPMathOperator>(V))
5122         V->copyFastMathFlags(CI);
5123 
5124       State.set(Def, V, Part);
5125       addMetadata(V, &I);
5126   }
5127 }
5128 
5129 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5130                                                  VPUser &Operands,
5131                                                  bool InvariantCond,
5132                                                  VPTransformState &State) {
5133   setDebugLocFromInst(Builder, &I);
5134 
5135   // The condition can be loop invariant  but still defined inside the
5136   // loop. This means that we can't just use the original 'cond' value.
5137   // We have to take the 'vectorized' value and pick the first lane.
5138   // Instcombine will make this a no-op.
5139   auto *InvarCond = InvariantCond
5140                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5141                         : nullptr;
5142 
5143   for (unsigned Part = 0; Part < UF; ++Part) {
5144     Value *Cond =
5145         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5146     Value *Op0 = State.get(Operands.getOperand(1), Part);
5147     Value *Op1 = State.get(Operands.getOperand(2), Part);
5148     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5149     State.set(VPDef, Sel, Part);
5150     addMetadata(Sel, &I);
5151   }
5152 }
5153 
5154 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5155   // We should not collect Scalars more than once per VF. Right now, this
5156   // function is called from collectUniformsAndScalars(), which already does
5157   // this check. Collecting Scalars for VF=1 does not make any sense.
5158   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5159          "This function should not be visited twice for the same VF");
5160 
5161   SmallSetVector<Instruction *, 8> Worklist;
5162 
5163   // These sets are used to seed the analysis with pointers used by memory
5164   // accesses that will remain scalar.
5165   SmallSetVector<Instruction *, 8> ScalarPtrs;
5166   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5167   auto *Latch = TheLoop->getLoopLatch();
5168 
5169   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5170   // The pointer operands of loads and stores will be scalar as long as the
5171   // memory access is not a gather or scatter operation. The value operand of a
5172   // store will remain scalar if the store is scalarized.
5173   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5174     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5175     assert(WideningDecision != CM_Unknown &&
5176            "Widening decision should be ready at this moment");
5177     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5178       if (Ptr == Store->getValueOperand())
5179         return WideningDecision == CM_Scalarize;
5180     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5181            "Ptr is neither a value or pointer operand");
5182     return WideningDecision != CM_GatherScatter;
5183   };
5184 
5185   // A helper that returns true if the given value is a bitcast or
5186   // getelementptr instruction contained in the loop.
5187   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5188     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5189             isa<GetElementPtrInst>(V)) &&
5190            !TheLoop->isLoopInvariant(V);
5191   };
5192 
5193   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5194     if (!isa<PHINode>(Ptr) ||
5195         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5196       return false;
5197     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5198     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5199       return false;
5200     return isScalarUse(MemAccess, Ptr);
5201   };
5202 
5203   // A helper that evaluates a memory access's use of a pointer. If the
5204   // pointer is actually the pointer induction of a loop, it is being
5205   // inserted into Worklist. If the use will be a scalar use, and the
5206   // pointer is only used by memory accesses, we place the pointer in
5207   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5208   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5209     if (isScalarPtrInduction(MemAccess, Ptr)) {
5210       Worklist.insert(cast<Instruction>(Ptr));
5211       Instruction *Update = cast<Instruction>(
5212           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5213       Worklist.insert(Update);
5214       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5215                         << "\n");
5216       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update
5217                         << "\n");
5218       return;
5219     }
5220     // We only care about bitcast and getelementptr instructions contained in
5221     // the loop.
5222     if (!isLoopVaryingBitCastOrGEP(Ptr))
5223       return;
5224 
5225     // If the pointer has already been identified as scalar (e.g., if it was
5226     // also identified as uniform), there's nothing to do.
5227     auto *I = cast<Instruction>(Ptr);
5228     if (Worklist.count(I))
5229       return;
5230 
5231     // If the use of the pointer will be a scalar use, and all users of the
5232     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5233     // place the pointer in PossibleNonScalarPtrs.
5234     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5235           return isa<LoadInst>(U) || isa<StoreInst>(U);
5236         }))
5237       ScalarPtrs.insert(I);
5238     else
5239       PossibleNonScalarPtrs.insert(I);
5240   };
5241 
5242   // We seed the scalars analysis with three classes of instructions: (1)
5243   // instructions marked uniform-after-vectorization and (2) bitcast,
5244   // getelementptr and (pointer) phi instructions used by memory accesses
5245   // requiring a scalar use.
5246   //
5247   // (1) Add to the worklist all instructions that have been identified as
5248   // uniform-after-vectorization.
5249   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5250 
5251   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5252   // memory accesses requiring a scalar use. The pointer operands of loads and
5253   // stores will be scalar as long as the memory accesses is not a gather or
5254   // scatter operation. The value operand of a store will remain scalar if the
5255   // store is scalarized.
5256   for (auto *BB : TheLoop->blocks())
5257     for (auto &I : *BB) {
5258       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5259         evaluatePtrUse(Load, Load->getPointerOperand());
5260       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5261         evaluatePtrUse(Store, Store->getPointerOperand());
5262         evaluatePtrUse(Store, Store->getValueOperand());
5263       }
5264     }
5265   for (auto *I : ScalarPtrs)
5266     if (!PossibleNonScalarPtrs.count(I)) {
5267       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5268       Worklist.insert(I);
5269     }
5270 
5271   // Insert the forced scalars.
5272   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5273   // induction variable when the PHI user is scalarized.
5274   auto ForcedScalar = ForcedScalars.find(VF);
5275   if (ForcedScalar != ForcedScalars.end())
5276     for (auto *I : ForcedScalar->second)
5277       Worklist.insert(I);
5278 
5279   // Expand the worklist by looking through any bitcasts and getelementptr
5280   // instructions we've already identified as scalar. This is similar to the
5281   // expansion step in collectLoopUniforms(); however, here we're only
5282   // expanding to include additional bitcasts and getelementptr instructions.
5283   unsigned Idx = 0;
5284   while (Idx != Worklist.size()) {
5285     Instruction *Dst = Worklist[Idx++];
5286     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5287       continue;
5288     auto *Src = cast<Instruction>(Dst->getOperand(0));
5289     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5290           auto *J = cast<Instruction>(U);
5291           return !TheLoop->contains(J) || Worklist.count(J) ||
5292                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5293                   isScalarUse(J, Src));
5294         })) {
5295       Worklist.insert(Src);
5296       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5297     }
5298   }
5299 
5300   // An induction variable will remain scalar if all users of the induction
5301   // variable and induction variable update remain scalar.
5302   for (auto &Induction : Legal->getInductionVars()) {
5303     auto *Ind = Induction.first;
5304     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5305 
5306     // If tail-folding is applied, the primary induction variable will be used
5307     // to feed a vector compare.
5308     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5309       continue;
5310 
5311     // Determine if all users of the induction variable are scalar after
5312     // vectorization.
5313     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5314       auto *I = cast<Instruction>(U);
5315       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5316     });
5317     if (!ScalarInd)
5318       continue;
5319 
5320     // Determine if all users of the induction variable update instruction are
5321     // scalar after vectorization.
5322     auto ScalarIndUpdate =
5323         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5324           auto *I = cast<Instruction>(U);
5325           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5326         });
5327     if (!ScalarIndUpdate)
5328       continue;
5329 
5330     // The induction variable and its update instruction will remain scalar.
5331     Worklist.insert(Ind);
5332     Worklist.insert(IndUpdate);
5333     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5334     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5335                       << "\n");
5336   }
5337 
5338   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5339 }
5340 
5341 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5342   if (!blockNeedsPredication(I->getParent()))
5343     return false;
5344   switch(I->getOpcode()) {
5345   default:
5346     break;
5347   case Instruction::Load:
5348   case Instruction::Store: {
5349     if (!Legal->isMaskRequired(I))
5350       return false;
5351     auto *Ptr = getLoadStorePointerOperand(I);
5352     auto *Ty = getMemInstValueType(I);
5353     const Align Alignment = getLoadStoreAlignment(I);
5354     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5355                                 isLegalMaskedGather(Ty, Alignment))
5356                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5357                                 isLegalMaskedScatter(Ty, Alignment));
5358   }
5359   case Instruction::UDiv:
5360   case Instruction::SDiv:
5361   case Instruction::SRem:
5362   case Instruction::URem:
5363     return mayDivideByZero(*I);
5364   }
5365   return false;
5366 }
5367 
5368 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5369     Instruction *I, ElementCount VF) {
5370   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5371   assert(getWideningDecision(I, VF) == CM_Unknown &&
5372          "Decision should not be set yet.");
5373   auto *Group = getInterleavedAccessGroup(I);
5374   assert(Group && "Must have a group.");
5375 
5376   // If the instruction's allocated size doesn't equal it's type size, it
5377   // requires padding and will be scalarized.
5378   auto &DL = I->getModule()->getDataLayout();
5379   auto *ScalarTy = getMemInstValueType(I);
5380   if (hasIrregularType(ScalarTy, DL))
5381     return false;
5382 
5383   // Check if masking is required.
5384   // A Group may need masking for one of two reasons: it resides in a block that
5385   // needs predication, or it was decided to use masking to deal with gaps.
5386   bool PredicatedAccessRequiresMasking =
5387       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5388   bool AccessWithGapsRequiresMasking =
5389       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5390   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
5391     return true;
5392 
5393   // If masked interleaving is required, we expect that the user/target had
5394   // enabled it, because otherwise it either wouldn't have been created or
5395   // it should have been invalidated by the CostModel.
5396   assert(useMaskedInterleavedAccesses(TTI) &&
5397          "Masked interleave-groups for predicated accesses are not enabled.");
5398 
5399   auto *Ty = getMemInstValueType(I);
5400   const Align Alignment = getLoadStoreAlignment(I);
5401   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5402                           : TTI.isLegalMaskedStore(Ty, Alignment);
5403 }
5404 
5405 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5406     Instruction *I, ElementCount VF) {
5407   // Get and ensure we have a valid memory instruction.
5408   LoadInst *LI = dyn_cast<LoadInst>(I);
5409   StoreInst *SI = dyn_cast<StoreInst>(I);
5410   assert((LI || SI) && "Invalid memory instruction");
5411 
5412   auto *Ptr = getLoadStorePointerOperand(I);
5413 
5414   // In order to be widened, the pointer should be consecutive, first of all.
5415   if (!Legal->isConsecutivePtr(Ptr))
5416     return false;
5417 
5418   // If the instruction is a store located in a predicated block, it will be
5419   // scalarized.
5420   if (isScalarWithPredication(I))
5421     return false;
5422 
5423   // If the instruction's allocated size doesn't equal it's type size, it
5424   // requires padding and will be scalarized.
5425   auto &DL = I->getModule()->getDataLayout();
5426   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5427   if (hasIrregularType(ScalarTy, DL))
5428     return false;
5429 
5430   return true;
5431 }
5432 
5433 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5434   // We should not collect Uniforms more than once per VF. Right now,
5435   // this function is called from collectUniformsAndScalars(), which
5436   // already does this check. Collecting Uniforms for VF=1 does not make any
5437   // sense.
5438 
5439   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5440          "This function should not be visited twice for the same VF");
5441 
5442   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5443   // not analyze again.  Uniforms.count(VF) will return 1.
5444   Uniforms[VF].clear();
5445 
5446   // We now know that the loop is vectorizable!
5447   // Collect instructions inside the loop that will remain uniform after
5448   // vectorization.
5449 
5450   // Global values, params and instructions outside of current loop are out of
5451   // scope.
5452   auto isOutOfScope = [&](Value *V) -> bool {
5453     Instruction *I = dyn_cast<Instruction>(V);
5454     return (!I || !TheLoop->contains(I));
5455   };
5456 
5457   SetVector<Instruction *> Worklist;
5458   BasicBlock *Latch = TheLoop->getLoopLatch();
5459 
5460   // Instructions that are scalar with predication must not be considered
5461   // uniform after vectorization, because that would create an erroneous
5462   // replicating region where only a single instance out of VF should be formed.
5463   // TODO: optimize such seldom cases if found important, see PR40816.
5464   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5465     if (isOutOfScope(I)) {
5466       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5467                         << *I << "\n");
5468       return;
5469     }
5470     if (isScalarWithPredication(I)) {
5471       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5472                         << *I << "\n");
5473       return;
5474     }
5475     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5476     Worklist.insert(I);
5477   };
5478 
5479   // Start with the conditional branch. If the branch condition is an
5480   // instruction contained in the loop that is only used by the branch, it is
5481   // uniform.
5482   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5483   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5484     addToWorklistIfAllowed(Cmp);
5485 
5486   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5487     InstWidening WideningDecision = getWideningDecision(I, VF);
5488     assert(WideningDecision != CM_Unknown &&
5489            "Widening decision should be ready at this moment");
5490 
5491     // A uniform memory op is itself uniform.  We exclude uniform stores
5492     // here as they demand the last lane, not the first one.
5493     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5494       assert(WideningDecision == CM_Scalarize);
5495       return true;
5496     }
5497 
5498     return (WideningDecision == CM_Widen ||
5499             WideningDecision == CM_Widen_Reverse ||
5500             WideningDecision == CM_Interleave);
5501   };
5502 
5503 
5504   // Returns true if Ptr is the pointer operand of a memory access instruction
5505   // I, and I is known to not require scalarization.
5506   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5507     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5508   };
5509 
5510   // Holds a list of values which are known to have at least one uniform use.
5511   // Note that there may be other uses which aren't uniform.  A "uniform use"
5512   // here is something which only demands lane 0 of the unrolled iterations;
5513   // it does not imply that all lanes produce the same value (e.g. this is not
5514   // the usual meaning of uniform)
5515   SetVector<Value *> HasUniformUse;
5516 
5517   // Scan the loop for instructions which are either a) known to have only
5518   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5519   for (auto *BB : TheLoop->blocks())
5520     for (auto &I : *BB) {
5521       // If there's no pointer operand, there's nothing to do.
5522       auto *Ptr = getLoadStorePointerOperand(&I);
5523       if (!Ptr)
5524         continue;
5525 
5526       // A uniform memory op is itself uniform.  We exclude uniform stores
5527       // here as they demand the last lane, not the first one.
5528       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5529         addToWorklistIfAllowed(&I);
5530 
5531       if (isUniformDecision(&I, VF)) {
5532         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5533         HasUniformUse.insert(Ptr);
5534       }
5535     }
5536 
5537   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5538   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5539   // disallows uses outside the loop as well.
5540   for (auto *V : HasUniformUse) {
5541     if (isOutOfScope(V))
5542       continue;
5543     auto *I = cast<Instruction>(V);
5544     auto UsersAreMemAccesses =
5545       llvm::all_of(I->users(), [&](User *U) -> bool {
5546         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5547       });
5548     if (UsersAreMemAccesses)
5549       addToWorklistIfAllowed(I);
5550   }
5551 
5552   // Expand Worklist in topological order: whenever a new instruction
5553   // is added , its users should be already inside Worklist.  It ensures
5554   // a uniform instruction will only be used by uniform instructions.
5555   unsigned idx = 0;
5556   while (idx != Worklist.size()) {
5557     Instruction *I = Worklist[idx++];
5558 
5559     for (auto OV : I->operand_values()) {
5560       // isOutOfScope operands cannot be uniform instructions.
5561       if (isOutOfScope(OV))
5562         continue;
5563       // First order recurrence Phi's should typically be considered
5564       // non-uniform.
5565       auto *OP = dyn_cast<PHINode>(OV);
5566       if (OP && Legal->isFirstOrderRecurrence(OP))
5567         continue;
5568       // If all the users of the operand are uniform, then add the
5569       // operand into the uniform worklist.
5570       auto *OI = cast<Instruction>(OV);
5571       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5572             auto *J = cast<Instruction>(U);
5573             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5574           }))
5575         addToWorklistIfAllowed(OI);
5576     }
5577   }
5578 
5579   // For an instruction to be added into Worklist above, all its users inside
5580   // the loop should also be in Worklist. However, this condition cannot be
5581   // true for phi nodes that form a cyclic dependence. We must process phi
5582   // nodes separately. An induction variable will remain uniform if all users
5583   // of the induction variable and induction variable update remain uniform.
5584   // The code below handles both pointer and non-pointer induction variables.
5585   for (auto &Induction : Legal->getInductionVars()) {
5586     auto *Ind = Induction.first;
5587     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5588 
5589     // Determine if all users of the induction variable are uniform after
5590     // vectorization.
5591     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5592       auto *I = cast<Instruction>(U);
5593       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5594              isVectorizedMemAccessUse(I, Ind);
5595     });
5596     if (!UniformInd)
5597       continue;
5598 
5599     // Determine if all users of the induction variable update instruction are
5600     // uniform after vectorization.
5601     auto UniformIndUpdate =
5602         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5603           auto *I = cast<Instruction>(U);
5604           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5605                  isVectorizedMemAccessUse(I, IndUpdate);
5606         });
5607     if (!UniformIndUpdate)
5608       continue;
5609 
5610     // The induction variable and its update instruction will remain uniform.
5611     addToWorklistIfAllowed(Ind);
5612     addToWorklistIfAllowed(IndUpdate);
5613   }
5614 
5615   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5616 }
5617 
5618 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5619   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5620 
5621   if (Legal->getRuntimePointerChecking()->Need) {
5622     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5623         "runtime pointer checks needed. Enable vectorization of this "
5624         "loop with '#pragma clang loop vectorize(enable)' when "
5625         "compiling with -Os/-Oz",
5626         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5627     return true;
5628   }
5629 
5630   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5631     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5632         "runtime SCEV checks needed. Enable vectorization of this "
5633         "loop with '#pragma clang loop vectorize(enable)' when "
5634         "compiling with -Os/-Oz",
5635         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5636     return true;
5637   }
5638 
5639   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5640   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5641     reportVectorizationFailure("Runtime stride check for small trip count",
5642         "runtime stride == 1 checks needed. Enable vectorization of "
5643         "this loop without such check by compiling with -Os/-Oz",
5644         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5645     return true;
5646   }
5647 
5648   return false;
5649 }
5650 
5651 ElementCount
5652 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5653   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5654     reportVectorizationInfo(
5655         "Disabling scalable vectorization, because target does not "
5656         "support scalable vectors.",
5657         "ScalableVectorsUnsupported", ORE, TheLoop);
5658     return ElementCount::getScalable(0);
5659   }
5660 
5661   if (Hints->isScalableVectorizationDisabled()) {
5662     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5663                             "ScalableVectorizationDisabled", ORE, TheLoop);
5664     return ElementCount::getScalable(0);
5665   }
5666 
5667   auto MaxScalableVF = ElementCount::getScalable(
5668       std::numeric_limits<ElementCount::ScalarTy>::max());
5669 
5670   // Disable scalable vectorization if the loop contains unsupported reductions.
5671   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5672   // FIXME: While for scalable vectors this is currently sufficient, this should
5673   // be replaced by a more detailed mechanism that filters out specific VFs,
5674   // instead of invalidating vectorization for a whole set of VFs based on the
5675   // MaxVF.
5676   if (!canVectorizeReductions(MaxScalableVF)) {
5677     reportVectorizationInfo(
5678         "Scalable vectorization not supported for the reduction "
5679         "operations found in this loop.",
5680         "ScalableVFUnfeasible", ORE, TheLoop);
5681     return ElementCount::getScalable(0);
5682   }
5683 
5684   if (Legal->isSafeForAnyVectorWidth())
5685     return MaxScalableVF;
5686 
5687   // Limit MaxScalableVF by the maximum safe dependence distance.
5688   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5689   MaxScalableVF = ElementCount::getScalable(
5690       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5691   if (!MaxScalableVF)
5692     reportVectorizationInfo(
5693         "Max legal vector width too small, scalable vectorization "
5694         "unfeasible.",
5695         "ScalableVFUnfeasible", ORE, TheLoop);
5696 
5697   return MaxScalableVF;
5698 }
5699 
5700 FixedScalableVFPair
5701 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5702                                                  ElementCount UserVF) {
5703   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5704   unsigned SmallestType, WidestType;
5705   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5706 
5707   // Get the maximum safe dependence distance in bits computed by LAA.
5708   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5709   // the memory accesses that is most restrictive (involved in the smallest
5710   // dependence distance).
5711   unsigned MaxSafeElements =
5712       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5713 
5714   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5715   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5716 
5717   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5718                     << ".\n");
5719   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5720                     << ".\n");
5721 
5722   // First analyze the UserVF, fall back if the UserVF should be ignored.
5723   if (UserVF) {
5724     auto MaxSafeUserVF =
5725         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5726 
5727     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF))
5728       return UserVF;
5729 
5730     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5731 
5732     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5733     // is better to ignore the hint and let the compiler choose a suitable VF.
5734     if (!UserVF.isScalable()) {
5735       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5736                         << " is unsafe, clamping to max safe VF="
5737                         << MaxSafeFixedVF << ".\n");
5738       ORE->emit([&]() {
5739         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5740                                           TheLoop->getStartLoc(),
5741                                           TheLoop->getHeader())
5742                << "User-specified vectorization factor "
5743                << ore::NV("UserVectorizationFactor", UserVF)
5744                << " is unsafe, clamping to maximum safe vectorization factor "
5745                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5746       });
5747       return MaxSafeFixedVF;
5748     }
5749 
5750     LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5751                       << " is unsafe. Ignoring scalable UserVF.\n");
5752     ORE->emit([&]() {
5753       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5754                                         TheLoop->getStartLoc(),
5755                                         TheLoop->getHeader())
5756              << "User-specified vectorization factor "
5757              << ore::NV("UserVectorizationFactor", UserVF)
5758              << " is unsafe. Ignoring the hint to let the compiler pick a "
5759                 "suitable VF.";
5760     });
5761   }
5762 
5763   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5764                     << " / " << WidestType << " bits.\n");
5765 
5766   FixedScalableVFPair Result(ElementCount::getFixed(1),
5767                              ElementCount::getScalable(0));
5768   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5769                                            WidestType, MaxSafeFixedVF))
5770     Result.FixedVF = MaxVF;
5771 
5772   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5773                                            WidestType, MaxSafeScalableVF))
5774     if (MaxVF.isScalable()) {
5775       Result.ScalableVF = MaxVF;
5776       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5777                         << "\n");
5778     }
5779 
5780   return Result;
5781 }
5782 
5783 FixedScalableVFPair
5784 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5785   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5786     // TODO: It may by useful to do since it's still likely to be dynamically
5787     // uniform if the target can skip.
