1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 // There is a development effort going on to migrate loop vectorizer to the 30 // VPlan infrastructure and to introduce outer loop vectorization support (see 31 // docs/Proposal/VectorizationPlan.rst and 32 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 33 // purpose, we temporarily introduced the VPlan-native vectorization path: an 34 // alternative vectorization path that is natively implemented on top of the 35 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // The reduction-variable vectorization is based on the paper: 40 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 41 // 42 // Variable uniformity checks are inspired by: 43 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 44 // 45 // The interleaved access vectorization is based on the paper: 46 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 47 // Data for SIMD 48 // 49 // Other ideas/concepts are from: 50 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 51 // 52 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 53 // Vectorizing Compilers. 54 // 55 //===----------------------------------------------------------------------===// 56 57 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 58 #include "LoopVectorizationPlanner.h" 59 #include "VPRecipeBuilder.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DenseMapInfo.h" 65 #include "llvm/ADT/Hashing.h" 66 #include "llvm/ADT/MapVector.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/SetVector.h" 71 #include "llvm/ADT/SmallPtrSet.h" 72 #include "llvm/ADT/SmallVector.h" 73 #include "llvm/ADT/Statistic.h" 74 #include "llvm/ADT/StringRef.h" 75 #include "llvm/ADT/Twine.h" 76 #include "llvm/ADT/iterator_range.h" 77 #include "llvm/Analysis/AssumptionCache.h" 78 #include "llvm/Analysis/BasicAliasAnalysis.h" 79 #include "llvm/Analysis/BlockFrequencyInfo.h" 80 #include "llvm/Analysis/CFG.h" 81 #include "llvm/Analysis/CodeMetrics.h" 82 #include "llvm/Analysis/DemandedBits.h" 83 #include "llvm/Analysis/GlobalsModRef.h" 84 #include "llvm/Analysis/LoopAccessAnalysis.h" 85 #include "llvm/Analysis/LoopAnalysisManager.h" 86 #include "llvm/Analysis/LoopInfo.h" 87 #include "llvm/Analysis/LoopIterator.h" 88 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 89 #include "llvm/Analysis/ScalarEvolution.h" 90 #include "llvm/Analysis/ScalarEvolutionExpander.h" 91 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 92 #include "llvm/Analysis/TargetLibraryInfo.h" 93 #include "llvm/Analysis/TargetTransformInfo.h" 94 #include "llvm/Analysis/VectorUtils.h" 95 #include "llvm/IR/Attributes.h" 96 #include "llvm/IR/BasicBlock.h" 97 #include "llvm/IR/CFG.h" 98 #include "llvm/IR/Constant.h" 99 #include "llvm/IR/Constants.h" 100 #include "llvm/IR/DataLayout.h" 101 #include "llvm/IR/DebugInfoMetadata.h" 102 #include "llvm/IR/DebugLoc.h" 103 #include "llvm/IR/DerivedTypes.h" 104 #include "llvm/IR/DiagnosticInfo.h" 105 #include "llvm/IR/Dominators.h" 106 #include "llvm/IR/Function.h" 107 #include "llvm/IR/IRBuilder.h" 108 #include "llvm/IR/InstrTypes.h" 109 #include "llvm/IR/Instruction.h" 110 #include "llvm/IR/Instructions.h" 111 #include "llvm/IR/IntrinsicInst.h" 112 #include "llvm/IR/Intrinsics.h" 113 #include "llvm/IR/LLVMContext.h" 114 #include "llvm/IR/Metadata.h" 115 #include "llvm/IR/Module.h" 116 #include "llvm/IR/Operator.h" 117 #include "llvm/IR/Type.h" 118 #include "llvm/IR/Use.h" 119 #include "llvm/IR/User.h" 120 #include "llvm/IR/Value.h" 121 #include "llvm/IR/ValueHandle.h" 122 #include "llvm/IR/Verifier.h" 123 #include "llvm/Pass.h" 124 #include "llvm/Support/Casting.h" 125 #include "llvm/Support/CommandLine.h" 126 #include "llvm/Support/Compiler.h" 127 #include "llvm/Support/Debug.h" 128 #include "llvm/Support/ErrorHandling.h" 129 #include "llvm/Support/MathExtras.h" 130 #include "llvm/Support/raw_ostream.h" 131 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 132 #include "llvm/Transforms/Utils/LoopSimplify.h" 133 #include "llvm/Transforms/Utils/LoopUtils.h" 134 #include "llvm/Transforms/Utils/LoopVersioning.h" 135 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 136 #include <algorithm> 137 #include <cassert> 138 #include <cstdint> 139 #include <cstdlib> 140 #include <functional> 141 #include <iterator> 142 #include <limits> 143 #include <memory> 144 #include <string> 145 #include <tuple> 146 #include <utility> 147 #include <vector> 148 149 using namespace llvm; 150 151 #define LV_NAME "loop-vectorize" 152 #define DEBUG_TYPE LV_NAME 153 154 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 155 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 156 157 /// Loops with a known constant trip count below this number are vectorized only 158 /// if no scalar iteration overheads are incurred. 159 static cl::opt<unsigned> TinyTripCountVectorThreshold( 160 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 161 cl::desc("Loops with a constant trip count that is smaller than this " 162 "value are vectorized only if no scalar iteration overheads " 163 "are incurred.")); 164 165 static cl::opt<bool> MaximizeBandwidth( 166 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 167 cl::desc("Maximize bandwidth when selecting vectorization factor which " 168 "will be determined by the smallest type in loop.")); 169 170 static cl::opt<bool> EnableInterleavedMemAccesses( 171 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 172 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 173 174 /// Maximum factor for an interleaved memory access. 175 static cl::opt<unsigned> MaxInterleaveGroupFactor( 176 "max-interleave-group-factor", cl::Hidden, 177 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 178 cl::init(8)); 179 180 /// We don't interleave loops with a known constant trip count below this 181 /// number. 182 static const unsigned TinyTripCountInterleaveThreshold = 128; 183 184 static cl::opt<unsigned> ForceTargetNumScalarRegs( 185 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 186 cl::desc("A flag that overrides the target's number of scalar registers.")); 187 188 static cl::opt<unsigned> ForceTargetNumVectorRegs( 189 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 190 cl::desc("A flag that overrides the target's number of vector registers.")); 191 192 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 193 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 194 cl::desc("A flag that overrides the target's max interleave factor for " 195 "scalar loops.")); 196 197 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 198 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 199 cl::desc("A flag that overrides the target's max interleave factor for " 200 "vectorized loops.")); 201 202 static cl::opt<unsigned> ForceTargetInstructionCost( 203 "force-target-instruction-cost", cl::init(0), cl::Hidden, 204 cl::desc("A flag that overrides the target's expected cost for " 205 "an instruction to a single constant value. Mostly " 206 "useful for getting consistent testing.")); 207 208 static cl::opt<unsigned> SmallLoopCost( 209 "small-loop-cost", cl::init(20), cl::Hidden, 210 cl::desc( 211 "The cost of a loop that is considered 'small' by the interleaver.")); 212 213 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 214 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 215 cl::desc("Enable the use of the block frequency analysis to access PGO " 216 "heuristics minimizing code growth in cold regions and being more " 217 "aggressive in hot regions.")); 218 219 // Runtime interleave loops for load/store throughput. 220 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 221 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 222 cl::desc( 223 "Enable runtime interleaving until load/store ports are saturated")); 224 225 /// The number of stores in a loop that are allowed to need predication. 226 static cl::opt<unsigned> NumberOfStoresToPredicate( 227 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 228 cl::desc("Max number of stores to be predicated behind an if.")); 229 230 static cl::opt<bool> EnableIndVarRegisterHeur( 231 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 232 cl::desc("Count the induction variable only once when interleaving")); 233 234 static cl::opt<bool> EnableCondStoresVectorization( 235 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 236 cl::desc("Enable if predication of stores during vectorization.")); 237 238 static cl::opt<unsigned> MaxNestedScalarReductionIC( 239 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 240 cl::desc("The maximum interleave count to use when interleaving a scalar " 241 "reduction in a nested loop.")); 242 243 static cl::opt<bool> EnableVPlanNativePath( 244 "enable-vplan-native-path", cl::init(false), cl::Hidden, 245 cl::desc("Enable VPlan-native vectorization path with " 246 "support for outer loop vectorization.")); 247 248 // This flag enables the stress testing of the VPlan H-CFG construction in the 249 // VPlan-native vectorization path. It must be used in conjuction with 250 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 251 // verification of the H-CFGs built. 252 static cl::opt<bool> VPlanBuildStressTest( 253 "vplan-build-stress-test", cl::init(false), cl::Hidden, 254 cl::desc( 255 "Build VPlan for every supported loop nest in the function and bail " 256 "out right after the build (stress test the VPlan H-CFG construction " 257 "in the VPlan-native vectorization path).")); 258 259 /// A helper function for converting Scalar types to vector types. 260 /// If the incoming type is void, we return void. If the VF is 1, we return 261 /// the scalar type. 262 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 263 if (Scalar->isVoidTy() || VF == 1) 264 return Scalar; 265 return VectorType::get(Scalar, VF); 266 } 267 268 // FIXME: The following helper functions have multiple implementations 269 // in the project. They can be effectively organized in a common Load/Store 270 // utilities unit. 271 272 /// A helper function that returns the type of loaded or stored value. 273 static Type *getMemInstValueType(Value *I) { 274 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 275 "Expected Load or Store instruction"); 276 if (auto *LI = dyn_cast<LoadInst>(I)) 277 return LI->getType(); 278 return cast<StoreInst>(I)->getValueOperand()->getType(); 279 } 280 281 /// A helper function that returns the alignment of load or store instruction. 282 static unsigned getMemInstAlignment(Value *I) { 283 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 284 "Expected Load or Store instruction"); 285 if (auto *LI = dyn_cast<LoadInst>(I)) 286 return LI->getAlignment(); 287 return cast<StoreInst>(I)->getAlignment(); 288 } 289 290 /// A helper function that returns the address space of the pointer operand of 291 /// load or store instruction. 292 static unsigned getMemInstAddressSpace(Value *I) { 293 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 294 "Expected Load or Store instruction"); 295 if (auto *LI = dyn_cast<LoadInst>(I)) 296 return LI->getPointerAddressSpace(); 297 return cast<StoreInst>(I)->getPointerAddressSpace(); 298 } 299 300 /// A helper function that returns true if the given type is irregular. The 301 /// type is irregular if its allocated size doesn't equal the store size of an 302 /// element of the corresponding vector type at the given vectorization factor. 303 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 304 // Determine if an array of VF elements of type Ty is "bitcast compatible" 305 // with a <VF x Ty> vector. 306 if (VF > 1) { 307 auto *VectorTy = VectorType::get(Ty, VF); 308 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 309 } 310 311 // If the vectorization factor is one, we just check if an array of type Ty 312 // requires padding between elements. 313 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 314 } 315 316 /// A helper function that returns the reciprocal of the block probability of 317 /// predicated blocks. If we return X, we are assuming the predicated block 318 /// will execute once for every X iterations of the loop header. 319 /// 320 /// TODO: We should use actual block probability here, if available. Currently, 321 /// we always assume predicated blocks have a 50% chance of executing. 322 static unsigned getReciprocalPredBlockProb() { return 2; } 323 324 /// A helper function that adds a 'fast' flag to floating-point operations. 325 static Value *addFastMathFlag(Value *V) { 326 if (isa<FPMathOperator>(V)) { 327 FastMathFlags Flags; 328 Flags.setFast(); 329 cast<Instruction>(V)->setFastMathFlags(Flags); 330 } 331 return V; 332 } 333 334 /// A helper function that returns an integer or floating-point constant with 335 /// value C. 336 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 337 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 338 : ConstantFP::get(Ty, C); 339 } 340 341 namespace llvm { 342 343 /// InnerLoopVectorizer vectorizes loops which contain only one basic 344 /// block to a specified vectorization factor (VF). 345 /// This class performs the widening of scalars into vectors, or multiple 346 /// scalars. This class also implements the following features: 347 /// * It inserts an epilogue loop for handling loops that don't have iteration 348 /// counts that are known to be a multiple of the vectorization factor. 349 /// * It handles the code generation for reduction variables. 350 /// * Scalarization (implementation using scalars) of un-vectorizable 351 /// instructions. 352 /// InnerLoopVectorizer does not perform any vectorization-legality 353 /// checks, and relies on the caller to check for the different legality 354 /// aspects. The InnerLoopVectorizer relies on the 355 /// LoopVectorizationLegality class to provide information about the induction 356 /// and reduction variables that were found to a given vectorization factor. 357 class InnerLoopVectorizer { 358 public: 359 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 360 LoopInfo *LI, DominatorTree *DT, 361 const TargetLibraryInfo *TLI, 362 const TargetTransformInfo *TTI, AssumptionCache *AC, 363 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 364 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 365 LoopVectorizationCostModel *CM) 366 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 367 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 368 Builder(PSE.getSE()->getContext()), 369 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 370 virtual ~InnerLoopVectorizer() = default; 371 372 /// Create a new empty loop. Unlink the old loop and connect the new one. 373 /// Return the pre-header block of the new loop. 374 BasicBlock *createVectorizedLoopSkeleton(); 375 376 /// Widen a single instruction within the innermost loop. 377 void widenInstruction(Instruction &I); 378 379 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 380 void fixVectorizedLoop(); 381 382 // Return true if any runtime check is added. 383 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 384 385 /// A type for vectorized values in the new loop. Each value from the 386 /// original loop, when vectorized, is represented by UF vector values in the 387 /// new unrolled loop, where UF is the unroll factor. 388 using VectorParts = SmallVector<Value *, 2>; 389 390 /// Vectorize a single PHINode in a block. This method handles the induction 391 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 392 /// arbitrary length vectors. 393 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 394 395 /// A helper function to scalarize a single Instruction in the innermost loop. 396 /// Generates a sequence of scalar instances for each lane between \p MinLane 397 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 398 /// inclusive.. 399 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 400 bool IfPredicateInstr); 401 402 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 403 /// is provided, the integer induction variable will first be truncated to 404 /// the corresponding type. 405 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 406 407 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 408 /// vector or scalar value on-demand if one is not yet available. When 409 /// vectorizing a loop, we visit the definition of an instruction before its 410 /// uses. When visiting the definition, we either vectorize or scalarize the 411 /// instruction, creating an entry for it in the corresponding map. (In some 412 /// cases, such as induction variables, we will create both vector and scalar 413 /// entries.) Then, as we encounter uses of the definition, we derive values 414 /// for each scalar or vector use unless such a value is already available. 415 /// For example, if we scalarize a definition and one of its uses is vector, 416 /// we build the required vector on-demand with an insertelement sequence 417 /// when visiting the use. Otherwise, if the use is scalar, we can use the 418 /// existing scalar definition. 419 /// 420 /// Return a value in the new loop corresponding to \p V from the original 421 /// loop at unroll index \p Part. If the value has already been vectorized, 422 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 423 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 424 /// a new vector value on-demand by inserting the scalar values into a vector 425 /// with an insertelement sequence. If the value has been neither vectorized 426 /// nor scalarized, it must be loop invariant, so we simply broadcast the 427 /// value into a vector. 428 Value *getOrCreateVectorValue(Value *V, unsigned Part); 429 430 /// Return a value in the new loop corresponding to \p V from the original 431 /// loop at unroll and vector indices \p Instance. If the value has been 432 /// vectorized but not scalarized, the necessary extractelement instruction 433 /// will be generated. 434 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 435 436 /// Construct the vector value of a scalarized value \p V one lane at a time. 437 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 438 439 /// Try to vectorize the interleaved access group that \p Instr belongs to. 440 void vectorizeInterleaveGroup(Instruction *Instr); 441 442 /// Vectorize Load and Store instructions, optionally masking the vector 443 /// operations if \p BlockInMask is non-null. 444 void vectorizeMemoryInstruction(Instruction *Instr, 445 VectorParts *BlockInMask = nullptr); 446 447 /// Set the debug location in the builder using the debug location in 448 /// the instruction. 449 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 450 451 protected: 452 friend class LoopVectorizationPlanner; 453 454 /// A small list of PHINodes. 455 using PhiVector = SmallVector<PHINode *, 4>; 456 457 /// A type for scalarized values in the new loop. Each value from the 458 /// original loop, when scalarized, is represented by UF x VF scalar values 459 /// in the new unrolled loop, where UF is the unroll factor and VF is the 460 /// vectorization factor. 461 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 462 463 /// Set up the values of the IVs correctly when exiting the vector loop. 464 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 465 Value *CountRoundDown, Value *EndValue, 466 BasicBlock *MiddleBlock); 467 468 /// Create a new induction variable inside L. 469 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 470 Value *Step, Instruction *DL); 471 472 /// Handle all cross-iteration phis in the header. 473 void fixCrossIterationPHIs(); 474 475 /// Fix a first-order recurrence. This is the second phase of vectorizing 476 /// this phi node. 477 void fixFirstOrderRecurrence(PHINode *Phi); 478 479 /// Fix a reduction cross-iteration phi. This is the second phase of 480 /// vectorizing this phi node. 481 void fixReduction(PHINode *Phi); 482 483 /// The Loop exit block may have single value PHI nodes with some 484 /// incoming value. While vectorizing we only handled real values 485 /// that were defined inside the loop and we should have one value for 486 /// each predecessor of its parent basic block. See PR14725. 487 void fixLCSSAPHIs(); 488 489 /// Iteratively sink the scalarized operands of a predicated instruction into 490 /// the block that was created for it. 491 void sinkScalarOperands(Instruction *PredInst); 492 493 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 494 /// represented as. 495 void truncateToMinimalBitwidths(); 496 497 /// Insert the new loop to the loop hierarchy and pass manager 498 /// and update the analysis passes. 499 void updateAnalysis(); 500 501 /// Create a broadcast instruction. This method generates a broadcast 502 /// instruction (shuffle) for loop invariant values and for the induction 503 /// value. If this is the induction variable then we extend it to N, N+1, ... 504 /// this is needed because each iteration in the loop corresponds to a SIMD 505 /// element. 506 virtual Value *getBroadcastInstrs(Value *V); 507 508 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 509 /// to each vector element of Val. The sequence starts at StartIndex. 510 /// \p Opcode is relevant for FP induction variable. 511 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 512 Instruction::BinaryOps Opcode = 513 Instruction::BinaryOpsEnd); 514 515 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 516 /// variable on which to base the steps, \p Step is the size of the step, and 517 /// \p EntryVal is the value from the original loop that maps to the steps. 518 /// Note that \p EntryVal doesn't have to be an induction variable - it 519 /// can also be a truncate instruction. 520 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 521 const InductionDescriptor &ID); 522 523 /// Create a vector induction phi node based on an existing scalar one. \p 524 /// EntryVal is the value from the original loop that maps to the vector phi 525 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 526 /// truncate instruction, instead of widening the original IV, we widen a 527 /// version of the IV truncated to \p EntryVal's type. 528 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 529 Value *Step, Instruction *EntryVal); 530 531 /// Returns true if an instruction \p I should be scalarized instead of 532 /// vectorized for the chosen vectorization factor. 533 bool shouldScalarizeInstruction(Instruction *I) const; 534 535 /// Returns true if we should generate a scalar version of \p IV. 536 bool needsScalarInduction(Instruction *IV) const; 537 538 /// If there is a cast involved in the induction variable \p ID, which should 539 /// be ignored in the vectorized loop body, this function records the 540 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 541 /// cast. We had already proved that the casted Phi is equal to the uncasted 542 /// Phi in the vectorized loop (under a runtime guard), and therefore 543 /// there is no need to vectorize the cast - the same value can be used in the 544 /// vector loop for both the Phi and the cast. 545 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 546 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 547 /// 548 /// \p EntryVal is the value from the original loop that maps to the vector 549 /// phi node and is used to distinguish what is the IV currently being 550 /// processed - original one (if \p EntryVal is a phi corresponding to the 551 /// original IV) or the "newly-created" one based on the proof mentioned above 552 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 553 /// latter case \p EntryVal is a TruncInst and we must not record anything for 554 /// that IV, but it's error-prone to expect callers of this routine to care 555 /// about that, hence this explicit parameter. 556 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 557 const Instruction *EntryVal, 558 Value *VectorLoopValue, 559 unsigned Part, 560 unsigned Lane = UINT_MAX); 561 562 /// Generate a shuffle sequence that will reverse the vector Vec. 563 virtual Value *reverseVector(Value *Vec); 564 565 /// Returns (and creates if needed) the original loop trip count. 566 Value *getOrCreateTripCount(Loop *NewLoop); 567 568 /// Returns (and creates if needed) the trip count of the widened loop. 569 Value *getOrCreateVectorTripCount(Loop *NewLoop); 570 571 /// Returns a bitcasted value to the requested vector type. 572 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 573 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 574 const DataLayout &DL); 575 576 /// Emit a bypass check to see if the vector trip count is zero, including if 577 /// it overflows. 578 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 579 580 /// Emit a bypass check to see if all of the SCEV assumptions we've 581 /// had to make are correct. 582 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 583 584 /// Emit bypass checks to check any memory assumptions we may have made. 585 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 586 587 /// Add additional metadata to \p To that was not present on \p Orig. 588 /// 589 /// Currently this is used to add the noalias annotations based on the 590 /// inserted memchecks. Use this for instructions that are *cloned* into the 591 /// vector loop. 592 void addNewMetadata(Instruction *To, const Instruction *Orig); 593 594 /// Add metadata from one instruction to another. 595 /// 596 /// This includes both the original MDs from \p From and additional ones (\see 597 /// addNewMetadata). Use this for *newly created* instructions in the vector 598 /// loop. 599 void addMetadata(Instruction *To, Instruction *From); 600 601 /// Similar to the previous function but it adds the metadata to a 602 /// vector of instructions. 603 void addMetadata(ArrayRef<Value *> To, Instruction *From); 604 605 /// The original loop. 606 Loop *OrigLoop; 607 608 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 609 /// dynamic knowledge to simplify SCEV expressions and converts them to a 610 /// more usable form. 611 PredicatedScalarEvolution &PSE; 612 613 /// Loop Info. 614 LoopInfo *LI; 615 616 /// Dominator Tree. 617 DominatorTree *DT; 618 619 /// Alias Analysis. 620 AliasAnalysis *AA; 621 622 /// Target Library Info. 623 const TargetLibraryInfo *TLI; 624 625 /// Target Transform Info. 626 const TargetTransformInfo *TTI; 627 628 /// Assumption Cache. 629 AssumptionCache *AC; 630 631 /// Interface to emit optimization remarks. 632 OptimizationRemarkEmitter *ORE; 633 634 /// LoopVersioning. It's only set up (non-null) if memchecks were 635 /// used. 636 /// 637 /// This is currently only used to add no-alias metadata based on the 638 /// memchecks. The actually versioning is performed manually. 639 std::unique_ptr<LoopVersioning> LVer; 640 641 /// The vectorization SIMD factor to use. Each vector will have this many 642 /// vector elements. 643 unsigned VF; 644 645 /// The vectorization unroll factor to use. Each scalar is vectorized to this 646 /// many different vector instructions. 647 unsigned UF; 648 649 /// The builder that we use 650 IRBuilder<> Builder; 651 652 // --- Vectorization state --- 653 654 /// The vector-loop preheader. 655 BasicBlock *LoopVectorPreHeader; 656 657 /// The scalar-loop preheader. 658 BasicBlock *LoopScalarPreHeader; 659 660 /// Middle Block between the vector and the scalar. 661 BasicBlock *LoopMiddleBlock; 662 663 /// The ExitBlock of the scalar loop. 664 BasicBlock *LoopExitBlock; 665 666 /// The vector loop body. 667 BasicBlock *LoopVectorBody; 668 669 /// The scalar loop body. 670 BasicBlock *LoopScalarBody; 671 672 /// A list of all bypass blocks. The first block is the entry of the loop. 673 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 674 675 /// The new Induction variable which was added to the new block. 676 PHINode *Induction = nullptr; 677 678 /// The induction variable of the old basic block. 679 PHINode *OldInduction = nullptr; 680 681 /// Maps values from the original loop to their corresponding values in the 682 /// vectorized loop. A key value can map to either vector values, scalar 683 /// values or both kinds of values, depending on whether the key was 684 /// vectorized and scalarized. 685 VectorizerValueMap VectorLoopValueMap; 686 687 /// Store instructions that were predicated. 688 SmallVector<Instruction *, 4> PredicatedInstructions; 689 690 /// Trip count of the original loop. 691 Value *TripCount = nullptr; 692 693 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 694 Value *VectorTripCount = nullptr; 695 696 /// The legality analysis. 697 LoopVectorizationLegality *Legal; 698 699 /// The profitablity analysis. 700 LoopVectorizationCostModel *Cost; 701 702 // Record whether runtime checks are added. 703 bool AddedSafetyChecks = false; 704 705 // Holds the end values for each induction variable. We save the end values 706 // so we can later fix-up the external users of the induction variables. 707 DenseMap<PHINode *, Value *> IVEndValues; 708 }; 709 710 class InnerLoopUnroller : public InnerLoopVectorizer { 711 public: 712 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 713 LoopInfo *LI, DominatorTree *DT, 714 const TargetLibraryInfo *TLI, 715 const TargetTransformInfo *TTI, AssumptionCache *AC, 716 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 717 LoopVectorizationLegality *LVL, 718 LoopVectorizationCostModel *CM) 719 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 720 UnrollFactor, LVL, CM) {} 721 722 private: 723 Value *getBroadcastInstrs(Value *V) override; 724 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 725 Instruction::BinaryOps Opcode = 726 Instruction::BinaryOpsEnd) override; 727 Value *reverseVector(Value *Vec) override; 728 }; 729 730 } // end namespace llvm 731 732 /// Look for a meaningful debug location on the instruction or it's 733 /// operands. 734 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 735 if (!I) 736 return I; 737 738 DebugLoc Empty; 739 if (I->getDebugLoc() != Empty) 740 return I; 741 742 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 743 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 744 if (OpInst->getDebugLoc() != Empty) 745 return OpInst; 746 } 747 748 return I; 749 } 750 751 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 752 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 753 const DILocation *DIL = Inst->getDebugLoc(); 754 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 755 !isa<DbgInfoIntrinsic>(Inst)) 756 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 757 else 758 B.SetCurrentDebugLocation(DIL); 759 } else 760 B.SetCurrentDebugLocation(DebugLoc()); 761 } 762 763 #ifndef NDEBUG 764 /// \return string containing a file name and a line # for the given loop. 765 static std::string getDebugLocString(const Loop *L) { 766 std::string Result; 767 if (L) { 768 raw_string_ostream OS(Result); 769 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 770 LoopDbgLoc.print(OS); 771 else 772 // Just print the module name. 773 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 774 OS.flush(); 775 } 776 return Result; 777 } 778 #endif 779 780 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 781 const Instruction *Orig) { 782 // If the loop was versioned with memchecks, add the corresponding no-alias 783 // metadata. 784 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 785 LVer->annotateInstWithNoAlias(To, Orig); 786 } 787 788 void InnerLoopVectorizer::addMetadata(Instruction *To, 789 Instruction *From) { 790 propagateMetadata(To, From); 791 addNewMetadata(To, From); 792 } 793 794 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 795 Instruction *From) { 796 for (Value *V : To) { 797 if (Instruction *I = dyn_cast<Instruction>(V)) 798 addMetadata(I, From); 799 } 800 } 801 802 namespace llvm { 803 804 /// The group of interleaved loads/stores sharing the same stride and 805 /// close to each other. 806 /// 807 /// Each member in this group has an index starting from 0, and the largest 808 /// index should be less than interleaved factor, which is equal to the absolute 809 /// value of the access's stride. 810 /// 811 /// E.g. An interleaved load group of factor 4: 812 /// for (unsigned i = 0; i < 1024; i+=4) { 813 /// a = A[i]; // Member of index 0 814 /// b = A[i+1]; // Member of index 1 815 /// d = A[i+3]; // Member of index 3 816 /// ... 817 /// } 818 /// 819 /// An interleaved store group of factor 4: 820 /// for (unsigned i = 0; i < 1024; i+=4) { 821 /// ... 822 /// A[i] = a; // Member of index 0 823 /// A[i+1] = b; // Member of index 1 824 /// A[i+2] = c; // Member of index 2 825 /// A[i+3] = d; // Member of index 3 826 /// } 827 /// 828 /// Note: the interleaved load group could have gaps (missing members), but 829 /// the interleaved store group doesn't allow gaps. 830 class InterleaveGroup { 831 public: 832 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 833 : Align(Align), InsertPos(Instr) { 834 assert(Align && "The alignment should be non-zero"); 835 836 Factor = std::abs(Stride); 837 assert(Factor > 1 && "Invalid interleave factor"); 838 839 Reverse = Stride < 0; 840 Members[0] = Instr; 841 } 842 843 bool isReverse() const { return Reverse; } 844 unsigned getFactor() const { return Factor; } 845 unsigned getAlignment() const { return Align; } 846 unsigned getNumMembers() const { return Members.size(); } 847 848 /// Try to insert a new member \p Instr with index \p Index and 849 /// alignment \p NewAlign. The index is related to the leader and it could be 850 /// negative if it is the new leader. 851 /// 852 /// \returns false if the instruction doesn't belong to the group. 853 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 854 assert(NewAlign && "The new member's alignment should be non-zero"); 855 856 int Key = Index + SmallestKey; 857 858 // Skip if there is already a member with the same index. 859 if (Members.find(Key) != Members.end()) 860 return false; 861 862 if (Key > LargestKey) { 863 // The largest index is always less than the interleave factor. 864 if (Index >= static_cast<int>(Factor)) 865 return false; 866 867 LargestKey = Key; 868 } else if (Key < SmallestKey) { 869 // The largest index is always less than the interleave factor. 870 if (LargestKey - Key >= static_cast<int>(Factor)) 871 return false; 872 873 SmallestKey = Key; 874 } 875 876 // It's always safe to select the minimum alignment. 877 Align = std::min(Align, NewAlign); 878 Members[Key] = Instr; 879 return true; 880 } 881 882 /// Get the member with the given index \p Index 883 /// 884 /// \returns nullptr if contains no such member. 885 Instruction *getMember(unsigned Index) const { 886 int Key = SmallestKey + Index; 887 auto Member = Members.find(Key); 888 if (Member == Members.end()) 889 return nullptr; 890 891 return Member->second; 892 } 893 894 /// Get the index for the given member. Unlike the key in the member 895 /// map, the index starts from 0. 896 unsigned getIndex(Instruction *Instr) const { 897 for (auto I : Members) 898 if (I.second == Instr) 899 return I.first - SmallestKey; 900 901 llvm_unreachable("InterleaveGroup contains no such member"); 902 } 903 904 Instruction *getInsertPos() const { return InsertPos; } 905 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 906 907 /// Add metadata (e.g. alias info) from the instructions in this group to \p 908 /// NewInst. 909 /// 910 /// FIXME: this function currently does not add noalias metadata a'la 911 /// addNewMedata. To do that we need to compute the intersection of the 912 /// noalias info from all members. 913 void addMetadata(Instruction *NewInst) const { 914 SmallVector<Value *, 4> VL; 915 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 916 [](std::pair<int, Instruction *> p) { return p.second; }); 917 propagateMetadata(NewInst, VL); 918 } 919 920 private: 921 unsigned Factor; // Interleave Factor. 922 bool Reverse; 923 unsigned Align; 924 DenseMap<int, Instruction *> Members; 925 int SmallestKey = 0; 926 int LargestKey = 0; 927 928 // To avoid breaking dependences, vectorized instructions of an interleave 929 // group should be inserted at either the first load or the last store in 930 // program order. 931 // 932 // E.g. %even = load i32 // Insert Position 933 // %add = add i32 %even // Use of %even 934 // %odd = load i32 935 // 936 // store i32 %even 937 // %odd = add i32 // Def of %odd 938 // store i32 %odd // Insert Position 939 Instruction *InsertPos; 940 }; 941 } // end namespace llvm 942 943 namespace { 944 945 /// Drive the analysis of interleaved memory accesses in the loop. 946 /// 947 /// Use this class to analyze interleaved accesses only when we can vectorize 948 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 949 /// on interleaved accesses is unsafe. 950 /// 951 /// The analysis collects interleave groups and records the relationships 952 /// between the member and the group in a map. 953 class InterleavedAccessInfo { 954 public: 955 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 956 DominatorTree *DT, LoopInfo *LI, 957 const LoopAccessInfo *LAI) 958 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(LAI) {} 959 960 ~InterleavedAccessInfo() { 961 SmallPtrSet<InterleaveGroup *, 4> DelSet; 962 // Avoid releasing a pointer twice. 963 for (auto &I : InterleaveGroupMap) 964 DelSet.insert(I.second); 965 for (auto *Ptr : DelSet) 966 delete Ptr; 967 } 968 969 /// Analyze the interleaved accesses and collect them in interleave 970 /// groups. Substitute symbolic strides using \p Strides. 971 void analyzeInterleaving(); 972 973 /// Check if \p Instr belongs to any interleave group. 974 bool isInterleaved(Instruction *Instr) const { 975 return InterleaveGroupMap.find(Instr) != InterleaveGroupMap.end(); 976 } 977 978 /// Get the interleave group that \p Instr belongs to. 979 /// 980 /// \returns nullptr if doesn't have such group. 981 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 982 auto Group = InterleaveGroupMap.find(Instr); 983 if (Group == InterleaveGroupMap.end()) 984 return nullptr; 985 return Group->second; 986 } 987 988 /// Returns true if an interleaved group that may access memory 989 /// out-of-bounds requires a scalar epilogue iteration for correctness. 990 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 991 992 private: 993 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 994 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 995 /// The interleaved access analysis can also add new predicates (for example 996 /// by versioning strides of pointers). 