1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 static const char *const LLVMLoopVectorizeFollowupAll = 163 "llvm.loop.vectorize.followup_all"; 164 static const char *const LLVMLoopVectorizeFollowupVectorized = 165 "llvm.loop.vectorize.followup_vectorized"; 166 static const char *const LLVMLoopVectorizeFollowupEpilogue = 167 "llvm.loop.vectorize.followup_epilogue"; 168 /// @} 169 170 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 172 173 /// Loops with a known constant trip count below this number are vectorized only 174 /// if no scalar iteration overheads are incurred. 175 static cl::opt<unsigned> TinyTripCountVectorThreshold( 176 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 177 cl::desc("Loops with a constant trip count that is smaller than this " 178 "value are vectorized only if no scalar iteration overheads " 179 "are incurred.")); 180 181 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 182 // that predication is preferred, and this lists all options. I.e., the 183 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 184 // and predicate the instructions accordingly. If tail-folding fails, there are 185 // different fallback strategies depending on these values: 186 namespace PreferPredicateTy { 187 enum Option { 188 ScalarEpilogue = 0, 189 PredicateElseScalarEpilogue, 190 PredicateOrDontVectorize 191 }; 192 } // namespace PreferPredicateTy 193 194 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 195 "prefer-predicate-over-epilogue", 196 cl::init(PreferPredicateTy::ScalarEpilogue), 197 cl::Hidden, 198 cl::desc("Tail-folding and predication preferences over creating a scalar " 199 "epilogue loop."), 200 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 201 "scalar-epilogue", 202 "Don't tail-predicate loops, create scalar epilogue"), 203 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 204 "predicate-else-scalar-epilogue", 205 "prefer tail-folding, create scalar epilogue if tail " 206 "folding fails."), 207 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 208 "predicate-dont-vectorize", 209 "prefers tail-folding, don't attempt vectorization if " 210 "tail-folding fails."))); 211 212 static cl::opt<bool> MaximizeBandwidth( 213 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 214 cl::desc("Maximize bandwidth when selecting vectorization factor which " 215 "will be determined by the smallest type in loop.")); 216 217 static cl::opt<bool> EnableInterleavedMemAccesses( 218 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 219 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 220 221 /// An interleave-group may need masking if it resides in a block that needs 222 /// predication, or in order to mask away gaps. 223 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 224 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 225 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 226 227 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 228 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 229 cl::desc("We don't interleave loops with a estimated constant trip count " 230 "below this number")); 231 232 static cl::opt<unsigned> ForceTargetNumScalarRegs( 233 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 234 cl::desc("A flag that overrides the target's number of scalar registers.")); 235 236 static cl::opt<unsigned> ForceTargetNumVectorRegs( 237 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 238 cl::desc("A flag that overrides the target's number of vector registers.")); 239 240 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 241 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 242 cl::desc("A flag that overrides the target's max interleave factor for " 243 "scalar loops.")); 244 245 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 246 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 247 cl::desc("A flag that overrides the target's max interleave factor for " 248 "vectorized loops.")); 249 250 static cl::opt<unsigned> ForceTargetInstructionCost( 251 "force-target-instruction-cost", cl::init(0), cl::Hidden, 252 cl::desc("A flag that overrides the target's expected cost for " 253 "an instruction to a single constant value. Mostly " 254 "useful for getting consistent testing.")); 255 256 static cl::opt<unsigned> SmallLoopCost( 257 "small-loop-cost", cl::init(20), cl::Hidden, 258 cl::desc( 259 "The cost of a loop that is considered 'small' by the interleaver.")); 260 261 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 262 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 263 cl::desc("Enable the use of the block frequency analysis to access PGO " 264 "heuristics minimizing code growth in cold regions and being more " 265 "aggressive in hot regions.")); 266 267 // Runtime interleave loops for load/store throughput. 268 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 269 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 270 cl::desc( 271 "Enable runtime interleaving until load/store ports are saturated")); 272 273 /// Interleave small loops with scalar reductions. 274 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 275 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 276 cl::desc("Enable interleaving for loops with small iteration counts that " 277 "contain scalar reductions to expose ILP.")); 278 279 /// The number of stores in a loop that are allowed to need predication. 280 static cl::opt<unsigned> NumberOfStoresToPredicate( 281 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 282 cl::desc("Max number of stores to be predicated behind an if.")); 283 284 static cl::opt<bool> EnableIndVarRegisterHeur( 285 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 286 cl::desc("Count the induction variable only once when interleaving")); 287 288 static cl::opt<bool> EnableCondStoresVectorization( 289 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 290 cl::desc("Enable if predication of stores during vectorization.")); 291 292 static cl::opt<unsigned> MaxNestedScalarReductionIC( 293 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 294 cl::desc("The maximum interleave count to use when interleaving a scalar " 295 "reduction in a nested loop.")); 296 297 static cl::opt<bool> 298 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 299 cl::Hidden, 300 cl::desc("Prefer in-loop vector reductions, " 301 "overriding the targets preference.")); 302 303 static cl::opt<bool> PreferPredicatedReductionSelect( 304 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 305 cl::desc( 306 "Prefer predicating a reduction operation over an after loop select.")); 307 308 cl::opt<bool> EnableVPlanNativePath( 309 "enable-vplan-native-path", cl::init(false), cl::Hidden, 310 cl::desc("Enable VPlan-native vectorization path with " 311 "support for outer loop vectorization.")); 312 313 // FIXME: Remove this switch once we have divergence analysis. Currently we 314 // assume divergent non-backedge branches when this switch is true. 315 cl::opt<bool> EnableVPlanPredication( 316 "enable-vplan-predication", cl::init(false), cl::Hidden, 317 cl::desc("Enable VPlan-native vectorization path predicator with " 318 "support for outer loop vectorization.")); 319 320 // This flag enables the stress testing of the VPlan H-CFG construction in the 321 // VPlan-native vectorization path. It must be used in conjuction with 322 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 323 // verification of the H-CFGs built. 324 static cl::opt<bool> VPlanBuildStressTest( 325 "vplan-build-stress-test", cl::init(false), cl::Hidden, 326 cl::desc( 327 "Build VPlan for every supported loop nest in the function and bail " 328 "out right after the build (stress test the VPlan H-CFG construction " 329 "in the VPlan-native vectorization path).")); 330 331 cl::opt<bool> llvm::EnableLoopInterleaving( 332 "interleave-loops", cl::init(true), cl::Hidden, 333 cl::desc("Enable loop interleaving in Loop vectorization passes")); 334 cl::opt<bool> llvm::EnableLoopVectorization( 335 "vectorize-loops", cl::init(true), cl::Hidden, 336 cl::desc("Run the Loop vectorization passes")); 337 338 /// A helper function that returns the type of loaded or stored value. 339 static Type *getMemInstValueType(Value *I) { 340 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 341 "Expected Load or Store instruction"); 342 if (auto *LI = dyn_cast<LoadInst>(I)) 343 return LI->getType(); 344 return cast<StoreInst>(I)->getValueOperand()->getType(); 345 } 346 347 /// A helper function that returns true if the given type is irregular. The 348 /// type is irregular if its allocated size doesn't equal the store size of an 349 /// element of the corresponding vector type at the given vectorization factor. 350 static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) { 351 assert(!VF.isScalable() && "scalable vectors not yet supported."); 352 // Determine if an array of VF elements of type Ty is "bitcast compatible" 353 // with a <VF x Ty> vector. 354 if (VF.isVector()) { 355 auto *VectorTy = VectorType::get(Ty, VF); 356 return TypeSize::get(VF.getKnownMinValue() * 357 DL.getTypeAllocSize(Ty).getFixedValue(), 358 VF.isScalable()) != DL.getTypeStoreSize(VectorTy); 359 } 360 361 // If the vectorization factor is one, we just check if an array of type Ty 362 // requires padding between elements. 363 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 364 } 365 366 /// A helper function that returns the reciprocal of the block probability of 367 /// predicated blocks. If we return X, we are assuming the predicated block 368 /// will execute once for every X iterations of the loop header. 369 /// 370 /// TODO: We should use actual block probability here, if available. Currently, 371 /// we always assume predicated blocks have a 50% chance of executing. 372 static unsigned getReciprocalPredBlockProb() { return 2; } 373 374 /// A helper function that adds a 'fast' flag to floating-point operations. 375 static Value *addFastMathFlag(Value *V) { 376 if (isa<FPMathOperator>(V)) 377 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 378 return V; 379 } 380 381 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 382 if (isa<FPMathOperator>(V)) 383 cast<Instruction>(V)->setFastMathFlags(FMF); 384 return V; 385 } 386 387 /// A helper function that returns an integer or floating-point constant with 388 /// value C. 389 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 390 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 391 : ConstantFP::get(Ty, C); 392 } 393 394 /// Returns "best known" trip count for the specified loop \p L as defined by 395 /// the following procedure: 396 /// 1) Returns exact trip count if it is known. 397 /// 2) Returns expected trip count according to profile data if any. 398 /// 3) Returns upper bound estimate if it is known. 399 /// 4) Returns None if all of the above failed. 400 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 401 // Check if exact trip count is known. 402 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 403 return ExpectedTC; 404 405 // Check if there is an expected trip count available from profile data. 406 if (LoopVectorizeWithBlockFrequency) 407 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 408 return EstimatedTC; 409 410 // Check if upper bound estimate is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 412 return ExpectedTC; 413 414 return None; 415 } 416 417 namespace llvm { 418 419 /// InnerLoopVectorizer vectorizes loops which contain only one basic 420 /// block to a specified vectorization factor (VF). 421 /// This class performs the widening of scalars into vectors, or multiple 422 /// scalars. This class also implements the following features: 423 /// * It inserts an epilogue loop for handling loops that don't have iteration 424 /// counts that are known to be a multiple of the vectorization factor. 425 /// * It handles the code generation for reduction variables. 426 /// * Scalarization (implementation using scalars) of un-vectorizable 427 /// instructions. 428 /// InnerLoopVectorizer does not perform any vectorization-legality 429 /// checks, and relies on the caller to check for the different legality 430 /// aspects. The InnerLoopVectorizer relies on the 431 /// LoopVectorizationLegality class to provide information about the induction 432 /// and reduction variables that were found to a given vectorization factor. 433 class InnerLoopVectorizer { 434 public: 435 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 436 LoopInfo *LI, DominatorTree *DT, 437 const TargetLibraryInfo *TLI, 438 const TargetTransformInfo *TTI, AssumptionCache *AC, 439 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 440 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 441 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 442 ProfileSummaryInfo *PSI) 443 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 444 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 445 Builder(PSE.getSE()->getContext()), 446 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM), 447 BFI(BFI), PSI(PSI) { 448 // Query this against the original loop and save it here because the profile 449 // of the original loop header may change as the transformation happens. 450 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 451 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 452 } 453 454 virtual ~InnerLoopVectorizer() = default; 455 456 /// Create a new empty loop that will contain vectorized instructions later 457 /// on, while the old loop will be used as the scalar remainder. Control flow 458 /// is generated around the vectorized (and scalar epilogue) loops consisting 459 /// of various checks and bypasses. Return the pre-header block of the new 460 /// loop. 461 BasicBlock *createVectorizedLoopSkeleton(); 462 463 /// Widen a single instruction within the innermost loop. 464 void widenInstruction(Instruction &I, VPUser &Operands, 465 VPTransformState &State); 466 467 /// Widen a single call instruction within the innermost loop. 468 void widenCallInstruction(CallInst &I, VPUser &ArgOperands, 469 VPTransformState &State); 470 471 /// Widen a single select instruction within the innermost loop. 472 void widenSelectInstruction(SelectInst &I, VPUser &Operands, 473 bool InvariantCond, VPTransformState &State); 474 475 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 476 void fixVectorizedLoop(); 477 478 // Return true if any runtime check is added. 479 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 480 481 /// A type for vectorized values in the new loop. Each value from the 482 /// original loop, when vectorized, is represented by UF vector values in the 483 /// new unrolled loop, where UF is the unroll factor. 484 using VectorParts = SmallVector<Value *, 2>; 485 486 /// Vectorize a single GetElementPtrInst based on information gathered and 487 /// decisions taken during planning. 488 void widenGEP(GetElementPtrInst *GEP, VPUser &Indices, unsigned UF, 489 ElementCount VF, bool IsPtrLoopInvariant, 490 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 491 492 /// Vectorize a single PHINode in a block. This method handles the induction 493 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 494 /// arbitrary length vectors. 495 void widenPHIInstruction(Instruction *PN, unsigned UF, ElementCount VF); 496 497 /// A helper function to scalarize a single Instruction in the innermost loop. 498 /// Generates a sequence of scalar instances for each lane between \p MinLane 499 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 500 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 501 /// Instr's operands. 502 void scalarizeInstruction(Instruction *Instr, VPUser &Operands, 503 const VPIteration &Instance, bool IfPredicateInstr, 504 VPTransformState &State); 505 506 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 507 /// is provided, the integer induction variable will first be truncated to 508 /// the corresponding type. 509 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 510 511 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 512 /// vector or scalar value on-demand if one is not yet available. When 513 /// vectorizing a loop, we visit the definition of an instruction before its 514 /// uses. When visiting the definition, we either vectorize or scalarize the 515 /// instruction, creating an entry for it in the corresponding map. (In some 516 /// cases, such as induction variables, we will create both vector and scalar 517 /// entries.) Then, as we encounter uses of the definition, we derive values 518 /// for each scalar or vector use unless such a value is already available. 519 /// For example, if we scalarize a definition and one of its uses is vector, 520 /// we build the required vector on-demand with an insertelement sequence 521 /// when visiting the use. Otherwise, if the use is scalar, we can use the 522 /// existing scalar definition. 523 /// 524 /// Return a value in the new loop corresponding to \p V from the original 525 /// loop at unroll index \p Part. If the value has already been vectorized, 526 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 527 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 528 /// a new vector value on-demand by inserting the scalar values into a vector 529 /// with an insertelement sequence. If the value has been neither vectorized 530 /// nor scalarized, it must be loop invariant, so we simply broadcast the 531 /// value into a vector. 532 Value *getOrCreateVectorValue(Value *V, unsigned Part); 533 534 void setVectorValue(Value *Scalar, unsigned Part, Value *Vector) { 535 VectorLoopValueMap.setVectorValue(Scalar, Part, Vector); 536 } 537 538 /// Return a value in the new loop corresponding to \p V from the original 539 /// loop at unroll and vector indices \p Instance. If the value has been 540 /// vectorized but not scalarized, the necessary extractelement instruction 541 /// will be generated. 542 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 543 544 /// Construct the vector value of a scalarized value \p V one lane at a time. 545 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 546 547 /// Try to vectorize interleaved access group \p Group with the base address 548 /// given in \p Addr, optionally masking the vector operations if \p 549 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 550 /// values in the vectorized loop. 551 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 552 VPTransformState &State, VPValue *Addr, 553 VPValue *BlockInMask = nullptr); 554 555 /// Vectorize Load and Store instructions with the base address given in \p 556 /// Addr, optionally masking the vector operations if \p BlockInMask is 557 /// non-null. Use \p State to translate given VPValues to IR values in the 558 /// vectorized loop. 559 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 560 VPValue *Def, VPValue *Addr, 561 VPValue *StoredValue, VPValue *BlockInMask); 562 563 /// Set the debug location in the builder using the debug location in 564 /// the instruction. 565 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 566 567 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 568 void fixNonInductionPHIs(void); 569 570 protected: 571 friend class LoopVectorizationPlanner; 572 573 /// A small list of PHINodes. 574 using PhiVector = SmallVector<PHINode *, 4>; 575 576 /// A type for scalarized values in the new loop. Each value from the 577 /// original loop, when scalarized, is represented by UF x VF scalar values 578 /// in the new unrolled loop, where UF is the unroll factor and VF is the 579 /// vectorization factor. 580 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 581 582 /// Set up the values of the IVs correctly when exiting the vector loop. 583 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 584 Value *CountRoundDown, Value *EndValue, 585 BasicBlock *MiddleBlock); 586 587 /// Create a new induction variable inside L. 588 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 589 Value *Step, Instruction *DL); 590 591 /// Handle all cross-iteration phis in the header. 592 void fixCrossIterationPHIs(); 593 594 /// Fix a first-order recurrence. This is the second phase of vectorizing 595 /// this phi node. 596 void fixFirstOrderRecurrence(PHINode *Phi); 597 598 /// Fix a reduction cross-iteration phi. This is the second phase of 599 /// vectorizing this phi node. 600 void fixReduction(PHINode *Phi); 601 602 /// Clear NSW/NUW flags from reduction instructions if necessary. 603 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 604 605 /// The Loop exit block may have single value PHI nodes with some 606 /// incoming value. While vectorizing we only handled real values 607 /// that were defined inside the loop and we should have one value for 608 /// each predecessor of its parent basic block. See PR14725. 609 void fixLCSSAPHIs(); 610 611 /// Iteratively sink the scalarized operands of a predicated instruction into 612 /// the block that was created for it. 613 void sinkScalarOperands(Instruction *PredInst); 614 615 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 616 /// represented as. 617 void truncateToMinimalBitwidths(); 618 619 /// Create a broadcast instruction. This method generates a broadcast 620 /// instruction (shuffle) for loop invariant values and for the induction 621 /// value. If this is the induction variable then we extend it to N, N+1, ... 622 /// this is needed because each iteration in the loop corresponds to a SIMD 623 /// element. 624 virtual Value *getBroadcastInstrs(Value *V); 625 626 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 627 /// to each vector element of Val. The sequence starts at StartIndex. 628 /// \p Opcode is relevant for FP induction variable. 629 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 630 Instruction::BinaryOps Opcode = 631 Instruction::BinaryOpsEnd); 632 633 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 634 /// variable on which to base the steps, \p Step is the size of the step, and 635 /// \p EntryVal is the value from the original loop that maps to the steps. 636 /// Note that \p EntryVal doesn't have to be an induction variable - it 637 /// can also be a truncate instruction. 638 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 639 const InductionDescriptor &ID); 640 641 /// Create a vector induction phi node based on an existing scalar one. \p 642 /// EntryVal is the value from the original loop that maps to the vector phi 643 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 644 /// truncate instruction, instead of widening the original IV, we widen a 645 /// version of the IV truncated to \p EntryVal's type. 646 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 647 Value *Step, Instruction *EntryVal); 648 649 /// Returns true if an instruction \p I should be scalarized instead of 650 /// vectorized for the chosen vectorization factor. 651 bool shouldScalarizeInstruction(Instruction *I) const; 652 653 /// Returns true if we should generate a scalar version of \p IV. 654 bool needsScalarInduction(Instruction *IV) const; 655 656 /// If there is a cast involved in the induction variable \p ID, which should 657 /// be ignored in the vectorized loop body, this function records the 658 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 659 /// cast. We had already proved that the casted Phi is equal to the uncasted 660 /// Phi in the vectorized loop (under a runtime guard), and therefore 661 /// there is no need to vectorize the cast - the same value can be used in the 662 /// vector loop for both the Phi and the cast. 663 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 664 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 665 /// 666 /// \p EntryVal is the value from the original loop that maps to the vector 667 /// phi node and is used to distinguish what is the IV currently being 668 /// processed - original one (if \p EntryVal is a phi corresponding to the 669 /// original IV) or the "newly-created" one based on the proof mentioned above 670 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 671 /// latter case \p EntryVal is a TruncInst and we must not record anything for 672 /// that IV, but it's error-prone to expect callers of this routine to care 673 /// about that, hence this explicit parameter. 674 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 675 const Instruction *EntryVal, 676 Value *VectorLoopValue, 677 unsigned Part, 678 unsigned Lane = UINT_MAX); 679 680 /// Generate a shuffle sequence that will reverse the vector Vec. 681 virtual Value *reverseVector(Value *Vec); 682 683 /// Returns (and creates if needed) the original loop trip count. 684 Value *getOrCreateTripCount(Loop *NewLoop); 685 686 /// Returns (and creates if needed) the trip count of the widened loop. 687 Value *getOrCreateVectorTripCount(Loop *NewLoop); 688 689 /// Returns a bitcasted value to the requested vector type. 690 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 691 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 692 const DataLayout &DL); 693 694 /// Emit a bypass check to see if the vector trip count is zero, including if 695 /// it overflows. 696 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 697 698 /// Emit a bypass check to see if all of the SCEV assumptions we've 699 /// had to make are correct. 700 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 701 702 /// Emit bypass checks to check any memory assumptions we may have made. 703 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 704 705 /// Compute the transformed value of Index at offset StartValue using step 706 /// StepValue. 707 /// For integer induction, returns StartValue + Index * StepValue. 708 /// For pointer induction, returns StartValue[Index * StepValue]. 709 /// FIXME: The newly created binary instructions should contain nsw/nuw 710 /// flags, which can be found from the original scalar operations. 711 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 712 const DataLayout &DL, 713 const InductionDescriptor &ID) const; 714 715 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 716 /// vector loop preheader, middle block and scalar preheader. Also 717 /// allocate a loop object for the new vector loop and return it. 718 Loop *createVectorLoopSkeleton(StringRef Prefix); 719 720 /// Create new phi nodes for the induction variables to resume iteration count 721 /// in the scalar epilogue, from where the vectorized loop left off (given by 722 /// \p VectorTripCount). 723 void createInductionResumeValues(Loop *L, Value *VectorTripCount); 724 725 /// Complete the loop skeleton by adding debug MDs, creating appropriate 726 /// conditional branches in the middle block, preparing the builder and 727 /// running the verifier. Take in the vector loop \p L as argument, and return 728 /// the preheader of the completed vector loop. 729 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 730 731 /// Add additional metadata to \p To that was not present on \p Orig. 732 /// 733 /// Currently this is used to add the noalias annotations based on the 734 /// inserted memchecks. Use this for instructions that are *cloned* into the 735 /// vector loop. 736 void addNewMetadata(Instruction *To, const Instruction *Orig); 737 738 /// Add metadata from one instruction to another. 739 /// 740 /// This includes both the original MDs from \p From and additional ones (\see 741 /// addNewMetadata). Use this for *newly created* instructions in the vector 742 /// loop. 743 void addMetadata(Instruction *To, Instruction *From); 744 745 /// Similar to the previous function but it adds the metadata to a 746 /// vector of instructions. 747 void addMetadata(ArrayRef<Value *> To, Instruction *From); 748 749 /// The original loop. 750 Loop *OrigLoop; 751 752 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 753 /// dynamic knowledge to simplify SCEV expressions and converts them to a 754 /// more usable form. 755 PredicatedScalarEvolution &PSE; 756 757 /// Loop Info. 758 LoopInfo *LI; 759 760 /// Dominator Tree. 761 DominatorTree *DT; 762 763 /// Alias Analysis. 764 AAResults *AA; 765 766 /// Target Library Info. 767 const TargetLibraryInfo *TLI; 768 769 /// Target Transform Info. 770 const TargetTransformInfo *TTI; 771 772 /// Assumption Cache. 773 AssumptionCache *AC; 774 775 /// Interface to emit optimization remarks. 776 OptimizationRemarkEmitter *ORE; 777 778 /// LoopVersioning. It's only set up (non-null) if memchecks were 779 /// used. 780 /// 781 /// This is currently only used to add no-alias metadata based on the 782 /// memchecks. The actually versioning is performed manually. 783 std::unique_ptr<LoopVersioning> LVer; 784 785 /// The vectorization SIMD factor to use. Each vector will have this many 786 /// vector elements. 787 ElementCount VF; 788 789 /// The vectorization unroll factor to use. Each scalar is vectorized to this 790 /// many different vector instructions. 791 unsigned UF; 792 793 /// The builder that we use 794 IRBuilder<> Builder; 795 796 // --- Vectorization state --- 797 798 /// The vector-loop preheader. 799 BasicBlock *LoopVectorPreHeader; 800 801 /// The scalar-loop preheader. 802 BasicBlock *LoopScalarPreHeader; 803 804 /// Middle Block between the vector and the scalar. 805 BasicBlock *LoopMiddleBlock; 806 807 /// The ExitBlock of the scalar loop. 808 BasicBlock *LoopExitBlock; 809 810 /// The vector loop body. 811 BasicBlock *LoopVectorBody; 812 813 /// The scalar loop body. 814 BasicBlock *LoopScalarBody; 815 816 /// A list of all bypass blocks. The first block is the entry of the loop. 817 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 818 819 /// The new Induction variable which was added to the new block. 820 PHINode *Induction = nullptr; 821 822 /// The induction variable of the old basic block. 823 PHINode *OldInduction = nullptr; 824 825 /// Maps values from the original loop to their corresponding values in the 826 /// vectorized loop. A key value can map to either vector values, scalar 827 /// values or both kinds of values, depending on whether the key was 828 /// vectorized and scalarized. 829 VectorizerValueMap VectorLoopValueMap; 830 831 /// Store instructions that were predicated. 832 SmallVector<Instruction *, 4> PredicatedInstructions; 833 834 /// Trip count of the original loop. 835 Value *TripCount = nullptr; 836 837 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 838 Value *VectorTripCount = nullptr; 839 840 /// The legality analysis. 841 LoopVectorizationLegality *Legal; 842 843 /// The profitablity analysis. 844 LoopVectorizationCostModel *Cost; 845 846 // Record whether runtime checks are added. 847 bool AddedSafetyChecks = false; 848 849 // Holds the end values for each induction variable. We save the end values 850 // so we can later fix-up the external users of the induction variables. 851 DenseMap<PHINode *, Value *> IVEndValues; 852 853 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 854 // fixed up at the end of vector code generation. 855 SmallVector<PHINode *, 8> OrigPHIsToFix; 856 857 /// BFI and PSI are used to check for profile guided size optimizations. 858 BlockFrequencyInfo *BFI; 859 ProfileSummaryInfo *PSI; 860 861 // Whether this loop should be optimized for size based on profile guided size 862 // optimizatios. 863 bool OptForSizeBasedOnProfile; 864 }; 865 866 class InnerLoopUnroller : public InnerLoopVectorizer { 867 public: 868 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 869 LoopInfo *LI, DominatorTree *DT, 870 const TargetLibraryInfo *TLI, 871 const TargetTransformInfo *TTI, AssumptionCache *AC, 872 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 873 LoopVectorizationLegality *LVL, 874 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 875 ProfileSummaryInfo *PSI) 876 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 877 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 878 BFI, PSI) {} 879 880 private: 881 Value *getBroadcastInstrs(Value *V) override; 882 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 883 Instruction::BinaryOps Opcode = 884 Instruction::BinaryOpsEnd) override; 885 Value *reverseVector(Value *Vec) override; 886 }; 887 888 } // end namespace llvm 889 890 /// Look for a meaningful debug location on the instruction or it's 891 /// operands. 892 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 893 if (!I) 894 return I; 895 896 DebugLoc Empty; 897 if (I->getDebugLoc() != Empty) 898 return I; 899 900 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 901 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 902 if (OpInst->getDebugLoc() != Empty) 903 return OpInst; 904 } 905 906 return I; 907 } 908 909 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 910 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 911 const DILocation *DIL = Inst->getDebugLoc(); 912 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 913 !isa<DbgInfoIntrinsic>(Inst)) { 914 assert(!VF.isScalable() && "scalable vectors not yet supported."); 915 auto NewDIL = 916 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 917 if (NewDIL) 918 B.SetCurrentDebugLocation(NewDIL.getValue()); 919 else 920 LLVM_DEBUG(dbgs() 921 << "Failed to create new discriminator: " 922 << DIL->getFilename() << " Line: " << DIL->getLine()); 923 } 924 else 925 B.SetCurrentDebugLocation(DIL); 926 } else 927 B.SetCurrentDebugLocation(DebugLoc()); 928 } 929 930 /// Write a record \p DebugMsg about vectorization failure to the debug 931 /// output stream. If \p I is passed, it is an instruction that prevents 932 /// vectorization. 933 #ifndef NDEBUG 934 static void debugVectorizationFailure(const StringRef DebugMsg, 935 Instruction *I) { 936 dbgs() << "LV: Not vectorizing: " << DebugMsg; 937 if (I != nullptr) 938 dbgs() << " " << *I; 939 else 940 dbgs() << '.'; 941 dbgs() << '\n'; 942 } 943 #endif 944 945 /// Create an analysis remark that explains why vectorization failed 946 /// 947 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 948 /// RemarkName is the identifier for the remark. If \p I is passed it is an 949 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 950 /// the location of the remark. \return the remark object that can be 951 /// streamed to. 952 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 953 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 954 Value *CodeRegion = TheLoop->getHeader(); 955 DebugLoc DL = TheLoop->getStartLoc(); 956 957 if (I) { 958 CodeRegion = I->getParent(); 959 // If there is no debug location attached to the instruction, revert back to 960 // using the loop's. 961 if (I->getDebugLoc()) 962 DL = I->getDebugLoc(); 963 } 964 965 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 966 R << "loop not vectorized: "; 967 return R; 968 } 969 970 namespace llvm { 971 972 void reportVectorizationFailure(const StringRef DebugMsg, 973 const StringRef OREMsg, const StringRef ORETag, 974 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 975 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 976 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 977 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 978 ORETag, TheLoop, I) << OREMsg); 979 } 980 981 } // end namespace llvm 982 983 #ifndef NDEBUG 984 /// \return string containing a file name and a line # for the given loop. 985 static std::string getDebugLocString(const Loop *L) { 986 std::string Result; 987 if (L) { 988 raw_string_ostream OS(Result); 989 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 990 LoopDbgLoc.print(OS); 991 else 992 // Just print the module name. 993 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 994 OS.flush(); 995 } 996 return Result; 997 } 998 #endif 999 1000 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1001 const Instruction *Orig) { 1002 // If the loop was versioned with memchecks, add the corresponding no-alias 1003 // metadata. 1004 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1005 LVer->annotateInstWithNoAlias(To, Orig); 1006 } 1007 1008 void InnerLoopVectorizer::addMetadata(Instruction *To, 1009 Instruction *From) { 1010 propagateMetadata(To, From); 1011 addNewMetadata(To, From); 1012 } 1013 1014 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1015 Instruction *From) { 1016 for (Value *V : To) { 1017 if (Instruction *I = dyn_cast<Instruction>(V)) 1018 addMetadata(I, From); 1019 } 1020 } 1021 1022 namespace llvm { 1023 1024 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1025 // lowered. 1026 enum ScalarEpilogueLowering { 1027 1028 // The default: allowing scalar epilogues. 1029 CM_ScalarEpilogueAllowed, 1030 1031 // Vectorization with OptForSize: don't allow epilogues. 1032 CM_ScalarEpilogueNotAllowedOptSize, 1033 1034 // A special case of vectorisation with OptForSize: loops with a very small 1035 // trip count are considered for vectorization under OptForSize, thereby 1036 // making sure the cost of their loop body is dominant, free of runtime 1037 // guards and scalar iteration overheads. 1038 CM_ScalarEpilogueNotAllowedLowTripLoop, 1039 1040 // Loop hint predicate indicating an epilogue is undesired. 1041 CM_ScalarEpilogueNotNeededUsePredicate 1042 }; 1043 1044 /// LoopVectorizationCostModel - estimates the expected speedups due to 1045 /// vectorization. 1046 /// In many cases vectorization is not profitable. This can happen because of 1047 /// a number of reasons. In this class we mainly attempt to predict the 1048 /// expected speedup/slowdowns due to the supported instruction set. We use the 1049 /// TargetTransformInfo to query the different backends for the cost of 1050 /// different operations. 1051 class LoopVectorizationCostModel { 1052 public: 1053 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1054 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1055 LoopVectorizationLegality *Legal, 1056 const TargetTransformInfo &TTI, 1057 const TargetLibraryInfo *TLI, DemandedBits *DB, 1058 AssumptionCache *AC, 1059 OptimizationRemarkEmitter *ORE, const Function *F, 1060 const LoopVectorizeHints *Hints, 1061 InterleavedAccessInfo &IAI) 1062 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1063 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1064 Hints(Hints), InterleaveInfo(IAI) {} 1065 1066 /// \return An upper bound for the vectorization factor, or None if 1067 /// vectorization and interleaving should be avoided up front. 1068 Optional<unsigned> computeMaxVF(unsigned UserVF, unsigned UserIC); 1069 1070 /// \return True if runtime checks are required for vectorization, and false 1071 /// otherwise. 1072 bool runtimeChecksRequired(); 1073 1074 /// \return The most profitable vectorization factor and the cost of that VF. 1075 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1076 /// then this vectorization factor will be selected if vectorization is 1077 /// possible. 1078 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1079 1080 /// Setup cost-based decisions for user vectorization factor. 1081 void selectUserVectorizationFactor(ElementCount UserVF) { 1082 collectUniformsAndScalars(UserVF); 1083 collectInstsToScalarize(UserVF); 1084 } 1085 1086 /// \return The size (in bits) of the smallest and widest types in the code 1087 /// that needs to be vectorized. We ignore values that remain scalar such as 1088 /// 64 bit loop indices. 1089 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1090 1091 /// \return The desired interleave count. 1092 /// If interleave count has been specified by metadata it will be returned. 1093 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1094 /// are the selected vectorization factor and the cost of the selected VF. 1095 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1096 1097 /// Memory access instruction may be vectorized in more than one way. 1098 /// Form of instruction after vectorization depends on cost. 1099 /// This function takes cost-based decisions for Load/Store instructions 1100 /// and collects them in a map. This decisions map is used for building 1101 /// the lists of loop-uniform and loop-scalar instructions. 1102 /// The calculated cost is saved with widening decision in order to 1103 /// avoid redundant calculations. 1104 void setCostBasedWideningDecision(ElementCount VF); 1105 1106 /// A struct that represents some properties of the register usage 1107 /// of a loop. 1108 struct RegisterUsage { 1109 /// Holds the number of loop invariant values that are used in the loop. 1110 /// The key is ClassID of target-provided register class. 1111 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1112 /// Holds the maximum number of concurrent live intervals in the loop. 1113 /// The key is ClassID of target-provided register class. 1114 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1115 }; 1116 1117 /// \return Returns information about the register usages of the loop for the 1118 /// given vectorization factors. 1119 SmallVector<RegisterUsage, 8> 1120 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1121 1122 /// Collect values we want to ignore in the cost model. 1123 void collectValuesToIgnore(); 1124 1125 /// Split reductions into those that happen in the loop, and those that happen 1126 /// outside. In loop reductions are collected into InLoopReductionChains. 1127 void collectInLoopReductions(); 1128 1129 /// \returns The smallest bitwidth each instruction can be represented with. 1130 /// The vector equivalents of these instructions should be truncated to this 1131 /// type. 1132 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1133 return MinBWs; 1134 } 1135 1136 /// \returns True if it is more profitable to scalarize instruction \p I for 1137 /// vectorization factor \p VF. 1138 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1139 assert(VF.isVector() && 1140 "Profitable to scalarize relevant only for VF > 1."); 1141 1142 // Cost model is not run in the VPlan-native path - return conservative 1143 // result until this changes. 1144 if (EnableVPlanNativePath) 1145 return false; 1146 1147 auto Scalars = InstsToScalarize.find(VF); 1148 assert(Scalars != InstsToScalarize.end() && 1149 "VF not yet analyzed for scalarization profitability"); 1150 return Scalars->second.find(I) != Scalars->second.end(); 1151 } 1152 1153 /// Returns true if \p I is known to be uniform after vectorization. 