5788     reportVectorizationFailure(
5789         "Not inserting runtime ptr check for divergent target",
5790         "runtime pointer checks needed. Not enabled for divergent target",
5791         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5792     return FixedScalableVFPair::getNone();
5793   }
5794 
5795   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5796   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5797   if (TC == 1) {
5798     reportVectorizationFailure("Single iteration (non) loop",
5799         "loop trip count is one, irrelevant for vectorization",
5800         "SingleIterationLoop", ORE, TheLoop);
5801     return FixedScalableVFPair::getNone();
5802   }
5803 
5804   switch (ScalarEpilogueStatus) {
5805   case CM_ScalarEpilogueAllowed:
5806     return computeFeasibleMaxVF(TC, UserVF);
5807   case CM_ScalarEpilogueNotAllowedUsePredicate:
5808     LLVM_FALLTHROUGH;
5809   case CM_ScalarEpilogueNotNeededUsePredicate:
5810     LLVM_DEBUG(
5811         dbgs() << "LV: vector predicate hint/switch found.\n"
5812                << "LV: Not allowing scalar epilogue, creating predicated "
5813                << "vector loop.\n");
5814     break;
5815   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5816     // fallthrough as a special case of OptForSize
5817   case CM_ScalarEpilogueNotAllowedOptSize:
5818     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5819       LLVM_DEBUG(
5820           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5821     else
5822       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5823                         << "count.\n");
5824 
5825     // Bail if runtime checks are required, which are not good when optimising
5826     // for size.
5827     if (runtimeChecksRequired())
5828       return FixedScalableVFPair::getNone();
5829 
5830     break;
5831   }
5832 
5833   // The only loops we can vectorize without a scalar epilogue, are loops with
5834   // a bottom-test and a single exiting block. We'd have to handle the fact
5835   // that not every instruction executes on the last iteration.  This will
5836   // require a lane mask which varies through the vector loop body.  (TODO)
5837   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5838     // If there was a tail-folding hint/switch, but we can't fold the tail by
5839     // masking, fallback to a vectorization with a scalar epilogue.
5840     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5841       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5842                            "scalar epilogue instead.\n");
5843       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5844       return computeFeasibleMaxVF(TC, UserVF);
5845     }
5846     return FixedScalableVFPair::getNone();
5847   }
5848 
5849   // Now try the tail folding
5850 
5851   // Invalidate interleave groups that require an epilogue if we can't mask
5852   // the interleave-group.
5853   if (!useMaskedInterleavedAccesses(TTI)) {
5854     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5855            "No decisions should have been taken at this point");
5856     // Note: There is no need to invalidate any cost modeling decisions here, as
5857     // non where taken so far.
5858     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5859   }
5860 
5861   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5862   // Avoid tail folding if the trip count is known to be a multiple of any VF
5863   // we chose.
5864   // FIXME: The condition below pessimises the case for fixed-width vectors,
5865   // when scalable VFs are also candidates for vectorization.
5866   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5867     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5868     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5869            "MaxFixedVF must be a power of 2");
5870     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5871                                    : MaxFixedVF.getFixedValue();
5872     ScalarEvolution *SE = PSE.getSE();
5873     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5874     const SCEV *ExitCount = SE->getAddExpr(
5875         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5876     const SCEV *Rem = SE->getURemExpr(
5877         SE->applyLoopGuards(ExitCount, TheLoop),
5878         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5879     if (Rem->isZero()) {
5880       // Accept MaxFixedVF if we do not have a tail.
5881       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5882       return MaxFactors;
5883     }
5884   }
5885 
5886   // If we don't know the precise trip count, or if the trip count that we
5887   // found modulo the vectorization factor is not zero, try to fold the tail
5888   // by masking.
5889   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5890   if (Legal->prepareToFoldTailByMasking()) {
5891     FoldTailByMasking = true;
5892     return MaxFactors;
5893   }
5894 
5895   // If there was a tail-folding hint/switch, but we can't fold the tail by
5896   // masking, fallback to a vectorization with a scalar epilogue.
5897   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5898     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5899                          "scalar epilogue instead.\n");
5900     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5901     return MaxFactors;
5902   }
5903 
5904   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5905     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5906     return FixedScalableVFPair::getNone();
5907   }
5908 
5909   if (TC == 0) {
5910     reportVectorizationFailure(
5911         "Unable to calculate the loop count due to complex control flow",
5912         "unable to calculate the loop count due to complex control flow",
5913         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5914     return FixedScalableVFPair::getNone();
5915   }
5916 
5917   reportVectorizationFailure(
5918       "Cannot optimize for size and vectorize at the same time.",
5919       "cannot optimize for size and vectorize at the same time. "
5920       "Enable vectorization of this loop with '#pragma clang loop "
5921       "vectorize(enable)' when compiling with -Os/-Oz",
5922       "NoTailLoopWithOptForSize", ORE, TheLoop);
5923   return FixedScalableVFPair::getNone();
5924 }
5925 
5926 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5927     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5928     const ElementCount &MaxSafeVF) {
5929   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5930   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5931       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5932                            : TargetTransformInfo::RGK_FixedWidthVector);
5933 
5934   // Convenience function to return the minimum of two ElementCounts.
5935   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5936     assert((LHS.isScalable() == RHS.isScalable()) &&
5937            "Scalable flags must match");
5938     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5939   };
5940 
5941   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5942   // Note that both WidestRegister and WidestType may not be a powers of 2.
5943   auto MaxVectorElementCount = ElementCount::get(
5944       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5945       ComputeScalableMaxVF);
5946   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5947   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5948                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5949 
5950   if (!MaxVectorElementCount) {
5951     LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5952     return ElementCount::getFixed(1);
5953   }
5954 
5955   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5956   if (ConstTripCount &&
5957       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5958       isPowerOf2_32(ConstTripCount)) {
5959     // We need to clamp the VF to be the ConstTripCount. There is no point in
5960     // choosing a higher viable VF as done in the loop below. If
5961     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5962     // the TC is less than or equal to the known number of lanes.
5963     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5964                       << ConstTripCount << "\n");
5965     return TripCountEC;
5966   }
5967 
5968   ElementCount MaxVF = MaxVectorElementCount;
5969   if (TTI.shouldMaximizeVectorBandwidth() ||
5970       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5971     auto MaxVectorElementCountMaxBW = ElementCount::get(
5972         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5973         ComputeScalableMaxVF);
5974     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5975 
5976     // Collect all viable vectorization factors larger than the default MaxVF
5977     // (i.e. MaxVectorElementCount).
5978     SmallVector<ElementCount, 8> VFs;
5979     for (ElementCount VS = MaxVectorElementCount * 2;
5980          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5981       VFs.push_back(VS);
5982 
5983     // For each VF calculate its register usage.
5984     auto RUs = calculateRegisterUsage(VFs);
5985 
5986     // Select the largest VF which doesn't require more registers than existing
5987     // ones.
5988     for (int i = RUs.size() - 1; i >= 0; --i) {
5989       bool Selected = true;
5990       for (auto &pair : RUs[i].MaxLocalUsers) {
5991         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5992         if (pair.second > TargetNumRegisters)
5993           Selected = false;
5994       }
5995       if (Selected) {
5996         MaxVF = VFs[i];
5997         break;
5998       }
5999     }
6000     if (ElementCount MinVF =
6001             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
6002       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
6003         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
6004                           << ") with target's minimum: " << MinVF << '\n');
6005         MaxVF = MinVF;
6006       }
6007     }
6008   }
6009   return MaxVF;
6010 }
6011 
6012 bool LoopVectorizationCostModel::isMoreProfitable(
6013     const VectorizationFactor &A, const VectorizationFactor &B) const {
6014   InstructionCost::CostType CostA = *A.Cost.getValue();
6015   InstructionCost::CostType CostB = *B.Cost.getValue();
6016 
6017   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
6018 
6019   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
6020       MaxTripCount) {
6021     // If we are folding the tail and the trip count is a known (possibly small)
6022     // constant, the trip count will be rounded up to an integer number of
6023     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
6024     // which we compare directly. When not folding the tail, the total cost will
6025     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
6026     // approximated with the per-lane cost below instead of using the tripcount
6027     // as here.
6028     int64_t RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
6029     int64_t RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
6030     return RTCostA < RTCostB;
6031   }
6032 
6033   // To avoid the need for FP division:
6034   //      (CostA / A.Width) < (CostB / B.Width)
6035   // <=>  (CostA * B.Width) < (CostB * A.Width)
6036   return (CostA * B.Width.getKnownMinValue()) <
6037          (CostB * A.Width.getKnownMinValue());
6038 }
6039 
6040 VectorizationFactor
6041 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) {
6042   // FIXME: This can be fixed for scalable vectors later, because at this stage
6043   // the LoopVectorizer will only consider vectorizing a loop with scalable
6044   // vectors when the loop has a hint to enable vectorization for a given VF.
6045   assert(!MaxVF.isScalable() && "scalable vectors not yet supported");
6046 
6047   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
6048   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
6049   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
6050 
6051   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
6052   VectorizationFactor ChosenFactor = ScalarCost;
6053 
6054   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6055   if (ForceVectorization && MaxVF.isVector()) {
6056     // Ignore scalar width, because the user explicitly wants vectorization.
6057     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6058     // evaluation.
6059     ChosenFactor.Cost = std::numeric_limits<InstructionCost::CostType>::max();
6060   }
6061 
6062   for (auto i = ElementCount::getFixed(2); ElementCount::isKnownLE(i, MaxVF);
6063        i *= 2) {
6064     // Notice that the vector loop needs to be executed less times, so
6065     // we need to divide the cost of the vector loops by the width of
6066     // the vector elements.
6067     VectorizationCostTy C = expectedCost(i);
6068 
6069     assert(C.first.isValid() && "Unexpected invalid cost for vector loop");
6070     VectorizationFactor Candidate(i, C.first);
6071     LLVM_DEBUG(
6072         dbgs() << "LV: Vector loop of width " << i << " costs: "
6073                << (*Candidate.Cost.getValue() / Candidate.Width.getFixedValue())
6074                << ".\n");
6075 
6076     if (!C.second && !ForceVectorization) {
6077       LLVM_DEBUG(
6078           dbgs() << "LV: Not considering vector loop of width " << i
6079                  << " because it will not generate any vector instructions.\n");
6080       continue;
6081     }
6082 
6083     // If profitable add it to ProfitableVF list.
6084     if (isMoreProfitable(Candidate, ScalarCost))
6085       ProfitableVFs.push_back(Candidate);
6086 
6087     if (isMoreProfitable(Candidate, ChosenFactor))
6088       ChosenFactor = Candidate;
6089   }
6090 
6091   if (!EnableCondStoresVectorization && NumPredStores) {
6092     reportVectorizationFailure("There are conditional stores.",
6093         "store that is conditionally executed prevents vectorization",
6094         "ConditionalStore", ORE, TheLoop);
6095     ChosenFactor = ScalarCost;
6096   }
6097 
6098   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6099                  *ChosenFactor.Cost.getValue() >= *ScalarCost.Cost.getValue())
6100                  dbgs()
6101              << "LV: Vectorization seems to be not beneficial, "
6102              << "but was forced by a user.\n");
6103   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6104   return ChosenFactor;
6105 }
6106 
6107 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6108     const Loop &L, ElementCount VF) const {
6109   // Cross iteration phis such as reductions need special handling and are
6110   // currently unsupported.
6111   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6112         return Legal->isFirstOrderRecurrence(&Phi) ||
6113                Legal->isReductionVariable(&Phi);
6114       }))
6115     return false;
6116 
6117   // Phis with uses outside of the loop require special handling and are
6118   // currently unsupported.
6119   for (auto &Entry : Legal->getInductionVars()) {
6120     // Look for uses of the value of the induction at the last iteration.
6121     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6122     for (User *U : PostInc->users())
6123       if (!L.contains(cast<Instruction>(U)))
6124         return false;
6125     // Look for uses of penultimate value of the induction.
6126     for (User *U : Entry.first->users())
6127       if (!L.contains(cast<Instruction>(U)))
6128         return false;
6129   }
6130 
6131   // Induction variables that are widened require special handling that is
6132   // currently not supported.
6133   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6134         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6135                  this->isProfitableToScalarize(Entry.first, VF));
6136       }))
6137     return false;
6138 
6139   return true;
6140 }
6141 
6142 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6143     const ElementCount VF) const {
6144   // FIXME: We need a much better cost-model to take different parameters such
6145   // as register pressure, code size increase and cost of extra branches into
6146   // account. For now we apply a very crude heuristic and only consider loops
6147   // with vectorization factors larger than a certain value.
6148   // We also consider epilogue vectorization unprofitable for targets that don't
6149   // consider interleaving beneficial (eg. MVE).
6150   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6151     return false;
6152   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6153     return true;
6154   return false;
6155 }
6156 
6157 VectorizationFactor
6158 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6159     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6160   VectorizationFactor Result = VectorizationFactor::Disabled();
6161   if (!EnableEpilogueVectorization) {
6162     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6163     return Result;
6164   }
6165 
6166   if (!isScalarEpilogueAllowed()) {
6167     LLVM_DEBUG(
6168         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6169                   "allowed.\n";);
6170     return Result;
6171   }
6172 
6173   // FIXME: This can be fixed for scalable vectors later, because at this stage
6174   // the LoopVectorizer will only consider vectorizing a loop with scalable
6175   // vectors when the loop has a hint to enable vectorization for a given VF.
6176   if (MainLoopVF.isScalable()) {
6177     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6178                          "yet supported.\n");
6179     return Result;
6180   }
6181 
6182   // Not really a cost consideration, but check for unsupported cases here to
6183   // simplify the logic.
6184   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6185     LLVM_DEBUG(
6186         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6187                   "not a supported candidate.\n";);
6188     return Result;
6189   }
6190 
6191   if (EpilogueVectorizationForceVF > 1) {
6192     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6193     if (LVP.hasPlanWithVFs(
6194             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
6195       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
6196     else {
6197       LLVM_DEBUG(
6198           dbgs()
6199               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6200       return Result;
6201     }
6202   }
6203 
6204   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6205       TheLoop->getHeader()->getParent()->hasMinSize()) {
6206     LLVM_DEBUG(
6207         dbgs()
6208             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6209     return Result;
6210   }
6211 
6212   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6213     return Result;
6214 
6215   for (auto &NextVF : ProfitableVFs)
6216     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6217         (Result.Width.getFixedValue() == 1 ||
6218          isMoreProfitable(NextVF, Result)) &&
6219         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6220       Result = NextVF;
6221 
6222   if (Result != VectorizationFactor::Disabled())
6223     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6224                       << Result.Width.getFixedValue() << "\n";);
6225   return Result;
6226 }
6227 
6228 std::pair<unsigned, unsigned>
6229 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6230   unsigned MinWidth = -1U;
6231   unsigned MaxWidth = 8;
6232   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6233 
6234   // For each block.
6235   for (BasicBlock *BB : TheLoop->blocks()) {
6236     // For each instruction in the loop.
6237     for (Instruction &I : BB->instructionsWithoutDebug()) {
6238       Type *T = I.getType();
6239 
6240       // Skip ignored values.
6241       if (ValuesToIgnore.count(&I))
6242         continue;
6243 
6244       // Only examine Loads, Stores and PHINodes.
6245       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6246         continue;
6247 
6248       // Examine PHI nodes that are reduction variables. Update the type to
6249       // account for the recurrence type.
6250       if (auto *PN = dyn_cast<PHINode>(&I)) {
6251         if (!Legal->isReductionVariable(PN))
6252           continue;
6253         RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN];
6254         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6255             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6256                                       RdxDesc.getRecurrenceType(),
6257                                       TargetTransformInfo::ReductionFlags()))
6258           continue;
6259         T = RdxDesc.getRecurrenceType();
6260       }
6261 
6262       // Examine the stored values.
6263       if (auto *ST = dyn_cast<StoreInst>(&I))
6264         T = ST->getValueOperand()->getType();
6265 
6266       // Ignore loaded pointer types and stored pointer types that are not
6267       // vectorizable.
6268       //
6269       // FIXME: The check here attempts to predict whether a load or store will
6270       //        be vectorized. We only know this for certain after a VF has
6271       //        been selected. Here, we assume that if an access can be
6272       //        vectorized, it will be. We should also look at extending this
6273       //        optimization to non-pointer types.
6274       //
6275       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6276           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6277         continue;
6278 
6279       MinWidth = std::min(MinWidth,
6280                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6281       MaxWidth = std::max(MaxWidth,
6282                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6283     }
6284   }
6285 
6286   return {MinWidth, MaxWidth};
6287 }
6288 
6289 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6290                                                            unsigned LoopCost) {
6291   // -- The interleave heuristics --
6292   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6293   // There are many micro-architectural considerations that we can't predict
6294   // at this level. For example, frontend pressure (on decode or fetch) due to
6295   // code size, or the number and capabilities of the execution ports.
6296   //
6297   // We use the following heuristics to select the interleave count:
6298   // 1. If the code has reductions, then we interleave to break the cross
6299   // iteration dependency.
6300   // 2. If the loop is really small, then we interleave to reduce the loop
6301   // overhead.
6302   // 3. We don't interleave if we think that we will spill registers to memory
6303   // due to the increased register pressure.
6304 
6305   if (!isScalarEpilogueAllowed())
6306     return 1;
6307 
6308   // We used the distance for the interleave count.
6309   if (Legal->getMaxSafeDepDistBytes() != -1U)
6310     return 1;
6311 
6312   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6313   const bool HasReductions = !Legal->getReductionVars().empty();
6314   // Do not interleave loops with a relatively small known or estimated trip
6315   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6316   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6317   // because with the above conditions interleaving can expose ILP and break
6318   // cross iteration dependences for reductions.
6319   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6320       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6321     return 1;
6322 
6323   RegisterUsage R = calculateRegisterUsage({VF})[0];
6324   // We divide by these constants so assume that we have at least one
6325   // instruction that uses at least one register.
6326   for (auto& pair : R.MaxLocalUsers) {
6327     pair.second = std::max(pair.second, 1U);
6328   }
6329 
6330   // We calculate the interleave count using the following formula.
6331   // Subtract the number of loop invariants from the number of available
6332   // registers. These registers are used by all of the interleaved instances.
6333   // Next, divide the remaining registers by the number of registers that is
6334   // required by the loop, in order to estimate how many parallel instances
6335   // fit without causing spills. All of this is rounded down if necessary to be
6336   // a power of two. We want power of two interleave count to simplify any
6337   // addressing operations or alignment considerations.
6338   // We also want power of two interleave counts to ensure that the induction
6339   // variable of the vector loop wraps to zero, when tail is folded by masking;
6340   // this currently happens when OptForSize, in which case IC is set to 1 above.
6341   unsigned IC = UINT_MAX;
6342 
6343   for (auto& pair : R.MaxLocalUsers) {
6344     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6345     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6346                       << " registers of "
6347                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6348     if (VF.isScalar()) {
6349       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6350         TargetNumRegisters = ForceTargetNumScalarRegs;
6351     } else {
6352       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6353         TargetNumRegisters = ForceTargetNumVectorRegs;
6354     }
6355     unsigned MaxLocalUsers = pair.second;
6356     unsigned LoopInvariantRegs = 0;
6357     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6358       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6359 
6360     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6361     // Don't count the induction variable as interleaved.
6362     if (EnableIndVarRegisterHeur) {
6363       TmpIC =
6364           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6365                         std::max(1U, (MaxLocalUsers - 1)));
6366     }
6367 
6368     IC = std::min(IC, TmpIC);
6369   }
6370 
6371   // Clamp the interleave ranges to reasonable counts.
6372   unsigned MaxInterleaveCount =
6373       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6374 
6375   // Check if the user has overridden the max.
6376   if (VF.isScalar()) {
6377     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6378       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6379   } else {
6380     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6381       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6382   }
6383 
6384   // If trip count is known or estimated compile time constant, limit the
6385   // interleave count to be less than the trip count divided by VF, provided it
6386   // is at least 1.
6387   //
6388   // For scalable vectors we can't know if interleaving is beneficial. It may
6389   // not be beneficial for small loops if none of the lanes in the second vector
6390   // iterations is enabled. However, for larger loops, there is likely to be a
6391   // similar benefit as for fixed-width vectors. For now, we choose to leave
6392   // the InterleaveCount as if vscale is '1', although if some information about
6393   // the vector is known (e.g. min vector size), we can make a better decision.
6394   if (BestKnownTC) {
6395     MaxInterleaveCount =
6396         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6397     // Make sure MaxInterleaveCount is greater than 0.
6398     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6399   }
6400 
6401   assert(MaxInterleaveCount > 0 &&
6402          "Maximum interleave count must be greater than 0");
6403 
6404   // Clamp the calculated IC to be between the 1 and the max interleave count
6405   // that the target and trip count allows.
6406   if (IC > MaxInterleaveCount)
6407     IC = MaxInterleaveCount;
6408   else
6409     // Make sure IC is greater than 0.
6410     IC = std::max(1u, IC);
6411 
6412   assert(IC > 0 && "Interleave count must be greater than 0.");
6413 
6414   // If we did not calculate the cost for VF (because the user selected the VF)
6415   // then we calculate the cost of VF here.
6416   if (LoopCost == 0) {
6417     assert(expectedCost(VF).first.isValid() && "Expected a valid cost");
6418     LoopCost = *expectedCost(VF).first.getValue();
6419   }
6420 
6421   assert(LoopCost && "Non-zero loop cost expected");
6422 
6423   // Interleave if we vectorized this loop and there is a reduction that could
6424   // benefit from interleaving.