997 PredicatedScalarEvolution &PSE; 998 999 Loop *TheLoop; 1000 DominatorTree *DT; 1001 LoopInfo *LI; 1002 const LoopAccessInfo *LAI; 1003 1004 /// True if the loop may contain non-reversed interleaved groups with 1005 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1006 /// out-of-bounds by executing at least one scalar epilogue iteration. 1007 bool RequiresScalarEpilogue = false; 1008 1009 /// Holds the relationships between the members and the interleave group. 1010 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1011 1012 /// Holds dependences among the memory accesses in the loop. It maps a source 1013 /// access to a set of dependent sink accesses. 1014 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1015 1016 /// The descriptor for a strided memory access. 1017 struct StrideDescriptor { 1018 StrideDescriptor() = default; 1019 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1020 unsigned Align) 1021 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1022 1023 // The access's stride. It is negative for a reverse access. 1024 int64_t Stride = 0; 1025 1026 // The scalar expression of this access. 1027 const SCEV *Scev = nullptr; 1028 1029 // The size of the memory object. 1030 uint64_t Size = 0; 1031 1032 // The alignment of this access. 1033 unsigned Align = 0; 1034 }; 1035 1036 /// A type for holding instructions and their stride descriptors. 1037 using StrideEntry = std::pair<Instruction *, StrideDescriptor>; 1038 1039 /// Create a new interleave group with the given instruction \p Instr, 1040 /// stride \p Stride and alignment \p Align. 1041 /// 1042 /// \returns the newly created interleave group. 1043 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1044 unsigned Align) { 1045 assert(!isInterleaved(Instr) && "Already in an interleaved access group"); 1046 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1047 return InterleaveGroupMap[Instr]; 1048 } 1049 1050 /// Release the group and remove all the relationships. 1051 void releaseGroup(InterleaveGroup *Group) { 1052 for (unsigned i = 0; i < Group->getFactor(); i++) 1053 if (Instruction *Member = Group->getMember(i)) 1054 InterleaveGroupMap.erase(Member); 1055 1056 delete Group; 1057 } 1058 1059 /// Collect all the accesses with a constant stride in program order. 1060 void collectConstStrideAccesses( 1061 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1062 const ValueToValueMap &Strides); 1063 1064 /// Returns true if \p Stride is allowed in an interleaved group. 1065 static bool isStrided(int Stride) { 1066 unsigned Factor = std::abs(Stride); 1067 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1068 } 1069 1070 /// Returns true if \p BB is a predicated block. 1071 bool isPredicated(BasicBlock *BB) const { 1072 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1073 } 1074 1075 /// Returns true if LoopAccessInfo can be used for dependence queries. 1076 bool areDependencesValid() const { 1077 return LAI && LAI->getDepChecker().getDependences(); 1078 } 1079 1080 /// Returns true if memory accesses \p A and \p B can be reordered, if 1081 /// necessary, when constructing interleaved groups. 1082 /// 1083 /// \p A must precede \p B in program order. We return false if reordering is 1084 /// not necessary or is prevented because \p A and \p B may be dependent. 1085 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1086 StrideEntry *B) const { 1087 // Code motion for interleaved accesses can potentially hoist strided loads 1088 // and sink strided stores. The code below checks the legality of the 1089 // following two conditions: 1090 // 1091 // 1. Potentially moving a strided load (B) before any store (A) that 1092 // precedes B, or 1093 // 1094 // 2. Potentially moving a strided store (A) after any load or store (B) 1095 // that A precedes. 1096 // 1097 // It's legal to reorder A and B if we know there isn't a dependence from A 1098 // to B. Note that this determination is conservative since some 1099 // dependences could potentially be reordered safely. 1100 1101 // A is potentially the source of a dependence. 1102 auto *Src = A->first; 1103 auto SrcDes = A->second; 1104 1105 // B is potentially the sink of a dependence. 1106 auto *Sink = B->first; 1107 auto SinkDes = B->second; 1108 1109 // Code motion for interleaved accesses can't violate WAR dependences. 1110 // Thus, reordering is legal if the source isn't a write. 1111 if (!Src->mayWriteToMemory()) 1112 return true; 1113 1114 // At least one of the accesses must be strided. 1115 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1116 return true; 1117 1118 // If dependence information is not available from LoopAccessInfo, 1119 // conservatively assume the instructions can't be reordered. 1120 if (!areDependencesValid()) 1121 return false; 1122 1123 // If we know there is a dependence from source to sink, assume the 1124 // instructions can't be reordered. Otherwise, reordering is legal. 1125 return Dependences.find(Src) == Dependences.end() || 1126 !Dependences.lookup(Src).count(Sink); 1127 } 1128 1129 /// Collect the dependences from LoopAccessInfo. 1130 /// 1131 /// We process the dependences once during the interleaved access analysis to 1132 /// enable constant-time dependence queries. 1133 void collectDependences() { 1134 if (!areDependencesValid()) 1135 return; 1136 auto *Deps = LAI->getDepChecker().getDependences(); 1137 for (auto Dep : *Deps) 1138 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1139 } 1140 }; 1141 1142 } // end anonymous namespace 1143 1144 static void emitMissedWarning(Function *F, Loop *L, 1145 const LoopVectorizeHints &LH, 1146 OptimizationRemarkEmitter *ORE) { 1147 LH.emitRemarkWithHints(); 1148 1149 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1150 if (LH.getWidth() != 1) 1151 ORE->emit(DiagnosticInfoOptimizationFailure( 1152 DEBUG_TYPE, "FailedRequestedVectorization", 1153 L->getStartLoc(), L->getHeader()) 1154 << "loop not vectorized: " 1155 << "failed explicitly specified loop vectorization"); 1156 else if (LH.getInterleave() != 1) 1157 ORE->emit(DiagnosticInfoOptimizationFailure( 1158 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1159 L->getHeader()) 1160 << "loop not interleaved: " 1161 << "failed explicitly specified loop interleaving"); 1162 } 1163 } 1164 1165 namespace llvm { 1166 1167 /// LoopVectorizationCostModel - estimates the expected speedups due to 1168 /// vectorization. 1169 /// In many cases vectorization is not profitable. This can happen because of 1170 /// a number of reasons. In this class we mainly attempt to predict the 1171 /// expected speedup/slowdowns due to the supported instruction set. We use the 1172 /// TargetTransformInfo to query the different backends for the cost of 1173 /// different operations. 1174 class LoopVectorizationCostModel { 1175 public: 1176 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1177 LoopInfo *LI, LoopVectorizationLegality *Legal, 1178 const TargetTransformInfo &TTI, 1179 const TargetLibraryInfo *TLI, DemandedBits *DB, 1180 AssumptionCache *AC, 1181 OptimizationRemarkEmitter *ORE, const Function *F, 1182 const LoopVectorizeHints *Hints, 1183 InterleavedAccessInfo &IAI) 1184 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1185 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} 1186 1187 /// \return An upper bound for the vectorization factor, or None if 1188 /// vectorization should be avoided up front. 1189 Optional<unsigned> computeMaxVF(bool OptForSize); 1190 1191 /// \return The most profitable vectorization factor and the cost of that VF. 1192 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1193 /// then this vectorization factor will be selected if vectorization is 1194 /// possible. 1195 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1196 1197 /// Setup cost-based decisions for user vectorization factor. 1198 void selectUserVectorizationFactor(unsigned UserVF) { 1199 collectUniformsAndScalars(UserVF); 1200 collectInstsToScalarize(UserVF); 1201 } 1202 1203 /// \return The size (in bits) of the smallest and widest types in the code 1204 /// that needs to be vectorized. We ignore values that remain scalar such as 1205 /// 64 bit loop indices. 1206 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1207 1208 /// \return The desired interleave count. 1209 /// If interleave count has been specified by metadata it will be returned. 1210 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1211 /// are the selected vectorization factor and the cost of the selected VF. 1212 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1213 unsigned LoopCost); 1214 1215 /// Memory access instruction may be vectorized in more than one way. 1216 /// Form of instruction after vectorization depends on cost. 1217 /// This function takes cost-based decisions for Load/Store instructions 1218 /// and collects them in a map. This decisions map is used for building 1219 /// the lists of loop-uniform and loop-scalar instructions. 1220 /// The calculated cost is saved with widening decision in order to 1221 /// avoid redundant calculations. 1222 void setCostBasedWideningDecision(unsigned VF); 1223 1224 /// A struct that represents some properties of the register usage 1225 /// of a loop. 1226 struct RegisterUsage { 1227 /// Holds the number of loop invariant values that are used in the loop. 1228 unsigned LoopInvariantRegs; 1229 1230 /// Holds the maximum number of concurrent live intervals in the loop. 1231 unsigned MaxLocalUsers; 1232 }; 1233 1234 /// \return Returns information about the register usages of the loop for the 1235 /// given vectorization factors. 1236 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1237 1238 /// Collect values we want to ignore in the cost model. 1239 void collectValuesToIgnore(); 1240 1241 /// \returns The smallest bitwidth each instruction can be represented with. 1242 /// The vector equivalents of these instructions should be truncated to this 1243 /// type. 1244 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1245 return MinBWs; 1246 } 1247 1248 /// \returns True if it is more profitable to scalarize instruction \p I for 1249 /// vectorization factor \p VF. 1250 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1251 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1252 auto Scalars = InstsToScalarize.find(VF); 1253 assert(Scalars != InstsToScalarize.end() && 1254 "VF not yet analyzed for scalarization profitability"); 1255 return Scalars->second.find(I) != Scalars->second.end(); 1256 } 1257 1258 /// Returns true if \p I is known to be uniform after vectorization. 1259 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1260 if (VF == 1) 1261 return true; 1262 auto UniformsPerVF = Uniforms.find(VF); 1263 assert(UniformsPerVF != Uniforms.end() && 1264 "VF not yet analyzed for uniformity"); 1265 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 1266 } 1267 1268 /// Returns true if \p I is known to be scalar after vectorization. 1269 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1270 if (VF == 1) 1271 return true; 1272 auto ScalarsPerVF = Scalars.find(VF); 1273 assert(ScalarsPerVF != Scalars.end() && 1274 "Scalar values are not calculated for VF"); 1275 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 1276 } 1277 1278 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1279 /// for vectorization factor \p VF. 1280 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1281 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 1282 !isProfitableToScalarize(I, VF) && 1283 !isScalarAfterVectorization(I, VF); 1284 } 1285 1286 /// Decision that was taken during cost calculation for memory instruction. 1287 enum InstWidening { 1288 CM_Unknown, 1289 CM_Widen, // For consecutive accesses with stride +1. 1290 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1291 CM_Interleave, 1292 CM_GatherScatter, 1293 CM_Scalarize 1294 }; 1295 1296 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1297 /// instruction \p I and vector width \p VF. 1298 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1299 unsigned Cost) { 1300 assert(VF >= 2 && "Expected VF >=2"); 1301 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1302 } 1303 1304 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1305 /// interleaving group \p Grp and vector width \p VF. 1306 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1307 InstWidening W, unsigned Cost) { 1308 assert(VF >= 2 && "Expected VF >=2"); 1309 /// Broadcast this decicion to all instructions inside the group. 1310 /// But the cost will be assigned to one instruction only. 1311 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1312 if (auto *I = Grp->getMember(i)) { 1313 if (Grp->getInsertPos() == I) 1314 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1315 else 1316 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1317 } 1318 } 1319 } 1320 1321 /// Return the cost model decision for the given instruction \p I and vector 1322 /// width \p VF. Return CM_Unknown if this instruction did not pass 1323 /// through the cost modeling. 1324 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1325 assert(VF >= 2 && "Expected VF >=2"); 1326 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1327 auto Itr = WideningDecisions.find(InstOnVF); 1328 if (Itr == WideningDecisions.end()) 1329 return CM_Unknown; 1330 return Itr->second.first; 1331 } 1332 1333 /// Return the vectorization cost for the given instruction \p I and vector 1334 /// width \p VF. 1335 unsigned getWideningCost(Instruction *I, unsigned VF) { 1336 assert(VF >= 2 && "Expected VF >=2"); 1337 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1338 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1339 "The cost is not calculated"); 1340 return WideningDecisions[InstOnVF].second; 1341 } 1342 1343 /// Return True if instruction \p I is an optimizable truncate whose operand 1344 /// is an induction variable. Such a truncate will be removed by adding a new 1345 /// induction variable with the destination type. 1346 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1347 // If the instruction is not a truncate, return false. 1348 auto *Trunc = dyn_cast<TruncInst>(I); 1349 if (!Trunc) 1350 return false; 1351 1352 // Get the source and destination types of the truncate. 1353 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1354 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1355 1356 // If the truncate is free for the given types, return false. Replacing a 1357 // free truncate with an induction variable would add an induction variable 1358 // update instruction to each iteration of the loop. We exclude from this 1359 // check the primary induction variable since it will need an update 1360 // instruction regardless. 1361 Value *Op = Trunc->getOperand(0); 1362 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1363 return false; 1364 1365 // If the truncated value is not an induction variable, return false. 1366 return Legal->isInductionPhi(Op); 1367 } 1368 1369 /// Collects the instructions to scalarize for each predicated instruction in 1370 /// the loop. 1371 void collectInstsToScalarize(unsigned VF); 1372 1373 /// Collect Uniform and Scalar values for the given \p VF. 1374 /// The sets depend on CM decision for Load/Store instructions 1375 /// that may be vectorized as interleave, gather-scatter or scalarized. 1376 void collectUniformsAndScalars(unsigned VF) { 1377 // Do the analysis once. 1378 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1379 return; 1380 setCostBasedWideningDecision(VF); 1381 collectLoopUniforms(VF); 1382 collectLoopScalars(VF); 1383 } 1384 1385 /// Returns true if the target machine supports masked store operation 1386 /// for the given \p DataType and kind of access to \p Ptr. 1387 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1388 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1389 } 1390 1391 /// Returns true if the target machine supports masked load operation 1392 /// for the given \p DataType and kind of access to \p Ptr. 1393 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1394 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1395 } 1396 1397 /// Returns true if the target machine supports masked scatter operation 1398 /// for the given \p DataType. 1399 bool isLegalMaskedScatter(Type *DataType) { 1400 return TTI.isLegalMaskedScatter(DataType); 1401 } 1402 1403 /// Returns true if the target machine supports masked gather operation 1404 /// for the given \p DataType. 1405 bool isLegalMaskedGather(Type *DataType) { 1406 return TTI.isLegalMaskedGather(DataType); 1407 } 1408 1409 /// Returns true if the target machine can represent \p V as a masked gather 1410 /// or scatter operation. 1411 bool isLegalGatherOrScatter(Value *V) { 1412 bool LI = isa<LoadInst>(V); 1413 bool SI = isa<StoreInst>(V); 1414 if (!LI && !SI) 1415 return false; 1416 auto *Ty = getMemInstValueType(V); 1417 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1418 } 1419 1420 /// Returns true if \p I is an instruction that will be scalarized with 1421 /// predication. Such instructions include conditional stores and 1422 /// instructions that may divide by zero. 1423 bool isScalarWithPredication(Instruction *I); 1424 1425 /// Returns true if \p I is a memory instruction with consecutive memory 1426 /// access that can be widened. 1427 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1428 1429 /// Check if \p Instr belongs to any interleaved access group. 1430 bool isAccessInterleaved(Instruction *Instr) { 1431 return InterleaveInfo.isInterleaved(Instr); 1432 } 1433 1434 /// Get the interleaved access group that \p Instr belongs to. 1435 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1436 return InterleaveInfo.getInterleaveGroup(Instr); 1437 } 1438 1439 /// Returns true if an interleaved group requires a scalar iteration 1440 /// to handle accesses with gaps. 1441 bool requiresScalarEpilogue() const { 1442 return InterleaveInfo.requiresScalarEpilogue(); 1443 } 1444 1445 private: 1446 unsigned NumPredStores = 0; 1447 1448 /// \return An upper bound for the vectorization factor, larger than zero. 1449 /// One is returned if vectorization should best be avoided due to cost. 1450 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 1451 1452 /// The vectorization cost is a combination of the cost itself and a boolean 1453 /// indicating whether any of the contributing operations will actually 1454 /// operate on 1455 /// vector values after type legalization in the backend. If this latter value 1456 /// is 1457 /// false, then all operations will be scalarized (i.e. no vectorization has 1458 /// actually taken place). 1459 using VectorizationCostTy = std::pair<unsigned, bool>; 1460 1461 /// Returns the expected execution cost. The unit of the cost does 1462 /// not matter because we use the 'cost' units to compare different 1463 /// vector widths. The cost that is returned is *not* normalized by 1464 /// the factor width. 1465 VectorizationCostTy expectedCost(unsigned VF); 1466 1467 /// Returns the execution time cost of an instruction for a given vector 1468 /// width. Vector width of one means scalar. 1469 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1470 1471 /// The cost-computation logic from getInstructionCost which provides 1472 /// the vector type as an output parameter. 1473 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1474 1475 /// Calculate vectorization cost of memory instruction \p I. 1476 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1477 1478 /// The cost computation for scalarized memory instruction. 1479 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1480 1481 /// The cost computation for interleaving group of memory instructions. 1482 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1483 1484 /// The cost computation for Gather/Scatter instruction. 1485 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1486 1487 /// The cost computation for widening instruction \p I with consecutive 1488 /// memory access. 1489 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1490 1491 /// The cost calculation for Load instruction \p I with uniform pointer - 1492 /// scalar load + broadcast. 1493 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1494 1495 /// Returns whether the instruction is a load or store and will be a emitted 1496 /// as a vector operation. 1497 bool isConsecutiveLoadOrStore(Instruction *I); 1498 1499 /// Returns true if an artificially high cost for emulated masked memrefs 1500 /// should be used. 1501 bool useEmulatedMaskMemRefHack(Instruction *I); 1502 1503 /// Create an analysis remark that explains why vectorization failed 1504 /// 1505 /// \p RemarkName is the identifier for the remark. \return the remark object 1506 /// that can be streamed to. 1507 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1508 return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1509 RemarkName, TheLoop); 1510 } 1511 1512 /// Map of scalar integer values to the smallest bitwidth they can be legally 1513 /// represented as. The vector equivalents of these values should be truncated 1514 /// to this type. 1515 MapVector<Instruction *, uint64_t> MinBWs; 1516 1517 /// A type representing the costs for instructions if they were to be 1518 /// scalarized rather than vectorized. The entries are Instruction-Cost 1519 /// pairs. 1520 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1521 1522 /// A set containing all BasicBlocks that are known to present after 1523 /// vectorization as a predicated block. 1524 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1525 1526 /// A map holding scalar costs for different vectorization factors. The 1527 /// presence of a cost for an instruction in the mapping indicates that the 1528 /// instruction will be scalarized when vectorizing with the associated 1529 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1530 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1531 1532 /// Holds the instructions known to be uniform after vectorization. 1533 /// The data is collected per VF. 1534 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1535 1536 /// Holds the instructions known to be scalar after vectorization. 1537 /// The data is collected per VF. 1538 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1539 1540 /// Holds the instructions (address computations) that are forced to be 1541 /// scalarized. 1542 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1543 1544 /// Returns the expected difference in cost from scalarizing the expression 1545 /// feeding a predicated instruction \p PredInst. The instructions to 1546 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1547 /// non-negative return value implies the expression will be scalarized. 1548 /// Currently, only single-use chains are considered for scalarization. 1549 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1550 unsigned VF); 1551 1552 /// Collect the instructions that are uniform after vectorization. An 1553 /// instruction is uniform if we represent it with a single scalar value in 1554 /// the vectorized loop corresponding to each vector iteration. Examples of 1555 /// uniform instructions include pointer operands of consecutive or 1556 /// interleaved memory accesses. Note that although uniformity implies an 1557 /// instruction will be scalar, the reverse is not true. In general, a 1558 /// scalarized instruction will be represented by VF scalar values in the 1559 /// vectorized loop, each corresponding to an iteration of the original 1560 /// scalar loop. 1561 void collectLoopUniforms(unsigned VF); 1562 1563 /// Collect the instructions that are scalar after vectorization. An 1564 /// instruction is scalar if it is known to be uniform or will be scalarized 1565 /// during vectorization. Non-uniform scalarized instructions will be 1566 /// represented by VF values in the vectorized loop, each corresponding to an 1567 /// iteration of the original scalar loop. 1568 void collectLoopScalars(unsigned VF); 1569 1570 /// Keeps cost model vectorization decision and cost for instructions. 1571 /// Right now it is used for memory instructions only. 1572 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1573 std::pair<InstWidening, unsigned>>; 1574 1575 DecisionList WideningDecisions; 1576 1577 public: 1578 /// The loop that we evaluate. 1579 Loop *TheLoop; 1580 1581 /// Predicated scalar evolution analysis. 1582 PredicatedScalarEvolution &PSE; 1583 1584 /// Loop Info analysis. 1585 LoopInfo *LI; 1586 1587 /// Vectorization legality. 1588 LoopVectorizationLegality *Legal; 1589 1590 /// Vector target information. 1591 const TargetTransformInfo &TTI; 1592 1593 /// Target Library Info. 1594 const TargetLibraryInfo *TLI; 1595 1596 /// Demanded bits analysis. 1597 DemandedBits *DB; 1598 1599 /// Assumption cache. 1600 AssumptionCache *AC; 1601 1602 /// Interface to emit optimization remarks. 1603 OptimizationRemarkEmitter *ORE; 1604 1605 const Function *TheFunction; 1606 1607 /// Loop Vectorize Hint. 1608 const LoopVectorizeHints *Hints; 1609 1610 /// The interleave access information contains groups of interleaved accesses 1611 /// with the same stride and close to each other. 1612 InterleavedAccessInfo &InterleaveInfo; 1613 1614 /// Values to ignore in the cost model. 1615 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1616 1617 /// Values to ignore in the cost model when VF > 1. 1618 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1619 }; 1620 1621 } // end namespace llvm 1622 1623 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1624 // vectorization. The loop needs to be annotated with #pragma omp simd 1625 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1626 // vector length information is not provided, vectorization is not considered 1627 // explicit. Interleave hints are not allowed either. These limitations will be 1628 // relaxed in the future. 1629 // Please, note that we are currently forced to abuse the pragma 'clang 1630 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1631 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1632 // provides *explicit vectorization hints* (LV can bypass legal checks and 1633 // assume that vectorization is legal). However, both hints are implemented 1634 // using the same metadata (llvm.loop.vectorize, processed by 1635 // LoopVectorizeHints). This will be fixed in the future when the native IR 1636 // representation for pragma 'omp simd' is introduced. 1637 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1638 OptimizationRemarkEmitter *ORE) { 1639 assert(!OuterLp->empty() && "This is not an outer loop"); 1640 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1641 1642 // Only outer loops with an explicit vectorization hint are supported. 1643 // Unannotated outer loops are ignored. 1644 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1645 return false; 1646 1647 Function *Fn = OuterLp->getHeader()->getParent(); 1648 if (!Hints.allowVectorization(Fn, OuterLp, false /*AlwaysVectorize*/)) { 1649 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1650 return false; 1651 } 1652 1653 if (!Hints.getWidth()) { 1654 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No user vector width.\n"); 1655 emitMissedWarning(Fn, OuterLp, Hints, ORE); 1656 return false; 1657 } 1658 1659 if (Hints.getInterleave() > 1) { 1660 // TODO: Interleave support is future work. 1661 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1662 "outer loops.\n"); 1663 emitMissedWarning(Fn, OuterLp, Hints, ORE); 1664 return false; 1665 } 1666 1667 return true; 1668 } 1669 1670 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1671 OptimizationRemarkEmitter *ORE, 1672 SmallVectorImpl<Loop *> &V) { 1673 // Collect inner loops and outer loops without irreducible control flow. For 1674 // now, only collect outer loops that have explicit vectorization hints. If we 1675 // are stress testing the VPlan H-CFG construction, we collect the outermost 1676 // loop of every loop nest. 1677 if (L.empty() || VPlanBuildStressTest || 1678 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1679 LoopBlocksRPO RPOT(&L); 1680 RPOT.perform(LI); 1681 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1682 V.push_back(&L); 1683 // TODO: Collect inner loops inside marked outer loops in case 1684 // vectorization fails for the outer loop. Do not invoke 1685 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1686 // already known to be reducible. We can use an inherited attribute for 1687 // that. 1688 return; 1689 } 1690 } 1691 for (Loop *InnerL : L) 1692 collectSupportedLoops(*InnerL, LI, ORE, V); 1693 } 1694 1695 namespace { 1696 1697 /// The LoopVectorize Pass. 1698 struct LoopVectorize : public FunctionPass { 1699 /// Pass identification, replacement for typeid 1700 static char ID; 1701 1702 LoopVectorizePass Impl; 1703 1704 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1705 : FunctionPass(ID) { 1706 Impl.DisableUnrolling = NoUnrolling; 1707 Impl.AlwaysVectorize = AlwaysVectorize; 1708 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1709 } 1710 1711 bool runOnFunction(Function &F) override { 1712 if (skipFunction(F)) 1713 return false; 1714 1715 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1716 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1717 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1718 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1719 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1720 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1721 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1722 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1723 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1724 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1725 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1726 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1727 1728 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1729 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1730 1731 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1732 GetLAA, *ORE); 1733 } 1734 1735 void getAnalysisUsage(AnalysisUsage &AU) const override { 1736 AU.addRequired<AssumptionCacheTracker>(); 1737 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1738 AU.addRequired<DominatorTreeWrapperPass>(); 1739 AU.addRequired<LoopInfoWrapperPass>(); 1740 AU.addRequired<ScalarEvolutionWrapperPass>(); 1741 AU.addRequired<TargetTransformInfoWrapperPass>(); 1742 AU.addRequired<AAResultsWrapperPass>(); 1743 AU.addRequired<LoopAccessLegacyAnalysis>(); 1744 AU.addRequired<DemandedBitsWrapperPass>(); 1745 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1746 AU.addPreserved<LoopInfoWrapperPass>(); 1747 AU.addPreserved<DominatorTreeWrapperPass>(); 1748 AU.addPreserved<BasicAAWrapperPass>(); 1749 AU.addPreserved<GlobalsAAWrapperPass>(); 1750 } 1751 }; 1752 1753 } // end anonymous namespace 1754 1755 //===----------------------------------------------------------------------===// 1756 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1757 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1758 //===----------------------------------------------------------------------===// 1759 1760 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1761 // We need to place the broadcast of invariant variables outside the loop, 1762 // but only if it's proven safe to do so. Else, broadcast will be inside 1763 // vector loop body. 1764 Instruction *Instr = dyn_cast<Instruction>(V); 1765 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1766 (!Instr || 1767 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1768 // Place the code for broadcasting invariant variables in the new preheader. 1769 IRBuilder<>::InsertPointGuard Guard(Builder); 1770 if (SafeToHoist) 1771 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1772 1773 // Broadcast the scalar into all locations in the vector. 1774 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1775 1776 return Shuf; 1777 } 1778 1779 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1780 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1781 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1782 "Expected either an induction phi-node or a truncate of it!"); 1783 Value *Start = II.getStartValue(); 1784 1785 // Construct the initial value of the vector IV in the vector loop preheader 1786 auto CurrIP = Builder.saveIP(); 1787 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1788 if (isa<TruncInst>(EntryVal)) { 1789 assert(Start->getType()->isIntegerTy() && 1790 "Truncation requires an integer type"); 1791 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1792 Step = Builder.CreateTrunc(Step, TruncType); 1793 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1794 } 1795 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1796 Value *SteppedStart = 1797 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1798 1799 // We create vector phi nodes for both integer and floating-point induction 1800 // variables. Here, we determine the kind of arithmetic we will perform. 1801 Instruction::BinaryOps AddOp; 1802 Instruction::BinaryOps MulOp; 1803 if (Step->getType()->isIntegerTy()) { 1804 AddOp = Instruction::Add; 1805 MulOp = Instruction::Mul; 1806 } else { 1807 AddOp = II.getInductionOpcode(); 1808 MulOp = Instruction::FMul; 1809 } 1810 1811 // Multiply the vectorization factor by the step using integer or 1812 // floating-point arithmetic as appropriate. 1813 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1814 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1815 1816 // Create a vector splat to use in the induction update. 1817 // 1818 // FIXME: If the step is non-constant, we create the vector splat with 1819 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1820 // handle a constant vector splat. 1821 Value *SplatVF = isa<Constant>(Mul) 1822 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1823 : Builder.CreateVectorSplat(VF, Mul); 1824 Builder.restoreIP(CurrIP); 1825 1826 // We may need to add the step a number of times, depending on the unroll 1827 // factor. The last of those goes into the PHI. 1828 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1829 &*LoopVectorBody->getFirstInsertionPt()); 1830 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1831 Instruction *LastInduction = VecInd; 1832 for (unsigned Part = 0; Part < UF; ++Part) { 1833 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1834 1835 if (isa<TruncInst>(EntryVal)) 1836 addMetadata(LastInduction, EntryVal); 1837 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1838 1839 LastInduction = cast<Instruction>(addFastMathFlag( 1840 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1841 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1842 } 1843 1844 // Move the last step to the end of the latch block. This ensures consistent 1845 // placement of all induction updates. 1846 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1847 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1848 auto *ICmp = cast<Instruction>(Br->getCondition()); 1849 LastInduction->moveBefore(ICmp); 1850 LastInduction->setName("vec.ind.next"); 1851 1852 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1853 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1854 } 1855 1856 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1857 return Cost->isScalarAfterVectorization(I, VF) || 1858 Cost->isProfitableToScalarize(I, VF); 1859 } 1860 1861 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1862 if (shouldScalarizeInstruction(IV)) 1863 return true; 1864 auto isScalarInst = [&](User *U) -> bool { 1865 auto *I = cast<Instruction>(U); 1866 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1867 }; 1868 return llvm::any_of(IV->users(), isScalarInst); 1869 } 1870 1871 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1872 const InductionDescriptor &ID, const Instruction *EntryVal, 1873 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1874 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1875 "Expected either an induction phi-node or a truncate of it!"); 1876 1877 // This induction variable is not the phi from the original loop but the 1878 // newly-created IV based on the proof that casted Phi is equal to the 1879 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1880 // re-uses the same InductionDescriptor that original IV uses but we don't 1881 // have to do any recording in this case - that is done when original IV is 1882 // processed. 1883 if (isa<TruncInst>(EntryVal)) 1884 return; 1885 1886 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1887 if (Casts.empty()) 1888 return; 1889 // Only the first Cast instruction in the Casts vector is of interest. 1890 // The rest of the Casts (if exist) have no uses outside the 1891 // induction update chain itself. 1892 Instruction *CastInst = *Casts.begin(); 1893 if (Lane < UINT_MAX) 1894 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1895 else 1896 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1897 } 1898 1899 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1900 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1901 "Primary induction variable must have an integer type"); 1902 1903 auto II = Legal->getInductionVars()->find(IV); 1904 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1905 1906 auto ID = II->second; 1907 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1908 1909 // The scalar value to broadcast. This will be derived from the canonical 1910 // induction variable. 1911 Value *ScalarIV = nullptr; 1912 1913 // The value from the original loop to which we are mapping the new induction 1914 // variable. 1915 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1916 1917 // True if we have vectorized the induction variable. 1918 auto VectorizedIV = false; 1919 1920 // Determine if we want a scalar version of the induction variable. This is 1921 // true if the induction variable itself is not widened, or if it has at 1922 // least one user in the loop that is not widened. 1923 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1924 1925 // Generate code for the induction step. Note that induction steps are 1926 // required to be loop-invariant 1927 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1928 "Induction step should be loop invariant"); 1929 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1930 Value *Step = nullptr; 1931 if (PSE.getSE()->isSCEVable(IV->getType())) { 1932 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1933 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1934 LoopVectorPreHeader->getTerminator()); 1935 } else { 1936 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1937 } 1938 1939 // Try to create a new independent vector induction variable. If we can't 1940 // create the phi node, we will splat the scalar induction variable in each 1941 // loop iteration. 