1154 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1155 if (VF.isScalar()) 1156 return true; 1157 1158 // Cost model is not run in the VPlan-native path - return conservative 1159 // result until this changes. 1160 if (EnableVPlanNativePath) 1161 return false; 1162 1163 auto UniformsPerVF = Uniforms.find(VF); 1164 assert(UniformsPerVF != Uniforms.end() && 1165 "VF not yet analyzed for uniformity"); 1166 return UniformsPerVF->second.count(I); 1167 } 1168 1169 /// Returns true if \p I is known to be scalar after vectorization. 1170 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1171 if (VF.isScalar()) 1172 return true; 1173 1174 // Cost model is not run in the VPlan-native path - return conservative 1175 // result until this changes. 1176 if (EnableVPlanNativePath) 1177 return false; 1178 1179 auto ScalarsPerVF = Scalars.find(VF); 1180 assert(ScalarsPerVF != Scalars.end() && 1181 "Scalar values are not calculated for VF"); 1182 return ScalarsPerVF->second.count(I); 1183 } 1184 1185 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1186 /// for vectorization factor \p VF. 1187 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1188 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1189 !isProfitableToScalarize(I, VF) && 1190 !isScalarAfterVectorization(I, VF); 1191 } 1192 1193 /// Decision that was taken during cost calculation for memory instruction. 1194 enum InstWidening { 1195 CM_Unknown, 1196 CM_Widen, // For consecutive accesses with stride +1. 1197 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1198 CM_Interleave, 1199 CM_GatherScatter, 1200 CM_Scalarize 1201 }; 1202 1203 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1204 /// instruction \p I and vector width \p VF. 1205 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1206 unsigned Cost) { 1207 assert(VF.isVector() && "Expected VF >=2"); 1208 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1209 } 1210 1211 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1212 /// interleaving group \p Grp and vector width \p VF. 1213 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1214 ElementCount VF, InstWidening W, unsigned Cost) { 1215 assert(VF.isVector() && "Expected VF >=2"); 1216 /// Broadcast this decicion to all instructions inside the group. 1217 /// But the cost will be assigned to one instruction only. 1218 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1219 if (auto *I = Grp->getMember(i)) { 1220 if (Grp->getInsertPos() == I) 1221 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1222 else 1223 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1224 } 1225 } 1226 } 1227 1228 /// Return the cost model decision for the given instruction \p I and vector 1229 /// width \p VF. Return CM_Unknown if this instruction did not pass 1230 /// through the cost modeling. 1231 InstWidening getWideningDecision(Instruction *I, ElementCount VF) { 1232 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1233 assert(VF.isVector() && "Expected VF >=2"); 1234 1235 // Cost model is not run in the VPlan-native path - return conservative 1236 // result until this changes. 1237 if (EnableVPlanNativePath) 1238 return CM_GatherScatter; 1239 1240 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1241 auto Itr = WideningDecisions.find(InstOnVF); 1242 if (Itr == WideningDecisions.end()) 1243 return CM_Unknown; 1244 return Itr->second.first; 1245 } 1246 1247 /// Return the vectorization cost for the given instruction \p I and vector 1248 /// width \p VF. 1249 unsigned getWideningCost(Instruction *I, ElementCount VF) { 1250 assert(VF.isVector() && "Expected VF >=2"); 1251 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1252 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1253 "The cost is not calculated"); 1254 return WideningDecisions[InstOnVF].second; 1255 } 1256 1257 /// Return True if instruction \p I is an optimizable truncate whose operand 1258 /// is an induction variable. Such a truncate will be removed by adding a new 1259 /// induction variable with the destination type. 1260 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1261 // If the instruction is not a truncate, return false. 1262 auto *Trunc = dyn_cast<TruncInst>(I); 1263 if (!Trunc) 1264 return false; 1265 1266 // Get the source and destination types of the truncate. 1267 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1268 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1269 1270 // If the truncate is free for the given types, return false. Replacing a 1271 // free truncate with an induction variable would add an induction variable 1272 // update instruction to each iteration of the loop. We exclude from this 1273 // check the primary induction variable since it will need an update 1274 // instruction regardless. 1275 Value *Op = Trunc->getOperand(0); 1276 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1277 return false; 1278 1279 // If the truncated value is not an induction variable, return false. 1280 return Legal->isInductionPhi(Op); 1281 } 1282 1283 /// Collects the instructions to scalarize for each predicated instruction in 1284 /// the loop. 1285 void collectInstsToScalarize(ElementCount VF); 1286 1287 /// Collect Uniform and Scalar values for the given \p VF. 1288 /// The sets depend on CM decision for Load/Store instructions 1289 /// that may be vectorized as interleave, gather-scatter or scalarized. 1290 void collectUniformsAndScalars(ElementCount VF) { 1291 // Do the analysis once. 1292 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1293 return; 1294 setCostBasedWideningDecision(VF); 1295 collectLoopUniforms(VF); 1296 collectLoopScalars(VF); 1297 } 1298 1299 /// Returns true if the target machine supports masked store operation 1300 /// for the given \p DataType and kind of access to \p Ptr. 1301 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1302 return Legal->isConsecutivePtr(Ptr) && 1303 TTI.isLegalMaskedStore(DataType, Alignment); 1304 } 1305 1306 /// Returns true if the target machine supports masked load operation 1307 /// for the given \p DataType and kind of access to \p Ptr. 1308 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1309 return Legal->isConsecutivePtr(Ptr) && 1310 TTI.isLegalMaskedLoad(DataType, Alignment); 1311 } 1312 1313 /// Returns true if the target machine supports masked scatter operation 1314 /// for the given \p DataType. 1315 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1316 return TTI.isLegalMaskedScatter(DataType, Alignment); 1317 } 1318 1319 /// Returns true if the target machine supports masked gather operation 1320 /// for the given \p DataType. 1321 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1322 return TTI.isLegalMaskedGather(DataType, Alignment); 1323 } 1324 1325 /// Returns true if the target machine can represent \p V as a masked gather 1326 /// or scatter operation. 1327 bool isLegalGatherOrScatter(Value *V) { 1328 bool LI = isa<LoadInst>(V); 1329 bool SI = isa<StoreInst>(V); 1330 if (!LI && !SI) 1331 return false; 1332 auto *Ty = getMemInstValueType(V); 1333 Align Align = getLoadStoreAlignment(V); 1334 return (LI && isLegalMaskedGather(Ty, Align)) || 1335 (SI && isLegalMaskedScatter(Ty, Align)); 1336 } 1337 1338 /// Returns true if \p I is an instruction that will be scalarized with 1339 /// predication. Such instructions include conditional stores and 1340 /// instructions that may divide by zero. 1341 /// If a non-zero VF has been calculated, we check if I will be scalarized 1342 /// predication for that VF. 1343 bool isScalarWithPredication(Instruction *I, 1344 ElementCount VF = ElementCount::getFixed(1)); 1345 1346 // Returns true if \p I is an instruction that will be predicated either 1347 // through scalar predication or masked load/store or masked gather/scatter. 1348 // Superset of instructions that return true for isScalarWithPredication. 1349 bool isPredicatedInst(Instruction *I) { 1350 if (!blockNeedsPredication(I->getParent())) 1351 return false; 1352 // Loads and stores that need some form of masked operation are predicated 1353 // instructions. 1354 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1355 return Legal->isMaskRequired(I); 1356 return isScalarWithPredication(I); 1357 } 1358 1359 /// Returns true if \p I is a memory instruction with consecutive memory 1360 /// access that can be widened. 1361 bool 1362 memoryInstructionCanBeWidened(Instruction *I, 1363 ElementCount VF = ElementCount::getFixed(1)); 1364 1365 /// Returns true if \p I is a memory instruction in an interleaved-group 1366 /// of memory accesses that can be vectorized with wide vector loads/stores 1367 /// and shuffles. 1368 bool 1369 interleavedAccessCanBeWidened(Instruction *I, 1370 ElementCount VF = ElementCount::getFixed(1)); 1371 1372 /// Check if \p Instr belongs to any interleaved access group. 1373 bool isAccessInterleaved(Instruction *Instr) { 1374 return InterleaveInfo.isInterleaved(Instr); 1375 } 1376 1377 /// Get the interleaved access group that \p Instr belongs to. 1378 const InterleaveGroup<Instruction> * 1379 getInterleavedAccessGroup(Instruction *Instr) { 1380 return InterleaveInfo.getInterleaveGroup(Instr); 1381 } 1382 1383 /// Returns true if an interleaved group requires a scalar iteration 1384 /// to handle accesses with gaps, and there is nothing preventing us from 1385 /// creating a scalar epilogue. 1386 bool requiresScalarEpilogue() const { 1387 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1388 } 1389 1390 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1391 /// loop hint annotation. 1392 bool isScalarEpilogueAllowed() const { 1393 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1394 } 1395 1396 /// Returns true if all loop blocks should be masked to fold tail loop. 1397 bool foldTailByMasking() const { return FoldTailByMasking; } 1398 1399 bool blockNeedsPredication(BasicBlock *BB) { 1400 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1401 } 1402 1403 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1404 /// nodes to the chain of instructions representing the reductions. Uses a 1405 /// MapVector to ensure deterministic iteration order. 1406 using ReductionChainMap = 1407 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1408 1409 /// Return the chain of instructions representing an inloop reduction. 1410 const ReductionChainMap &getInLoopReductionChains() const { 1411 return InLoopReductionChains; 1412 } 1413 1414 /// Returns true if the Phi is part of an inloop reduction. 1415 bool isInLoopReduction(PHINode *Phi) const { 1416 return InLoopReductionChains.count(Phi); 1417 } 1418 1419 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1420 /// with factor VF. Return the cost of the instruction, including 1421 /// scalarization overhead if it's needed. 1422 unsigned getVectorIntrinsicCost(CallInst *CI, ElementCount VF); 1423 1424 /// Estimate cost of a call instruction CI if it were vectorized with factor 1425 /// VF. Return the cost of the instruction, including scalarization overhead 1426 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1427 /// scalarized - 1428 /// i.e. either vector version isn't available, or is too expensive. 1429 unsigned getVectorCallCost(CallInst *CI, ElementCount VF, 1430 bool &NeedToScalarize); 1431 1432 /// Invalidates decisions already taken by the cost model. 1433 void invalidateCostModelingDecisions() { 1434 WideningDecisions.clear(); 1435 Uniforms.clear(); 1436 Scalars.clear(); 1437 } 1438 1439 private: 1440 unsigned NumPredStores = 0; 1441 1442 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1443 /// than zero. One is returned if vectorization should best be avoided due 1444 /// to cost. 1445 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1446 1447 /// The vectorization cost is a combination of the cost itself and a boolean 1448 /// indicating whether any of the contributing operations will actually 1449 /// operate on 1450 /// vector values after type legalization in the backend. If this latter value 1451 /// is 1452 /// false, then all operations will be scalarized (i.e. no vectorization has 1453 /// actually taken place). 1454 using VectorizationCostTy = std::pair<unsigned, bool>; 1455 1456 /// Returns the expected execution cost. The unit of the cost does 1457 /// not matter because we use the 'cost' units to compare different 1458 /// vector widths. The cost that is returned is *not* normalized by 1459 /// the factor width. 1460 VectorizationCostTy expectedCost(ElementCount VF); 1461 1462 /// Returns the execution time cost of an instruction for a given vector 1463 /// width. Vector width of one means scalar. 1464 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1465 1466 /// The cost-computation logic from getInstructionCost which provides 1467 /// the vector type as an output parameter. 1468 unsigned getInstructionCost(Instruction *I, ElementCount VF, Type *&VectorTy); 1469 1470 /// Calculate vectorization cost of memory instruction \p I. 1471 unsigned getMemoryInstructionCost(Instruction *I, ElementCount VF); 1472 1473 /// The cost computation for scalarized memory instruction. 1474 unsigned getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1475 1476 /// The cost computation for interleaving group of memory instructions. 1477 unsigned getInterleaveGroupCost(Instruction *I, ElementCount VF); 1478 1479 /// The cost computation for Gather/Scatter instruction. 1480 unsigned getGatherScatterCost(Instruction *I, ElementCount VF); 1481 1482 /// The cost computation for widening instruction \p I with consecutive 1483 /// memory access. 1484 unsigned getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1485 1486 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1487 /// Load: scalar load + broadcast. 1488 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1489 /// element) 1490 unsigned getUniformMemOpCost(Instruction *I, ElementCount VF); 1491 1492 /// Estimate the overhead of scalarizing an instruction. This is a 1493 /// convenience wrapper for the type-based getScalarizationOverhead API. 1494 unsigned getScalarizationOverhead(Instruction *I, ElementCount VF); 1495 1496 /// Returns whether the instruction is a load or store and will be a emitted 1497 /// as a vector operation. 1498 bool isConsecutiveLoadOrStore(Instruction *I); 1499 1500 /// Returns true if an artificially high cost for emulated masked memrefs 1501 /// should be used. 1502 bool useEmulatedMaskMemRefHack(Instruction *I); 1503 1504 /// Map of scalar integer values to the smallest bitwidth they can be legally 1505 /// represented as. The vector equivalents of these values should be truncated 1506 /// to this type. 1507 MapVector<Instruction *, uint64_t> MinBWs; 1508 1509 /// A type representing the costs for instructions if they were to be 1510 /// scalarized rather than vectorized. The entries are Instruction-Cost 1511 /// pairs. 1512 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1513 1514 /// A set containing all BasicBlocks that are known to present after 1515 /// vectorization as a predicated block. 1516 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1517 1518 /// Records whether it is allowed to have the original scalar loop execute at 1519 /// least once. This may be needed as a fallback loop in case runtime 1520 /// aliasing/dependence checks fail, or to handle the tail/remainder 1521 /// iterations when the trip count is unknown or doesn't divide by the VF, 1522 /// or as a peel-loop to handle gaps in interleave-groups. 1523 /// Under optsize and when the trip count is very small we don't allow any 1524 /// iterations to execute in the scalar loop. 1525 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1526 1527 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1528 bool FoldTailByMasking = false; 1529 1530 /// A map holding scalar costs for different vectorization factors. The 1531 /// presence of a cost for an instruction in the mapping indicates that the 1532 /// instruction will be scalarized when vectorizing with the associated 1533 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1534 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1535 1536 /// Holds the instructions known to be uniform after vectorization. 1537 /// The data is collected per VF. 1538 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1539 1540 /// Holds the instructions known to be scalar after vectorization. 1541 /// The data is collected per VF. 1542 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1543 1544 /// Holds the instructions (address computations) that are forced to be 1545 /// scalarized. 1546 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1547 1548 /// PHINodes of the reductions that should be expanded in-loop along with 1549 /// their associated chains of reduction operations, in program order from top 1550 /// (PHI) to bottom 1551 ReductionChainMap InLoopReductionChains; 1552 1553 /// Returns the expected difference in cost from scalarizing the expression 1554 /// feeding a predicated instruction \p PredInst. The instructions to 1555 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1556 /// non-negative return value implies the expression will be scalarized. 1557 /// Currently, only single-use chains are considered for scalarization. 1558 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1559 ElementCount VF); 1560 1561 /// Collect the instructions that are uniform after vectorization. An 1562 /// instruction is uniform if we represent it with a single scalar value in 1563 /// the vectorized loop corresponding to each vector iteration. Examples of 1564 /// uniform instructions include pointer operands of consecutive or 1565 /// interleaved memory accesses. Note that although uniformity implies an 1566 /// instruction will be scalar, the reverse is not true. In general, a 1567 /// scalarized instruction will be represented by VF scalar values in the 1568 /// vectorized loop, each corresponding to an iteration of the original 1569 /// scalar loop. 1570 void collectLoopUniforms(ElementCount VF); 1571 1572 /// Collect the instructions that are scalar after vectorization. An 1573 /// instruction is scalar if it is known to be uniform or will be scalarized 1574 /// during vectorization. Non-uniform scalarized instructions will be 1575 /// represented by VF values in the vectorized loop, each corresponding to an 1576 /// iteration of the original scalar loop. 1577 void collectLoopScalars(ElementCount VF); 1578 1579 /// Keeps cost model vectorization decision and cost for instructions. 1580 /// Right now it is used for memory instructions only. 1581 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1582 std::pair<InstWidening, unsigned>>; 1583 1584 DecisionList WideningDecisions; 1585 1586 /// Returns true if \p V is expected to be vectorized and it needs to be 1587 /// extracted. 1588 bool needsExtract(Value *V, ElementCount VF) const { 1589 Instruction *I = dyn_cast<Instruction>(V); 1590 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1591 TheLoop->isLoopInvariant(I)) 1592 return false; 1593 1594 // Assume we can vectorize V (and hence we need extraction) if the 1595 // scalars are not computed yet. This can happen, because it is called 1596 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1597 // the scalars are collected. That should be a safe assumption in most 1598 // cases, because we check if the operands have vectorizable types 1599 // beforehand in LoopVectorizationLegality. 1600 return Scalars.find(VF) == Scalars.end() || 1601 !isScalarAfterVectorization(I, VF); 1602 }; 1603 1604 /// Returns a range containing only operands needing to be extracted. 1605 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1606 ElementCount VF) { 1607 return SmallVector<Value *, 4>(make_filter_range( 1608 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1609 } 1610 1611 public: 1612 /// The loop that we evaluate. 1613 Loop *TheLoop; 1614 1615 /// Predicated scalar evolution analysis. 1616 PredicatedScalarEvolution &PSE; 1617 1618 /// Loop Info analysis. 1619 LoopInfo *LI; 1620 1621 /// Vectorization legality. 1622 LoopVectorizationLegality *Legal; 1623 1624 /// Vector target information. 1625 const TargetTransformInfo &TTI; 1626 1627 /// Target Library Info. 1628 const TargetLibraryInfo *TLI; 1629 1630 /// Demanded bits analysis. 1631 DemandedBits *DB; 1632 1633 /// Assumption cache. 1634 AssumptionCache *AC; 1635 1636 /// Interface to emit optimization remarks. 1637 OptimizationRemarkEmitter *ORE; 1638 1639 const Function *TheFunction; 1640 1641 /// Loop Vectorize Hint. 1642 const LoopVectorizeHints *Hints; 1643 1644 /// The interleave access information contains groups of interleaved accesses 1645 /// with the same stride and close to each other. 1646 InterleavedAccessInfo &InterleaveInfo; 1647 1648 /// Values to ignore in the cost model. 1649 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1650 1651 /// Values to ignore in the cost model when VF > 1. 1652 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1653 }; 1654 1655 } // end namespace llvm 1656 1657 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1658 // vectorization. The loop needs to be annotated with #pragma omp simd 1659 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1660 // vector length information is not provided, vectorization is not considered 1661 // explicit. Interleave hints are not allowed either. These limitations will be 1662 // relaxed in the future. 1663 // Please, note that we are currently forced to abuse the pragma 'clang 1664 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1665 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1666 // provides *explicit vectorization hints* (LV can bypass legal checks and 1667 // assume that vectorization is legal). However, both hints are implemented 1668 // using the same metadata (llvm.loop.vectorize, processed by 1669 // LoopVectorizeHints). This will be fixed in the future when the native IR 1670 // representation for pragma 'omp simd' is introduced. 1671 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1672 OptimizationRemarkEmitter *ORE) { 1673 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 1674 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1675 1676 // Only outer loops with an explicit vectorization hint are supported. 1677 // Unannotated outer loops are ignored. 1678 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1679 return false; 1680 1681 Function *Fn = OuterLp->getHeader()->getParent(); 1682 if (!Hints.allowVectorization(Fn, OuterLp, 1683 true /*VectorizeOnlyWhenForced*/)) { 1684 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1685 return false; 1686 } 1687 1688 if (Hints.getInterleave() > 1) { 1689 // TODO: Interleave support is future work. 1690 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1691 "outer loops.\n"); 1692 Hints.emitRemarkWithHints(); 1693 return false; 1694 } 1695 1696 return true; 1697 } 1698 1699 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1700 OptimizationRemarkEmitter *ORE, 1701 SmallVectorImpl<Loop *> &V) { 1702 // Collect inner loops and outer loops without irreducible control flow. For 1703 // now, only collect outer loops that have explicit vectorization hints. If we 1704 // are stress testing the VPlan H-CFG construction, we collect the outermost 1705 // loop of every loop nest. 1706 if (L.isInnermost() || VPlanBuildStressTest || 1707 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1708 LoopBlocksRPO RPOT(&L); 1709 RPOT.perform(LI); 1710 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1711 V.push_back(&L); 1712 // TODO: Collect inner loops inside marked outer loops in case 1713 // vectorization fails for the outer loop. Do not invoke 1714 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1715 // already known to be reducible. We can use an inherited attribute for 1716 // that. 1717 return; 1718 } 1719 } 1720 for (Loop *InnerL : L) 1721 collectSupportedLoops(*InnerL, LI, ORE, V); 1722 } 1723 1724 namespace { 1725 1726 /// The LoopVectorize Pass. 1727 struct LoopVectorize : public FunctionPass { 1728 /// Pass identification, replacement for typeid 1729 static char ID; 1730 1731 LoopVectorizePass Impl; 1732 1733 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1734 bool VectorizeOnlyWhenForced = false) 1735 : FunctionPass(ID), 1736 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1737 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1738 } 1739 1740 bool runOnFunction(Function &F) override { 1741 if (skipFunction(F)) 1742 return false; 1743 1744 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1745 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1746 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1747 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1748 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1749 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1750 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1751 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1752 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1753 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1754 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1755 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1756 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1757 1758 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1759 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1760 1761 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1762 GetLAA, *ORE, PSI).MadeAnyChange; 1763 } 1764 1765 void getAnalysisUsage(AnalysisUsage &AU) const override { 1766 AU.addRequired<AssumptionCacheTracker>(); 1767 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1768 AU.addRequired<DominatorTreeWrapperPass>(); 1769 AU.addRequired<LoopInfoWrapperPass>(); 1770 AU.addRequired<ScalarEvolutionWrapperPass>(); 1771 AU.addRequired<TargetTransformInfoWrapperPass>(); 1772 AU.addRequired<AAResultsWrapperPass>(); 1773 AU.addRequired<LoopAccessLegacyAnalysis>(); 1774 AU.addRequired<DemandedBitsWrapperPass>(); 1775 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1776 AU.addRequired<InjectTLIMappingsLegacy>(); 1777 1778 // We currently do not preserve loopinfo/dominator analyses with outer loop 1779 // vectorization. Until this is addressed, mark these analyses as preserved 1780 // only for non-VPlan-native path. 1781 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1782 if (!EnableVPlanNativePath) { 1783 AU.addPreserved<LoopInfoWrapperPass>(); 1784 AU.addPreserved<DominatorTreeWrapperPass>(); 1785 } 1786 1787 AU.addPreserved<BasicAAWrapperPass>(); 1788 AU.addPreserved<GlobalsAAWrapperPass>(); 1789 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1790 } 1791 }; 1792 1793 } // end anonymous namespace 1794 1795 //===----------------------------------------------------------------------===// 1796 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1797 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1798 //===----------------------------------------------------------------------===// 1799 1800 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1801 // We need to place the broadcast of invariant variables outside the loop, 1802 // but only if it's proven safe to do so. Else, broadcast will be inside 1803 // vector loop body. 1804 Instruction *Instr = dyn_cast<Instruction>(V); 1805 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1806 (!Instr || 1807 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1808 // Place the code for broadcasting invariant variables in the new preheader. 1809 IRBuilder<>::InsertPointGuard Guard(Builder); 1810 if (SafeToHoist) 1811 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1812 1813 // Broadcast the scalar into all locations in the vector. 1814 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1815 1816 return Shuf; 1817 } 1818 1819 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1820 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1821 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1822 "Expected either an induction phi-node or a truncate of it!"); 1823 Value *Start = II.getStartValue(); 1824 1825 // Construct the initial value of the vector IV in the vector loop preheader 1826 auto CurrIP = Builder.saveIP(); 1827 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1828 if (isa<TruncInst>(EntryVal)) { 1829 assert(Start->getType()->isIntegerTy() && 1830 "Truncation requires an integer type"); 1831 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1832 Step = Builder.CreateTrunc(Step, TruncType); 1833 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1834 } 1835 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1836 Value *SteppedStart = 1837 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1838 1839 // We create vector phi nodes for both integer and floating-point induction 1840 // variables. Here, we determine the kind of arithmetic we will perform. 1841 Instruction::BinaryOps AddOp; 1842 Instruction::BinaryOps MulOp; 1843 if (Step->getType()->isIntegerTy()) { 1844 AddOp = Instruction::Add; 1845 MulOp = Instruction::Mul; 1846 } else { 1847 AddOp = II.getInductionOpcode(); 1848 MulOp = Instruction::FMul; 1849 } 1850 1851 // Multiply the vectorization factor by the step using integer or 1852 // floating-point arithmetic as appropriate. 1853 Value *ConstVF = 1854 getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue()); 1855 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1856 1857 // Create a vector splat to use in the induction update. 1858 // 1859 // FIXME: If the step is non-constant, we create the vector splat with 1860 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1861 // handle a constant vector splat. 1862 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1863 Value *SplatVF = isa<Constant>(Mul) 1864 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1865 : Builder.CreateVectorSplat(VF, Mul); 1866 Builder.restoreIP(CurrIP); 1867 1868 // We may need to add the step a number of times, depending on the unroll 1869 // factor. The last of those goes into the PHI. 1870 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1871 &*LoopVectorBody->getFirstInsertionPt()); 1872 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1873 Instruction *LastInduction = VecInd; 1874 for (unsigned Part = 0; Part < UF; ++Part) { 1875 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1876 1877 if (isa<TruncInst>(EntryVal)) 1878 addMetadata(LastInduction, EntryVal); 1879 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1880 1881 LastInduction = cast<Instruction>(addFastMathFlag( 1882 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1883 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1884 } 1885 1886 // Move the last step to the end of the latch block. This ensures consistent 1887 // placement of all induction updates. 1888 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1889 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1890 auto *ICmp = cast<Instruction>(Br->getCondition()); 1891 LastInduction->moveBefore(ICmp); 1892 LastInduction->setName("vec.ind.next"); 1893 1894 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1895 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1896 } 1897 1898 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1899 return Cost->isScalarAfterVectorization(I, VF) || 1900 Cost->isProfitableToScalarize(I, VF); 1901 } 1902 1903 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1904 if (shouldScalarizeInstruction(IV)) 1905 return true; 1906 auto isScalarInst = [&](User *U) -> bool { 1907 auto *I = cast<Instruction>(U); 1908 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1909 }; 1910 return llvm::any_of(IV->users(), isScalarInst); 1911 } 1912 1913 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1914 const InductionDescriptor &ID, const Instruction *EntryVal, 1915 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1916 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1917 "Expected either an induction phi-node or a truncate of it!"); 1918 1919 // This induction variable is not the phi from the original loop but the 1920 // newly-created IV based on the proof that casted Phi is equal to the 1921 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1922 // re-uses the same InductionDescriptor that original IV uses but we don't 1923 // have to do any recording in this case - that is done when original IV is 1924 // processed. 1925 if (isa<TruncInst>(EntryVal)) 1926 return; 1927 1928 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1929 if (Casts.empty()) 1930 return; 1931 // Only the first Cast instruction in the Casts vector is of interest. 1932 // The rest of the Casts (if exist) have no uses outside the 1933 // induction update chain itself. 1934 Instruction *CastInst = *Casts.begin(); 1935 if (Lane < UINT_MAX) 1936 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1937 else 1938 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1939 } 1940 1941 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1942 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1943 "Primary induction variable must have an integer type"); 1944 1945 auto II = Legal->getInductionVars().find(IV); 1946 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 1947 1948 auto ID = II->second; 1949 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1950 1951 // The value from the original loop to which we are mapping the new induction 1952 // variable. 1953 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1954 1955 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1956 1957 // Generate code for the induction step. Note that induction steps are 1958 // required to be loop-invariant 1959 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 1960 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 1961 "Induction step should be loop invariant"); 1962 if (PSE.getSE()->isSCEVable(IV->getType())) { 1963 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1964 return Exp.expandCodeFor(Step, Step->getType(), 1965 LoopVectorPreHeader->getTerminator()); 1966 } 1967 return cast<SCEVUnknown>(Step)->getValue(); 1968 }; 1969 1970 // The scalar value to broadcast. This is derived from the canonical 1971 // induction variable. If a truncation type is given, truncate the canonical 1972 // induction variable and step. Otherwise, derive these values from the 1973 // induction descriptor. 1974 auto CreateScalarIV = [&](Value *&Step) -> Value * { 1975 Value *ScalarIV = Induction; 1976 if (IV != OldInduction) { 1977 ScalarIV = IV->getType()->isIntegerTy() 1978 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1979 : Builder.CreateCast(Instruction::SIToFP, Induction, 1980 IV->getType()); 1981 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1982 ScalarIV->setName("offset.idx"); 1983 } 1984 if (Trunc) { 1985 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1986 assert(Step->getType()->isIntegerTy() && 1987 "Truncation requires an integer step"); 1988 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1989 Step = Builder.CreateTrunc(Step, TruncType); 1990 } 1991 return ScalarIV; 1992 }; 1993 1994 // Create the vector values from the scalar IV, in the absence of creating a 1995 // vector IV. 1996 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 1997 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1998 for (unsigned Part = 0; Part < UF; ++Part) { 1999 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2000 Value *EntryPart = 2001 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2002 ID.getInductionOpcode()); 2003 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2004 if (Trunc) 2005 addMetadata(EntryPart, Trunc); 2006 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 2007 } 2008 }; 2009 2010 // Now do the actual transformations, and start with creating the step value. 2011 Value *Step = CreateStepValue(ID.getStep()); 2012 if (VF.isZero() || VF.isScalar()) { 2013 Value *ScalarIV = CreateScalarIV(Step); 2014 CreateSplatIV(ScalarIV, Step); 2015 return; 2016 } 2017 2018 // Determine if we want a scalar version of the induction variable. This is 2019 // true if the induction variable itself is not widened, or if it has at 2020 // least one user in the loop that is not widened. 2021 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2022 if (!NeedsScalarIV) { 2023 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2024 return; 2025 } 2026 2027 // Try to create a new independent vector induction variable. If we can't 2028 // create the phi node, we will splat the scalar induction variable in each 2029 // loop iteration. 2030 if (!shouldScalarizeInstruction(EntryVal)) { 2031 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2032 Value *ScalarIV = CreateScalarIV(Step); 2033 // Create scalar steps that can be used by instructions we will later 2034 // scalarize. Note that the addition of the scalar steps will not increase 2035 // the number of instructions in the loop in the common case prior to 2036 // InstCombine. We will be trading one vector extract for each scalar step. 2037 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2038 return; 2039 } 2040 2041 // All IV users are scalar instructions, so only emit a scalar IV, not a 2042 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2043 // predicate used by the masked loads/stores. 2044 Value *ScalarIV = CreateScalarIV(Step); 2045 if (!Cost->isScalarEpilogueAllowed()) 2046 CreateSplatIV(ScalarIV, Step); 2047 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2048 } 2049 2050 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2051 Instruction::BinaryOps BinOp) { 2052 // Create and check the types. 2053 auto *ValVTy = cast<FixedVectorType>(Val->getType()); 2054 int VLen = ValVTy->getNumElements(); 2055 2056 Type *STy = Val->getType()->getScalarType(); 2057 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2058 "Induction Step must be an integer or FP"); 2059 assert(Step->getType() == STy && "Step has wrong type"); 2060 2061 SmallVector<Constant *, 8> Indices; 2062 2063 if (STy->isIntegerTy()) { 2064 // Create a vector of consecutive numbers from zero to VF. 2065 for (int i = 0; i < VLen; ++i) 2066 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2067 2068 // Add the consecutive indices to the vector value. 2069 Constant *Cv = ConstantVector::get(Indices); 2070 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2071 Step = Builder.CreateVectorSplat(VLen, Step); 2072 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2073 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2074 // which can be found from the original scalar operations. 2075 Step = Builder.CreateMul(Cv, Step); 2076 return Builder.CreateAdd(Val, Step, "induction"); 2077 } 2078 2079 // Floating point induction. 2080 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2081 "Binary Opcode should be specified for FP induction"); 2082 // Create a vector of consecutive numbers from zero to VF. 2083 for (int i = 0; i < VLen; ++i) 2084 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2085 2086 // Add the consecutive indices to the vector value. 2087 Constant *Cv = ConstantVector::get(Indices); 2088 2089 Step = Builder.CreateVectorSplat(VLen, Step); 2090 2091 // Floating point operations had to be 'fast' to enable the induction. 2092 FastMathFlags Flags; 2093 Flags.setFast(); 2094 2095 Value *MulOp = Builder.CreateFMul(Cv, Step); 2096 if (isa<Instruction>(MulOp)) 2097 // Have to check, MulOp may be a constant 2098 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2099 2100 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2101 if (isa<Instruction>(BOp)) 2102 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2103 return BOp; 2104 } 2105 2106 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2107 Instruction *EntryVal, 2108 const InductionDescriptor &ID) { 2109 // We shouldn't have to build scalar steps if we aren't vectorizing. 2110 assert(VF.isVector() && "VF should be greater than one"); 2111 assert(!VF.isScalable() && 2112 "the code below assumes a fixed number of elements at compile time"); 2113 // Get the value type and ensure it and the step have the same integer type. 2114 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2115 assert(ScalarIVTy == Step->getType() && 2116 "Val and Step should have the same type"); 2117 2118 // We build scalar steps for both integer and floating-point induction 2119 // variables. Here, we determine the kind of arithmetic we will perform. 2120 Instruction::BinaryOps AddOp; 2121 Instruction::BinaryOps MulOp; 2122 if (ScalarIVTy->isIntegerTy()) { 2123 AddOp = Instruction::Add; 2124 MulOp = Instruction::Mul; 2125 } else { 2126 AddOp = ID.getInductionOpcode(); 2127 MulOp = Instruction::FMul; 2128 } 2129 2130 // Determine the number of scalars we need to generate for each unroll 2131 // iteration. If EntryVal is uniform, we only need to generate the first 2132 // lane. Otherwise, we generate all VF values. 2133 unsigned Lanes = 2134 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) 2135 ? 1 2136 : VF.getKnownMinValue(); 2137 // Compute the scalar steps and save the results in VectorLoopValueMap. 2138 for (unsigned Part = 0; Part < UF; ++Part) { 2139 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2140 auto *StartIdx = getSignedIntOrFpConstant( 2141 ScalarIVTy, VF.getKnownMinValue() * Part + Lane); 2142 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2143 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2144 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2145 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2146 } 2147 } 2148 } 2149 2150 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2151 assert(V != Induction && "The new induction variable should not be used."); 2152 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2153 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2154 2155 // If we have a stride that is replaced by one, do it here. Defer this for 2156 // the VPlan-native path until we start running Legal checks in that path. 2157 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2158 V = ConstantInt::get(V->getType(), 1); 2159 2160 // If we have a vector mapped to this value, return it. 2161 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2162 return VectorLoopValueMap.getVectorValue(V, Part); 2163 2164 // If the value has not been vectorized, check if it has been scalarized 2165 // instead. If it has been scalarized, and we actually need the value in 2166 // vector form, we will construct the vector values on demand. 