6425   if (VF.isVector() && HasReductions) {
6426     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6427     return IC;
6428   }
6429 
6430   // Note that if we've already vectorized the loop we will have done the
6431   // runtime check and so interleaving won't require further checks.
6432   bool InterleavingRequiresRuntimePointerCheck =
6433       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6434 
6435   // We want to interleave small loops in order to reduce the loop overhead and
6436   // potentially expose ILP opportunities.
6437   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6438                     << "LV: IC is " << IC << '\n'
6439                     << "LV: VF is " << VF << '\n');
6440   const bool AggressivelyInterleaveReductions =
6441       TTI.enableAggressiveInterleaving(HasReductions);
6442   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6443     // We assume that the cost overhead is 1 and we use the cost model
6444     // to estimate the cost of the loop and interleave until the cost of the
6445     // loop overhead is about 5% of the cost of the loop.
6446     unsigned SmallIC =
6447         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6448 
6449     // Interleave until store/load ports (estimated by max interleave count) are
6450     // saturated.
6451     unsigned NumStores = Legal->getNumStores();
6452     unsigned NumLoads = Legal->getNumLoads();
6453     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6454     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6455 
6456     // If we have a scalar reduction (vector reductions are already dealt with
6457     // by this point), we can increase the critical path length if the loop
6458     // we're interleaving is inside another loop. Limit, by default to 2, so the
6459     // critical path only gets increased by one reduction operation.
6460     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6461       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6462       SmallIC = std::min(SmallIC, F);
6463       StoresIC = std::min(StoresIC, F);
6464       LoadsIC = std::min(LoadsIC, F);
6465     }
6466 
6467     if (EnableLoadStoreRuntimeInterleave &&
6468         std::max(StoresIC, LoadsIC) > SmallIC) {
6469       LLVM_DEBUG(
6470           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6471       return std::max(StoresIC, LoadsIC);
6472     }
6473 
6474     // If there are scalar reductions and TTI has enabled aggressive
6475     // interleaving for reductions, we will interleave to expose ILP.
6476     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6477         AggressivelyInterleaveReductions) {
6478       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6479       // Interleave no less than SmallIC but not as aggressive as the normal IC
6480       // to satisfy the rare situation when resources are too limited.
6481       return std::max(IC / 2, SmallIC);
6482     } else {
6483       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6484       return SmallIC;
6485     }
6486   }
6487 
6488   // Interleave if this is a large loop (small loops are already dealt with by
6489   // this point) that could benefit from interleaving.
6490   if (AggressivelyInterleaveReductions) {
6491     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6492     return IC;
6493   }
6494 
6495   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6496   return 1;
6497 }
6498 
6499 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6500 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6501   // This function calculates the register usage by measuring the highest number
6502   // of values that are alive at a single location. Obviously, this is a very
6503   // rough estimation. We scan the loop in a topological order in order and
6504   // assign a number to each instruction. We use RPO to ensure that defs are
6505   // met before their users. We assume that each instruction that has in-loop
6506   // users starts an interval. We record every time that an in-loop value is
6507   // used, so we have a list of the first and last occurrences of each
6508   // instruction. Next, we transpose this data structure into a multi map that
6509   // holds the list of intervals that *end* at a specific location. This multi
6510   // map allows us to perform a linear search. We scan the instructions linearly
6511   // and record each time that a new interval starts, by placing it in a set.
6512   // If we find this value in the multi-map then we remove it from the set.
6513   // The max register usage is the maximum size of the set.
6514   // We also search for instructions that are defined outside the loop, but are
6515   // used inside the loop. We need this number separately from the max-interval
6516   // usage number because when we unroll, loop-invariant values do not take
6517   // more register.
6518   LoopBlocksDFS DFS(TheLoop);
6519   DFS.perform(LI);
6520 
6521   RegisterUsage RU;
6522 
6523   // Each 'key' in the map opens a new interval. The values
6524   // of the map are the index of the 'last seen' usage of the
6525   // instruction that is the key.
6526   using IntervalMap = DenseMap<Instruction *, unsigned>;
6527 
6528   // Maps instruction to its index.
6529   SmallVector<Instruction *, 64> IdxToInstr;
6530   // Marks the end of each interval.
6531   IntervalMap EndPoint;
6532   // Saves the list of instruction indices that are used in the loop.
6533   SmallPtrSet<Instruction *, 8> Ends;
6534   // Saves the list of values that are used in the loop but are
6535   // defined outside the loop, such as arguments and constants.
6536   SmallPtrSet<Value *, 8> LoopInvariants;
6537 
6538   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6539     for (Instruction &I : BB->instructionsWithoutDebug()) {
6540       IdxToInstr.push_back(&I);
6541 
6542       // Save the end location of each USE.
6543       for (Value *U : I.operands()) {
6544         auto *Instr = dyn_cast<Instruction>(U);
6545 
6546         // Ignore non-instruction values such as arguments, constants, etc.
6547         if (!Instr)
6548           continue;
6549 
6550         // If this instruction is outside the loop then record it and continue.
6551         if (!TheLoop->contains(Instr)) {
6552           LoopInvariants.insert(Instr);
6553           continue;
6554         }
6555 
6556         // Overwrite previous end points.
6557         EndPoint[Instr] = IdxToInstr.size();
6558         Ends.insert(Instr);
6559       }
6560     }
6561   }
6562 
6563   // Saves the list of intervals that end with the index in 'key'.
6564   using InstrList = SmallVector<Instruction *, 2>;
6565   DenseMap<unsigned, InstrList> TransposeEnds;
6566 
6567   // Transpose the EndPoints to a list of values that end at each index.
6568   for (auto &Interval : EndPoint)
6569     TransposeEnds[Interval.second].push_back(Interval.first);
6570 
6571   SmallPtrSet<Instruction *, 8> OpenIntervals;
6572   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6573   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6574 
6575   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6576 
6577   // A lambda that gets the register usage for the given type and VF.
6578   const auto &TTICapture = TTI;
6579   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) {
6580     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6581       return 0;
6582     return *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6583   };
6584 
6585   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6586     Instruction *I = IdxToInstr[i];
6587 
6588     // Remove all of the instructions that end at this location.
6589     InstrList &List = TransposeEnds[i];
6590     for (Instruction *ToRemove : List)
6591       OpenIntervals.erase(ToRemove);
6592 
6593     // Ignore instructions that are never used within the loop.
6594     if (!Ends.count(I))
6595       continue;
6596 
6597     // Skip ignored values.
6598     if (ValuesToIgnore.count(I))
6599       continue;
6600 
6601     // For each VF find the maximum usage of registers.
6602     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6603       // Count the number of live intervals.
6604       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6605 
6606       if (VFs[j].isScalar()) {
6607         for (auto Inst : OpenIntervals) {
6608           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6609           if (RegUsage.find(ClassID) == RegUsage.end())
6610             RegUsage[ClassID] = 1;
6611           else
6612             RegUsage[ClassID] += 1;
6613         }
6614       } else {
6615         collectUniformsAndScalars(VFs[j]);
6616         for (auto Inst : OpenIntervals) {
6617           // Skip ignored values for VF > 1.
6618           if (VecValuesToIgnore.count(Inst))
6619             continue;
6620           if (isScalarAfterVectorization(Inst, VFs[j])) {
6621             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6622             if (RegUsage.find(ClassID) == RegUsage.end())
6623               RegUsage[ClassID] = 1;
6624             else
6625               RegUsage[ClassID] += 1;
6626           } else {
6627             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6628             if (RegUsage.find(ClassID) == RegUsage.end())
6629               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6630             else
6631               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6632           }
6633         }
6634       }
6635 
6636       for (auto& pair : RegUsage) {
6637         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6638           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6639         else
6640           MaxUsages[j][pair.first] = pair.second;
6641       }
6642     }
6643 
6644     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6645                       << OpenIntervals.size() << '\n');
6646 
6647     // Add the current instruction to the list of open intervals.
6648     OpenIntervals.insert(I);
6649   }
6650 
6651   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6652     SmallMapVector<unsigned, unsigned, 4> Invariant;
6653 
6654     for (auto Inst : LoopInvariants) {
6655       unsigned Usage =
6656           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6657       unsigned ClassID =
6658           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6659       if (Invariant.find(ClassID) == Invariant.end())
6660         Invariant[ClassID] = Usage;
6661       else
6662         Invariant[ClassID] += Usage;
6663     }
6664 
6665     LLVM_DEBUG({
6666       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6667       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6668              << " item\n";
6669       for (const auto &pair : MaxUsages[i]) {
6670         dbgs() << "LV(REG): RegisterClass: "
6671                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6672                << " registers\n";
6673       }
6674       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6675              << " item\n";
6676       for (const auto &pair : Invariant) {
6677         dbgs() << "LV(REG): RegisterClass: "
6678                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6679                << " registers\n";
6680       }
6681     });
6682 
6683     RU.LoopInvariantRegs = Invariant;
6684     RU.MaxLocalUsers = MaxUsages[i];
6685     RUs[i] = RU;
6686   }
6687 
6688   return RUs;
6689 }
6690 
6691 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6692   // TODO: Cost model for emulated masked load/store is completely
6693   // broken. This hack guides the cost model to use an artificially
6694   // high enough value to practically disable vectorization with such
6695   // operations, except where previously deployed legality hack allowed
6696   // using very low cost values. This is to avoid regressions coming simply
6697   // from moving "masked load/store" check from legality to cost model.
6698   // Masked Load/Gather emulation was previously never allowed.
6699   // Limited number of Masked Store/Scatter emulation was allowed.
6700   assert(isPredicatedInst(I) &&
6701          "Expecting a scalar emulated instruction");
6702   return isa<LoadInst>(I) ||
6703          (isa<StoreInst>(I) &&
6704           NumPredStores > NumberOfStoresToPredicate);
6705 }
6706 
6707 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6708   // If we aren't vectorizing the loop, or if we've already collected the
6709   // instructions to scalarize, there's nothing to do. Collection may already
6710   // have occurred if we have a user-selected VF and are now computing the
6711   // expected cost for interleaving.
6712   if (VF.isScalar() || VF.isZero() ||
6713       InstsToScalarize.find(VF) != InstsToScalarize.end())
6714     return;
6715 
6716   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6717   // not profitable to scalarize any instructions, the presence of VF in the
6718   // map will indicate that we've analyzed it already.
6719   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6720 
6721   // Find all the instructions that are scalar with predication in the loop and
6722   // determine if it would be better to not if-convert the blocks they are in.
6723   // If so, we also record the instructions to scalarize.
6724   for (BasicBlock *BB : TheLoop->blocks()) {
6725     if (!blockNeedsPredication(BB))
6726       continue;
6727     for (Instruction &I : *BB)
6728       if (isScalarWithPredication(&I)) {
6729         ScalarCostsTy ScalarCosts;
6730         // Do not apply discount logic if hacked cost is needed
6731         // for emulated masked memrefs.
6732         if (!useEmulatedMaskMemRefHack(&I) &&
6733             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6734           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6735         // Remember that BB will remain after vectorization.
6736         PredicatedBBsAfterVectorization.insert(BB);
6737       }
6738   }
6739 }
6740 
6741 int LoopVectorizationCostModel::computePredInstDiscount(
6742     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6743   assert(!isUniformAfterVectorization(PredInst, VF) &&
6744          "Instruction marked uniform-after-vectorization will be predicated");
6745 
6746   // Initialize the discount to zero, meaning that the scalar version and the
6747   // vector version cost the same.
6748   InstructionCost Discount = 0;
6749 
6750   // Holds instructions to analyze. The instructions we visit are mapped in
6751   // ScalarCosts. Those instructions are the ones that would be scalarized if
6752   // we find that the scalar version costs less.
6753   SmallVector<Instruction *, 8> Worklist;
6754 
6755   // Returns true if the given instruction can be scalarized.
6756   auto canBeScalarized = [&](Instruction *I) -> bool {
6757     // We only attempt to scalarize instructions forming a single-use chain
6758     // from the original predicated block that would otherwise be vectorized.
6759     // Although not strictly necessary, we give up on instructions we know will
6760     // already be scalar to avoid traversing chains that are unlikely to be
6761     // beneficial.
6762     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6763         isScalarAfterVectorization(I, VF))
6764       return false;
6765 
6766     // If the instruction is scalar with predication, it will be analyzed
6767     // separately. We ignore it within the context of PredInst.
6768     if (isScalarWithPredication(I))
6769       return false;
6770 
6771     // If any of the instruction's operands are uniform after vectorization,
6772     // the instruction cannot be scalarized. This prevents, for example, a
6773     // masked load from being scalarized.
6774     //
6775     // We assume we will only emit a value for lane zero of an instruction
6776     // marked uniform after vectorization, rather than VF identical values.
6777     // Thus, if we scalarize an instruction that uses a uniform, we would
6778     // create uses of values corresponding to the lanes we aren't emitting code
6779     // for. This behavior can be changed by allowing getScalarValue to clone
6780     // the lane zero values for uniforms rather than asserting.
6781     for (Use &U : I->operands())
6782       if (auto *J = dyn_cast<Instruction>(U.get()))
6783         if (isUniformAfterVectorization(J, VF))
6784           return false;
6785 
6786     // Otherwise, we can scalarize the instruction.
6787     return true;
6788   };
6789 
6790   // Compute the expected cost discount from scalarizing the entire expression
6791   // feeding the predicated instruction. We currently only consider expressions
6792   // that are single-use instruction chains.
6793   Worklist.push_back(PredInst);
6794   while (!Worklist.empty()) {
6795     Instruction *I = Worklist.pop_back_val();
6796 
6797     // If we've already analyzed the instruction, there's nothing to do.
6798     if (ScalarCosts.find(I) != ScalarCosts.end())
6799       continue;
6800 
6801     // Compute the cost of the vector instruction. Note that this cost already
6802     // includes the scalarization overhead of the predicated instruction.
6803     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6804 
6805     // Compute the cost of the scalarized instruction. This cost is the cost of
6806     // the instruction as if it wasn't if-converted and instead remained in the
6807     // predicated block. We will scale this cost by block probability after
6808     // computing the scalarization overhead.
6809     assert(!VF.isScalable() && "scalable vectors not yet supported.");
6810     InstructionCost ScalarCost =
6811         VF.getKnownMinValue() *
6812         getInstructionCost(I, ElementCount::getFixed(1)).first;
6813 
6814     // Compute the scalarization overhead of needed insertelement instructions
6815     // and phi nodes.
6816     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6817       ScalarCost += TTI.getScalarizationOverhead(
6818           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6819           APInt::getAllOnesValue(VF.getKnownMinValue()), true, false);
6820       assert(!VF.isScalable() && "scalable vectors not yet supported.");
6821       ScalarCost +=
6822           VF.getKnownMinValue() *
6823           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6824     }
6825 
6826     // Compute the scalarization overhead of needed extractelement
6827     // instructions. For each of the instruction's operands, if the operand can
6828     // be scalarized, add it to the worklist; otherwise, account for the
6829     // overhead.
6830     for (Use &U : I->operands())
6831       if (auto *J = dyn_cast<Instruction>(U.get())) {
6832         assert(VectorType::isValidElementType(J->getType()) &&
6833                "Instruction has non-scalar type");
6834         if (canBeScalarized(J))
6835           Worklist.push_back(J);
6836         else if (needsExtract(J, VF)) {
6837           assert(!VF.isScalable() && "scalable vectors not yet supported.");
6838           ScalarCost += TTI.getScalarizationOverhead(
6839               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6840               APInt::getAllOnesValue(VF.getKnownMinValue()), false, true);
6841         }
6842       }
6843 
6844     // Scale the total scalar cost by block probability.
6845     ScalarCost /= getReciprocalPredBlockProb();
6846 
6847     // Compute the discount. A non-negative discount means the vector version
6848     // of the instruction costs more, and scalarizing would be beneficial.
6849     Discount += VectorCost - ScalarCost;
6850     ScalarCosts[I] = ScalarCost;
6851   }
6852 
6853   return *Discount.getValue();
6854 }
6855 
6856 LoopVectorizationCostModel::VectorizationCostTy
6857 LoopVectorizationCostModel::expectedCost(ElementCount VF) {
6858   VectorizationCostTy Cost;
6859 
6860   // For each block.
6861   for (BasicBlock *BB : TheLoop->blocks()) {
6862     VectorizationCostTy BlockCost;
6863 
6864     // For each instruction in the old loop.
6865     for (Instruction &I : BB->instructionsWithoutDebug()) {
6866       // Skip ignored values.
6867       if (ValuesToIgnore.count(&I) ||
6868           (VF.isVector() && VecValuesToIgnore.count(&I)))
6869         continue;
6870 
6871       VectorizationCostTy C = getInstructionCost(&I, VF);
6872 
6873       // Check if we should override the cost.
6874       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
6875         C.first = InstructionCost(ForceTargetInstructionCost);
6876 
6877       BlockCost.first += C.first;
6878       BlockCost.second |= C.second;
6879       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6880                         << " for VF " << VF << " For instruction: " << I
6881                         << '\n');
6882     }
6883 
6884     // If we are vectorizing a predicated block, it will have been
6885     // if-converted. This means that the block's instructions (aside from
6886     // stores and instructions that may divide by zero) will now be
6887     // unconditionally executed. For the scalar case, we may not always execute
6888     // the predicated block, if it is an if-else block. Thus, scale the block's
6889     // cost by the probability of executing it. blockNeedsPredication from
6890     // Legal is used so as to not include all blocks in tail folded loops.
6891     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6892       BlockCost.first /= getReciprocalPredBlockProb();
6893 
6894     Cost.first += BlockCost.first;
6895     Cost.second |= BlockCost.second;
6896   }
6897 
6898   return Cost;
6899 }
6900 
6901 /// Gets Address Access SCEV after verifying that the access pattern
6902 /// is loop invariant except the induction variable dependence.
6903 ///
6904 /// This SCEV can be sent to the Target in order to estimate the address
6905 /// calculation cost.
6906 static const SCEV *getAddressAccessSCEV(
6907               Value *Ptr,
6908               LoopVectorizationLegality *Legal,
6909               PredicatedScalarEvolution &PSE,
6910               const Loop *TheLoop) {
6911 
6912   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6913   if (!Gep)
6914     return nullptr;
6915 
6916   // We are looking for a gep with all loop invariant indices except for one
6917   // which should be an induction variable.
6918   auto SE = PSE.getSE();
6919   unsigned NumOperands = Gep->getNumOperands();
6920   for (unsigned i = 1; i < NumOperands; ++i) {
6921     Value *Opd = Gep->getOperand(i);
6922     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6923         !Legal->isInductionVariable(Opd))
6924       return nullptr;
6925   }
6926 
6927   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6928   return PSE.getSCEV(Ptr);
6929 }
6930 
6931 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6932   return Legal->hasStride(I->getOperand(0)) ||
6933          Legal->hasStride(I->getOperand(1));
6934 }
6935 
6936 InstructionCost
6937 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6938                                                         ElementCount VF) {
6939   assert(VF.isVector() &&
6940          "Scalarization cost of instruction implies vectorization.");
6941   if (VF.isScalable())
6942     return InstructionCost::getInvalid();
6943 
6944   Type *ValTy = getMemInstValueType(I);
6945   auto SE = PSE.getSE();
6946 
6947   unsigned AS = getLoadStoreAddressSpace(I);
6948   Value *Ptr = getLoadStorePointerOperand(I);
6949   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6950 
6951   // Figure out whether the access is strided and get the stride value
6952   // if it's known in compile time
6953   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6954 
6955   // Get the cost of the scalar memory instruction and address computation.
6956   InstructionCost Cost =
6957       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6958 
6959   // Don't pass *I here, since it is scalar but will actually be part of a
6960   // vectorized loop where the user of it is a vectorized instruction.
6961   const Align Alignment = getLoadStoreAlignment(I);
6962   Cost += VF.getKnownMinValue() *
6963           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6964                               AS, TTI::TCK_RecipThroughput);
6965 
6966   // Get the overhead of the extractelement and insertelement instructions
6967   // we might create due to scalarization.
6968   Cost += getScalarizationOverhead(I, VF);
6969 
6970   // If we have a predicated load/store, it will need extra i1 extracts and
6971   // conditional branches, but may not be executed for each vector lane. Scale
6972   // the cost by the probability of executing the predicated block.
6973   if (isPredicatedInst(I)) {
6974     Cost /= getReciprocalPredBlockProb();
6975 
6976     // Add the cost of an i1 extract and a branch
6977     auto *Vec_i1Ty =
6978         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6979     Cost += TTI.getScalarizationOverhead(
6980         Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
6981         /*Insert=*/false, /*Extract=*/true);
6982     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6983 
6984     if (useEmulatedMaskMemRefHack(I))
6985       // Artificially setting to a high enough value to practically disable
6986       // vectorization with such operations.