1942 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1943 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1944 VectorizedIV = true; 1945 } 1946 1947 // If we haven't yet vectorized the induction variable, or if we will create 1948 // a scalar one, we need to define the scalar induction variable and step 1949 // values. If we were given a truncation type, truncate the canonical 1950 // induction variable and step. Otherwise, derive these values from the 1951 // induction descriptor. 1952 if (!VectorizedIV || NeedsScalarIV) { 1953 ScalarIV = Induction; 1954 if (IV != OldInduction) { 1955 ScalarIV = IV->getType()->isIntegerTy() 1956 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1957 : Builder.CreateCast(Instruction::SIToFP, Induction, 1958 IV->getType()); 1959 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 1960 ScalarIV->setName("offset.idx"); 1961 } 1962 if (Trunc) { 1963 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1964 assert(Step->getType()->isIntegerTy() && 1965 "Truncation requires an integer step"); 1966 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1967 Step = Builder.CreateTrunc(Step, TruncType); 1968 } 1969 } 1970 1971 // If we haven't yet vectorized the induction variable, splat the scalar 1972 // induction variable, and build the necessary step vectors. 1973 // TODO: Don't do it unless the vectorized IV is really required. 1974 if (!VectorizedIV) { 1975 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1976 for (unsigned Part = 0; Part < UF; ++Part) { 1977 Value *EntryPart = 1978 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1979 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1980 if (Trunc) 1981 addMetadata(EntryPart, Trunc); 1982 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1983 } 1984 } 1985 1986 // If an induction variable is only used for counting loop iterations or 1987 // calculating addresses, it doesn't need to be widened. Create scalar steps 1988 // that can be used by instructions we will later scalarize. Note that the 1989 // addition of the scalar steps will not increase the number of instructions 1990 // in the loop in the common case prior to InstCombine. We will be trading 1991 // one vector extract for each scalar step. 1992 if (NeedsScalarIV) 1993 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1994 } 1995 1996 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1997 Instruction::BinaryOps BinOp) { 1998 // Create and check the types. 1999 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2000 int VLen = Val->getType()->getVectorNumElements(); 2001 2002 Type *STy = Val->getType()->getScalarType(); 2003 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2004 "Induction Step must be an integer or FP"); 2005 assert(Step->getType() == STy && "Step has wrong type"); 2006 2007 SmallVector<Constant *, 8> Indices; 2008 2009 if (STy->isIntegerTy()) { 2010 // Create a vector of consecutive numbers from zero to VF. 2011 for (int i = 0; i < VLen; ++i) 2012 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2013 2014 // Add the consecutive indices to the vector value. 2015 Constant *Cv = ConstantVector::get(Indices); 2016 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2017 Step = Builder.CreateVectorSplat(VLen, Step); 2018 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2019 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2020 // which can be found from the original scalar operations. 2021 Step = Builder.CreateMul(Cv, Step); 2022 return Builder.CreateAdd(Val, Step, "induction"); 2023 } 2024 2025 // Floating point induction. 2026 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2027 "Binary Opcode should be specified for FP induction"); 2028 // Create a vector of consecutive numbers from zero to VF. 2029 for (int i = 0; i < VLen; ++i) 2030 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2031 2032 // Add the consecutive indices to the vector value. 2033 Constant *Cv = ConstantVector::get(Indices); 2034 2035 Step = Builder.CreateVectorSplat(VLen, Step); 2036 2037 // Floating point operations had to be 'fast' to enable the induction. 2038 FastMathFlags Flags; 2039 Flags.setFast(); 2040 2041 Value *MulOp = Builder.CreateFMul(Cv, Step); 2042 if (isa<Instruction>(MulOp)) 2043 // Have to check, MulOp may be a constant 2044 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2045 2046 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2047 if (isa<Instruction>(BOp)) 2048 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2049 return BOp; 2050 } 2051 2052 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2053 Instruction *EntryVal, 2054 const InductionDescriptor &ID) { 2055 // We shouldn't have to build scalar steps if we aren't vectorizing. 2056 assert(VF > 1 && "VF should be greater than one"); 2057 2058 // Get the value type and ensure it and the step have the same integer type. 2059 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2060 assert(ScalarIVTy == Step->getType() && 2061 "Val and Step should have the same type"); 2062 2063 // We build scalar steps for both integer and floating-point induction 2064 // variables. Here, we determine the kind of arithmetic we will perform. 2065 Instruction::BinaryOps AddOp; 2066 Instruction::BinaryOps MulOp; 2067 if (ScalarIVTy->isIntegerTy()) { 2068 AddOp = Instruction::Add; 2069 MulOp = Instruction::Mul; 2070 } else { 2071 AddOp = ID.getInductionOpcode(); 2072 MulOp = Instruction::FMul; 2073 } 2074 2075 // Determine the number of scalars we need to generate for each unroll 2076 // iteration. If EntryVal is uniform, we only need to generate the first 2077 // lane. Otherwise, we generate all VF values. 2078 unsigned Lanes = 2079 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2080 : VF; 2081 // Compute the scalar steps and save the results in VectorLoopValueMap. 2082 for (unsigned Part = 0; Part < UF; ++Part) { 2083 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2084 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2085 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2086 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2087 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2088 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2089 } 2090 } 2091 } 2092 2093 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2094 assert(V != Induction && "The new induction variable should not be used."); 2095 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2096 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2097 2098 // If we have a stride that is replaced by one, do it here. 2099 if (Legal->hasStride(V)) 2100 V = ConstantInt::get(V->getType(), 1); 2101 2102 // If we have a vector mapped to this value, return it. 2103 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2104 return VectorLoopValueMap.getVectorValue(V, Part); 2105 2106 // If the value has not been vectorized, check if it has been scalarized 2107 // instead. If it has been scalarized, and we actually need the value in 2108 // vector form, we will construct the vector values on demand. 2109 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2110 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2111 2112 // If we've scalarized a value, that value should be an instruction. 2113 auto *I = cast<Instruction>(V); 2114 2115 // If we aren't vectorizing, we can just copy the scalar map values over to 2116 // the vector map. 2117 if (VF == 1) { 2118 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2119 return ScalarValue; 2120 } 2121 2122 // Get the last scalar instruction we generated for V and Part. If the value 2123 // is known to be uniform after vectorization, this corresponds to lane zero 2124 // of the Part unroll iteration. Otherwise, the last instruction is the one 2125 // we created for the last vector lane of the Part unroll iteration. 2126 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2127 auto *LastInst = cast<Instruction>( 2128 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2129 2130 // Set the insert point after the last scalarized instruction. This ensures 2131 // the insertelement sequence will directly follow the scalar definitions. 2132 auto OldIP = Builder.saveIP(); 2133 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2134 Builder.SetInsertPoint(&*NewIP); 2135 2136 // However, if we are vectorizing, we need to construct the vector values. 2137 // If the value is known to be uniform after vectorization, we can just 2138 // broadcast the scalar value corresponding to lane zero for each unroll 2139 // iteration. Otherwise, we construct the vector values using insertelement 2140 // instructions. Since the resulting vectors are stored in 2141 // VectorLoopValueMap, we will only generate the insertelements once. 2142 Value *VectorValue = nullptr; 2143 if (Cost->isUniformAfterVectorization(I, VF)) { 2144 VectorValue = getBroadcastInstrs(ScalarValue); 2145 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2146 } else { 2147 // Initialize packing with insertelements to start from undef. 2148 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2149 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2150 for (unsigned Lane = 0; Lane < VF; ++Lane) 2151 packScalarIntoVectorValue(V, {Part, Lane}); 2152 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2153 } 2154 Builder.restoreIP(OldIP); 2155 return VectorValue; 2156 } 2157 2158 // If this scalar is unknown, assume that it is a constant or that it is 2159 // loop invariant. Broadcast V and save the value for future uses. 2160 Value *B = getBroadcastInstrs(V); 2161 VectorLoopValueMap.setVectorValue(V, Part, B); 2162 return B; 2163 } 2164 2165 Value * 2166 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2167 const VPIteration &Instance) { 2168 // If the value is not an instruction contained in the loop, it should 2169 // already be scalar. 2170 if (OrigLoop->isLoopInvariant(V)) 2171 return V; 2172 2173 assert(Instance.Lane > 0 2174 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2175 : true && "Uniform values only have lane zero"); 2176 2177 // If the value from the original loop has not been vectorized, it is 2178 // represented by UF x VF scalar values in the new loop. Return the requested 2179 // scalar value. 2180 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2181 return VectorLoopValueMap.getScalarValue(V, Instance); 2182 2183 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2184 // for the given unroll part. If this entry is not a vector type (i.e., the 2185 // vectorization factor is one), there is no need to generate an 2186 // extractelement instruction. 2187 auto *U = getOrCreateVectorValue(V, Instance.Part); 2188 if (!U->getType()->isVectorTy()) { 2189 assert(VF == 1 && "Value not scalarized has non-vector type"); 2190 return U; 2191 } 2192 2193 // Otherwise, the value from the original loop has been vectorized and is 2194 // represented by UF vector values. Extract and return the requested scalar 2195 // value from the appropriate vector lane. 2196 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2197 } 2198 2199 void InnerLoopVectorizer::packScalarIntoVectorValue( 2200 Value *V, const VPIteration &Instance) { 2201 assert(V != Induction && "The new induction variable should not be used."); 2202 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2203 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2204 2205 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2206 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2207 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2208 Builder.getInt32(Instance.Lane)); 2209 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2210 } 2211 2212 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2213 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2214 SmallVector<Constant *, 8> ShuffleMask; 2215 for (unsigned i = 0; i < VF; ++i) 2216 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2217 2218 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2219 ConstantVector::get(ShuffleMask), 2220 "reverse"); 2221 } 2222 2223 // Try to vectorize the interleave group that \p Instr belongs to. 2224 // 2225 // E.g. Translate following interleaved load group (factor = 3): 2226 // for (i = 0; i < N; i+=3) { 2227 // R = Pic[i]; // Member of index 0 2228 // G = Pic[i+1]; // Member of index 1 2229 // B = Pic[i+2]; // Member of index 2 2230 // ... // do something to R, G, B 2231 // } 2232 // To: 2233 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2234 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2235 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2236 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2237 // 2238 // Or translate following interleaved store group (factor = 3): 2239 // for (i = 0; i < N; i+=3) { 2240 // ... do something to R, G, B 2241 // Pic[i] = R; // Member of index 0 2242 // Pic[i+1] = G; // Member of index 1 2243 // Pic[i+2] = B; // Member of index 2 2244 // } 2245 // To: 2246 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2247 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2248 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2249 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2250 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2251 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2252 const InterleaveGroup *Group = Cost->getInterleavedAccessGroup(Instr); 2253 assert(Group && "Fail to get an interleaved access group."); 2254 2255 // Skip if current instruction is not the insert position. 2256 if (Instr != Group->getInsertPos()) 2257 return; 2258 2259 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2260 Value *Ptr = getLoadStorePointerOperand(Instr); 2261 2262 // Prepare for the vector type of the interleaved load/store. 2263 Type *ScalarTy = getMemInstValueType(Instr); 2264 unsigned InterleaveFactor = Group->getFactor(); 2265 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2266 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2267 2268 // Prepare for the new pointers. 2269 setDebugLocFromInst(Builder, Ptr); 2270 SmallVector<Value *, 2> NewPtrs; 2271 unsigned Index = Group->getIndex(Instr); 2272 2273 // If the group is reverse, adjust the index to refer to the last vector lane 2274 // instead of the first. We adjust the index from the first vector lane, 2275 // rather than directly getting the pointer for lane VF - 1, because the 2276 // pointer operand of the interleaved access is supposed to be uniform. For 2277 // uniform instructions, we're only required to generate a value for the 2278 // first vector lane in each unroll iteration. 2279 if (Group->isReverse()) 2280 Index += (VF - 1) * Group->getFactor(); 2281 2282 bool InBounds = false; 2283 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2284 InBounds = gep->isInBounds(); 2285 2286 for (unsigned Part = 0; Part < UF; Part++) { 2287 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2288 2289 // Notice current instruction could be any index. Need to adjust the address 2290 // to the member of index 0. 2291 // 2292 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2293 // b = A[i]; // Member of index 0 2294 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2295 // 2296 // E.g. A[i+1] = a; // Member of index 1 2297 // A[i] = b; // Member of index 0 2298 // A[i+2] = c; // Member of index 2 (Current instruction) 2299 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2300 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2301 if (InBounds) 2302 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2303 2304 // Cast to the vector pointer type. 2305 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2306 } 2307 2308 setDebugLocFromInst(Builder, Instr); 2309 Value *UndefVec = UndefValue::get(VecTy); 2310 2311 // Vectorize the interleaved load group. 2312 if (isa<LoadInst>(Instr)) { 2313 // For each unroll part, create a wide load for the group. 2314 SmallVector<Value *, 2> NewLoads; 2315 for (unsigned Part = 0; Part < UF; Part++) { 2316 auto *NewLoad = Builder.CreateAlignedLoad( 2317 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2318 Group->addMetadata(NewLoad); 2319 NewLoads.push_back(NewLoad); 2320 } 2321 2322 // For each member in the group, shuffle out the appropriate data from the 2323 // wide loads. 2324 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2325 Instruction *Member = Group->getMember(I); 2326 2327 // Skip the gaps in the group. 2328 if (!Member) 2329 continue; 2330 2331 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2332 for (unsigned Part = 0; Part < UF; Part++) { 2333 Value *StridedVec = Builder.CreateShuffleVector( 2334 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2335 2336 // If this member has different type, cast the result type. 2337 if (Member->getType() != ScalarTy) { 2338 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2339 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2340 } 2341 2342 if (Group->isReverse()) 2343 StridedVec = reverseVector(StridedVec); 2344 2345 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2346 } 2347 } 2348 return; 2349 } 2350 2351 // The sub vector type for current instruction. 2352 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2353 2354 // Vectorize the interleaved store group. 2355 for (unsigned Part = 0; Part < UF; Part++) { 2356 // Collect the stored vector from each member. 2357 SmallVector<Value *, 4> StoredVecs; 2358 for (unsigned i = 0; i < InterleaveFactor; i++) { 2359 // Interleaved store group doesn't allow a gap, so each index has a member 2360 Instruction *Member = Group->getMember(i); 2361 assert(Member && "Fail to get a member from an interleaved store group"); 2362 2363 Value *StoredVec = getOrCreateVectorValue( 2364 cast<StoreInst>(Member)->getValueOperand(), Part); 2365 if (Group->isReverse()) 2366 StoredVec = reverseVector(StoredVec); 2367 2368 // If this member has different type, cast it to a unified type. 2369 2370 if (StoredVec->getType() != SubVT) 2371 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2372 2373 StoredVecs.push_back(StoredVec); 2374 } 2375 2376 // Concatenate all vectors into a wide vector. 2377 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2378 2379 // Interleave the elements in the wide vector. 2380 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2381 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2382 "interleaved.vec"); 2383 2384 Instruction *NewStoreInstr = 2385 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2386 2387 Group->addMetadata(NewStoreInstr); 2388 } 2389 } 2390 2391 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2392 VectorParts *BlockInMask) { 2393 // Attempt to issue a wide load. 2394 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2395 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2396 2397 assert((LI || SI) && "Invalid Load/Store instruction"); 2398 2399 LoopVectorizationCostModel::InstWidening Decision = 2400 Cost->getWideningDecision(Instr, VF); 2401 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2402 "CM decision should be taken at this point"); 2403 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2404 return vectorizeInterleaveGroup(Instr); 2405 2406 Type *ScalarDataTy = getMemInstValueType(Instr); 2407 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2408 Value *Ptr = getLoadStorePointerOperand(Instr); 2409 unsigned Alignment = getMemInstAlignment(Instr); 2410 // An alignment of 0 means target abi alignment. We need to use the scalar's 2411 // target abi alignment in such a case. 2412 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2413 if (!Alignment) 2414 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2415 unsigned AddressSpace = getMemInstAddressSpace(Instr); 2416 2417 // Determine if the pointer operand of the access is either consecutive or 2418 // reverse consecutive. 2419 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2420 bool ConsecutiveStride = 2421 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2422 bool CreateGatherScatter = 2423 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2424 2425 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2426 // gather/scatter. Otherwise Decision should have been to Scalarize. 2427 assert((ConsecutiveStride || CreateGatherScatter) && 2428 "The instruction should be scalarized"); 2429 2430 // Handle consecutive loads/stores. 2431 if (ConsecutiveStride) 2432 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2433 2434 VectorParts Mask; 2435 bool isMaskRequired = BlockInMask; 2436 if (isMaskRequired) 2437 Mask = *BlockInMask; 2438 2439 bool InBounds = false; 2440 if (auto *gep = dyn_cast<GetElementPtrInst>( 2441 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2442 InBounds = gep->isInBounds(); 2443 2444 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2445 // Calculate the pointer for the specific unroll-part. 2446 GetElementPtrInst *PartPtr = nullptr; 2447 2448 if (Reverse) { 2449 // If the address is consecutive but reversed, then the 2450 // wide store needs to start at the last vector element. 2451 PartPtr = cast<GetElementPtrInst>( 2452 Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF))); 2453 PartPtr->setIsInBounds(InBounds); 2454 PartPtr = cast<GetElementPtrInst>( 2455 Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF))); 2456 PartPtr->setIsInBounds(InBounds); 2457 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2458 Mask[Part] = reverseVector(Mask[Part]); 2459 } else { 2460 PartPtr = cast<GetElementPtrInst>( 2461 Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF))); 2462 PartPtr->setIsInBounds(InBounds); 2463 } 2464 2465 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2466 }; 2467 2468 // Handle Stores: 2469 if (SI) { 2470 setDebugLocFromInst(Builder, SI); 2471 2472 for (unsigned Part = 0; Part < UF; ++Part) { 2473 Instruction *NewSI = nullptr; 2474 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2475 if (CreateGatherScatter) { 2476 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2477 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2478 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2479 MaskPart); 2480 } else { 2481 if (Reverse) { 2482 // If we store to reverse consecutive memory locations, then we need 2483 // to reverse the order of elements in the stored value. 2484 StoredVal = reverseVector(StoredVal); 2485 // We don't want to update the value in the map as it might be used in 2486 // another expression. So don't call resetVectorValue(StoredVal). 2487 } 2488 auto *VecPtr = CreateVecPtr(Part, Ptr); 2489 if (isMaskRequired) 2490 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2491 Mask[Part]); 2492 else 2493 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2494 } 2495 addMetadata(NewSI, SI); 2496 } 2497 return; 2498 } 2499 2500 // Handle loads. 2501 assert(LI && "Must have a load instruction"); 2502 setDebugLocFromInst(Builder, LI); 2503 for (unsigned Part = 0; Part < UF; ++Part) { 2504 Value *NewLI; 2505 if (CreateGatherScatter) { 2506 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2507 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2508 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2509 nullptr, "wide.masked.gather"); 2510 addMetadata(NewLI, LI); 2511 } else { 2512 auto *VecPtr = CreateVecPtr(Part, Ptr); 2513 if (isMaskRequired) 2514 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2515 UndefValue::get(DataTy), 2516 "wide.masked.load"); 2517 else 2518 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2519 2520 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2521 addMetadata(NewLI, LI); 2522 if (Reverse) 2523 NewLI = reverseVector(NewLI); 2524 } 2525 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2526 } 2527 } 2528 2529 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2530 const VPIteration &Instance, 2531 bool IfPredicateInstr) { 2532 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2533 2534 setDebugLocFromInst(Builder, Instr); 2535 2536 // Does this instruction return a value ? 2537 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2538 2539 Instruction *Cloned = Instr->clone(); 2540 if (!IsVoidRetTy) 2541 Cloned->setName(Instr->getName() + ".cloned"); 2542 2543 // Replace the operands of the cloned instructions with their scalar 2544 // equivalents in the new loop. 2545 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2546 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2547 Cloned->setOperand(op, NewOp); 2548 } 2549 addNewMetadata(Cloned, Instr); 2550 2551 // Place the cloned scalar in the new loop. 2552 Builder.Insert(Cloned); 2553 2554 // Add the cloned scalar to the scalar map entry. 2555 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2556 2557 // If we just cloned a new assumption, add it the assumption cache. 2558 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2559 if (II->getIntrinsicID() == Intrinsic::assume) 2560 AC->registerAssumption(II); 2561 2562 // End if-block. 2563 if (IfPredicateInstr) 2564 PredicatedInstructions.push_back(Cloned); 2565 } 2566 2567 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2568 Value *End, Value *Step, 2569 Instruction *DL) { 2570 BasicBlock *Header = L->getHeader(); 2571 BasicBlock *Latch = L->getLoopLatch(); 2572 // As we're just creating this loop, it's possible no latch exists 2573 // yet. If so, use the header as this will be a single block loop. 2574 if (!Latch) 2575 Latch = Header; 2576 2577 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2578 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2579 setDebugLocFromInst(Builder, OldInst); 2580 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2581 2582 Builder.SetInsertPoint(Latch->getTerminator()); 2583 setDebugLocFromInst(Builder, OldInst); 2584 2585 // Create i+1 and fill the PHINode. 2586 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2587 Induction->addIncoming(Start, L->getLoopPreheader()); 2588 Induction->addIncoming(Next, Latch); 2589 // Create the compare. 2590 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2591 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2592 2593 // Now we have two terminators. Remove the old one from the block. 2594 Latch->getTerminator()->eraseFromParent(); 2595 2596 return Induction; 2597 } 2598 2599 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2600 if (TripCount) 2601 return TripCount; 2602 2603 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2604 // Find the loop boundaries. 2605 ScalarEvolution *SE = PSE.getSE(); 2606 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2607 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2608 "Invalid loop count"); 2609 2610 Type *IdxTy = Legal->getWidestInductionType(); 2611 2612 // The exit count might have the type of i64 while the phi is i32. This can 2613 // happen if we have an induction variable that is sign extended before the 2614 // compare. The only way that we get a backedge taken count is that the 2615 // induction variable was signed and as such will not overflow. In such a case 2616 // truncation is legal. 2617 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2618 IdxTy->getPrimitiveSizeInBits()) 2619 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2620 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2621 2622 // Get the total trip count from the count by adding 1. 2623 const SCEV *ExitCount = SE->getAddExpr( 2624 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2625 2626 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2627 2628 // Expand the trip count and place the new instructions in the preheader. 2629 // Notice that the pre-header does not change, only the loop body. 2630 SCEVExpander Exp(*SE, DL, "induction"); 2631 2632 // Count holds the overall loop count (N). 2633 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2634 L->getLoopPreheader()->getTerminator()); 2635 2636 if (TripCount->getType()->isPointerTy()) 2637 TripCount = 2638 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2639 L->getLoopPreheader()->getTerminator()); 2640 2641 return TripCount; 2642 } 2643 2644 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2645 if (VectorTripCount) 2646 return VectorTripCount; 2647 2648 Value *TC = getOrCreateTripCount(L); 2649 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2650 2651 // Now we need to generate the expression for the part of the loop that the 2652 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2653 // iterations are not required for correctness, or N - Step, otherwise. Step 2654 // is equal to the vectorization factor (number of SIMD elements) times the 2655 // unroll factor (number of SIMD instructions). 2656 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 2657 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2658 2659 // If there is a non-reversed interleaved group that may speculatively access 2660 // memory out-of-bounds, we need to ensure that there will be at least one 2661 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2662 // the trip count, we set the remainder to be equal to the step. If the step 2663 // does not evenly divide the trip count, no adjustment is necessary since 2664 // there will already be scalar iterations. Note that the minimum iterations 2665 // check ensures that N >= Step. 2666 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2667 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2668 R = Builder.CreateSelect(IsZero, Step, R); 2669 } 2670 2671 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2672 2673 return VectorTripCount; 2674 } 2675 2676 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2677 const DataLayout &DL) { 2678 // Verify that V is a vector type with same number of elements as DstVTy. 2679 unsigned VF = DstVTy->getNumElements(); 2680 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2681 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2682 Type *SrcElemTy = SrcVecTy->getElementType(); 2683 Type *DstElemTy = DstVTy->getElementType(); 2684 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2685 "Vector elements must have same size"); 2686 2687 // Do a direct cast if element types are castable. 2688 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2689 return Builder.CreateBitOrPointerCast(V, DstVTy); 2690 } 2691 // V cannot be directly casted to desired vector type. 2692 // May happen when V is a floating point vector but DstVTy is a vector of 2693 // pointers or vice-versa. Handle this using a two-step bitcast using an 2694 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2695 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2696 "Only one type should be a pointer type"); 2697 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2698 "Only one type should be a floating point type"); 2699 Type *IntTy = 2700 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2701 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2702 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2703 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2704 } 2705 2706 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2707 BasicBlock *Bypass) { 2708 Value *Count = getOrCreateTripCount(L); 2709 BasicBlock *BB = L->getLoopPreheader(); 2710 IRBuilder<> Builder(BB->getTerminator()); 2711 2712 // Generate code to check if the loop's trip count is less than VF * UF, or 2713 // equal to it in case a scalar epilogue is required; this implies that the 2714 // vector trip count is zero. This check also covers the case where adding one 2715 // to the backedge-taken count overflowed leading to an incorrect trip count 2716 // of zero. In this case we will also jump to the scalar loop. 2717 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2718 : ICmpInst::ICMP_ULT; 2719 Value *CheckMinIters = Builder.CreateICmp( 2720 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 2721 2722 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2723 // Update dominator tree immediately if the generated block is a 2724 // LoopBypassBlock because SCEV expansions to generate loop bypass 2725 // checks may query it before the current function is finished. 2726 DT->addNewBlock(NewBB, BB); 2727 if (L->getParentLoop()) 2728 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2729 ReplaceInstWithInst(BB->getTerminator(), 2730 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2731 LoopBypassBlocks.push_back(BB); 2732 } 2733 2734 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2735 BasicBlock *BB = L->getLoopPreheader(); 2736 2737 // Generate the code to check that the SCEV assumptions that we made. 2738 // We want the new basic block to start at the first instruction in a 2739 // sequence of instructions that form a check. 2740 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2741 "scev.check"); 2742 Value *SCEVCheck = 2743 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2744 2745 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2746 if (C->isZero()) 2747 return; 2748 2749 // Create a new block containing the stride check. 2750 BB->setName("vector.scevcheck"); 2751 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2752 // Update dominator tree immediately if the generated block is a 2753 // LoopBypassBlock because SCEV expansions to generate loop bypass 2754 // checks may query it before the current function is finished. 2755 DT->addNewBlock(NewBB, BB); 2756 if (L->getParentLoop()) 2757 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2758 ReplaceInstWithInst(BB->getTerminator(), 2759 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2760 LoopBypassBlocks.push_back(BB); 2761 AddedSafetyChecks = true; 2762 } 2763 2764 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2765 BasicBlock *BB = L->getLoopPreheader(); 2766 2767 // Generate the code that checks in runtime if arrays overlap. We put the 2768 // checks into a separate block to make the more common case of few elements 2769 // faster. 2770 Instruction *FirstCheckInst; 2771 Instruction *MemRuntimeCheck; 2772 std::tie(FirstCheckInst, MemRuntimeCheck) = 2773 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2774 if (!MemRuntimeCheck) 2775 return; 2776 2777 // Create a new block containing the memory check. 2778 BB->setName("vector.memcheck"); 2779 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2780 // Update dominator tree immediately if the generated block is a 2781 // LoopBypassBlock because SCEV expansions to generate loop bypass 2782 // checks may query it before the current function is finished. 2783 DT->addNewBlock(NewBB, BB); 2784 if (L->getParentLoop()) 2785 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2786 ReplaceInstWithInst(BB->getTerminator(), 2787 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2788 LoopBypassBlocks.push_back(BB); 2789 AddedSafetyChecks = true; 2790 2791 // We currently don't use LoopVersioning for the actual loop cloning but we 2792 // still use it to add the noalias metadata. 2793 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2794 PSE.getSE()); 2795 LVer->prepareNoAliasMetadata(); 2796 } 2797 2798 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2799 /* 2800 In this function we generate a new loop. The new loop will contain 2801 the vectorized instructions while the old loop will continue to run the 2802 scalar remainder. 2803 2804 [ ] <-- loop iteration number check. 2805 / | 2806 / v 2807 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2808 | / | 2809 | / v 2810 || [ ] <-- vector pre header. 2811 |/ | 2812 | v 2813 | [ ] \ 2814 | [ ]_| <-- vector loop. 2815 | | 2816 | v 2817 | -[ ] <--- middle-block. 2818 | / | 2819 | / v 2820 -|- >[ ] <--- new preheader. 2821 | | 2822 | v 2823 | [ ] \ 2824 | [ ]_| <-- old scalar loop to handle remainder. 2825 \ | 2826 \ v 2827 >[ ] <-- exit block. 2828 ... 2829 */ 2830 2831 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2832 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2833 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2834 assert(VectorPH && "Invalid loop structure"); 2835 assert(ExitBlock && "Must have an exit block"); 2836 2837 // Some loops have a single integer induction variable, while other loops 2838 // don't. One example is c++ iterators that often have multiple pointer 2839 // induction variables. In the code below we also support a case where we 2840 // don't have a single induction variable. 2841 // 2842 // We try to obtain an induction variable from the original loop as hard 2843 // as possible. However if we don't find one that: 2844 // - is an integer 2845 // - counts from zero, stepping by one 2846 // - is the size of the widest induction variable type 2847 // then we create a new one. 2848 OldInduction = Legal->getPrimaryInduction(); 2849 Type *IdxTy = Legal->getWidestInductionType(); 2850 2851 // Split the single block loop into the two loop structure described above. 2852 BasicBlock *VecBody = 2853 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2854 BasicBlock *MiddleBlock = 2855 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2856 BasicBlock *ScalarPH = 2857 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2858 2859 // Create and register the new vector loop. 2860 Loop *Lp = LI->AllocateLoop(); 2861 Loop *ParentLoop = OrigLoop->getParentLoop(); 2862 2863 // Insert the new loop into the loop nest and register the new basic blocks 2864 // before calling any utilities such as SCEV that require valid LoopInfo. 2865 if (ParentLoop) { 2866 ParentLoop->addChildLoop(Lp); 2867 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2868 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2869 } else { 2870 LI->addTopLevelLoop(Lp); 2871 } 2872 Lp->addBasicBlockToLoop(VecBody, *LI); 2873 2874 // Find the loop boundaries. 2875 Value *Count = getOrCreateTripCount(Lp); 2876 2877 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2878 2879 // Now, compare the new count to zero. If it is zero skip the vector loop and 2880 // jump to the scalar loop. This check also covers the case where the 2881 // backedge-taken count is uint##_max: adding one to it will overflow leading 2882 // to an incorrect trip count of zero. In this (rare) case we will also jump 2883 // to the scalar loop. 2884 emitMinimumIterationCountCheck(Lp, ScalarPH); 2885 2886 // Generate the code to check any assumptions that we've made for SCEV 2887 // expressions. 