2167 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2168 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2169 2170 // If we've scalarized a value, that value should be an instruction. 2171 auto *I = cast<Instruction>(V); 2172 2173 // If we aren't vectorizing, we can just copy the scalar map values over to 2174 // the vector map. 2175 if (VF.isScalar()) { 2176 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2177 return ScalarValue; 2178 } 2179 2180 // Get the last scalar instruction we generated for V and Part. If the value 2181 // is known to be uniform after vectorization, this corresponds to lane zero 2182 // of the Part unroll iteration. Otherwise, the last instruction is the one 2183 // we created for the last vector lane of the Part unroll iteration. 2184 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2185 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) 2186 ? 0 2187 : VF.getKnownMinValue() - 1; 2188 auto *LastInst = cast<Instruction>( 2189 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2190 2191 // Set the insert point after the last scalarized instruction. This ensures 2192 // the insertelement sequence will directly follow the scalar definitions. 2193 auto OldIP = Builder.saveIP(); 2194 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2195 Builder.SetInsertPoint(&*NewIP); 2196 2197 // However, if we are vectorizing, we need to construct the vector values. 2198 // If the value is known to be uniform after vectorization, we can just 2199 // broadcast the scalar value corresponding to lane zero for each unroll 2200 // iteration. Otherwise, we construct the vector values using insertelement 2201 // instructions. Since the resulting vectors are stored in 2202 // VectorLoopValueMap, we will only generate the insertelements once. 2203 Value *VectorValue = nullptr; 2204 if (Cost->isUniformAfterVectorization(I, VF)) { 2205 VectorValue = getBroadcastInstrs(ScalarValue); 2206 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2207 } else { 2208 // Initialize packing with insertelements to start from undef. 2209 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2210 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2211 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2212 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 2213 packScalarIntoVectorValue(V, {Part, Lane}); 2214 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2215 } 2216 Builder.restoreIP(OldIP); 2217 return VectorValue; 2218 } 2219 2220 // If this scalar is unknown, assume that it is a constant or that it is 2221 // loop invariant. Broadcast V and save the value for future uses. 2222 Value *B = getBroadcastInstrs(V); 2223 VectorLoopValueMap.setVectorValue(V, Part, B); 2224 return B; 2225 } 2226 2227 Value * 2228 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2229 const VPIteration &Instance) { 2230 // If the value is not an instruction contained in the loop, it should 2231 // already be scalar. 2232 if (OrigLoop->isLoopInvariant(V)) 2233 return V; 2234 2235 assert(Instance.Lane > 0 2236 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2237 : true && "Uniform values only have lane zero"); 2238 2239 // If the value from the original loop has not been vectorized, it is 2240 // represented by UF x VF scalar values in the new loop. Return the requested 2241 // scalar value. 2242 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2243 return VectorLoopValueMap.getScalarValue(V, Instance); 2244 2245 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2246 // for the given unroll part. If this entry is not a vector type (i.e., the 2247 // vectorization factor is one), there is no need to generate an 2248 // extractelement instruction. 2249 auto *U = getOrCreateVectorValue(V, Instance.Part); 2250 if (!U->getType()->isVectorTy()) { 2251 assert(VF.isScalar() && "Value not scalarized has non-vector type"); 2252 return U; 2253 } 2254 2255 // Otherwise, the value from the original loop has been vectorized and is 2256 // represented by UF vector values. Extract and return the requested scalar 2257 // value from the appropriate vector lane. 2258 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2259 } 2260 2261 void InnerLoopVectorizer::packScalarIntoVectorValue( 2262 Value *V, const VPIteration &Instance) { 2263 assert(V != Induction && "The new induction variable should not be used."); 2264 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2265 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2266 2267 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2268 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2269 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2270 Builder.getInt32(Instance.Lane)); 2271 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2272 } 2273 2274 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2275 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2276 assert(!VF.isScalable() && "Cannot reverse scalable vectors"); 2277 SmallVector<int, 8> ShuffleMask; 2278 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 2279 ShuffleMask.push_back(VF.getKnownMinValue() - i - 1); 2280 2281 return Builder.CreateShuffleVector(Vec, ShuffleMask, "reverse"); 2282 } 2283 2284 // Return whether we allow using masked interleave-groups (for dealing with 2285 // strided loads/stores that reside in predicated blocks, or for dealing 2286 // with gaps). 2287 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2288 // If an override option has been passed in for interleaved accesses, use it. 2289 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2290 return EnableMaskedInterleavedMemAccesses; 2291 2292 return TTI.enableMaskedInterleavedAccessVectorization(); 2293 } 2294 2295 // Try to vectorize the interleave group that \p Instr belongs to. 2296 // 2297 // E.g. Translate following interleaved load group (factor = 3): 2298 // for (i = 0; i < N; i+=3) { 2299 // R = Pic[i]; // Member of index 0 2300 // G = Pic[i+1]; // Member of index 1 2301 // B = Pic[i+2]; // Member of index 2 2302 // ... // do something to R, G, B 2303 // } 2304 // To: 2305 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2306 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2307 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2308 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2309 // 2310 // Or translate following interleaved store group (factor = 3): 2311 // for (i = 0; i < N; i+=3) { 2312 // ... do something to R, G, B 2313 // Pic[i] = R; // Member of index 0 2314 // Pic[i+1] = G; // Member of index 1 2315 // Pic[i+2] = B; // Member of index 2 2316 // } 2317 // To: 2318 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2319 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2320 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2321 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2322 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2323 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2324 const InterleaveGroup<Instruction> *Group, VPTransformState &State, 2325 VPValue *Addr, VPValue *BlockInMask) { 2326 Instruction *Instr = Group->getInsertPos(); 2327 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2328 2329 // Prepare for the vector type of the interleaved load/store. 2330 Type *ScalarTy = getMemInstValueType(Instr); 2331 unsigned InterleaveFactor = Group->getFactor(); 2332 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2333 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2334 2335 // Prepare for the new pointers. 2336 SmallVector<Value *, 2> AddrParts; 2337 unsigned Index = Group->getIndex(Instr); 2338 2339 // TODO: extend the masked interleaved-group support to reversed access. 2340 assert((!BlockInMask || !Group->isReverse()) && 2341 "Reversed masked interleave-group not supported."); 2342 2343 // If the group is reverse, adjust the index to refer to the last vector lane 2344 // instead of the first. We adjust the index from the first vector lane, 2345 // rather than directly getting the pointer for lane VF - 1, because the 2346 // pointer operand of the interleaved access is supposed to be uniform. For 2347 // uniform instructions, we're only required to generate a value for the 2348 // first vector lane in each unroll iteration. 2349 assert(!VF.isScalable() && 2350 "scalable vector reverse operation is not implemented"); 2351 if (Group->isReverse()) 2352 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2353 2354 for (unsigned Part = 0; Part < UF; Part++) { 2355 Value *AddrPart = State.get(Addr, {Part, 0}); 2356 setDebugLocFromInst(Builder, AddrPart); 2357 2358 // Notice current instruction could be any index. Need to adjust the address 2359 // to the member of index 0. 2360 // 2361 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2362 // b = A[i]; // Member of index 0 2363 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2364 // 2365 // E.g. A[i+1] = a; // Member of index 1 2366 // A[i] = b; // Member of index 0 2367 // A[i+2] = c; // Member of index 2 (Current instruction) 2368 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2369 2370 bool InBounds = false; 2371 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2372 InBounds = gep->isInBounds(); 2373 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2374 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2375 2376 // Cast to the vector pointer type. 2377 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2378 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2379 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2380 } 2381 2382 setDebugLocFromInst(Builder, Instr); 2383 Value *UndefVec = UndefValue::get(VecTy); 2384 2385 Value *MaskForGaps = nullptr; 2386 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2387 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2388 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2389 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2390 } 2391 2392 // Vectorize the interleaved load group. 2393 if (isa<LoadInst>(Instr)) { 2394 // For each unroll part, create a wide load for the group. 2395 SmallVector<Value *, 2> NewLoads; 2396 for (unsigned Part = 0; Part < UF; Part++) { 2397 Instruction *NewLoad; 2398 if (BlockInMask || MaskForGaps) { 2399 assert(useMaskedInterleavedAccesses(*TTI) && 2400 "masked interleaved groups are not allowed."); 2401 Value *GroupMask = MaskForGaps; 2402 if (BlockInMask) { 2403 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2404 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2405 Value *ShuffledMask = Builder.CreateShuffleVector( 2406 BlockInMaskPart, 2407 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2408 "interleaved.mask"); 2409 GroupMask = MaskForGaps 2410 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2411 MaskForGaps) 2412 : ShuffledMask; 2413 } 2414 NewLoad = 2415 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2416 GroupMask, UndefVec, "wide.masked.vec"); 2417 } 2418 else 2419 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2420 Group->getAlign(), "wide.vec"); 2421 Group->addMetadata(NewLoad); 2422 NewLoads.push_back(NewLoad); 2423 } 2424 2425 // For each member in the group, shuffle out the appropriate data from the 2426 // wide loads. 2427 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2428 Instruction *Member = Group->getMember(I); 2429 2430 // Skip the gaps in the group. 2431 if (!Member) 2432 continue; 2433 2434 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2435 auto StrideMask = 2436 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2437 for (unsigned Part = 0; Part < UF; Part++) { 2438 Value *StridedVec = Builder.CreateShuffleVector( 2439 NewLoads[Part], StrideMask, "strided.vec"); 2440 2441 // If this member has different type, cast the result type. 2442 if (Member->getType() != ScalarTy) { 2443 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2444 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2445 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2446 } 2447 2448 if (Group->isReverse()) 2449 StridedVec = reverseVector(StridedVec); 2450 2451 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2452 } 2453 } 2454 return; 2455 } 2456 2457 // The sub vector type for current instruction. 2458 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2459 auto *SubVT = VectorType::get(ScalarTy, VF); 2460 2461 // Vectorize the interleaved store group. 2462 for (unsigned Part = 0; Part < UF; Part++) { 2463 // Collect the stored vector from each member. 2464 SmallVector<Value *, 4> StoredVecs; 2465 for (unsigned i = 0; i < InterleaveFactor; i++) { 2466 // Interleaved store group doesn't allow a gap, so each index has a member 2467 Instruction *Member = Group->getMember(i); 2468 assert(Member && "Fail to get a member from an interleaved store group"); 2469 2470 Value *StoredVec = getOrCreateVectorValue( 2471 cast<StoreInst>(Member)->getValueOperand(), Part); 2472 if (Group->isReverse()) 2473 StoredVec = reverseVector(StoredVec); 2474 2475 // If this member has different type, cast it to a unified type. 2476 2477 if (StoredVec->getType() != SubVT) 2478 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2479 2480 StoredVecs.push_back(StoredVec); 2481 } 2482 2483 // Concatenate all vectors into a wide vector. 2484 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2485 2486 // Interleave the elements in the wide vector. 2487 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2488 Value *IVec = Builder.CreateShuffleVector( 2489 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2490 "interleaved.vec"); 2491 2492 Instruction *NewStoreInstr; 2493 if (BlockInMask) { 2494 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2495 Value *ShuffledMask = Builder.CreateShuffleVector( 2496 BlockInMaskPart, 2497 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2498 "interleaved.mask"); 2499 NewStoreInstr = Builder.CreateMaskedStore( 2500 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2501 } 2502 else 2503 NewStoreInstr = 2504 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2505 2506 Group->addMetadata(NewStoreInstr); 2507 } 2508 } 2509 2510 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2511 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2512 VPValue *StoredValue, VPValue *BlockInMask) { 2513 // Attempt to issue a wide load. 2514 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2515 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2516 2517 assert((LI || SI) && "Invalid Load/Store instruction"); 2518 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2519 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2520 2521 LoopVectorizationCostModel::InstWidening Decision = 2522 Cost->getWideningDecision(Instr, VF); 2523 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2524 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2525 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2526 "CM decision is not to widen the memory instruction"); 2527 2528 Type *ScalarDataTy = getMemInstValueType(Instr); 2529 2530 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2531 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2532 const Align Alignment = getLoadStoreAlignment(Instr); 2533 2534 // Determine if the pointer operand of the access is either consecutive or 2535 // reverse consecutive. 2536 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2537 bool ConsecutiveStride = 2538 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2539 bool CreateGatherScatter = 2540 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2541 2542 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2543 // gather/scatter. Otherwise Decision should have been to Scalarize. 2544 assert((ConsecutiveStride || CreateGatherScatter) && 2545 "The instruction should be scalarized"); 2546 (void)ConsecutiveStride; 2547 2548 VectorParts BlockInMaskParts(UF); 2549 bool isMaskRequired = BlockInMask; 2550 if (isMaskRequired) 2551 for (unsigned Part = 0; Part < UF; ++Part) 2552 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2553 2554 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2555 // Calculate the pointer for the specific unroll-part. 2556 GetElementPtrInst *PartPtr = nullptr; 2557 2558 bool InBounds = false; 2559 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2560 InBounds = gep->isInBounds(); 2561 2562 if (Reverse) { 2563 // If the address is consecutive but reversed, then the 2564 // wide store needs to start at the last vector element. 2565 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2566 ScalarDataTy, Ptr, Builder.getInt32(-Part * VF.getKnownMinValue()))); 2567 PartPtr->setIsInBounds(InBounds); 2568 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2569 ScalarDataTy, PartPtr, Builder.getInt32(1 - VF.getKnownMinValue()))); 2570 PartPtr->setIsInBounds(InBounds); 2571 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2572 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2573 } else { 2574 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2575 ScalarDataTy, Ptr, Builder.getInt32(Part * VF.getKnownMinValue()))); 2576 PartPtr->setIsInBounds(InBounds); 2577 } 2578 2579 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2580 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2581 }; 2582 2583 // Handle Stores: 2584 if (SI) { 2585 setDebugLocFromInst(Builder, SI); 2586 2587 for (unsigned Part = 0; Part < UF; ++Part) { 2588 Instruction *NewSI = nullptr; 2589 Value *StoredVal = State.get(StoredValue, Part); 2590 if (CreateGatherScatter) { 2591 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2592 Value *VectorGep = State.get(Addr, Part); 2593 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2594 MaskPart); 2595 } else { 2596 if (Reverse) { 2597 // If we store to reverse consecutive memory locations, then we need 2598 // to reverse the order of elements in the stored value. 2599 StoredVal = reverseVector(StoredVal); 2600 // We don't want to update the value in the map as it might be used in 2601 // another expression. So don't call resetVectorValue(StoredVal). 2602 } 2603 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2604 if (isMaskRequired) 2605 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2606 BlockInMaskParts[Part]); 2607 else 2608 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2609 } 2610 addMetadata(NewSI, SI); 2611 } 2612 return; 2613 } 2614 2615 // Handle loads. 2616 assert(LI && "Must have a load instruction"); 2617 setDebugLocFromInst(Builder, LI); 2618 for (unsigned Part = 0; Part < UF; ++Part) { 2619 Value *NewLI; 2620 if (CreateGatherScatter) { 2621 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2622 Value *VectorGep = State.get(Addr, Part); 2623 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2624 nullptr, "wide.masked.gather"); 2625 addMetadata(NewLI, LI); 2626 } else { 2627 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2628 if (isMaskRequired) 2629 NewLI = Builder.CreateMaskedLoad( 2630 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2631 "wide.masked.load"); 2632 else 2633 NewLI = 2634 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2635 2636 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2637 addMetadata(NewLI, LI); 2638 if (Reverse) 2639 NewLI = reverseVector(NewLI); 2640 } 2641 2642 State.set(Def, Instr, NewLI, Part); 2643 } 2644 } 2645 2646 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User, 2647 const VPIteration &Instance, 2648 bool IfPredicateInstr, 2649 VPTransformState &State) { 2650 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2651 2652 setDebugLocFromInst(Builder, Instr); 2653 2654 // Does this instruction return a value ? 2655 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2656 2657 Instruction *Cloned = Instr->clone(); 2658 if (!IsVoidRetTy) 2659 Cloned->setName(Instr->getName() + ".cloned"); 2660 2661 // Replace the operands of the cloned instructions with their scalar 2662 // equivalents in the new loop. 2663 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2664 auto *NewOp = State.get(User.getOperand(op), Instance); 2665 Cloned->setOperand(op, NewOp); 2666 } 2667 addNewMetadata(Cloned, Instr); 2668 2669 // Place the cloned scalar in the new loop. 2670 Builder.Insert(Cloned); 2671 2672 // Add the cloned scalar to the scalar map entry. 2673 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2674 2675 // If we just cloned a new assumption, add it the assumption cache. 2676 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2677 if (II->getIntrinsicID() == Intrinsic::assume) 2678 AC->registerAssumption(II); 2679 2680 // End if-block. 2681 if (IfPredicateInstr) 2682 PredicatedInstructions.push_back(Cloned); 2683 } 2684 2685 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2686 Value *End, Value *Step, 2687 Instruction *DL) { 2688 BasicBlock *Header = L->getHeader(); 2689 BasicBlock *Latch = L->getLoopLatch(); 2690 // As we're just creating this loop, it's possible no latch exists 2691 // yet. If so, use the header as this will be a single block loop. 2692 if (!Latch) 2693 Latch = Header; 2694 2695 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2696 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2697 setDebugLocFromInst(Builder, OldInst); 2698 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2699 2700 Builder.SetInsertPoint(Latch->getTerminator()); 2701 setDebugLocFromInst(Builder, OldInst); 2702 2703 // Create i+1 and fill the PHINode. 2704 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2705 Induction->addIncoming(Start, L->getLoopPreheader()); 2706 Induction->addIncoming(Next, Latch); 2707 // Create the compare. 2708 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2709 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2710 2711 // Now we have two terminators. Remove the old one from the block. 2712 Latch->getTerminator()->eraseFromParent(); 2713 2714 return Induction; 2715 } 2716 2717 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2718 if (TripCount) 2719 return TripCount; 2720 2721 assert(L && "Create Trip Count for null loop."); 2722 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2723 // Find the loop boundaries. 2724 ScalarEvolution *SE = PSE.getSE(); 2725 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2726 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2727 "Invalid loop count"); 2728 2729 Type *IdxTy = Legal->getWidestInductionType(); 2730 assert(IdxTy && "No type for induction"); 2731 2732 // The exit count might have the type of i64 while the phi is i32. This can 2733 // happen if we have an induction variable that is sign extended before the 2734 // compare. The only way that we get a backedge taken count is that the 2735 // induction variable was signed and as such will not overflow. In such a case 2736 // truncation is legal. 2737 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2738 IdxTy->getPrimitiveSizeInBits()) 2739 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2740 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2741 2742 // Get the total trip count from the count by adding 1. 2743 const SCEV *ExitCount = SE->getAddExpr( 2744 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2745 2746 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2747 2748 // Expand the trip count and place the new instructions in the preheader. 2749 // Notice that the pre-header does not change, only the loop body. 2750 SCEVExpander Exp(*SE, DL, "induction"); 2751 2752 // Count holds the overall loop count (N). 2753 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2754 L->getLoopPreheader()->getTerminator()); 2755 2756 if (TripCount->getType()->isPointerTy()) 2757 TripCount = 2758 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2759 L->getLoopPreheader()->getTerminator()); 2760 2761 return TripCount; 2762 } 2763 2764 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2765 if (VectorTripCount) 2766 return VectorTripCount; 2767 2768 Value *TC = getOrCreateTripCount(L); 2769 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2770 2771 Type *Ty = TC->getType(); 2772 // This is where we can make the step a runtime constant. 2773 assert(!VF.isScalable() && "scalable vectorization is not supported yet"); 2774 Constant *Step = ConstantInt::get(Ty, VF.getKnownMinValue() * UF); 2775 2776 // If the tail is to be folded by masking, round the number of iterations N 2777 // up to a multiple of Step instead of rounding down. This is done by first 2778 // adding Step-1 and then rounding down. Note that it's ok if this addition 2779 // overflows: the vector induction variable will eventually wrap to zero given 2780 // that it starts at zero and its Step is a power of two; the loop will then 2781 // exit, with the last early-exit vector comparison also producing all-true. 2782 if (Cost->foldTailByMasking()) { 2783 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2784 "VF*UF must be a power of 2 when folding tail by masking"); 2785 TC = Builder.CreateAdd( 2786 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 2787 } 2788 2789 // Now we need to generate the expression for the part of the loop that the 2790 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2791 // iterations are not required for correctness, or N - Step, otherwise. Step 2792 // is equal to the vectorization factor (number of SIMD elements) times the 2793 // unroll factor (number of SIMD instructions). 2794 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2795 2796 // If there is a non-reversed interleaved group that may speculatively access 2797 // memory out-of-bounds, we need to ensure that there will be at least one 2798 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2799 // the trip count, we set the remainder to be equal to the step. If the step 2800 // does not evenly divide the trip count, no adjustment is necessary since 2801 // there will already be scalar iterations. Note that the minimum iterations 2802 // check ensures that N >= Step. 2803 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 2804 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2805 R = Builder.CreateSelect(IsZero, Step, R); 2806 } 2807 2808 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2809 2810 return VectorTripCount; 2811 } 2812 2813 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2814 const DataLayout &DL) { 2815 // Verify that V is a vector type with same number of elements as DstVTy. 2816 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2817 unsigned VF = DstFVTy->getNumElements(); 2818 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2819 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2820 Type *SrcElemTy = SrcVecTy->getElementType(); 2821 Type *DstElemTy = DstFVTy->getElementType(); 2822 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2823 "Vector elements must have same size"); 2824 2825 // Do a direct cast if element types are castable. 2826 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2827 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2828 } 2829 // V cannot be directly casted to desired vector type. 2830 // May happen when V is a floating point vector but DstVTy is a vector of 2831 // pointers or vice-versa. Handle this using a two-step bitcast using an 2832 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2833 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2834 "Only one type should be a pointer type"); 2835 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2836 "Only one type should be a floating point type"); 2837 Type *IntTy = 2838 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2839 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2840 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2841 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2842 } 2843 2844 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2845 BasicBlock *Bypass) { 2846 Value *Count = getOrCreateTripCount(L); 2847 // Reuse existing vector loop preheader for TC checks. 2848 // Note that new preheader block is generated for vector loop. 2849 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2850 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2851 2852 // Generate code to check if the loop's trip count is less than VF * UF, or 2853 // equal to it in case a scalar epilogue is required; this implies that the 2854 // vector trip count is zero. This check also covers the case where adding one 2855 // to the backedge-taken count overflowed leading to an incorrect trip count 2856 // of zero. In this case we will also jump to the scalar loop. 2857 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2858 : ICmpInst::ICMP_ULT; 2859 2860 // If tail is to be folded, vector loop takes care of all iterations. 2861 Value *CheckMinIters = Builder.getFalse(); 2862 if (!Cost->foldTailByMasking()) { 2863 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2864 CheckMinIters = Builder.CreateICmp( 2865 P, Count, 2866 ConstantInt::get(Count->getType(), VF.getKnownMinValue() * UF), 2867 "min.iters.check"); 2868 } 2869 // Create new preheader for vector loop. 2870 LoopVectorPreHeader = 2871 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2872 "vector.ph"); 2873 2874 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2875 DT->getNode(Bypass)->getIDom()) && 2876 "TC check is expected to dominate Bypass"); 2877 2878 // Update dominator for Bypass & LoopExit. 2879 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2880 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2881 2882 ReplaceInstWithInst( 2883 TCCheckBlock->getTerminator(), 2884 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2885 LoopBypassBlocks.push_back(TCCheckBlock); 2886 } 2887 2888 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2889 // Reuse existing vector loop preheader for SCEV checks. 2890 // Note that new preheader block is generated for vector loop. 2891 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 2892 2893 // Generate the code to check that the SCEV assumptions that we made. 2894 // We want the new basic block to start at the first instruction in a 2895 // sequence of instructions that form a check. 2896 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2897 "scev.check"); 2898 Value *SCEVCheck = Exp.expandCodeForPredicate( 2899 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 2900 2901 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2902 if (C->isZero()) 2903 return; 2904 2905 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 2906 (OptForSizeBasedOnProfile && 2907 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 2908 "Cannot SCEV check stride or overflow when optimizing for size"); 2909 2910 SCEVCheckBlock->setName("vector.scevcheck"); 2911 // Create new preheader for vector loop. 2912 LoopVectorPreHeader = 2913 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 2914 nullptr, "vector.ph"); 2915 2916 // Update dominator only if this is first RT check. 2917 if (LoopBypassBlocks.empty()) { 2918 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 2919 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 2920 } 2921 2922 ReplaceInstWithInst( 2923 SCEVCheckBlock->getTerminator(), 2924 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 2925 LoopBypassBlocks.push_back(SCEVCheckBlock); 2926 AddedSafetyChecks = true; 2927 } 2928 2929 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2930 // VPlan-native path does not do any analysis for runtime checks currently. 2931 if (EnableVPlanNativePath) 2932 return; 2933 2934 // Reuse existing vector loop preheader for runtime memory checks. 2935 // Note that new preheader block is generated for vector loop. 2936 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 2937 2938 // Generate the code that checks in runtime if arrays overlap. We put the 2939 // checks into a separate block to make the more common case of few elements 2940 // faster. 2941 auto *LAI = Legal->getLAI(); 2942 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 2943 if (!RtPtrChecking.Need) 2944 return; 2945 2946 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 2947 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2948 "Cannot emit memory checks when optimizing for size, unless forced " 2949 "to vectorize."); 2950 ORE->emit([&]() { 2951 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2952 L->getStartLoc(), L->getHeader()) 2953 << "Code-size may be reduced by not forcing " 2954 "vectorization, or by source-code modifications " 2955 "eliminating the need for runtime checks " 2956 "(e.g., adding 'restrict')."; 2957 }); 2958 } 2959 2960 MemCheckBlock->setName("vector.memcheck"); 2961 // Create new preheader for vector loop. 2962 LoopVectorPreHeader = 2963 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 2964 "vector.ph"); 2965 2966 auto *CondBranch = cast<BranchInst>( 2967 Builder.CreateCondBr(Builder.getTrue(), Bypass, LoopVectorPreHeader)); 2968 ReplaceInstWithInst(MemCheckBlock->getTerminator(), CondBranch); 2969 LoopBypassBlocks.push_back(MemCheckBlock); 2970 AddedSafetyChecks = true; 2971 2972 // Update dominator only if this is first RT check. 2973 if (LoopBypassBlocks.empty()) { 2974 DT->changeImmediateDominator(Bypass, MemCheckBlock); 2975 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 2976 } 2977 2978 Instruction *FirstCheckInst; 2979 Instruction *MemRuntimeCheck; 2980 std::tie(FirstCheckInst, MemRuntimeCheck) = 2981 addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop, 2982 RtPtrChecking.getChecks(), RtPtrChecking.getSE()); 2983 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 2984 "claimed checks are required"); 2985 CondBranch->setCondition(MemRuntimeCheck); 2986 2987 // We currently don't use LoopVersioning for the actual loop cloning but we 2988 // still use it to add the noalias metadata. 2989 LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2990 PSE.getSE()); 2991 LVer->prepareNoAliasMetadata(); 2992 } 2993 2994 Value *InnerLoopVectorizer::emitTransformedIndex( 2995 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2996 const InductionDescriptor &ID) const { 2997 2998 SCEVExpander Exp(*SE, DL, "induction"); 2999 auto Step = ID.getStep(); 3000 auto StartValue = ID.getStartValue(); 3001 assert(Index->getType() == Step->getType() && 3002 "Index type does not match StepValue type"); 3003 3004 // Note: the IR at this point is broken. We cannot use SE to create any new 3005 // SCEV and then expand it, hoping that SCEV's simplification will give us 3006 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3007 // lead to various SCEV crashes. So all we can do is to use builder and rely 3008 // on InstCombine for future simplifications. Here we handle some trivial 3009 // cases only. 3010 auto CreateAdd = [&B](Value *X, Value *Y) { 3011 assert(X->getType() == Y->getType() && "Types don't match!"); 3012 if (auto *CX = dyn_cast<ConstantInt>(X)) 3013 if (CX->isZero()) 3014 return Y; 3015 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3016 if (CY->isZero()) 3017 return X; 3018 return B.CreateAdd(X, Y); 3019 }; 3020 3021 auto CreateMul = [&B](Value *X, Value *Y) { 3022 assert(X->getType() == Y->getType() && "Types don't match!"); 3023 if (auto *CX = dyn_cast<ConstantInt>(X)) 3024 if (CX->isOne()) 3025 return Y; 3026 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3027 if (CY->isOne()) 3028 return X; 3029 return B.CreateMul(X, Y); 3030 }; 3031 3032 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3033 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3034 // the DomTree is not kept up-to-date for additional blocks generated in the 3035 // vector loop. By using the header as insertion point, we guarantee that the 3036 // expanded instructions dominate all their uses. 3037 auto GetInsertPoint = [this, &B]() { 3038 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3039 if (InsertBB != LoopVectorBody && 3040 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3041 return LoopVectorBody->getTerminator(); 3042 return &*B.GetInsertPoint(); 3043 }; 3044 switch (ID.getKind()) { 3045 case InductionDescriptor::IK_IntInduction: { 3046 assert(Index->getType() == StartValue->getType() && 3047 "Index type does not match StartValue type"); 3048 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3049 return B.CreateSub(StartValue, Index); 3050 auto *Offset = CreateMul( 3051 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3052 return CreateAdd(StartValue, Offset); 3053 } 3054 case InductionDescriptor::IK_PtrInduction: { 3055 assert(isa<SCEVConstant>(Step) && 3056 "Expected constant step for pointer induction"); 3057 return B.CreateGEP( 3058 StartValue->getType()->getPointerElementType(), StartValue, 3059 CreateMul(Index, 3060 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 3061 } 3062 case InductionDescriptor::IK_FpInduction: { 3063 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3064 auto InductionBinOp = ID.getInductionBinOp(); 3065 assert(InductionBinOp && 3066 (InductionBinOp->getOpcode() == Instruction::FAdd || 3067 InductionBinOp->getOpcode() == Instruction::FSub) && 3068 "Original bin op should be defined for FP induction"); 3069 3070 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3071 3072 // Floating point operations had to be 'fast' to enable the induction. 3073 FastMathFlags Flags; 3074 Flags.setFast(); 3075 3076 Value *MulExp = B.CreateFMul(StepValue, Index); 3077 if (isa<Instruction>(MulExp)) 3078 // We have to check, the MulExp may be a constant. 3079 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 3080 3081 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3082 "induction"); 3083 if (isa<Instruction>(BOp)) 3084 cast<Instruction>(BOp)->setFastMathFlags(Flags); 3085 3086 return BOp; 3087 } 3088 case InductionDescriptor::IK_NoInduction: 3089 return nullptr; 3090 } 3091 llvm_unreachable("invalid enum"); 3092 } 3093 3094 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3095 LoopScalarBody = OrigLoop->getHeader(); 3096 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3097 LoopExitBlock = OrigLoop->getExitBlock(); 3098 assert(LoopExitBlock && "Must have an exit block"); 3099 assert(LoopVectorPreHeader && "Invalid loop structure"); 3100 3101 LoopMiddleBlock = 3102 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3103 LI, nullptr, Twine(Prefix) + "middle.block"); 3104 LoopScalarPreHeader = 3105 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3106 nullptr, Twine(Prefix) + "scalar.ph"); 3107 // We intentionally don't let SplitBlock to update LoopInfo since 3108 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3109 // LoopVectorBody is explicitly added to the correct place few lines later. 3110 LoopVectorBody = 3111 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3112 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3113 3114 // Update dominator for loop exit. 3115 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3116 3117 // Create and register the new vector loop. 3118 Loop *Lp = LI->AllocateLoop(); 3119 Loop *ParentLoop = OrigLoop->getParentLoop(); 3120 3121 // Insert the new loop into the loop nest and register the new basic blocks 3122 // before calling any utilities such as SCEV that require valid LoopInfo. 3123 if (ParentLoop) { 3124 ParentLoop->addChildLoop(Lp); 3125 } else { 3126 LI->addTopLevelLoop(Lp); 3127 } 3128 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3129 return Lp; 3130 } 3131 3132 void InnerLoopVectorizer::createInductionResumeValues(Loop *L, 3133 Value *VectorTripCount) { 3134 assert(VectorTripCount && L && "Expected valid arguments"); 3135 // We are going to resume the execution of the scalar loop. 3136 // Go over all of the induction variables that we found and fix the 3137 // PHIs that are left in the scalar version of the loop. 3138 // The starting values of PHI nodes depend on the counter of the last 3139 // iteration in the vectorized loop. 3140 // If we come from a bypass edge then we need to start from the original 3141 // start value. 3142 for (auto &InductionEntry : Legal->getInductionVars()) { 3143 PHINode *OrigPhi = InductionEntry.first; 3144 InductionDescriptor II = InductionEntry.second; 3145 3146 // Create phi nodes to merge from the backedge-taken check block. 3147 PHINode *BCResumeVal = 3148 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3149 LoopScalarPreHeader->getTerminator()); 3150 // Copy original phi DL over to the new one. 3151 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3152 Value *&EndValue = IVEndValues[OrigPhi]; 3153 if (OrigPhi == OldInduction) { 3154 // We know what the end value is. 3155 EndValue = VectorTripCount; 3156 } else { 3157 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3158 Type *StepType = II.getStep()->getType(); 3159 Instruction::CastOps CastOp = 3160 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3161 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3162 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3163 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3164 EndValue->setName("ind.end"); 3165 } 3166 3167 // The new PHI merges the original incoming value, in case of a bypass, 3168 // or the value at the end of the vectorized loop. 3169 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3170 3171 // Fix the scalar body counter (PHI node). 3172 // The old induction's phi node in the scalar body needs the truncated 3173 // value. 