6987       Cost = 3000000;
6988   }
6989 
6990   return Cost;
6991 }
6992 
6993 InstructionCost
6994 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6995                                                     ElementCount VF) {
6996   Type *ValTy = getMemInstValueType(I);
6997   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6998   Value *Ptr = getLoadStorePointerOperand(I);
6999   unsigned AS = getLoadStoreAddressSpace(I);
7000   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
7001   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7002 
7003   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7004          "Stride should be 1 or -1 for consecutive memory access");
7005   const Align Alignment = getLoadStoreAlignment(I);
7006   InstructionCost Cost = 0;
7007   if (Legal->isMaskRequired(I))
7008     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7009                                       CostKind);
7010   else
7011     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7012                                 CostKind, I);
7013 
7014   bool Reverse = ConsecutiveStride < 0;
7015   if (Reverse)
7016     Cost +=
7017         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7018   return Cost;
7019 }
7020 
7021 InstructionCost
7022 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7023                                                 ElementCount VF) {
7024   assert(Legal->isUniformMemOp(*I));
7025 
7026   Type *ValTy = getMemInstValueType(I);
7027   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7028   const Align Alignment = getLoadStoreAlignment(I);
7029   unsigned AS = getLoadStoreAddressSpace(I);
7030   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7031   if (isa<LoadInst>(I)) {
7032     return TTI.getAddressComputationCost(ValTy) +
7033            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7034                                CostKind) +
7035            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7036   }
7037   StoreInst *SI = cast<StoreInst>(I);
7038 
7039   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7040   return TTI.getAddressComputationCost(ValTy) +
7041          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7042                              CostKind) +
7043          (isLoopInvariantStoreValue
7044               ? 0
7045               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7046                                        VF.getKnownMinValue() - 1));
7047 }
7048 
7049 InstructionCost
7050 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7051                                                  ElementCount VF) {
7052   Type *ValTy = getMemInstValueType(I);
7053   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7054   const Align Alignment = getLoadStoreAlignment(I);
7055   const Value *Ptr = getLoadStorePointerOperand(I);
7056 
7057   return TTI.getAddressComputationCost(VectorTy) +
7058          TTI.getGatherScatterOpCost(
7059              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7060              TargetTransformInfo::TCK_RecipThroughput, I);
7061 }
7062 
7063 InstructionCost
7064 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7065                                                    ElementCount VF) {
7066   // TODO: Once we have support for interleaving with scalable vectors
7067   // we can calculate the cost properly here.
7068   if (VF.isScalable())
7069     return InstructionCost::getInvalid();
7070 
7071   Type *ValTy = getMemInstValueType(I);
7072   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7073   unsigned AS = getLoadStoreAddressSpace(I);
7074 
7075   auto Group = getInterleavedAccessGroup(I);
7076   assert(Group && "Fail to get an interleaved access group.");
7077 
7078   unsigned InterleaveFactor = Group->getFactor();
7079   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7080 
7081   // Holds the indices of existing members in an interleaved load group.
7082   // An interleaved store group doesn't need this as it doesn't allow gaps.
7083   SmallVector<unsigned, 4> Indices;
7084   if (isa<LoadInst>(I)) {
7085     for (unsigned i = 0; i < InterleaveFactor; i++)
7086       if (Group->getMember(i))
7087         Indices.push_back(i);
7088   }
7089 
7090   // Calculate the cost of the whole interleaved group.
7091   bool UseMaskForGaps =
7092       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
7093   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7094       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7095       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7096 
7097   if (Group->isReverse()) {
7098     // TODO: Add support for reversed masked interleaved access.
7099     assert(!Legal->isMaskRequired(I) &&
7100            "Reverse masked interleaved access not supported.");
7101     Cost +=
7102         Group->getNumMembers() *
7103         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7104   }
7105   return Cost;
7106 }
7107 
7108 InstructionCost LoopVectorizationCostModel::getReductionPatternCost(
7109     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7110   // Early exit for no inloop reductions
7111   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7112     return InstructionCost::getInvalid();
7113   auto *VectorTy = cast<VectorType>(Ty);
7114 
7115   // We are looking for a pattern of, and finding the minimal acceptable cost:
7116   //  reduce(mul(ext(A), ext(B))) or
7117   //  reduce(mul(A, B)) or
7118   //  reduce(ext(A)) or
7119   //  reduce(A).
7120   // The basic idea is that we walk down the tree to do that, finding the root
7121   // reduction instruction in InLoopReductionImmediateChains. From there we find
7122   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7123   // of the components. If the reduction cost is lower then we return it for the
7124   // reduction instruction and 0 for the other instructions in the pattern. If
7125   // it is not we return an invalid cost specifying the orignal cost method
7126   // should be used.
7127   Instruction *RetI = I;
7128   if ((RetI->getOpcode() == Instruction::SExt ||
7129        RetI->getOpcode() == Instruction::ZExt)) {
7130     if (!RetI->hasOneUser())
7131       return InstructionCost::getInvalid();
7132     RetI = RetI->user_back();
7133   }
7134   if (RetI->getOpcode() == Instruction::Mul &&
7135       RetI->user_back()->getOpcode() == Instruction::Add) {
7136     if (!RetI->hasOneUser())
7137       return InstructionCost::getInvalid();
7138     RetI = RetI->user_back();
7139   }
7140 
7141   // Test if the found instruction is a reduction, and if not return an invalid
7142   // cost specifying the parent to use the original cost modelling.
7143   if (!InLoopReductionImmediateChains.count(RetI))
7144     return InstructionCost::getInvalid();
7145 
7146   // Find the reduction this chain is a part of and calculate the basic cost of
7147   // the reduction on its own.
7148   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7149   Instruction *ReductionPhi = LastChain;
7150   while (!isa<PHINode>(ReductionPhi))
7151     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7152 
7153   RecurrenceDescriptor RdxDesc =
7154       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7155   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7156       RdxDesc.getOpcode(), VectorTy, false, CostKind);
7157 
7158   // Get the operand that was not the reduction chain and match it to one of the
7159   // patterns, returning the better cost if it is found.
7160   Instruction *RedOp = RetI->getOperand(1) == LastChain
7161                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7162                            : dyn_cast<Instruction>(RetI->getOperand(1));
7163 
7164   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7165 
7166   if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) &&
7167       !TheLoop->isLoopInvariant(RedOp)) {
7168     bool IsUnsigned = isa<ZExtInst>(RedOp);
7169     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7170     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7171         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7172         CostKind);
7173 
7174     InstructionCost ExtCost =
7175         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7176                              TTI::CastContextHint::None, CostKind, RedOp);
7177     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7178       return I == RetI ? *RedCost.getValue() : 0;
7179   } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) {
7180     Instruction *Mul = RedOp;
7181     Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0));
7182     Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1));
7183     if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) &&
7184         Op0->getOpcode() == Op1->getOpcode() &&
7185         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7186         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7187       bool IsUnsigned = isa<ZExtInst>(Op0);
7188       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7189       // reduce(mul(ext, ext))
7190       InstructionCost ExtCost =
7191           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7192                                TTI::CastContextHint::None, CostKind, Op0);
7193       InstructionCost MulCost =
7194           TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind);
7195 
7196       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7197           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7198           CostKind);
7199 
7200       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7201         return I == RetI ? *RedCost.getValue() : 0;
7202     } else {
7203       InstructionCost MulCost =
7204           TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind);
7205 
7206       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7207           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7208           CostKind);
7209 
7210       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7211         return I == RetI ? *RedCost.getValue() : 0;
7212     }
7213   }
7214 
7215   return I == RetI ? BaseCost : InstructionCost::getInvalid();
7216 }
7217 
7218 InstructionCost
7219 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7220                                                      ElementCount VF) {
7221   // Calculate scalar cost only. Vectorization cost should be ready at this
7222   // moment.
7223   if (VF.isScalar()) {
7224     Type *ValTy = getMemInstValueType(I);
7225     const Align Alignment = getLoadStoreAlignment(I);
7226     unsigned AS = getLoadStoreAddressSpace(I);
7227 
7228     return TTI.getAddressComputationCost(ValTy) +
7229            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7230                                TTI::TCK_RecipThroughput, I);
7231   }
7232   return getWideningCost(I, VF);
7233 }
7234 
7235 LoopVectorizationCostModel::VectorizationCostTy
7236 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7237                                                ElementCount VF) {
7238   // If we know that this instruction will remain uniform, check the cost of
7239   // the scalar version.
7240   if (isUniformAfterVectorization(I, VF))
7241     VF = ElementCount::getFixed(1);
7242 
7243   if (VF.isVector() && isProfitableToScalarize(I, VF))
7244     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7245 
7246   // Forced scalars do not have any scalarization overhead.
7247   auto ForcedScalar = ForcedScalars.find(VF);
7248   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7249     auto InstSet = ForcedScalar->second;
7250     if (InstSet.count(I))
7251       return VectorizationCostTy(
7252           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7253            VF.getKnownMinValue()),
7254           false);
7255   }
7256 
7257   Type *VectorTy;
7258   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7259 
7260   bool TypeNotScalarized =
7261       VF.isVector() && VectorTy->isVectorTy() &&
7262       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7263   return VectorizationCostTy(C, TypeNotScalarized);
7264 }
7265 
7266 InstructionCost
7267 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7268                                                      ElementCount VF) const {
7269 
7270   if (VF.isScalable())
7271     return InstructionCost::getInvalid();
7272 
7273   if (VF.isScalar())
7274     return 0;
7275 
7276   InstructionCost Cost = 0;
7277   Type *RetTy = ToVectorTy(I->getType(), VF);
7278   if (!RetTy->isVoidTy() &&
7279       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7280     Cost += TTI.getScalarizationOverhead(
7281         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()),
7282         true, false);
7283 
7284   // Some targets keep addresses scalar.
7285   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7286     return Cost;
7287 
7288   // Some targets support efficient element stores.
7289   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7290     return Cost;
7291 
7292   // Collect operands to consider.
7293   CallInst *CI = dyn_cast<CallInst>(I);
7294   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
7295 
7296   // Skip operands that do not require extraction/scalarization and do not incur
7297   // any overhead.
7298   SmallVector<Type *> Tys;
7299   for (auto *V : filterExtractingOperands(Ops, VF))
7300     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7301   return Cost + TTI.getOperandsScalarizationOverhead(
7302                     filterExtractingOperands(Ops, VF), Tys);
7303 }
7304 
7305 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7306   if (VF.isScalar())
7307     return;
7308   NumPredStores = 0;
7309   for (BasicBlock *BB : TheLoop->blocks()) {
7310     // For each instruction in the old loop.
7311     for (Instruction &I : *BB) {
7312       Value *Ptr =  getLoadStorePointerOperand(&I);
7313       if (!Ptr)
7314         continue;
7315 
7316       // TODO: We should generate better code and update the cost model for
7317       // predicated uniform stores. Today they are treated as any other
7318       // predicated store (see added test cases in
7319       // invariant-store-vectorization.ll).
7320       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7321         NumPredStores++;
7322 
7323       if (Legal->isUniformMemOp(I)) {
7324         // TODO: Avoid replicating loads and stores instead of
7325         // relying on instcombine to remove them.
7326         // Load: Scalar load + broadcast
7327         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7328         InstructionCost Cost = getUniformMemOpCost(&I, VF);
7329         setWideningDecision(&I, VF, CM_Scalarize, Cost);
7330         continue;
7331       }
7332 
7333       // We assume that widening is the best solution when possible.
7334       if (memoryInstructionCanBeWidened(&I, VF)) {
7335         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7336         int ConsecutiveStride =
7337                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
7338         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7339                "Expected consecutive stride.");
7340         InstWidening Decision =
7341             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7342         setWideningDecision(&I, VF, Decision, Cost);
7343         continue;
7344       }
7345 
7346       // Choose between Interleaving, Gather/Scatter or Scalarization.
7347       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7348       unsigned NumAccesses = 1;
7349       if (isAccessInterleaved(&I)) {
7350         auto Group = getInterleavedAccessGroup(&I);
7351         assert(Group && "Fail to get an interleaved access group.");
7352 
7353         // Make one decision for the whole group.
7354         if (getWideningDecision(&I, VF) != CM_Unknown)
7355           continue;
7356 
7357         NumAccesses = Group->getNumMembers();
7358         if (interleavedAccessCanBeWidened(&I, VF))
7359           InterleaveCost = getInterleaveGroupCost(&I, VF);
7360       }
7361 
7362       InstructionCost GatherScatterCost =
7363           isLegalGatherOrScatter(&I)
7364               ? getGatherScatterCost(&I, VF) * NumAccesses
7365               : InstructionCost::getInvalid();
7366 
7367       InstructionCost ScalarizationCost =
7368           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7369 
7370       // Choose better solution for the current VF,
7371       // write down this decision and use it during vectorization.
7372       InstructionCost Cost;
7373       InstWidening Decision;
7374       if (InterleaveCost <= GatherScatterCost &&
7375           InterleaveCost < ScalarizationCost) {
7376         Decision = CM_Interleave;
7377         Cost = InterleaveCost;
7378       } else if (GatherScatterCost < ScalarizationCost) {
7379         Decision = CM_GatherScatter;
7380         Cost = GatherScatterCost;
7381       } else {
7382         assert(!VF.isScalable() &&
7383                "We cannot yet scalarise for scalable vectors");
7384         Decision = CM_Scalarize;
7385         Cost = ScalarizationCost;
7386       }
7387       // If the instructions belongs to an interleave group, the whole group
7388       // receives the same decision. The whole group receives the cost, but
7389       // the cost will actually be assigned to one instruction.
7390       if (auto Group = getInterleavedAccessGroup(&I))
7391         setWideningDecision(Group, VF, Decision, Cost);
7392       else
7393         setWideningDecision(&I, VF, Decision, Cost);
7394     }
7395   }
7396 
7397   // Make sure that any load of address and any other address computation
7398   // remains scalar unless there is gather/scatter support. This avoids
7399   // inevitable extracts into address registers, and also has the benefit of
7400   // activating LSR more, since that pass can't optimize vectorized
7401   // addresses.
7402   if (TTI.prefersVectorizedAddressing())
7403     return;
7404 
7405   // Start with all scalar pointer uses.
7406   SmallPtrSet<Instruction *, 8> AddrDefs;
7407   for (BasicBlock *BB : TheLoop->blocks())
7408     for (Instruction &I : *BB) {
7409       Instruction *PtrDef =
7410         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7411       if (PtrDef && TheLoop->contains(PtrDef) &&
7412           getWideningDecision(&I, VF) != CM_GatherScatter)
7413         AddrDefs.insert(PtrDef);
7414     }
7415 
7416   // Add all instructions used to generate the addresses.
7417   SmallVector<Instruction *, 4> Worklist;
7418   append_range(Worklist, AddrDefs);
7419   while (!Worklist.empty()) {
7420     Instruction *I = Worklist.pop_back_val();
7421     for (auto &Op : I->operands())
7422       if (auto *InstOp = dyn_cast<Instruction>(Op))
7423         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7424             AddrDefs.insert(InstOp).second)
7425           Worklist.push_back(InstOp);
7426   }
7427 
7428   for (auto *I : AddrDefs) {
7429     if (isa<LoadInst>(I)) {
7430       // Setting the desired widening decision should ideally be handled in
7431       // by cost functions, but since this involves the task of finding out
7432       // if the loaded register is involved in an address computation, it is
7433       // instead changed here when we know this is the case.
7434       InstWidening Decision = getWideningDecision(I, VF);
7435       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7436         // Scalarize a widened load of address.
7437         setWideningDecision(
7438             I, VF, CM_Scalarize,
7439             (VF.getKnownMinValue() *
7440              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7441       else if (auto Group = getInterleavedAccessGroup(I)) {
7442         // Scalarize an interleave group of address loads.
7443         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7444           if (Instruction *Member = Group->getMember(I))
7445             setWideningDecision(
7446                 Member, VF, CM_Scalarize,
7447                 (VF.getKnownMinValue() *
7448                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7449         }
7450       }
7451     } else
7452       // Make sure I gets scalarized and a cost estimate without
7453       // scalarization overhead.
7454       ForcedScalars[VF].insert(I);
7455   }
7456 }
7457 
7458 InstructionCost
7459 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7460                                                Type *&VectorTy) {
7461   Type *RetTy = I->getType();
7462   if (canTruncateToMinimalBitwidth(I, VF))
7463     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7464   auto SE = PSE.getSE();
7465   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7466 
7467   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7468                                                 ElementCount VF) -> bool {
7469     if (VF.isScalar())
7470       return true;
7471 
7472     auto Scalarized = InstsToScalarize.find(VF);
7473     assert(Scalarized != InstsToScalarize.end() &&
7474            "VF not yet analyzed for scalarization profitability");
7475     return !Scalarized->second.count(I) &&
7476            llvm::all_of(I->users(), [&](User *U) {
7477              auto *UI = cast<Instruction>(U);
7478              return !Scalarized->second.count(UI);
7479            });
7480   };
7481   (void) hasSingleCopyAfterVectorization;
7482 
7483   if (isScalarAfterVectorization(I, VF)) {
7484     // With the exception of GEPs and PHIs, after scalarization there should
7485     // only be one copy of the instruction generated in the loop. This is
7486     // because the VF is either 1, or any instructions that need scalarizing
7487     // have already been dealt with by the the time we get here. As a result,
7488     // it means we don't have to multiply the instruction cost by VF.
7489     assert(I->getOpcode() == Instruction::GetElementPtr ||
7490            I->getOpcode() == Instruction::PHI ||
7491            (I->getOpcode() == Instruction::BitCast &&
7492             I->getType()->isPointerTy()) ||
7493            hasSingleCopyAfterVectorization(I, VF));
7494     VectorTy = RetTy;
7495   } else
7496     VectorTy = ToVectorTy(RetTy, VF);
7497 
7498   // TODO: We need to estimate the cost of intrinsic calls.
7499   switch (I->getOpcode()) {
7500   case Instruction::GetElementPtr:
7501     // We mark this instruction as zero-cost because the cost of GEPs in
7502     // vectorized code depends on whether the corresponding memory instruction
7503     // is scalarized or not. Therefore, we handle GEPs with the memory
7504     // instruction cost.
7505     return 0;
7506   case Instruction::Br: {
7507     // In cases of scalarized and predicated instructions, there will be VF
7508     // predicated blocks in the vectorized loop. Each branch around these
7509     // blocks requires also an extract of its vector compare i1 element.
7510     bool ScalarPredicatedBB = false;
7511     BranchInst *BI = cast<BranchInst>(I);
7512     if (VF.isVector() && BI->isConditional() &&
7513         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7514          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7515       ScalarPredicatedBB = true;
7516 
7517     if (ScalarPredicatedBB) {
7518       // Return cost for branches around scalarized and predicated blocks.
7519       assert(!VF.isScalable() && "scalable vectors not yet supported.");
7520       auto *Vec_i1Ty =
7521           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7522       return (TTI.getScalarizationOverhead(
7523                   Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
7524                   false, true) +
7525               (TTI.getCFInstrCost(Instruction::Br, CostKind) *
7526                VF.getKnownMinValue()));
7527     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7528       // The back-edge branch will remain, as will all scalar branches.
7529       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7530     else
7531       // This branch will be eliminated by if-conversion.
7532       return 0;
7533     // Note: We currently assume zero cost for an unconditional branch inside
7534     // a predicated block since it will become a fall-through, although we
7535     // may decide in the future to call TTI for all branches.
7536   }
7537   case Instruction::PHI: {
7538     auto *Phi = cast<PHINode>(I);
7539 
7540     // First-order recurrences are replaced by vector shuffles inside the loop.
7541     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7542     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7543       return TTI.getShuffleCost(
7544           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7545           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7546 
7547     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7548     // converted into select instructions. We require N - 1 selects per phi
7549     // node, where N is the number of incoming values.
7550     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7551       return (Phi->getNumIncomingValues() - 1) *
7552              TTI.getCmpSelInstrCost(
7553                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7554                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7555                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7556 
7557     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7558   }
7559   case Instruction::UDiv:
7560   case Instruction::SDiv:
7561   case Instruction::URem:
7562   case Instruction::SRem:
7563     // If we have a predicated instruction, it may not be executed for each
7564     // vector lane. Get the scalarization cost and scale this amount by the
7565     // probability of executing the predicated block. If the instruction is not
7566     // predicated, we fall through to the next case.
7567     if (VF.isVector() && isScalarWithPredication(I)) {
7568       InstructionCost Cost = 0;
7569 
7570       // These instructions have a non-void type, so account for the phi nodes
7571       // that we will create. This cost is likely to be zero. The phi node
7572       // cost, if any, should be scaled by the block probability because it
7573       // models a copy at the end of each predicated block.
7574       Cost += VF.getKnownMinValue() *
7575               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7576 
7577       // The cost of the non-predicated instruction.
7578       Cost += VF.getKnownMinValue() *
7579               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7580 
7581       // The cost of insertelement and extractelement instructions needed for
7582       // scalarization.
7583       Cost += getScalarizationOverhead(I, VF);
7584 
7585       // Scale the cost by the probability of executing the predicated blocks.
7586       // This assumes the predicated block for each vector lane is equally
7587       // likely.
7588       return Cost / getReciprocalPredBlockProb();
7589     }
7590     LLVM_FALLTHROUGH;
7591   case Instruction::Add:
7592   case Instruction::FAdd:
7593   case Instruction::Sub:
7594   case Instruction::FSub:
7595   case Instruction::Mul:
7596   case Instruction::FMul:
7597   case Instruction::FDiv:
7598   case Instruction::FRem:
7599   case Instruction::Shl:
7600   case Instruction::LShr:
7601   case Instruction::AShr:
7602   case Instruction::And:
7603   case Instruction::Or:
7604   case Instruction::Xor: {
7605     // Since we will replace the stride by 1 the multiplication should go away.
7606     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7607       return 0;
7608 
7609     // Detect reduction patterns
7610     InstructionCost RedCost;
7611     if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7612             .isValid())
7613       return RedCost;
7614 
7615     // Certain instructions can be cheaper to vectorize if they have a constant
7616     // second vector operand. One example of this are shifts on x86.