2888 emitSCEVChecks(Lp, ScalarPH); 2889 2890 // Generate the code that checks in runtime if arrays overlap. We put the 2891 // checks into a separate block to make the more common case of few elements 2892 // faster. 2893 emitMemRuntimeChecks(Lp, ScalarPH); 2894 2895 // Generate the induction variable. 2896 // The loop step is equal to the vectorization factor (num of SIMD elements) 2897 // times the unroll factor (num of SIMD instructions). 2898 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2899 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2900 Induction = 2901 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2902 getDebugLocFromInstOrOperands(OldInduction)); 2903 2904 // We are going to resume the execution of the scalar loop. 2905 // Go over all of the induction variables that we found and fix the 2906 // PHIs that are left in the scalar version of the loop. 2907 // The starting values of PHI nodes depend on the counter of the last 2908 // iteration in the vectorized loop. 2909 // If we come from a bypass edge then we need to start from the original 2910 // start value. 2911 2912 // This variable saves the new starting index for the scalar loop. It is used 2913 // to test if there are any tail iterations left once the vector loop has 2914 // completed. 2915 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2916 for (auto &InductionEntry : *List) { 2917 PHINode *OrigPhi = InductionEntry.first; 2918 InductionDescriptor II = InductionEntry.second; 2919 2920 // Create phi nodes to merge from the backedge-taken check block. 2921 PHINode *BCResumeVal = PHINode::Create( 2922 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 2923 // Copy original phi DL over to the new one. 2924 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 2925 Value *&EndValue = IVEndValues[OrigPhi]; 2926 if (OrigPhi == OldInduction) { 2927 // We know what the end value is. 2928 EndValue = CountRoundDown; 2929 } else { 2930 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 2931 Type *StepType = II.getStep()->getType(); 2932 Instruction::CastOps CastOp = 2933 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 2934 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 2935 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2936 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 2937 EndValue->setName("ind.end"); 2938 } 2939 2940 // The new PHI merges the original incoming value, in case of a bypass, 2941 // or the value at the end of the vectorized loop. 2942 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2943 2944 // Fix the scalar body counter (PHI node). 2945 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2946 2947 // The old induction's phi node in the scalar body needs the truncated 2948 // value. 2949 for (BasicBlock *BB : LoopBypassBlocks) 2950 BCResumeVal->addIncoming(II.getStartValue(), BB); 2951 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2952 } 2953 2954 // Add a check in the middle block to see if we have completed 2955 // all of the iterations in the first vector loop. 2956 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2957 Value *CmpN = 2958 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2959 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 2960 ReplaceInstWithInst(MiddleBlock->getTerminator(), 2961 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 2962 2963 // Get ready to start creating new instructions into the vectorized body. 2964 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2965 2966 // Save the state. 2967 LoopVectorPreHeader = Lp->getLoopPreheader(); 2968 LoopScalarPreHeader = ScalarPH; 2969 LoopMiddleBlock = MiddleBlock; 2970 LoopExitBlock = ExitBlock; 2971 LoopVectorBody = VecBody; 2972 LoopScalarBody = OldBasicBlock; 2973 2974 // Keep all loop hints from the original loop on the vector loop (we'll 2975 // replace the vectorizer-specific hints below). 2976 if (MDNode *LID = OrigLoop->getLoopID()) 2977 Lp->setLoopID(LID); 2978 2979 LoopVectorizeHints Hints(Lp, true, *ORE); 2980 Hints.setAlreadyVectorized(); 2981 2982 return LoopVectorPreHeader; 2983 } 2984 2985 // Fix up external users of the induction variable. At this point, we are 2986 // in LCSSA form, with all external PHIs that use the IV having one input value, 2987 // coming from the remainder loop. We need those PHIs to also have a correct 2988 // value for the IV when arriving directly from the middle block. 2989 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 2990 const InductionDescriptor &II, 2991 Value *CountRoundDown, Value *EndValue, 2992 BasicBlock *MiddleBlock) { 2993 // There are two kinds of external IV usages - those that use the value 2994 // computed in the last iteration (the PHI) and those that use the penultimate 2995 // value (the value that feeds into the phi from the loop latch). 2996 // We allow both, but they, obviously, have different values. 2997 2998 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 2999 3000 DenseMap<Value *, Value *> MissingVals; 3001 3002 // An external user of the last iteration's value should see the value that 3003 // the remainder loop uses to initialize its own IV. 3004 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3005 for (User *U : PostInc->users()) { 3006 Instruction *UI = cast<Instruction>(U); 3007 if (!OrigLoop->contains(UI)) { 3008 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3009 MissingVals[UI] = EndValue; 3010 } 3011 } 3012 3013 // An external user of the penultimate value need to see EndValue - Step. 3014 // The simplest way to get this is to recompute it from the constituent SCEVs, 3015 // that is Start + (Step * (CRD - 1)). 3016 for (User *U : OrigPhi->users()) { 3017 auto *UI = cast<Instruction>(U); 3018 if (!OrigLoop->contains(UI)) { 3019 const DataLayout &DL = 3020 OrigLoop->getHeader()->getModule()->getDataLayout(); 3021 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3022 3023 IRBuilder<> B(MiddleBlock->getTerminator()); 3024 Value *CountMinusOne = B.CreateSub( 3025 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3026 Value *CMO = 3027 !II.getStep()->getType()->isIntegerTy() 3028 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3029 II.getStep()->getType()) 3030 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3031 CMO->setName("cast.cmo"); 3032 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3033 Escape->setName("ind.escape"); 3034 MissingVals[UI] = Escape; 3035 } 3036 } 3037 3038 for (auto &I : MissingVals) { 3039 PHINode *PHI = cast<PHINode>(I.first); 3040 // One corner case we have to handle is two IVs "chasing" each-other, 3041 // that is %IV2 = phi [...], [ %IV1, %latch ] 3042 // In this case, if IV1 has an external use, we need to avoid adding both 3043 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3044 // don't already have an incoming value for the middle block. 3045 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3046 PHI->addIncoming(I.second, MiddleBlock); 3047 } 3048 } 3049 3050 namespace { 3051 3052 struct CSEDenseMapInfo { 3053 static bool canHandle(const Instruction *I) { 3054 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3055 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3056 } 3057 3058 static inline Instruction *getEmptyKey() { 3059 return DenseMapInfo<Instruction *>::getEmptyKey(); 3060 } 3061 3062 static inline Instruction *getTombstoneKey() { 3063 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3064 } 3065 3066 static unsigned getHashValue(const Instruction *I) { 3067 assert(canHandle(I) && "Unknown instruction!"); 3068 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3069 I->value_op_end())); 3070 } 3071 3072 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3073 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3074 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3075 return LHS == RHS; 3076 return LHS->isIdenticalTo(RHS); 3077 } 3078 }; 3079 3080 } // end anonymous namespace 3081 3082 ///Perform cse of induction variable instructions. 3083 static void cse(BasicBlock *BB) { 3084 // Perform simple cse. 3085 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3086 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3087 Instruction *In = &*I++; 3088 3089 if (!CSEDenseMapInfo::canHandle(In)) 3090 continue; 3091 3092 // Check if we can replace this instruction with any of the 3093 // visited instructions. 3094 if (Instruction *V = CSEMap.lookup(In)) { 3095 In->replaceAllUsesWith(V); 3096 In->eraseFromParent(); 3097 continue; 3098 } 3099 3100 CSEMap[In] = In; 3101 } 3102 } 3103 3104 /// Estimate the overhead of scalarizing an instruction. This is a 3105 /// convenience wrapper for the type-based getScalarizationOverhead API. 3106 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3107 const TargetTransformInfo &TTI) { 3108 if (VF == 1) 3109 return 0; 3110 3111 unsigned Cost = 0; 3112 Type *RetTy = ToVectorTy(I->getType(), VF); 3113 if (!RetTy->isVoidTy() && 3114 (!isa<LoadInst>(I) || 3115 !TTI.supportsEfficientVectorElementLoadStore())) 3116 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3117 3118 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3119 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3120 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3121 } 3122 else if (!isa<StoreInst>(I) || 3123 !TTI.supportsEfficientVectorElementLoadStore()) { 3124 SmallVector<const Value *, 4> Operands(I->operand_values()); 3125 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3126 } 3127 3128 return Cost; 3129 } 3130 3131 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3132 // Return the cost of the instruction, including scalarization overhead if it's 3133 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3134 // i.e. either vector version isn't available, or is too expensive. 3135 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3136 const TargetTransformInfo &TTI, 3137 const TargetLibraryInfo *TLI, 3138 bool &NeedToScalarize) { 3139 Function *F = CI->getCalledFunction(); 3140 StringRef FnName = CI->getCalledFunction()->getName(); 3141 Type *ScalarRetTy = CI->getType(); 3142 SmallVector<Type *, 4> Tys, ScalarTys; 3143 for (auto &ArgOp : CI->arg_operands()) 3144 ScalarTys.push_back(ArgOp->getType()); 3145 3146 // Estimate cost of scalarized vector call. The source operands are assumed 3147 // to be vectors, so we need to extract individual elements from there, 3148 // execute VF scalar calls, and then gather the result into the vector return 3149 // value. 3150 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3151 if (VF == 1) 3152 return ScalarCallCost; 3153 3154 // Compute corresponding vector type for return value and arguments. 3155 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3156 for (Type *ScalarTy : ScalarTys) 3157 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3158 3159 // Compute costs of unpacking argument values for the scalar calls and 3160 // packing the return values to a vector. 3161 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3162 3163 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3164 3165 // If we can't emit a vector call for this function, then the currently found 3166 // cost is the cost we need to return. 3167 NeedToScalarize = true; 3168 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3169 return Cost; 3170 3171 // If the corresponding vector cost is cheaper, return its cost. 3172 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3173 if (VectorCallCost < Cost) { 3174 NeedToScalarize = false; 3175 return VectorCallCost; 3176 } 3177 return Cost; 3178 } 3179 3180 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3181 // factor VF. Return the cost of the instruction, including scalarization 3182 // overhead if it's needed. 3183 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3184 const TargetTransformInfo &TTI, 3185 const TargetLibraryInfo *TLI) { 3186 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3187 assert(ID && "Expected intrinsic call!"); 3188 3189 FastMathFlags FMF; 3190 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3191 FMF = FPMO->getFastMathFlags(); 3192 3193 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3194 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3195 } 3196 3197 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3198 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3199 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3200 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3201 } 3202 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3203 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3204 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3205 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3206 } 3207 3208 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3209 // For every instruction `I` in MinBWs, truncate the operands, create a 3210 // truncated version of `I` and reextend its result. InstCombine runs 3211 // later and will remove any ext/trunc pairs. 3212 SmallPtrSet<Value *, 4> Erased; 3213 for (const auto &KV : Cost->getMinimalBitwidths()) { 3214 // If the value wasn't vectorized, we must maintain the original scalar 3215 // type. The absence of the value from VectorLoopValueMap indicates that it 3216 // wasn't vectorized. 3217 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3218 continue; 3219 for (unsigned Part = 0; Part < UF; ++Part) { 3220 Value *I = getOrCreateVectorValue(KV.first, Part); 3221 if (Erased.find(I) != Erased.end() || I->use_empty() || 3222 !isa<Instruction>(I)) 3223 continue; 3224 Type *OriginalTy = I->getType(); 3225 Type *ScalarTruncatedTy = 3226 IntegerType::get(OriginalTy->getContext(), KV.second); 3227 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3228 OriginalTy->getVectorNumElements()); 3229 if (TruncatedTy == OriginalTy) 3230 continue; 3231 3232 IRBuilder<> B(cast<Instruction>(I)); 3233 auto ShrinkOperand = [&](Value *V) -> Value * { 3234 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3235 if (ZI->getSrcTy() == TruncatedTy) 3236 return ZI->getOperand(0); 3237 return B.CreateZExtOrTrunc(V, TruncatedTy); 3238 }; 3239 3240 // The actual instruction modification depends on the instruction type, 3241 // unfortunately. 3242 Value *NewI = nullptr; 3243 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3244 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3245 ShrinkOperand(BO->getOperand(1))); 3246 3247 // Any wrapping introduced by shrinking this operation shouldn't be 3248 // considered undefined behavior. So, we can't unconditionally copy 3249 // arithmetic wrapping flags to NewI. 3250 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3251 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3252 NewI = 3253 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3254 ShrinkOperand(CI->getOperand(1))); 3255 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3256 NewI = B.CreateSelect(SI->getCondition(), 3257 ShrinkOperand(SI->getTrueValue()), 3258 ShrinkOperand(SI->getFalseValue())); 3259 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3260 switch (CI->getOpcode()) { 3261 default: 3262 llvm_unreachable("Unhandled cast!"); 3263 case Instruction::Trunc: 3264 NewI = ShrinkOperand(CI->getOperand(0)); 3265 break; 3266 case Instruction::SExt: 3267 NewI = B.CreateSExtOrTrunc( 3268 CI->getOperand(0), 3269 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3270 break; 3271 case Instruction::ZExt: 3272 NewI = B.CreateZExtOrTrunc( 3273 CI->getOperand(0), 3274 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3275 break; 3276 } 3277 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3278 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3279 auto *O0 = B.CreateZExtOrTrunc( 3280 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3281 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3282 auto *O1 = B.CreateZExtOrTrunc( 3283 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3284 3285 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3286 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3287 // Don't do anything with the operands, just extend the result. 3288 continue; 3289 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3290 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3291 auto *O0 = B.CreateZExtOrTrunc( 3292 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3293 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3294 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3295 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3296 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3297 auto *O0 = B.CreateZExtOrTrunc( 3298 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3299 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3300 } else { 3301 // If we don't know what to do, be conservative and don't do anything. 3302 continue; 3303 } 3304 3305 // Lastly, extend the result. 3306 NewI->takeName(cast<Instruction>(I)); 3307 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3308 I->replaceAllUsesWith(Res); 3309 cast<Instruction>(I)->eraseFromParent(); 3310 Erased.insert(I); 3311 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3312 } 3313 } 3314 3315 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3316 for (const auto &KV : Cost->getMinimalBitwidths()) { 3317 // If the value wasn't vectorized, we must maintain the original scalar 3318 // type. The absence of the value from VectorLoopValueMap indicates that it 3319 // wasn't vectorized. 3320 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3321 continue; 3322 for (unsigned Part = 0; Part < UF; ++Part) { 3323 Value *I = getOrCreateVectorValue(KV.first, Part); 3324 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3325 if (Inst && Inst->use_empty()) { 3326 Value *NewI = Inst->getOperand(0); 3327 Inst->eraseFromParent(); 3328 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3329 } 3330 } 3331 } 3332 } 3333 3334 void InnerLoopVectorizer::fixVectorizedLoop() { 3335 // Insert truncates and extends for any truncated instructions as hints to 3336 // InstCombine. 3337 if (VF > 1) 3338 truncateToMinimalBitwidths(); 3339 3340 // At this point every instruction in the original loop is widened to a 3341 // vector form. Now we need to fix the recurrences in the loop. These PHI 3342 // nodes are currently empty because we did not want to introduce cycles. 3343 // This is the second stage of vectorizing recurrences. 3344 fixCrossIterationPHIs(); 3345 3346 // Update the dominator tree. 3347 // 3348 // FIXME: After creating the structure of the new loop, the dominator tree is 3349 // no longer up-to-date, and it remains that way until we update it 3350 // here. An out-of-date dominator tree is problematic for SCEV, 3351 // because SCEVExpander uses it to guide code generation. The 3352 // vectorizer use SCEVExpanders in several places. Instead, we should 3353 // keep the dominator tree up-to-date as we go. 3354 updateAnalysis(); 3355 3356 // Fix-up external users of the induction variables. 3357 for (auto &Entry : *Legal->getInductionVars()) 3358 fixupIVUsers(Entry.first, Entry.second, 3359 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3360 IVEndValues[Entry.first], LoopMiddleBlock); 3361 3362 fixLCSSAPHIs(); 3363 for (Instruction *PI : PredicatedInstructions) 3364 sinkScalarOperands(&*PI); 3365 3366 // Remove redundant induction instructions. 3367 cse(LoopVectorBody); 3368 } 3369 3370 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3371 // In order to support recurrences we need to be able to vectorize Phi nodes. 3372 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3373 // stage #2: We now need to fix the recurrences by adding incoming edges to 3374 // the currently empty PHI nodes. At this point every instruction in the 3375 // original loop is widened to a vector form so we can use them to construct 3376 // the incoming edges. 3377 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3378 // Handle first-order recurrences and reductions that need to be fixed. 3379 if (Legal->isFirstOrderRecurrence(&Phi)) 3380 fixFirstOrderRecurrence(&Phi); 3381 else if (Legal->isReductionVariable(&Phi)) 3382 fixReduction(&Phi); 3383 } 3384 } 3385 3386 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3387 // This is the second phase of vectorizing first-order recurrences. An 3388 // overview of the transformation is described below. Suppose we have the 3389 // following loop. 3390 // 3391 // for (int i = 0; i < n; ++i) 3392 // b[i] = a[i] - a[i - 1]; 3393 // 3394 // There is a first-order recurrence on "a". For this loop, the shorthand 3395 // scalar IR looks like: 3396 // 3397 // scalar.ph: 3398 // s_init = a[-1] 3399 // br scalar.body 3400 // 3401 // scalar.body: 3402 // i = phi [0, scalar.ph], [i+1, scalar.body] 3403 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3404 // s2 = a[i] 3405 // b[i] = s2 - s1 3406 // br cond, scalar.body, ... 3407 // 3408 // In this example, s1 is a recurrence because it's value depends on the 3409 // previous iteration. In the first phase of vectorization, we created a 3410 // temporary value for s1. We now complete the vectorization and produce the 3411 // shorthand vector IR shown below (for VF = 4, UF = 1). 3412 // 3413 // vector.ph: 3414 // v_init = vector(..., ..., ..., a[-1]) 3415 // br vector.body 3416 // 3417 // vector.body 3418 // i = phi [0, vector.ph], [i+4, vector.body] 3419 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3420 // v2 = a[i, i+1, i+2, i+3]; 3421 // v3 = vector(v1(3), v2(0, 1, 2)) 3422 // b[i, i+1, i+2, i+3] = v2 - v3 3423 // br cond, vector.body, middle.block 3424 // 3425 // middle.block: 3426 // x = v2(3) 3427 // br scalar.ph 3428 // 3429 // scalar.ph: 3430 // s_init = phi [x, middle.block], [a[-1], otherwise] 3431 // br scalar.body 3432 // 3433 // After execution completes the vector loop, we extract the next value of 3434 // the recurrence (x) to use as the initial value in the scalar loop. 3435 3436 // Get the original loop preheader and single loop latch. 3437 auto *Preheader = OrigLoop->getLoopPreheader(); 3438 auto *Latch = OrigLoop->getLoopLatch(); 3439 3440 // Get the initial and previous values of the scalar recurrence. 3441 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3442 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3443 3444 // Create a vector from the initial value. 3445 auto *VectorInit = ScalarInit; 3446 if (VF > 1) { 3447 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3448 VectorInit = Builder.CreateInsertElement( 3449 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3450 Builder.getInt32(VF - 1), "vector.recur.init"); 3451 } 3452 3453 // We constructed a temporary phi node in the first phase of vectorization. 3454 // This phi node will eventually be deleted. 3455 Builder.SetInsertPoint( 3456 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3457 3458 // Create a phi node for the new recurrence. The current value will either be 3459 // the initial value inserted into a vector or loop-varying vector value. 3460 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3461 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3462 3463 // Get the vectorized previous value of the last part UF - 1. It appears last 3464 // among all unrolled iterations, due to the order of their construction. 3465 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3466 3467 // Set the insertion point after the previous value if it is an instruction. 3468 // Note that the previous value may have been constant-folded so it is not 3469 // guaranteed to be an instruction in the vector loop. Also, if the previous 3470 // value is a phi node, we should insert after all the phi nodes to avoid 3471 // breaking basic block verification. 3472 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 3473 isa<PHINode>(PreviousLastPart)) 3474 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3475 else 3476 Builder.SetInsertPoint( 3477 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 3478 3479 // We will construct a vector for the recurrence by combining the values for 3480 // the current and previous iterations. This is the required shuffle mask. 3481 SmallVector<Constant *, 8> ShuffleMask(VF); 3482 ShuffleMask[0] = Builder.getInt32(VF - 1); 3483 for (unsigned I = 1; I < VF; ++I) 3484 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3485 3486 // The vector from which to take the initial value for the current iteration 3487 // (actual or unrolled). Initially, this is the vector phi node. 3488 Value *Incoming = VecPhi; 3489 3490 // Shuffle the current and previous vector and update the vector parts. 3491 for (unsigned Part = 0; Part < UF; ++Part) { 3492 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3493 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3494 auto *Shuffle = 3495 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3496 ConstantVector::get(ShuffleMask)) 3497 : Incoming; 3498 PhiPart->replaceAllUsesWith(Shuffle); 3499 cast<Instruction>(PhiPart)->eraseFromParent(); 3500 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3501 Incoming = PreviousPart; 3502 } 3503 3504 // Fix the latch value of the new recurrence in the vector loop. 3505 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3506 3507 // Extract the last vector element in the middle block. This will be the 3508 // initial value for the recurrence when jumping to the scalar loop. 3509 auto *ExtractForScalar = Incoming; 3510 if (VF > 1) { 3511 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3512 ExtractForScalar = Builder.CreateExtractElement( 3513 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3514 } 3515 // Extract the second last element in the middle block if the 3516 // Phi is used outside the loop. We need to extract the phi itself 3517 // and not the last element (the phi update in the current iteration). This 3518 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3519 // when the scalar loop is not run at all. 3520 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3521 if (VF > 1) 3522 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3523 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3524 // When loop is unrolled without vectorizing, initialize 3525 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3526 // `Incoming`. This is analogous to the vectorized case above: extracting the 3527 // second last element when VF > 1. 3528 else if (UF > 1) 3529 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3530 3531 // Fix the initial value of the original recurrence in the scalar loop. 3532 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3533 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3534 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3535 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3536 Start->addIncoming(Incoming, BB); 3537 } 3538 3539 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3540 Phi->setName("scalar.recur"); 3541 3542 // Finally, fix users of the recurrence outside the loop. The users will need 3543 // either the last value of the scalar recurrence or the last value of the 3544 // vector recurrence we extracted in the middle block. Since the loop is in 3545 // LCSSA form, we just need to find all the phi nodes for the original scalar 3546 // recurrence in the exit block, and then add an edge for the middle block. 3547 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3548 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3549 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3550 } 3551 } 3552 } 3553 3554 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3555 Constant *Zero = Builder.getInt32(0); 3556 3557 // Get it's reduction variable descriptor. 3558 assert(Legal->isReductionVariable(Phi) && 3559 "Unable to find the reduction variable"); 3560 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3561 3562 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3563 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3564 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3565 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3566 RdxDesc.getMinMaxRecurrenceKind(); 3567 setDebugLocFromInst(Builder, ReductionStartValue); 3568 3569 // We need to generate a reduction vector from the incoming scalar. 3570 // To do so, we need to generate the 'identity' vector and override 3571 // one of the elements with the incoming scalar reduction. We need 3572 // to do it in the vector-loop preheader. 3573 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3574 3575 // This is the vector-clone of the value that leaves the loop. 3576 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3577 3578 // Find the reduction identity variable. Zero for addition, or, xor, 3579 // one for multiplication, -1 for And. 3580 Value *Identity; 3581 Value *VectorStart; 3582 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3583 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3584 // MinMax reduction have the start value as their identify. 3585 if (VF == 1) { 3586 VectorStart = Identity = ReductionStartValue; 3587 } else { 3588 VectorStart = Identity = 3589 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3590 } 3591 } else { 3592 // Handle other reduction kinds: 3593 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3594 RK, VecTy->getScalarType()); 3595 if (VF == 1) { 3596 Identity = Iden; 3597 // This vector is the Identity vector where the first element is the 3598 // incoming scalar reduction. 3599 VectorStart = ReductionStartValue; 3600 } else { 3601 Identity = ConstantVector::getSplat(VF, Iden); 3602 3603 // This vector is the Identity vector where the first element is the 3604 // incoming scalar reduction. 3605 VectorStart = 3606 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3607 } 3608 } 3609 3610 // Fix the vector-loop phi. 3611 3612 // Reductions do not have to start at zero. They can start with 3613 // any loop invariant values. 3614 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3615 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3616 for (unsigned Part = 0; Part < UF; ++Part) { 3617 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3618 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3619 // Make sure to add the reduction stat value only to the 3620 // first unroll part. 3621 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3622 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3623 cast<PHINode>(VecRdxPhi) 3624 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3625 } 3626 3627 // Before each round, move the insertion point right between 3628 // the PHIs and the values we are going to write. 3629 // This allows us to write both PHINodes and the extractelement 3630 // instructions. 3631 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3632 3633 setDebugLocFromInst(Builder, LoopExitInst); 3634 3635 // If the vector reduction can be performed in a smaller type, we truncate 3636 // then extend the loop exit value to enable InstCombine to evaluate the 3637 // entire expression in the smaller type. 3638 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3639 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3640 Builder.SetInsertPoint( 3641 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3642 VectorParts RdxParts(UF); 3643 for (unsigned Part = 0; Part < UF; ++Part) { 3644 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3645 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3646 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3647 : Builder.CreateZExt(Trunc, VecTy); 3648 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3649 UI != RdxParts[Part]->user_end();) 3650 if (*UI != Trunc) { 3651 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3652 RdxParts[Part] = Extnd; 3653 } else { 3654 ++UI; 3655 } 3656 } 3657 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3658 for (unsigned Part = 0; Part < UF; ++Part) { 3659 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3660 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3661 } 3662 } 3663 3664 // Reduce all of the unrolled parts into a single vector. 3665 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3666 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3667 setDebugLocFromInst(Builder, ReducedPartRdx); 3668 for (unsigned Part = 1; Part < UF; ++Part) { 3669 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3670 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3671 // Floating point operations had to be 'fast' to enable the reduction. 3672 ReducedPartRdx = addFastMathFlag( 3673 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3674 ReducedPartRdx, "bin.rdx")); 3675 else 3676 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3677 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 3678 } 3679 3680 if (VF > 1) { 3681 bool NoNaN = Legal->hasFunNoNaNAttr(); 3682 ReducedPartRdx = 3683 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3684 // If the reduction can be performed in a smaller type, we need to extend 3685 // the reduction to the wider type before we branch to the original loop. 3686 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3687 ReducedPartRdx = 3688 RdxDesc.isSigned() 3689 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3690 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3691 } 3692 3693 // Create a phi node that merges control-flow from the backedge-taken check 3694 // block and the middle block. 3695 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3696 LoopScalarPreHeader->getTerminator()); 3697 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3698 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3699 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3700 3701 // Now, we need to fix the users of the reduction variable 3702 // inside and outside of the scalar remainder loop. 3703 // We know that the loop is in LCSSA form. We need to update the 3704 // PHI nodes in the exit blocks. 3705 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3706 // All PHINodes need to have a single entry edge, or two if 3707 // we already fixed them. 3708 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3709 3710 // We found a reduction value exit-PHI. Update it with the 3711 // incoming bypass edge. 3712 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3713 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3714 } // end of the LCSSA phi scan. 3715 3716 // Fix the scalar loop reduction variable with the incoming reduction sum 3717 // from the vector body and from the backedge value. 3718 int IncomingEdgeBlockIdx = 3719 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3720 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3721 // Pick the other block. 3722 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3723 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3724 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3725 } 3726 3727 void InnerLoopVectorizer::fixLCSSAPHIs() { 3728 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3729 if (LCSSAPhi.getNumIncomingValues() == 1) { 3730 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3731 // Non-instruction incoming values will have only one value. 3732 unsigned LastLane = 0; 3733 if (isa<Instruction>(IncomingValue)) 3734 LastLane = Cost->isUniformAfterVectorization( 3735 cast<Instruction>(IncomingValue), VF) 3736 ? 0 3737 : VF - 1; 3738 // Can be a loop invariant incoming value or the last scalar value to be 3739 // extracted from the vectorized loop. 3740 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3741 Value *lastIncomingValue = 3742 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3743 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3744 } 3745 } 3746 } 3747 3748 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3749 // The basic block and loop containing the predicated instruction. 3750 auto *PredBB = PredInst->getParent(); 3751 auto *VectorLoop = LI->getLoopFor(PredBB); 3752 3753 // Initialize a worklist with the operands of the predicated instruction. 3754 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3755 3756 // Holds instructions that we need to analyze again. An instruction may be 3757 // reanalyzed if we don't yet know if we can sink it or not. 3758 SmallVector<Instruction *, 8> InstsToReanalyze; 3759 3760 // Returns true if a given use occurs in the predicated block. Phi nodes use 3761 // their operands in their corresponding predecessor blocks. 3762 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3763 auto *I = cast<Instruction>(U.getUser()); 3764 BasicBlock *BB = I->getParent(); 3765 if (auto *Phi = dyn_cast<PHINode>(I)) 3766 BB = Phi->getIncomingBlock( 3767 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3768 return BB == PredBB; 3769 }; 3770 3771 // Iteratively sink the scalarized operands of the predicated instruction 3772 // into the block we created for it. When an instruction is sunk, it's 3773 // operands are then added to the worklist. The algorithm ends after one pass 3774 // through the worklist doesn't sink a single instruction. 3775 bool Changed; 3776 do { 3777 // Add the instructions that need to be reanalyzed to the worklist, and 3778 // reset the changed indicator. 3779 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3780 InstsToReanalyze.clear(); 3781 Changed = false; 3782 3783 while (!Worklist.empty()) { 3784 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3785 3786 // We can't sink an instruction if it is a phi node, is already in the 3787 // predicated block, is not in the loop, or may have side effects. 3788 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3789 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3790 continue; 3791 3792 // It's legal to sink the instruction if all its uses occur in the 3793 // predicated block. Otherwise, there's nothing to do yet, and we may 3794 // need to reanalyze the instruction. 3795 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3796 InstsToReanalyze.push_back(I); 3797 continue; 3798 } 3799 3800 // Move the instruction to the beginning of the predicated block, and add 3801 // it's operands to the worklist. 3802 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3803 Worklist.insert(I->op_begin(), I->op_end()); 3804 3805 // The sinking may have enabled other instructions to be sunk, so we will 3806 // need to iterate. 