3174 for (BasicBlock *BB : LoopBypassBlocks) 3175 BCResumeVal->addIncoming(II.getStartValue(), BB); 3176 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3177 } 3178 } 3179 3180 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3181 MDNode *OrigLoopID) { 3182 assert(L && "Expected valid loop."); 3183 3184 // The trip counts should be cached by now. 3185 Value *Count = getOrCreateTripCount(L); 3186 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3187 3188 // We need the OrigLoop (scalar loop part) latch terminator to help 3189 // produce correct debug info for the middle block BB instructions. 3190 // The legality check stage guarantees that the loop will have a single 3191 // latch. 3192 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3193 "Scalar loop latch terminator isn't a branch"); 3194 BranchInst *ScalarLatchBr = 3195 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3196 3197 // Add a check in the middle block to see if we have completed 3198 // all of the iterations in the first vector loop. 3199 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3200 // If tail is to be folded, we know we don't need to run the remainder. 3201 Value *CmpN = Builder.getTrue(); 3202 if (!Cost->foldTailByMasking()) { 3203 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3204 VectorTripCount, "cmp.n", 3205 LoopMiddleBlock->getTerminator()); 3206 3207 // Here we use the same DebugLoc as the scalar loop latch branch instead 3208 // of the corresponding compare because they may have ended up with 3209 // different line numbers and we want to avoid awkward line stepping while 3210 // debugging. Eg. if the compare has got a line number inside the loop. 3211 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3212 } 3213 3214 BranchInst *BrInst = 3215 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3216 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3217 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3218 3219 // Get ready to start creating new instructions into the vectorized body. 3220 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3221 "Inconsistent vector loop preheader"); 3222 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3223 3224 Optional<MDNode *> VectorizedLoopID = 3225 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3226 LLVMLoopVectorizeFollowupVectorized}); 3227 if (VectorizedLoopID.hasValue()) { 3228 L->setLoopID(VectorizedLoopID.getValue()); 3229 3230 // Do not setAlreadyVectorized if loop attributes have been defined 3231 // explicitly. 3232 return LoopVectorPreHeader; 3233 } 3234 3235 // Keep all loop hints from the original loop on the vector loop (we'll 3236 // replace the vectorizer-specific hints below). 3237 if (MDNode *LID = OrigLoop->getLoopID()) 3238 L->setLoopID(LID); 3239 3240 LoopVectorizeHints Hints(L, true, *ORE); 3241 Hints.setAlreadyVectorized(); 3242 3243 #ifdef EXPENSIVE_CHECKS 3244 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3245 LI->verify(*DT); 3246 #endif 3247 3248 return LoopVectorPreHeader; 3249 } 3250 3251 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3252 /* 3253 In this function we generate a new loop. The new loop will contain 3254 the vectorized instructions while the old loop will continue to run the 3255 scalar remainder. 3256 3257 [ ] <-- loop iteration number check. 3258 / | 3259 / v 3260 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3261 | / | 3262 | / v 3263 || [ ] <-- vector pre header. 3264 |/ | 3265 | v 3266 | [ ] \ 3267 | [ ]_| <-- vector loop. 3268 | | 3269 | v 3270 | -[ ] <--- middle-block. 3271 | / | 3272 | / v 3273 -|- >[ ] <--- new preheader. 3274 | | 3275 | v 3276 | [ ] \ 3277 | [ ]_| <-- old scalar loop to handle remainder. 3278 \ | 3279 \ v 3280 >[ ] <-- exit block. 3281 ... 3282 */ 3283 3284 // Get the metadata of the original loop before it gets modified. 3285 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3286 3287 // Create an empty vector loop, and prepare basic blocks for the runtime 3288 // checks. 3289 Loop *Lp = createVectorLoopSkeleton(""); 3290 3291 // Now, compare the new count to zero. If it is zero skip the vector loop and 3292 // jump to the scalar loop. This check also covers the case where the 3293 // backedge-taken count is uint##_max: adding one to it will overflow leading 3294 // to an incorrect trip count of zero. In this (rare) case we will also jump 3295 // to the scalar loop. 3296 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3297 3298 // Generate the code to check any assumptions that we've made for SCEV 3299 // expressions. 3300 emitSCEVChecks(Lp, LoopScalarPreHeader); 3301 3302 // Generate the code that checks in runtime if arrays overlap. We put the 3303 // checks into a separate block to make the more common case of few elements 3304 // faster. 3305 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3306 3307 // Some loops have a single integer induction variable, while other loops 3308 // don't. One example is c++ iterators that often have multiple pointer 3309 // induction variables. In the code below we also support a case where we 3310 // don't have a single induction variable. 3311 // 3312 // We try to obtain an induction variable from the original loop as hard 3313 // as possible. However if we don't find one that: 3314 // - is an integer 3315 // - counts from zero, stepping by one 3316 // - is the size of the widest induction variable type 3317 // then we create a new one. 3318 OldInduction = Legal->getPrimaryInduction(); 3319 Type *IdxTy = Legal->getWidestInductionType(); 3320 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3321 // The loop step is equal to the vectorization factor (num of SIMD elements) 3322 // times the unroll factor (num of SIMD instructions). 3323 assert(!VF.isScalable() && "scalable vectors not yet supported."); 3324 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 3325 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3326 Induction = 3327 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3328 getDebugLocFromInstOrOperands(OldInduction)); 3329 3330 // Emit phis for the new starting index of the scalar loop. 3331 createInductionResumeValues(Lp, CountRoundDown); 3332 3333 return completeLoopSkeleton(Lp, OrigLoopID); 3334 } 3335 3336 // Fix up external users of the induction variable. At this point, we are 3337 // in LCSSA form, with all external PHIs that use the IV having one input value, 3338 // coming from the remainder loop. We need those PHIs to also have a correct 3339 // value for the IV when arriving directly from the middle block. 3340 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3341 const InductionDescriptor &II, 3342 Value *CountRoundDown, Value *EndValue, 3343 BasicBlock *MiddleBlock) { 3344 // There are two kinds of external IV usages - those that use the value 3345 // computed in the last iteration (the PHI) and those that use the penultimate 3346 // value (the value that feeds into the phi from the loop latch). 3347 // We allow both, but they, obviously, have different values. 3348 3349 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3350 3351 DenseMap<Value *, Value *> MissingVals; 3352 3353 // An external user of the last iteration's value should see the value that 3354 // the remainder loop uses to initialize its own IV. 3355 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3356 for (User *U : PostInc->users()) { 3357 Instruction *UI = cast<Instruction>(U); 3358 if (!OrigLoop->contains(UI)) { 3359 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3360 MissingVals[UI] = EndValue; 3361 } 3362 } 3363 3364 // An external user of the penultimate value need to see EndValue - Step. 3365 // The simplest way to get this is to recompute it from the constituent SCEVs, 3366 // that is Start + (Step * (CRD - 1)). 3367 for (User *U : OrigPhi->users()) { 3368 auto *UI = cast<Instruction>(U); 3369 if (!OrigLoop->contains(UI)) { 3370 const DataLayout &DL = 3371 OrigLoop->getHeader()->getModule()->getDataLayout(); 3372 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3373 3374 IRBuilder<> B(MiddleBlock->getTerminator()); 3375 Value *CountMinusOne = B.CreateSub( 3376 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3377 Value *CMO = 3378 !II.getStep()->getType()->isIntegerTy() 3379 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3380 II.getStep()->getType()) 3381 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3382 CMO->setName("cast.cmo"); 3383 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3384 Escape->setName("ind.escape"); 3385 MissingVals[UI] = Escape; 3386 } 3387 } 3388 3389 for (auto &I : MissingVals) { 3390 PHINode *PHI = cast<PHINode>(I.first); 3391 // One corner case we have to handle is two IVs "chasing" each-other, 3392 // that is %IV2 = phi [...], [ %IV1, %latch ] 3393 // In this case, if IV1 has an external use, we need to avoid adding both 3394 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3395 // don't already have an incoming value for the middle block. 3396 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3397 PHI->addIncoming(I.second, MiddleBlock); 3398 } 3399 } 3400 3401 namespace { 3402 3403 struct CSEDenseMapInfo { 3404 static bool canHandle(const Instruction *I) { 3405 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3406 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3407 } 3408 3409 static inline Instruction *getEmptyKey() { 3410 return DenseMapInfo<Instruction *>::getEmptyKey(); 3411 } 3412 3413 static inline Instruction *getTombstoneKey() { 3414 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3415 } 3416 3417 static unsigned getHashValue(const Instruction *I) { 3418 assert(canHandle(I) && "Unknown instruction!"); 3419 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3420 I->value_op_end())); 3421 } 3422 3423 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3424 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3425 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3426 return LHS == RHS; 3427 return LHS->isIdenticalTo(RHS); 3428 } 3429 }; 3430 3431 } // end anonymous namespace 3432 3433 ///Perform cse of induction variable instructions. 3434 static void cse(BasicBlock *BB) { 3435 // Perform simple cse. 3436 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3437 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3438 Instruction *In = &*I++; 3439 3440 if (!CSEDenseMapInfo::canHandle(In)) 3441 continue; 3442 3443 // Check if we can replace this instruction with any of the 3444 // visited instructions. 3445 if (Instruction *V = CSEMap.lookup(In)) { 3446 In->replaceAllUsesWith(V); 3447 In->eraseFromParent(); 3448 continue; 3449 } 3450 3451 CSEMap[In] = In; 3452 } 3453 } 3454 3455 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3456 ElementCount VF, 3457 bool &NeedToScalarize) { 3458 assert(!VF.isScalable() && "scalable vectors not yet supported."); 3459 Function *F = CI->getCalledFunction(); 3460 Type *ScalarRetTy = CI->getType(); 3461 SmallVector<Type *, 4> Tys, ScalarTys; 3462 for (auto &ArgOp : CI->arg_operands()) 3463 ScalarTys.push_back(ArgOp->getType()); 3464 3465 // Estimate cost of scalarized vector call. The source operands are assumed 3466 // to be vectors, so we need to extract individual elements from there, 3467 // execute VF scalar calls, and then gather the result into the vector return 3468 // value. 3469 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, 3470 TTI::TCK_RecipThroughput); 3471 if (VF.isScalar()) 3472 return ScalarCallCost; 3473 3474 // Compute corresponding vector type for return value and arguments. 3475 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3476 for (Type *ScalarTy : ScalarTys) 3477 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3478 3479 // Compute costs of unpacking argument values for the scalar calls and 3480 // packing the return values to a vector. 3481 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3482 3483 unsigned Cost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3484 3485 // If we can't emit a vector call for this function, then the currently found 3486 // cost is the cost we need to return. 3487 NeedToScalarize = true; 3488 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3489 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3490 3491 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3492 return Cost; 3493 3494 // If the corresponding vector cost is cheaper, return its cost. 3495 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, 3496 TTI::TCK_RecipThroughput); 3497 if (VectorCallCost < Cost) { 3498 NeedToScalarize = false; 3499 return VectorCallCost; 3500 } 3501 return Cost; 3502 } 3503 3504 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3505 ElementCount VF) { 3506 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3507 assert(ID && "Expected intrinsic call!"); 3508 3509 IntrinsicCostAttributes CostAttrs(ID, *CI, VF); 3510 return TTI.getIntrinsicInstrCost(CostAttrs, 3511 TargetTransformInfo::TCK_RecipThroughput); 3512 } 3513 3514 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3515 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3516 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3517 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3518 } 3519 3520 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3521 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3522 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3523 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3524 } 3525 3526 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3527 // For every instruction `I` in MinBWs, truncate the operands, create a 3528 // truncated version of `I` and reextend its result. InstCombine runs 3529 // later and will remove any ext/trunc pairs. 3530 SmallPtrSet<Value *, 4> Erased; 3531 for (const auto &KV : Cost->getMinimalBitwidths()) { 3532 // If the value wasn't vectorized, we must maintain the original scalar 3533 // type. The absence of the value from VectorLoopValueMap indicates that it 3534 // wasn't vectorized. 3535 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3536 continue; 3537 for (unsigned Part = 0; Part < UF; ++Part) { 3538 Value *I = getOrCreateVectorValue(KV.first, Part); 3539 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3540 continue; 3541 Type *OriginalTy = I->getType(); 3542 Type *ScalarTruncatedTy = 3543 IntegerType::get(OriginalTy->getContext(), KV.second); 3544 auto *TruncatedTy = FixedVectorType::get( 3545 ScalarTruncatedTy, 3546 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3547 if (TruncatedTy == OriginalTy) 3548 continue; 3549 3550 IRBuilder<> B(cast<Instruction>(I)); 3551 auto ShrinkOperand = [&](Value *V) -> Value * { 3552 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3553 if (ZI->getSrcTy() == TruncatedTy) 3554 return ZI->getOperand(0); 3555 return B.CreateZExtOrTrunc(V, TruncatedTy); 3556 }; 3557 3558 // The actual instruction modification depends on the instruction type, 3559 // unfortunately. 3560 Value *NewI = nullptr; 3561 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3562 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3563 ShrinkOperand(BO->getOperand(1))); 3564 3565 // Any wrapping introduced by shrinking this operation shouldn't be 3566 // considered undefined behavior. So, we can't unconditionally copy 3567 // arithmetic wrapping flags to NewI. 3568 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3569 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3570 NewI = 3571 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3572 ShrinkOperand(CI->getOperand(1))); 3573 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3574 NewI = B.CreateSelect(SI->getCondition(), 3575 ShrinkOperand(SI->getTrueValue()), 3576 ShrinkOperand(SI->getFalseValue())); 3577 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3578 switch (CI->getOpcode()) { 3579 default: 3580 llvm_unreachable("Unhandled cast!"); 3581 case Instruction::Trunc: 3582 NewI = ShrinkOperand(CI->getOperand(0)); 3583 break; 3584 case Instruction::SExt: 3585 NewI = B.CreateSExtOrTrunc( 3586 CI->getOperand(0), 3587 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3588 break; 3589 case Instruction::ZExt: 3590 NewI = B.CreateZExtOrTrunc( 3591 CI->getOperand(0), 3592 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3593 break; 3594 } 3595 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3596 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3597 ->getNumElements(); 3598 auto *O0 = B.CreateZExtOrTrunc( 3599 SI->getOperand(0), 3600 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3601 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 3602 ->getNumElements(); 3603 auto *O1 = B.CreateZExtOrTrunc( 3604 SI->getOperand(1), 3605 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3606 3607 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3608 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3609 // Don't do anything with the operands, just extend the result. 3610 continue; 3611 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3612 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 3613 ->getNumElements(); 3614 auto *O0 = B.CreateZExtOrTrunc( 3615 IE->getOperand(0), 3616 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3617 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3618 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3619 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3620 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 3621 ->getNumElements(); 3622 auto *O0 = B.CreateZExtOrTrunc( 3623 EE->getOperand(0), 3624 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3625 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3626 } else { 3627 // If we don't know what to do, be conservative and don't do anything. 3628 continue; 3629 } 3630 3631 // Lastly, extend the result. 3632 NewI->takeName(cast<Instruction>(I)); 3633 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3634 I->replaceAllUsesWith(Res); 3635 cast<Instruction>(I)->eraseFromParent(); 3636 Erased.insert(I); 3637 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3638 } 3639 } 3640 3641 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3642 for (const auto &KV : Cost->getMinimalBitwidths()) { 3643 // If the value wasn't vectorized, we must maintain the original scalar 3644 // type. The absence of the value from VectorLoopValueMap indicates that it 3645 // wasn't vectorized. 3646 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3647 continue; 3648 for (unsigned Part = 0; Part < UF; ++Part) { 3649 Value *I = getOrCreateVectorValue(KV.first, Part); 3650 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3651 if (Inst && Inst->use_empty()) { 3652 Value *NewI = Inst->getOperand(0); 3653 Inst->eraseFromParent(); 3654 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3655 } 3656 } 3657 } 3658 } 3659 3660 void InnerLoopVectorizer::fixVectorizedLoop() { 3661 // Insert truncates and extends for any truncated instructions as hints to 3662 // InstCombine. 3663 if (VF.isVector()) 3664 truncateToMinimalBitwidths(); 3665 3666 // Fix widened non-induction PHIs by setting up the PHI operands. 3667 if (OrigPHIsToFix.size()) { 3668 assert(EnableVPlanNativePath && 3669 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3670 fixNonInductionPHIs(); 3671 } 3672 3673 // At this point every instruction in the original loop is widened to a 3674 // vector form. Now we need to fix the recurrences in the loop. These PHI 3675 // nodes are currently empty because we did not want to introduce cycles. 3676 // This is the second stage of vectorizing recurrences. 3677 fixCrossIterationPHIs(); 3678 3679 // Forget the original basic block. 3680 PSE.getSE()->forgetLoop(OrigLoop); 3681 3682 // Fix-up external users of the induction variables. 3683 for (auto &Entry : Legal->getInductionVars()) 3684 fixupIVUsers(Entry.first, Entry.second, 3685 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3686 IVEndValues[Entry.first], LoopMiddleBlock); 3687 3688 fixLCSSAPHIs(); 3689 for (Instruction *PI : PredicatedInstructions) 3690 sinkScalarOperands(&*PI); 3691 3692 // Remove redundant induction instructions. 3693 cse(LoopVectorBody); 3694 3695 // Set/update profile weights for the vector and remainder loops as original 3696 // loop iterations are now distributed among them. Note that original loop 3697 // represented by LoopScalarBody becomes remainder loop after vectorization. 3698 // 3699 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3700 // end up getting slightly roughened result but that should be OK since 3701 // profile is not inherently precise anyway. Note also possible bypass of 3702 // vector code caused by legality checks is ignored, assigning all the weight 3703 // to the vector loop, optimistically. 3704 assert(!VF.isScalable() && 3705 "cannot use scalable ElementCount to determine unroll factor"); 3706 setProfileInfoAfterUnrolling( 3707 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 3708 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 3709 } 3710 3711 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3712 // In order to support recurrences we need to be able to vectorize Phi nodes. 3713 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3714 // stage #2: We now need to fix the recurrences by adding incoming edges to 3715 // the currently empty PHI nodes. At this point every instruction in the 3716 // original loop is widened to a vector form so we can use them to construct 3717 // the incoming edges. 3718 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3719 // Handle first-order recurrences and reductions that need to be fixed. 3720 if (Legal->isFirstOrderRecurrence(&Phi)) 3721 fixFirstOrderRecurrence(&Phi); 3722 else if (Legal->isReductionVariable(&Phi)) 3723 fixReduction(&Phi); 3724 } 3725 } 3726 3727 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3728 // This is the second phase of vectorizing first-order recurrences. An 3729 // overview of the transformation is described below. Suppose we have the 3730 // following loop. 3731 // 3732 // for (int i = 0; i < n; ++i) 3733 // b[i] = a[i] - a[i - 1]; 3734 // 3735 // There is a first-order recurrence on "a". For this loop, the shorthand 3736 // scalar IR looks like: 3737 // 3738 // scalar.ph: 3739 // s_init = a[-1] 3740 // br scalar.body 3741 // 3742 // scalar.body: 3743 // i = phi [0, scalar.ph], [i+1, scalar.body] 3744 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3745 // s2 = a[i] 3746 // b[i] = s2 - s1 3747 // br cond, scalar.body, ... 3748 // 3749 // In this example, s1 is a recurrence because it's value depends on the 3750 // previous iteration. In the first phase of vectorization, we created a 3751 // temporary value for s1. We now complete the vectorization and produce the 3752 // shorthand vector IR shown below (for VF = 4, UF = 1). 3753 // 3754 // vector.ph: 3755 // v_init = vector(..., ..., ..., a[-1]) 3756 // br vector.body 3757 // 3758 // vector.body 3759 // i = phi [0, vector.ph], [i+4, vector.body] 3760 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3761 // v2 = a[i, i+1, i+2, i+3]; 3762 // v3 = vector(v1(3), v2(0, 1, 2)) 3763 // b[i, i+1, i+2, i+3] = v2 - v3 3764 // br cond, vector.body, middle.block 3765 // 3766 // middle.block: 3767 // x = v2(3) 3768 // br scalar.ph 3769 // 3770 // scalar.ph: 3771 // s_init = phi [x, middle.block], [a[-1], otherwise] 3772 // br scalar.body 3773 // 3774 // After execution completes the vector loop, we extract the next value of 3775 // the recurrence (x) to use as the initial value in the scalar loop. 3776 3777 // Get the original loop preheader and single loop latch. 3778 auto *Preheader = OrigLoop->getLoopPreheader(); 3779 auto *Latch = OrigLoop->getLoopLatch(); 3780 3781 // Get the initial and previous values of the scalar recurrence. 3782 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3783 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3784 3785 // Create a vector from the initial value. 3786 auto *VectorInit = ScalarInit; 3787 if (VF.isVector()) { 3788 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3789 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 3790 VectorInit = Builder.CreateInsertElement( 3791 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3792 Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init"); 3793 } 3794 3795 // We constructed a temporary phi node in the first phase of vectorization. 3796 // This phi node will eventually be deleted. 3797 Builder.SetInsertPoint( 3798 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3799 3800 // Create a phi node for the new recurrence. The current value will either be 3801 // the initial value inserted into a vector or loop-varying vector value. 3802 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3803 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3804 3805 // Get the vectorized previous value of the last part UF - 1. It appears last 3806 // among all unrolled iterations, due to the order of their construction. 3807 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3808 3809 // Find and set the insertion point after the previous value if it is an 3810 // instruction. 3811 BasicBlock::iterator InsertPt; 3812 // Note that the previous value may have been constant-folded so it is not 3813 // guaranteed to be an instruction in the vector loop. 3814 // FIXME: Loop invariant values do not form recurrences. We should deal with 3815 // them earlier. 3816 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3817 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3818 else { 3819 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3820 if (isa<PHINode>(PreviousLastPart)) 3821 // If the previous value is a phi node, we should insert after all the phi 3822 // nodes in the block containing the PHI to avoid breaking basic block 3823 // verification. Note that the basic block may be different to 3824 // LoopVectorBody, in case we predicate the loop. 3825 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3826 else 3827 InsertPt = ++PreviousInst->getIterator(); 3828 } 3829 Builder.SetInsertPoint(&*InsertPt); 3830 3831 // We will construct a vector for the recurrence by combining the values for 3832 // the current and previous iterations. This is the required shuffle mask. 3833 assert(!VF.isScalable()); 3834 SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue()); 3835 ShuffleMask[0] = VF.getKnownMinValue() - 1; 3836 for (unsigned I = 1; I < VF.getKnownMinValue(); ++I) 3837 ShuffleMask[I] = I + VF.getKnownMinValue() - 1; 3838 3839 // The vector from which to take the initial value for the current iteration 3840 // (actual or unrolled). Initially, this is the vector phi node. 3841 Value *Incoming = VecPhi; 3842 3843 // Shuffle the current and previous vector and update the vector parts. 3844 for (unsigned Part = 0; Part < UF; ++Part) { 3845 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3846 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3847 auto *Shuffle = 3848 VF.isVector() 3849 ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask) 3850 : Incoming; 3851 PhiPart->replaceAllUsesWith(Shuffle); 3852 cast<Instruction>(PhiPart)->eraseFromParent(); 3853 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3854 Incoming = PreviousPart; 3855 } 3856 3857 // Fix the latch value of the new recurrence in the vector loop. 3858 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3859 3860 // Extract the last vector element in the middle block. This will be the 3861 // initial value for the recurrence when jumping to the scalar loop. 3862 auto *ExtractForScalar = Incoming; 3863 if (VF.isVector()) { 3864 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3865 ExtractForScalar = Builder.CreateExtractElement( 3866 ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1), 3867 "vector.recur.extract"); 3868 } 3869 // Extract the second last element in the middle block if the 3870 // Phi is used outside the loop. We need to extract the phi itself 3871 // and not the last element (the phi update in the current iteration). This 3872 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3873 // when the scalar loop is not run at all. 3874 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3875 if (VF.isVector()) 3876 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3877 Incoming, Builder.getInt32(VF.getKnownMinValue() - 2), 3878 "vector.recur.extract.for.phi"); 3879 // When loop is unrolled without vectorizing, initialize 3880 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3881 // `Incoming`. This is analogous to the vectorized case above: extracting the 3882 // second last element when VF > 1. 3883 else if (UF > 1) 3884 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3885 3886 // Fix the initial value of the original recurrence in the scalar loop. 3887 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3888 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3889 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3890 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3891 Start->addIncoming(Incoming, BB); 3892 } 3893 3894 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3895 Phi->setName("scalar.recur"); 3896 3897 // Finally, fix users of the recurrence outside the loop. The users will need 3898 // either the last value of the scalar recurrence or the last value of the 3899 // vector recurrence we extracted in the middle block. Since the loop is in 3900 // LCSSA form, we just need to find all the phi nodes for the original scalar 3901 // recurrence in the exit block, and then add an edge for the middle block. 3902 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3903 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3904 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3905 } 3906 } 3907 } 3908 3909 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3910 Constant *Zero = Builder.getInt32(0); 3911 3912 // Get it's reduction variable descriptor. 3913 assert(Legal->isReductionVariable(Phi) && 3914 "Unable to find the reduction variable"); 3915 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 3916 3917 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3918 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3919 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3920 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3921 RdxDesc.getMinMaxRecurrenceKind(); 3922 setDebugLocFromInst(Builder, ReductionStartValue); 3923 bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi); 3924 3925 // We need to generate a reduction vector from the incoming scalar. 3926 // To do so, we need to generate the 'identity' vector and override 3927 // one of the elements with the incoming scalar reduction. We need 3928 // to do it in the vector-loop preheader. 3929 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3930 3931 // This is the vector-clone of the value that leaves the loop. 3932 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3933 3934 // Find the reduction identity variable. Zero for addition, or, xor, 3935 // one for multiplication, -1 for And. 3936 Value *Identity; 3937 Value *VectorStart; 3938 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3939 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3940 // MinMax reduction have the start value as their identify. 3941 if (VF.isScalar() || IsInLoopReductionPhi) { 3942 VectorStart = Identity = ReductionStartValue; 3943 } else { 3944 VectorStart = Identity = 3945 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3946 } 3947 } else { 3948 // Handle other reduction kinds: 3949 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3950 RK, MinMaxKind, VecTy->getScalarType()); 3951 if (VF.isScalar() || IsInLoopReductionPhi) { 3952 Identity = Iden; 3953 // This vector is the Identity vector where the first element is the 3954 // incoming scalar reduction. 3955 VectorStart = ReductionStartValue; 3956 } else { 3957 Identity = ConstantVector::getSplat(VF, Iden); 3958 3959 // This vector is the Identity vector where the first element is the 3960 // incoming scalar reduction. 3961 VectorStart = 3962 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3963 } 3964 } 3965 3966 // Wrap flags are in general invalid after vectorization, clear them. 3967 clearReductionWrapFlags(RdxDesc); 3968 3969 // Fix the vector-loop phi. 3970 3971 // Reductions do not have to start at zero. They can start with 3972 // any loop invariant values. 3973 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3974 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3975 3976 for (unsigned Part = 0; Part < UF; ++Part) { 3977 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3978 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3979 // Make sure to add the reduction start value only to the 3980 // first unroll part. 3981 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3982 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3983 cast<PHINode>(VecRdxPhi) 3984 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3985 } 3986 3987 // Before each round, move the insertion point right between 3988 // the PHIs and the values we are going to write. 3989 // This allows us to write both PHINodes and the extractelement 3990 // instructions. 3991 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3992 3993 setDebugLocFromInst(Builder, LoopExitInst); 3994 3995 // If tail is folded by masking, the vector value to leave the loop should be 3996 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3997 // instead of the former. For an inloop reduction the reduction will already 3998 // be predicated, and does not need to be handled here. 3999 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4000 for (unsigned Part = 0; Part < UF; ++Part) { 4001 Value *VecLoopExitInst = 4002 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4003 Value *Sel = nullptr; 4004 for (User *U : VecLoopExitInst->users()) { 4005 if (isa<SelectInst>(U)) { 4006 assert(!Sel && "Reduction exit feeding two selects"); 4007 Sel = U; 4008 } else 4009 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4010 } 4011 assert(Sel && "Reduction exit feeds no select"); 4012 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 4013 4014 // If the target can create a predicated operator for the reduction at no 4015 // extra cost in the loop (for example a predicated vadd), it can be 4016 // cheaper for the select to remain in the loop than be sunk out of it, 4017 // and so use the select value for the phi instead of the old 4018 // LoopExitValue. 4019 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4020 if (PreferPredicatedReductionSelect || 4021 TTI->preferPredicatedReductionSelect( 4022 RdxDesc.getRecurrenceBinOp(RdxDesc.getRecurrenceKind()), 4023 Phi->getType(), TargetTransformInfo::ReductionFlags())) { 4024 auto *VecRdxPhi = cast<PHINode>(getOrCreateVectorValue(Phi, Part)); 4025 VecRdxPhi->setIncomingValueForBlock( 4026 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4027 } 4028 } 4029 } 4030 4031 // If the vector reduction can be performed in a smaller type, we truncate 4032 // then extend the loop exit value to enable InstCombine to evaluate the 4033 // entire expression in the smaller type. 4034 if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) { 4035 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4036 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4037 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4038 Builder.SetInsertPoint( 4039 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4040 VectorParts RdxParts(UF); 4041 for (unsigned Part = 0; Part < UF; ++Part) { 4042 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4043 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4044 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4045 : Builder.CreateZExt(Trunc, VecTy); 4046 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4047 UI != RdxParts[Part]->user_end();) 4048 if (*UI != Trunc) { 4049 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4050 RdxParts[Part] = Extnd; 4051 } else { 4052 ++UI; 4053 } 4054 } 4055 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4056 for (unsigned Part = 0; Part < UF; ++Part) { 4057 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4058 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4059 } 4060 } 4061 4062 // Reduce all of the unrolled parts into a single vector. 4063 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4064 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4065 4066 // The middle block terminator has already been assigned a DebugLoc here (the 4067 // OrigLoop's single latch terminator). We want the whole middle block to 4068 // appear to execute on this line because: (a) it is all compiler generated, 4069 // (b) these instructions are always executed after evaluating the latch 4070 // conditional branch, and (c) other passes may add new predecessors which 4071 // terminate on this line. This is the easiest way to ensure we don't 4072 // accidentally cause an extra step back into the loop while debugging. 4073 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4074 for (unsigned Part = 1; Part < UF; ++Part) { 4075 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4076 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4077 // Floating point operations had to be 'fast' to enable the reduction. 4078 ReducedPartRdx = addFastMathFlag( 4079 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4080 ReducedPartRdx, "bin.rdx"), 4081 RdxDesc.getFastMathFlags()); 4082 else 4083 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 4084 RdxPart); 4085 } 4086 4087 // Create the reduction after the loop. Note that inloop reductions create the 4088 // target reduction in the loop using a Reduction recipe. 4089 if (VF.isVector() && !IsInLoopReductionPhi) { 4090 bool NoNaN = Legal->hasFunNoNaNAttr(); 4091 ReducedPartRdx = 4092 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4093 // If the reduction can be performed in a smaller type, we need to extend 4094 // the reduction to the wider type before we branch to the original loop. 4095 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4096 ReducedPartRdx = 4097 RdxDesc.isSigned() 4098 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4099 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4100 } 4101 4102 // Create a phi node that merges control-flow from the backedge-taken check 4103 // block and the middle block. 4104 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4105 LoopScalarPreHeader->getTerminator()); 4106 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4107 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4108 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4109 4110 // Now, we need to fix the users of the reduction variable 4111 // inside and outside of the scalar remainder loop. 4112 // We know that the loop is in LCSSA form. We need to update the 4113 // PHI nodes in the exit blocks. 4114 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4115 // All PHINodes need to have a single entry edge, or two if 4116 // we already fixed them. 4117 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4118 4119 // We found a reduction value exit-PHI. Update it with the 4120 // incoming bypass edge. 4121 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 4122 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4123 } // end of the LCSSA phi scan. 4124 4125 // Fix the scalar loop reduction variable with the incoming reduction sum 4126 // from the vector body and from the backedge value. 4127 int IncomingEdgeBlockIdx = 4128 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4129 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4130 // Pick the other block. 4131 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4132 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4133 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4134 } 4135 4136 void InnerLoopVectorizer::clearReductionWrapFlags( 4137 RecurrenceDescriptor &RdxDesc) { 4138 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4139 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 4140 RK != RecurrenceDescriptor::RK_IntegerMult) 4141 return; 4142 4143 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4144 assert(LoopExitInstr && "null loop exit instruction"); 4145 SmallVector<Instruction *, 8> Worklist; 4146 SmallPtrSet<Instruction *, 8> Visited; 4147 Worklist.push_back(LoopExitInstr); 4148 Visited.insert(LoopExitInstr); 4149 4150 while (!Worklist.empty()) { 4151 Instruction *Cur = Worklist.pop_back_val(); 4152 if (isa<OverflowingBinaryOperator>(Cur)) 4153 for (unsigned Part = 0; Part < UF; ++Part) { 4154 Value *V = getOrCreateVectorValue(Cur, Part); 4155 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4156 } 4157 4158 for (User *U : Cur->users()) { 4159 Instruction *UI = cast<Instruction>(U); 4160 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4161 Visited.insert(UI).second) 4162 Worklist.push_back(UI); 4163 } 4164 } 4165 } 4166 4167 void InnerLoopVectorizer::fixLCSSAPHIs() { 4168 assert(!VF.isScalable() && "the code below assumes fixed width vectors"); 4169 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4170 if (LCSSAPhi.getNumIncomingValues() == 1) { 4171 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4172 // Non-instruction incoming values will have only one value. 4173 unsigned LastLane = 0; 4174 if (isa<Instruction>(IncomingValue)) 4175 LastLane = Cost->isUniformAfterVectorization( 4176 cast<Instruction>(IncomingValue), VF) 4177 ? 0 4178 : VF.getKnownMinValue() - 1; 4179 // Can be a loop invariant incoming value or the last scalar value to be 4180 // extracted from the vectorized loop. 4181 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4182 Value *lastIncomingValue = 4183 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 4184 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4185 } 4186 } 4187 } 4188 4189 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4190 // The basic block and loop containing the predicated instruction. 4191 auto *PredBB = PredInst->getParent(); 4192 auto *VectorLoop = LI->getLoopFor(PredBB); 4193 4194 // Initialize a worklist with the operands of the predicated instruction. 