7617     Value *Op2 = I->getOperand(1);
7618     TargetTransformInfo::OperandValueProperties Op2VP;
7619     TargetTransformInfo::OperandValueKind Op2VK =
7620         TTI.getOperandInfo(Op2, Op2VP);
7621     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7622       Op2VK = TargetTransformInfo::OK_UniformValue;
7623 
7624     SmallVector<const Value *, 4> Operands(I->operand_values());
7625     return TTI.getArithmeticInstrCost(
7626         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7627         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7628   }
7629   case Instruction::FNeg: {
7630     return TTI.getArithmeticInstrCost(
7631         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7632         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7633         TargetTransformInfo::OP_None, I->getOperand(0), I);
7634   }
7635   case Instruction::Select: {
7636     SelectInst *SI = cast<SelectInst>(I);
7637     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7638     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7639 
7640     const Value *Op0, *Op1;
7641     using namespace llvm::PatternMatch;
7642     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7643                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7644       // select x, y, false --> x & y
7645       // select x, true, y --> x | y
7646       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7647       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7648       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7649       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7650       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7651               Op1->getType()->getScalarSizeInBits() == 1);
7652 
7653       SmallVector<const Value *, 2> Operands{Op0, Op1};
7654       return TTI.getArithmeticInstrCost(
7655           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7656           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7657     }
7658 
7659     Type *CondTy = SI->getCondition()->getType();
7660     if (!ScalarCond)
7661       CondTy = VectorType::get(CondTy, VF);
7662     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7663                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7664   }
7665   case Instruction::ICmp:
7666   case Instruction::FCmp: {
7667     Type *ValTy = I->getOperand(0)->getType();
7668     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7669     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7670       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7671     VectorTy = ToVectorTy(ValTy, VF);
7672     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7673                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7674   }
7675   case Instruction::Store:
7676   case Instruction::Load: {
7677     ElementCount Width = VF;
7678     if (Width.isVector()) {
7679       InstWidening Decision = getWideningDecision(I, Width);
7680       assert(Decision != CM_Unknown &&
7681              "CM decision should be taken at this point");
7682       if (Decision == CM_Scalarize)
7683         Width = ElementCount::getFixed(1);
7684     }
7685     VectorTy = ToVectorTy(getMemInstValueType(I), Width);
7686     return getMemoryInstructionCost(I, VF);
7687   }
7688   case Instruction::BitCast:
7689     if (I->getType()->isPointerTy())
7690       return 0;
7691     LLVM_FALLTHROUGH;
7692   case Instruction::ZExt:
7693   case Instruction::SExt:
7694   case Instruction::FPToUI:
7695   case Instruction::FPToSI:
7696   case Instruction::FPExt:
7697   case Instruction::PtrToInt:
7698   case Instruction::IntToPtr:
7699   case Instruction::SIToFP:
7700   case Instruction::UIToFP:
7701   case Instruction::Trunc:
7702   case Instruction::FPTrunc: {
7703     // Computes the CastContextHint from a Load/Store instruction.
7704     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7705       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7706              "Expected a load or a store!");
7707 
7708       if (VF.isScalar() || !TheLoop->contains(I))
7709         return TTI::CastContextHint::Normal;
7710 
7711       switch (getWideningDecision(I, VF)) {
7712       case LoopVectorizationCostModel::CM_GatherScatter:
7713         return TTI::CastContextHint::GatherScatter;
7714       case LoopVectorizationCostModel::CM_Interleave:
7715         return TTI::CastContextHint::Interleave;
7716       case LoopVectorizationCostModel::CM_Scalarize:
7717       case LoopVectorizationCostModel::CM_Widen:
7718         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7719                                         : TTI::CastContextHint::Normal;
7720       case LoopVectorizationCostModel::CM_Widen_Reverse:
7721         return TTI::CastContextHint::Reversed;
7722       case LoopVectorizationCostModel::CM_Unknown:
7723         llvm_unreachable("Instr did not go through cost modelling?");
7724       }
7725 
7726       llvm_unreachable("Unhandled case!");
7727     };
7728 
7729     unsigned Opcode = I->getOpcode();
7730     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7731     // For Trunc, the context is the only user, which must be a StoreInst.
7732     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7733       if (I->hasOneUse())
7734         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7735           CCH = ComputeCCH(Store);
7736     }
7737     // For Z/Sext, the context is the operand, which must be a LoadInst.
7738     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7739              Opcode == Instruction::FPExt) {
7740       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7741         CCH = ComputeCCH(Load);
7742     }
7743 
7744     // We optimize the truncation of induction variables having constant
7745     // integer steps. The cost of these truncations is the same as the scalar
7746     // operation.
7747     if (isOptimizableIVTruncate(I, VF)) {
7748       auto *Trunc = cast<TruncInst>(I);
7749       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7750                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7751     }
7752 
7753     // Detect reduction patterns
7754     InstructionCost RedCost;
7755     if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7756             .isValid())
7757       return RedCost;
7758 
7759     Type *SrcScalarTy = I->getOperand(0)->getType();
7760     Type *SrcVecTy =
7761         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7762     if (canTruncateToMinimalBitwidth(I, VF)) {
7763       // This cast is going to be shrunk. This may remove the cast or it might
7764       // turn it into slightly different cast. For example, if MinBW == 16,
7765       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7766       //
7767       // Calculate the modified src and dest types.
7768       Type *MinVecTy = VectorTy;
7769       if (Opcode == Instruction::Trunc) {
7770         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7771         VectorTy =
7772             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7773       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7774         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7775         VectorTy =
7776             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7777       }
7778     }
7779 
7780     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7781   }
7782   case Instruction::Call: {
7783     bool NeedToScalarize;
7784     CallInst *CI = cast<CallInst>(I);
7785     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7786     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7787       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7788       return std::min(CallCost, IntrinsicCost);
7789     }
7790     return CallCost;
7791   }
7792   case Instruction::ExtractValue:
7793     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7794   default:
7795     // This opcode is unknown. Assume that it is the same as 'mul'.
7796     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7797   } // end of switch.
7798 }
7799 
7800 char LoopVectorize::ID = 0;
7801 
7802 static const char lv_name[] = "Loop Vectorization";
7803 
7804 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7805 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7806 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7807 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7808 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7809 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7810 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7811 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7812 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7813 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7814 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7815 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7816 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7817 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7818 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7819 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7820 
7821 namespace llvm {
7822 
7823 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7824 
7825 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7826                               bool VectorizeOnlyWhenForced) {
7827   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7828 }
7829 
7830 } // end namespace llvm
7831 
7832 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7833   // Check if the pointer operand of a load or store instruction is
7834   // consecutive.
7835   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7836     return Legal->isConsecutivePtr(Ptr);
7837   return false;
7838 }
7839 
7840 void LoopVectorizationCostModel::collectValuesToIgnore() {
7841   // Ignore ephemeral values.
7842   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7843 
7844   // Ignore type-promoting instructions we identified during reduction
7845   // detection.
7846   for (auto &Reduction : Legal->getReductionVars()) {
7847     RecurrenceDescriptor &RedDes = Reduction.second;
7848     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7849     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7850   }
7851   // Ignore type-casting instructions we identified during induction
7852   // detection.
7853   for (auto &Induction : Legal->getInductionVars()) {
7854     InductionDescriptor &IndDes = Induction.second;
7855     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7856     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7857   }
7858 }
7859 
7860 void LoopVectorizationCostModel::collectInLoopReductions() {
7861   for (auto &Reduction : Legal->getReductionVars()) {
7862     PHINode *Phi = Reduction.first;
7863     RecurrenceDescriptor &RdxDesc = Reduction.second;
7864 
7865     // We don't collect reductions that are type promoted (yet).
7866     if (RdxDesc.getRecurrenceType() != Phi->getType())
7867       continue;
7868 
7869     // If the target would prefer this reduction to happen "in-loop", then we
7870     // want to record it as such.
7871     unsigned Opcode = RdxDesc.getOpcode();
7872     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7873         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7874                                    TargetTransformInfo::ReductionFlags()))
7875       continue;
7876 
7877     // Check that we can correctly put the reductions into the loop, by
7878     // finding the chain of operations that leads from the phi to the loop
7879     // exit value.
7880     SmallVector<Instruction *, 4> ReductionOperations =
7881         RdxDesc.getReductionOpChain(Phi, TheLoop);
7882     bool InLoop = !ReductionOperations.empty();
7883     if (InLoop) {
7884       InLoopReductionChains[Phi] = ReductionOperations;
7885       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7886       Instruction *LastChain = Phi;
7887       for (auto *I : ReductionOperations) {
7888         InLoopReductionImmediateChains[I] = LastChain;
7889         LastChain = I;
7890       }
7891     }
7892     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7893                       << " reduction for phi: " << *Phi << "\n");
7894   }
7895 }
7896 
7897 // TODO: we could return a pair of values that specify the max VF and
7898 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7899 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7900 // doesn't have a cost model that can choose which plan to execute if
7901 // more than one is generated.
7902 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7903                                  LoopVectorizationCostModel &CM) {
7904   unsigned WidestType;
7905   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7906   return WidestVectorRegBits / WidestType;
7907 }
7908 
7909 VectorizationFactor
7910 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7911   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7912   ElementCount VF = UserVF;
7913   // Outer loop handling: They may require CFG and instruction level
7914   // transformations before even evaluating whether vectorization is profitable.
7915   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7916   // the vectorization pipeline.
7917   if (!OrigLoop->isInnermost()) {
7918     // If the user doesn't provide a vectorization factor, determine a
7919     // reasonable one.
7920     if (UserVF.isZero()) {
7921       VF = ElementCount::getFixed(determineVPlanVF(
7922           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7923               .getFixedSize(),
7924           CM));
7925       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7926 
7927       // Make sure we have a VF > 1 for stress testing.
7928       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7929         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7930                           << "overriding computed VF.\n");
7931         VF = ElementCount::getFixed(4);
7932       }
7933     }
7934     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7935     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7936            "VF needs to be a power of two");
7937     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7938                       << "VF " << VF << " to build VPlans.\n");
7939     buildVPlans(VF, VF);
7940 
7941     // For VPlan build stress testing, we bail out after VPlan construction.
7942     if (VPlanBuildStressTest)
7943       return VectorizationFactor::Disabled();
7944 
7945     return {VF, 0 /*Cost*/};
7946   }
7947 
7948   LLVM_DEBUG(
7949       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7950                 "VPlan-native path.\n");
7951   return VectorizationFactor::Disabled();
7952 }
7953 
7954 Optional<VectorizationFactor>
7955 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7956   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7957   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7958   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7959     return None;
7960 
7961   // Invalidate interleave groups if all blocks of loop will be predicated.
7962   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
7963       !useMaskedInterleavedAccesses(*TTI)) {
7964     LLVM_DEBUG(
7965         dbgs()
7966         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7967            "which requires masked-interleaved support.\n");
7968     if (CM.InterleaveInfo.invalidateGroups())
7969       // Invalidating interleave groups also requires invalidating all decisions
7970       // based on them, which includes widening decisions and uniform and scalar
7971       // values.
7972       CM.invalidateCostModelingDecisions();
7973   }
7974 
7975   ElementCount MaxUserVF =
7976       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7977   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7978   if (!UserVF.isZero() && UserVFIsLegal) {
7979     LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max")
7980                       << " VF " << UserVF << ".\n");
7981     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7982            "VF needs to be a power of two");
7983     // Collect the instructions (and their associated costs) that will be more
7984     // profitable to scalarize.
7985     CM.selectUserVectorizationFactor(UserVF);
7986     CM.collectInLoopReductions();
7987     buildVPlansWithVPRecipes({UserVF}, {UserVF});
7988     LLVM_DEBUG(printPlans(dbgs()));
7989     return {{UserVF, 0}};
7990   }
7991 
7992   ElementCount MaxVF = MaxFactors.FixedVF;
7993   assert(!MaxVF.isScalable() &&
7994          "Scalable vectors not yet supported beyond this point");
7995 
7996   for (ElementCount VF = ElementCount::getFixed(1);
7997        ElementCount::isKnownLE(VF, MaxVF); VF *= 2) {
7998     // Collect Uniform and Scalar instructions after vectorization with VF.
7999     CM.collectUniformsAndScalars(VF);
8000 
8001     // Collect the instructions (and their associated costs) that will be more
8002     // profitable to scalarize.
8003     if (VF.isVector())
8004       CM.collectInstsToScalarize(VF);
8005   }
8006 
8007   CM.collectInLoopReductions();
8008 
8009   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF);
8010   LLVM_DEBUG(printPlans(dbgs()));
8011   if (!MaxFactors.hasVector())
8012     return VectorizationFactor::Disabled();
8013 
8014   // Select the optimal vectorization factor.
8015   auto SelectedVF = CM.selectVectorizationFactor(MaxVF);
8016 
8017   // Check if it is profitable to vectorize with runtime checks.
8018   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8019   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8020     bool PragmaThresholdReached =
8021         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8022     bool ThresholdReached =
8023         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8024     if ((ThresholdReached && !Hints.allowReordering()) ||
8025         PragmaThresholdReached) {
8026       ORE->emit([&]() {
8027         return OptimizationRemarkAnalysisAliasing(
8028                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8029                    OrigLoop->getHeader())
8030                << "loop not vectorized: cannot prove it is safe to reorder "
8031                   "memory operations";
8032       });
8033       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8034       Hints.emitRemarkWithHints();
8035       return VectorizationFactor::Disabled();
8036     }
8037   }
8038   return SelectedVF;
8039 }
8040 
8041 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
8042   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
8043                     << '\n');
8044   BestVF = VF;
8045   BestUF = UF;
8046 
8047   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
8048     return !Plan->hasVF(VF);
8049   });
8050   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
8051 }
8052 
8053 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
8054                                            DominatorTree *DT) {
8055   // Perform the actual loop transformation.
8056 
8057   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8058   assert(BestVF.hasValue() && "Vectorization Factor is missing");
8059   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
8060 
8061   VPTransformState State{
8062       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
8063   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8064   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8065   State.CanonicalIV = ILV.Induction;
8066 
8067   ILV.printDebugTracesAtStart();
8068 
8069   //===------------------------------------------------===//
8070   //
8071   // Notice: any optimization or new instruction that go
8072   // into the code below should also be implemented in
8073   // the cost-model.
8074   //
8075   //===------------------------------------------------===//
8076 
8077   // 2. Copy and widen instructions from the old loop into the new loop.
8078   VPlans.front()->execute(&State);
8079 
8080   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8081   //    predication, updating analyses.
8082   ILV.fixVectorizedLoop(State);
8083 
8084   ILV.printDebugTracesAtEnd();
8085 }
8086 
8087 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8088 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8089   for (const auto &Plan : VPlans)
8090     if (PrintVPlansInDotFormat)
8091       Plan->printDOT(O);
8092     else
8093       Plan->print(O);
8094 }
8095 #endif
8096 
8097 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8098     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8099 
8100   // We create new control-flow for the vectorized loop, so the original exit
8101   // conditions will be dead after vectorization if it's only used by the
8102   // terminator
8103   SmallVector<BasicBlock*> ExitingBlocks;
8104   OrigLoop->getExitingBlocks(ExitingBlocks);
8105   for (auto *BB : ExitingBlocks) {
8106     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8107     if (!Cmp || !Cmp->hasOneUse())
8108       continue;
8109 
8110     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8111     if (!DeadInstructions.insert(Cmp).second)
8112       continue;
8113 
8114     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8115     // TODO: can recurse through operands in general
8116     for (Value *Op : Cmp->operands()) {
8117       if (isa<TruncInst>(Op) && Op->hasOneUse())
8118           DeadInstructions.insert(cast<Instruction>(Op));
8119     }
8120   }
8121 
8122   // We create new "steps" for induction variable updates to which the original
8123   // induction variables map. An original update instruction will be dead if
8124   // all its users except the induction variable are dead.
8125   auto *Latch = OrigLoop->getLoopLatch();
8126   for (auto &Induction : Legal->getInductionVars()) {
8127     PHINode *Ind = Induction.first;
8128     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8129 
8130     // If the tail is to be folded by masking, the primary induction variable,
8131     // if exists, isn't dead: it will be used for masking. Don't kill it.
8132     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8133       continue;
8134 
8135     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8136           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8137         }))
8138       DeadInstructions.insert(IndUpdate);
8139 
8140     // We record as "Dead" also the type-casting instructions we had identified
8141     // during induction analysis. We don't need any handling for them in the
8142     // vectorized loop because we have proven that, under a proper runtime
8143     // test guarding the vectorized loop, the value of the phi, and the casted
8144     // value of the phi, are the same. The last instruction in this casting chain
8145     // will get its scalar/vector/widened def from the scalar/vector/widened def
8146     // of the respective phi node. Any other casts in the induction def-use chain
8147     // have no other uses outside the phi update chain, and will be ignored.
8148     InductionDescriptor &IndDes = Induction.second;
8149     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8150     DeadInstructions.insert(Casts.begin(), Casts.end());
8151   }
8152 }
8153 
8154 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8155 
8156 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8157 
8158 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
8159                                         Instruction::BinaryOps BinOp) {
8160   // When unrolling and the VF is 1, we only need to add a simple scalar.
8161   Type *Ty = Val->getType();
8162   assert(!Ty->isVectorTy() && "Val must be a scalar");
8163 
8164   if (Ty->isFloatingPointTy()) {
8165     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
8166 
8167     // Floating-point operations inherit FMF via the builder's flags.
8168     Value *MulOp = Builder.CreateFMul(C, Step);
8169     return Builder.CreateBinOp(BinOp, Val, MulOp);
8170   }
8171   Constant *C = ConstantInt::get(Ty, StartIdx);
8172   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
8173 }
8174 
8175 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8176   SmallVector<Metadata *, 4> MDs;
8177   // Reserve first location for self reference to the LoopID metadata node.
8178   MDs.push_back(nullptr);
8179   bool IsUnrollMetadata = false;
8180   MDNode *LoopID = L->getLoopID();
8181   if (LoopID) {
8182     // First find existing loop unrolling disable metadata.
8183     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8184       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8185       if (MD) {
8186         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8187         IsUnrollMetadata =
8188             S && S->getString().startswith("llvm.loop.unroll.disable");
8189       }
8190       MDs.push_back(LoopID->getOperand(i));
8191     }
8192   }
8193 
8194   if (!IsUnrollMetadata) {
8195     // Add runtime unroll disable metadata.
8196     LLVMContext &Context = L->getHeader()->getContext();
8197     SmallVector<Metadata *, 1> DisableOperands;
8198     DisableOperands.push_back(
8199         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8200     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8201     MDs.push_back(DisableNode);
8202     MDNode *NewLoopID = MDNode::get(Context, MDs);
8203     // Set operand 0 to refer to the loop id itself.
8204     NewLoopID->replaceOperandWith(0, NewLoopID);
8205     L->setLoopID(NewLoopID);
8206   }
8207 }
8208 
8209 //===--------------------------------------------------------------------===//
8210 // EpilogueVectorizerMainLoop
8211 //===--------------------------------------------------------------------===//
8212 
8213 /// This function is partially responsible for generating the control flow
8214 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8215 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8216   MDNode *OrigLoopID = OrigLoop->getLoopID();
8217   Loop *Lp = createVectorLoopSkeleton("");
8218 
8219   // Generate the code to check the minimum iteration count of the vector
8220   // epilogue (see below).
8221   EPI.EpilogueIterationCountCheck =
8222       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8223   EPI.EpilogueIterationCountCheck->setName("iter.check");
8224 
8225   // Generate the code to check any assumptions that we've made for SCEV
8226   // expressions.
8227   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8228 
8229   // Generate the code that checks at runtime if arrays overlap. We put the
8230   // checks into a separate block to make the more common case of few elements
8231   // faster.
8232   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8233 
8234   // Generate the iteration count check for the main loop, *after* the check
8235   // for the epilogue loop, so that the path-length is shorter for the case
8236   // that goes directly through the vector epilogue. The longer-path length for
8237   // the main loop is compensated for, by the gain from vectorizing the larger
8238   // trip count. Note: the branch will get updated later on when we vectorize
8239   // the epilogue.
8240   EPI.MainLoopIterationCountCheck =
8241       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8242 
8243   // Generate the induction variable.
8244   OldInduction = Legal->getPrimaryInduction();
8245   Type *IdxTy = Legal->getWidestInductionType();
8246   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8247   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8248   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8249   EPI.VectorTripCount = CountRoundDown;
8250   Induction =
8251       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8252                               getDebugLocFromInstOrOperands(OldInduction));
8253 
8254   // Skip induction resume value creation here because they will be created in
8255   // the second pass. If we created them here, they wouldn't be used anyway,
8256   // because the vplan in the second pass still contains the inductions from the
8257   // original loop.
8258 
8259   return completeLoopSkeleton(Lp, OrigLoopID);
8260 }
8261 
8262 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8263   LLVM_DEBUG({
8264     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8265            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8266            << ", Main Loop UF:" << EPI.MainLoopUF
8267            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8268            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8269   });
8270 }
8271 
8272 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8273   DEBUG_WITH_TYPE(VerboseDebug, {
8274     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8275   });
8276 }
8277 
8278 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8279     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8280   assert(L && "Expected valid Loop.");
8281   assert(Bypass && "Expected valid bypass basic block.");
8282   unsigned VFactor =
8283       ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue();
8284   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8285   Value *Count = getOrCreateTripCount(L);
8286   // Reuse existing vector loop preheader for TC checks.
8287   // Note that new preheader block is generated for vector loop.
8288   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8289   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8290 
8291   // Generate code to check if the loop's trip count is less than VF * UF of the
8292   // main vector loop.
8293   auto P =
8294       Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8295 
8296   Value *CheckMinIters = Builder.CreateICmp(
8297       P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor),
8298       "min.iters.check");
8299 
8300   if (!ForEpilogue)
8301     TCCheckBlock->setName("vector.main.loop.iter.check");
8302 
8303   // Create new preheader for vector loop.
8304   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8305                                    DT, LI, nullptr, "vector.ph");
8306 
8307   if (ForEpilogue) {
8308     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8309                                  DT->getNode(Bypass)->getIDom()) &&
8310            "TC check is expected to dominate Bypass");
8311 
8312     // Update dominator for Bypass & LoopExit.
8313     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8314     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8315 
8316     LoopBypassBlocks.push_back(TCCheckBlock);
8317 
8318     // Save the trip count so we don't have to regenerate it in the
8319     // vec.epilog.iter.check. This is safe to do because the trip count
8320     // generated here dominates the vector epilog iter check.