3807 Changed = true; 3808 } 3809 } while (Changed); 3810 } 3811 3812 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 3813 unsigned VF) { 3814 assert(PN->getParent() == OrigLoop->getHeader() && 3815 "Non-header phis should have been handled elsewhere"); 3816 3817 PHINode *P = cast<PHINode>(PN); 3818 // In order to support recurrences we need to be able to vectorize Phi nodes. 3819 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3820 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 3821 // this value when we vectorize all of the instructions that use the PHI. 3822 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3823 for (unsigned Part = 0; Part < UF; ++Part) { 3824 // This is phase one of vectorizing PHIs. 3825 Type *VecTy = 3826 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3827 Value *EntryPart = PHINode::Create( 3828 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3829 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 3830 } 3831 return; 3832 } 3833 3834 setDebugLocFromInst(Builder, P); 3835 3836 // This PHINode must be an induction variable. 3837 // Make sure that we know about it. 3838 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 3839 3840 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3841 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3842 3843 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3844 // which can be found from the original scalar operations. 3845 switch (II.getKind()) { 3846 case InductionDescriptor::IK_NoInduction: 3847 llvm_unreachable("Unknown induction"); 3848 case InductionDescriptor::IK_IntInduction: 3849 case InductionDescriptor::IK_FpInduction: 3850 llvm_unreachable("Integer/fp induction is handled elsewhere."); 3851 case InductionDescriptor::IK_PtrInduction: { 3852 // Handle the pointer induction variable case. 3853 assert(P->getType()->isPointerTy() && "Unexpected type."); 3854 // This is the normalized GEP that starts counting at zero. 3855 Value *PtrInd = Induction; 3856 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 3857 // Determine the number of scalars we need to generate for each unroll 3858 // iteration. If the instruction is uniform, we only need to generate the 3859 // first lane. Otherwise, we generate all VF values. 3860 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 3861 // These are the scalar results. Notice that we don't generate vector GEPs 3862 // because scalar GEPs result in better code. 3863 for (unsigned Part = 0; Part < UF; ++Part) { 3864 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3865 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 3866 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3867 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 3868 SclrGep->setName("next.gep"); 3869 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 3870 } 3871 } 3872 return; 3873 } 3874 } 3875 } 3876 3877 /// A helper function for checking whether an integer division-related 3878 /// instruction may divide by zero (in which case it must be predicated if 3879 /// executed conditionally in the scalar code). 3880 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 3881 /// Non-zero divisors that are non compile-time constants will not be 3882 /// converted into multiplication, so we will still end up scalarizing 3883 /// the division, but can do so w/o predication. 3884 static bool mayDivideByZero(Instruction &I) { 3885 assert((I.getOpcode() == Instruction::UDiv || 3886 I.getOpcode() == Instruction::SDiv || 3887 I.getOpcode() == Instruction::URem || 3888 I.getOpcode() == Instruction::SRem) && 3889 "Unexpected instruction"); 3890 Value *Divisor = I.getOperand(1); 3891 auto *CInt = dyn_cast<ConstantInt>(Divisor); 3892 return !CInt || CInt->isZero(); 3893 } 3894 3895 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 3896 switch (I.getOpcode()) { 3897 case Instruction::Br: 3898 case Instruction::PHI: 3899 llvm_unreachable("This instruction is handled by a different recipe."); 3900 case Instruction::GetElementPtr: { 3901 // Construct a vector GEP by widening the operands of the scalar GEP as 3902 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 3903 // results in a vector of pointers when at least one operand of the GEP 3904 // is vector-typed. Thus, to keep the representation compact, we only use 3905 // vector-typed operands for loop-varying values. 3906 auto *GEP = cast<GetElementPtrInst>(&I); 3907 3908 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 3909 // If we are vectorizing, but the GEP has only loop-invariant operands, 3910 // the GEP we build (by only using vector-typed operands for 3911 // loop-varying values) would be a scalar pointer. Thus, to ensure we 3912 // produce a vector of pointers, we need to either arbitrarily pick an 3913 // operand to broadcast, or broadcast a clone of the original GEP. 3914 // Here, we broadcast a clone of the original. 3915 // 3916 // TODO: If at some point we decide to scalarize instructions having 3917 // loop-invariant operands, this special case will no longer be 3918 // required. We would add the scalarization decision to 3919 // collectLoopScalars() and teach getVectorValue() to broadcast 3920 // the lane-zero scalar value. 3921 auto *Clone = Builder.Insert(GEP->clone()); 3922 for (unsigned Part = 0; Part < UF; ++Part) { 3923 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 3924 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 3925 addMetadata(EntryPart, GEP); 3926 } 3927 } else { 3928 // If the GEP has at least one loop-varying operand, we are sure to 3929 // produce a vector of pointers. But if we are only unrolling, we want 3930 // to produce a scalar GEP for each unroll part. Thus, the GEP we 3931 // produce with the code below will be scalar (if VF == 1) or vector 3932 // (otherwise). Note that for the unroll-only case, we still maintain 3933 // values in the vector mapping with initVector, as we do for other 3934 // instructions. 3935 for (unsigned Part = 0; Part < UF; ++Part) { 3936 // The pointer operand of the new GEP. If it's loop-invariant, we 3937 // won't broadcast it. 3938 auto *Ptr = 3939 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 3940 ? GEP->getPointerOperand() 3941 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 3942 3943 // Collect all the indices for the new GEP. If any index is 3944 // loop-invariant, we won't broadcast it. 3945 SmallVector<Value *, 4> Indices; 3946 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 3947 if (OrigLoop->isLoopInvariant(U.get())) 3948 Indices.push_back(U.get()); 3949 else 3950 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 3951 } 3952 3953 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 3954 // but it should be a vector, otherwise. 3955 auto *NewGEP = GEP->isInBounds() 3956 ? Builder.CreateInBoundsGEP(Ptr, Indices) 3957 : Builder.CreateGEP(Ptr, Indices); 3958 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 3959 "NewGEP is not a pointer vector"); 3960 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 3961 addMetadata(NewGEP, GEP); 3962 } 3963 } 3964 3965 break; 3966 } 3967 case Instruction::UDiv: 3968 case Instruction::SDiv: 3969 case Instruction::SRem: 3970 case Instruction::URem: 3971 case Instruction::Add: 3972 case Instruction::FAdd: 3973 case Instruction::Sub: 3974 case Instruction::FSub: 3975 case Instruction::Mul: 3976 case Instruction::FMul: 3977 case Instruction::FDiv: 3978 case Instruction::FRem: 3979 case Instruction::Shl: 3980 case Instruction::LShr: 3981 case Instruction::AShr: 3982 case Instruction::And: 3983 case Instruction::Or: 3984 case Instruction::Xor: { 3985 // Just widen binops. 3986 auto *BinOp = cast<BinaryOperator>(&I); 3987 setDebugLocFromInst(Builder, BinOp); 3988 3989 for (unsigned Part = 0; Part < UF; ++Part) { 3990 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 3991 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 3992 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 3993 3994 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3995 VecOp->copyIRFlags(BinOp); 3996 3997 // Use this vector value for all users of the original instruction. 3998 VectorLoopValueMap.setVectorValue(&I, Part, V); 3999 addMetadata(V, BinOp); 4000 } 4001 4002 break; 4003 } 4004 case Instruction::Select: { 4005 // Widen selects. 4006 // If the selector is loop invariant we can create a select 4007 // instruction with a scalar condition. Otherwise, use vector-select. 4008 auto *SE = PSE.getSE(); 4009 bool InvariantCond = 4010 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4011 setDebugLocFromInst(Builder, &I); 4012 4013 // The condition can be loop invariant but still defined inside the 4014 // loop. This means that we can't just use the original 'cond' value. 4015 // We have to take the 'vectorized' value and pick the first lane. 4016 // Instcombine will make this a no-op. 4017 4018 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4019 4020 for (unsigned Part = 0; Part < UF; ++Part) { 4021 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4022 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4023 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4024 Value *Sel = 4025 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4026 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4027 addMetadata(Sel, &I); 4028 } 4029 4030 break; 4031 } 4032 4033 case Instruction::ICmp: 4034 case Instruction::FCmp: { 4035 // Widen compares. Generate vector compares. 4036 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4037 auto *Cmp = dyn_cast<CmpInst>(&I); 4038 setDebugLocFromInst(Builder, Cmp); 4039 for (unsigned Part = 0; Part < UF; ++Part) { 4040 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4041 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4042 Value *C = nullptr; 4043 if (FCmp) { 4044 // Propagate fast math flags. 4045 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4046 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4047 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4048 } else { 4049 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4050 } 4051 VectorLoopValueMap.setVectorValue(&I, Part, C); 4052 addMetadata(C, &I); 4053 } 4054 4055 break; 4056 } 4057 4058 case Instruction::ZExt: 4059 case Instruction::SExt: 4060 case Instruction::FPToUI: 4061 case Instruction::FPToSI: 4062 case Instruction::FPExt: 4063 case Instruction::PtrToInt: 4064 case Instruction::IntToPtr: 4065 case Instruction::SIToFP: 4066 case Instruction::UIToFP: 4067 case Instruction::Trunc: 4068 case Instruction::FPTrunc: 4069 case Instruction::BitCast: { 4070 auto *CI = dyn_cast<CastInst>(&I); 4071 setDebugLocFromInst(Builder, CI); 4072 4073 /// Vectorize casts. 4074 Type *DestTy = 4075 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4076 4077 for (unsigned Part = 0; Part < UF; ++Part) { 4078 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4079 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4080 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4081 addMetadata(Cast, &I); 4082 } 4083 break; 4084 } 4085 4086 case Instruction::Call: { 4087 // Ignore dbg intrinsics. 4088 if (isa<DbgInfoIntrinsic>(I)) 4089 break; 4090 setDebugLocFromInst(Builder, &I); 4091 4092 Module *M = I.getParent()->getParent()->getParent(); 4093 auto *CI = cast<CallInst>(&I); 4094 4095 StringRef FnName = CI->getCalledFunction()->getName(); 4096 Function *F = CI->getCalledFunction(); 4097 Type *RetTy = ToVectorTy(CI->getType(), VF); 4098 SmallVector<Type *, 4> Tys; 4099 for (Value *ArgOperand : CI->arg_operands()) 4100 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4101 4102 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4103 4104 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4105 // version of the instruction. 4106 // Is it beneficial to perform intrinsic call compared to lib call? 4107 bool NeedToScalarize; 4108 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4109 bool UseVectorIntrinsic = 4110 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4111 assert((UseVectorIntrinsic || !NeedToScalarize) && 4112 "Instruction should be scalarized elsewhere."); 4113 4114 for (unsigned Part = 0; Part < UF; ++Part) { 4115 SmallVector<Value *, 4> Args; 4116 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4117 Value *Arg = CI->getArgOperand(i); 4118 // Some intrinsics have a scalar argument - don't replace it with a 4119 // vector. 4120 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4121 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4122 Args.push_back(Arg); 4123 } 4124 4125 Function *VectorF; 4126 if (UseVectorIntrinsic) { 4127 // Use vector version of the intrinsic. 4128 Type *TysForDecl[] = {CI->getType()}; 4129 if (VF > 1) 4130 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4131 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4132 } else { 4133 // Use vector version of the library call. 4134 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4135 assert(!VFnName.empty() && "Vector function name is empty."); 4136 VectorF = M->getFunction(VFnName); 4137 if (!VectorF) { 4138 // Generate a declaration 4139 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4140 VectorF = 4141 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4142 VectorF->copyAttributesFrom(F); 4143 } 4144 } 4145 assert(VectorF && "Can't create vector function."); 4146 4147 SmallVector<OperandBundleDef, 1> OpBundles; 4148 CI->getOperandBundlesAsDefs(OpBundles); 4149 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4150 4151 if (isa<FPMathOperator>(V)) 4152 V->copyFastMathFlags(CI); 4153 4154 VectorLoopValueMap.setVectorValue(&I, Part, V); 4155 addMetadata(V, &I); 4156 } 4157 4158 break; 4159 } 4160 4161 default: 4162 // This instruction is not vectorized by simple widening. 4163 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4164 llvm_unreachable("Unhandled instruction!"); 4165 } // end of switch. 4166 } 4167 4168 void InnerLoopVectorizer::updateAnalysis() { 4169 // Forget the original basic block. 4170 PSE.getSE()->forgetLoop(OrigLoop); 4171 4172 // Update the dominator tree information. 4173 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4174 "Entry does not dominate exit."); 4175 4176 DT->addNewBlock(LoopMiddleBlock, 4177 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4178 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4179 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4180 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4181 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4182 } 4183 4184 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4185 // We should not collect Scalars more than once per VF. Right now, this 4186 // function is called from collectUniformsAndScalars(), which already does 4187 // this check. Collecting Scalars for VF=1 does not make any sense. 4188 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4189 "This function should not be visited twice for the same VF"); 4190 4191 SmallSetVector<Instruction *, 8> Worklist; 4192 4193 // These sets are used to seed the analysis with pointers used by memory 4194 // accesses that will remain scalar. 4195 SmallSetVector<Instruction *, 8> ScalarPtrs; 4196 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4197 4198 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4199 // The pointer operands of loads and stores will be scalar as long as the 4200 // memory access is not a gather or scatter operation. The value operand of a 4201 // store will remain scalar if the store is scalarized. 4202 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4203 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4204 assert(WideningDecision != CM_Unknown && 4205 "Widening decision should be ready at this moment"); 4206 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4207 if (Ptr == Store->getValueOperand()) 4208 return WideningDecision == CM_Scalarize; 4209 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4210 "Ptr is neither a value or pointer operand"); 4211 return WideningDecision != CM_GatherScatter; 4212 }; 4213 4214 // A helper that returns true if the given value is a bitcast or 4215 // getelementptr instruction contained in the loop. 4216 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4217 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4218 isa<GetElementPtrInst>(V)) && 4219 !TheLoop->isLoopInvariant(V); 4220 }; 4221 4222 // A helper that evaluates a memory access's use of a pointer. If the use 4223 // will be a scalar use, and the pointer is only used by memory accesses, we 4224 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4225 // PossibleNonScalarPtrs. 4226 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4227 // We only care about bitcast and getelementptr instructions contained in 4228 // the loop. 4229 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4230 return; 4231 4232 // If the pointer has already been identified as scalar (e.g., if it was 4233 // also identified as uniform), there's nothing to do. 4234 auto *I = cast<Instruction>(Ptr); 4235 if (Worklist.count(I)) 4236 return; 4237 4238 // If the use of the pointer will be a scalar use, and all users of the 4239 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4240 // place the pointer in PossibleNonScalarPtrs. 4241 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4242 return isa<LoadInst>(U) || isa<StoreInst>(U); 4243 })) 4244 ScalarPtrs.insert(I); 4245 else 4246 PossibleNonScalarPtrs.insert(I); 4247 }; 4248 4249 // We seed the scalars analysis with three classes of instructions: (1) 4250 // instructions marked uniform-after-vectorization, (2) bitcast and 4251 // getelementptr instructions used by memory accesses requiring a scalar use, 4252 // and (3) pointer induction variables and their update instructions (we 4253 // currently only scalarize these). 4254 // 4255 // (1) Add to the worklist all instructions that have been identified as 4256 // uniform-after-vectorization. 4257 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4258 4259 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4260 // memory accesses requiring a scalar use. The pointer operands of loads and 4261 // stores will be scalar as long as the memory accesses is not a gather or 4262 // scatter operation. The value operand of a store will remain scalar if the 4263 // store is scalarized. 4264 for (auto *BB : TheLoop->blocks()) 4265 for (auto &I : *BB) { 4266 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4267 evaluatePtrUse(Load, Load->getPointerOperand()); 4268 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4269 evaluatePtrUse(Store, Store->getPointerOperand()); 4270 evaluatePtrUse(Store, Store->getValueOperand()); 4271 } 4272 } 4273 for (auto *I : ScalarPtrs) 4274 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4275 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4276 Worklist.insert(I); 4277 } 4278 4279 // (3) Add to the worklist all pointer induction variables and their update 4280 // instructions. 4281 // 4282 // TODO: Once we are able to vectorize pointer induction variables we should 4283 // no longer insert them into the worklist here. 4284 auto *Latch = TheLoop->getLoopLatch(); 4285 for (auto &Induction : *Legal->getInductionVars()) { 4286 auto *Ind = Induction.first; 4287 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4288 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4289 continue; 4290 Worklist.insert(Ind); 4291 Worklist.insert(IndUpdate); 4292 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4293 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4294 << "\n"); 4295 } 4296 4297 // Insert the forced scalars. 4298 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4299 // induction variable when the PHI user is scalarized. 4300 auto ForcedScalar = ForcedScalars.find(VF); 4301 if (ForcedScalar != ForcedScalars.end()) 4302 for (auto *I : ForcedScalar->second) 4303 Worklist.insert(I); 4304 4305 // Expand the worklist by looking through any bitcasts and getelementptr 4306 // instructions we've already identified as scalar. This is similar to the 4307 // expansion step in collectLoopUniforms(); however, here we're only 4308 // expanding to include additional bitcasts and getelementptr instructions. 4309 unsigned Idx = 0; 4310 while (Idx != Worklist.size()) { 4311 Instruction *Dst = Worklist[Idx++]; 4312 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4313 continue; 4314 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4315 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4316 auto *J = cast<Instruction>(U); 4317 return !TheLoop->contains(J) || Worklist.count(J) || 4318 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4319 isScalarUse(J, Src)); 4320 })) { 4321 Worklist.insert(Src); 4322 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4323 } 4324 } 4325 4326 // An induction variable will remain scalar if all users of the induction 4327 // variable and induction variable update remain scalar. 4328 for (auto &Induction : *Legal->getInductionVars()) { 4329 auto *Ind = Induction.first; 4330 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4331 4332 // We already considered pointer induction variables, so there's no reason 4333 // to look at their users again. 4334 // 4335 // TODO: Once we are able to vectorize pointer induction variables we 4336 // should no longer skip over them here. 4337 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4338 continue; 4339 4340 // Determine if all users of the induction variable are scalar after 4341 // vectorization. 4342 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4343 auto *I = cast<Instruction>(U); 4344 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4345 }); 4346 if (!ScalarInd) 4347 continue; 4348 4349 // Determine if all users of the induction variable update instruction are 4350 // scalar after vectorization. 4351 auto ScalarIndUpdate = 4352 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4353 auto *I = cast<Instruction>(U); 4354 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4355 }); 4356 if (!ScalarIndUpdate) 4357 continue; 4358 4359 // The induction variable and its update instruction will remain scalar. 4360 Worklist.insert(Ind); 4361 Worklist.insert(IndUpdate); 4362 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4363 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4364 << "\n"); 4365 } 4366 4367 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4368 } 4369 4370 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) { 4371 if (!Legal->blockNeedsPredication(I->getParent())) 4372 return false; 4373 switch(I->getOpcode()) { 4374 default: 4375 break; 4376 case Instruction::Load: 4377 case Instruction::Store: { 4378 if (!Legal->isMaskRequired(I)) 4379 return false; 4380 auto *Ptr = getLoadStorePointerOperand(I); 4381 auto *Ty = getMemInstValueType(I); 4382 return isa<LoadInst>(I) ? 4383 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 4384 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 4385 } 4386 case Instruction::UDiv: 4387 case Instruction::SDiv: 4388 case Instruction::SRem: 4389 case Instruction::URem: 4390 return mayDivideByZero(*I); 4391 } 4392 return false; 4393 } 4394 4395 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4396 unsigned VF) { 4397 // Get and ensure we have a valid memory instruction. 4398 LoadInst *LI = dyn_cast<LoadInst>(I); 4399 StoreInst *SI = dyn_cast<StoreInst>(I); 4400 assert((LI || SI) && "Invalid memory instruction"); 4401 4402 auto *Ptr = getLoadStorePointerOperand(I); 4403 4404 // In order to be widened, the pointer should be consecutive, first of all. 4405 if (!Legal->isConsecutivePtr(Ptr)) 4406 return false; 4407 4408 // If the instruction is a store located in a predicated block, it will be 4409 // scalarized. 4410 if (isScalarWithPredication(I)) 4411 return false; 4412 4413 // If the instruction's allocated size doesn't equal it's type size, it 4414 // requires padding and will be scalarized. 4415 auto &DL = I->getModule()->getDataLayout(); 4416 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4417 if (hasIrregularType(ScalarTy, DL, VF)) 4418 return false; 4419 4420 return true; 4421 } 4422 4423 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4424 // We should not collect Uniforms more than once per VF. Right now, 4425 // this function is called from collectUniformsAndScalars(), which 4426 // already does this check. Collecting Uniforms for VF=1 does not make any 4427 // sense. 4428 4429 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4430 "This function should not be visited twice for the same VF"); 4431 4432 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4433 // not analyze again. Uniforms.count(VF) will return 1. 4434 Uniforms[VF].clear(); 4435 4436 // We now know that the loop is vectorizable! 4437 // Collect instructions inside the loop that will remain uniform after 4438 // vectorization. 4439 4440 // Global values, params and instructions outside of current loop are out of 4441 // scope. 4442 auto isOutOfScope = [&](Value *V) -> bool { 4443 Instruction *I = dyn_cast<Instruction>(V); 4444 return (!I || !TheLoop->contains(I)); 4445 }; 4446 4447 SetVector<Instruction *> Worklist; 4448 BasicBlock *Latch = TheLoop->getLoopLatch(); 4449 4450 // Start with the conditional branch. If the branch condition is an 4451 // instruction contained in the loop that is only used by the branch, it is 4452 // uniform. 4453 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4454 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 4455 Worklist.insert(Cmp); 4456 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4457 } 4458 4459 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4460 // are pointers that are treated like consecutive pointers during 4461 // vectorization. The pointer operands of interleaved accesses are an 4462 // example. 4463 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4464 4465 // Holds pointer operands of instructions that are possibly non-uniform. 4466 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4467 4468 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4469 InstWidening WideningDecision = getWideningDecision(I, VF); 4470 assert(WideningDecision != CM_Unknown && 4471 "Widening decision should be ready at this moment"); 4472 4473 return (WideningDecision == CM_Widen || 4474 WideningDecision == CM_Widen_Reverse || 4475 WideningDecision == CM_Interleave); 4476 }; 4477 // Iterate over the instructions in the loop, and collect all 4478 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4479 // that a consecutive-like pointer operand will be scalarized, we collect it 4480 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4481 // getelementptr instruction can be used by both vectorized and scalarized 4482 // memory instructions. For example, if a loop loads and stores from the same 4483 // location, but the store is conditional, the store will be scalarized, and 4484 // the getelementptr won't remain uniform. 4485 for (auto *BB : TheLoop->blocks()) 4486 for (auto &I : *BB) { 4487 // If there's no pointer operand, there's nothing to do. 4488 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4489 if (!Ptr) 4490 continue; 4491 4492 // True if all users of Ptr are memory accesses that have Ptr as their 4493 // pointer operand. 4494 auto UsersAreMemAccesses = 4495 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4496 return getLoadStorePointerOperand(U) == Ptr; 4497 }); 4498 4499 // Ensure the memory instruction will not be scalarized or used by 4500 // gather/scatter, making its pointer operand non-uniform. If the pointer 4501 // operand is used by any instruction other than a memory access, we 4502 // conservatively assume the pointer operand may be non-uniform. 4503 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4504 PossibleNonUniformPtrs.insert(Ptr); 4505 4506 // If the memory instruction will be vectorized and its pointer operand 4507 // is consecutive-like, or interleaving - the pointer operand should 4508 // remain uniform. 4509 else 4510 ConsecutiveLikePtrs.insert(Ptr); 4511 } 4512 4513 // Add to the Worklist all consecutive and consecutive-like pointers that 4514 // aren't also identified as possibly non-uniform. 4515 for (auto *V : ConsecutiveLikePtrs) 4516 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) { 4517 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 4518 Worklist.insert(V); 4519 } 4520 4521 // Expand Worklist in topological order: whenever a new instruction 4522 // is added , its users should be already inside Worklist. It ensures 4523 // a uniform instruction will only be used by uniform instructions. 4524 unsigned idx = 0; 4525 while (idx != Worklist.size()) { 4526 Instruction *I = Worklist[idx++]; 4527 4528 for (auto OV : I->operand_values()) { 4529 // isOutOfScope operands cannot be uniform instructions. 4530 if (isOutOfScope(OV)) 4531 continue; 4532 // If all the users of the operand are uniform, then add the 4533 // operand into the uniform worklist. 4534 auto *OI = cast<Instruction>(OV); 4535 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4536 auto *J = cast<Instruction>(U); 4537 return Worklist.count(J) || 4538 (OI == getLoadStorePointerOperand(J) && 4539 isUniformDecision(J, VF)); 4540 })) { 4541 Worklist.insert(OI); 4542 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4543 } 4544 } 4545 } 4546 4547 // Returns true if Ptr is the pointer operand of a memory access instruction 4548 // I, and I is known to not require scalarization. 4549 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4550 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4551 }; 4552 4553 // For an instruction to be added into Worklist above, all its users inside 4554 // the loop should also be in Worklist. However, this condition cannot be 4555 // true for phi nodes that form a cyclic dependence. We must process phi 4556 // nodes separately. An induction variable will remain uniform if all users 4557 // of the induction variable and induction variable update remain uniform. 4558 // The code below handles both pointer and non-pointer induction variables. 4559 for (auto &Induction : *Legal->getInductionVars()) { 4560 auto *Ind = Induction.first; 4561 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4562 4563 // Determine if all users of the induction variable are uniform after 4564 // vectorization. 4565 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4566 auto *I = cast<Instruction>(U); 4567 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4568 isVectorizedMemAccessUse(I, Ind); 4569 }); 4570 if (!UniformInd) 4571 continue; 4572 4573 // Determine if all users of the induction variable update instruction are 4574 // uniform after vectorization. 4575 auto UniformIndUpdate = 4576 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4577 auto *I = cast<Instruction>(U); 4578 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4579 isVectorizedMemAccessUse(I, IndUpdate); 4580 }); 4581 if (!UniformIndUpdate) 4582 continue; 4583 4584 // The induction variable and its update instruction will remain uniform. 4585 Worklist.insert(Ind); 4586 Worklist.insert(IndUpdate); 4587 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 4588 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate 4589 << "\n"); 4590 } 4591 4592 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4593 } 4594 4595 void InterleavedAccessInfo::collectConstStrideAccesses( 4596 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 4597 const ValueToValueMap &Strides) { 4598 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 4599 4600 // Since it's desired that the load/store instructions be maintained in 4601 // "program order" for the interleaved access analysis, we have to visit the 4602 // blocks in the loop in reverse postorder (i.e., in a topological order). 4603 // Such an ordering will ensure that any load/store that may be executed 4604 // before a second load/store will precede the second load/store in 4605 // AccessStrideInfo. 4606 LoopBlocksDFS DFS(TheLoop); 4607 DFS.perform(LI); 4608 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 4609 for (auto &I : *BB) { 4610 auto *LI = dyn_cast<LoadInst>(&I); 4611 auto *SI = dyn_cast<StoreInst>(&I); 4612 if (!LI && !SI) 4613 continue; 4614 4615 Value *Ptr = getLoadStorePointerOperand(&I); 4616 // We don't check wrapping here because we don't know yet if Ptr will be 4617 // part of a full group or a group with gaps. Checking wrapping for all 4618 // pointers (even those that end up in groups with no gaps) will be overly 4619 // conservative. For full groups, wrapping should be ok since if we would 4620 // wrap around the address space we would do a memory access at nullptr 4621 // even without the transformation. The wrapping checks are therefore 4622 // deferred until after we've formed the interleaved groups. 4623 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 4624 /*Assume=*/true, /*ShouldCheckWrap=*/false); 4625 4626 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 4627 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4628 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 4629 4630 // An alignment of 0 means target ABI alignment. 4631 unsigned Align = getMemInstAlignment(&I); 4632 if (!Align) 4633 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 4634 4635 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 4636 } 4637 } 4638 4639 // Analyze interleaved accesses and collect them into interleaved load and 4640 // store groups. 4641 // 4642 // When generating code for an interleaved load group, we effectively hoist all 4643 // loads in the group to the location of the first load in program order. When 4644 // generating code for an interleaved store group, we sink all stores to the 4645 // location of the last store. This code motion can change the order of load 4646 // and store instructions and may break dependences. 4647 // 4648 // The code generation strategy mentioned above ensures that we won't violate 4649 // any write-after-read (WAR) dependences. 4650 // 4651 // E.g., for the WAR dependence: a = A[i]; // (1) 4652 // A[i] = b; // (2) 4653 // 4654 // The store group of (2) is always inserted at or below (2), and the load 4655 // group of (1) is always inserted at or above (1). Thus, the instructions will 4656 // never be reordered. All other dependences are checked to ensure the 4657 // correctness of the instruction reordering. 4658 // 4659 // The algorithm visits all memory accesses in the loop in bottom-up program 4660 // order. Program order is established by traversing the blocks in the loop in 4661 // reverse postorder when collecting the accesses. 4662 // 4663 // We visit the memory accesses in bottom-up order because it can simplify the 4664 // construction of store groups in the presence of write-after-write (WAW) 4665 // dependences. 4666 // 4667 // E.g., for the WAW dependence: A[i] = a; // (1) 4668 // A[i] = b; // (2) 4669 // A[i + 1] = c; // (3) 4670 // 4671 // We will first create a store group with (3) and (2). (1) can't be added to 4672 // this group because it and (2) are dependent. However, (1) can be grouped 4673 // with other accesses that may precede it in program order. Note that a 4674 // bottom-up order does not imply that WAW dependences should not be checked. 4675 void InterleavedAccessInfo::analyzeInterleaving() { 4676 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 4677 const ValueToValueMap &Strides = LAI->getSymbolicStrides(); 4678 4679 // Holds all accesses with a constant stride. 4680 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 4681 collectConstStrideAccesses(AccessStrideInfo, Strides); 4682 4683 if (AccessStrideInfo.empty()) 4684 return; 4685 4686 // Collect the dependences in the loop. 4687 collectDependences(); 4688 4689 // Holds all interleaved store groups temporarily. 4690 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 4691 // Holds all interleaved load groups temporarily. 4692 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 4693 4694 // Search in bottom-up program order for pairs of accesses (A and B) that can 4695 // form interleaved load or store groups. In the algorithm below, access A 4696 // precedes access B in program order. We initialize a group for B in the 4697 // outer loop of the algorithm, and then in the inner loop, we attempt to 4698 // insert each A into B's group if: 4699 // 4700 // 1. A and B have the same stride, 4701 // 2. A and B have the same memory object size, and 4702 // 3. A belongs in B's group according to its distance from B. 4703 // 4704 // Special care is taken to ensure group formation will not break any 4705 // dependences. 4706 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 4707 BI != E; ++BI) { 4708 Instruction *B = BI->first; 4709 StrideDescriptor DesB = BI->second; 4710 4711 // Initialize a group for B if it has an allowable stride. Even if we don't 4712 // create a group for B, we continue with the bottom-up algorithm to ensure 4713 // we don't break any of B's dependences. 4714 InterleaveGroup *Group = nullptr; 4715 if (isStrided(DesB.Stride)) { 4716 Group = getInterleaveGroup(B); 4717 if (!Group) { 4718 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 4719 << '\n'); 4720 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 4721 } 4722 if (B->mayWriteToMemory()) 4723 StoreGroups.insert(Group); 4724 else 4725 LoadGroups.insert(Group); 4726 } 4727 4728 for (auto AI = std::next(BI); AI != E; ++AI) { 4729 Instruction *A = AI->first; 4730 StrideDescriptor DesA = AI->second; 4731 4732 // Our code motion strategy implies that we can't have dependences 4733 // between accesses in an interleaved group and other accesses located 4734 // between the first and last member of the group. Note that this also 4735 // means that a group can't have more than one member at a given offset. 4736 // The accesses in a group can have dependences with other accesses, but 4737 // we must ensure we don't extend the boundaries of the group such that 4738 // we encompass those dependent accesses. 4739 // 4740 // For example, assume we have the sequence of accesses shown below in a 4741 // stride-2 loop: 4742 // 4743 // (1, 2) is a group | A[i] = a; // (1) 4744 // | A[i-1] = b; // (2) | 4745 // A[i-3] = c; // (3) 4746 // A[i] = d; // (4) | (2, 4) is not a group 4747 // 4748 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 4749 // but not with (4). If we did, the dependent access (3) would be within 4750 // the boundaries of the (2, 4) group. 