4195 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4196 4197 // Holds instructions that we need to analyze again. An instruction may be 4198 // reanalyzed if we don't yet know if we can sink it or not. 4199 SmallVector<Instruction *, 8> InstsToReanalyze; 4200 4201 // Returns true if a given use occurs in the predicated block. Phi nodes use 4202 // their operands in their corresponding predecessor blocks. 4203 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4204 auto *I = cast<Instruction>(U.getUser()); 4205 BasicBlock *BB = I->getParent(); 4206 if (auto *Phi = dyn_cast<PHINode>(I)) 4207 BB = Phi->getIncomingBlock( 4208 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4209 return BB == PredBB; 4210 }; 4211 4212 // Iteratively sink the scalarized operands of the predicated instruction 4213 // into the block we created for it. When an instruction is sunk, it's 4214 // operands are then added to the worklist. The algorithm ends after one pass 4215 // through the worklist doesn't sink a single instruction. 4216 bool Changed; 4217 do { 4218 // Add the instructions that need to be reanalyzed to the worklist, and 4219 // reset the changed indicator. 4220 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4221 InstsToReanalyze.clear(); 4222 Changed = false; 4223 4224 while (!Worklist.empty()) { 4225 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4226 4227 // We can't sink an instruction if it is a phi node, is already in the 4228 // predicated block, is not in the loop, or may have side effects. 4229 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4230 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4231 continue; 4232 4233 // It's legal to sink the instruction if all its uses occur in the 4234 // predicated block. Otherwise, there's nothing to do yet, and we may 4235 // need to reanalyze the instruction. 4236 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4237 InstsToReanalyze.push_back(I); 4238 continue; 4239 } 4240 4241 // Move the instruction to the beginning of the predicated block, and add 4242 // it's operands to the worklist. 4243 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4244 Worklist.insert(I->op_begin(), I->op_end()); 4245 4246 // The sinking may have enabled other instructions to be sunk, so we will 4247 // need to iterate. 4248 Changed = true; 4249 } 4250 } while (Changed); 4251 } 4252 4253 void InnerLoopVectorizer::fixNonInductionPHIs() { 4254 for (PHINode *OrigPhi : OrigPHIsToFix) { 4255 PHINode *NewPhi = 4256 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4257 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4258 4259 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4260 predecessors(OrigPhi->getParent())); 4261 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4262 predecessors(NewPhi->getParent())); 4263 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4264 "Scalar and Vector BB should have the same number of predecessors"); 4265 4266 // The insertion point in Builder may be invalidated by the time we get 4267 // here. Force the Builder insertion point to something valid so that we do 4268 // not run into issues during insertion point restore in 4269 // getOrCreateVectorValue calls below. 4270 Builder.SetInsertPoint(NewPhi); 4271 4272 // The predecessor order is preserved and we can rely on mapping between 4273 // scalar and vector block predecessors. 4274 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4275 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4276 4277 // When looking up the new scalar/vector values to fix up, use incoming 4278 // values from original phi. 4279 Value *ScIncV = 4280 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4281 4282 // Scalar incoming value may need a broadcast 4283 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4284 NewPhi->addIncoming(NewIncV, NewPredBB); 4285 } 4286 } 4287 } 4288 4289 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPUser &Operands, 4290 unsigned UF, ElementCount VF, 4291 bool IsPtrLoopInvariant, 4292 SmallBitVector &IsIndexLoopInvariant, 4293 VPTransformState &State) { 4294 // Construct a vector GEP by widening the operands of the scalar GEP as 4295 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4296 // results in a vector of pointers when at least one operand of the GEP 4297 // is vector-typed. Thus, to keep the representation compact, we only use 4298 // vector-typed operands for loop-varying values. 4299 4300 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4301 // If we are vectorizing, but the GEP has only loop-invariant operands, 4302 // the GEP we build (by only using vector-typed operands for 4303 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4304 // produce a vector of pointers, we need to either arbitrarily pick an 4305 // operand to broadcast, or broadcast a clone of the original GEP. 4306 // Here, we broadcast a clone of the original. 4307 // 4308 // TODO: If at some point we decide to scalarize instructions having 4309 // loop-invariant operands, this special case will no longer be 4310 // required. We would add the scalarization decision to 4311 // collectLoopScalars() and teach getVectorValue() to broadcast 4312 // the lane-zero scalar value. 4313 auto *Clone = Builder.Insert(GEP->clone()); 4314 for (unsigned Part = 0; Part < UF; ++Part) { 4315 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4316 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart); 4317 addMetadata(EntryPart, GEP); 4318 } 4319 } else { 4320 // If the GEP has at least one loop-varying operand, we are sure to 4321 // produce a vector of pointers. But if we are only unrolling, we want 4322 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4323 // produce with the code below will be scalar (if VF == 1) or vector 4324 // (otherwise). Note that for the unroll-only case, we still maintain 4325 // values in the vector mapping with initVector, as we do for other 4326 // instructions. 4327 for (unsigned Part = 0; Part < UF; ++Part) { 4328 // The pointer operand of the new GEP. If it's loop-invariant, we 4329 // won't broadcast it. 4330 auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0}) 4331 : State.get(Operands.getOperand(0), Part); 4332 4333 // Collect all the indices for the new GEP. If any index is 4334 // loop-invariant, we won't broadcast it. 4335 SmallVector<Value *, 4> Indices; 4336 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4337 VPValue *Operand = Operands.getOperand(I); 4338 if (IsIndexLoopInvariant[I - 1]) 4339 Indices.push_back(State.get(Operand, {0, 0})); 4340 else 4341 Indices.push_back(State.get(Operand, Part)); 4342 } 4343 4344 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4345 // but it should be a vector, otherwise. 4346 auto *NewGEP = 4347 GEP->isInBounds() 4348 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4349 Indices) 4350 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4351 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4352 "NewGEP is not a pointer vector"); 4353 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP); 4354 addMetadata(NewGEP, GEP); 4355 } 4356 } 4357 } 4358 4359 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4360 ElementCount VF) { 4361 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4362 PHINode *P = cast<PHINode>(PN); 4363 if (EnableVPlanNativePath) { 4364 // Currently we enter here in the VPlan-native path for non-induction 4365 // PHIs where all control flow is uniform. We simply widen these PHIs. 4366 // Create a vector phi with no operands - the vector phi operands will be 4367 // set at the end of vector code generation. 4368 Type *VecTy = 4369 (VF.isScalar()) ? PN->getType() : VectorType::get(PN->getType(), VF); 4370 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4371 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4372 OrigPHIsToFix.push_back(P); 4373 4374 return; 4375 } 4376 4377 assert(PN->getParent() == OrigLoop->getHeader() && 4378 "Non-header phis should have been handled elsewhere"); 4379 4380 // In order to support recurrences we need to be able to vectorize Phi nodes. 4381 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4382 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4383 // this value when we vectorize all of the instructions that use the PHI. 4384 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4385 for (unsigned Part = 0; Part < UF; ++Part) { 4386 // This is phase one of vectorizing PHIs. 4387 bool ScalarPHI = 4388 (VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4389 Type *VecTy = 4390 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), VF); 4391 Value *EntryPart = PHINode::Create( 4392 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4393 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4394 } 4395 return; 4396 } 4397 4398 setDebugLocFromInst(Builder, P); 4399 4400 // This PHINode must be an induction variable. 4401 // Make sure that we know about it. 4402 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4403 4404 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4405 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4406 4407 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4408 // which can be found from the original scalar operations. 4409 switch (II.getKind()) { 4410 case InductionDescriptor::IK_NoInduction: 4411 llvm_unreachable("Unknown induction"); 4412 case InductionDescriptor::IK_IntInduction: 4413 case InductionDescriptor::IK_FpInduction: 4414 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4415 case InductionDescriptor::IK_PtrInduction: { 4416 // Handle the pointer induction variable case. 4417 assert(P->getType()->isPointerTy() && "Unexpected type."); 4418 4419 if (Cost->isScalarAfterVectorization(P, VF)) { 4420 // This is the normalized GEP that starts counting at zero. 4421 Value *PtrInd = 4422 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4423 // Determine the number of scalars we need to generate for each unroll 4424 // iteration. If the instruction is uniform, we only need to generate the 4425 // first lane. Otherwise, we generate all VF values. 4426 unsigned Lanes = 4427 Cost->isUniformAfterVectorization(P, VF) ? 1 : VF.getKnownMinValue(); 4428 for (unsigned Part = 0; Part < UF; ++Part) { 4429 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4430 Constant *Idx = ConstantInt::get(PtrInd->getType(), 4431 Lane + Part * VF.getKnownMinValue()); 4432 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4433 Value *SclrGep = 4434 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4435 SclrGep->setName("next.gep"); 4436 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4437 } 4438 } 4439 return; 4440 } 4441 assert(isa<SCEVConstant>(II.getStep()) && 4442 "Induction step not a SCEV constant!"); 4443 Type *PhiType = II.getStep()->getType(); 4444 4445 // Build a pointer phi 4446 Value *ScalarStartValue = II.getStartValue(); 4447 Type *ScStValueType = ScalarStartValue->getType(); 4448 PHINode *NewPointerPhi = 4449 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4450 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4451 4452 // A pointer induction, performed by using a gep 4453 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4454 Instruction *InductionLoc = LoopLatch->getTerminator(); 4455 const SCEV *ScalarStep = II.getStep(); 4456 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4457 Value *ScalarStepValue = 4458 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4459 Value *InductionGEP = GetElementPtrInst::Create( 4460 ScStValueType->getPointerElementType(), NewPointerPhi, 4461 Builder.CreateMul( 4462 ScalarStepValue, 4463 ConstantInt::get(PhiType, VF.getKnownMinValue() * UF)), 4464 "ptr.ind", InductionLoc); 4465 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4466 4467 // Create UF many actual address geps that use the pointer 4468 // phi as base and a vectorized version of the step value 4469 // (<step*0, ..., step*N>) as offset. 4470 for (unsigned Part = 0; Part < UF; ++Part) { 4471 SmallVector<Constant *, 8> Indices; 4472 // Create a vector of consecutive numbers from zero to VF. 4473 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 4474 Indices.push_back( 4475 ConstantInt::get(PhiType, i + Part * VF.getKnownMinValue())); 4476 Constant *StartOffset = ConstantVector::get(Indices); 4477 4478 Value *GEP = Builder.CreateGEP( 4479 ScStValueType->getPointerElementType(), NewPointerPhi, 4480 Builder.CreateMul( 4481 StartOffset, 4482 Builder.CreateVectorSplat(VF.getKnownMinValue(), ScalarStepValue), 4483 "vector.gep")); 4484 VectorLoopValueMap.setVectorValue(P, Part, GEP); 4485 } 4486 } 4487 } 4488 } 4489 4490 /// A helper function for checking whether an integer division-related 4491 /// instruction may divide by zero (in which case it must be predicated if 4492 /// executed conditionally in the scalar code). 4493 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4494 /// Non-zero divisors that are non compile-time constants will not be 4495 /// converted into multiplication, so we will still end up scalarizing 4496 /// the division, but can do so w/o predication. 4497 static bool mayDivideByZero(Instruction &I) { 4498 assert((I.getOpcode() == Instruction::UDiv || 4499 I.getOpcode() == Instruction::SDiv || 4500 I.getOpcode() == Instruction::URem || 4501 I.getOpcode() == Instruction::SRem) && 4502 "Unexpected instruction"); 4503 Value *Divisor = I.getOperand(1); 4504 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4505 return !CInt || CInt->isZero(); 4506 } 4507 4508 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User, 4509 VPTransformState &State) { 4510 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4511 switch (I.getOpcode()) { 4512 case Instruction::Call: 4513 case Instruction::Br: 4514 case Instruction::PHI: 4515 case Instruction::GetElementPtr: 4516 case Instruction::Select: 4517 llvm_unreachable("This instruction is handled by a different recipe."); 4518 case Instruction::UDiv: 4519 case Instruction::SDiv: 4520 case Instruction::SRem: 4521 case Instruction::URem: 4522 case Instruction::Add: 4523 case Instruction::FAdd: 4524 case Instruction::Sub: 4525 case Instruction::FSub: 4526 case Instruction::FNeg: 4527 case Instruction::Mul: 4528 case Instruction::FMul: 4529 case Instruction::FDiv: 4530 case Instruction::FRem: 4531 case Instruction::Shl: 4532 case Instruction::LShr: 4533 case Instruction::AShr: 4534 case Instruction::And: 4535 case Instruction::Or: 4536 case Instruction::Xor: { 4537 // Just widen unops and binops. 4538 setDebugLocFromInst(Builder, &I); 4539 4540 for (unsigned Part = 0; Part < UF; ++Part) { 4541 SmallVector<Value *, 2> Ops; 4542 for (VPValue *VPOp : User.operands()) 4543 Ops.push_back(State.get(VPOp, Part)); 4544 4545 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4546 4547 if (auto *VecOp = dyn_cast<Instruction>(V)) 4548 VecOp->copyIRFlags(&I); 4549 4550 // Use this vector value for all users of the original instruction. 4551 VectorLoopValueMap.setVectorValue(&I, Part, V); 4552 addMetadata(V, &I); 4553 } 4554 4555 break; 4556 } 4557 case Instruction::ICmp: 4558 case Instruction::FCmp: { 4559 // Widen compares. Generate vector compares. 4560 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4561 auto *Cmp = cast<CmpInst>(&I); 4562 setDebugLocFromInst(Builder, Cmp); 4563 for (unsigned Part = 0; Part < UF; ++Part) { 4564 Value *A = State.get(User.getOperand(0), Part); 4565 Value *B = State.get(User.getOperand(1), Part); 4566 Value *C = nullptr; 4567 if (FCmp) { 4568 // Propagate fast math flags. 4569 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4570 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4571 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4572 } else { 4573 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4574 } 4575 VectorLoopValueMap.setVectorValue(&I, Part, C); 4576 addMetadata(C, &I); 4577 } 4578 4579 break; 4580 } 4581 4582 case Instruction::ZExt: 4583 case Instruction::SExt: 4584 case Instruction::FPToUI: 4585 case Instruction::FPToSI: 4586 case Instruction::FPExt: 4587 case Instruction::PtrToInt: 4588 case Instruction::IntToPtr: 4589 case Instruction::SIToFP: 4590 case Instruction::UIToFP: 4591 case Instruction::Trunc: 4592 case Instruction::FPTrunc: 4593 case Instruction::BitCast: { 4594 auto *CI = cast<CastInst>(&I); 4595 setDebugLocFromInst(Builder, CI); 4596 4597 /// Vectorize casts. 4598 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4599 Type *DestTy = 4600 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4601 4602 for (unsigned Part = 0; Part < UF; ++Part) { 4603 Value *A = State.get(User.getOperand(0), Part); 4604 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4605 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4606 addMetadata(Cast, &I); 4607 } 4608 break; 4609 } 4610 default: 4611 // This instruction is not vectorized by simple widening. 4612 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4613 llvm_unreachable("Unhandled instruction!"); 4614 } // end of switch. 4615 } 4616 4617 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPUser &ArgOperands, 4618 VPTransformState &State) { 4619 assert(!isa<DbgInfoIntrinsic>(I) && 4620 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4621 setDebugLocFromInst(Builder, &I); 4622 4623 Module *M = I.getParent()->getParent()->getParent(); 4624 auto *CI = cast<CallInst>(&I); 4625 4626 SmallVector<Type *, 4> Tys; 4627 for (Value *ArgOperand : CI->arg_operands()) 4628 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4629 4630 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4631 4632 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4633 // version of the instruction. 4634 // Is it beneficial to perform intrinsic call compared to lib call? 4635 bool NeedToScalarize = false; 4636 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4637 bool UseVectorIntrinsic = 4638 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4639 assert((UseVectorIntrinsic || !NeedToScalarize) && 4640 "Instruction should be scalarized elsewhere."); 4641 4642 for (unsigned Part = 0; Part < UF; ++Part) { 4643 SmallVector<Value *, 4> Args; 4644 for (auto &I : enumerate(ArgOperands.operands())) { 4645 // Some intrinsics have a scalar argument - don't replace it with a 4646 // vector. 4647 Value *Arg; 4648 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4649 Arg = State.get(I.value(), Part); 4650 else 4651 Arg = State.get(I.value(), {0, 0}); 4652 Args.push_back(Arg); 4653 } 4654 4655 Function *VectorF; 4656 if (UseVectorIntrinsic) { 4657 // Use vector version of the intrinsic. 4658 Type *TysForDecl[] = {CI->getType()}; 4659 if (VF.isVector()) { 4660 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4661 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4662 } 4663 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4664 assert(VectorF && "Can't retrieve vector intrinsic."); 4665 } else { 4666 // Use vector version of the function call. 4667 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4668 #ifndef NDEBUG 4669 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4670 "Can't create vector function."); 4671 #endif 4672 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4673 } 4674 SmallVector<OperandBundleDef, 1> OpBundles; 4675 CI->getOperandBundlesAsDefs(OpBundles); 4676 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4677 4678 if (isa<FPMathOperator>(V)) 4679 V->copyFastMathFlags(CI); 4680 4681 VectorLoopValueMap.setVectorValue(&I, Part, V); 4682 addMetadata(V, &I); 4683 } 4684 } 4685 4686 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, 4687 VPUser &Operands, 4688 bool InvariantCond, 4689 VPTransformState &State) { 4690 setDebugLocFromInst(Builder, &I); 4691 4692 // The condition can be loop invariant but still defined inside the 4693 // loop. This means that we can't just use the original 'cond' value. 4694 // We have to take the 'vectorized' value and pick the first lane. 4695 // Instcombine will make this a no-op. 4696 auto *InvarCond = 4697 InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr; 4698 4699 for (unsigned Part = 0; Part < UF; ++Part) { 4700 Value *Cond = 4701 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 4702 Value *Op0 = State.get(Operands.getOperand(1), Part); 4703 Value *Op1 = State.get(Operands.getOperand(2), Part); 4704 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 4705 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4706 addMetadata(Sel, &I); 4707 } 4708 } 4709 4710 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4711 // We should not collect Scalars more than once per VF. Right now, this 4712 // function is called from collectUniformsAndScalars(), which already does 4713 // this check. Collecting Scalars for VF=1 does not make any sense. 4714 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4715 "This function should not be visited twice for the same VF"); 4716 4717 SmallSetVector<Instruction *, 8> Worklist; 4718 4719 // These sets are used to seed the analysis with pointers used by memory 4720 // accesses that will remain scalar. 4721 SmallSetVector<Instruction *, 8> ScalarPtrs; 4722 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4723 auto *Latch = TheLoop->getLoopLatch(); 4724 4725 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4726 // The pointer operands of loads and stores will be scalar as long as the 4727 // memory access is not a gather or scatter operation. The value operand of a 4728 // store will remain scalar if the store is scalarized. 4729 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4730 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4731 assert(WideningDecision != CM_Unknown && 4732 "Widening decision should be ready at this moment"); 4733 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4734 if (Ptr == Store->getValueOperand()) 4735 return WideningDecision == CM_Scalarize; 4736 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4737 "Ptr is neither a value or pointer operand"); 4738 return WideningDecision != CM_GatherScatter; 4739 }; 4740 4741 // A helper that returns true if the given value is a bitcast or 4742 // getelementptr instruction contained in the loop. 4743 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4744 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4745 isa<GetElementPtrInst>(V)) && 4746 !TheLoop->isLoopInvariant(V); 4747 }; 4748 4749 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 4750 if (!isa<PHINode>(Ptr) || 4751 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 4752 return false; 4753 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 4754 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 4755 return false; 4756 return isScalarUse(MemAccess, Ptr); 4757 }; 4758 4759 // A helper that evaluates a memory access's use of a pointer. If the 4760 // pointer is actually the pointer induction of a loop, it is being 4761 // inserted into Worklist. If the use will be a scalar use, and the 4762 // pointer is only used by memory accesses, we place the pointer in 4763 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 4764 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4765 if (isScalarPtrInduction(MemAccess, Ptr)) { 4766 Worklist.insert(cast<Instruction>(Ptr)); 4767 Instruction *Update = cast<Instruction>( 4768 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 4769 Worklist.insert(Update); 4770 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 4771 << "\n"); 4772 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 4773 << "\n"); 4774 return; 4775 } 4776 // We only care about bitcast and getelementptr instructions contained in 4777 // the loop. 4778 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4779 return; 4780 4781 // If the pointer has already been identified as scalar (e.g., if it was 4782 // also identified as uniform), there's nothing to do. 4783 auto *I = cast<Instruction>(Ptr); 4784 if (Worklist.count(I)) 4785 return; 4786 4787 // If the use of the pointer will be a scalar use, and all users of the 4788 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4789 // place the pointer in PossibleNonScalarPtrs. 4790 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4791 return isa<LoadInst>(U) || isa<StoreInst>(U); 4792 })) 4793 ScalarPtrs.insert(I); 4794 else 4795 PossibleNonScalarPtrs.insert(I); 4796 }; 4797 4798 // We seed the scalars analysis with three classes of instructions: (1) 4799 // instructions marked uniform-after-vectorization and (2) bitcast, 4800 // getelementptr and (pointer) phi instructions used by memory accesses 4801 // requiring a scalar use. 4802 // 4803 // (1) Add to the worklist all instructions that have been identified as 4804 // uniform-after-vectorization. 4805 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4806 4807 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4808 // memory accesses requiring a scalar use. The pointer operands of loads and 4809 // stores will be scalar as long as the memory accesses is not a gather or 4810 // scatter operation. The value operand of a store will remain scalar if the 4811 // store is scalarized. 4812 for (auto *BB : TheLoop->blocks()) 4813 for (auto &I : *BB) { 4814 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4815 evaluatePtrUse(Load, Load->getPointerOperand()); 4816 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4817 evaluatePtrUse(Store, Store->getPointerOperand()); 4818 evaluatePtrUse(Store, Store->getValueOperand()); 4819 } 4820 } 4821 for (auto *I : ScalarPtrs) 4822 if (!PossibleNonScalarPtrs.count(I)) { 4823 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4824 Worklist.insert(I); 4825 } 4826 4827 // Insert the forced scalars. 4828 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4829 // induction variable when the PHI user is scalarized. 4830 auto ForcedScalar = ForcedScalars.find(VF); 4831 if (ForcedScalar != ForcedScalars.end()) 4832 for (auto *I : ForcedScalar->second) 4833 Worklist.insert(I); 4834 4835 // Expand the worklist by looking through any bitcasts and getelementptr 4836 // instructions we've already identified as scalar. This is similar to the 4837 // expansion step in collectLoopUniforms(); however, here we're only 4838 // expanding to include additional bitcasts and getelementptr instructions. 4839 unsigned Idx = 0; 4840 while (Idx != Worklist.size()) { 4841 Instruction *Dst = Worklist[Idx++]; 4842 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4843 continue; 4844 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4845 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4846 auto *J = cast<Instruction>(U); 4847 return !TheLoop->contains(J) || Worklist.count(J) || 4848 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4849 isScalarUse(J, Src)); 4850 })) { 4851 Worklist.insert(Src); 4852 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4853 } 4854 } 4855 4856 // An induction variable will remain scalar if all users of the induction 4857 // variable and induction variable update remain scalar. 4858 for (auto &Induction : Legal->getInductionVars()) { 4859 auto *Ind = Induction.first; 4860 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4861 4862 // If tail-folding is applied, the primary induction variable will be used 4863 // to feed a vector compare. 4864 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4865 continue; 4866 4867 // Determine if all users of the induction variable are scalar after 4868 // vectorization. 4869 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4870 auto *I = cast<Instruction>(U); 4871 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4872 }); 4873 if (!ScalarInd) 4874 continue; 4875 4876 // Determine if all users of the induction variable update instruction are 4877 // scalar after vectorization. 4878 auto ScalarIndUpdate = 4879 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4880 auto *I = cast<Instruction>(U); 4881 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4882 }); 4883 if (!ScalarIndUpdate) 4884 continue; 4885 4886 // The induction variable and its update instruction will remain scalar. 4887 Worklist.insert(Ind); 4888 Worklist.insert(IndUpdate); 4889 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4890 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4891 << "\n"); 4892 } 4893 4894 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4895 } 4896 4897 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, 4898 ElementCount VF) { 4899 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4900 if (!blockNeedsPredication(I->getParent())) 4901 return false; 4902 switch(I->getOpcode()) { 4903 default: 4904 break; 4905 case Instruction::Load: 4906 case Instruction::Store: { 4907 if (!Legal->isMaskRequired(I)) 4908 return false; 4909 auto *Ptr = getLoadStorePointerOperand(I); 4910 auto *Ty = getMemInstValueType(I); 4911 // We have already decided how to vectorize this instruction, get that 4912 // result. 4913 if (VF.isVector()) { 4914 InstWidening WideningDecision = getWideningDecision(I, VF); 4915 assert(WideningDecision != CM_Unknown && 4916 "Widening decision should be ready at this moment"); 4917 return WideningDecision == CM_Scalarize; 4918 } 4919 const Align Alignment = getLoadStoreAlignment(I); 4920 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4921 isLegalMaskedGather(Ty, Alignment)) 4922 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4923 isLegalMaskedScatter(Ty, Alignment)); 4924 } 4925 case Instruction::UDiv: 4926 case Instruction::SDiv: 4927 case Instruction::SRem: 4928 case Instruction::URem: 4929 return mayDivideByZero(*I); 4930 } 4931 return false; 4932 } 4933 4934 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4935 Instruction *I, ElementCount VF) { 4936 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4937 assert(getWideningDecision(I, VF) == CM_Unknown && 4938 "Decision should not be set yet."); 4939 auto *Group = getInterleavedAccessGroup(I); 4940 assert(Group && "Must have a group."); 4941 4942 // If the instruction's allocated size doesn't equal it's type size, it 4943 // requires padding and will be scalarized. 4944 auto &DL = I->getModule()->getDataLayout(); 4945 auto *ScalarTy = getMemInstValueType(I); 4946 if (hasIrregularType(ScalarTy, DL, VF)) 4947 return false; 4948 4949 // Check if masking is required. 4950 // A Group may need masking for one of two reasons: it resides in a block that 4951 // needs predication, or it was decided to use masking to deal with gaps. 4952 bool PredicatedAccessRequiresMasking = 4953 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4954 bool AccessWithGapsRequiresMasking = 4955 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4956 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4957 return true; 4958 4959 // If masked interleaving is required, we expect that the user/target had 4960 // enabled it, because otherwise it either wouldn't have been created or 4961 // it should have been invalidated by the CostModel. 4962 assert(useMaskedInterleavedAccesses(TTI) && 4963 "Masked interleave-groups for predicated accesses are not enabled."); 4964 4965 auto *Ty = getMemInstValueType(I); 4966 const Align Alignment = getLoadStoreAlignment(I); 4967 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4968 : TTI.isLegalMaskedStore(Ty, Alignment); 4969 } 4970 4971 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4972 Instruction *I, ElementCount VF) { 4973 // Get and ensure we have a valid memory instruction. 4974 LoadInst *LI = dyn_cast<LoadInst>(I); 4975 StoreInst *SI = dyn_cast<StoreInst>(I); 4976 assert((LI || SI) && "Invalid memory instruction"); 4977 4978 auto *Ptr = getLoadStorePointerOperand(I); 4979 4980 // In order to be widened, the pointer should be consecutive, first of all. 4981 if (!Legal->isConsecutivePtr(Ptr)) 4982 return false; 4983 4984 // If the instruction is a store located in a predicated block, it will be 4985 // scalarized. 4986 if (isScalarWithPredication(I)) 4987 return false; 4988 4989 // If the instruction's allocated size doesn't equal it's type size, it 4990 // requires padding and will be scalarized. 4991 auto &DL = I->getModule()->getDataLayout(); 4992 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4993 if (hasIrregularType(ScalarTy, DL, VF)) 4994 return false; 4995 4996 return true; 4997 } 4998 4999 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5000 // We should not collect Uniforms more than once per VF. Right now, 5001 // this function is called from collectUniformsAndScalars(), which 5002 // already does this check. Collecting Uniforms for VF=1 does not make any 5003 // sense. 5004 5005 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5006 "This function should not be visited twice for the same VF"); 5007 5008 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5009 // not analyze again. Uniforms.count(VF) will return 1. 5010 Uniforms[VF].clear(); 5011 5012 // We now know that the loop is vectorizable! 5013 // Collect instructions inside the loop that will remain uniform after 5014 // vectorization. 5015 5016 // Global values, params and instructions outside of current loop are out of 5017 // scope. 5018 auto isOutOfScope = [&](Value *V) -> bool { 5019 Instruction *I = dyn_cast<Instruction>(V); 5020 return (!I || !TheLoop->contains(I)); 5021 }; 5022 5023 SetVector<Instruction *> Worklist; 5024 BasicBlock *Latch = TheLoop->getLoopLatch(); 5025 5026 // Instructions that are scalar with predication must not be considered 5027 // uniform after vectorization, because that would create an erroneous 5028 // replicating region where only a single instance out of VF should be formed. 5029 // TODO: optimize such seldom cases if found important, see PR40816. 5030 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5031 if (isScalarWithPredication(I, VF)) { 5032 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5033 << *I << "\n"); 5034 return; 5035 } 5036 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5037 Worklist.insert(I); 5038 }; 5039 5040 // Start with the conditional branch. If the branch condition is an 5041 // instruction contained in the loop that is only used by the branch, it is 5042 // uniform. 5043 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5044 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5045 addToWorklistIfAllowed(Cmp); 5046 5047 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5048 // are pointers that are treated like consecutive pointers during 5049 // vectorization. The pointer operands of interleaved accesses are an 5050 // example. 5051 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5052 5053 // Holds pointer operands of instructions that are possibly non-uniform. 5054 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5055 5056 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5057 InstWidening WideningDecision = getWideningDecision(I, VF); 5058 assert(WideningDecision != CM_Unknown && 5059 "Widening decision should be ready at this moment"); 5060 5061 return (WideningDecision == CM_Widen || 5062 WideningDecision == CM_Widen_Reverse || 5063 WideningDecision == CM_Interleave); 5064 }; 5065 // Iterate over the instructions in the loop, and collect all 5066 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5067 // that a consecutive-like pointer operand will be scalarized, we collect it 5068 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5069 // getelementptr instruction can be used by both vectorized and scalarized 5070 // memory instructions. For example, if a loop loads and stores from the same 5071 // location, but the store is conditional, the store will be scalarized, and 5072 // the getelementptr won't remain uniform. 5073 for (auto *BB : TheLoop->blocks()) 5074 for (auto &I : *BB) { 5075 // If there's no pointer operand, there's nothing to do. 5076 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5077 if (!Ptr) 5078 continue; 5079 5080 // True if all users of Ptr are memory accesses that have Ptr as their 5081 // pointer operand. 5082 auto UsersAreMemAccesses = 5083 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 5084 return getLoadStorePointerOperand(U) == Ptr; 5085 }); 5086 5087 // Ensure the memory instruction will not be scalarized or used by 5088 // gather/scatter, making its pointer operand non-uniform. If the pointer 5089 // operand is used by any instruction other than a memory access, we 5090 // conservatively assume the pointer operand may be non-uniform. 5091 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5092 PossibleNonUniformPtrs.insert(Ptr); 5093 5094 // If the memory instruction will be vectorized and its pointer operand 5095 // is consecutive-like, or interleaving - the pointer operand should 5096 // remain uniform. 5097 else 5098 ConsecutiveLikePtrs.insert(Ptr); 5099 } 5100 5101 // Add to the Worklist all consecutive and consecutive-like pointers that 5102 // aren't also identified as possibly non-uniform. 5103 for (auto *V : ConsecutiveLikePtrs) 5104 if (!PossibleNonUniformPtrs.count(V)) 5105 addToWorklistIfAllowed(V); 5106 5107 // Expand Worklist in topological order: whenever a new instruction 5108 // is added , its users should be already inside Worklist. It ensures 5109 // a uniform instruction will only be used by uniform instructions. 5110 unsigned idx = 0; 5111 while (idx != Worklist.size()) { 5112 Instruction *I = Worklist[idx++]; 5113 5114 for (auto OV : I->operand_values()) { 5115 // isOutOfScope operands cannot be uniform instructions. 5116 if (isOutOfScope(OV)) 5117 continue; 5118 // First order recurrence Phi's should typically be considered 5119 // non-uniform. 5120 auto *OP = dyn_cast<PHINode>(OV); 5121 if (OP && Legal->isFirstOrderRecurrence(OP)) 5122 continue; 5123 // If all the users of the operand are uniform, then add the 5124 // operand into the uniform worklist. 5125 auto *OI = cast<Instruction>(OV); 5126 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5127 auto *J = cast<Instruction>(U); 5128 return Worklist.count(J) || 5129 (OI == getLoadStorePointerOperand(J) && 5130 isUniformDecision(J, VF)); 5131 })) 5132 addToWorklistIfAllowed(OI); 5133 } 5134 } 5135 5136 // Returns true if Ptr is the pointer operand of a memory access instruction 5137 // I, and I is known to not require scalarization. 5138 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5139 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5140 }; 5141 5142 // For an instruction to be added into Worklist above, all its users inside 5143 // the loop should also be in Worklist. However, this condition cannot be 5144 // true for phi nodes that form a cyclic dependence. We must process phi 5145 // nodes separately. An induction variable will remain uniform if all users 5146 // of the induction variable and induction variable update remain uniform. 5147 // The code below handles both pointer and non-pointer induction variables. 5148 for (auto &Induction : Legal->getInductionVars()) { 5149 auto *Ind = Induction.first; 5150 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5151 5152 // Determine if all users of the induction variable are uniform after 5153 // vectorization. 5154 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5155 auto *I = cast<Instruction>(U); 5156 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5157 isVectorizedMemAccessUse(I, Ind); 5158 }); 5159 if (!UniformInd) 5160 continue; 5161 5162 // Determine if all users of the induction variable update instruction are 5163 // uniform after vectorization. 5164 auto UniformIndUpdate = 5165 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5166 auto *I = cast<Instruction>(U); 5167 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5168 isVectorizedMemAccessUse(I, IndUpdate); 5169 }); 5170 if (!UniformIndUpdate) 5171 continue; 5172 5173 // The induction variable and its update instruction will remain uniform. 5174 addToWorklistIfAllowed(Ind); 5175 addToWorklistIfAllowed(IndUpdate); 5176 } 5177 5178 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5179 } 5180 5181 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5182 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5183 5184 if (Legal->getRuntimePointerChecking()->Need) { 5185 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5186 "runtime pointer checks needed. Enable vectorization of this " 5187 "loop with '#pragma clang loop vectorize(enable)' when " 5188 "compiling with -Os/-Oz", 5189 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5190 return true; 5191 } 5192 5193 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5194 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5195 "runtime SCEV checks needed. Enable vectorization of this " 5196 "loop with '#pragma clang loop vectorize(enable)' when " 5197 "compiling with -Os/-Oz", 5198 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5199 return true; 5200 } 5201 5202 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5203 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5204 reportVectorizationFailure("Runtime stride check for small trip count", 5205 "runtime stride == 1 checks needed. Enable vectorization of " 5206 "this loop without such check by compiling with -Os/-Oz", 5207 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5208 return true; 5209 } 5210 5211 return false; 5212 } 5213 5214 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(unsigned UserVF, 5215 unsigned UserIC) { 5216 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5217 // TODO: It may by useful to do since it's still likely to be dynamically 5218 // uniform if the target can skip. 5219 reportVectorizationFailure( 5220 "Not inserting runtime ptr check for divergent target", 5221 "runtime pointer checks needed. Not enabled for divergent target", 5222 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5223 return None; 5224 } 5225 5226 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5227 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5228 if (TC == 1) { 5229 reportVectorizationFailure("Single iteration (non) loop", 5230 "loop trip count is one, irrelevant for vectorization", 5231 "SingleIterationLoop", ORE, TheLoop); 5232 return None; 5233 } 5234 5235 switch (ScalarEpilogueStatus) { 5236 case CM_ScalarEpilogueAllowed: 5237 return UserVF ? UserVF : computeFeasibleMaxVF(TC); 5238 case CM_ScalarEpilogueNotNeededUsePredicate: 5239 LLVM_DEBUG( 5240 dbgs() << "LV: vector predicate hint/switch found.