8321     EPI.TripCount = Count;
8322   }
8323 
8324   ReplaceInstWithInst(
8325       TCCheckBlock->getTerminator(),
8326       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8327 
8328   return TCCheckBlock;
8329 }
8330 
8331 //===--------------------------------------------------------------------===//
8332 // EpilogueVectorizerEpilogueLoop
8333 //===--------------------------------------------------------------------===//
8334 
8335 /// This function is partially responsible for generating the control flow
8336 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8337 BasicBlock *
8338 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8339   MDNode *OrigLoopID = OrigLoop->getLoopID();
8340   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8341 
8342   // Now, compare the remaining count and if there aren't enough iterations to
8343   // execute the vectorized epilogue skip to the scalar part.
8344   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8345   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8346   LoopVectorPreHeader =
8347       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8348                  LI, nullptr, "vec.epilog.ph");
8349   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8350                                           VecEpilogueIterationCountCheck);
8351 
8352   // Adjust the control flow taking the state info from the main loop
8353   // vectorization into account.
8354   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8355          "expected this to be saved from the previous pass.");
8356   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8357       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8358 
8359   DT->changeImmediateDominator(LoopVectorPreHeader,
8360                                EPI.MainLoopIterationCountCheck);
8361 
8362   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8363       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8364 
8365   if (EPI.SCEVSafetyCheck)
8366     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8367         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8368   if (EPI.MemSafetyCheck)
8369     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8370         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8371 
8372   DT->changeImmediateDominator(
8373       VecEpilogueIterationCountCheck,
8374       VecEpilogueIterationCountCheck->getSinglePredecessor());
8375 
8376   DT->changeImmediateDominator(LoopScalarPreHeader,
8377                                EPI.EpilogueIterationCountCheck);
8378   DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck);
8379 
8380   // Keep track of bypass blocks, as they feed start values to the induction
8381   // phis in the scalar loop preheader.
8382   if (EPI.SCEVSafetyCheck)
8383     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8384   if (EPI.MemSafetyCheck)
8385     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8386   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8387 
8388   // Generate a resume induction for the vector epilogue and put it in the
8389   // vector epilogue preheader
8390   Type *IdxTy = Legal->getWidestInductionType();
8391   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8392                                          LoopVectorPreHeader->getFirstNonPHI());
8393   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8394   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8395                            EPI.MainLoopIterationCountCheck);
8396 
8397   // Generate the induction variable.
8398   OldInduction = Legal->getPrimaryInduction();
8399   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8400   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8401   Value *StartIdx = EPResumeVal;
8402   Induction =
8403       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8404                               getDebugLocFromInstOrOperands(OldInduction));
8405 
8406   // Generate induction resume values. These variables save the new starting
8407   // indexes for the scalar loop. They are used to test if there are any tail
8408   // iterations left once the vector loop has completed.
8409   // Note that when the vectorized epilogue is skipped due to iteration count
8410   // check, then the resume value for the induction variable comes from
8411   // the trip count of the main vector loop, hence passing the AdditionalBypass
8412   // argument.
8413   createInductionResumeValues(Lp, CountRoundDown,
8414                               {VecEpilogueIterationCountCheck,
8415                                EPI.VectorTripCount} /* AdditionalBypass */);
8416 
8417   AddRuntimeUnrollDisableMetaData(Lp);
8418   return completeLoopSkeleton(Lp, OrigLoopID);
8419 }
8420 
8421 BasicBlock *
8422 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8423     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8424 
8425   assert(EPI.TripCount &&
8426          "Expected trip count to have been safed in the first pass.");
8427   assert(
8428       (!isa<Instruction>(EPI.TripCount) ||
8429        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8430       "saved trip count does not dominate insertion point.");
8431   Value *TC = EPI.TripCount;
8432   IRBuilder<> Builder(Insert->getTerminator());
8433   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8434 
8435   // Generate code to check if the loop's trip count is less than VF * UF of the
8436   // vector epilogue loop.
8437   auto P =
8438       Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8439 
8440   Value *CheckMinIters = Builder.CreateICmp(
8441       P, Count,
8442       ConstantInt::get(Count->getType(),
8443                        EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF),
8444       "min.epilog.iters.check");
8445 
8446   ReplaceInstWithInst(
8447       Insert->getTerminator(),
8448       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8449 
8450   LoopBypassBlocks.push_back(Insert);
8451   return Insert;
8452 }
8453 
8454 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8455   LLVM_DEBUG({
8456     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8457            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8458            << ", Main Loop UF:" << EPI.MainLoopUF
8459            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8460            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8461   });
8462 }
8463 
8464 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8465   DEBUG_WITH_TYPE(VerboseDebug, {
8466     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8467   });
8468 }
8469 
8470 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8471     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8472   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8473   bool PredicateAtRangeStart = Predicate(Range.Start);
8474 
8475   for (ElementCount TmpVF = Range.Start * 2;
8476        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8477     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8478       Range.End = TmpVF;
8479       break;
8480     }
8481 
8482   return PredicateAtRangeStart;
8483 }
8484 
8485 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8486 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8487 /// of VF's starting at a given VF and extending it as much as possible. Each
8488 /// vectorization decision can potentially shorten this sub-range during
8489 /// buildVPlan().
8490 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8491                                            ElementCount MaxVF) {
8492   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8493   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8494     VFRange SubRange = {VF, MaxVFPlusOne};
8495     VPlans.push_back(buildVPlan(SubRange));
8496     VF = SubRange.End;
8497   }
8498 }
8499 
8500 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8501                                          VPlanPtr &Plan) {
8502   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8503 
8504   // Look for cached value.
8505   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8506   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8507   if (ECEntryIt != EdgeMaskCache.end())
8508     return ECEntryIt->second;
8509 
8510   VPValue *SrcMask = createBlockInMask(Src, Plan);
8511 
8512   // The terminator has to be a branch inst!
8513   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8514   assert(BI && "Unexpected terminator found");
8515 
8516   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8517     return EdgeMaskCache[Edge] = SrcMask;
8518 
8519   // If source is an exiting block, we know the exit edge is dynamically dead
8520   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8521   // adding uses of an otherwise potentially dead instruction.
8522   if (OrigLoop->isLoopExiting(Src))
8523     return EdgeMaskCache[Edge] = SrcMask;
8524 
8525   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8526   assert(EdgeMask && "No Edge Mask found for condition");
8527 
8528   if (BI->getSuccessor(0) != Dst)
8529     EdgeMask = Builder.createNot(EdgeMask);
8530 
8531   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8532     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8533     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8534     // The select version does not introduce new UB if SrcMask is false and
8535     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8536     VPValue *False = Plan->getOrAddVPValue(
8537         ConstantInt::getFalse(BI->getCondition()->getType()));
8538     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8539   }
8540 
8541   return EdgeMaskCache[Edge] = EdgeMask;
8542 }
8543 
8544 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8545   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8546 
8547   // Look for cached value.
8548   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8549   if (BCEntryIt != BlockMaskCache.end())
8550     return BCEntryIt->second;
8551 
8552   // All-one mask is modelled as no-mask following the convention for masked
8553   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8554   VPValue *BlockMask = nullptr;
8555 
8556   if (OrigLoop->getHeader() == BB) {
8557     if (!CM.blockNeedsPredication(BB))
8558       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8559 
8560     // Create the block in mask as the first non-phi instruction in the block.
8561     VPBuilder::InsertPointGuard Guard(Builder);
8562     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8563     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8564 
8565     // Introduce the early-exit compare IV <= BTC to form header block mask.
8566     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8567     // Start by constructing the desired canonical IV.
8568     VPValue *IV = nullptr;
8569     if (Legal->getPrimaryInduction())
8570       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8571     else {
8572       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8573       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8574       IV = IVRecipe->getVPSingleValue();
8575     }
8576     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8577     bool TailFolded = !CM.isScalarEpilogueAllowed();
8578 
8579     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8580       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8581       // as a second argument, we only pass the IV here and extract the
8582       // tripcount from the transform state where codegen of the VP instructions
8583       // happen.
8584       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8585     } else {
8586       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8587     }
8588     return BlockMaskCache[BB] = BlockMask;
8589   }
8590 
8591   // This is the block mask. We OR all incoming edges.
8592   for (auto *Predecessor : predecessors(BB)) {
8593     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8594     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8595       return BlockMaskCache[BB] = EdgeMask;
8596 
8597     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8598       BlockMask = EdgeMask;
8599       continue;
8600     }
8601 
8602     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8603   }
8604 
8605   return BlockMaskCache[BB] = BlockMask;
8606 }
8607 
8608 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8609                                                 ArrayRef<VPValue *> Operands,
8610                                                 VFRange &Range,
8611                                                 VPlanPtr &Plan) {
8612   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8613          "Must be called with either a load or store");
8614 
8615   auto willWiden = [&](ElementCount VF) -> bool {
8616     if (VF.isScalar())
8617       return false;
8618     LoopVectorizationCostModel::InstWidening Decision =
8619         CM.getWideningDecision(I, VF);
8620     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8621            "CM decision should be taken at this point.");
8622     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8623       return true;
8624     if (CM.isScalarAfterVectorization(I, VF) ||
8625         CM.isProfitableToScalarize(I, VF))
8626       return false;
8627     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8628   };
8629 
8630   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8631     return nullptr;
8632 
8633   VPValue *Mask = nullptr;
8634   if (Legal->isMaskRequired(I))
8635     Mask = createBlockInMask(I->getParent(), Plan);
8636 
8637   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8638     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8639 
8640   StoreInst *Store = cast<StoreInst>(I);
8641   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8642                                             Mask);
8643 }
8644 
8645 VPWidenIntOrFpInductionRecipe *
8646 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8647                                            ArrayRef<VPValue *> Operands) const {
8648   // Check if this is an integer or fp induction. If so, build the recipe that
8649   // produces its scalar and vector values.
8650   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8651   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8652       II.getKind() == InductionDescriptor::IK_FpInduction) {
8653     assert(II.getStartValue() ==
8654            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8655     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8656     return new VPWidenIntOrFpInductionRecipe(
8657         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8658   }
8659 
8660   return nullptr;
8661 }
8662 
8663 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8664     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8665     VPlan &Plan) const {
8666   // Optimize the special case where the source is a constant integer
8667   // induction variable. Notice that we can only optimize the 'trunc' case
8668   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8669   // (c) other casts depend on pointer size.
8670 
8671   // Determine whether \p K is a truncation based on an induction variable that
8672   // can be optimized.
8673   auto isOptimizableIVTruncate =
8674       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8675     return [=](ElementCount VF) -> bool {
8676       return CM.isOptimizableIVTruncate(K, VF);
8677     };
8678   };
8679 
8680   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8681           isOptimizableIVTruncate(I), Range)) {
8682 
8683     InductionDescriptor II =
8684         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8685     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8686     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8687                                              Start, nullptr, I);
8688   }
8689   return nullptr;
8690 }
8691 
8692 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8693                                                 ArrayRef<VPValue *> Operands,
8694                                                 VPlanPtr &Plan) {
8695   // If all incoming values are equal, the incoming VPValue can be used directly
8696   // instead of creating a new VPBlendRecipe.
8697   VPValue *FirstIncoming = Operands[0];
8698   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8699         return FirstIncoming == Inc;
8700       })) {
8701     return Operands[0];
8702   }
8703 
8704   // We know that all PHIs in non-header blocks are converted into selects, so
8705   // we don't have to worry about the insertion order and we can just use the
8706   // builder. At this point we generate the predication tree. There may be
8707   // duplications since this is a simple recursive scan, but future
8708   // optimizations will clean it up.
8709   SmallVector<VPValue *, 2> OperandsWithMask;
8710   unsigned NumIncoming = Phi->getNumIncomingValues();
8711 
8712   for (unsigned In = 0; In < NumIncoming; In++) {
8713     VPValue *EdgeMask =
8714       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8715     assert((EdgeMask || NumIncoming == 1) &&
8716            "Multiple predecessors with one having a full mask");
8717     OperandsWithMask.push_back(Operands[In]);
8718     if (EdgeMask)
8719       OperandsWithMask.push_back(EdgeMask);
8720   }
8721   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8722 }
8723 
8724 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8725                                                    ArrayRef<VPValue *> Operands,
8726                                                    VFRange &Range) const {
8727 
8728   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8729       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8730       Range);
8731 
8732   if (IsPredicated)
8733     return nullptr;
8734 
8735   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8736   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8737              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8738              ID == Intrinsic::pseudoprobe ||
8739              ID == Intrinsic::experimental_noalias_scope_decl))
8740     return nullptr;
8741 
8742   auto willWiden = [&](ElementCount VF) -> bool {
8743     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8744     // The following case may be scalarized depending on the VF.
8745     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8746     // version of the instruction.
8747     // Is it beneficial to perform intrinsic call compared to lib call?
8748     bool NeedToScalarize = false;
8749     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8750     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8751     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8752     assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
8753            "Either the intrinsic cost or vector call cost must be valid");
8754     return UseVectorIntrinsic || !NeedToScalarize;
8755   };
8756 
8757   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8758     return nullptr;
8759 
8760   ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands());
8761   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8762 }
8763 
8764 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8765   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8766          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8767   // Instruction should be widened, unless it is scalar after vectorization,
8768   // scalarization is profitable or it is predicated.
8769   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8770     return CM.isScalarAfterVectorization(I, VF) ||
8771            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8772   };
8773   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8774                                                              Range);
8775 }
8776 
8777 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8778                                            ArrayRef<VPValue *> Operands) const {
8779   auto IsVectorizableOpcode = [](unsigned Opcode) {
8780     switch (Opcode) {
8781     case Instruction::Add:
8782     case Instruction::And:
8783     case Instruction::AShr:
8784     case Instruction::BitCast:
8785     case Instruction::FAdd:
8786     case Instruction::FCmp:
8787     case Instruction::FDiv:
8788     case Instruction::FMul:
8789     case Instruction::FNeg:
8790     case Instruction::FPExt:
8791     case Instruction::FPToSI:
8792     case Instruction::FPToUI:
8793     case Instruction::FPTrunc:
8794     case Instruction::FRem:
8795     case Instruction::FSub:
8796     case Instruction::ICmp:
8797     case Instruction::IntToPtr:
8798     case Instruction::LShr:
8799     case Instruction::Mul:
8800     case Instruction::Or:
8801     case Instruction::PtrToInt:
8802     case Instruction::SDiv:
8803     case Instruction::Select:
8804     case Instruction::SExt:
8805     case Instruction::Shl:
8806     case Instruction::SIToFP:
8807     case Instruction::SRem:
8808     case Instruction::Sub:
8809     case Instruction::Trunc:
8810     case Instruction::UDiv:
8811     case Instruction::UIToFP:
8812     case Instruction::URem:
8813     case Instruction::Xor:
8814     case Instruction::ZExt:
8815       return true;
8816     }
8817     return false;
8818   };
8819 
8820   if (!IsVectorizableOpcode(I->getOpcode()))
8821     return nullptr;
8822 
8823   // Success: widen this instruction.
8824   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8825 }
8826 
8827 void VPRecipeBuilder::fixHeaderPhis() {
8828   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8829   for (VPWidenPHIRecipe *R : PhisToFix) {
8830     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8831     VPRecipeBase *IncR =
8832         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8833     R->addOperand(IncR->getVPSingleValue());
8834   }
8835 }
8836 
8837 VPBasicBlock *VPRecipeBuilder::handleReplication(
8838     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8839     VPlanPtr &Plan) {
8840   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8841       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8842       Range);
8843 
8844   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8845       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
8846 
8847   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8848                                        IsUniform, IsPredicated);
8849   setRecipe(I, Recipe);
8850   Plan->addVPValue(I, Recipe);
8851 
8852   // Find if I uses a predicated instruction. If so, it will use its scalar
8853   // value. Avoid hoisting the insert-element which packs the scalar value into
8854   // a vector value, as that happens iff all users use the vector value.
8855   for (VPValue *Op : Recipe->operands()) {
8856     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8857     if (!PredR)
8858       continue;
8859     auto *RepR =
8860         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8861     assert(RepR->isPredicated() &&
8862            "expected Replicate recipe to be predicated");
8863     RepR->setAlsoPack(false);
8864   }
8865 
8866   // Finalize the recipe for Instr, first if it is not predicated.
8867   if (!IsPredicated) {
8868     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8869     VPBB->appendRecipe(Recipe);
8870     return VPBB;
8871   }
8872   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8873   assert(VPBB->getSuccessors().empty() &&
8874          "VPBB has successors when handling predicated replication.");
8875   // Record predicated instructions for above packing optimizations.
8876   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8877   VPBlockUtils::insertBlockAfter(Region, VPBB);
8878   auto *RegSucc = new VPBasicBlock();
8879   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8880   return RegSucc;
8881 }
8882 
8883 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8884                                                       VPRecipeBase *PredRecipe,
8885                                                       VPlanPtr &Plan) {
8886   // Instructions marked for predication are replicated and placed under an
8887   // if-then construct to prevent side-effects.
8888 
8889   // Generate recipes to compute the block mask for this region.
8890   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8891 
8892   // Build the triangular if-then region.
8893   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8894   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8895   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8896   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8897   auto *PHIRecipe = Instr->getType()->isVoidTy()
8898                         ? nullptr
8899                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8900   if (PHIRecipe) {
8901     Plan->removeVPValueFor(Instr);
8902     Plan->addVPValue(Instr, PHIRecipe);
8903   }
8904   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8905   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8906   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8907 
8908   // Note: first set Entry as region entry and then connect successors starting
8909   // from it in order, to propagate the "parent" of each VPBasicBlock.
8910   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8911   VPBlockUtils::connectBlocks(Pred, Exit);
8912 
8913   return Region;
8914 }
8915 
8916 VPRecipeOrVPValueTy
8917 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8918                                         ArrayRef<VPValue *> Operands,
8919                                         VFRange &Range, VPlanPtr &Plan) {
8920   // First, check for specific widening recipes that deal with calls, memory
8921   // operations, inductions and Phi nodes.
8922   if (auto *CI = dyn_cast<CallInst>(Instr))
8923     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8924 
8925   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8926     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8927 
8928   VPRecipeBase *Recipe;
8929   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8930     if (Phi->getParent() != OrigLoop->getHeader())
8931       return tryToBlend(Phi, Operands, Plan);
8932     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
8933       return toVPRecipeResult(Recipe);
8934 
8935     if (Legal->isReductionVariable(Phi)) {
8936       RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
8937       assert(RdxDesc.getRecurrenceStartValue() ==
8938              Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8939       VPValue *StartV = Operands[0];
8940 
8941       auto *PhiRecipe = new VPWidenPHIRecipe(Phi, RdxDesc, *StartV);
8942       PhisToFix.push_back(PhiRecipe);
8943       // Record the incoming value from the backedge, so we can add the incoming
8944       // value from the backedge after all recipes have been created.
8945       recordRecipeOf(cast<Instruction>(
8946           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8947       return toVPRecipeResult(PhiRecipe);
8948     }
8949 
8950     return toVPRecipeResult(new VPWidenPHIRecipe(Phi));
8951   }
8952 
8953   if (isa<TruncInst>(Instr) &&
8954       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8955                                                Range, *Plan)))
8956     return toVPRecipeResult(Recipe);
8957 
8958   if (!shouldWiden(Instr, Range))
8959     return nullptr;
8960 
8961   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8962     return toVPRecipeResult(new VPWidenGEPRecipe(
8963         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8964 
8965   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8966     bool InvariantCond =
8967         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8968     return toVPRecipeResult(new VPWidenSelectRecipe(
8969         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8970   }
8971 
8972   return toVPRecipeResult(tryToWiden(Instr, Operands));
8973 }
8974 
8975 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8976                                                         ElementCount MaxVF) {
8977   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8978 
8979   // Collect instructions from the original loop that will become trivially dead
8980   // in the vectorized loop. We don't need to vectorize these instructions. For
8981   // example, original induction update instructions can become dead because we
8982   // separately emit induction "steps" when generating code for the new loop.
8983   // Similarly, we create a new latch condition when setting up the structure
8984   // of the new loop, so the old one can become dead.
8985   SmallPtrSet<Instruction *, 4> DeadInstructions;
8986   collectTriviallyDeadInstructions(DeadInstructions);
8987 
8988   // Add assume instructions we need to drop to DeadInstructions, to prevent
8989   // them from being added to the VPlan.
8990   // TODO: We only need to drop assumes in blocks that get flattend. If the
8991   // control flow is preserved, we should keep them.
8992   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8993   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8994 
8995   DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8996   // Dead instructions do not need sinking. Remove them from SinkAfter.
8997   for (Instruction *I : DeadInstructions)
8998     SinkAfter.erase(I);
8999 
9000   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9001   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9002     VFRange SubRange = {VF, MaxVFPlusOne};
9003     VPlans.push_back(
9004         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9005     VF = SubRange.End;
9006   }
9007 }
9008 
9009 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9010     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9011     const DenseMap<Instruction *, Instruction *> &SinkAfter) {
9012 
9013   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9014 
9015   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9016 
9017   // ---------------------------------------------------------------------------
9018   // Pre-construction: record ingredients whose recipes we'll need to further
9019   // process after constructing the initial VPlan.
9020   // ---------------------------------------------------------------------------
9021 
9022   // Mark instructions we'll need to sink later and their targets as
9023   // ingredients whose recipe we'll need to record.
9024   for (auto &Entry : SinkAfter) {
9025     RecipeBuilder.recordRecipeOf(Entry.first);
9026     RecipeBuilder.recordRecipeOf(Entry.second);
9027   }
9028   for (auto &Reduction : CM.getInLoopReductionChains()) {
9029     PHINode *Phi = Reduction.first;
9030     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9031     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9032 
9033     RecipeBuilder.recordRecipeOf(Phi);
9034     for (auto &R : ReductionOperations) {
9035       RecipeBuilder.recordRecipeOf(R);
9036       // For min/max reducitons, where we have a pair of icmp/select, we also
9037       // need to record the ICmp recipe, so it can be removed later.
9038       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9039         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9040     }
9041   }
9042 
9043   // For each interleave group which is relevant for this (possibly trimmed)
9044   // Range, add it to the set of groups to be later applied to the VPlan and add
9045   // placeholders for its members' Recipes which we'll be replacing with a
9046   // single VPInterleaveRecipe.