4751 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 4752 // If a dependence exists and A is already in a group, we know that A 4753 // must be a store since A precedes B and WAR dependences are allowed. 4754 // Thus, A would be sunk below B. We release A's group to prevent this 4755 // illegal code motion. A will then be free to form another group with 4756 // instructions that precede it. 4757 if (isInterleaved(A)) { 4758 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 4759 StoreGroups.remove(StoreGroup); 4760 releaseGroup(StoreGroup); 4761 } 4762 4763 // If a dependence exists and A is not already in a group (or it was 4764 // and we just released it), B might be hoisted above A (if B is a 4765 // load) or another store might be sunk below A (if B is a store). In 4766 // either case, we can't add additional instructions to B's group. B 4767 // will only form a group with instructions that it precedes. 4768 break; 4769 } 4770 4771 // At this point, we've checked for illegal code motion. If either A or B 4772 // isn't strided, there's nothing left to do. 4773 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 4774 continue; 4775 4776 // Ignore A if it's already in a group or isn't the same kind of memory 4777 // operation as B. 4778 // Note that mayReadFromMemory() isn't mutually exclusive to mayWriteToMemory 4779 // in the case of atomic loads. We shouldn't see those here, canVectorizeMemory() 4780 // should have returned false - except for the case we asked for optimization 4781 // remarks. 4782 if (isInterleaved(A) || (A->mayReadFromMemory() != B->mayReadFromMemory()) 4783 || (A->mayWriteToMemory() != B->mayWriteToMemory())) 4784 continue; 4785 4786 // Check rules 1 and 2. Ignore A if its stride or size is different from 4787 // that of B. 4788 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 4789 continue; 4790 4791 // Ignore A if the memory object of A and B don't belong to the same 4792 // address space 4793 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 4794 continue; 4795 4796 // Calculate the distance from A to B. 4797 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 4798 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 4799 if (!DistToB) 4800 continue; 4801 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 4802 4803 // Check rule 3. Ignore A if its distance to B is not a multiple of the 4804 // size. 4805 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 4806 continue; 4807 4808 // Ignore A if either A or B is in a predicated block. Although we 4809 // currently prevent group formation for predicated accesses, we may be 4810 // able to relax this limitation in the future once we handle more 4811 // complicated blocks. 4812 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 4813 continue; 4814 4815 // The index of A is the index of B plus A's distance to B in multiples 4816 // of the size. 4817 int IndexA = 4818 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 4819 4820 // Try to insert A into B's group. 4821 if (Group->insertMember(A, IndexA, DesA.Align)) { 4822 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 4823 << " into the interleave group with" << *B 4824 << '\n'); 4825 InterleaveGroupMap[A] = Group; 4826 4827 // Set the first load in program order as the insert position. 4828 if (A->mayReadFromMemory()) 4829 Group->setInsertPos(A); 4830 } 4831 } // Iteration over A accesses. 4832 } // Iteration over B accesses. 4833 4834 // Remove interleaved store groups with gaps. 4835 for (InterleaveGroup *Group : StoreGroups) 4836 if (Group->getNumMembers() != Group->getFactor()) { 4837 LLVM_DEBUG( 4838 dbgs() << "LV: Invalidate candidate interleaved store group due " 4839 "to gaps.\n"); 4840 releaseGroup(Group); 4841 } 4842 // Remove interleaved groups with gaps (currently only loads) whose memory 4843 // accesses may wrap around. We have to revisit the getPtrStride analysis, 4844 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 4845 // not check wrapping (see documentation there). 4846 // FORNOW we use Assume=false; 4847 // TODO: Change to Assume=true but making sure we don't exceed the threshold 4848 // of runtime SCEV assumptions checks (thereby potentially failing to 4849 // vectorize altogether). 4850 // Additional optional optimizations: 4851 // TODO: If we are peeling the loop and we know that the first pointer doesn't 4852 // wrap then we can deduce that all pointers in the group don't wrap. 4853 // This means that we can forcefully peel the loop in order to only have to 4854 // check the first pointer for no-wrap. When we'll change to use Assume=true 4855 // we'll only need at most one runtime check per interleaved group. 4856 for (InterleaveGroup *Group : LoadGroups) { 4857 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 4858 // load would wrap around the address space we would do a memory access at 4859 // nullptr even without the transformation. 4860 if (Group->getNumMembers() == Group->getFactor()) 4861 continue; 4862 4863 // Case 2: If first and last members of the group don't wrap this implies 4864 // that all the pointers in the group don't wrap. 4865 // So we check only group member 0 (which is always guaranteed to exist), 4866 // and group member Factor - 1; If the latter doesn't exist we rely on 4867 // peeling (if it is a non-reveresed accsess -- see Case 3). 4868 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); 4869 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 4870 /*ShouldCheckWrap=*/true)) { 4871 LLVM_DEBUG( 4872 dbgs() << "LV: Invalidate candidate interleaved group due to " 4873 "first group member potentially pointer-wrapping.\n"); 4874 releaseGroup(Group); 4875 continue; 4876 } 4877 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 4878 if (LastMember) { 4879 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); 4880 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 4881 /*ShouldCheckWrap=*/true)) { 4882 LLVM_DEBUG( 4883 dbgs() << "LV: Invalidate candidate interleaved group due to " 4884 "last group member potentially pointer-wrapping.\n"); 4885 releaseGroup(Group); 4886 } 4887 } else { 4888 // Case 3: A non-reversed interleaved load group with gaps: We need 4889 // to execute at least one scalar epilogue iteration. This will ensure 4890 // we don't speculatively access memory out-of-bounds. We only need 4891 // to look for a member at index factor - 1, since every group must have 4892 // a member at index zero. 4893 if (Group->isReverse()) { 4894 LLVM_DEBUG( 4895 dbgs() << "LV: Invalidate candidate interleaved group due to " 4896 "a reverse access with gaps.\n"); 4897 releaseGroup(Group); 4898 continue; 4899 } 4900 LLVM_DEBUG( 4901 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 4902 RequiresScalarEpilogue = true; 4903 } 4904 } 4905 } 4906 4907 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 4908 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4909 // TODO: It may by useful to do since it's still likely to be dynamically 4910 // uniform if the target can skip. 4911 LLVM_DEBUG( 4912 dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 4913 4914 ORE->emit( 4915 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 4916 << "runtime pointer checks needed. Not enabled for divergent target"); 4917 4918 return None; 4919 } 4920 4921 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4922 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 4923 return computeFeasibleMaxVF(OptForSize, TC); 4924 4925 if (Legal->getRuntimePointerChecking()->Need) { 4926 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4927 << "runtime pointer checks needed. Enable vectorization of this " 4928 "loop with '#pragma clang loop vectorize(enable)' when " 4929 "compiling with -Os/-Oz"); 4930 LLVM_DEBUG( 4931 dbgs() 4932 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4933 return None; 4934 } 4935 4936 // If we optimize the program for size, avoid creating the tail loop. 4937 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4938 4939 // If we don't know the precise trip count, don't try to vectorize. 4940 if (TC < 2) { 4941 ORE->emit( 4942 createMissedAnalysis("UnknownLoopCountComplexCFG") 4943 << "unable to calculate the loop count due to complex control flow"); 4944 LLVM_DEBUG( 4945 dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 4946 return None; 4947 } 4948 4949 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 4950 4951 if (TC % MaxVF != 0) { 4952 // If the trip count that we found modulo the vectorization factor is not 4953 // zero then we require a tail. 4954 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 4955 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 4956 // smaller MaxVF that does not require a scalar epilog. 4957 4958 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 4959 << "cannot optimize for size and vectorize at the " 4960 "same time. Enable vectorization of this loop " 4961 "with '#pragma clang loop vectorize(enable)' " 4962 "when compiling with -Os/-Oz"); 4963 LLVM_DEBUG( 4964 dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 4965 return None; 4966 } 4967 4968 return MaxVF; 4969 } 4970 4971 unsigned 4972 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 4973 unsigned ConstTripCount) { 4974 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4975 unsigned SmallestType, WidestType; 4976 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4977 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4978 4979 // Get the maximum safe dependence distance in bits computed by LAA. 4980 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4981 // the memory accesses that is most restrictive (involved in the smallest 4982 // dependence distance). 4983 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4984 4985 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4986 4987 unsigned MaxVectorSize = WidestRegister / WidestType; 4988 4989 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4990 << " / " << WidestType << " bits.\n"); 4991 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4992 << WidestRegister << " bits.\n"); 4993 4994 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4995 " into one vector!"); 4996 if (MaxVectorSize == 0) { 4997 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4998 MaxVectorSize = 1; 4999 return MaxVectorSize; 5000 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5001 isPowerOf2_32(ConstTripCount)) { 5002 // We need to clamp the VF to be the ConstTripCount. There is no point in 5003 // choosing a higher viable VF as done in the loop below. 5004 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5005 << ConstTripCount << "\n"); 5006 MaxVectorSize = ConstTripCount; 5007 return MaxVectorSize; 5008 } 5009 5010 unsigned MaxVF = MaxVectorSize; 5011 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) || 5012 (MaximizeBandwidth && !OptForSize)) { 5013 // Collect all viable vectorization factors larger than the default MaxVF 5014 // (i.e. MaxVectorSize). 5015 SmallVector<unsigned, 8> VFs; 5016 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5017 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5018 VFs.push_back(VS); 5019 5020 // For each VF calculate its register usage. 5021 auto RUs = calculateRegisterUsage(VFs); 5022 5023 // Select the largest VF which doesn't require more registers than existing 5024 // ones. 5025 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 5026 for (int i = RUs.size() - 1; i >= 0; --i) { 5027 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 5028 MaxVF = VFs[i]; 5029 break; 5030 } 5031 } 5032 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5033 if (MaxVF < MinVF) { 5034 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5035 << ") with target's minimum: " << MinVF << '\n'); 5036 MaxVF = MinVF; 5037 } 5038 } 5039 } 5040 return MaxVF; 5041 } 5042 5043 VectorizationFactor 5044 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5045 float Cost = expectedCost(1).first; 5046 const float ScalarCost = Cost; 5047 unsigned Width = 1; 5048 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5049 5050 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5051 if (ForceVectorization && MaxVF > 1) { 5052 // Ignore scalar width, because the user explicitly wants vectorization. 5053 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5054 // evaluation. 5055 Cost = std::numeric_limits<float>::max(); 5056 } 5057 5058 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5059 // Notice that the vector loop needs to be executed less times, so 5060 // we need to divide the cost of the vector loops by the width of 5061 // the vector elements. 5062 VectorizationCostTy C = expectedCost(i); 5063 float VectorCost = C.first / (float)i; 5064 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5065 << " costs: " << (int)VectorCost << ".\n"); 5066 if (!C.second && !ForceVectorization) { 5067 LLVM_DEBUG( 5068 dbgs() << "LV: Not considering vector loop of width " << i 5069 << " because it will not generate any vector instructions.\n"); 5070 continue; 5071 } 5072 if (VectorCost < Cost) { 5073 Cost = VectorCost; 5074 Width = i; 5075 } 5076 } 5077 5078 if (!EnableCondStoresVectorization && NumPredStores) { 5079 ORE->emit(createMissedAnalysis("ConditionalStore") 5080 << "store that is conditionally executed prevents vectorization"); 5081 LLVM_DEBUG( 5082 dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5083 Width = 1; 5084 Cost = ScalarCost; 5085 } 5086 5087 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5088 << "LV: Vectorization seems to be not beneficial, " 5089 << "but was forced by a user.\n"); 5090 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5091 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5092 return Factor; 5093 } 5094 5095 std::pair<unsigned, unsigned> 5096 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5097 unsigned MinWidth = -1U; 5098 unsigned MaxWidth = 8; 5099 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5100 5101 // For each block. 5102 for (BasicBlock *BB : TheLoop->blocks()) { 5103 // For each instruction in the loop. 5104 for (Instruction &I : *BB) { 5105 Type *T = I.getType(); 5106 5107 // Skip ignored values. 5108 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 5109 continue; 5110 5111 // Only examine Loads, Stores and PHINodes. 5112 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5113 continue; 5114 5115 // Examine PHI nodes that are reduction variables. Update the type to 5116 // account for the recurrence type. 5117 if (auto *PN = dyn_cast<PHINode>(&I)) { 5118 if (!Legal->isReductionVariable(PN)) 5119 continue; 5120 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5121 T = RdxDesc.getRecurrenceType(); 5122 } 5123 5124 // Examine the stored values. 5125 if (auto *ST = dyn_cast<StoreInst>(&I)) 5126 T = ST->getValueOperand()->getType(); 5127 5128 // Ignore loaded pointer types and stored pointer types that are not 5129 // vectorizable. 5130 // 5131 // FIXME: The check here attempts to predict whether a load or store will 5132 // be vectorized. We only know this for certain after a VF has 5133 // been selected. Here, we assume that if an access can be 5134 // vectorized, it will be. We should also look at extending this 5135 // optimization to non-pointer types. 5136 // 5137 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5138 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5139 continue; 5140 5141 MinWidth = std::min(MinWidth, 5142 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5143 MaxWidth = std::max(MaxWidth, 5144 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5145 } 5146 } 5147 5148 return {MinWidth, MaxWidth}; 5149 } 5150 5151 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 5152 unsigned VF, 5153 unsigned LoopCost) { 5154 // -- The interleave heuristics -- 5155 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5156 // There are many micro-architectural considerations that we can't predict 5157 // at this level. For example, frontend pressure (on decode or fetch) due to 5158 // code size, or the number and capabilities of the execution ports. 5159 // 5160 // We use the following heuristics to select the interleave count: 5161 // 1. If the code has reductions, then we interleave to break the cross 5162 // iteration dependency. 5163 // 2. If the loop is really small, then we interleave to reduce the loop 5164 // overhead. 5165 // 3. We don't interleave if we think that we will spill registers to memory 5166 // due to the increased register pressure. 5167 5168 // When we optimize for size, we don't interleave. 5169 if (OptForSize) 5170 return 1; 5171 5172 // We used the distance for the interleave count. 5173 if (Legal->getMaxSafeDepDistBytes() != -1U) 5174 return 1; 5175 5176 // Do not interleave loops with a relatively small trip count. 5177 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5178 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 5179 return 1; 5180 5181 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5182 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5183 << " registers\n"); 5184 5185 if (VF == 1) { 5186 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5187 TargetNumRegisters = ForceTargetNumScalarRegs; 5188 } else { 5189 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5190 TargetNumRegisters = ForceTargetNumVectorRegs; 5191 } 5192 5193 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5194 // We divide by these constants so assume that we have at least one 5195 // instruction that uses at least one register. 5196 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5197 5198 // We calculate the interleave count using the following formula. 5199 // Subtract the number of loop invariants from the number of available 5200 // registers. These registers are used by all of the interleaved instances. 5201 // Next, divide the remaining registers by the number of registers that is 5202 // required by the loop, in order to estimate how many parallel instances 5203 // fit without causing spills. All of this is rounded down if necessary to be 5204 // a power of two. We want power of two interleave count to simplify any 5205 // addressing operations or alignment considerations. 5206 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5207 R.MaxLocalUsers); 5208 5209 // Don't count the induction variable as interleaved. 5210 if (EnableIndVarRegisterHeur) 5211 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5212 std::max(1U, (R.MaxLocalUsers - 1))); 5213 5214 // Clamp the interleave ranges to reasonable counts. 5215 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5216 5217 // Check if the user has overridden the max. 5218 if (VF == 1) { 5219 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5220 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5221 } else { 5222 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5223 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5224 } 5225 5226 // If we did not calculate the cost for VF (because the user selected the VF) 5227 // then we calculate the cost of VF here. 5228 if (LoopCost == 0) 5229 LoopCost = expectedCost(VF).first; 5230 5231 // Clamp the calculated IC to be between the 1 and the max interleave count 5232 // that the target allows. 5233 if (IC > MaxInterleaveCount) 5234 IC = MaxInterleaveCount; 5235 else if (IC < 1) 5236 IC = 1; 5237 5238 // Interleave if we vectorized this loop and there is a reduction that could 5239 // benefit from interleaving. 5240 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5241 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5242 return IC; 5243 } 5244 5245 // Note that if we've already vectorized the loop we will have done the 5246 // runtime check and so interleaving won't require further checks. 5247 bool InterleavingRequiresRuntimePointerCheck = 5248 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5249 5250 // We want to interleave small loops in order to reduce the loop overhead and 5251 // potentially expose ILP opportunities. 5252 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5253 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5254 // We assume that the cost overhead is 1 and we use the cost model 5255 // to estimate the cost of the loop and interleave until the cost of the 5256 // loop overhead is about 5% of the cost of the loop. 5257 unsigned SmallIC = 5258 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5259 5260 // Interleave until store/load ports (estimated by max interleave count) are 5261 // saturated. 5262 unsigned NumStores = Legal->getNumStores(); 5263 unsigned NumLoads = Legal->getNumLoads(); 5264 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5265 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5266 5267 // If we have a scalar reduction (vector reductions are already dealt with 5268 // by this point), we can increase the critical path length if the loop 5269 // we're interleaving is inside another loop. Limit, by default to 2, so the 5270 // critical path only gets increased by one reduction operation. 5271 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5272 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5273 SmallIC = std::min(SmallIC, F); 5274 StoresIC = std::min(StoresIC, F); 5275 LoadsIC = std::min(LoadsIC, F); 5276 } 5277 5278 if (EnableLoadStoreRuntimeInterleave && 5279 std::max(StoresIC, LoadsIC) > SmallIC) { 5280 LLVM_DEBUG( 5281 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5282 return std::max(StoresIC, LoadsIC); 5283 } 5284 5285 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5286 return SmallIC; 5287 } 5288 5289 // Interleave if this is a large loop (small loops are already dealt with by 5290 // this point) that could benefit from interleaving. 5291 bool HasReductions = !Legal->getReductionVars()->empty(); 5292 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5293 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5294 return IC; 5295 } 5296 5297 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5298 return 1; 5299 } 5300 5301 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5302 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5303 // This function calculates the register usage by measuring the highest number 5304 // of values that are alive at a single location. Obviously, this is a very 5305 // rough estimation. We scan the loop in a topological order in order and 5306 // assign a number to each instruction. We use RPO to ensure that defs are 5307 // met before their users. We assume that each instruction that has in-loop 5308 // users starts an interval. We record every time that an in-loop value is 5309 // used, so we have a list of the first and last occurrences of each 5310 // instruction. Next, we transpose this data structure into a multi map that 5311 // holds the list of intervals that *end* at a specific location. This multi 5312 // map allows us to perform a linear search. We scan the instructions linearly 5313 // and record each time that a new interval starts, by placing it in a set. 5314 // If we find this value in the multi-map then we remove it from the set. 5315 // The max register usage is the maximum size of the set. 5316 // We also search for instructions that are defined outside the loop, but are 5317 // used inside the loop. We need this number separately from the max-interval 5318 // usage number because when we unroll, loop-invariant values do not take 5319 // more register. 5320 LoopBlocksDFS DFS(TheLoop); 5321 DFS.perform(LI); 5322 5323 RegisterUsage RU; 5324 5325 // Each 'key' in the map opens a new interval. The values 5326 // of the map are the index of the 'last seen' usage of the 5327 // instruction that is the key. 5328 using IntervalMap = DenseMap<Instruction *, unsigned>; 5329 5330 // Maps instruction to its index. 5331 DenseMap<unsigned, Instruction *> IdxToInstr; 5332 // Marks the end of each interval. 5333 IntervalMap EndPoint; 5334 // Saves the list of instruction indices that are used in the loop. 5335 SmallPtrSet<Instruction *, 8> Ends; 5336 // Saves the list of values that are used in the loop but are 5337 // defined outside the loop, such as arguments and constants. 5338 SmallPtrSet<Value *, 8> LoopInvariants; 5339 5340 unsigned Index = 0; 5341 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5342 for (Instruction &I : *BB) { 5343 IdxToInstr[Index++] = &I; 5344 5345 // Save the end location of each USE. 5346 for (Value *U : I.operands()) { 5347 auto *Instr = dyn_cast<Instruction>(U); 5348 5349 // Ignore non-instruction values such as arguments, constants, etc. 5350 if (!Instr) 5351 continue; 5352 5353 // If this instruction is outside the loop then record it and continue. 5354 if (!TheLoop->contains(Instr)) { 5355 LoopInvariants.insert(Instr); 5356 continue; 5357 } 5358 5359 // Overwrite previous end points. 5360 EndPoint[Instr] = Index; 5361 Ends.insert(Instr); 5362 } 5363 } 5364 } 5365 5366 // Saves the list of intervals that end with the index in 'key'. 5367 using InstrList = SmallVector<Instruction *, 2>; 5368 DenseMap<unsigned, InstrList> TransposeEnds; 5369 5370 // Transpose the EndPoints to a list of values that end at each index. 5371 for (auto &Interval : EndPoint) 5372 TransposeEnds[Interval.second].push_back(Interval.first); 5373 5374 SmallPtrSet<Instruction *, 8> OpenIntervals; 5375 5376 // Get the size of the widest register. 5377 unsigned MaxSafeDepDist = -1U; 5378 if (Legal->getMaxSafeDepDistBytes() != -1U) 5379 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5380 unsigned WidestRegister = 5381 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5382 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5383 5384 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5385 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5386 5387 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5388 5389 // A lambda that gets the register usage for the given type and VF. 5390 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5391 if (Ty->isTokenTy()) 5392 return 0U; 5393 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5394 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5395 }; 5396 5397 for (unsigned int i = 0; i < Index; ++i) { 5398 Instruction *I = IdxToInstr[i]; 5399 5400 // Remove all of the instructions that end at this location. 5401 InstrList &List = TransposeEnds[i]; 5402 for (Instruction *ToRemove : List) 5403 OpenIntervals.erase(ToRemove); 5404 5405 // Ignore instructions that are never used within the loop. 5406 if (Ends.find(I) == Ends.end()) 5407 continue; 5408 5409 // Skip ignored values. 5410 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5411 continue; 5412 5413 // For each VF find the maximum usage of registers. 5414 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5415 if (VFs[j] == 1) { 5416 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5417 continue; 5418 } 5419 collectUniformsAndScalars(VFs[j]); 5420 // Count the number of live intervals. 5421 unsigned RegUsage = 0; 5422 for (auto Inst : OpenIntervals) { 5423 // Skip ignored values for VF > 1. 5424 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end() || 5425 isScalarAfterVectorization(Inst, VFs[j])) 5426 continue; 5427 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5428 } 5429 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5430 } 5431 5432 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5433 << OpenIntervals.size() << '\n'); 5434 5435 // Add the current instruction to the list of open intervals. 5436 OpenIntervals.insert(I); 5437 } 5438 5439 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5440 unsigned Invariant = 0; 5441 if (VFs[i] == 1) 5442 Invariant = LoopInvariants.size(); 5443 else { 5444 for (auto Inst : LoopInvariants) 5445 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5446 } 5447 5448 LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5449 LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5450 LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant 5451 << '\n'); 5452 5453 RU.LoopInvariantRegs = Invariant; 5454 RU.MaxLocalUsers = MaxUsages[i]; 5455 RUs[i] = RU; 5456 } 5457 5458 return RUs; 5459 } 5460 5461 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5462 // TODO: Cost model for emulated masked load/store is completely 5463 // broken. This hack guides the cost model to use an artificially 5464 // high enough value to practically disable vectorization with such 5465 // operations, except where previously deployed legality hack allowed 5466 // using very low cost values. This is to avoid regressions coming simply 5467 // from moving "masked load/store" check from legality to cost model. 5468 // Masked Load/Gather emulation was previously never allowed. 5469 // Limited number of Masked Store/Scatter emulation was allowed. 5470 assert(isScalarWithPredication(I) && 5471 "Expecting a scalar emulated instruction"); 5472 return isa<LoadInst>(I) || 5473 (isa<StoreInst>(I) && 5474 NumPredStores > NumberOfStoresToPredicate); 5475 } 5476 5477 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5478 // If we aren't vectorizing the loop, or if we've already collected the 5479 // instructions to scalarize, there's nothing to do. Collection may already 5480 // have occurred if we have a user-selected VF and are now computing the 5481 // expected cost for interleaving. 5482 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5483 return; 5484 5485 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5486 // not profitable to scalarize any instructions, the presence of VF in the 5487 // map will indicate that we've analyzed it already. 5488 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5489 5490 // Find all the instructions that are scalar with predication in the loop and 5491 // determine if it would be better to not if-convert the blocks they are in. 5492 // If so, we also record the instructions to scalarize. 5493 for (BasicBlock *BB : TheLoop->blocks()) { 5494 if (!Legal->blockNeedsPredication(BB)) 5495 continue; 5496 for (Instruction &I : *BB) 5497 if (isScalarWithPredication(&I)) { 5498 ScalarCostsTy ScalarCosts; 5499 // Do not apply discount logic if hacked cost is needed 5500 // for emulated masked memrefs. 5501 if (!useEmulatedMaskMemRefHack(&I) && 5502 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5503 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5504 // Remember that BB will remain after vectorization. 5505 PredicatedBBsAfterVectorization.insert(BB); 5506 } 5507 } 5508 } 5509 5510 int LoopVectorizationCostModel::computePredInstDiscount( 5511 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5512 unsigned VF) { 5513 assert(!isUniformAfterVectorization(PredInst, VF) && 5514 "Instruction marked uniform-after-vectorization will be predicated"); 5515 5516 // Initialize the discount to zero, meaning that the scalar version and the 5517 // vector version cost the same. 5518 int Discount = 0; 5519 5520 // Holds instructions to analyze. The instructions we visit are mapped in 5521 // ScalarCosts. Those instructions are the ones that would be scalarized if 5522 // we find that the scalar version costs less. 5523 SmallVector<Instruction *, 8> Worklist; 5524 5525 // Returns true if the given instruction can be scalarized. 5526 auto canBeScalarized = [&](Instruction *I) -> bool { 5527 // We only attempt to scalarize instructions forming a single-use chain 5528 // from the original predicated block that would otherwise be vectorized. 5529 // Although not strictly necessary, we give up on instructions we know will 5530 // already be scalar to avoid traversing chains that are unlikely to be 5531 // beneficial. 5532 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5533 isScalarAfterVectorization(I, VF)) 5534 return false; 5535 5536 // If the instruction is scalar with predication, it will be analyzed 5537 // separately. We ignore it within the context of PredInst. 5538 if (isScalarWithPredication(I)) 5539 return false; 5540 5541 // If any of the instruction's operands are uniform after vectorization, 5542 // the instruction cannot be scalarized. This prevents, for example, a 5543 // masked load from being scalarized. 5544 // 5545 // We assume we will only emit a value for lane zero of an instruction 5546 // marked uniform after vectorization, rather than VF identical values. 5547 // Thus, if we scalarize an instruction that uses a uniform, we would 5548 // create uses of values corresponding to the lanes we aren't emitting code 5549 // for. This behavior can be changed by allowing getScalarValue to clone 5550 // the lane zero values for uniforms rather than asserting. 5551 for (Use &U : I->operands()) 5552 if (auto *J = dyn_cast<Instruction>(U.get())) 5553 if (isUniformAfterVectorization(J, VF)) 5554 return false; 5555 5556 // Otherwise, we can scalarize the instruction. 5557 return true; 5558 }; 5559 5560 // Returns true if an operand that cannot be scalarized must be extracted 5561 // from a vector. We will account for this scalarization overhead below. Note 5562 // that the non-void predicated instructions are placed in their own blocks, 5563 // and their return values are inserted into vectors. Thus, an extract would 5564 // still be required. 5565 auto needsExtract = [&](Instruction *I) -> bool { 5566 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 5567 }; 5568 5569 // Compute the expected cost discount from scalarizing the entire expression 5570 // feeding the predicated instruction. We currently only consider expressions 5571 // that are single-use instruction chains. 5572 Worklist.push_back(PredInst); 5573 while (!Worklist.empty()) { 5574 Instruction *I = Worklist.pop_back_val(); 5575 5576 // If we've already analyzed the instruction, there's nothing to do. 5577 if (ScalarCosts.find(I) != ScalarCosts.end()) 5578 continue; 5579 5580 // Compute the cost of the vector instruction. Note that this cost already 5581 // includes the scalarization overhead of the predicated instruction. 5582 unsigned VectorCost = getInstructionCost(I, VF).first; 5583 5584 // Compute the cost of the scalarized instruction. This cost is the cost of 5585 // the instruction as if it wasn't if-converted and instead remained in the 5586 // predicated block. We will scale this cost by block probability after 5587 // computing the scalarization overhead. 5588 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5589 5590 // Compute the scalarization overhead of needed insertelement instructions 5591 // and phi nodes. 5592 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5593 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5594 true, false); 5595 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5596 } 5597 5598 // Compute the scalarization overhead of needed extractelement 5599 // instructions. For each of the instruction's operands, if the operand can 5600 // be scalarized, add it to the worklist; otherwise, account for the 5601 // overhead. 5602 for (Use &U : I->operands()) 5603 if (auto *J = dyn_cast<Instruction>(U.get())) { 5604 assert(VectorType::isValidElementType(J->getType()) && 5605 "Instruction has non-scalar type"); 5606 if (canBeScalarized(J)) 5607 Worklist.push_back(J); 5608 else if (needsExtract(J)) 5609 ScalarCost += TTI.getScalarizationOverhead( 5610 ToVectorTy(J->getType(),VF), false, true); 5611 } 5612 5613 // Scale the total scalar cost by block probability. 5614 ScalarCost /= getReciprocalPredBlockProb(); 5615 5616 // Compute the discount. A non-negative discount means the vector version 5617 // of the instruction costs more, and scalarizing would be beneficial. 5618 Discount += VectorCost - ScalarCost; 5619 ScalarCosts[I] = ScalarCost; 5620 } 5621 5622 return Discount; 5623 } 5624 5625 LoopVectorizationCostModel::VectorizationCostTy 5626 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5627 VectorizationCostTy Cost; 5628 5629 // For each block. 5630 for (BasicBlock *BB : TheLoop->blocks()) { 5631 VectorizationCostTy BlockCost; 5632 5633 // For each instruction in the old loop. 5634 for (Instruction &I : BB->instructionsWithoutDebug()) { 5635 // Skip ignored values. 5636 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5637 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5638 continue; 5639 5640 VectorizationCostTy C = getInstructionCost(&I, VF); 5641 5642 // Check if we should override the cost. 5643 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5644 C.first = ForceTargetInstructionCost; 5645 5646 BlockCost.first += C.first; 5647 BlockCost.second |= C.second; 5648 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5649 << " for VF " << VF << " For instruction: " << I 5650 << '\n'); 5651 } 5652 5653 // If we are vectorizing a predicated block, it will have been 5654 // if-converted. This means that the block's instructions (aside from 5655 // stores and instructions that may divide by zero) will now be 5656 // unconditionally executed. For the scalar case, we may not always execute 5657 // the predicated block. Thus, scale the block's cost by the probability of 5658 // executing it. 5659 if (VF == 1 && Legal->blockNeedsPredication(BB)) 5660 BlockCost.first /= getReciprocalPredBlockProb(); 5661 5662 Cost.first += BlockCost.first; 5663 Cost.second |= BlockCost.second; 5664 } 5665 5666 return Cost; 5667 } 5668 5669 /// Gets Address Access SCEV after verifying that the access pattern 5670 /// is loop invariant except the induction variable dependence. 5671 /// 5672 /// This SCEV can be sent to the Target in order to estimate the address 5673 /// calculation cost. 5674 static const SCEV *getAddressAccessSCEV( 5675 Value *Ptr, 5676 LoopVectorizationLegality *Legal, 5677 PredicatedScalarEvolution &PSE, 5678 const Loop *TheLoop) { 5679 5680 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5681 if (!Gep) 5682 return nullptr; 5683 5684 // We are looking for a gep with all loop invariant indices except for one 5685 // which should be an induction variable. 