\n" 5241 << "LV: Not allowing scalar epilogue, creating predicated " 5242 << "vector loop.\n"); 5243 break; 5244 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5245 // fallthrough as a special case of OptForSize 5246 case CM_ScalarEpilogueNotAllowedOptSize: 5247 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5248 LLVM_DEBUG( 5249 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5250 else 5251 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5252 << "count.\n"); 5253 5254 // Bail if runtime checks are required, which are not good when optimising 5255 // for size. 5256 if (runtimeChecksRequired()) 5257 return None; 5258 break; 5259 } 5260 5261 // Now try the tail folding 5262 5263 // Invalidate interleave groups that require an epilogue if we can't mask 5264 // the interleave-group. 5265 if (!useMaskedInterleavedAccesses(TTI)) { 5266 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5267 "No decisions should have been taken at this point"); 5268 // Note: There is no need to invalidate any cost modeling decisions here, as 5269 // non where taken so far. 5270 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5271 } 5272 5273 unsigned MaxVF = UserVF ? UserVF : computeFeasibleMaxVF(TC); 5274 assert((UserVF || isPowerOf2_32(MaxVF)) && "MaxVF must be a power of 2"); 5275 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF; 5276 if (TC > 0 && TC % MaxVFtimesIC == 0) { 5277 // Accept MaxVF if we do not have a tail. 5278 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5279 return MaxVF; 5280 } 5281 5282 // If we don't know the precise trip count, or if the trip count that we 5283 // found modulo the vectorization factor is not zero, try to fold the tail 5284 // by masking. 5285 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5286 if (Legal->prepareToFoldTailByMasking()) { 5287 FoldTailByMasking = true; 5288 return MaxVF; 5289 } 5290 5291 // If there was a tail-folding hint/switch, but we can't fold the tail by 5292 // masking, fallback to a vectorization with a scalar epilogue. 5293 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5294 if (PreferPredicateOverEpilogue == PreferPredicateTy::PredicateOrDontVectorize) { 5295 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5296 return None; 5297 } 5298 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5299 "scalar epilogue instead.\n"); 5300 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5301 return MaxVF; 5302 } 5303 5304 if (TC == 0) { 5305 reportVectorizationFailure( 5306 "Unable to calculate the loop count due to complex control flow", 5307 "unable to calculate the loop count due to complex control flow", 5308 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5309 return None; 5310 } 5311 5312 reportVectorizationFailure( 5313 "Cannot optimize for size and vectorize at the same time.", 5314 "cannot optimize for size and vectorize at the same time. " 5315 "Enable vectorization of this loop with '#pragma clang loop " 5316 "vectorize(enable)' when compiling with -Os/-Oz", 5317 "NoTailLoopWithOptForSize", ORE, TheLoop); 5318 return None; 5319 } 5320 5321 unsigned 5322 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 5323 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5324 unsigned SmallestType, WidestType; 5325 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5326 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5327 5328 // Get the maximum safe dependence distance in bits computed by LAA. 5329 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5330 // the memory accesses that is most restrictive (involved in the smallest 5331 // dependence distance). 5332 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 5333 5334 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 5335 5336 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5337 // Note that both WidestRegister and WidestType may not be a powers of 2. 5338 unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType); 5339 5340 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5341 << " / " << WidestType << " bits.\n"); 5342 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5343 << WidestRegister << " bits.\n"); 5344 5345 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 5346 " into one vector!"); 5347 if (MaxVectorSize == 0) { 5348 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5349 MaxVectorSize = 1; 5350 return MaxVectorSize; 5351 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5352 isPowerOf2_32(ConstTripCount)) { 5353 // We need to clamp the VF to be the ConstTripCount. There is no point in 5354 // choosing a higher viable VF as done in the loop below. 5355 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5356 << ConstTripCount << "\n"); 5357 MaxVectorSize = ConstTripCount; 5358 return MaxVectorSize; 5359 } 5360 5361 unsigned MaxVF = MaxVectorSize; 5362 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5363 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5364 // Collect all viable vectorization factors larger than the default MaxVF 5365 // (i.e. MaxVectorSize). 5366 SmallVector<ElementCount, 8> VFs; 5367 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5368 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5369 VFs.push_back(ElementCount::getFixed(VS)); 5370 5371 // For each VF calculate its register usage. 5372 auto RUs = calculateRegisterUsage(VFs); 5373 5374 // Select the largest VF which doesn't require more registers than existing 5375 // ones. 5376 for (int i = RUs.size() - 1; i >= 0; --i) { 5377 bool Selected = true; 5378 for (auto& pair : RUs[i].MaxLocalUsers) { 5379 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5380 if (pair.second > TargetNumRegisters) 5381 Selected = false; 5382 } 5383 if (Selected) { 5384 MaxVF = VFs[i].getKnownMinValue(); 5385 break; 5386 } 5387 } 5388 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5389 if (MaxVF < MinVF) { 5390 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5391 << ") with target's minimum: " << MinVF << '\n'); 5392 MaxVF = MinVF; 5393 } 5394 } 5395 } 5396 return MaxVF; 5397 } 5398 5399 VectorizationFactor 5400 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5401 float Cost = expectedCost(ElementCount::getFixed(1)).first; 5402 const float ScalarCost = Cost; 5403 unsigned Width = 1; 5404 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5405 5406 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5407 if (ForceVectorization && MaxVF > 1) { 5408 // Ignore scalar width, because the user explicitly wants vectorization. 5409 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5410 // evaluation. 5411 Cost = std::numeric_limits<float>::max(); 5412 } 5413 5414 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5415 // Notice that the vector loop needs to be executed less times, so 5416 // we need to divide the cost of the vector loops by the width of 5417 // the vector elements. 5418 VectorizationCostTy C = expectedCost(ElementCount::getFixed(i)); 5419 float VectorCost = C.first / (float)i; 5420 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5421 << " costs: " << (int)VectorCost << ".\n"); 5422 if (!C.second && !ForceVectorization) { 5423 LLVM_DEBUG( 5424 dbgs() << "LV: Not considering vector loop of width " << i 5425 << " because it will not generate any vector instructions.\n"); 5426 continue; 5427 } 5428 if (VectorCost < Cost) { 5429 Cost = VectorCost; 5430 Width = i; 5431 } 5432 } 5433 5434 if (!EnableCondStoresVectorization && NumPredStores) { 5435 reportVectorizationFailure("There are conditional stores.", 5436 "store that is conditionally executed prevents vectorization", 5437 "ConditionalStore", ORE, TheLoop); 5438 Width = 1; 5439 Cost = ScalarCost; 5440 } 5441 5442 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5443 << "LV: Vectorization seems to be not beneficial, " 5444 << "but was forced by a user.\n"); 5445 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5446 VectorizationFactor Factor = {ElementCount::getFixed(Width), 5447 (unsigned)(Width * Cost)}; 5448 return Factor; 5449 } 5450 5451 std::pair<unsigned, unsigned> 5452 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5453 unsigned MinWidth = -1U; 5454 unsigned MaxWidth = 8; 5455 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5456 5457 // For each block. 5458 for (BasicBlock *BB : TheLoop->blocks()) { 5459 // For each instruction in the loop. 5460 for (Instruction &I : BB->instructionsWithoutDebug()) { 5461 Type *T = I.getType(); 5462 5463 // Skip ignored values. 5464 if (ValuesToIgnore.count(&I)) 5465 continue; 5466 5467 // Only examine Loads, Stores and PHINodes. 5468 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5469 continue; 5470 5471 // Examine PHI nodes that are reduction variables. Update the type to 5472 // account for the recurrence type. 5473 if (auto *PN = dyn_cast<PHINode>(&I)) { 5474 if (!Legal->isReductionVariable(PN)) 5475 continue; 5476 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5477 T = RdxDesc.getRecurrenceType(); 5478 } 5479 5480 // Examine the stored values. 5481 if (auto *ST = dyn_cast<StoreInst>(&I)) 5482 T = ST->getValueOperand()->getType(); 5483 5484 // Ignore loaded pointer types and stored pointer types that are not 5485 // vectorizable. 5486 // 5487 // FIXME: The check here attempts to predict whether a load or store will 5488 // be vectorized. We only know this for certain after a VF has 5489 // been selected. Here, we assume that if an access can be 5490 // vectorized, it will be. We should also look at extending this 5491 // optimization to non-pointer types. 5492 // 5493 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5494 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5495 continue; 5496 5497 MinWidth = std::min(MinWidth, 5498 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5499 MaxWidth = std::max(MaxWidth, 5500 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5501 } 5502 } 5503 5504 return {MinWidth, MaxWidth}; 5505 } 5506 5507 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5508 unsigned LoopCost) { 5509 // -- The interleave heuristics -- 5510 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5511 // There are many micro-architectural considerations that we can't predict 5512 // at this level. For example, frontend pressure (on decode or fetch) due to 5513 // code size, or the number and capabilities of the execution ports. 5514 // 5515 // We use the following heuristics to select the interleave count: 5516 // 1. If the code has reductions, then we interleave to break the cross 5517 // iteration dependency. 5518 // 2. If the loop is really small, then we interleave to reduce the loop 5519 // overhead. 5520 // 3. We don't interleave if we think that we will spill registers to memory 5521 // due to the increased register pressure. 5522 5523 if (!isScalarEpilogueAllowed()) 5524 return 1; 5525 5526 // We used the distance for the interleave count. 5527 if (Legal->getMaxSafeDepDistBytes() != -1U) 5528 return 1; 5529 5530 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5531 const bool HasReductions = !Legal->getReductionVars().empty(); 5532 // Do not interleave loops with a relatively small known or estimated trip 5533 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5534 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5535 // because with the above conditions interleaving can expose ILP and break 5536 // cross iteration dependences for reductions. 5537 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5538 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5539 return 1; 5540 5541 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5542 // We divide by these constants so assume that we have at least one 5543 // instruction that uses at least one register. 5544 for (auto& pair : R.MaxLocalUsers) { 5545 pair.second = std::max(pair.second, 1U); 5546 } 5547 5548 // We calculate the interleave count using the following formula. 5549 // Subtract the number of loop invariants from the number of available 5550 // registers. These registers are used by all of the interleaved instances. 5551 // Next, divide the remaining registers by the number of registers that is 5552 // required by the loop, in order to estimate how many parallel instances 5553 // fit without causing spills. All of this is rounded down if necessary to be 5554 // a power of two. We want power of two interleave count to simplify any 5555 // addressing operations or alignment considerations. 5556 // We also want power of two interleave counts to ensure that the induction 5557 // variable of the vector loop wraps to zero, when tail is folded by masking; 5558 // this currently happens when OptForSize, in which case IC is set to 1 above. 5559 unsigned IC = UINT_MAX; 5560 5561 for (auto& pair : R.MaxLocalUsers) { 5562 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5563 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5564 << " registers of " 5565 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5566 if (VF.isScalar()) { 5567 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5568 TargetNumRegisters = ForceTargetNumScalarRegs; 5569 } else { 5570 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5571 TargetNumRegisters = ForceTargetNumVectorRegs; 5572 } 5573 unsigned MaxLocalUsers = pair.second; 5574 unsigned LoopInvariantRegs = 0; 5575 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5576 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5577 5578 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5579 // Don't count the induction variable as interleaved. 5580 if (EnableIndVarRegisterHeur) { 5581 TmpIC = 5582 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5583 std::max(1U, (MaxLocalUsers - 1))); 5584 } 5585 5586 IC = std::min(IC, TmpIC); 5587 } 5588 5589 // Clamp the interleave ranges to reasonable counts. 5590 assert(!VF.isScalable() && "scalable vectors not yet supported."); 5591 unsigned MaxInterleaveCount = 5592 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5593 5594 // Check if the user has overridden the max. 5595 if (VF.isScalar()) { 5596 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5597 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5598 } else { 5599 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5600 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5601 } 5602 5603 // If trip count is known or estimated compile time constant, limit the 5604 // interleave count to be less than the trip count divided by VF, provided it 5605 // is at least 1. 5606 if (BestKnownTC) { 5607 MaxInterleaveCount = 5608 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5609 // Make sure MaxInterleaveCount is greater than 0. 5610 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5611 } 5612 5613 assert(MaxInterleaveCount > 0 && 5614 "Maximum interleave count must be greater than 0"); 5615 5616 // Clamp the calculated IC to be between the 1 and the max interleave count 5617 // that the target and trip count allows. 5618 if (IC > MaxInterleaveCount) 5619 IC = MaxInterleaveCount; 5620 else 5621 // Make sure IC is greater than 0. 5622 IC = std::max(1u, IC); 5623 5624 assert(IC > 0 && "Interleave count must be greater than 0."); 5625 5626 // If we did not calculate the cost for VF (because the user selected the VF) 5627 // then we calculate the cost of VF here. 5628 if (LoopCost == 0) 5629 LoopCost = expectedCost(VF).first; 5630 5631 assert(LoopCost && "Non-zero loop cost expected"); 5632 5633 // Interleave if we vectorized this loop and there is a reduction that could 5634 // benefit from interleaving. 5635 if (VF.isVector() && HasReductions) { 5636 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5637 return IC; 5638 } 5639 5640 // Note that if we've already vectorized the loop we will have done the 5641 // runtime check and so interleaving won't require further checks. 5642 bool InterleavingRequiresRuntimePointerCheck = 5643 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5644 5645 // We want to interleave small loops in order to reduce the loop overhead and 5646 // potentially expose ILP opportunities. 5647 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5648 << "LV: IC is " << IC << '\n' 5649 << "LV: VF is " << VF.getKnownMinValue() << '\n'); 5650 const bool AggressivelyInterleaveReductions = 5651 TTI.enableAggressiveInterleaving(HasReductions); 5652 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5653 // We assume that the cost overhead is 1 and we use the cost model 5654 // to estimate the cost of the loop and interleave until the cost of the 5655 // loop overhead is about 5% of the cost of the loop. 5656 unsigned SmallIC = 5657 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5658 5659 // Interleave until store/load ports (estimated by max interleave count) are 5660 // saturated. 5661 unsigned NumStores = Legal->getNumStores(); 5662 unsigned NumLoads = Legal->getNumLoads(); 5663 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5664 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5665 5666 // If we have a scalar reduction (vector reductions are already dealt with 5667 // by this point), we can increase the critical path length if the loop 5668 // we're interleaving is inside another loop. Limit, by default to 2, so the 5669 // critical path only gets increased by one reduction operation. 5670 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5671 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5672 SmallIC = std::min(SmallIC, F); 5673 StoresIC = std::min(StoresIC, F); 5674 LoadsIC = std::min(LoadsIC, F); 5675 } 5676 5677 if (EnableLoadStoreRuntimeInterleave && 5678 std::max(StoresIC, LoadsIC) > SmallIC) { 5679 LLVM_DEBUG( 5680 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5681 return std::max(StoresIC, LoadsIC); 5682 } 5683 5684 // If there are scalar reductions and TTI has enabled aggressive 5685 // interleaving for reductions, we will interleave to expose ILP. 5686 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5687 AggressivelyInterleaveReductions) { 5688 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5689 // Interleave no less than SmallIC but not as aggressive as the normal IC 5690 // to satisfy the rare situation when resources are too limited. 5691 return std::max(IC / 2, SmallIC); 5692 } else { 5693 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5694 return SmallIC; 5695 } 5696 } 5697 5698 // Interleave if this is a large loop (small loops are already dealt with by 5699 // this point) that could benefit from interleaving. 5700 if (AggressivelyInterleaveReductions) { 5701 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5702 return IC; 5703 } 5704 5705 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5706 return 1; 5707 } 5708 5709 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5710 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5711 // This function calculates the register usage by measuring the highest number 5712 // of values that are alive at a single location. Obviously, this is a very 5713 // rough estimation. We scan the loop in a topological order in order and 5714 // assign a number to each instruction. We use RPO to ensure that defs are 5715 // met before their users. We assume that each instruction that has in-loop 5716 // users starts an interval. We record every time that an in-loop value is 5717 // used, so we have a list of the first and last occurrences of each 5718 // instruction. Next, we transpose this data structure into a multi map that 5719 // holds the list of intervals that *end* at a specific location. This multi 5720 // map allows us to perform a linear search. We scan the instructions linearly 5721 // and record each time that a new interval starts, by placing it in a set. 5722 // If we find this value in the multi-map then we remove it from the set. 5723 // The max register usage is the maximum size of the set. 5724 // We also search for instructions that are defined outside the loop, but are 5725 // used inside the loop. We need this number separately from the max-interval 5726 // usage number because when we unroll, loop-invariant values do not take 5727 // more register. 5728 LoopBlocksDFS DFS(TheLoop); 5729 DFS.perform(LI); 5730 5731 RegisterUsage RU; 5732 5733 // Each 'key' in the map opens a new interval. The values 5734 // of the map are the index of the 'last seen' usage of the 5735 // instruction that is the key. 5736 using IntervalMap = DenseMap<Instruction *, unsigned>; 5737 5738 // Maps instruction to its index. 5739 SmallVector<Instruction *, 64> IdxToInstr; 5740 // Marks the end of each interval. 5741 IntervalMap EndPoint; 5742 // Saves the list of instruction indices that are used in the loop. 5743 SmallPtrSet<Instruction *, 8> Ends; 5744 // Saves the list of values that are used in the loop but are 5745 // defined outside the loop, such as arguments and constants. 5746 SmallPtrSet<Value *, 8> LoopInvariants; 5747 5748 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5749 for (Instruction &I : BB->instructionsWithoutDebug()) { 5750 IdxToInstr.push_back(&I); 5751 5752 // Save the end location of each USE. 5753 for (Value *U : I.operands()) { 5754 auto *Instr = dyn_cast<Instruction>(U); 5755 5756 // Ignore non-instruction values such as arguments, constants, etc. 5757 if (!Instr) 5758 continue; 5759 5760 // If this instruction is outside the loop then record it and continue. 5761 if (!TheLoop->contains(Instr)) { 5762 LoopInvariants.insert(Instr); 5763 continue; 5764 } 5765 5766 // Overwrite previous end points. 5767 EndPoint[Instr] = IdxToInstr.size(); 5768 Ends.insert(Instr); 5769 } 5770 } 5771 } 5772 5773 // Saves the list of intervals that end with the index in 'key'. 5774 using InstrList = SmallVector<Instruction *, 2>; 5775 DenseMap<unsigned, InstrList> TransposeEnds; 5776 5777 // Transpose the EndPoints to a list of values that end at each index. 5778 for (auto &Interval : EndPoint) 5779 TransposeEnds[Interval.second].push_back(Interval.first); 5780 5781 SmallPtrSet<Instruction *, 8> OpenIntervals; 5782 5783 // Get the size of the widest register. 5784 unsigned MaxSafeDepDist = -1U; 5785 if (Legal->getMaxSafeDepDistBytes() != -1U) 5786 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5787 unsigned WidestRegister = 5788 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5789 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5790 5791 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5792 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5793 5794 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5795 5796 // A lambda that gets the register usage for the given type and VF. 5797 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, ElementCount VF) { 5798 if (Ty->isTokenTy()) 5799 return 0U; 5800 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5801 assert(!VF.isScalable() && "scalable vectors not yet supported."); 5802 return std::max<unsigned>(1, VF.getKnownMinValue() * TypeSize / 5803 WidestRegister); 5804 }; 5805 5806 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5807 Instruction *I = IdxToInstr[i]; 5808 5809 // Remove all of the instructions that end at this location. 5810 InstrList &List = TransposeEnds[i]; 5811 for (Instruction *ToRemove : List) 5812 OpenIntervals.erase(ToRemove); 5813 5814 // Ignore instructions that are never used within the loop. 5815 if (!Ends.count(I)) 5816 continue; 5817 5818 // Skip ignored values. 5819 if (ValuesToIgnore.count(I)) 5820 continue; 5821 5822 // For each VF find the maximum usage of registers. 5823 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5824 // Count the number of live intervals. 5825 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5826 5827 if (VFs[j].isScalar()) { 5828 for (auto Inst : OpenIntervals) { 5829 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5830 if (RegUsage.find(ClassID) == RegUsage.end()) 5831 RegUsage[ClassID] = 1; 5832 else 5833 RegUsage[ClassID] += 1; 5834 } 5835 } else { 5836 collectUniformsAndScalars(VFs[j]); 5837 for (auto Inst : OpenIntervals) { 5838 // Skip ignored values for VF > 1. 5839 if (VecValuesToIgnore.count(Inst)) 5840 continue; 5841 if (isScalarAfterVectorization(Inst, VFs[j])) { 5842 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5843 if (RegUsage.find(ClassID) == RegUsage.end()) 5844 RegUsage[ClassID] = 1; 5845 else 5846 RegUsage[ClassID] += 1; 5847 } else { 5848 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5849 if (RegUsage.find(ClassID) == RegUsage.end()) 5850 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5851 else 5852 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5853 } 5854 } 5855 } 5856 5857 for (auto& pair : RegUsage) { 5858 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5859 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5860 else 5861 MaxUsages[j][pair.first] = pair.second; 5862 } 5863 } 5864 5865 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5866 << OpenIntervals.size() << '\n'); 5867 5868 // Add the current instruction to the list of open intervals. 5869 OpenIntervals.insert(I); 5870 } 5871 5872 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5873 SmallMapVector<unsigned, unsigned, 4> Invariant; 5874 5875 for (auto Inst : LoopInvariants) { 5876 unsigned Usage = 5877 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5878 unsigned ClassID = 5879 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 5880 if (Invariant.find(ClassID) == Invariant.end()) 5881 Invariant[ClassID] = Usage; 5882 else 5883 Invariant[ClassID] += Usage; 5884 } 5885 5886 LLVM_DEBUG({ 5887 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5888 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5889 << " item\n"; 5890 for (const auto &pair : MaxUsages[i]) { 5891 dbgs() << "LV(REG): RegisterClass: " 5892 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5893 << " registers\n"; 5894 } 5895 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5896 << " item\n"; 5897 for (const auto &pair : Invariant) { 5898 dbgs() << "LV(REG): RegisterClass: " 5899 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5900 << " registers\n"; 5901 } 5902 }); 5903 5904 RU.LoopInvariantRegs = Invariant; 5905 RU.MaxLocalUsers = MaxUsages[i]; 5906 RUs[i] = RU; 5907 } 5908 5909 return RUs; 5910 } 5911 5912 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5913 // TODO: Cost model for emulated masked load/store is completely 5914 // broken. This hack guides the cost model to use an artificially 5915 // high enough value to practically disable vectorization with such 5916 // operations, except where previously deployed legality hack allowed 5917 // using very low cost values. This is to avoid regressions coming simply 5918 // from moving "masked load/store" check from legality to cost model. 5919 // Masked Load/Gather emulation was previously never allowed. 5920 // Limited number of Masked Store/Scatter emulation was allowed. 5921 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5922 return isa<LoadInst>(I) || 5923 (isa<StoreInst>(I) && 5924 NumPredStores > NumberOfStoresToPredicate); 5925 } 5926 5927 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 5928 // If we aren't vectorizing the loop, or if we've already collected the 5929 // instructions to scalarize, there's nothing to do. Collection may already 5930 // have occurred if we have a user-selected VF and are now computing the 5931 // expected cost for interleaving. 5932 if (VF.isScalar() || VF.isZero() || 5933 InstsToScalarize.find(VF) != InstsToScalarize.end()) 5934 return; 5935 5936 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5937 // not profitable to scalarize any instructions, the presence of VF in the 5938 // map will indicate that we've analyzed it already. 5939 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5940 5941 // Find all the instructions that are scalar with predication in the loop and 5942 // determine if it would be better to not if-convert the blocks they are in. 5943 // If so, we also record the instructions to scalarize. 5944 for (BasicBlock *BB : TheLoop->blocks()) { 5945 if (!blockNeedsPredication(BB)) 5946 continue; 5947 for (Instruction &I : *BB) 5948 if (isScalarWithPredication(&I)) { 5949 ScalarCostsTy ScalarCosts; 5950 // Do not apply discount logic if hacked cost is needed 5951 // for emulated masked memrefs. 5952 if (!useEmulatedMaskMemRefHack(&I) && 5953 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5954 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5955 // Remember that BB will remain after vectorization. 5956 PredicatedBBsAfterVectorization.insert(BB); 5957 } 5958 } 5959 } 5960 5961 int LoopVectorizationCostModel::computePredInstDiscount( 5962 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5963 ElementCount VF) { 5964 assert(!isUniformAfterVectorization(PredInst, VF) && 5965 "Instruction marked uniform-after-vectorization will be predicated"); 5966 5967 // Initialize the discount to zero, meaning that the scalar version and the 5968 // vector version cost the same. 5969 int Discount = 0; 5970 5971 // Holds instructions to analyze. The instructions we visit are mapped in 5972 // ScalarCosts. Those instructions are the ones that would be scalarized if 5973 // we find that the scalar version costs less. 5974 SmallVector<Instruction *, 8> Worklist; 5975 5976 // Returns true if the given instruction can be scalarized. 5977 auto canBeScalarized = [&](Instruction *I) -> bool { 5978 // We only attempt to scalarize instructions forming a single-use chain 5979 // from the original predicated block that would otherwise be vectorized. 5980 // Although not strictly necessary, we give up on instructions we know will 5981 // already be scalar to avoid traversing chains that are unlikely to be 5982 // beneficial. 5983 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5984 isScalarAfterVectorization(I, VF)) 5985 return false; 5986 5987 // If the instruction is scalar with predication, it will be analyzed 5988 // separately. We ignore it within the context of PredInst. 5989 if (isScalarWithPredication(I)) 5990 return false; 5991 5992 // If any of the instruction's operands are uniform after vectorization, 5993 // the instruction cannot be scalarized. This prevents, for example, a 5994 // masked load from being scalarized. 5995 // 5996 // We assume we will only emit a value for lane zero of an instruction 5997 // marked uniform after vectorization, rather than VF identical values. 5998 // Thus, if we scalarize an instruction that uses a uniform, we would 5999 // create uses of values corresponding to the lanes we aren't emitting code 6000 // for. This behavior can be changed by allowing getScalarValue to clone 6001 // the lane zero values for uniforms rather than asserting. 6002 for (Use &U : I->operands()) 6003 if (auto *J = dyn_cast<Instruction>(U.get())) 6004 if (isUniformAfterVectorization(J, VF)) 6005 return false; 6006 6007 // Otherwise, we can scalarize the instruction. 6008 return true; 6009 }; 6010 6011 // Compute the expected cost discount from scalarizing the entire expression 6012 // feeding the predicated instruction. We currently only consider expressions 6013 // that are single-use instruction chains. 6014 Worklist.push_back(PredInst); 6015 while (!Worklist.empty()) { 6016 Instruction *I = Worklist.pop_back_val(); 6017 6018 // If we've already analyzed the instruction, there's nothing to do. 6019 if (ScalarCosts.find(I) != ScalarCosts.end()) 6020 continue; 6021 6022 // Compute the cost of the vector instruction. Note that this cost already 6023 // includes the scalarization overhead of the predicated instruction. 6024 unsigned VectorCost = getInstructionCost(I, VF).first; 6025 6026 // Compute the cost of the scalarized instruction. This cost is the cost of 6027 // the instruction as if it wasn't if-converted and instead remained in the 6028 // predicated block. We will scale this cost by block probability after 6029 // computing the scalarization overhead. 6030 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6031 unsigned ScalarCost = 6032 VF.getKnownMinValue() * 6033 getInstructionCost(I, ElementCount::getFixed(1)).first; 6034 6035 // Compute the scalarization overhead of needed insertelement instructions 6036 // and phi nodes. 6037 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6038 ScalarCost += TTI.getScalarizationOverhead( 6039 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6040 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6041 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6042 ScalarCost += 6043 VF.getKnownMinValue() * 6044 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6045 } 6046 6047 // Compute the scalarization overhead of needed extractelement 6048 // instructions. For each of the instruction's operands, if the operand can 6049 // be scalarized, add it to the worklist; otherwise, account for the 6050 // overhead. 6051 for (Use &U : I->operands()) 6052 if (auto *J = dyn_cast<Instruction>(U.get())) { 6053 assert(VectorType::isValidElementType(J->getType()) && 6054 "Instruction has non-scalar type"); 6055 if (canBeScalarized(J)) 6056 Worklist.push_back(J); 6057 else if (needsExtract(J, VF)) { 6058 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6059 ScalarCost += TTI.getScalarizationOverhead( 6060 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6061 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6062 } 6063 } 6064 6065 // Scale the total scalar cost by block probability. 6066 ScalarCost /= getReciprocalPredBlockProb(); 6067 6068 // Compute the discount. A non-negative discount means the vector version 6069 // of the instruction costs more, and scalarizing would be beneficial. 6070 Discount += VectorCost - ScalarCost; 6071 ScalarCosts[I] = ScalarCost; 6072 } 6073 6074 return Discount; 6075 } 6076 6077 LoopVectorizationCostModel::VectorizationCostTy 6078 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6079 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6080 VectorizationCostTy Cost; 6081 6082 // For each block. 6083 for (BasicBlock *BB : TheLoop->blocks()) { 6084 VectorizationCostTy BlockCost; 6085 6086 // For each instruction in the old loop. 6087 for (Instruction &I : BB->instructionsWithoutDebug()) { 6088 // Skip ignored values. 6089 if (ValuesToIgnore.count(&I) || 6090 (VF.isVector() && VecValuesToIgnore.count(&I))) 6091 continue; 6092 6093 VectorizationCostTy C = getInstructionCost(&I, VF); 6094 6095 // Check if we should override the cost. 6096 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6097 C.first = ForceTargetInstructionCost; 6098 6099 BlockCost.first += C.first; 6100 BlockCost.second |= C.second; 6101 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6102 << " for VF " << VF << " For instruction: " << I 6103 << '\n'); 6104 } 6105 6106 // If we are vectorizing a predicated block, it will have been 6107 // if-converted. This means that the block's instructions (aside from 6108 // stores and instructions that may divide by zero) will now be 6109 // unconditionally executed. For the scalar case, we may not always execute 6110 // the predicated block. Thus, scale the block's cost by the probability of 6111 // executing it. 6112 if (VF.isScalar() && blockNeedsPredication(BB)) 6113 BlockCost.first /= getReciprocalPredBlockProb(); 6114 6115 Cost.first += BlockCost.first; 6116 Cost.second |= BlockCost.second; 6117 } 6118 6119 return Cost; 6120 } 6121 6122 /// Gets Address Access SCEV after verifying that the access pattern 6123 /// is loop invariant except the induction variable dependence. 6124 /// 6125 /// This SCEV can be sent to the Target in order to estimate the address 6126 /// calculation cost. 6127 static const SCEV *getAddressAccessSCEV( 6128 Value *Ptr, 6129 LoopVectorizationLegality *Legal, 6130 PredicatedScalarEvolution &PSE, 6131 const Loop *TheLoop) { 6132 6133 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6134 if (!Gep) 6135 return nullptr; 6136 6137 // We are looking for a gep with all loop invariant indices except for one 6138 // which should be an induction variable. 6139 auto SE = PSE.getSE(); 6140 unsigned NumOperands = Gep->getNumOperands(); 6141 for (unsigned i = 1; i < NumOperands; ++i) { 6142 Value *Opd = Gep->getOperand(i); 6143 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6144 !Legal->isInductionVariable(Opd)) 6145 return nullptr; 6146 } 6147 6148 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6149 return PSE.getSCEV(Ptr); 6150 } 6151 6152 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6153 return Legal->hasStride(I->getOperand(0)) || 6154 Legal->hasStride(I->getOperand(1)); 6155 } 6156 6157 unsigned 6158 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6159 ElementCount VF) { 6160 assert(VF.isVector() && 6161 "Scalarization cost of instruction implies vectorization."); 6162 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6163 Type *ValTy = getMemInstValueType(I); 6164 auto SE = PSE.getSE(); 6165 6166 unsigned AS = getLoadStoreAddressSpace(I); 6167 Value *Ptr = getLoadStorePointerOperand(I); 6168 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6169 6170 // Figure out whether the access is strided and get the stride value 6171 // if it's known in compile time 6172 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6173 6174 // Get the cost of the scalar memory instruction and address computation. 6175 unsigned Cost = 6176 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6177 6178 // Don't pass *I here, since it is scalar but will actually be part of a 6179 // vectorized loop where the user of it is a vectorized instruction. 6180 const Align Alignment = getLoadStoreAlignment(I); 6181 Cost += VF.getKnownMinValue() * 6182 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6183 AS, TTI::TCK_RecipThroughput); 6184 6185 // Get the overhead of the extractelement and insertelement instructions 6186 // we might create due to scalarization. 6187 Cost += getScalarizationOverhead(I, VF); 6188 6189 // If we have a predicated store, it may not be executed for each vector 6190 // lane. Scale the cost by the probability of executing the predicated 6191 // block. 6192 if (isPredicatedInst(I)) { 6193 Cost /= getReciprocalPredBlockProb(); 6194 6195 if (useEmulatedMaskMemRefHack(I)) 6196 // Artificially setting to a high enough value to practically disable 6197 // vectorization with such operations. 6198 Cost = 3000000; 6199 } 6200 6201 return Cost; 6202 } 6203 6204 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6205 ElementCount VF) { 6206 Type *ValTy = getMemInstValueType(I); 6207 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6208 Value *Ptr = getLoadStorePointerOperand(I); 6209 unsigned AS = getLoadStoreAddressSpace(I); 6210 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6211 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6212 6213 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6214 "Stride should be 1 or -1 for consecutive memory access"); 6215 const Align Alignment = getLoadStoreAlignment(I); 6216 unsigned Cost = 0; 6217 if (Legal->isMaskRequired(I)) 6218 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6219 CostKind); 6220 else 6221 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6222 CostKind, I); 6223 6224 bool Reverse = ConsecutiveStride < 0; 6225 if (Reverse) 6226 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6227 return Cost; 6228 } 6229 6230 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6231 ElementCount VF) { 6232 Type *ValTy = getMemInstValueType(I); 6233 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6234 const Align Alignment = getLoadStoreAlignment(I); 6235 unsigned AS = getLoadStoreAddressSpace(I); 6236 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6237 if (isa<LoadInst>(I)) { 6238 return TTI.getAddressComputationCost(ValTy) + 6239 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6240 CostKind) + 6241 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6242 } 6243 StoreInst *SI = cast<StoreInst>(I); 6244 6245 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6246 return TTI.getAddressComputationCost(ValTy) + 6247 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6248 CostKind) + 6249 (isLoopInvariantStoreValue 6250 ? 0 6251 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6252 VF.getKnownMinValue() - 1)); 6253 } 6254 6255 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6256 ElementCount VF) { 6257 Type *ValTy = getMemInstValueType(I); 6258 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6259 const Align Alignment = getLoadStoreAlignment(I); 6260 const Value *Ptr = getLoadStorePointerOperand(I); 6261 6262 return TTI.getAddressComputationCost(VectorTy) + 6263 TTI.getGatherScatterOpCost( 6264 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6265 TargetTransformInfo::TCK_RecipThroughput, I); 6266 } 6267 6268 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6269 ElementCount VF) { 6270 Type *ValTy = getMemInstValueType(I); 6271 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6272 unsigned AS = getLoadStoreAddressSpace(I); 6273 6274 auto Group = getInterleavedAccessGroup(I); 6275 assert(Group && "Fail to get an interleaved access group."); 6276 6277 unsigned InterleaveFactor = Group->getFactor(); 6278 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6279 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6280 6281 // Holds the indices of existing members in an interleaved load group. 6282 // An interleaved store group doesn't need this as it doesn't allow gaps. 6283 SmallVector<unsigned, 4> Indices; 6284 if (isa<LoadInst>(I)) { 6285 for (unsigned i = 0; i < InterleaveFactor; i++) 6286 if (Group->getMember(i)) 6287 Indices.push_back(i); 6288 } 6289 6290 // Calculate the cost of the whole interleaved group. 