9047   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9048     auto applyIG = [IG, this](ElementCount VF) -> bool {
9049       return (VF.isVector() && // Query is illegal for VF == 1
9050               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9051                   LoopVectorizationCostModel::CM_Interleave);
9052     };
9053     if (!getDecisionAndClampRange(applyIG, Range))
9054       continue;
9055     InterleaveGroups.insert(IG);
9056     for (unsigned i = 0; i < IG->getFactor(); i++)
9057       if (Instruction *Member = IG->getMember(i))
9058         RecipeBuilder.recordRecipeOf(Member);
9059   };
9060 
9061   // ---------------------------------------------------------------------------
9062   // Build initial VPlan: Scan the body of the loop in a topological order to
9063   // visit each basic block after having visited its predecessor basic blocks.
9064   // ---------------------------------------------------------------------------
9065 
9066   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9067   auto Plan = std::make_unique<VPlan>();
9068   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
9069   Plan->setEntry(VPBB);
9070 
9071   // Scan the body of the loop in a topological order to visit each basic block
9072   // after having visited its predecessor basic blocks.
9073   LoopBlocksDFS DFS(OrigLoop);
9074   DFS.perform(LI);
9075 
9076   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9077     // Relevant instructions from basic block BB will be grouped into VPRecipe
9078     // ingredients and fill a new VPBasicBlock.
9079     unsigned VPBBsForBB = 0;
9080     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9081     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9082     VPBB = FirstVPBBForBB;
9083     Builder.setInsertPoint(VPBB);
9084 
9085     // Introduce each ingredient into VPlan.
9086     // TODO: Model and preserve debug instrinsics in VPlan.
9087     for (Instruction &I : BB->instructionsWithoutDebug()) {
9088       Instruction *Instr = &I;
9089 
9090       // First filter out irrelevant instructions, to ensure no recipes are
9091       // built for them.
9092       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9093         continue;
9094 
9095       SmallVector<VPValue *, 4> Operands;
9096       auto *Phi = dyn_cast<PHINode>(Instr);
9097       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9098         Operands.push_back(Plan->getOrAddVPValue(
9099             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9100       } else {
9101         auto OpRange = Plan->mapToVPValues(Instr->operands());
9102         Operands = {OpRange.begin(), OpRange.end()};
9103       }
9104       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9105               Instr, Operands, Range, Plan)) {
9106         // If Instr can be simplified to an existing VPValue, use it.
9107         if (RecipeOrValue.is<VPValue *>()) {
9108           auto *VPV = RecipeOrValue.get<VPValue *>();
9109           Plan->addVPValue(Instr, VPV);
9110           // If the re-used value is a recipe, register the recipe for the
9111           // instruction, in case the recipe for Instr needs to be recorded.
9112           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9113             RecipeBuilder.setRecipe(Instr, R);
9114           continue;
9115         }
9116         // Otherwise, add the new recipe.
9117         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9118         for (auto *Def : Recipe->definedValues()) {
9119           auto *UV = Def->getUnderlyingValue();
9120           Plan->addVPValue(UV, Def);
9121         }
9122 
9123         RecipeBuilder.setRecipe(Instr, Recipe);
9124         VPBB->appendRecipe(Recipe);
9125         continue;
9126       }
9127 
9128       // Otherwise, if all widening options failed, Instruction is to be
9129       // replicated. This may create a successor for VPBB.
9130       VPBasicBlock *NextVPBB =
9131           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9132       if (NextVPBB != VPBB) {
9133         VPBB = NextVPBB;
9134         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9135                                     : "");
9136       }
9137     }
9138   }
9139 
9140   RecipeBuilder.fixHeaderPhis();
9141 
9142   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
9143   // may also be empty, such as the last one VPBB, reflecting original
9144   // basic-blocks with no recipes.
9145   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
9146   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
9147   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
9148   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
9149   delete PreEntry;
9150 
9151   // ---------------------------------------------------------------------------
9152   // Transform initial VPlan: Apply previously taken decisions, in order, to
9153   // bring the VPlan to its final state.
9154   // ---------------------------------------------------------------------------
9155 
9156   // Apply Sink-After legal constraints.
9157   for (auto &Entry : SinkAfter) {
9158     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9159     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9160 
9161     auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9162       auto *Region =
9163           dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9164       if (Region && Region->isReplicator())
9165         return Region;
9166       return nullptr;
9167     };
9168 
9169     // If the target is in a replication region, make sure to move Sink to the
9170     // block after it, not into the replication region itself.
9171     if (auto *TargetRegion = GetReplicateRegion(Target)) {
9172       assert(TargetRegion->getNumSuccessors() == 1 && "Expected SESE region!");
9173       assert(!GetReplicateRegion(Sink) &&
9174              "cannot sink a region into another region yet");
9175       VPBasicBlock *NextBlock =
9176           cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9177       Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9178       continue;
9179     }
9180 
9181     auto *SinkRegion = GetReplicateRegion(Sink);
9182     // Unless the sink source is in a replicate region, sink the recipe
9183     // directly.
9184     if (!SinkRegion) {
9185       Sink->moveAfter(Target);
9186       continue;
9187     }
9188 
9189     // If the sink source is in a replicate region, we need to move the whole
9190     // replicate region, which should only contain a single recipe in the main
9191     // block.
9192     assert(Sink->getParent()->size() == 1 &&
9193            "parent must be a replicator with a single recipe");
9194     auto *SplitBlock =
9195         Target->getParent()->splitAt(std::next(Target->getIterator()));
9196 
9197     auto *Pred = SinkRegion->getSinglePredecessor();
9198     auto *Succ = SinkRegion->getSingleSuccessor();
9199     VPBlockUtils::disconnectBlocks(Pred, SinkRegion);
9200     VPBlockUtils::disconnectBlocks(SinkRegion, Succ);
9201     VPBlockUtils::connectBlocks(Pred, Succ);
9202 
9203     auto *SplitPred = SplitBlock->getSinglePredecessor();
9204 
9205     VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9206     VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9207     VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9208     if (VPBB == SplitPred)
9209       VPBB = SplitBlock;
9210   }
9211 
9212   // Interleave memory: for each Interleave Group we marked earlier as relevant
9213   // for this VPlan, replace the Recipes widening its memory instructions with a
9214   // single VPInterleaveRecipe at its insertion point.
9215   for (auto IG : InterleaveGroups) {
9216     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9217         RecipeBuilder.getRecipe(IG->getInsertPos()));
9218     SmallVector<VPValue *, 4> StoredValues;
9219     for (unsigned i = 0; i < IG->getFactor(); ++i)
9220       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i)))
9221         StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0)));
9222 
9223     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9224                                         Recipe->getMask());
9225     VPIG->insertBefore(Recipe);
9226     unsigned J = 0;
9227     for (unsigned i = 0; i < IG->getFactor(); ++i)
9228       if (Instruction *Member = IG->getMember(i)) {
9229         if (!Member->getType()->isVoidTy()) {
9230           VPValue *OriginalV = Plan->getVPValue(Member);
9231           Plan->removeVPValueFor(Member);
9232           Plan->addVPValue(Member, VPIG->getVPValue(J));
9233           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9234           J++;
9235         }
9236         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9237       }
9238   }
9239 
9240   // Adjust the recipes for any inloop reductions.
9241   if (Range.Start.isVector())
9242     adjustRecipesForInLoopReductions(Plan, RecipeBuilder);
9243 
9244   // Finally, if tail is folded by masking, introduce selects between the phi
9245   // and the live-out instruction of each reduction, at the end of the latch.
9246   if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) {
9247     Builder.setInsertPoint(VPBB);
9248     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9249     for (auto &Reduction : Legal->getReductionVars()) {
9250       if (CM.isInLoopReduction(Reduction.first))
9251         continue;
9252       VPValue *Phi = Plan->getOrAddVPValue(Reduction.first);
9253       VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr());
9254       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
9255     }
9256   }
9257 
9258   VPlanTransforms::sinkScalarOperands(*Plan);
9259 
9260   std::string PlanName;
9261   raw_string_ostream RSO(PlanName);
9262   ElementCount VF = Range.Start;
9263   Plan->addVF(VF);
9264   RSO << "Initial VPlan for VF={" << VF;
9265   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9266     Plan->addVF(VF);
9267     RSO << "," << VF;
9268   }
9269   RSO << "},UF>=1";
9270   RSO.flush();
9271   Plan->setName(PlanName);
9272 
9273   return Plan;
9274 }
9275 
9276 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9277   // Outer loop handling: They may require CFG and instruction level
9278   // transformations before even evaluating whether vectorization is profitable.
9279   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9280   // the vectorization pipeline.
9281   assert(!OrigLoop->isInnermost());
9282   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9283 
9284   // Create new empty VPlan
9285   auto Plan = std::make_unique<VPlan>();
9286 
9287   // Build hierarchical CFG
9288   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9289   HCFGBuilder.buildHierarchicalCFG();
9290 
9291   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9292        VF *= 2)
9293     Plan->addVF(VF);
9294 
9295   if (EnableVPlanPredication) {
9296     VPlanPredicator VPP(*Plan);
9297     VPP.predicate();
9298 
9299     // Avoid running transformation to recipes until masked code generation in
9300     // VPlan-native path is in place.
9301     return Plan;
9302   }
9303 
9304   SmallPtrSet<Instruction *, 1> DeadInstructions;
9305   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9306                                              Legal->getInductionVars(),
9307                                              DeadInstructions, *PSE.getSE());
9308   return Plan;
9309 }
9310 
9311 // Adjust the recipes for any inloop reductions. The chain of instructions
9312 // leading from the loop exit instr to the phi need to be converted to
9313 // reductions, with one operand being vector and the other being the scalar
9314 // reduction chain.
9315 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions(
9316     VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) {
9317   for (auto &Reduction : CM.getInLoopReductionChains()) {
9318     PHINode *Phi = Reduction.first;
9319     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9320     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9321 
9322     // ReductionOperations are orders top-down from the phi's use to the
9323     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9324     // which of the two operands will remain scalar and which will be reduced.
9325     // For minmax the chain will be the select instructions.
9326     Instruction *Chain = Phi;
9327     for (Instruction *R : ReductionOperations) {
9328       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9329       RecurKind Kind = RdxDesc.getRecurrenceKind();
9330 
9331       VPValue *ChainOp = Plan->getVPValue(Chain);
9332       unsigned FirstOpId;
9333       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9334         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9335                "Expected to replace a VPWidenSelectSC");
9336         FirstOpId = 1;
9337       } else {
9338         assert(isa<VPWidenRecipe>(WidenRecipe) &&
9339                "Expected to replace a VPWidenSC");
9340         FirstOpId = 0;
9341       }
9342       unsigned VecOpId =
9343           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9344       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9345 
9346       auto *CondOp = CM.foldTailByMasking()
9347                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9348                          : nullptr;
9349       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9350           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9351       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9352       Plan->removeVPValueFor(R);
9353       Plan->addVPValue(R, RedRecipe);
9354       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9355       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9356       WidenRecipe->eraseFromParent();
9357 
9358       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9359         VPRecipeBase *CompareRecipe =
9360             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9361         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9362                "Expected to replace a VPWidenSC");
9363         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9364                "Expected no remaining users");
9365         CompareRecipe->eraseFromParent();
9366       }
9367       Chain = R;
9368     }
9369   }
9370 }
9371 
9372 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9373 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9374                                VPSlotTracker &SlotTracker) const {
9375   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9376   IG->getInsertPos()->printAsOperand(O, false);
9377   O << ", ";
9378   getAddr()->printAsOperand(O, SlotTracker);
9379   VPValue *Mask = getMask();
9380   if (Mask) {
9381     O << ", ";
9382     Mask->printAsOperand(O, SlotTracker);
9383   }
9384   for (unsigned i = 0; i < IG->getFactor(); ++i)
9385     if (Instruction *I = IG->getMember(i))
9386       O << "\n" << Indent << "  " << VPlanIngredient(I) << " " << i;
9387 }
9388 #endif
9389 
9390 void VPWidenCallRecipe::execute(VPTransformState &State) {
9391   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9392                                   *this, State);
9393 }
9394 
9395 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9396   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9397                                     this, *this, InvariantCond, State);
9398 }
9399 
9400 void VPWidenRecipe::execute(VPTransformState &State) {
9401   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9402 }
9403 
9404 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9405   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9406                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9407                       IsIndexLoopInvariant, State);
9408 }
9409 
9410 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9411   assert(!State.Instance && "Int or FP induction being replicated.");
9412   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9413                                    getTruncInst(), getVPValue(0),
9414                                    getCastValue(), State);
9415 }
9416 
9417 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9418   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc,
9419                                  this, State);
9420 }
9421 
9422 void VPBlendRecipe::execute(VPTransformState &State) {
9423   State.ILV->setDebugLocFromInst(State.Builder, Phi);
9424   // We know that all PHIs in non-header blocks are converted into
9425   // selects, so we don't have to worry about the insertion order and we
9426   // can just use the builder.
9427   // At this point we generate the predication tree. There may be
9428   // duplications since this is a simple recursive scan, but future
9429   // optimizations will clean it up.
9430 
9431   unsigned NumIncoming = getNumIncomingValues();
9432 
9433   // Generate a sequence of selects of the form:
9434   // SELECT(Mask3, In3,
9435   //        SELECT(Mask2, In2,
9436   //               SELECT(Mask1, In1,
9437   //                      In0)))
9438   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9439   // are essentially undef are taken from In0.
9440   InnerLoopVectorizer::VectorParts Entry(State.UF);
9441   for (unsigned In = 0; In < NumIncoming; ++In) {
9442     for (unsigned Part = 0; Part < State.UF; ++Part) {
9443       // We might have single edge PHIs (blocks) - use an identity
9444       // 'select' for the first PHI operand.
9445       Value *In0 = State.get(getIncomingValue(In), Part);
9446       if (In == 0)
9447         Entry[Part] = In0; // Initialize with the first incoming value.
9448       else {
9449         // Select between the current value and the previous incoming edge
9450         // based on the incoming mask.
9451         Value *Cond = State.get(getMask(In), Part);
9452         Entry[Part] =
9453             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9454       }
9455     }
9456   }
9457   for (unsigned Part = 0; Part < State.UF; ++Part)
9458     State.set(this, Entry[Part], Part);
9459 }
9460 
9461 void VPInterleaveRecipe::execute(VPTransformState &State) {
9462   assert(!State.Instance && "Interleave group being replicated.");
9463   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9464                                       getStoredValues(), getMask());
9465 }
9466 
9467 void VPReductionRecipe::execute(VPTransformState &State) {
9468   assert(!State.Instance && "Reduction being replicated.");
9469   Value *PrevInChain = State.get(getChainOp(), 0);
9470   for (unsigned Part = 0; Part < State.UF; ++Part) {
9471     RecurKind Kind = RdxDesc->getRecurrenceKind();
9472     bool IsOrdered = useOrderedReductions(*RdxDesc);
9473     Value *NewVecOp = State.get(getVecOp(), Part);
9474     if (VPValue *Cond = getCondOp()) {
9475       Value *NewCond = State.get(Cond, Part);
9476       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9477       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9478           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9479       Constant *IdenVec =
9480           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9481       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9482       NewVecOp = Select;
9483     }
9484     Value *NewRed;
9485     Value *NextInChain;
9486     if (IsOrdered) {
9487       NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9488                                       PrevInChain);
9489       PrevInChain = NewRed;
9490     } else {
9491       PrevInChain = State.get(getChainOp(), Part);
9492       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9493     }
9494     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9495       NextInChain =
9496           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9497                          NewRed, PrevInChain);
9498     } else if (IsOrdered)
9499       NextInChain = NewRed;
9500     else {
9501       NextInChain = State.Builder.CreateBinOp(
9502           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9503           PrevInChain);
9504     }
9505     State.set(this, NextInChain, Part);
9506   }
9507 }
9508 
9509 void VPReplicateRecipe::execute(VPTransformState &State) {
9510   if (State.Instance) { // Generate a single instance.
9511     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9512     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9513                                     *State.Instance, IsPredicated, State);
9514     // Insert scalar instance packing it into a vector.
9515     if (AlsoPack && State.VF.isVector()) {
9516       // If we're constructing lane 0, initialize to start from poison.
9517       if (State.Instance->Lane.isFirstLane()) {
9518         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9519         Value *Poison = PoisonValue::get(
9520             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9521         State.set(this, Poison, State.Instance->Part);
9522       }
9523       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9524     }
9525     return;
9526   }
9527 
9528   // Generate scalar instances for all VF lanes of all UF parts, unless the
9529   // instruction is uniform inwhich case generate only the first lane for each
9530   // of the UF parts.
9531   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9532   assert((!State.VF.isScalable() || IsUniform) &&
9533          "Can't scalarize a scalable vector");
9534   for (unsigned Part = 0; Part < State.UF; ++Part)
9535     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9536       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9537                                       VPIteration(Part, Lane), IsPredicated,
9538                                       State);
9539 }
9540 
9541 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9542   assert(State.Instance && "Branch on Mask works only on single instance.");
9543 
9544   unsigned Part = State.Instance->Part;
9545   unsigned Lane = State.Instance->Lane.getKnownLane();
9546 
9547   Value *ConditionBit = nullptr;
9548   VPValue *BlockInMask = getMask();
9549   if (BlockInMask) {
9550     ConditionBit = State.get(BlockInMask, Part);
9551     if (ConditionBit->getType()->isVectorTy())
9552       ConditionBit = State.Builder.CreateExtractElement(
9553           ConditionBit, State.Builder.getInt32(Lane));
9554   } else // Block in mask is all-one.
9555     ConditionBit = State.Builder.getTrue();
9556 
9557   // Replace the temporary unreachable terminator with a new conditional branch,
9558   // whose two destinations will be set later when they are created.
9559   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9560   assert(isa<UnreachableInst>(CurrentTerminator) &&
9561          "Expected to replace unreachable terminator with conditional branch.");
9562   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9563   CondBr->setSuccessor(0, nullptr);
9564   ReplaceInstWithInst(CurrentTerminator, CondBr);
9565 }
9566 
9567 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9568   assert(State.Instance && "Predicated instruction PHI works per instance.");
9569   Instruction *ScalarPredInst =
9570       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9571   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9572   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9573   assert(PredicatingBB && "Predicated block has no single predecessor.");
9574   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9575          "operand must be VPReplicateRecipe");
9576 
9577   // By current pack/unpack logic we need to generate only a single phi node: if
9578   // a vector value for the predicated instruction exists at this point it means
9579   // the instruction has vector users only, and a phi for the vector value is
9580   // needed. In this case the recipe of the predicated instruction is marked to
9581   // also do that packing, thereby "hoisting" the insert-element sequence.
9582   // Otherwise, a phi node for the scalar value is needed.
9583   unsigned Part = State.Instance->Part;
9584   if (State.hasVectorValue(getOperand(0), Part)) {
9585     Value *VectorValue = State.get(getOperand(0), Part);
9586     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9587     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9588     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9589     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9590     if (State.hasVectorValue(this, Part))
9591       State.reset(this, VPhi, Part);
9592     else
9593       State.set(this, VPhi, Part);
9594     // NOTE: Currently we need to update the value of the operand, so the next
9595     // predicated iteration inserts its generated value in the correct vector.
9596     State.reset(getOperand(0), VPhi, Part);
9597   } else {
9598     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9599     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9600     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9601                      PredicatingBB);
9602     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9603     if (State.hasScalarValue(this, *State.Instance))
9604       State.reset(this, Phi, *State.Instance);
9605     else
9606       State.set(this, Phi, *State.Instance);
9607     // NOTE: Currently we need to update the value of the operand, so the next
9608     // predicated iteration inserts its generated value in the correct vector.
9609     State.reset(getOperand(0), Phi, *State.Instance);
9610   }
9611 }
9612 
9613 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9614   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9615   State.ILV->vectorizeMemoryInstruction(
9616       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9617       StoredValue, getMask());
9618 }
9619 
9620 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9621 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9622 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9623 // for predication.
9624 static ScalarEpilogueLowering getScalarEpilogueLowering(
9625     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9626     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9627     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9628     LoopVectorizationLegality &LVL) {
9629   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9630   // don't look at hints or options, and don't request a scalar epilogue.
9631   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9632   // LoopAccessInfo (due to code dependency and not being able to reliably get
9633   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9634   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9635   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9636   // back to the old way and vectorize with versioning when forced. See D81345.)
9637   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9638                                                       PGSOQueryType::IRPass) &&
9639                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9640     return CM_ScalarEpilogueNotAllowedOptSize;
9641 
9642   // 2) If set, obey the directives
9643   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9644     switch (PreferPredicateOverEpilogue) {
9645     case PreferPredicateTy::ScalarEpilogue:
9646       return CM_ScalarEpilogueAllowed;
9647     case PreferPredicateTy::PredicateElseScalarEpilogue:
9648       return CM_ScalarEpilogueNotNeededUsePredicate;
9649     case PreferPredicateTy::PredicateOrDontVectorize:
9650       return CM_ScalarEpilogueNotAllowedUsePredicate;
9651     };
9652   }
9653 
9654   // 3) If set, obey the hints
9655   switch (Hints.getPredicate()) {
9656   case LoopVectorizeHints::FK_Enabled:
9657     return CM_ScalarEpilogueNotNeededUsePredicate;
9658   case LoopVectorizeHints::FK_Disabled:
9659     return CM_ScalarEpilogueAllowed;
9660   };
9661 
9662   // 4) if the TTI hook indicates this is profitable, request predication.
9663   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9664                                        LVL.getLAI()))
9665     return CM_ScalarEpilogueNotNeededUsePredicate;
9666 
9667   return CM_ScalarEpilogueAllowed;
9668 }
9669 
9670 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9671   // If Values have been set for this Def return the one relevant for \p Part.