5686 auto SE = PSE.getSE(); 5687 unsigned NumOperands = Gep->getNumOperands(); 5688 for (unsigned i = 1; i < NumOperands; ++i) { 5689 Value *Opd = Gep->getOperand(i); 5690 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5691 !Legal->isInductionVariable(Opd)) 5692 return nullptr; 5693 } 5694 5695 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5696 return PSE.getSCEV(Ptr); 5697 } 5698 5699 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5700 return Legal->hasStride(I->getOperand(0)) || 5701 Legal->hasStride(I->getOperand(1)); 5702 } 5703 5704 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5705 unsigned VF) { 5706 Type *ValTy = getMemInstValueType(I); 5707 auto SE = PSE.getSE(); 5708 5709 unsigned Alignment = getMemInstAlignment(I); 5710 unsigned AS = getMemInstAddressSpace(I); 5711 Value *Ptr = getLoadStorePointerOperand(I); 5712 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5713 5714 // Figure out whether the access is strided and get the stride value 5715 // if it's known in compile time 5716 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5717 5718 // Get the cost of the scalar memory instruction and address computation. 5719 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5720 5721 Cost += VF * 5722 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 5723 AS, I); 5724 5725 // Get the overhead of the extractelement and insertelement instructions 5726 // we might create due to scalarization. 5727 Cost += getScalarizationOverhead(I, VF, TTI); 5728 5729 // If we have a predicated store, it may not be executed for each vector 5730 // lane. Scale the cost by the probability of executing the predicated 5731 // block. 5732 if (isScalarWithPredication(I)) { 5733 Cost /= getReciprocalPredBlockProb(); 5734 5735 if (useEmulatedMaskMemRefHack(I)) 5736 // Artificially setting to a high enough value to practically disable 5737 // vectorization with such operations. 5738 Cost = 3000000; 5739 } 5740 5741 return Cost; 5742 } 5743 5744 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5745 unsigned VF) { 5746 Type *ValTy = getMemInstValueType(I); 5747 Type *VectorTy = ToVectorTy(ValTy, VF); 5748 unsigned Alignment = getMemInstAlignment(I); 5749 Value *Ptr = getLoadStorePointerOperand(I); 5750 unsigned AS = getMemInstAddressSpace(I); 5751 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5752 5753 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5754 "Stride should be 1 or -1 for consecutive memory access"); 5755 unsigned Cost = 0; 5756 if (Legal->isMaskRequired(I)) 5757 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5758 else 5759 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5760 5761 bool Reverse = ConsecutiveStride < 0; 5762 if (Reverse) 5763 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5764 return Cost; 5765 } 5766 5767 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5768 unsigned VF) { 5769 LoadInst *LI = cast<LoadInst>(I); 5770 Type *ValTy = LI->getType(); 5771 Type *VectorTy = ToVectorTy(ValTy, VF); 5772 unsigned Alignment = LI->getAlignment(); 5773 unsigned AS = LI->getPointerAddressSpace(); 5774 5775 return TTI.getAddressComputationCost(ValTy) + 5776 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5777 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5778 } 5779 5780 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5781 unsigned VF) { 5782 Type *ValTy = getMemInstValueType(I); 5783 Type *VectorTy = ToVectorTy(ValTy, VF); 5784 unsigned Alignment = getMemInstAlignment(I); 5785 Value *Ptr = getLoadStorePointerOperand(I); 5786 5787 return TTI.getAddressComputationCost(VectorTy) + 5788 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5789 Legal->isMaskRequired(I), Alignment); 5790 } 5791 5792 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5793 unsigned VF) { 5794 Type *ValTy = getMemInstValueType(I); 5795 Type *VectorTy = ToVectorTy(ValTy, VF); 5796 unsigned AS = getMemInstAddressSpace(I); 5797 5798 auto Group = getInterleavedAccessGroup(I); 5799 assert(Group && "Fail to get an interleaved access group."); 5800 5801 unsigned InterleaveFactor = Group->getFactor(); 5802 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5803 5804 // Holds the indices of existing members in an interleaved load group. 5805 // An interleaved store group doesn't need this as it doesn't allow gaps. 5806 SmallVector<unsigned, 4> Indices; 5807 if (isa<LoadInst>(I)) { 5808 for (unsigned i = 0; i < InterleaveFactor; i++) 5809 if (Group->getMember(i)) 5810 Indices.push_back(i); 5811 } 5812 5813 // Calculate the cost of the whole interleaved group. 5814 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 5815 Group->getFactor(), Indices, 5816 Group->getAlignment(), AS); 5817 5818 if (Group->isReverse()) 5819 Cost += Group->getNumMembers() * 5820 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5821 return Cost; 5822 } 5823 5824 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5825 unsigned VF) { 5826 // Calculate scalar cost only. Vectorization cost should be ready at this 5827 // moment. 5828 if (VF == 1) { 5829 Type *ValTy = getMemInstValueType(I); 5830 unsigned Alignment = getMemInstAlignment(I); 5831 unsigned AS = getMemInstAddressSpace(I); 5832 5833 return TTI.getAddressComputationCost(ValTy) + 5834 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5835 } 5836 return getWideningCost(I, VF); 5837 } 5838 5839 LoopVectorizationCostModel::VectorizationCostTy 5840 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5841 // If we know that this instruction will remain uniform, check the cost of 5842 // the scalar version. 5843 if (isUniformAfterVectorization(I, VF)) 5844 VF = 1; 5845 5846 if (VF > 1 && isProfitableToScalarize(I, VF)) 5847 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5848 5849 // Forced scalars do not have any scalarization overhead. 5850 auto ForcedScalar = ForcedScalars.find(VF); 5851 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5852 auto InstSet = ForcedScalar->second; 5853 if (InstSet.find(I) != InstSet.end()) 5854 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5855 } 5856 5857 Type *VectorTy; 5858 unsigned C = getInstructionCost(I, VF, VectorTy); 5859 5860 bool TypeNotScalarized = 5861 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5862 return VectorizationCostTy(C, TypeNotScalarized); 5863 } 5864 5865 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5866 if (VF == 1) 5867 return; 5868 NumPredStores = 0; 5869 for (BasicBlock *BB : TheLoop->blocks()) { 5870 // For each instruction in the old loop. 5871 for (Instruction &I : *BB) { 5872 Value *Ptr = getLoadStorePointerOperand(&I); 5873 if (!Ptr) 5874 continue; 5875 5876 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5877 NumPredStores++; 5878 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 5879 // Scalar load + broadcast 5880 unsigned Cost = getUniformMemOpCost(&I, VF); 5881 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5882 continue; 5883 } 5884 5885 // We assume that widening is the best solution when possible. 5886 if (memoryInstructionCanBeWidened(&I, VF)) { 5887 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5888 int ConsecutiveStride = 5889 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5890 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5891 "Expected consecutive stride."); 5892 InstWidening Decision = 5893 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 5894 setWideningDecision(&I, VF, Decision, Cost); 5895 continue; 5896 } 5897 5898 // Choose between Interleaving, Gather/Scatter or Scalarization. 5899 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 5900 unsigned NumAccesses = 1; 5901 if (isAccessInterleaved(&I)) { 5902 auto Group = getInterleavedAccessGroup(&I); 5903 assert(Group && "Fail to get an interleaved access group."); 5904 5905 // Make one decision for the whole group. 5906 if (getWideningDecision(&I, VF) != CM_Unknown) 5907 continue; 5908 5909 NumAccesses = Group->getNumMembers(); 5910 InterleaveCost = getInterleaveGroupCost(&I, VF); 5911 } 5912 5913 unsigned GatherScatterCost = 5914 isLegalGatherOrScatter(&I) 5915 ? getGatherScatterCost(&I, VF) * NumAccesses 5916 : std::numeric_limits<unsigned>::max(); 5917 5918 unsigned ScalarizationCost = 5919 getMemInstScalarizationCost(&I, VF) * NumAccesses; 5920 5921 // Choose better solution for the current VF, 5922 // write down this decision and use it during vectorization. 5923 unsigned Cost; 5924 InstWidening Decision; 5925 if (InterleaveCost <= GatherScatterCost && 5926 InterleaveCost < ScalarizationCost) { 5927 Decision = CM_Interleave; 5928 Cost = InterleaveCost; 5929 } else if (GatherScatterCost < ScalarizationCost) { 5930 Decision = CM_GatherScatter; 5931 Cost = GatherScatterCost; 5932 } else { 5933 Decision = CM_Scalarize; 5934 Cost = ScalarizationCost; 5935 } 5936 // If the instructions belongs to an interleave group, the whole group 5937 // receives the same decision. The whole group receives the cost, but 5938 // the cost will actually be assigned to one instruction. 5939 if (auto Group = getInterleavedAccessGroup(&I)) 5940 setWideningDecision(Group, VF, Decision, Cost); 5941 else 5942 setWideningDecision(&I, VF, Decision, Cost); 5943 } 5944 } 5945 5946 // Make sure that any load of address and any other address computation 5947 // remains scalar unless there is gather/scatter support. This avoids 5948 // inevitable extracts into address registers, and also has the benefit of 5949 // activating LSR more, since that pass can't optimize vectorized 5950 // addresses. 5951 if (TTI.prefersVectorizedAddressing()) 5952 return; 5953 5954 // Start with all scalar pointer uses. 5955 SmallPtrSet<Instruction *, 8> AddrDefs; 5956 for (BasicBlock *BB : TheLoop->blocks()) 5957 for (Instruction &I : *BB) { 5958 Instruction *PtrDef = 5959 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5960 if (PtrDef && TheLoop->contains(PtrDef) && 5961 getWideningDecision(&I, VF) != CM_GatherScatter) 5962 AddrDefs.insert(PtrDef); 5963 } 5964 5965 // Add all instructions used to generate the addresses. 5966 SmallVector<Instruction *, 4> Worklist; 5967 for (auto *I : AddrDefs) 5968 Worklist.push_back(I); 5969 while (!Worklist.empty()) { 5970 Instruction *I = Worklist.pop_back_val(); 5971 for (auto &Op : I->operands()) 5972 if (auto *InstOp = dyn_cast<Instruction>(Op)) 5973 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 5974 AddrDefs.insert(InstOp).second) 5975 Worklist.push_back(InstOp); 5976 } 5977 5978 for (auto *I : AddrDefs) { 5979 if (isa<LoadInst>(I)) { 5980 // Setting the desired widening decision should ideally be handled in 5981 // by cost functions, but since this involves the task of finding out 5982 // if the loaded register is involved in an address computation, it is 5983 // instead changed here when we know this is the case. 5984 InstWidening Decision = getWideningDecision(I, VF); 5985 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 5986 // Scalarize a widened load of address. 5987 setWideningDecision(I, VF, CM_Scalarize, 5988 (VF * getMemoryInstructionCost(I, 1))); 5989 else if (auto Group = getInterleavedAccessGroup(I)) { 5990 // Scalarize an interleave group of address loads. 5991 for (unsigned I = 0; I < Group->getFactor(); ++I) { 5992 if (Instruction *Member = Group->getMember(I)) 5993 setWideningDecision(Member, VF, CM_Scalarize, 5994 (VF * getMemoryInstructionCost(Member, 1))); 5995 } 5996 } 5997 } else 5998 // Make sure I gets scalarized and a cost estimate without 5999 // scalarization overhead. 6000 ForcedScalars[VF].insert(I); 6001 } 6002 } 6003 6004 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6005 unsigned VF, 6006 Type *&VectorTy) { 6007 Type *RetTy = I->getType(); 6008 if (canTruncateToMinimalBitwidth(I, VF)) 6009 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6010 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6011 auto SE = PSE.getSE(); 6012 6013 // TODO: We need to estimate the cost of intrinsic calls. 6014 switch (I->getOpcode()) { 6015 case Instruction::GetElementPtr: 6016 // We mark this instruction as zero-cost because the cost of GEPs in 6017 // vectorized code depends on whether the corresponding memory instruction 6018 // is scalarized or not. Therefore, we handle GEPs with the memory 6019 // instruction cost. 6020 return 0; 6021 case Instruction::Br: { 6022 // In cases of scalarized and predicated instructions, there will be VF 6023 // predicated blocks in the vectorized loop. Each branch around these 6024 // blocks requires also an extract of its vector compare i1 element. 6025 bool ScalarPredicatedBB = false; 6026 BranchInst *BI = cast<BranchInst>(I); 6027 if (VF > 1 && BI->isConditional() && 6028 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 6029 PredicatedBBsAfterVectorization.end() || 6030 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 6031 PredicatedBBsAfterVectorization.end())) 6032 ScalarPredicatedBB = true; 6033 6034 if (ScalarPredicatedBB) { 6035 // Return cost for branches around scalarized and predicated blocks. 6036 Type *Vec_i1Ty = 6037 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6038 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 6039 (TTI.getCFInstrCost(Instruction::Br) * VF)); 6040 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6041 // The back-edge branch will remain, as will all scalar branches. 6042 return TTI.getCFInstrCost(Instruction::Br); 6043 else 6044 // This branch will be eliminated by if-conversion. 6045 return 0; 6046 // Note: We currently assume zero cost for an unconditional branch inside 6047 // a predicated block since it will become a fall-through, although we 6048 // may decide in the future to call TTI for all branches. 6049 } 6050 case Instruction::PHI: { 6051 auto *Phi = cast<PHINode>(I); 6052 6053 // First-order recurrences are replaced by vector shuffles inside the loop. 6054 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6055 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6056 VectorTy, VF - 1, VectorTy); 6057 6058 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6059 // converted into select instructions. We require N - 1 selects per phi 6060 // node, where N is the number of incoming values. 6061 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6062 return (Phi->getNumIncomingValues() - 1) * 6063 TTI.getCmpSelInstrCost( 6064 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6065 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 6066 6067 return TTI.getCFInstrCost(Instruction::PHI); 6068 } 6069 case Instruction::UDiv: 6070 case Instruction::SDiv: 6071 case Instruction::URem: 6072 case Instruction::SRem: 6073 // If we have a predicated instruction, it may not be executed for each 6074 // vector lane. Get the scalarization cost and scale this amount by the 6075 // probability of executing the predicated block. If the instruction is not 6076 // predicated, we fall through to the next case. 6077 if (VF > 1 && isScalarWithPredication(I)) { 6078 unsigned Cost = 0; 6079 6080 // These instructions have a non-void type, so account for the phi nodes 6081 // that we will create. This cost is likely to be zero. The phi node 6082 // cost, if any, should be scaled by the block probability because it 6083 // models a copy at the end of each predicated block. 6084 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6085 6086 // The cost of the non-predicated instruction. 6087 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 6088 6089 // The cost of insertelement and extractelement instructions needed for 6090 // scalarization. 6091 Cost += getScalarizationOverhead(I, VF, TTI); 6092 6093 // Scale the cost by the probability of executing the predicated blocks. 6094 // This assumes the predicated block for each vector lane is equally 6095 // likely. 6096 return Cost / getReciprocalPredBlockProb(); 6097 } 6098 LLVM_FALLTHROUGH; 6099 case Instruction::Add: 6100 case Instruction::FAdd: 6101 case Instruction::Sub: 6102 case Instruction::FSub: 6103 case Instruction::Mul: 6104 case Instruction::FMul: 6105 case Instruction::FDiv: 6106 case Instruction::FRem: 6107 case Instruction::Shl: 6108 case Instruction::LShr: 6109 case Instruction::AShr: 6110 case Instruction::And: 6111 case Instruction::Or: 6112 case Instruction::Xor: { 6113 // Since we will replace the stride by 1 the multiplication should go away. 6114 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6115 return 0; 6116 // Certain instructions can be cheaper to vectorize if they have a constant 6117 // second vector operand. One example of this are shifts on x86. 6118 TargetTransformInfo::OperandValueKind Op1VK = 6119 TargetTransformInfo::OK_AnyValue; 6120 TargetTransformInfo::OperandValueKind Op2VK = 6121 TargetTransformInfo::OK_AnyValue; 6122 TargetTransformInfo::OperandValueProperties Op1VP = 6123 TargetTransformInfo::OP_None; 6124 TargetTransformInfo::OperandValueProperties Op2VP = 6125 TargetTransformInfo::OP_None; 6126 Value *Op2 = I->getOperand(1); 6127 6128 // Check for a splat or for a non uniform vector of constants. 6129 if (isa<ConstantInt>(Op2)) { 6130 ConstantInt *CInt = cast<ConstantInt>(Op2); 6131 if (CInt && CInt->getValue().isPowerOf2()) 6132 Op2VP = TargetTransformInfo::OP_PowerOf2; 6133 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6134 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 6135 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6136 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 6137 if (SplatValue) { 6138 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 6139 if (CInt && CInt->getValue().isPowerOf2()) 6140 Op2VP = TargetTransformInfo::OP_PowerOf2; 6141 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6142 } 6143 } else if (Legal->isUniform(Op2)) { 6144 Op2VK = TargetTransformInfo::OK_UniformValue; 6145 } 6146 SmallVector<const Value *, 4> Operands(I->operand_values()); 6147 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6148 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 6149 Op2VK, Op1VP, Op2VP, Operands); 6150 } 6151 case Instruction::Select: { 6152 SelectInst *SI = cast<SelectInst>(I); 6153 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6154 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6155 Type *CondTy = SI->getCondition()->getType(); 6156 if (!ScalarCond) 6157 CondTy = VectorType::get(CondTy, VF); 6158 6159 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 6160 } 6161 case Instruction::ICmp: 6162 case Instruction::FCmp: { 6163 Type *ValTy = I->getOperand(0)->getType(); 6164 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6165 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6166 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6167 VectorTy = ToVectorTy(ValTy, VF); 6168 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 6169 } 6170 case Instruction::Store: 6171 case Instruction::Load: { 6172 unsigned Width = VF; 6173 if (Width > 1) { 6174 InstWidening Decision = getWideningDecision(I, Width); 6175 assert(Decision != CM_Unknown && 6176 "CM decision should be taken at this point"); 6177 if (Decision == CM_Scalarize) 6178 Width = 1; 6179 } 6180 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6181 return getMemoryInstructionCost(I, VF); 6182 } 6183 case Instruction::ZExt: 6184 case Instruction::SExt: 6185 case Instruction::FPToUI: 6186 case Instruction::FPToSI: 6187 case Instruction::FPExt: 6188 case Instruction::PtrToInt: 6189 case Instruction::IntToPtr: 6190 case Instruction::SIToFP: 6191 case Instruction::UIToFP: 6192 case Instruction::Trunc: 6193 case Instruction::FPTrunc: 6194 case Instruction::BitCast: { 6195 // We optimize the truncation of induction variables having constant 6196 // integer steps. The cost of these truncations is the same as the scalar 6197 // operation. 6198 if (isOptimizableIVTruncate(I, VF)) { 6199 auto *Trunc = cast<TruncInst>(I); 6200 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6201 Trunc->getSrcTy(), Trunc); 6202 } 6203 6204 Type *SrcScalarTy = I->getOperand(0)->getType(); 6205 Type *SrcVecTy = 6206 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6207 if (canTruncateToMinimalBitwidth(I, VF)) { 6208 // This cast is going to be shrunk. This may remove the cast or it might 6209 // turn it into slightly different cast. For example, if MinBW == 16, 6210 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6211 // 6212 // Calculate the modified src and dest types. 6213 Type *MinVecTy = VectorTy; 6214 if (I->getOpcode() == Instruction::Trunc) { 6215 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6216 VectorTy = 6217 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6218 } else if (I->getOpcode() == Instruction::ZExt || 6219 I->getOpcode() == Instruction::SExt) { 6220 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6221 VectorTy = 6222 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6223 } 6224 } 6225 6226 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6227 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6228 } 6229 case Instruction::Call: { 6230 bool NeedToScalarize; 6231 CallInst *CI = cast<CallInst>(I); 6232 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6233 if (getVectorIntrinsicIDForCall(CI, TLI)) 6234 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6235 return CallCost; 6236 } 6237 default: 6238 // The cost of executing VF copies of the scalar instruction. This opcode 6239 // is unknown. Assume that it is the same as 'mul'. 6240 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6241 getScalarizationOverhead(I, VF, TTI); 6242 } // end of switch. 6243 } 6244 6245 char LoopVectorize::ID = 0; 6246 6247 static const char lv_name[] = "Loop Vectorization"; 6248 6249 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6250 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6251 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6252 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6253 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6254 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6255 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6256 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6257 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6258 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6259 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6260 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6261 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6262 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6263 6264 namespace llvm { 6265 6266 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6267 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6268 } 6269 6270 } // end namespace llvm 6271 6272 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6273 // Check if the pointer operand of a load or store instruction is 6274 // consecutive. 6275 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6276 return Legal->isConsecutivePtr(Ptr); 6277 return false; 6278 } 6279 6280 void LoopVectorizationCostModel::collectValuesToIgnore() { 6281 // Ignore ephemeral values. 6282 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6283 6284 // Ignore type-promoting instructions we identified during reduction 6285 // detection. 6286 for (auto &Reduction : *Legal->getReductionVars()) { 6287 RecurrenceDescriptor &RedDes = Reduction.second; 6288 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6289 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6290 } 6291 // Ignore type-casting instructions we identified during induction 6292 // detection. 6293 for (auto &Induction : *Legal->getInductionVars()) { 6294 InductionDescriptor &IndDes = Induction.second; 6295 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6296 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6297 } 6298 } 6299 6300 VectorizationFactor 6301 LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize, 6302 unsigned UserVF) { 6303 // Width 1 means no vectorization, cost 0 means uncomputed cost. 6304 const VectorizationFactor NoVectorization = {1U, 0U}; 6305 6306 // Outer loop handling: They may require CFG and instruction level 6307 // transformations before even evaluating whether vectorization is profitable. 6308 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6309 // the vectorization pipeline. 6310 if (!OrigLoop->empty()) { 6311 // TODO: If UserVF is not provided, we set UserVF to 4 for stress testing. 6312 // This won't be necessary when UserVF is not required in the VPlan-native 6313 // path. 6314 if (VPlanBuildStressTest && !UserVF) 6315 UserVF = 4; 6316 6317 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6318 assert(UserVF && "Expected UserVF for outer loop vectorization."); 6319 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6320 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6321 buildVPlans(UserVF, UserVF); 6322 6323 // For VPlan build stress testing, we bail out after VPlan construction. 6324 if (VPlanBuildStressTest) 6325 return NoVectorization; 6326 6327 return {UserVF, 0}; 6328 } 6329 6330 LLVM_DEBUG( 6331 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6332 "VPlan-native path.\n"); 6333 return NoVectorization; 6334 } 6335 6336 VectorizationFactor 6337 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 6338 assert(OrigLoop->empty() && "Inner loop expected."); 6339 // Width 1 means no vectorization, cost 0 means uncomputed cost. 6340 const VectorizationFactor NoVectorization = {1U, 0U}; 6341 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 6342 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 6343 return NoVectorization; 6344 6345 if (UserVF) { 6346 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6347 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6348 // Collect the instructions (and their associated costs) that will be more 6349 // profitable to scalarize. 6350 CM.selectUserVectorizationFactor(UserVF); 6351 buildVPlansWithVPRecipes(UserVF, UserVF); 6352 LLVM_DEBUG(printPlans(dbgs())); 6353 return {UserVF, 0}; 6354 } 6355 6356 unsigned MaxVF = MaybeMaxVF.getValue(); 6357 assert(MaxVF != 0 && "MaxVF is zero."); 6358 6359 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6360 // Collect Uniform and Scalar instructions after vectorization with VF. 6361 CM.collectUniformsAndScalars(VF); 6362 6363 // Collect the instructions (and their associated costs) that will be more 6364 // profitable to scalarize. 6365 if (VF > 1) 6366 CM.collectInstsToScalarize(VF); 6367 } 6368 6369 buildVPlansWithVPRecipes(1, MaxVF); 6370 LLVM_DEBUG(printPlans(dbgs())); 6371 if (MaxVF == 1) 6372 return NoVectorization; 6373 6374 // Select the optimal vectorization factor. 6375 return CM.selectVectorizationFactor(MaxVF); 6376 } 6377 6378 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6379 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6380 << '\n'); 6381 BestVF = VF; 6382 BestUF = UF; 6383 6384 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6385 return !Plan->hasVF(VF); 6386 }); 6387 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6388 } 6389 6390 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6391 DominatorTree *DT) { 6392 // Perform the actual loop transformation. 6393 6394 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6395 VPCallbackILV CallbackILV(ILV); 6396 6397 VPTransformState State{BestVF, BestUF, LI, 6398 DT, ILV.Builder, ILV.VectorLoopValueMap, 6399 &ILV, CallbackILV}; 6400 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6401 6402 //===------------------------------------------------===// 6403 // 6404 // Notice: any optimization or new instruction that go 6405 // into the code below should also be implemented in 6406 // the cost-model. 6407 // 6408 //===------------------------------------------------===// 6409 6410 // 2. Copy and widen instructions from the old loop into the new loop. 6411 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6412 VPlans.front()->execute(&State); 6413 6414 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6415 // predication, updating analyses. 6416 ILV.fixVectorizedLoop(); 6417 } 6418 6419 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6420 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6421 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6422 6423 // We create new control-flow for the vectorized loop, so the original 6424 // condition will be dead after vectorization if it's only used by the 6425 // branch. 6426 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6427 if (Cmp && Cmp->hasOneUse()) 6428 DeadInstructions.insert(Cmp); 6429 6430 // We create new "steps" for induction variable updates to which the original 6431 // induction variables map. An original update instruction will be dead if 6432 // all its users except the induction variable are dead. 6433 for (auto &Induction : *Legal->getInductionVars()) { 6434 PHINode *Ind = Induction.first; 6435 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6436 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6437 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6438 DeadInstructions.end(); 6439 })) 6440 DeadInstructions.insert(IndUpdate); 6441 6442 // We record as "Dead" also the type-casting instructions we had identified 6443 // during induction analysis. We don't need any handling for them in the 6444 // vectorized loop because we have proven that, under a proper runtime 6445 // test guarding the vectorized loop, the value of the phi, and the casted 6446 // value of the phi, are the same. The last instruction in this casting chain 6447 // will get its scalar/vector/widened def from the scalar/vector/widened def 6448 // of the respective phi node. Any other casts in the induction def-use chain 6449 // have no other uses outside the phi update chain, and will be ignored. 6450 InductionDescriptor &IndDes = Induction.second; 6451 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6452 DeadInstructions.insert(Casts.begin(), Casts.end()); 6453 } 6454 } 6455 6456 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6457 6458 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6459 6460 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6461 Instruction::BinaryOps BinOp) { 6462 // When unrolling and the VF is 1, we only need to add a simple scalar. 6463 Type *Ty = Val->getType(); 6464 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6465 6466 if (Ty->isFloatingPointTy()) { 6467 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6468 6469 // Floating point operations had to be 'fast' to enable the unrolling. 6470 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6471 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6472 } 6473 Constant *C = ConstantInt::get(Ty, StartIdx); 6474 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6475 } 6476 6477 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6478 SmallVector<Metadata *, 4> MDs; 6479 // Reserve first location for self reference to the LoopID metadata node. 6480 MDs.push_back(nullptr); 6481 bool IsUnrollMetadata = false; 6482 MDNode *LoopID = L->getLoopID(); 6483 if (LoopID) { 6484 // First find existing loop unrolling disable metadata. 6485 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6486 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6487 if (MD) { 6488 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6489 IsUnrollMetadata = 6490 S && S->getString().startswith("llvm.loop.unroll.disable"); 6491 } 6492 MDs.push_back(LoopID->getOperand(i)); 6493 } 6494 } 6495 6496 if (!IsUnrollMetadata) { 6497 // Add runtime unroll disable metadata. 6498 LLVMContext &Context = L->getHeader()->getContext(); 6499 SmallVector<Metadata *, 1> DisableOperands; 6500 DisableOperands.push_back( 6501 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6502 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6503 MDs.push_back(DisableNode); 6504 MDNode *NewLoopID = MDNode::get(Context, MDs); 6505 // Set operand 0 to refer to the loop id itself. 6506 NewLoopID->replaceOperandWith(0, NewLoopID); 6507 L->setLoopID(NewLoopID); 6508 } 6509 } 6510 6511 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6512 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6513 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6514 bool PredicateAtRangeStart = Predicate(Range.Start); 6515 6516 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6517 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6518 Range.End = TmpVF; 6519 break; 6520 } 6521 6522 return PredicateAtRangeStart; 6523 } 6524 6525 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6526 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6527 /// of VF's starting at a given VF and extending it as much as possible. Each 6528 /// vectorization decision can potentially shorten this sub-range during 6529 /// buildVPlan(). 6530 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6531 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6532 VFRange SubRange = {VF, MaxVF + 1}; 6533 VPlans.push_back(buildVPlan(SubRange)); 6534 VF = SubRange.End; 6535 } 6536 } 6537 6538 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6539 VPlanPtr &Plan) { 6540 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6541 6542 // Look for cached value. 6543 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6544 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6545 if (ECEntryIt != EdgeMaskCache.end()) 6546 return ECEntryIt->second; 6547 6548 VPValue *SrcMask = createBlockInMask(Src, Plan); 6549 6550 // The terminator has to be a branch inst! 6551 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6552 assert(BI && "Unexpected terminator found"); 6553 6554 if (!BI->isConditional()) 6555 return EdgeMaskCache[Edge] = SrcMask; 6556 6557 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6558 assert(EdgeMask && "No Edge Mask found for condition"); 6559 6560 if (BI->getSuccessor(0) != Dst) 6561 EdgeMask = Builder.createNot(EdgeMask); 6562 6563 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6564 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6565 6566 return EdgeMaskCache[Edge] = EdgeMask; 6567 } 6568 6569 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6570 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6571 6572 // Look for cached value. 6573 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6574 if (BCEntryIt != BlockMaskCache.end()) 6575 return BCEntryIt->second; 6576 6577 // All-one mask is modelled as no-mask following the convention for masked 6578 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6579 VPValue *BlockMask = nullptr; 6580 6581 // Loop incoming mask is all-one. 6582 if (OrigLoop->getHeader() == BB) 6583 return BlockMaskCache[BB] = BlockMask; 6584 6585 // This is the block mask. We OR all incoming edges. 6586 for (auto *Predecessor : predecessors(BB)) { 6587 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6588 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6589 return BlockMaskCache[BB] = EdgeMask; 6590 6591 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6592 BlockMask = EdgeMask; 6593 continue; 6594 } 6595 6596 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6597 } 6598 6599 return BlockMaskCache[BB] = BlockMask; 6600 } 6601 6602 VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I, 6603 VFRange &Range) { 6604 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(I); 6605 if (!IG) 6606 return nullptr; 6607 6608 // Now check if IG is relevant for VF's in the given range. 6609 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 6610 return [=](unsigned VF) -> bool { 6611 return (VF >= 2 && // Query is illegal for VF == 1 6612 CM.getWideningDecision(I, VF) == 6613 LoopVectorizationCostModel::CM_Interleave); 6614 }; 6615 }; 6616 if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range)) 6617 return nullptr; 6618 6619 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 6620 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 6621 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 6622 assert(I == IG->getInsertPos() && 6623 "Generating a recipe for an adjunct member of an interleave group"); 6624 6625 return new VPInterleaveRecipe(IG); 6626 } 6627 6628 VPWidenMemoryInstructionRecipe * 6629 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6630 VPlanPtr &Plan) { 6631 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6632 return nullptr; 6633 6634 auto willWiden = [&](unsigned VF) -> bool { 6635 if (VF == 1) 6636 return false; 6637 if (CM.isScalarAfterVectorization(I, VF) || 6638 CM.isProfitableToScalarize(I, VF)) 6639 return false; 6640 LoopVectorizationCostModel::InstWidening Decision = 6641 CM.getWideningDecision(I, VF); 6642 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6643 "CM decision should be taken at this point."); 6644 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 6645 "Interleave memory opportunity should be caught earlier."); 6646 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6647 }; 6648 6649 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6650 return nullptr; 6651 6652 VPValue *Mask = nullptr; 6653 if (Legal->isMaskRequired(I)) 6654 Mask = createBlockInMask(I->getParent(), Plan); 6655 6656 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6657 } 6658 6659 VPWidenIntOrFpInductionRecipe * 6660 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6661 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6662 // Check if this is an integer or fp induction. If so, build the recipe that 6663 // produces its scalar and vector values. 6664 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6665 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6666 II.getKind() == InductionDescriptor::IK_FpInduction) 6667 return new VPWidenIntOrFpInductionRecipe(Phi); 6668 6669 return nullptr; 6670 } 6671 6672 // Optimize the special case where the source is a constant integer 6673 // induction variable. Notice that we can only optimize the 'trunc' case 6674 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6675 // (c) other casts depend on pointer size. 6676 6677 // Determine whether \p K is a truncation based on an induction variable that 6678 // can be optimized. 