6291 bool UseMaskForGaps = 6292 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6293 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6294 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6295 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6296 6297 if (Group->isReverse()) { 6298 // TODO: Add support for reversed masked interleaved access. 6299 assert(!Legal->isMaskRequired(I) && 6300 "Reverse masked interleaved access not supported."); 6301 Cost += Group->getNumMembers() * 6302 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6303 } 6304 return Cost; 6305 } 6306 6307 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6308 ElementCount VF) { 6309 // Calculate scalar cost only. Vectorization cost should be ready at this 6310 // moment. 6311 if (VF.isScalar()) { 6312 Type *ValTy = getMemInstValueType(I); 6313 const Align Alignment = getLoadStoreAlignment(I); 6314 unsigned AS = getLoadStoreAddressSpace(I); 6315 6316 return TTI.getAddressComputationCost(ValTy) + 6317 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6318 TTI::TCK_RecipThroughput, I); 6319 } 6320 return getWideningCost(I, VF); 6321 } 6322 6323 LoopVectorizationCostModel::VectorizationCostTy 6324 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6325 ElementCount VF) { 6326 assert(!VF.isScalable() && 6327 "the cost model is not yet implemented for scalable vectorization"); 6328 // If we know that this instruction will remain uniform, check the cost of 6329 // the scalar version. 6330 if (isUniformAfterVectorization(I, VF)) 6331 VF = ElementCount::getFixed(1); 6332 6333 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6334 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6335 6336 // Forced scalars do not have any scalarization overhead. 6337 auto ForcedScalar = ForcedScalars.find(VF); 6338 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6339 auto InstSet = ForcedScalar->second; 6340 if (InstSet.count(I)) 6341 return VectorizationCostTy( 6342 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6343 VF.getKnownMinValue()), 6344 false); 6345 } 6346 6347 Type *VectorTy; 6348 unsigned C = getInstructionCost(I, VF, VectorTy); 6349 6350 bool TypeNotScalarized = 6351 VF.isVector() && VectorTy->isVectorTy() && 6352 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 6353 return VectorizationCostTy(C, TypeNotScalarized); 6354 } 6355 6356 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6357 ElementCount VF) { 6358 6359 assert(!VF.isScalable() && 6360 "cannot compute scalarization overhead for scalable vectorization"); 6361 if (VF.isScalar()) 6362 return 0; 6363 6364 unsigned Cost = 0; 6365 Type *RetTy = ToVectorTy(I->getType(), VF); 6366 if (!RetTy->isVoidTy() && 6367 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6368 Cost += TTI.getScalarizationOverhead( 6369 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 6370 true, false); 6371 6372 // Some targets keep addresses scalar. 6373 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6374 return Cost; 6375 6376 // Some targets support efficient element stores. 6377 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6378 return Cost; 6379 6380 // Collect operands to consider. 6381 CallInst *CI = dyn_cast<CallInst>(I); 6382 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6383 6384 // Skip operands that do not require extraction/scalarization and do not incur 6385 // any overhead. 6386 return Cost + TTI.getOperandsScalarizationOverhead( 6387 filterExtractingOperands(Ops, VF), VF.getKnownMinValue()); 6388 } 6389 6390 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6391 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6392 if (VF.isScalar()) 6393 return; 6394 NumPredStores = 0; 6395 for (BasicBlock *BB : TheLoop->blocks()) { 6396 // For each instruction in the old loop. 6397 for (Instruction &I : *BB) { 6398 Value *Ptr = getLoadStorePointerOperand(&I); 6399 if (!Ptr) 6400 continue; 6401 6402 // TODO: We should generate better code and update the cost model for 6403 // predicated uniform stores. Today they are treated as any other 6404 // predicated store (see added test cases in 6405 // invariant-store-vectorization.ll). 6406 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6407 NumPredStores++; 6408 6409 if (Legal->isUniform(Ptr) && 6410 // Conditional loads and stores should be scalarized and predicated. 6411 // isScalarWithPredication cannot be used here since masked 6412 // gather/scatters are not considered scalar with predication. 6413 !Legal->blockNeedsPredication(I.getParent())) { 6414 // TODO: Avoid replicating loads and stores instead of 6415 // relying on instcombine to remove them. 6416 // Load: Scalar load + broadcast 6417 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6418 unsigned Cost = getUniformMemOpCost(&I, VF); 6419 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6420 continue; 6421 } 6422 6423 // We assume that widening is the best solution when possible. 6424 if (memoryInstructionCanBeWidened(&I, VF)) { 6425 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6426 int ConsecutiveStride = 6427 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6428 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6429 "Expected consecutive stride."); 6430 InstWidening Decision = 6431 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6432 setWideningDecision(&I, VF, Decision, Cost); 6433 continue; 6434 } 6435 6436 // Choose between Interleaving, Gather/Scatter or Scalarization. 6437 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6438 unsigned NumAccesses = 1; 6439 if (isAccessInterleaved(&I)) { 6440 auto Group = getInterleavedAccessGroup(&I); 6441 assert(Group && "Fail to get an interleaved access group."); 6442 6443 // Make one decision for the whole group. 6444 if (getWideningDecision(&I, VF) != CM_Unknown) 6445 continue; 6446 6447 NumAccesses = Group->getNumMembers(); 6448 if (interleavedAccessCanBeWidened(&I, VF)) 6449 InterleaveCost = getInterleaveGroupCost(&I, VF); 6450 } 6451 6452 unsigned GatherScatterCost = 6453 isLegalGatherOrScatter(&I) 6454 ? getGatherScatterCost(&I, VF) * NumAccesses 6455 : std::numeric_limits<unsigned>::max(); 6456 6457 unsigned ScalarizationCost = 6458 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6459 6460 // Choose better solution for the current VF, 6461 // write down this decision and use it during vectorization. 6462 unsigned Cost; 6463 InstWidening Decision; 6464 if (InterleaveCost <= GatherScatterCost && 6465 InterleaveCost < ScalarizationCost) { 6466 Decision = CM_Interleave; 6467 Cost = InterleaveCost; 6468 } else if (GatherScatterCost < ScalarizationCost) { 6469 Decision = CM_GatherScatter; 6470 Cost = GatherScatterCost; 6471 } else { 6472 Decision = CM_Scalarize; 6473 Cost = ScalarizationCost; 6474 } 6475 // If the instructions belongs to an interleave group, the whole group 6476 // receives the same decision. The whole group receives the cost, but 6477 // the cost will actually be assigned to one instruction. 6478 if (auto Group = getInterleavedAccessGroup(&I)) 6479 setWideningDecision(Group, VF, Decision, Cost); 6480 else 6481 setWideningDecision(&I, VF, Decision, Cost); 6482 } 6483 } 6484 6485 // Make sure that any load of address and any other address computation 6486 // remains scalar unless there is gather/scatter support. This avoids 6487 // inevitable extracts into address registers, and also has the benefit of 6488 // activating LSR more, since that pass can't optimize vectorized 6489 // addresses. 6490 if (TTI.prefersVectorizedAddressing()) 6491 return; 6492 6493 // Start with all scalar pointer uses. 6494 SmallPtrSet<Instruction *, 8> AddrDefs; 6495 for (BasicBlock *BB : TheLoop->blocks()) 6496 for (Instruction &I : *BB) { 6497 Instruction *PtrDef = 6498 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6499 if (PtrDef && TheLoop->contains(PtrDef) && 6500 getWideningDecision(&I, VF) != CM_GatherScatter) 6501 AddrDefs.insert(PtrDef); 6502 } 6503 6504 // Add all instructions used to generate the addresses. 6505 SmallVector<Instruction *, 4> Worklist; 6506 for (auto *I : AddrDefs) 6507 Worklist.push_back(I); 6508 while (!Worklist.empty()) { 6509 Instruction *I = Worklist.pop_back_val(); 6510 for (auto &Op : I->operands()) 6511 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6512 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6513 AddrDefs.insert(InstOp).second) 6514 Worklist.push_back(InstOp); 6515 } 6516 6517 for (auto *I : AddrDefs) { 6518 if (isa<LoadInst>(I)) { 6519 // Setting the desired widening decision should ideally be handled in 6520 // by cost functions, but since this involves the task of finding out 6521 // if the loaded register is involved in an address computation, it is 6522 // instead changed here when we know this is the case. 6523 InstWidening Decision = getWideningDecision(I, VF); 6524 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6525 // Scalarize a widened load of address. 6526 setWideningDecision( 6527 I, VF, CM_Scalarize, 6528 (VF.getKnownMinValue() * 6529 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6530 else if (auto Group = getInterleavedAccessGroup(I)) { 6531 // Scalarize an interleave group of address loads. 6532 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6533 if (Instruction *Member = Group->getMember(I)) 6534 setWideningDecision( 6535 Member, VF, CM_Scalarize, 6536 (VF.getKnownMinValue() * 6537 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6538 } 6539 } 6540 } else 6541 // Make sure I gets scalarized and a cost estimate without 6542 // scalarization overhead. 6543 ForcedScalars[VF].insert(I); 6544 } 6545 } 6546 6547 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6548 ElementCount VF, 6549 Type *&VectorTy) { 6550 Type *RetTy = I->getType(); 6551 if (canTruncateToMinimalBitwidth(I, VF)) 6552 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6553 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6554 auto SE = PSE.getSE(); 6555 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6556 6557 // TODO: We need to estimate the cost of intrinsic calls. 6558 switch (I->getOpcode()) { 6559 case Instruction::GetElementPtr: 6560 // We mark this instruction as zero-cost because the cost of GEPs in 6561 // vectorized code depends on whether the corresponding memory instruction 6562 // is scalarized or not. Therefore, we handle GEPs with the memory 6563 // instruction cost. 6564 return 0; 6565 case Instruction::Br: { 6566 // In cases of scalarized and predicated instructions, there will be VF 6567 // predicated blocks in the vectorized loop. Each branch around these 6568 // blocks requires also an extract of its vector compare i1 element. 6569 bool ScalarPredicatedBB = false; 6570 BranchInst *BI = cast<BranchInst>(I); 6571 if (VF.isVector() && BI->isConditional() && 6572 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6573 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6574 ScalarPredicatedBB = true; 6575 6576 if (ScalarPredicatedBB) { 6577 // Return cost for branches around scalarized and predicated blocks. 6578 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6579 auto *Vec_i1Ty = 6580 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6581 return (TTI.getScalarizationOverhead( 6582 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 6583 false, true) + 6584 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 6585 VF.getKnownMinValue())); 6586 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 6587 // The back-edge branch will remain, as will all scalar branches. 6588 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6589 else 6590 // This branch will be eliminated by if-conversion. 6591 return 0; 6592 // Note: We currently assume zero cost for an unconditional branch inside 6593 // a predicated block since it will become a fall-through, although we 6594 // may decide in the future to call TTI for all branches. 6595 } 6596 case Instruction::PHI: { 6597 auto *Phi = cast<PHINode>(I); 6598 6599 // First-order recurrences are replaced by vector shuffles inside the loop. 6600 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6601 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 6602 return TTI.getShuffleCost( 6603 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 6604 VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 6605 6606 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6607 // converted into select instructions. We require N - 1 selects per phi 6608 // node, where N is the number of incoming values. 6609 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 6610 return (Phi->getNumIncomingValues() - 1) * 6611 TTI.getCmpSelInstrCost( 6612 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6613 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 6614 CostKind); 6615 6616 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 6617 } 6618 case Instruction::UDiv: 6619 case Instruction::SDiv: 6620 case Instruction::URem: 6621 case Instruction::SRem: 6622 // If we have a predicated instruction, it may not be executed for each 6623 // vector lane. Get the scalarization cost and scale this amount by the 6624 // probability of executing the predicated block. If the instruction is not 6625 // predicated, we fall through to the next case. 6626 if (VF.isVector() && isScalarWithPredication(I)) { 6627 unsigned Cost = 0; 6628 6629 // These instructions have a non-void type, so account for the phi nodes 6630 // that we will create. This cost is likely to be zero. The phi node 6631 // cost, if any, should be scaled by the block probability because it 6632 // models a copy at the end of each predicated block. 6633 Cost += VF.getKnownMinValue() * 6634 TTI.getCFInstrCost(Instruction::PHI, CostKind); 6635 6636 // The cost of the non-predicated instruction. 6637 Cost += VF.getKnownMinValue() * 6638 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 6639 6640 // The cost of insertelement and extractelement instructions needed for 6641 // scalarization. 6642 Cost += getScalarizationOverhead(I, VF); 6643 6644 // Scale the cost by the probability of executing the predicated blocks. 6645 // This assumes the predicated block for each vector lane is equally 6646 // likely. 6647 return Cost / getReciprocalPredBlockProb(); 6648 } 6649 LLVM_FALLTHROUGH; 6650 case Instruction::Add: 6651 case Instruction::FAdd: 6652 case Instruction::Sub: 6653 case Instruction::FSub: 6654 case Instruction::Mul: 6655 case Instruction::FMul: 6656 case Instruction::FDiv: 6657 case Instruction::FRem: 6658 case Instruction::Shl: 6659 case Instruction::LShr: 6660 case Instruction::AShr: 6661 case Instruction::And: 6662 case Instruction::Or: 6663 case Instruction::Xor: { 6664 // Since we will replace the stride by 1 the multiplication should go away. 6665 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6666 return 0; 6667 // Certain instructions can be cheaper to vectorize if they have a constant 6668 // second vector operand. One example of this are shifts on x86. 6669 Value *Op2 = I->getOperand(1); 6670 TargetTransformInfo::OperandValueProperties Op2VP; 6671 TargetTransformInfo::OperandValueKind Op2VK = 6672 TTI.getOperandInfo(Op2, Op2VP); 6673 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6674 Op2VK = TargetTransformInfo::OK_UniformValue; 6675 6676 SmallVector<const Value *, 4> Operands(I->operand_values()); 6677 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6678 return N * TTI.getArithmeticInstrCost( 6679 I->getOpcode(), VectorTy, CostKind, 6680 TargetTransformInfo::OK_AnyValue, 6681 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6682 } 6683 case Instruction::FNeg: { 6684 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 6685 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6686 return N * TTI.getArithmeticInstrCost( 6687 I->getOpcode(), VectorTy, CostKind, 6688 TargetTransformInfo::OK_AnyValue, 6689 TargetTransformInfo::OK_AnyValue, 6690 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6691 I->getOperand(0), I); 6692 } 6693 case Instruction::Select: { 6694 SelectInst *SI = cast<SelectInst>(I); 6695 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6696 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6697 Type *CondTy = SI->getCondition()->getType(); 6698 if (!ScalarCond) { 6699 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 6700 CondTy = VectorType::get(CondTy, VF); 6701 } 6702 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 6703 CostKind, I); 6704 } 6705 case Instruction::ICmp: 6706 case Instruction::FCmp: { 6707 Type *ValTy = I->getOperand(0)->getType(); 6708 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6709 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6710 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6711 VectorTy = ToVectorTy(ValTy, VF); 6712 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, CostKind, 6713 I); 6714 } 6715 case Instruction::Store: 6716 case Instruction::Load: { 6717 ElementCount Width = VF; 6718 if (Width.isVector()) { 6719 InstWidening Decision = getWideningDecision(I, Width); 6720 assert(Decision != CM_Unknown && 6721 "CM decision should be taken at this point"); 6722 if (Decision == CM_Scalarize) 6723 Width = ElementCount::getFixed(1); 6724 } 6725 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6726 return getMemoryInstructionCost(I, VF); 6727 } 6728 case Instruction::ZExt: 6729 case Instruction::SExt: 6730 case Instruction::FPToUI: 6731 case Instruction::FPToSI: 6732 case Instruction::FPExt: 6733 case Instruction::PtrToInt: 6734 case Instruction::IntToPtr: 6735 case Instruction::SIToFP: 6736 case Instruction::UIToFP: 6737 case Instruction::Trunc: 6738 case Instruction::FPTrunc: 6739 case Instruction::BitCast: { 6740 // Computes the CastContextHint from a Load/Store instruction. 6741 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 6742 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 6743 "Expected a load or a store!"); 6744 6745 if (VF.isScalar() || !TheLoop->contains(I)) 6746 return TTI::CastContextHint::Normal; 6747 6748 switch (getWideningDecision(I, VF)) { 6749 case LoopVectorizationCostModel::CM_GatherScatter: 6750 return TTI::CastContextHint::GatherScatter; 6751 case LoopVectorizationCostModel::CM_Interleave: 6752 return TTI::CastContextHint::Interleave; 6753 case LoopVectorizationCostModel::CM_Scalarize: 6754 case LoopVectorizationCostModel::CM_Widen: 6755 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 6756 : TTI::CastContextHint::Normal; 6757 case LoopVectorizationCostModel::CM_Widen_Reverse: 6758 return TTI::CastContextHint::Reversed; 6759 case LoopVectorizationCostModel::CM_Unknown: 6760 llvm_unreachable("Instr did not go through cost modelling?"); 6761 } 6762 6763 llvm_unreachable("Unhandled case!"); 6764 }; 6765 6766 unsigned Opcode = I->getOpcode(); 6767 TTI::CastContextHint CCH = TTI::CastContextHint::None; 6768 // For Trunc, the context is the only user, which must be a StoreInst. 6769 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 6770 if (I->hasOneUse()) 6771 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 6772 CCH = ComputeCCH(Store); 6773 } 6774 // For Z/Sext, the context is the operand, which must be a LoadInst. 6775 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 6776 Opcode == Instruction::FPExt) { 6777 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 6778 CCH = ComputeCCH(Load); 6779 } 6780 6781 // We optimize the truncation of induction variables having constant 6782 // integer steps. The cost of these truncations is the same as the scalar 6783 // operation. 6784 if (isOptimizableIVTruncate(I, VF)) { 6785 auto *Trunc = cast<TruncInst>(I); 6786 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6787 Trunc->getSrcTy(), CCH, CostKind, Trunc); 6788 } 6789 6790 Type *SrcScalarTy = I->getOperand(0)->getType(); 6791 Type *SrcVecTy = 6792 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6793 if (canTruncateToMinimalBitwidth(I, VF)) { 6794 // This cast is going to be shrunk. This may remove the cast or it might 6795 // turn it into slightly different cast. For example, if MinBW == 16, 6796 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6797 // 6798 // Calculate the modified src and dest types. 6799 Type *MinVecTy = VectorTy; 6800 if (Opcode == Instruction::Trunc) { 6801 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6802 VectorTy = 6803 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6804 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 6805 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6806 VectorTy = 6807 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6808 } 6809 } 6810 6811 assert(!VF.isScalable() && "VF is assumed to be non scalable"); 6812 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6813 return N * 6814 TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 6815 } 6816 case Instruction::Call: { 6817 bool NeedToScalarize; 6818 CallInst *CI = cast<CallInst>(I); 6819 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6820 if (getVectorIntrinsicIDForCall(CI, TLI)) 6821 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6822 return CallCost; 6823 } 6824 default: 6825 // The cost of executing VF copies of the scalar instruction. This opcode 6826 // is unknown. Assume that it is the same as 'mul'. 6827 return VF.getKnownMinValue() * TTI.getArithmeticInstrCost( 6828 Instruction::Mul, VectorTy, CostKind) + 6829 getScalarizationOverhead(I, VF); 6830 } // end of switch. 6831 } 6832 6833 char LoopVectorize::ID = 0; 6834 6835 static const char lv_name[] = "Loop Vectorization"; 6836 6837 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6838 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6839 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6840 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6841 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6842 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6843 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6844 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6845 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6846 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6847 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6848 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6849 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6850 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6851 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6852 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6853 6854 namespace llvm { 6855 6856 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6857 6858 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6859 bool VectorizeOnlyWhenForced) { 6860 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6861 } 6862 6863 } // end namespace llvm 6864 6865 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6866 // Check if the pointer operand of a load or store instruction is 6867 // consecutive. 6868 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6869 return Legal->isConsecutivePtr(Ptr); 6870 return false; 6871 } 6872 6873 void LoopVectorizationCostModel::collectValuesToIgnore() { 6874 // Ignore ephemeral values. 6875 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6876 6877 // Ignore type-promoting instructions we identified during reduction 6878 // detection. 6879 for (auto &Reduction : Legal->getReductionVars()) { 6880 RecurrenceDescriptor &RedDes = Reduction.second; 6881 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6882 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6883 } 6884 // Ignore type-casting instructions we identified during induction 6885 // detection. 6886 for (auto &Induction : Legal->getInductionVars()) { 6887 InductionDescriptor &IndDes = Induction.second; 6888 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6889 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6890 } 6891 } 6892 6893 void LoopVectorizationCostModel::collectInLoopReductions() { 6894 for (auto &Reduction : Legal->getReductionVars()) { 6895 PHINode *Phi = Reduction.first; 6896 RecurrenceDescriptor &RdxDesc = Reduction.second; 6897 6898 // We don't collect reductions that are type promoted (yet). 6899 if (RdxDesc.getRecurrenceType() != Phi->getType()) 6900 continue; 6901 6902 // If the target would prefer this reduction to happen "in-loop", then we 6903 // want to record it as such. 6904 unsigned Opcode = RdxDesc.getRecurrenceBinOp(RdxDesc.getRecurrenceKind()); 6905 if (!PreferInLoopReductions && 6906 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 6907 TargetTransformInfo::ReductionFlags())) 6908 continue; 6909 6910 // Check that we can correctly put the reductions into the loop, by 6911 // finding the chain of operations that leads from the phi to the loop 6912 // exit value. 6913 SmallVector<Instruction *, 4> ReductionOperations = 6914 RdxDesc.getReductionOpChain(Phi, TheLoop); 6915 bool InLoop = !ReductionOperations.empty(); 6916 if (InLoop) 6917 InLoopReductionChains[Phi] = ReductionOperations; 6918 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 6919 << " reduction for phi: " << *Phi << "\n"); 6920 } 6921 } 6922 6923 // TODO: we could return a pair of values that specify the max VF and 6924 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6925 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6926 // doesn't have a cost model that can choose which plan to execute if 6927 // more than one is generated. 6928 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6929 LoopVectorizationCostModel &CM) { 6930 unsigned WidestType; 6931 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6932 return WidestVectorRegBits / WidestType; 6933 } 6934 6935 VectorizationFactor 6936 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 6937 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 6938 ElementCount VF = UserVF; 6939 // Outer loop handling: They may require CFG and instruction level 6940 // transformations before even evaluating whether vectorization is profitable. 6941 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6942 // the vectorization pipeline. 6943 if (!OrigLoop->isInnermost()) { 6944 // If the user doesn't provide a vectorization factor, determine a 6945 // reasonable one. 6946 if (UserVF.isZero()) { 6947 VF = ElementCount::getFixed( 6948 determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM)); 6949 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6950 6951 // Make sure we have a VF > 1 for stress testing. 6952 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 6953 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6954 << "overriding computed VF.\n"); 6955 VF = ElementCount::getFixed(4); 6956 } 6957 } 6958 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6959 assert(isPowerOf2_32(VF.getKnownMinValue()) && 6960 "VF needs to be a power of two"); 6961 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 6962 << "VF " << VF << " to build VPlans.\n"); 6963 buildVPlans(VF.getKnownMinValue(), VF.getKnownMinValue()); 6964 6965 // For VPlan build stress testing, we bail out after VPlan construction. 6966 if (VPlanBuildStressTest) 6967 return VectorizationFactor::Disabled(); 6968 6969 return {VF, 0 /*Cost*/}; 6970 } 6971 6972 LLVM_DEBUG( 6973 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6974 "VPlan-native path.\n"); 6975 return VectorizationFactor::Disabled(); 6976 } 6977 6978 Optional<VectorizationFactor> 6979 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 6980 assert(!UserVF.isScalable() && "scalable vectorization not yet handled"); 6981 assert(OrigLoop->isInnermost() && "Inner loop expected."); 6982 Optional<unsigned> MaybeMaxVF = 6983 CM.computeMaxVF(UserVF.getKnownMinValue(), UserIC); 6984 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6985 return None; 6986 6987 // Invalidate interleave groups if all blocks of loop will be predicated. 6988 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6989 !useMaskedInterleavedAccesses(*TTI)) { 6990 LLVM_DEBUG( 6991 dbgs() 6992 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6993 "which requires masked-interleaved support.\n"); 6994 if (CM.InterleaveInfo.invalidateGroups()) 6995 // Invalidating interleave groups also requires invalidating all decisions 6996 // based on them, which includes widening decisions and uniform and scalar 6997 // values. 6998 CM.invalidateCostModelingDecisions(); 6999 } 7000 7001 if (!UserVF.isZero()) { 7002 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7003 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7004 "VF needs to be a power of two"); 7005 // Collect the instructions (and their associated costs) that will be more 7006 // profitable to scalarize. 7007 CM.selectUserVectorizationFactor(UserVF); 7008 CM.collectInLoopReductions(); 7009 buildVPlansWithVPRecipes(UserVF.getKnownMinValue(), 7010 UserVF.getKnownMinValue()); 7011 LLVM_DEBUG(printPlans(dbgs())); 7012 return {{UserVF, 0}}; 7013 } 7014 7015 unsigned MaxVF = MaybeMaxVF.getValue(); 7016 assert(MaxVF != 0 && "MaxVF is zero."); 7017 7018 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 7019 // Collect Uniform and Scalar instructions after vectorization with VF. 7020 CM.collectUniformsAndScalars(ElementCount::getFixed(VF)); 7021 7022 // Collect the instructions (and their associated costs) that will be more 7023 // profitable to scalarize. 7024 if (VF > 1) 7025 CM.collectInstsToScalarize(ElementCount::getFixed(VF)); 7026 } 7027 7028 CM.collectInLoopReductions(); 7029 7030 buildVPlansWithVPRecipes(1, MaxVF); 7031 LLVM_DEBUG(printPlans(dbgs())); 7032 if (MaxVF == 1) 7033 return VectorizationFactor::Disabled(); 7034 7035 // Select the optimal vectorization factor. 7036 return CM.selectVectorizationFactor(MaxVF); 7037 } 7038 7039 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 7040 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 7041 << '\n'); 7042 BestVF = VF; 7043 BestUF = UF; 7044 7045 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7046 return !Plan->hasVF(VF); 7047 }); 7048 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7049 } 7050 7051 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7052 DominatorTree *DT) { 7053 // Perform the actual loop transformation. 7054 7055 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7056 VPCallbackILV CallbackILV(ILV); 7057 7058 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 7059 7060 VPTransformState State{*BestVF, BestUF, LI, 7061 DT, ILV.Builder, ILV.VectorLoopValueMap, 7062 &ILV, CallbackILV}; 7063 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7064 State.TripCount = ILV.getOrCreateTripCount(nullptr); 7065 State.CanonicalIV = ILV.Induction; 7066 7067 //===------------------------------------------------===// 7068 // 7069 // Notice: any optimization or new instruction that go 7070 // into the code below should also be implemented in 7071 // the cost-model. 7072 // 7073 //===------------------------------------------------===// 7074 7075 // 2. Copy and widen instructions from the old loop into the new loop. 7076 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7077 VPlans.front()->execute(&State); 7078 7079 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7080 // predication, updating analyses. 7081 ILV.fixVectorizedLoop(); 7082 } 7083 7084 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7085 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7086 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7087 7088 // We create new control-flow for the vectorized loop, so the original 7089 // condition will be dead after vectorization if it's only used by the 7090 // branch. 7091 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7092 if (Cmp && Cmp->hasOneUse()) { 7093 DeadInstructions.insert(Cmp); 7094 7095 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7096 for (Value *Op : Cmp->operands()) { 7097 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7098 DeadInstructions.insert(cast<Instruction>(Op)); 7099 } 7100 } 7101 7102 // We create new "steps" for induction variable updates to which the original 7103 // induction variables map. An original update instruction will be dead if 7104 // all its users except the induction variable are dead. 7105 for (auto &Induction : Legal->getInductionVars()) { 7106 PHINode *Ind = Induction.first; 7107 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7108 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7109 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7110 })) 7111 DeadInstructions.insert(IndUpdate); 7112 7113 // We record as "Dead" also the type-casting instructions we had identified 7114 // during induction analysis. We don't need any handling for them in the 7115 // vectorized loop because we have proven that, under a proper runtime 7116 // test guarding the vectorized loop, the value of the phi, and the casted 7117 // value of the phi, are the same. The last instruction in this casting chain 7118 // will get its scalar/vector/widened def from the scalar/vector/widened def 7119 // of the respective phi node. Any other casts in the induction def-use chain 7120 // have no other uses outside the phi update chain, and will be ignored. 7121 InductionDescriptor &IndDes = Induction.second; 7122 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7123 DeadInstructions.insert(Casts.begin(), Casts.end()); 7124 } 7125 } 7126 7127 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7128 7129 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7130 7131 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7132 Instruction::BinaryOps BinOp) { 7133 // When unrolling and the VF is 1, we only need to add a simple scalar. 7134 Type *Ty = Val->getType(); 7135 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7136 7137 if (Ty->isFloatingPointTy()) { 7138 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7139 7140 // Floating point operations had to be 'fast' to enable the unrolling. 7141 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7142 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7143 } 7144 Constant *C = ConstantInt::get(Ty, StartIdx); 7145 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7146 } 7147 7148 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7149 SmallVector<Metadata *, 4> MDs; 7150 // Reserve first location for self reference to the LoopID metadata node. 7151 MDs.push_back(nullptr); 7152 bool IsUnrollMetadata = false; 7153 MDNode *LoopID = L->getLoopID(); 7154 if (LoopID) { 7155 // First find existing loop unrolling disable metadata. 7156 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7157 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7158 if (MD) { 7159 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7160 IsUnrollMetadata = 7161 S && S->getString().startswith("llvm.loop.unroll.disable"); 7162 } 7163 MDs.push_back(LoopID->getOperand(i)); 7164 } 7165 } 7166 7167 if (!IsUnrollMetadata) { 7168 // Add runtime unroll disable metadata. 7169 LLVMContext &Context = L->getHeader()->getContext(); 7170 SmallVector<Metadata *, 1> DisableOperands; 7171 DisableOperands.push_back( 7172 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7173 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7174 MDs.push_back(DisableNode); 7175 MDNode *NewLoopID = MDNode::get(Context, MDs); 7176 // Set operand 0 to refer to the loop id itself. 7177 NewLoopID->replaceOperandWith(0, NewLoopID); 7178 L->setLoopID(NewLoopID); 7179 } 7180 } 7181 7182 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7183 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7184 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 7185 bool PredicateAtRangeStart = Predicate(ElementCount::getFixed(Range.Start)); 7186 7187 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 7188 if (Predicate(ElementCount::getFixed(TmpVF)) != PredicateAtRangeStart) { 7189 Range.End = TmpVF; 7190 break; 7191 } 7192 7193 return PredicateAtRangeStart; 7194 } 7195 7196 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7197 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7198 /// of VF's starting at a given VF and extending it as much as possible. Each 7199 /// vectorization decision can potentially shorten this sub-range during 7200 /// buildVPlan(). 7201 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 7202 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7203 VFRange SubRange = {VF, MaxVF + 1}; 7204 VPlans.push_back(buildVPlan(SubRange)); 7205 VF = SubRange.End; 7206 } 7207 } 7208 7209 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 7210 VPlanPtr &Plan) { 7211 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7212 7213 // Look for cached value. 7214 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7215 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7216 if (ECEntryIt != EdgeMaskCache.end()) 7217 return ECEntryIt->second; 7218 7219 VPValue *SrcMask = createBlockInMask(Src, Plan); 7220 7221 // The terminator has to be a branch inst! 7222 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7223 assert(BI && "Unexpected terminator found"); 7224 7225 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 7226 return EdgeMaskCache[Edge] = SrcMask; 7227 7228 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 7229 assert(EdgeMask && "No Edge Mask found for condition"); 7230 7231 if (BI->getSuccessor(0) != Dst) 7232 EdgeMask = Builder.createNot(EdgeMask); 7233 7234 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 7235 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 7236 7237 return EdgeMaskCache[Edge] = EdgeMask; 7238 } 7239 7240 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 7241 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 7242 7243 // Look for cached value. 7244 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 7245 if (BCEntryIt != BlockMaskCache.end()) 7246 return BCEntryIt->second; 7247 7248 // All-one mask is modelled as no-mask following the convention for masked 7249 // load/store/gather/scatter. Initialize BlockMask to no-mask. 7250 VPValue *BlockMask = nullptr; 7251 7252 if (OrigLoop->getHeader() == BB) { 7253 if (!CM.blockNeedsPredication(BB)) 7254 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 7255 7256 // Create the block in mask as the first non-phi instruction in the block. 7257 VPBuilder::InsertPointGuard Guard(Builder); 7258 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 7259 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 7260 7261 // Introduce the early-exit compare IV <= BTC to form header block mask. 7262 // This is used instead of IV < TC because TC may wrap, unlike BTC. 7263 // Start by constructing the desired canonical IV. 7264 VPValue *IV = nullptr; 7265 if (Legal->getPrimaryInduction()) 7266 IV = Plan->getVPValue(Legal->getPrimaryInduction()); 7267 else { 7268 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 7269 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 7270 IV = IVRecipe->getVPValue(); 7271 } 7272 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 7273 bool TailFolded = !CM.isScalarEpilogueAllowed(); 7274 7275 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 7276 // While ActiveLaneMask is a binary op that consumes the loop tripcount 7277 // as a second argument, we only pass the IV here and extract the 7278 // tripcount from the transform state where codegen of the VP instructions 7279 // happen. 7280 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 7281 } else { 7282 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 7283 } 7284 return BlockMaskCache[BB] = BlockMask; 7285 } 7286 7287 // This is the block mask. We OR all incoming edges. 7288 for (auto *Predecessor : predecessors(BB)) { 7289 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 7290 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 7291 return BlockMaskCache[BB] = EdgeMask; 7292 7293 if (!BlockMask) { // BlockMask has its initialized nullptr value. 7294 BlockMask = EdgeMask; 7295 continue; 7296 } 7297 7298 BlockMask = Builder.createOr(BlockMask, EdgeMask); 7299 } 7300 7301 return BlockMaskCache[BB] = BlockMask; 7302 } 7303 7304 VPWidenMemoryInstructionRecipe * 7305 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 7306 VPlanPtr &Plan) { 7307 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7308 "Must be called with either a load or store"); 7309 7310 auto willWiden = [&](ElementCount VF) -> bool { 7311 assert(!VF.isScalable() && "unexpected scalable ElementCount"); 7312 if (VF.isScalar()) 7313 return false; 7314 LoopVectorizationCostModel::InstWidening Decision = 7315 CM.getWideningDecision(I, VF); 7316 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 7317 "CM decision should be taken at this point."); 7318 if (Decision == LoopVectorizationCostModel::CM_Interleave) 7319 return true; 7320 if (CM.isScalarAfterVectorization(I, VF) || 7321 CM.isProfitableToScalarize(I, VF)) 7322 return false; 7323 return Decision != LoopVectorizationCostModel::CM_Scalarize; 7324 }; 7325 7326 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7327 return nullptr; 7328 7329 VPValue *Mask = nullptr; 7330 if (Legal->isMaskRequired(I)) 7331 Mask = createBlockInMask(I->getParent(), Plan); 7332 7333 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 7334 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 7335 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 7336 7337 StoreInst *Store = cast<StoreInst>(I); 7338 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 7339 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 7340 } 7341 7342 VPWidenIntOrFpInductionRecipe * 7343 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const { 7344 // Check if this is an integer or fp induction. If so, build the recipe that 7345 // produces its scalar and vector values. 7346 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 7347 if (II.getKind() == InductionDescriptor::IK_IntInduction || 7348 II.getKind() == InductionDescriptor::IK_FpInduction) 7349 return new VPWidenIntOrFpInductionRecipe(Phi); 7350 7351 return nullptr; 7352 } 7353 7354 VPWidenIntOrFpInductionRecipe * 7355 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, 7356 VFRange &Range) const { 7357 // Optimize the special case where the source is a constant integer 7358 // induction variable. Notice that we can only optimize the 'trunc' case 7359 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 7360 // (c) other casts depend on pointer size. 7361 7362 // Determine whether \p K is a truncation based on an induction variable that 7363 // can be optimized. 