9672   if (hasVectorValue(Def, Part))
9673     return Data.PerPartOutput[Def][Part];
9674 
9675   if (!hasScalarValue(Def, {Part, 0})) {
9676     Value *IRV = Def->getLiveInIRValue();
9677     Value *B = ILV->getBroadcastInstrs(IRV);
9678     set(Def, B, Part);
9679     return B;
9680   }
9681 
9682   Value *ScalarValue = get(Def, {Part, 0});
9683   // If we aren't vectorizing, we can just copy the scalar map values over
9684   // to the vector map.
9685   if (VF.isScalar()) {
9686     set(Def, ScalarValue, Part);
9687     return ScalarValue;
9688   }
9689 
9690   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9691   bool IsUniform = RepR && RepR->isUniform();
9692 
9693   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9694   // Check if there is a scalar value for the selected lane.
9695   if (!hasScalarValue(Def, {Part, LastLane})) {
9696     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9697     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9698            "unexpected recipe found to be invariant");
9699     IsUniform = true;
9700     LastLane = 0;
9701   }
9702 
9703   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9704 
9705   // Set the insert point after the last scalarized instruction. This
9706   // ensures the insertelement sequence will directly follow the scalar
9707   // definitions.
9708   auto OldIP = Builder.saveIP();
9709   auto NewIP = std::next(BasicBlock::iterator(LastInst));
9710   Builder.SetInsertPoint(&*NewIP);
9711 
9712   // However, if we are vectorizing, we need to construct the vector values.
9713   // If the value is known to be uniform after vectorization, we can just
9714   // broadcast the scalar value corresponding to lane zero for each unroll
9715   // iteration. Otherwise, we construct the vector values using
9716   // insertelement instructions. Since the resulting vectors are stored in
9717   // State, we will only generate the insertelements once.
9718   Value *VectorValue = nullptr;
9719   if (IsUniform) {
9720     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9721     set(Def, VectorValue, Part);
9722   } else {
9723     // Initialize packing with insertelements to start from undef.
9724     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9725     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
9726     set(Def, Undef, Part);
9727     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
9728       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
9729     VectorValue = get(Def, Part);
9730   }
9731   Builder.restoreIP(OldIP);
9732   return VectorValue;
9733 }
9734 
9735 // Process the loop in the VPlan-native vectorization path. This path builds
9736 // VPlan upfront in the vectorization pipeline, which allows to apply
9737 // VPlan-to-VPlan transformations from the very beginning without modifying the
9738 // input LLVM IR.
9739 static bool processLoopInVPlanNativePath(
9740     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
9741     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
9742     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
9743     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
9744     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
9745     LoopVectorizationRequirements &Requirements) {
9746 
9747   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
9748     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9749     return false;
9750   }
9751   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9752   Function *F = L->getHeader()->getParent();
9753   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9754 
9755   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9756       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
9757 
9758   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9759                                 &Hints, IAI);
9760   // Use the planner for outer loop vectorization.
9761   // TODO: CM is not used at this point inside the planner. Turn CM into an
9762   // optional argument if we don't need it in the future.
9763   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
9764                                Requirements, ORE);
9765 
9766   // Get user vectorization factor.
9767   ElementCount UserVF = Hints.getWidth();
9768 
9769   // Plan how to best vectorize, return the best VF and its cost.
9770   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9771 
9772   // If we are stress testing VPlan builds, do not attempt to generate vector
9773   // code. Masked vector code generation support will follow soon.
9774   // Also, do not attempt to vectorize if no vector code will be produced.
9775   if (VPlanBuildStressTest || EnableVPlanPredication ||
9776       VectorizationFactor::Disabled() == VF)
9777     return false;
9778 
9779   LVP.setBestPlan(VF.Width, 1);
9780 
9781   {
9782     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
9783                              F->getParent()->getDataLayout());
9784     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
9785                            &CM, BFI, PSI, Checks);
9786     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9787                       << L->getHeader()->getParent()->getName() << "\"\n");
9788     LVP.executePlan(LB, DT);
9789   }
9790 
9791   // Mark the loop as already vectorized to avoid vectorizing again.
9792   Hints.setAlreadyVectorized();
9793   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9794   return true;
9795 }
9796 
9797 // Emit a remark if there are stores to floats that required a floating point
9798 // extension. If the vectorized loop was generated with floating point there
9799 // will be a performance penalty from the conversion overhead and the change in
9800 // the vector width.
9801 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
9802   SmallVector<Instruction *, 4> Worklist;
9803   for (BasicBlock *BB : L->getBlocks()) {
9804     for (Instruction &Inst : *BB) {
9805       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9806         if (S->getValueOperand()->getType()->isFloatTy())
9807           Worklist.push_back(S);
9808       }
9809     }
9810   }
9811 
9812   // Traverse the floating point stores upwards searching, for floating point
9813   // conversions.
9814   SmallPtrSet<const Instruction *, 4> Visited;
9815   SmallPtrSet<const Instruction *, 4> EmittedRemark;
9816   while (!Worklist.empty()) {
9817     auto *I = Worklist.pop_back_val();
9818     if (!L->contains(I))
9819       continue;
9820     if (!Visited.insert(I).second)
9821       continue;
9822 
9823     // Emit a remark if the floating point store required a floating
9824     // point conversion.
9825     // TODO: More work could be done to identify the root cause such as a
9826     // constant or a function return type and point the user to it.
9827     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9828       ORE->emit([&]() {
9829         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9830                                           I->getDebugLoc(), L->getHeader())
9831                << "floating point conversion changes vector width. "
9832                << "Mixed floating point precision requires an up/down "
9833                << "cast that will negatively impact performance.";
9834       });
9835 
9836     for (Use &Op : I->operands())
9837       if (auto *OpI = dyn_cast<Instruction>(Op))
9838         Worklist.push_back(OpI);
9839   }
9840 }
9841 
9842 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
9843     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9844                                !EnableLoopInterleaving),
9845       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9846                               !EnableLoopVectorization) {}
9847 
9848 bool LoopVectorizePass::processLoop(Loop *L) {
9849   assert((EnableVPlanNativePath || L->isInnermost()) &&
9850          "VPlan-native path is not enabled. Only process inner loops.");
9851 
9852 #ifndef NDEBUG
9853   const std::string DebugLocStr = getDebugLocString(L);
9854 #endif /* NDEBUG */
9855 
9856   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
9857                     << L->getHeader()->getParent()->getName() << "\" from "
9858                     << DebugLocStr << "\n");
9859 
9860   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
9861 
9862   LLVM_DEBUG(
9863       dbgs() << "LV: Loop hints:"
9864              << " force="
9865              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
9866                      ? "disabled"
9867                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
9868                             ? "enabled"
9869                             : "?"))
9870              << " width=" << Hints.getWidth()
9871              << " interleave=" << Hints.getInterleave() << "\n");
9872 
9873   // Function containing loop
9874   Function *F = L->getHeader()->getParent();
9875 
9876   // Looking at the diagnostic output is the only way to determine if a loop
9877   // was vectorized (other than looking at the IR or machine code), so it
9878   // is important to generate an optimization remark for each loop. Most of
9879   // these messages are generated as OptimizationRemarkAnalysis. Remarks
9880   // generated as OptimizationRemark and OptimizationRemarkMissed are
9881   // less verbose reporting vectorized loops and unvectorized loops that may
9882   // benefit from vectorization, respectively.
9883 
9884   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
9885     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
9886     return false;
9887   }
9888 
9889   PredicatedScalarEvolution PSE(*SE, *L);
9890 
9891   // Check if it is legal to vectorize the loop.
9892   LoopVectorizationRequirements Requirements;
9893   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
9894                                 &Requirements, &Hints, DB, AC, BFI, PSI);
9895   if (!LVL.canVectorize(EnableVPlanNativePath)) {
9896     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
9897     Hints.emitRemarkWithHints();
9898     return false;
9899   }
9900 
9901   // Check the function attributes and profiles to find out if this function
9902   // should be optimized for size.
9903   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9904       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
9905 
9906   // Entrance to the VPlan-native vectorization path. Outer loops are processed
9907   // here. They may require CFG and instruction level transformations before
9908   // even evaluating whether vectorization is profitable. Since we cannot modify
9909   // the incoming IR, we need to build VPlan upfront in the vectorization
9910   // pipeline.
9911   if (!L->isInnermost())
9912     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
9913                                         ORE, BFI, PSI, Hints, Requirements);
9914 
9915   assert(L->isInnermost() && "Inner loop expected.");
9916 
9917   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
9918   // count by optimizing for size, to minimize overheads.
9919   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
9920   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
9921     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
9922                       << "This loop is worth vectorizing only if no scalar "
9923                       << "iteration overheads are incurred.");
9924     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
9925       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
9926     else {
9927       LLVM_DEBUG(dbgs() << "\n");
9928       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
9929     }
9930   }
9931 
9932   // Check the function attributes to see if implicit floats are allowed.
9933   // FIXME: This check doesn't seem possibly correct -- what if the loop is
9934   // an integer loop and the vector instructions selected are purely integer
9935   // vector instructions?
9936   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9937     reportVectorizationFailure(
9938         "Can't vectorize when the NoImplicitFloat attribute is used",
9939         "loop not vectorized due to NoImplicitFloat attribute",
9940         "NoImplicitFloat", ORE, L);
9941     Hints.emitRemarkWithHints();
9942     return false;
9943   }
9944 
9945   // Check if the target supports potentially unsafe FP vectorization.
9946   // FIXME: Add a check for the type of safety issue (denormal, signaling)
9947   // for the target we're vectorizing for, to make sure none of the
9948   // additional fp-math flags can help.
9949   if (Hints.isPotentiallyUnsafe() &&
9950       TTI->isFPVectorizationPotentiallyUnsafe()) {
9951     reportVectorizationFailure(
9952         "Potentially unsafe FP op prevents vectorization",
9953         "loop not vectorized due to unsafe FP support.",
9954         "UnsafeFP", ORE, L);
9955     Hints.emitRemarkWithHints();
9956     return false;
9957   }
9958 
9959   if (!Requirements.canVectorizeFPMath(Hints)) {
9960     ORE->emit([&]() {
9961       auto *ExactFPMathInst = Requirements.getExactFPInst();
9962       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
9963                                                  ExactFPMathInst->getDebugLoc(),
9964                                                  ExactFPMathInst->getParent())
9965              << "loop not vectorized: cannot prove it is safe to reorder "
9966                 "floating-point operations";
9967     });
9968     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
9969                          "reorder floating-point operations\n");
9970     Hints.emitRemarkWithHints();
9971     return false;
9972   }
9973 
9974   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
9975   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
9976 
9977   // If an override option has been passed in for interleaved accesses, use it.
9978   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
9979     UseInterleaved = EnableInterleavedMemAccesses;
9980 
9981   // Analyze interleaved memory accesses.
9982   if (UseInterleaved) {
9983     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
9984   }
9985 
9986   // Use the cost model.
9987   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
9988                                 F, &Hints, IAI);
9989   CM.collectValuesToIgnore();
9990 
9991   // Use the planner for vectorization.
9992   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
9993                                Requirements, ORE);
9994 
9995   // Get user vectorization factor and interleave count.
9996   ElementCount UserVF = Hints.getWidth();
9997   unsigned UserIC = Hints.getInterleave();
9998 
9999   // Plan how to best vectorize, return the best VF and its cost.
10000   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10001 
10002   VectorizationFactor VF = VectorizationFactor::Disabled();
10003   unsigned IC = 1;
10004 
10005   if (MaybeVF) {
10006     VF = *MaybeVF;
10007     // Select the interleave count.
10008     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10009   }
10010 
10011   // Identify the diagnostic messages that should be produced.
10012   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10013   bool VectorizeLoop = true, InterleaveLoop = true;
10014   if (VF.Width.isScalar()) {
10015     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10016     VecDiagMsg = std::make_pair(
10017         "VectorizationNotBeneficial",
10018         "the cost-model indicates that vectorization is not beneficial");
10019     VectorizeLoop = false;
10020   }
10021 
10022   if (!MaybeVF && UserIC > 1) {
10023     // Tell the user interleaving was avoided up-front, despite being explicitly
10024     // requested.
10025     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10026                          "interleaving should be avoided up front\n");
10027     IntDiagMsg = std::make_pair(
10028         "InterleavingAvoided",
10029         "Ignoring UserIC, because interleaving was avoided up front");
10030     InterleaveLoop = false;
10031   } else if (IC == 1 && UserIC <= 1) {
10032     // Tell the user interleaving is not beneficial.
10033     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10034     IntDiagMsg = std::make_pair(
10035         "InterleavingNotBeneficial",
10036         "the cost-model indicates that interleaving is not beneficial");
10037     InterleaveLoop = false;
10038     if (UserIC == 1) {
10039       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10040       IntDiagMsg.second +=
10041           " and is explicitly disabled or interleave count is set to 1";
10042     }
10043   } else if (IC > 1 && UserIC == 1) {
10044     // Tell the user interleaving is beneficial, but it explicitly disabled.
10045     LLVM_DEBUG(
10046         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10047     IntDiagMsg = std::make_pair(
10048         "InterleavingBeneficialButDisabled",
10049         "the cost-model indicates that interleaving is beneficial "
10050         "but is explicitly disabled or interleave count is set to 1");
10051     InterleaveLoop = false;
10052   }
10053 
10054   // Override IC if user provided an interleave count.
10055   IC = UserIC > 0 ? UserIC : IC;
10056 
10057   // Emit diagnostic messages, if any.
10058   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10059   if (!VectorizeLoop && !InterleaveLoop) {
10060     // Do not vectorize or interleaving the loop.
10061     ORE->emit([&]() {
10062       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10063                                       L->getStartLoc(), L->getHeader())
10064              << VecDiagMsg.second;
10065     });
10066     ORE->emit([&]() {
10067       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10068                                       L->getStartLoc(), L->getHeader())
10069              << IntDiagMsg.second;
10070     });
10071     return false;
10072   } else if (!VectorizeLoop && InterleaveLoop) {
10073     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10074     ORE->emit([&]() {
10075       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10076                                         L->getStartLoc(), L->getHeader())
10077              << VecDiagMsg.second;
10078     });
10079   } else if (VectorizeLoop && !InterleaveLoop) {
10080     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10081                       << ") in " << DebugLocStr << '\n');
10082     ORE->emit([&]() {
10083       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10084                                         L->getStartLoc(), L->getHeader())
10085              << IntDiagMsg.second;
10086     });
10087   } else if (VectorizeLoop && InterleaveLoop) {
10088     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10089                       << ") in " << DebugLocStr << '\n');
10090     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10091   }
10092 
10093   bool DisableRuntimeUnroll = false;
10094   MDNode *OrigLoopID = L->getLoopID();
10095   {
10096     // Optimistically generate runtime checks. Drop them if they turn out to not
10097     // be profitable. Limit the scope of Checks, so the cleanup happens
10098     // immediately after vector codegeneration is done.
10099     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10100                              F->getParent()->getDataLayout());
10101     if (!VF.Width.isScalar() || IC > 1)
10102       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10103     LVP.setBestPlan(VF.Width, IC);
10104 
10105     using namespace ore;
10106     if (!VectorizeLoop) {
10107       assert(IC > 1 && "interleave count should not be 1 or 0");
10108       // If we decided that it is not legal to vectorize the loop, then
10109       // interleave it.
10110       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10111                                  &CM, BFI, PSI, Checks);
10112       LVP.executePlan(Unroller, DT);
10113 
10114       ORE->emit([&]() {
10115         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10116                                   L->getHeader())
10117                << "interleaved loop (interleaved count: "
10118                << NV("InterleaveCount", IC) << ")";
10119       });
10120     } else {
10121       // If we decided that it is *legal* to vectorize the loop, then do it.
10122 
10123       // Consider vectorizing the epilogue too if it's profitable.
10124       VectorizationFactor EpilogueVF =
10125           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10126       if (EpilogueVF.Width.isVector()) {
10127 
10128         // The first pass vectorizes the main loop and creates a scalar epilogue
10129         // to be vectorized by executing the plan (potentially with a different
10130         // factor) again shortly afterwards.
10131         EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC,
10132                                           EpilogueVF.Width.getKnownMinValue(),
10133                                           1);
10134         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10135                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10136 
10137         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
10138         LVP.executePlan(MainILV, DT);
10139         ++LoopsVectorized;
10140 
10141         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10142         formLCSSARecursively(*L, *DT, LI, SE);
10143 
10144         // Second pass vectorizes the epilogue and adjusts the control flow
10145         // edges from the first pass.
10146         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
10147         EPI.MainLoopVF = EPI.EpilogueVF;
10148         EPI.MainLoopUF = EPI.EpilogueUF;
10149         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10150                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10151                                                  Checks);
10152         LVP.executePlan(EpilogILV, DT);
10153         ++LoopsEpilogueVectorized;
10154 
10155         if (!MainILV.areSafetyChecksAdded())
10156           DisableRuntimeUnroll = true;
10157       } else {
10158         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10159                                &LVL, &CM, BFI, PSI, Checks);
10160         LVP.executePlan(LB, DT);
10161         ++LoopsVectorized;
10162 
10163         // Add metadata to disable runtime unrolling a scalar loop when there
10164         // are no runtime checks about strides and memory. A scalar loop that is
10165         // rarely used is not worth unrolling.
10166         if (!LB.areSafetyChecksAdded())
10167           DisableRuntimeUnroll = true;
10168       }
10169       // Report the vectorization decision.
10170       ORE->emit([&]() {
10171         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10172                                   L->getHeader())
10173                << "vectorized loop (vectorization width: "
10174                << NV("VectorizationFactor", VF.Width)
10175                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10176       });
10177     }
10178 
10179     if (ORE->allowExtraAnalysis(LV_NAME))
10180       checkMixedPrecision(L, ORE);
10181   }
10182 
10183   Optional<MDNode *> RemainderLoopID =
10184       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10185                                       LLVMLoopVectorizeFollowupEpilogue});
10186   if (RemainderLoopID.hasValue()) {
10187     L->setLoopID(RemainderLoopID.getValue());
10188   } else {
10189     if (DisableRuntimeUnroll)
10190       AddRuntimeUnrollDisableMetaData(L);
10191 
10192     // Mark the loop as already vectorized to avoid vectorizing again.
10193     Hints.setAlreadyVectorized();
10194   }
10195 
10196   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10197   return true;
10198 }
10199 
10200 LoopVectorizeResult LoopVectorizePass::runImpl(
10201     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10202     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10203     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10204     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10205     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10206   SE = &SE_;
10207   LI = &LI_;
10208   TTI = &TTI_;
10209   DT = &DT_;
10210   BFI = &BFI_;
10211   TLI = TLI_;
10212   AA = &AA_;
10213   AC = &AC_;
10214   GetLAA = &GetLAA_;
10215   DB = &DB_;
10216   ORE = &ORE_;
10217   PSI = PSI_;
10218 
10219   // Don't attempt if
10220   // 1. the target claims to have no vector registers, and
10221   // 2. interleaving won't help ILP.
10222   //
10223   // The second condition is necessary because, even if the target has no
10224   // vector registers, loop vectorization may still enable scalar
10225   // interleaving.
10226   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10227       TTI->getMaxInterleaveFactor(1) < 2)
10228     return LoopVectorizeResult(false, false);
10229 
10230   bool Changed = false, CFGChanged = false;
10231 
10232   // The vectorizer requires loops to be in simplified form.
10233   // Since simplification may add new inner loops, it has to run before the
10234   // legality and profitability checks. This means running the loop vectorizer
10235   // will simplify all loops, regardless of whether anything end up being
10236   // vectorized.
10237   for (auto &L : *LI)
10238     Changed |= CFGChanged |=
10239         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10240 
10241   // Build up a worklist of inner-loops to vectorize. This is necessary as
10242   // the act of vectorizing or partially unrolling a loop creates new loops
10243   // and can invalidate iterators across the loops.
10244   SmallVector<Loop *, 8> Worklist;
10245 
10246   for (Loop *L : *LI)
10247     collectSupportedLoops(*L, LI, ORE, Worklist);
10248 
10249   LoopsAnalyzed += Worklist.size();
10250 
10251   // Now walk the identified inner loops.
10252   while (!Worklist.empty()) {
10253     Loop *L = Worklist.pop_back_val();
10254 
10255     // For the inner loops we actually process, form LCSSA to simplify the
10256     // transform.
10257     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10258 
10259     Changed |= CFGChanged |= processLoop(L);
10260   }
10261 
10262   // Process each loop nest in the function.
10263   return LoopVectorizeResult(Changed, CFGChanged);
10264 }
10265 
10266 PreservedAnalyses LoopVectorizePass::run(Function &F,
10267                                          FunctionAnalysisManager &AM) {
10268     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10269     auto &LI = AM.getResult<LoopAnalysis>(F);
10270     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10271     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10272     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10273     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10274     auto &AA = AM.getResult<AAManager>(F);
10275     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10276     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10277     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10278     MemorySSA *MSSA = EnableMSSALoopDependency
10279                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
10280                           : nullptr;
10281 
10282     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10283     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10284         [&](Loop &L) -> const LoopAccessInfo & {
10285       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
10286                                         TLI, TTI, nullptr, MSSA};
10287       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10288     };
10289     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10290     ProfileSummaryInfo *PSI =
10291         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10292     LoopVectorizeResult Result =
10293         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10294     if (!Result.MadeAnyChange)
10295       return PreservedAnalyses::all();
10296     PreservedAnalyses PA;
10297 
10298     // We currently do not preserve loopinfo/dominator analyses with outer loop
10299     // vectorization. Until this is addressed, mark these analyses as preserved
10300     // only for non-VPlan-native path.
10301     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10302     if (!EnableVPlanNativePath) {
10303       PA.preserve<LoopAnalysis>();
10304       PA.preserve<DominatorTreeAnalysis>();
10305     }
10306     if (!Result.MadeCFGChange)
10307       PA.preserveSet<CFGAnalyses>();
10308     return PA;
10309 }
10310