6679 auto isOptimizableIVTruncate = 6680 [&](Instruction *K) -> std::function<bool(unsigned)> { 6681 return 6682 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6683 }; 6684 6685 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6686 isOptimizableIVTruncate(I), Range)) 6687 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6688 cast<TruncInst>(I)); 6689 return nullptr; 6690 } 6691 6692 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6693 PHINode *Phi = dyn_cast<PHINode>(I); 6694 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6695 return nullptr; 6696 6697 // We know that all PHIs in non-header blocks are converted into selects, so 6698 // we don't have to worry about the insertion order and we can just use the 6699 // builder. At this point we generate the predication tree. There may be 6700 // duplications since this is a simple recursive scan, but future 6701 // optimizations will clean it up. 6702 6703 SmallVector<VPValue *, 2> Masks; 6704 unsigned NumIncoming = Phi->getNumIncomingValues(); 6705 for (unsigned In = 0; In < NumIncoming; In++) { 6706 VPValue *EdgeMask = 6707 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6708 assert((EdgeMask || NumIncoming == 1) && 6709 "Multiple predecessors with one having a full mask"); 6710 if (EdgeMask) 6711 Masks.push_back(EdgeMask); 6712 } 6713 return new VPBlendRecipe(Phi, Masks); 6714 } 6715 6716 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6717 VFRange &Range) { 6718 if (CM.isScalarWithPredication(I)) 6719 return false; 6720 6721 auto IsVectorizableOpcode = [](unsigned Opcode) { 6722 switch (Opcode) { 6723 case Instruction::Add: 6724 case Instruction::And: 6725 case Instruction::AShr: 6726 case Instruction::BitCast: 6727 case Instruction::Br: 6728 case Instruction::Call: 6729 case Instruction::FAdd: 6730 case Instruction::FCmp: 6731 case Instruction::FDiv: 6732 case Instruction::FMul: 6733 case Instruction::FPExt: 6734 case Instruction::FPToSI: 6735 case Instruction::FPToUI: 6736 case Instruction::FPTrunc: 6737 case Instruction::FRem: 6738 case Instruction::FSub: 6739 case Instruction::GetElementPtr: 6740 case Instruction::ICmp: 6741 case Instruction::IntToPtr: 6742 case Instruction::Load: 6743 case Instruction::LShr: 6744 case Instruction::Mul: 6745 case Instruction::Or: 6746 case Instruction::PHI: 6747 case Instruction::PtrToInt: 6748 case Instruction::SDiv: 6749 case Instruction::Select: 6750 case Instruction::SExt: 6751 case Instruction::Shl: 6752 case Instruction::SIToFP: 6753 case Instruction::SRem: 6754 case Instruction::Store: 6755 case Instruction::Sub: 6756 case Instruction::Trunc: 6757 case Instruction::UDiv: 6758 case Instruction::UIToFP: 6759 case Instruction::URem: 6760 case Instruction::Xor: 6761 case Instruction::ZExt: 6762 return true; 6763 } 6764 return false; 6765 }; 6766 6767 if (!IsVectorizableOpcode(I->getOpcode())) 6768 return false; 6769 6770 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6771 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6772 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6773 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6774 return false; 6775 } 6776 6777 auto willWiden = [&](unsigned VF) -> bool { 6778 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6779 CM.isProfitableToScalarize(I, VF))) 6780 return false; 6781 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6782 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6783 // The following case may be scalarized depending on the VF. 6784 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6785 // version of the instruction. 6786 // Is it beneficial to perform intrinsic call compared to lib call? 6787 bool NeedToScalarize; 6788 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 6789 bool UseVectorIntrinsic = 6790 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 6791 return UseVectorIntrinsic || !NeedToScalarize; 6792 } 6793 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6794 assert(CM.getWideningDecision(I, VF) == 6795 LoopVectorizationCostModel::CM_Scalarize && 6796 "Memory widening decisions should have been taken care by now"); 6797 return false; 6798 } 6799 return true; 6800 }; 6801 6802 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6803 return false; 6804 6805 // Success: widen this instruction. We optimize the common case where 6806 // consecutive instructions can be represented by a single recipe. 6807 if (!VPBB->empty()) { 6808 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 6809 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 6810 return true; 6811 } 6812 6813 VPBB->appendRecipe(new VPWidenRecipe(I)); 6814 return true; 6815 } 6816 6817 VPBasicBlock *VPRecipeBuilder::handleReplication( 6818 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6819 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6820 VPlanPtr &Plan) { 6821 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6822 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6823 Range); 6824 6825 bool IsPredicated = CM.isScalarWithPredication(I); 6826 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6827 6828 // Find if I uses a predicated instruction. If so, it will use its scalar 6829 // value. Avoid hoisting the insert-element which packs the scalar value into 6830 // a vector value, as that happens iff all users use the vector value. 6831 for (auto &Op : I->operands()) 6832 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6833 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6834 PredInst2Recipe[PredInst]->setAlsoPack(false); 6835 6836 // Finalize the recipe for Instr, first if it is not predicated. 6837 if (!IsPredicated) { 6838 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6839 VPBB->appendRecipe(Recipe); 6840 return VPBB; 6841 } 6842 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6843 assert(VPBB->getSuccessors().empty() && 6844 "VPBB has successors when handling predicated replication."); 6845 // Record predicated instructions for above packing optimizations. 6846 PredInst2Recipe[I] = Recipe; 6847 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6848 VPBlockUtils::insertBlockAfter(Region, VPBB); 6849 auto *RegSucc = new VPBasicBlock(); 6850 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6851 return RegSucc; 6852 } 6853 6854 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 6855 VPRecipeBase *PredRecipe, 6856 VPlanPtr &Plan) { 6857 // Instructions marked for predication are replicated and placed under an 6858 // if-then construct to prevent side-effects. 6859 6860 // Generate recipes to compute the block mask for this region. 6861 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6862 6863 // Build the triangular if-then region. 6864 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6865 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6866 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6867 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6868 auto *PHIRecipe = 6869 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6870 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6871 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6872 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6873 6874 // Note: first set Entry as region entry and then connect successors starting 6875 // from it in order, to propagate the "parent" of each VPBasicBlock. 6876 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 6877 VPBlockUtils::connectBlocks(Pred, Exit); 6878 6879 return Region; 6880 } 6881 6882 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 6883 VPlanPtr &Plan, VPBasicBlock *VPBB) { 6884 VPRecipeBase *Recipe = nullptr; 6885 // Check if Instr should belong to an interleave memory recipe, or already 6886 // does. In the latter case Instr is irrelevant. 6887 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 6888 VPBB->appendRecipe(Recipe); 6889 return true; 6890 } 6891 6892 // Check if Instr is a memory operation that should be widened. 6893 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 6894 VPBB->appendRecipe(Recipe); 6895 return true; 6896 } 6897 6898 // Check if Instr should form some PHI recipe. 6899 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 6900 VPBB->appendRecipe(Recipe); 6901 return true; 6902 } 6903 if ((Recipe = tryToBlend(Instr, Plan))) { 6904 VPBB->appendRecipe(Recipe); 6905 return true; 6906 } 6907 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 6908 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 6909 return true; 6910 } 6911 6912 // Check if Instr is to be widened by a general VPWidenRecipe, after 6913 // having first checked for specific widening recipes that deal with 6914 // Interleave Groups, Inductions and Phi nodes. 6915 if (tryToWiden(Instr, VPBB, Range)) 6916 return true; 6917 6918 return false; 6919 } 6920 6921 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 6922 unsigned MaxVF) { 6923 assert(OrigLoop->empty() && "Inner loop expected."); 6924 6925 // Collect conditions feeding internal conditional branches; they need to be 6926 // represented in VPlan for it to model masking. 6927 SmallPtrSet<Value *, 1> NeedDef; 6928 6929 auto *Latch = OrigLoop->getLoopLatch(); 6930 for (BasicBlock *BB : OrigLoop->blocks()) { 6931 if (BB == Latch) 6932 continue; 6933 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6934 if (Branch && Branch->isConditional()) 6935 NeedDef.insert(Branch->getCondition()); 6936 } 6937 6938 // Collect instructions from the original loop that will become trivially dead 6939 // in the vectorized loop. We don't need to vectorize these instructions. For 6940 // example, original induction update instructions can become dead because we 6941 // separately emit induction "steps" when generating code for the new loop. 6942 // Similarly, we create a new latch condition when setting up the structure 6943 // of the new loop, so the old one can become dead. 6944 SmallPtrSet<Instruction *, 4> DeadInstructions; 6945 collectTriviallyDeadInstructions(DeadInstructions); 6946 6947 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6948 VFRange SubRange = {VF, MaxVF + 1}; 6949 VPlans.push_back( 6950 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 6951 VF = SubRange.End; 6952 } 6953 } 6954 6955 LoopVectorizationPlanner::VPlanPtr 6956 LoopVectorizationPlanner::buildVPlanWithVPRecipes( 6957 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 6958 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6959 // Hold a mapping from predicated instructions to their recipes, in order to 6960 // fix their AlsoPack behavior if a user is determined to replicate and use a 6961 // scalar instead of vector value. 6962 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 6963 6964 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 6965 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 6966 6967 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 6968 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 6969 auto Plan = llvm::make_unique<VPlan>(VPBB); 6970 6971 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, TTI, Legal, CM, Builder); 6972 // Represent values that will have defs inside VPlan. 6973 for (Value *V : NeedDef) 6974 Plan->addVPValue(V); 6975 6976 // Scan the body of the loop in a topological order to visit each basic block 6977 // after having visited its predecessor basic blocks. 6978 LoopBlocksDFS DFS(OrigLoop); 6979 DFS.perform(LI); 6980 6981 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6982 // Relevant instructions from basic block BB will be grouped into VPRecipe 6983 // ingredients and fill a new VPBasicBlock. 6984 unsigned VPBBsForBB = 0; 6985 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 6986 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 6987 VPBB = FirstVPBBForBB; 6988 Builder.setInsertPoint(VPBB); 6989 6990 std::vector<Instruction *> Ingredients; 6991 6992 // Organize the ingredients to vectorize from current basic block in the 6993 // right order. 6994 for (Instruction &I : BB->instructionsWithoutDebug()) { 6995 Instruction *Instr = &I; 6996 6997 // First filter out irrelevant instructions, to ensure no recipes are 6998 // built for them. 6999 if (isa<BranchInst>(Instr) || 7000 DeadInstructions.find(Instr) != DeadInstructions.end()) 7001 continue; 7002 7003 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 7004 // member of the IG, do not construct any Recipe for it. 7005 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(Instr); 7006 if (IG && Instr != IG->getInsertPos() && 7007 Range.Start >= 2 && // Query is illegal for VF == 1 7008 CM.getWideningDecision(Instr, Range.Start) == 7009 LoopVectorizationCostModel::CM_Interleave) { 7010 auto SinkCandidate = SinkAfterInverse.find(Instr); 7011 if (SinkCandidate != SinkAfterInverse.end()) 7012 Ingredients.push_back(SinkCandidate->second); 7013 continue; 7014 } 7015 7016 // Move instructions to handle first-order recurrences, step 1: avoid 7017 // handling this instruction until after we've handled the instruction it 7018 // should follow. 7019 auto SAIt = SinkAfter.find(Instr); 7020 if (SAIt != SinkAfter.end()) { 7021 LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" 7022 << *SAIt->second 7023 << " to vectorize a 1st order recurrence.\n"); 7024 SinkAfterInverse[SAIt->second] = Instr; 7025 continue; 7026 } 7027 7028 Ingredients.push_back(Instr); 7029 7030 // Move instructions to handle first-order recurrences, step 2: push the 7031 // instruction to be sunk at its insertion point. 7032 auto SAInvIt = SinkAfterInverse.find(Instr); 7033 if (SAInvIt != SinkAfterInverse.end()) 7034 Ingredients.push_back(SAInvIt->second); 7035 } 7036 7037 // Introduce each ingredient into VPlan. 7038 for (Instruction *Instr : Ingredients) { 7039 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 7040 continue; 7041 7042 // Otherwise, if all widening options failed, Instruction is to be 7043 // replicated. This may create a successor for VPBB. 7044 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7045 Instr, Range, VPBB, PredInst2Recipe, Plan); 7046 if (NextVPBB != VPBB) { 7047 VPBB = NextVPBB; 7048 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7049 : ""); 7050 } 7051 } 7052 } 7053 7054 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7055 // may also be empty, such as the last one VPBB, reflecting original 7056 // basic-blocks with no recipes. 7057 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7058 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7059 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7060 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7061 delete PreEntry; 7062 7063 std::string PlanName; 7064 raw_string_ostream RSO(PlanName); 7065 unsigned VF = Range.Start; 7066 Plan->addVF(VF); 7067 RSO << "Initial VPlan for VF={" << VF; 7068 for (VF *= 2; VF < Range.End; VF *= 2) { 7069 Plan->addVF(VF); 7070 RSO << "," << VF; 7071 } 7072 RSO << "},UF>=1"; 7073 RSO.flush(); 7074 Plan->setName(PlanName); 7075 7076 return Plan; 7077 } 7078 7079 LoopVectorizationPlanner::VPlanPtr 7080 LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7081 // Outer loop handling: They may require CFG and instruction level 7082 // transformations before even evaluating whether vectorization is profitable. 7083 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7084 // the vectorization pipeline. 7085 assert(!OrigLoop->empty()); 7086 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7087 7088 // Create new empty VPlan 7089 auto Plan = llvm::make_unique<VPlan>(); 7090 7091 // Build hierarchical CFG 7092 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7093 HCFGBuilder.buildHierarchicalCFG(); 7094 7095 return Plan; 7096 } 7097 7098 Value* LoopVectorizationPlanner::VPCallbackILV:: 7099 getOrCreateVectorValues(Value *V, unsigned Part) { 7100 return ILV.getOrCreateVectorValue(V, Part); 7101 } 7102 7103 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 7104 O << " +\n" 7105 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7106 IG->getInsertPos()->printAsOperand(O, false); 7107 O << "\\l\""; 7108 for (unsigned i = 0; i < IG->getFactor(); ++i) 7109 if (Instruction *I = IG->getMember(i)) 7110 O << " +\n" 7111 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 7112 } 7113 7114 void VPWidenRecipe::execute(VPTransformState &State) { 7115 for (auto &Instr : make_range(Begin, End)) 7116 State.ILV->widenInstruction(Instr); 7117 } 7118 7119 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7120 assert(!State.Instance && "Int or FP induction being replicated."); 7121 State.ILV->widenIntOrFpInduction(IV, Trunc); 7122 } 7123 7124 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7125 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7126 } 7127 7128 void VPBlendRecipe::execute(VPTransformState &State) { 7129 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7130 // We know that all PHIs in non-header blocks are converted into 7131 // selects, so we don't have to worry about the insertion order and we 7132 // can just use the builder. 7133 // At this point we generate the predication tree. There may be 7134 // duplications since this is a simple recursive scan, but future 7135 // optimizations will clean it up. 7136 7137 unsigned NumIncoming = Phi->getNumIncomingValues(); 7138 7139 assert((User || NumIncoming == 1) && 7140 "Multiple predecessors with predecessors having a full mask"); 7141 // Generate a sequence of selects of the form: 7142 // SELECT(Mask3, In3, 7143 // SELECT(Mask2, In2, 7144 // ( ...))) 7145 InnerLoopVectorizer::VectorParts Entry(State.UF); 7146 for (unsigned In = 0; In < NumIncoming; ++In) { 7147 for (unsigned Part = 0; Part < State.UF; ++Part) { 7148 // We might have single edge PHIs (blocks) - use an identity 7149 // 'select' for the first PHI operand. 7150 Value *In0 = 7151 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 7152 if (In == 0) 7153 Entry[Part] = In0; // Initialize with the first incoming value. 7154 else { 7155 // Select between the current value and the previous incoming edge 7156 // based on the incoming mask. 7157 Value *Cond = State.get(User->getOperand(In), Part); 7158 Entry[Part] = 7159 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7160 } 7161 } 7162 } 7163 for (unsigned Part = 0; Part < State.UF; ++Part) 7164 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7165 } 7166 7167 void VPInterleaveRecipe::execute(VPTransformState &State) { 7168 assert(!State.Instance && "Interleave group being replicated."); 7169 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7170 } 7171 7172 void VPReplicateRecipe::execute(VPTransformState &State) { 7173 if (State.Instance) { // Generate a single instance. 7174 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7175 // Insert scalar instance packing it into a vector. 7176 if (AlsoPack && State.VF > 1) { 7177 // If we're constructing lane 0, initialize to start from undef. 7178 if (State.Instance->Lane == 0) { 7179 Value *Undef = 7180 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7181 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7182 } 7183 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7184 } 7185 return; 7186 } 7187 7188 // Generate scalar instances for all VF lanes of all UF parts, unless the 7189 // instruction is uniform inwhich case generate only the first lane for each 7190 // of the UF parts. 7191 unsigned EndLane = IsUniform ? 1 : State.VF; 7192 for (unsigned Part = 0; Part < State.UF; ++Part) 7193 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7194 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7195 } 7196 7197 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7198 assert(State.Instance && "Branch on Mask works only on single instance."); 7199 7200 unsigned Part = State.Instance->Part; 7201 unsigned Lane = State.Instance->Lane; 7202 7203 Value *ConditionBit = nullptr; 7204 if (!User) // Block in mask is all-one. 7205 ConditionBit = State.Builder.getTrue(); 7206 else { 7207 VPValue *BlockInMask = User->getOperand(0); 7208 ConditionBit = State.get(BlockInMask, Part); 7209 if (ConditionBit->getType()->isVectorTy()) 7210 ConditionBit = State.Builder.CreateExtractElement( 7211 ConditionBit, State.Builder.getInt32(Lane)); 7212 } 7213 7214 // Replace the temporary unreachable terminator with a new conditional branch, 7215 // whose two destinations will be set later when they are created. 7216 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7217 assert(isa<UnreachableInst>(CurrentTerminator) && 7218 "Expected to replace unreachable terminator with conditional branch."); 7219 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7220 CondBr->setSuccessor(0, nullptr); 7221 ReplaceInstWithInst(CurrentTerminator, CondBr); 7222 } 7223 7224 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7225 assert(State.Instance && "Predicated instruction PHI works per instance."); 7226 Instruction *ScalarPredInst = cast<Instruction>( 7227 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7228 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7229 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7230 assert(PredicatingBB && "Predicated block has no single predecessor."); 7231 7232 // By current pack/unpack logic we need to generate only a single phi node: if 7233 // a vector value for the predicated instruction exists at this point it means 7234 // the instruction has vector users only, and a phi for the vector value is 7235 // needed. In this case the recipe of the predicated instruction is marked to 7236 // also do that packing, thereby "hoisting" the insert-element sequence. 7237 // Otherwise, a phi node for the scalar value is needed. 7238 unsigned Part = State.Instance->Part; 7239 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7240 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7241 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7242 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7243 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7244 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7245 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7246 } else { 7247 Type *PredInstType = PredInst->getType(); 7248 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7249 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7250 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7251 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7252 } 7253 } 7254 7255 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7256 if (!User) 7257 return State.ILV->vectorizeMemoryInstruction(&Instr); 7258 7259 // Last (and currently only) operand is a mask. 7260 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7261 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7262 for (unsigned Part = 0; Part < State.UF; ++Part) 7263 MaskValues[Part] = State.get(Mask, Part); 7264 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7265 } 7266 7267 // Process the loop in the VPlan-native vectorization path. This path builds 7268 // VPlan upfront in the vectorization pipeline, which allows to apply 7269 // VPlan-to-VPlan transformations from the very beginning without modifying the 7270 // input LLVM IR. 7271 static bool processLoopInVPlanNativePath( 7272 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7273 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7274 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7275 OptimizationRemarkEmitter *ORE, LoopVectorizeHints &Hints) { 7276 7277 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7278 Function *F = L->getHeader()->getParent(); 7279 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7280 LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7281 &Hints, IAI); 7282 // Use the planner for outer loop vectorization. 7283 // TODO: CM is not used at this point inside the planner. Turn CM into an 7284 // optional argument if we don't need it in the future. 7285 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); 7286 7287 // Get user vectorization factor. 7288 unsigned UserVF = Hints.getWidth(); 7289 7290 // Check the function attributes to find out if this function should be 7291 // optimized for size. 7292 bool OptForSize = 7293 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7294 7295 // Plan how to best vectorize, return the best VF and its cost. 7296 LVP.planInVPlanNativePath(OptForSize, UserVF); 7297 7298 // Returning false. We are currently not generating vector code in the VPlan 7299 // native path. 7300 return false; 7301 } 7302 7303 bool LoopVectorizePass::processLoop(Loop *L) { 7304 assert((EnableVPlanNativePath || L->empty()) && 7305 "VPlan-native path is not enabled. Only process inner loops."); 7306 7307 #ifndef NDEBUG 7308 const std::string DebugLocStr = getDebugLocString(L); 7309 #endif /* NDEBUG */ 7310 7311 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7312 << L->getHeader()->getParent()->getName() << "\" from " 7313 << DebugLocStr << "\n"); 7314 7315 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7316 7317 LLVM_DEBUG( 7318 dbgs() << "LV: Loop hints:" 7319 << " force=" 7320 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7321 ? "disabled" 7322 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7323 ? "enabled" 7324 : "?")) 7325 << " width=" << Hints.getWidth() 7326 << " unroll=" << Hints.getInterleave() << "\n"); 7327 7328 // Function containing loop 7329 Function *F = L->getHeader()->getParent(); 7330 7331 // Looking at the diagnostic output is the only way to determine if a loop 7332 // was vectorized (other than looking at the IR or machine code), so it 7333 // is important to generate an optimization remark for each loop. Most of 7334 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7335 // generated as OptimizationRemark and OptimizationRemarkMissed are 7336 // less verbose reporting vectorized loops and unvectorized loops that may 7337 // benefit from vectorization, respectively. 7338 7339 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7340 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7341 return false; 7342 } 7343 7344 PredicatedScalarEvolution PSE(*SE, *L); 7345 7346 // Check if it is legal to vectorize the loop. 7347 LoopVectorizationRequirements Requirements(*ORE); 7348 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE, 7349 &Requirements, &Hints, DB, AC); 7350 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7351 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7352 emitMissedWarning(F, L, Hints, ORE); 7353 return false; 7354 } 7355 7356 // Check the function attributes to find out if this function should be 7357 // optimized for size. 7358 bool OptForSize = 7359 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7360 7361 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7362 // here. They may require CFG and instruction level transformations before 7363 // even evaluating whether vectorization is profitable. Since we cannot modify 7364 // the incoming IR, we need to build VPlan upfront in the vectorization 7365 // pipeline. 7366 if (!L->empty()) 7367 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7368 ORE, Hints); 7369 7370 assert(L->empty() && "Inner loop expected."); 7371 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7372 // count by optimizing for size, to minimize overheads. 7373 // Prefer constant trip counts over profile data, over upper bound estimate. 7374 unsigned ExpectedTC = 0; 7375 bool HasExpectedTC = false; 7376 if (const SCEVConstant *ConstExits = 7377 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 7378 const APInt &ExitsCount = ConstExits->getAPInt(); 7379 // We are interested in small values for ExpectedTC. Skip over those that 7380 // can't fit an unsigned. 7381 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 7382 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 7383 HasExpectedTC = true; 7384 } 7385 } 7386 // ExpectedTC may be large because it's bound by a variable. Check 7387 // profiling information to validate we should vectorize. 7388 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 7389 auto EstimatedTC = getLoopEstimatedTripCount(L); 7390 if (EstimatedTC) { 7391 ExpectedTC = *EstimatedTC; 7392 HasExpectedTC = true; 7393 } 7394 } 7395 if (!HasExpectedTC) { 7396 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 7397 HasExpectedTC = (ExpectedTC > 0); 7398 } 7399 7400 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 7401 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7402 << "This loop is worth vectorizing only if no scalar " 7403 << "iteration overheads are incurred."); 7404 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7405 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7406 else { 7407 LLVM_DEBUG(dbgs() << "\n"); 7408 // Loops with a very small trip count are considered for vectorization 7409 // under OptForSize, thereby making sure the cost of their loop body is 7410 // dominant, free of runtime guards and scalar iteration overheads. 7411 OptForSize = true; 7412 } 7413 } 7414 7415 // Check the function attributes to see if implicit floats are allowed. 7416 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7417 // an integer loop and the vector instructions selected are purely integer 7418 // vector instructions? 7419 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7420 LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7421 "attribute is used.\n"); 7422 ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7423 "NoImplicitFloat", L) 7424 << "loop not vectorized due to NoImplicitFloat attribute"); 7425 emitMissedWarning(F, L, Hints, ORE); 7426 return false; 7427 } 7428 7429 // Check if the target supports potentially unsafe FP vectorization. 7430 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7431 // for the target we're vectorizing for, to make sure none of the 7432 // additional fp-math flags can help. 7433 if (Hints.isPotentiallyUnsafe() && 7434 TTI->isFPVectorizationPotentiallyUnsafe()) { 7435 LLVM_DEBUG( 7436 dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7437 ORE->emit( 7438 createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7439 << "loop not vectorized due to unsafe FP support."); 7440 emitMissedWarning(F, L, Hints, ORE); 7441 return false; 7442 } 7443 7444 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7445 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7446 7447 // If an override option has been passed in for interleaved accesses, use it. 7448 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7449 UseInterleaved = EnableInterleavedMemAccesses; 7450 7451 // Analyze interleaved memory accesses. 7452 if (UseInterleaved) { 7453 IAI.analyzeInterleaving(); 7454 } 7455 7456 // Use the cost model. 7457 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7458 &Hints, IAI); 7459 CM.collectValuesToIgnore(); 7460 7461 // Use the planner for vectorization. 7462 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 7463 7464 // Get user vectorization factor. 7465 unsigned UserVF = Hints.getWidth(); 7466 7467 // Plan how to best vectorize, return the best VF and its cost. 7468 VectorizationFactor VF = LVP.plan(OptForSize, UserVF); 7469 7470 // Select the interleave count. 7471 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7472 7473 // Get user interleave count. 7474 unsigned UserIC = Hints.getInterleave(); 7475 7476 // Identify the diagnostic messages that should be produced. 7477 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7478 bool VectorizeLoop = true, InterleaveLoop = true; 7479 if (Requirements.doesNotMeet(F, L, Hints)) { 7480 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7481 "requirements.\n"); 7482 emitMissedWarning(F, L, Hints, ORE); 7483 return false; 7484 } 7485 7486 if (VF.Width == 1) { 7487 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7488 VecDiagMsg = std::make_pair( 7489 "VectorizationNotBeneficial", 7490 "the cost-model indicates that vectorization is not beneficial"); 7491 VectorizeLoop = false; 7492 } 7493 7494 if (IC == 1 && UserIC <= 1) { 7495 // Tell the user interleaving is not beneficial. 7496 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7497 IntDiagMsg = std::make_pair( 7498 "InterleavingNotBeneficial", 7499 "the cost-model indicates that interleaving is not beneficial"); 7500 InterleaveLoop = false; 7501 if (UserIC == 1) { 7502 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7503 IntDiagMsg.second += 7504 " and is explicitly disabled or interleave count is set to 1"; 7505 } 7506 } else if (IC > 1 && UserIC == 1) { 7507 // Tell the user interleaving is beneficial, but it explicitly disabled. 7508 LLVM_DEBUG( 7509 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7510 IntDiagMsg = std::make_pair( 7511 "InterleavingBeneficialButDisabled", 7512 "the cost-model indicates that interleaving is beneficial " 7513 "but is explicitly disabled or interleave count is set to 1"); 7514 InterleaveLoop = false; 7515 } 7516 7517 // Override IC if user provided an interleave count. 7518 IC = UserIC > 0 ? UserIC : IC; 7519 7520 // Emit diagnostic messages, if any. 7521 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7522 if (!VectorizeLoop && !InterleaveLoop) { 7523 // Do not vectorize or interleaving the loop. 7524 ORE->emit([&]() { 7525 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7526 L->getStartLoc(), L->getHeader()) 7527 << VecDiagMsg.second; 7528 }); 7529 ORE->emit([&]() { 7530 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7531 L->getStartLoc(), L->getHeader()) 7532 << IntDiagMsg.second; 7533 }); 7534 return false; 7535 } else if (!VectorizeLoop && InterleaveLoop) { 7536 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7537 ORE->emit([&]() { 7538 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7539 L->getStartLoc(), L->getHeader()) 7540 << VecDiagMsg.second; 7541 }); 7542 } else if (VectorizeLoop && !InterleaveLoop) { 7543 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7544 << ") in " << DebugLocStr << '\n'); 7545 ORE->emit([&]() { 7546 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7547 L->getStartLoc(), L->getHeader()) 7548 << IntDiagMsg.second; 7549 }); 7550 } else if (VectorizeLoop && InterleaveLoop) { 7551 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7552 << ") in " << DebugLocStr << '\n'); 7553 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7554 } 7555 7556 LVP.setBestPlan(VF.Width, IC); 7557 7558 using namespace ore; 7559 7560 if (!VectorizeLoop) { 7561 assert(IC > 1 && "interleave count should not be 1 or 0"); 7562 // If we decided that it is not legal to vectorize the loop, then 7563 // interleave it. 7564 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7565 &CM); 7566 LVP.executePlan(Unroller, DT); 7567 7568 ORE->emit([&]() { 7569 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7570 L->getHeader()) 7571 << "interleaved loop (interleaved count: " 7572 << NV("InterleaveCount", IC) << ")"; 7573 }); 7574 } else { 7575 // If we decided that it is *legal* to vectorize the loop, then do it. 7576 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7577 &LVL, &CM); 7578 LVP.executePlan(LB, DT); 7579 ++LoopsVectorized; 7580 7581 // Add metadata to disable runtime unrolling a scalar loop when there are 7582 // no runtime checks about strides and memory. A scalar loop that is 7583 // rarely used is not worth unrolling. 7584 if (!LB.areSafetyChecksAdded()) 7585 AddRuntimeUnrollDisableMetaData(L); 7586 7587 // Report the vectorization decision. 7588 ORE->emit([&]() { 7589 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7590 L->getHeader()) 7591 << "vectorized loop (vectorization width: " 7592 << NV("VectorizationFactor", VF.Width) 7593 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7594 }); 7595 } 7596 7597 // Mark the loop as already vectorized to avoid vectorizing again. 7598 Hints.setAlreadyVectorized(); 7599 7600 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7601 return true; 7602 } 7603 7604 bool LoopVectorizePass::runImpl( 7605 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7606 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7607 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7608 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7609 OptimizationRemarkEmitter &ORE_) { 7610 SE = &SE_; 7611 LI = &LI_; 7612 TTI = &TTI_; 7613 DT = &DT_; 7614 BFI = &BFI_; 7615 TLI = TLI_; 7616 AA = &AA_; 7617 AC = &AC_; 7618 GetLAA = &GetLAA_; 7619 DB = &DB_; 7620 ORE = &ORE_; 7621 7622 // Don't attempt if 7623 // 1. the target claims to have no vector registers, and 7624 // 2. interleaving won't help ILP. 7625 // 7626 // The second condition is necessary because, even if the target has no 7627 // vector registers, loop vectorization may still enable scalar 7628 // interleaving. 7629 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7630 return false; 7631 7632 bool Changed = false; 7633 7634 // The vectorizer requires loops to be in simplified form. 7635 // Since simplification may add new inner loops, it has to run before the 7636 // legality and profitability checks. This means running the loop vectorizer 7637 // will simplify all loops, regardless of whether anything end up being 7638 // vectorized. 7639 for (auto &L : *LI) 7640 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 7641 7642 // Build up a worklist of inner-loops to vectorize. This is necessary as 7643 // the act of vectorizing or partially unrolling a loop creates new loops 7644 // and can invalidate iterators across the loops. 7645 SmallVector<Loop *, 8> Worklist; 7646 7647 for (Loop *L : *LI) 7648 collectSupportedLoops(*L, LI, ORE, Worklist); 7649 7650 LoopsAnalyzed += Worklist.size(); 7651 7652 // Now walk the identified inner loops. 7653 while (!Worklist.empty()) { 7654 Loop *L = Worklist.pop_back_val(); 7655 7656 // For the inner loops we actually process, form LCSSA to simplify the 7657 // transform. 7658 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7659 7660 Changed |= processLoop(L); 7661 } 7662 7663 // Process each loop nest in the function. 7664 return Changed; 7665 } 7666 7667 PreservedAnalyses LoopVectorizePass::run(Function &F, 7668 FunctionAnalysisManager &AM) { 7669 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7670 auto &LI = AM.getResult<LoopAnalysis>(F); 7671 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7672 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7673 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7674 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7675 auto &AA = AM.getResult<AAManager>(F); 7676 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7677 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7678 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7679 7680 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7681 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7682 [&](Loop &L) -> const LoopAccessInfo & { 7683 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 7684 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7685 }; 7686 bool Changed = 7687 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7688 if (!Changed) 7689 return PreservedAnalyses::all(); 7690 PreservedAnalyses PA; 7691 PA.preserve<LoopAnalysis>(); 7692 PA.preserve<DominatorTreeAnalysis>(); 7693 PA.preserve<BasicAA>(); 7694 PA.preserve<GlobalsAA>(); 7695 return PA; 7696 } 7697