7364 auto isOptimizableIVTruncate = 7365 [&](Instruction *K) -> std::function<bool(ElementCount)> { 7366 return [=](ElementCount VF) -> bool { 7367 return CM.isOptimizableIVTruncate(K, VF); 7368 }; 7369 }; 7370 7371 if (LoopVectorizationPlanner::getDecisionAndClampRange( 7372 isOptimizableIVTruncate(I), Range)) 7373 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 7374 I); 7375 return nullptr; 7376 } 7377 7378 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 7379 // We know that all PHIs in non-header blocks are converted into selects, so 7380 // we don't have to worry about the insertion order and we can just use the 7381 // builder. At this point we generate the predication tree. There may be 7382 // duplications since this is a simple recursive scan, but future 7383 // optimizations will clean it up. 7384 7385 SmallVector<VPValue *, 2> Operands; 7386 unsigned NumIncoming = Phi->getNumIncomingValues(); 7387 for (unsigned In = 0; In < NumIncoming; In++) { 7388 VPValue *EdgeMask = 7389 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 7390 assert((EdgeMask || NumIncoming == 1) && 7391 "Multiple predecessors with one having a full mask"); 7392 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 7393 if (EdgeMask) 7394 Operands.push_back(EdgeMask); 7395 } 7396 return new VPBlendRecipe(Phi, Operands); 7397 } 7398 7399 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 7400 VPlan &Plan) const { 7401 7402 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7403 [this, CI](ElementCount VF) { 7404 return CM.isScalarWithPredication(CI, VF); 7405 }, 7406 Range); 7407 7408 if (IsPredicated) 7409 return nullptr; 7410 7411 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7412 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 7413 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 7414 return nullptr; 7415 7416 auto willWiden = [&](ElementCount VF) -> bool { 7417 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7418 // The following case may be scalarized depending on the VF. 7419 // The flag shows whether we use Intrinsic or a usual Call for vectorized 7420 // version of the instruction. 7421 // Is it beneficial to perform intrinsic call compared to lib call? 7422 bool NeedToScalarize = false; 7423 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 7424 bool UseVectorIntrinsic = 7425 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 7426 return UseVectorIntrinsic || !NeedToScalarize; 7427 }; 7428 7429 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7430 return nullptr; 7431 7432 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 7433 } 7434 7435 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 7436 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 7437 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 7438 // Instruction should be widened, unless it is scalar after vectorization, 7439 // scalarization is profitable or it is predicated. 7440 auto WillScalarize = [this, I](ElementCount VF) -> bool { 7441 return CM.isScalarAfterVectorization(I, VF) || 7442 CM.isProfitableToScalarize(I, VF) || 7443 CM.isScalarWithPredication(I, VF); 7444 }; 7445 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 7446 Range); 7447 } 7448 7449 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 7450 auto IsVectorizableOpcode = [](unsigned Opcode) { 7451 switch (Opcode) { 7452 case Instruction::Add: 7453 case Instruction::And: 7454 case Instruction::AShr: 7455 case Instruction::BitCast: 7456 case Instruction::FAdd: 7457 case Instruction::FCmp: 7458 case Instruction::FDiv: 7459 case Instruction::FMul: 7460 case Instruction::FNeg: 7461 case Instruction::FPExt: 7462 case Instruction::FPToSI: 7463 case Instruction::FPToUI: 7464 case Instruction::FPTrunc: 7465 case Instruction::FRem: 7466 case Instruction::FSub: 7467 case Instruction::ICmp: 7468 case Instruction::IntToPtr: 7469 case Instruction::LShr: 7470 case Instruction::Mul: 7471 case Instruction::Or: 7472 case Instruction::PtrToInt: 7473 case Instruction::SDiv: 7474 case Instruction::Select: 7475 case Instruction::SExt: 7476 case Instruction::Shl: 7477 case Instruction::SIToFP: 7478 case Instruction::SRem: 7479 case Instruction::Sub: 7480 case Instruction::Trunc: 7481 case Instruction::UDiv: 7482 case Instruction::UIToFP: 7483 case Instruction::URem: 7484 case Instruction::Xor: 7485 case Instruction::ZExt: 7486 return true; 7487 } 7488 return false; 7489 }; 7490 7491 if (!IsVectorizableOpcode(I->getOpcode())) 7492 return nullptr; 7493 7494 // Success: widen this instruction. 7495 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 7496 } 7497 7498 VPBasicBlock *VPRecipeBuilder::handleReplication( 7499 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7500 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7501 VPlanPtr &Plan) { 7502 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 7503 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 7504 Range); 7505 7506 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7507 [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); }, 7508 Range); 7509 7510 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 7511 IsUniform, IsPredicated); 7512 setRecipe(I, Recipe); 7513 7514 // Find if I uses a predicated instruction. If so, it will use its scalar 7515 // value. Avoid hoisting the insert-element which packs the scalar value into 7516 // a vector value, as that happens iff all users use the vector value. 7517 for (auto &Op : I->operands()) 7518 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7519 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7520 PredInst2Recipe[PredInst]->setAlsoPack(false); 7521 7522 // Finalize the recipe for Instr, first if it is not predicated. 7523 if (!IsPredicated) { 7524 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7525 VPBB->appendRecipe(Recipe); 7526 return VPBB; 7527 } 7528 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7529 assert(VPBB->getSuccessors().empty() && 7530 "VPBB has successors when handling predicated replication."); 7531 // Record predicated instructions for above packing optimizations. 7532 PredInst2Recipe[I] = Recipe; 7533 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7534 VPBlockUtils::insertBlockAfter(Region, VPBB); 7535 auto *RegSucc = new VPBasicBlock(); 7536 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7537 return RegSucc; 7538 } 7539 7540 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7541 VPRecipeBase *PredRecipe, 7542 VPlanPtr &Plan) { 7543 // Instructions marked for predication are replicated and placed under an 7544 // if-then construct to prevent side-effects. 7545 7546 // Generate recipes to compute the block mask for this region. 7547 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7548 7549 // Build the triangular if-then region. 7550 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7551 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7552 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7553 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7554 auto *PHIRecipe = 7555 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7556 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7557 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7558 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7559 7560 // Note: first set Entry as region entry and then connect successors starting 7561 // from it in order, to propagate the "parent" of each VPBasicBlock. 7562 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7563 VPBlockUtils::connectBlocks(Pred, Exit); 7564 7565 return Region; 7566 } 7567 7568 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 7569 VFRange &Range, 7570 VPlanPtr &Plan) { 7571 // First, check for specific widening recipes that deal with calls, memory 7572 // operations, inductions and Phi nodes. 7573 if (auto *CI = dyn_cast<CallInst>(Instr)) 7574 return tryToWidenCall(CI, Range, *Plan); 7575 7576 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 7577 return tryToWidenMemory(Instr, Range, Plan); 7578 7579 VPRecipeBase *Recipe; 7580 if (auto Phi = dyn_cast<PHINode>(Instr)) { 7581 if (Phi->getParent() != OrigLoop->getHeader()) 7582 return tryToBlend(Phi, Plan); 7583 if ((Recipe = tryToOptimizeInductionPHI(Phi))) 7584 return Recipe; 7585 return new VPWidenPHIRecipe(Phi); 7586 } 7587 7588 if (isa<TruncInst>(Instr) && 7589 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range))) 7590 return Recipe; 7591 7592 if (!shouldWiden(Instr, Range)) 7593 return nullptr; 7594 7595 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 7596 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 7597 OrigLoop); 7598 7599 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 7600 bool InvariantCond = 7601 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 7602 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 7603 InvariantCond); 7604 } 7605 7606 return tryToWiden(Instr, *Plan); 7607 } 7608 7609 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 7610 unsigned MaxVF) { 7611 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7612 7613 // Collect conditions feeding internal conditional branches; they need to be 7614 // represented in VPlan for it to model masking. 7615 SmallPtrSet<Value *, 1> NeedDef; 7616 7617 auto *Latch = OrigLoop->getLoopLatch(); 7618 for (BasicBlock *BB : OrigLoop->blocks()) { 7619 if (BB == Latch) 7620 continue; 7621 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7622 if (Branch && Branch->isConditional()) 7623 NeedDef.insert(Branch->getCondition()); 7624 } 7625 7626 // If the tail is to be folded by masking, the primary induction variable, if 7627 // exists needs to be represented in VPlan for it to model early-exit masking. 7628 // Also, both the Phi and the live-out instruction of each reduction are 7629 // required in order to introduce a select between them in VPlan. 7630 if (CM.foldTailByMasking()) { 7631 if (Legal->getPrimaryInduction()) 7632 NeedDef.insert(Legal->getPrimaryInduction()); 7633 for (auto &Reduction : Legal->getReductionVars()) { 7634 NeedDef.insert(Reduction.first); 7635 NeedDef.insert(Reduction.second.getLoopExitInstr()); 7636 } 7637 } 7638 7639 // Collect instructions from the original loop that will become trivially dead 7640 // in the vectorized loop. We don't need to vectorize these instructions. For 7641 // example, original induction update instructions can become dead because we 7642 // separately emit induction "steps" when generating code for the new loop. 7643 // Similarly, we create a new latch condition when setting up the structure 7644 // of the new loop, so the old one can become dead. 7645 SmallPtrSet<Instruction *, 4> DeadInstructions; 7646 collectTriviallyDeadInstructions(DeadInstructions); 7647 7648 // Add assume instructions we need to drop to DeadInstructions, to prevent 7649 // them from being added to the VPlan. 7650 // TODO: We only need to drop assumes in blocks that get flattend. If the 7651 // control flow is preserved, we should keep them. 7652 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 7653 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 7654 7655 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7656 // Dead instructions do not need sinking. Remove them from SinkAfter. 7657 for (Instruction *I : DeadInstructions) 7658 SinkAfter.erase(I); 7659 7660 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7661 VFRange SubRange = {VF, MaxVF + 1}; 7662 VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef, 7663 DeadInstructions, SinkAfter)); 7664 VF = SubRange.End; 7665 } 7666 } 7667 7668 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7669 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7670 SmallPtrSetImpl<Instruction *> &DeadInstructions, 7671 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 7672 7673 // Hold a mapping from predicated instructions to their recipes, in order to 7674 // fix their AlsoPack behavior if a user is determined to replicate and use a 7675 // scalar instead of vector value. 7676 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7677 7678 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7679 7680 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 7681 7682 // --------------------------------------------------------------------------- 7683 // Pre-construction: record ingredients whose recipes we'll need to further 7684 // process after constructing the initial VPlan. 7685 // --------------------------------------------------------------------------- 7686 7687 // Mark instructions we'll need to sink later and their targets as 7688 // ingredients whose recipe we'll need to record. 7689 for (auto &Entry : SinkAfter) { 7690 RecipeBuilder.recordRecipeOf(Entry.first); 7691 RecipeBuilder.recordRecipeOf(Entry.second); 7692 } 7693 for (auto &Reduction : CM.getInLoopReductionChains()) { 7694 PHINode *Phi = Reduction.first; 7695 RecurrenceDescriptor::RecurrenceKind Kind = 7696 Legal->getReductionVars()[Phi].getRecurrenceKind(); 7697 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 7698 7699 RecipeBuilder.recordRecipeOf(Phi); 7700 for (auto &R : ReductionOperations) { 7701 RecipeBuilder.recordRecipeOf(R); 7702 // For min/max reducitons, where we have a pair of icmp/select, we also 7703 // need to record the ICmp recipe, so it can be removed later. 7704 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7705 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7706 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 7707 } 7708 } 7709 } 7710 7711 // For each interleave group which is relevant for this (possibly trimmed) 7712 // Range, add it to the set of groups to be later applied to the VPlan and add 7713 // placeholders for its members' Recipes which we'll be replacing with a 7714 // single VPInterleaveRecipe. 7715 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7716 auto applyIG = [IG, this](ElementCount VF) -> bool { 7717 return (VF.isVector() && // Query is illegal for VF == 1 7718 CM.getWideningDecision(IG->getInsertPos(), VF) == 7719 LoopVectorizationCostModel::CM_Interleave); 7720 }; 7721 if (!getDecisionAndClampRange(applyIG, Range)) 7722 continue; 7723 InterleaveGroups.insert(IG); 7724 for (unsigned i = 0; i < IG->getFactor(); i++) 7725 if (Instruction *Member = IG->getMember(i)) 7726 RecipeBuilder.recordRecipeOf(Member); 7727 }; 7728 7729 // --------------------------------------------------------------------------- 7730 // Build initial VPlan: Scan the body of the loop in a topological order to 7731 // visit each basic block after having visited its predecessor basic blocks. 7732 // --------------------------------------------------------------------------- 7733 7734 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7735 auto Plan = std::make_unique<VPlan>(); 7736 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7737 Plan->setEntry(VPBB); 7738 7739 // Represent values that will have defs inside VPlan. 7740 for (Value *V : NeedDef) 7741 Plan->addVPValue(V); 7742 7743 // Scan the body of the loop in a topological order to visit each basic block 7744 // after having visited its predecessor basic blocks. 7745 LoopBlocksDFS DFS(OrigLoop); 7746 DFS.perform(LI); 7747 7748 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7749 // Relevant instructions from basic block BB will be grouped into VPRecipe 7750 // ingredients and fill a new VPBasicBlock. 7751 unsigned VPBBsForBB = 0; 7752 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7753 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7754 VPBB = FirstVPBBForBB; 7755 Builder.setInsertPoint(VPBB); 7756 7757 // Introduce each ingredient into VPlan. 7758 // TODO: Model and preserve debug instrinsics in VPlan. 7759 for (Instruction &I : BB->instructionsWithoutDebug()) { 7760 Instruction *Instr = &I; 7761 7762 // First filter out irrelevant instructions, to ensure no recipes are 7763 // built for them. 7764 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 7765 continue; 7766 7767 if (auto Recipe = 7768 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 7769 // Check if the recipe can be converted to a VPValue. We need the extra 7770 // down-casting step until VPRecipeBase inherits from VPValue. 7771 VPValue *MaybeVPValue = Recipe->toVPValue(); 7772 if (!Instr->getType()->isVoidTy() && MaybeVPValue) { 7773 if (NeedDef.contains(Instr)) 7774 Plan->addOrReplaceVPValue(Instr, MaybeVPValue); 7775 else 7776 Plan->addVPValue(Instr, MaybeVPValue); 7777 } 7778 7779 RecipeBuilder.setRecipe(Instr, Recipe); 7780 VPBB->appendRecipe(Recipe); 7781 continue; 7782 } 7783 7784 // Otherwise, if all widening options failed, Instruction is to be 7785 // replicated. This may create a successor for VPBB. 7786 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7787 Instr, Range, VPBB, PredInst2Recipe, Plan); 7788 if (NextVPBB != VPBB) { 7789 VPBB = NextVPBB; 7790 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7791 : ""); 7792 } 7793 } 7794 } 7795 7796 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7797 // may also be empty, such as the last one VPBB, reflecting original 7798 // basic-blocks with no recipes. 7799 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7800 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7801 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7802 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7803 delete PreEntry; 7804 7805 // --------------------------------------------------------------------------- 7806 // Transform initial VPlan: Apply previously taken decisions, in order, to 7807 // bring the VPlan to its final state. 7808 // --------------------------------------------------------------------------- 7809 7810 // Apply Sink-After legal constraints. 7811 for (auto &Entry : SinkAfter) { 7812 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7813 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7814 Sink->moveAfter(Target); 7815 } 7816 7817 // Interleave memory: for each Interleave Group we marked earlier as relevant 7818 // for this VPlan, replace the Recipes widening its memory instructions with a 7819 // single VPInterleaveRecipe at its insertion point. 7820 for (auto IG : InterleaveGroups) { 7821 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7822 RecipeBuilder.getRecipe(IG->getInsertPos())); 7823 (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask())) 7824 ->insertBefore(Recipe); 7825 7826 for (unsigned i = 0; i < IG->getFactor(); ++i) 7827 if (Instruction *Member = IG->getMember(i)) { 7828 if (!Member->getType()->isVoidTy()) { 7829 VPValue *OriginalV = Plan->getVPValue(Member); 7830 Plan->removeVPValueFor(Member); 7831 OriginalV->replaceAllUsesWith(Plan->getOrAddVPValue(Member)); 7832 } 7833 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7834 } 7835 } 7836 7837 // Adjust the recipes for any inloop reductions. 7838 if (Range.Start > 1) 7839 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 7840 7841 // Finally, if tail is folded by masking, introduce selects between the phi 7842 // and the live-out instruction of each reduction, at the end of the latch. 7843 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 7844 Builder.setInsertPoint(VPBB); 7845 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7846 for (auto &Reduction : Legal->getReductionVars()) { 7847 if (CM.isInLoopReduction(Reduction.first)) 7848 continue; 7849 VPValue *Phi = Plan->getVPValue(Reduction.first); 7850 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr()); 7851 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7852 } 7853 } 7854 7855 std::string PlanName; 7856 raw_string_ostream RSO(PlanName); 7857 ElementCount VF = ElementCount::getFixed(Range.Start); 7858 Plan->addVF(VF); 7859 RSO << "Initial VPlan for VF={" << VF; 7860 for (VF *= 2; VF.getKnownMinValue() < Range.End; VF *= 2) { 7861 Plan->addVF(VF); 7862 RSO << "," << VF; 7863 } 7864 RSO << "},UF>=1"; 7865 RSO.flush(); 7866 Plan->setName(PlanName); 7867 7868 return Plan; 7869 } 7870 7871 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7872 // Outer loop handling: They may require CFG and instruction level 7873 // transformations before even evaluating whether vectorization is profitable. 7874 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7875 // the vectorization pipeline. 7876 assert(!OrigLoop->isInnermost()); 7877 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7878 7879 // Create new empty VPlan 7880 auto Plan = std::make_unique<VPlan>(); 7881 7882 // Build hierarchical CFG 7883 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7884 HCFGBuilder.buildHierarchicalCFG(); 7885 7886 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7887 Plan->addVF(ElementCount::getFixed(VF)); 7888 7889 if (EnableVPlanPredication) { 7890 VPlanPredicator VPP(*Plan); 7891 VPP.predicate(); 7892 7893 // Avoid running transformation to recipes until masked code generation in 7894 // VPlan-native path is in place. 7895 return Plan; 7896 } 7897 7898 SmallPtrSet<Instruction *, 1> DeadInstructions; 7899 VPlanTransforms::VPInstructionsToVPRecipes( 7900 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7901 return Plan; 7902 } 7903 7904 // Adjust the recipes for any inloop reductions. The chain of instructions 7905 // leading from the loop exit instr to the phi need to be converted to 7906 // reductions, with one operand being vector and the other being the scalar 7907 // reduction chain. 7908 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 7909 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 7910 for (auto &Reduction : CM.getInLoopReductionChains()) { 7911 PHINode *Phi = Reduction.first; 7912 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 7913 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 7914 7915 // ReductionOperations are orders top-down from the phi's use to the 7916 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 7917 // which of the two operands will remain scalar and which will be reduced. 7918 // For minmax the chain will be the select instructions. 7919 Instruction *Chain = Phi; 7920 for (Instruction *R : ReductionOperations) { 7921 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 7922 RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc.getRecurrenceKind(); 7923 7924 VPValue *ChainOp = Plan->getVPValue(Chain); 7925 unsigned FirstOpId; 7926 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7927 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7928 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 7929 "Expected to replace a VPWidenSelectSC"); 7930 FirstOpId = 1; 7931 } else { 7932 assert(isa<VPWidenRecipe>(WidenRecipe) && 7933 "Expected to replace a VPWidenSC"); 7934 FirstOpId = 0; 7935 } 7936 unsigned VecOpId = 7937 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 7938 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 7939 7940 auto *CondOp = CM.foldTailByMasking() 7941 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 7942 : nullptr; 7943 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 7944 &RdxDesc, R, ChainOp, VecOp, CondOp, Legal->hasFunNoNaNAttr(), TTI); 7945 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 7946 WidenRecipe->eraseFromParent(); 7947 7948 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7949 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7950 VPRecipeBase *CompareRecipe = 7951 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 7952 assert(isa<VPWidenRecipe>(CompareRecipe) && 7953 "Expected to replace a VPWidenSC"); 7954 CompareRecipe->eraseFromParent(); 7955 } 7956 Chain = R; 7957 } 7958 } 7959 } 7960 7961 Value* LoopVectorizationPlanner::VPCallbackILV:: 7962 getOrCreateVectorValues(Value *V, unsigned Part) { 7963 return ILV.getOrCreateVectorValue(V, Part); 7964 } 7965 7966 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 7967 Value *V, const VPIteration &Instance) { 7968 return ILV.getOrCreateScalarValue(V, Instance); 7969 } 7970 7971 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 7972 VPSlotTracker &SlotTracker) const { 7973 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7974 IG->getInsertPos()->printAsOperand(O, false); 7975 O << ", "; 7976 getAddr()->printAsOperand(O, SlotTracker); 7977 VPValue *Mask = getMask(); 7978 if (Mask) { 7979 O << ", "; 7980 Mask->printAsOperand(O, SlotTracker); 7981 } 7982 for (unsigned i = 0; i < IG->getFactor(); ++i) 7983 if (Instruction *I = IG->getMember(i)) 7984 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 7985 } 7986 7987 void VPWidenCallRecipe::execute(VPTransformState &State) { 7988 State.ILV->widenCallInstruction(Ingredient, *this, State); 7989 } 7990 7991 void VPWidenSelectRecipe::execute(VPTransformState &State) { 7992 State.ILV->widenSelectInstruction(Ingredient, *this, InvariantCond, State); 7993 } 7994 7995 void VPWidenRecipe::execute(VPTransformState &State) { 7996 State.ILV->widenInstruction(Ingredient, *this, State); 7997 } 7998 7999 void VPWidenGEPRecipe::execute(VPTransformState &State) { 8000 State.ILV->widenGEP(GEP, *this, State.UF, State.VF, IsPtrLoopInvariant, 8001 IsIndexLoopInvariant, State); 8002 } 8003 8004 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 8005 assert(!State.Instance && "Int or FP induction being replicated."); 8006 State.ILV->widenIntOrFpInduction(IV, Trunc); 8007 } 8008 8009 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8010 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 8011 } 8012 8013 void VPBlendRecipe::execute(VPTransformState &State) { 8014 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8015 // We know that all PHIs in non-header blocks are converted into 8016 // selects, so we don't have to worry about the insertion order and we 8017 // can just use the builder. 8018 // At this point we generate the predication tree. There may be 8019 // duplications since this is a simple recursive scan, but future 8020 // optimizations will clean it up. 8021 8022 unsigned NumIncoming = getNumIncomingValues(); 8023 8024 // Generate a sequence of selects of the form: 8025 // SELECT(Mask3, In3, 8026 // SELECT(Mask2, In2, 8027 // SELECT(Mask1, In1, 8028 // In0))) 8029 // Note that Mask0 is never used: lanes for which no path reaches this phi and 8030 // are essentially undef are taken from In0. 8031 InnerLoopVectorizer::VectorParts Entry(State.UF); 8032 for (unsigned In = 0; In < NumIncoming; ++In) { 8033 for (unsigned Part = 0; Part < State.UF; ++Part) { 8034 // We might have single edge PHIs (blocks) - use an identity 8035 // 'select' for the first PHI operand. 8036 Value *In0 = State.get(getIncomingValue(In), Part); 8037 if (In == 0) 8038 Entry[Part] = In0; // Initialize with the first incoming value. 8039 else { 8040 // Select between the current value and the previous incoming edge 8041 // based on the incoming mask. 8042 Value *Cond = State.get(getMask(In), Part); 8043 Entry[Part] = 8044 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8045 } 8046 } 8047 } 8048 for (unsigned Part = 0; Part < State.UF; ++Part) 8049 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 8050 } 8051 8052 void VPInterleaveRecipe::execute(VPTransformState &State) { 8053 assert(!State.Instance && "Interleave group being replicated."); 8054 State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask()); 8055 } 8056 8057 void VPReductionRecipe::execute(VPTransformState &State) { 8058 assert(!State.Instance && "Reduction being replicated."); 8059 for (unsigned Part = 0; Part < State.UF; ++Part) { 8060 RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc->getRecurrenceKind(); 8061 Value *NewVecOp = State.get(VecOp, Part); 8062 if (CondOp) { 8063 Value *NewCond = State.get(CondOp, Part); 8064 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 8065 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 8066 Kind, RdxDesc->getMinMaxRecurrenceKind(), VecTy->getElementType()); 8067 Constant *IdenVec = 8068 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 8069 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 8070 NewVecOp = Select; 8071 } 8072 Value *NewRed = 8073 createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp, NoNaN); 8074 Value *PrevInChain = State.get(ChainOp, Part); 8075 Value *NextInChain; 8076 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 8077 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 8078 NextInChain = 8079 createMinMaxOp(State.Builder, RdxDesc->getMinMaxRecurrenceKind(), 8080 NewRed, PrevInChain); 8081 } else { 8082 NextInChain = State.Builder.CreateBinOp( 8083 (Instruction::BinaryOps)I->getOpcode(), NewRed, PrevInChain); 8084 } 8085 State.ValueMap.setVectorValue(I, Part, NextInChain); 8086 } 8087 } 8088 8089 void VPReplicateRecipe::execute(VPTransformState &State) { 8090 if (State.Instance) { // Generate a single instance. 8091 State.ILV->scalarizeInstruction(Ingredient, *this, *State.Instance, 8092 IsPredicated, State); 8093 // Insert scalar instance packing it into a vector. 8094 if (AlsoPack && State.VF.isVector()) { 8095 // If we're constructing lane 0, initialize to start from undef. 8096 if (State.Instance->Lane == 0) { 8097 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 8098 Value *Undef = 8099 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 8100 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 8101 } 8102 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 8103 } 8104 return; 8105 } 8106 8107 // Generate scalar instances for all VF lanes of all UF parts, unless the 8108 // instruction is uniform inwhich case generate only the first lane for each 8109 // of the UF parts. 8110 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 8111 for (unsigned Part = 0; Part < State.UF; ++Part) 8112 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8113 State.ILV->scalarizeInstruction(Ingredient, *this, {Part, Lane}, 8114 IsPredicated, State); 8115 } 8116 8117 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8118 assert(State.Instance && "Branch on Mask works only on single instance."); 8119 8120 unsigned Part = State.Instance->Part; 8121 unsigned Lane = State.Instance->Lane; 8122 8123 Value *ConditionBit = nullptr; 8124 VPValue *BlockInMask = getMask(); 8125 if (BlockInMask) { 8126 ConditionBit = State.get(BlockInMask, Part); 8127 if (ConditionBit->getType()->isVectorTy()) 8128 ConditionBit = State.Builder.CreateExtractElement( 8129 ConditionBit, State.Builder.getInt32(Lane)); 8130 } else // Block in mask is all-one. 8131 ConditionBit = State.Builder.getTrue(); 8132 8133 // Replace the temporary unreachable terminator with a new conditional branch, 8134 // whose two destinations will be set later when they are created. 8135 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8136 assert(isa<UnreachableInst>(CurrentTerminator) && 8137 "Expected to replace unreachable terminator with conditional branch."); 8138 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8139 CondBr->setSuccessor(0, nullptr); 8140 ReplaceInstWithInst(CurrentTerminator, CondBr); 8141 } 8142 8143 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8144 assert(State.Instance && "Predicated instruction PHI works per instance."); 8145 Instruction *ScalarPredInst = cast<Instruction>( 8146 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 8147 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8148 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8149 assert(PredicatingBB && "Predicated block has no single predecessor."); 8150 8151 // By current pack/unpack logic we need to generate only a single phi node: if 8152 // a vector value for the predicated instruction exists at this point it means 8153 // the instruction has vector users only, and a phi for the vector value is 8154 // needed. In this case the recipe of the predicated instruction is marked to 8155 // also do that packing, thereby "hoisting" the insert-element sequence. 8156 // Otherwise, a phi node for the scalar value is needed. 8157 unsigned Part = State.Instance->Part; 8158 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8159 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8160 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8161 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8162 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8163 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8164 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8165 } else { 8166 Type *PredInstType = PredInst->getType(); 8167 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8168 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8169 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8170 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8171 } 8172 } 8173 8174 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 8175 Instruction *Instr = getUnderlyingInstr(); 8176 VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr; 8177 State.ILV->vectorizeMemoryInstruction(Instr, State, 8178 StoredValue ? nullptr : this, getAddr(), 8179 StoredValue, getMask()); 8180 } 8181 8182 // Determine how to lower the scalar epilogue, which depends on 1) optimising 8183 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 8184 // predication, and 4) a TTI hook that analyses whether the loop is suitable 8185 // for predication. 8186 static ScalarEpilogueLowering getScalarEpilogueLowering( 8187 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 8188 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 8189 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 8190 LoopVectorizationLegality &LVL) { 8191 // 1) OptSize takes precedence over all other options, i.e. if this is set, 8192 // don't look at hints or options, and don't request a scalar epilogue. 8193 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 8194 // LoopAccessInfo (due to code dependency and not being able to reliably get 8195 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 8196 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 8197 // versioning when the vectorization is forced, unlike hasOptSize. So revert 8198 // back to the old way and vectorize with versioning when forced. See D81345.) 8199 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 8200 PGSOQueryType::IRPass) && 8201 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 8202 return CM_ScalarEpilogueNotAllowedOptSize; 8203 8204 bool PredicateOptDisabled = PreferPredicateOverEpilogue.getNumOccurrences() && 8205 !PreferPredicateOverEpilogue; 8206 8207 // 2) Next, if disabling predication is requested on the command line, honour 8208 // this and request a scalar epilogue. 8209 if (PredicateOptDisabled) 8210 return CM_ScalarEpilogueAllowed; 8211 8212 // 3) and 4) look if enabling predication is requested on the command line, 8213 // with a loop hint, or if the TTI hook indicates this is profitable, request 8214 // predication. 8215 if (PreferPredicateOverEpilogue || 8216 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 8217 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 8218 LVL.getLAI()) && 8219 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 8220 return CM_ScalarEpilogueNotNeededUsePredicate; 8221 8222 return CM_ScalarEpilogueAllowed; 8223 } 8224 8225 void VPTransformState::set(VPValue *Def, Value *IRDef, Value *V, 8226 unsigned Part) { 8227 set(Def, V, Part); 8228 ILV->setVectorValue(IRDef, Part, V); 8229 } 8230 8231 // Process the loop in the VPlan-native vectorization path. This path builds 8232 // VPlan upfront in the vectorization pipeline, which allows to apply 8233 // VPlan-to-VPlan transformations from the very beginning without modifying the 8234 // input LLVM IR. 8235 static bool processLoopInVPlanNativePath( 8236 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 8237 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 8238 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 8239 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 8240 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 8241 8242 if (PSE.getBackedgeTakenCount() == PSE.getSE()->getCouldNotCompute()) { 8243 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 8244 return false; 8245 } 8246 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 8247 Function *F = L->getHeader()->getParent(); 8248 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 8249 8250 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 8251 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 8252 8253 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 8254 &Hints, IAI); 8255 // Use the planner for outer loop vectorization. 8256 // TODO: CM is not used at this point inside the planner. Turn CM into an 8257 // optional argument if we don't need it in the future. 8258 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 8259 8260 // Get user vectorization factor. 8261 const unsigned UserVF = Hints.getWidth(); 8262 8263 // Plan how to best vectorize, return the best VF and its cost. 8264 const VectorizationFactor VF = 8265 LVP.planInVPlanNativePath(ElementCount::getFixed(UserVF)); 8266 8267 // If we are stress testing VPlan builds, do not attempt to generate vector 8268 // code. Masked vector code generation support will follow soon. 8269 // Also, do not attempt to vectorize if no vector code will be produced. 8270 if (VPlanBuildStressTest || EnableVPlanPredication || 8271 VectorizationFactor::Disabled() == VF) 8272 return false; 8273 8274 LVP.setBestPlan(VF.Width, 1); 8275 8276 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 8277 &CM, BFI, PSI); 8278 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 8279 << L->getHeader()->getParent()->getName() << "\"\n"); 8280 LVP.executePlan(LB, DT); 8281 8282 // Mark the loop as already vectorized to avoid vectorizing again. 8283 Hints.setAlreadyVectorized(); 8284 8285 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8286 return true; 8287 } 8288 8289 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 8290 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 8291 !EnableLoopInterleaving), 8292 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 8293 !EnableLoopVectorization) {} 8294 8295 bool LoopVectorizePass::processLoop(Loop *L) { 8296 assert((EnableVPlanNativePath || L->isInnermost()) && 8297 "VPlan-native path is not enabled. Only process inner loops."); 8298 8299 #ifndef NDEBUG 8300 const std::string DebugLocStr = getDebugLocString(L); 8301 #endif /* NDEBUG */ 8302 8303 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8304 << L->getHeader()->getParent()->getName() << "\" from " 8305 << DebugLocStr << "\n"); 8306 8307 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 8308 8309 LLVM_DEBUG( 8310 dbgs() << "LV: Loop hints:" 8311 << " force=" 8312 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8313 ? "disabled" 8314 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8315 ? "enabled" 8316 : "?")) 8317 << " width=" << Hints.getWidth() 8318 << " unroll=" << Hints.getInterleave() << "\n"); 8319 8320 // Function containing loop 8321 Function *F = L->getHeader()->getParent(); 8322 8323 // Looking at the diagnostic output is the only way to determine if a loop 8324 // was vectorized (other than looking at the IR or machine code), so it 8325 // is important to generate an optimization remark for each loop. Most of 8326 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8327 // generated as OptimizationRemark and OptimizationRemarkMissed are 8328 // less verbose reporting vectorized loops and unvectorized loops that may 8329 // benefit from vectorization, respectively. 8330 8331 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 8332 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8333 return false; 8334 } 8335 8336 PredicatedScalarEvolution PSE(*SE, *L); 8337 8338 // Check if it is legal to vectorize the loop. 8339 LoopVectorizationRequirements Requirements(*ORE); 8340 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 8341 &Requirements, &Hints, DB, AC, BFI, PSI); 8342 if (!LVL.canVectorize(EnableVPlanNativePath)) { 8343 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8344 Hints.emitRemarkWithHints(); 8345 return false; 8346 } 8347 8348 // Check the function attributes and profiles to find out if this function 8349 // should be optimized for size. 8350 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 8351 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 8352 8353 // Entrance to the VPlan-native vectorization path. Outer loops are processed 8354 // here. They may require CFG and instruction level transformations before 8355 // even evaluating whether vectorization is profitable. Since we cannot modify 8356 // the incoming IR, we need to build VPlan upfront in the vectorization 8357 // pipeline. 8358 if (!L->isInnermost()) 8359 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 8360 ORE, BFI, PSI, Hints); 8361 8362 assert(L->isInnermost() && "Inner loop expected."); 8363 8364 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8365 // count by optimizing for size, to minimize overheads. 8366 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 8367 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 8368 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8369 << "This loop is worth vectorizing only if no scalar " 8370 << "iteration overheads are incurred."); 8371 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8372 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8373 else { 8374 LLVM_DEBUG(dbgs() << "\n"); 8375 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 8376 } 8377 } 8378 8379 // Check the function attributes to see if implicit floats are allowed. 8380 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8381 // an integer loop and the vector instructions selected are purely integer 8382 // vector instructions? 8383 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8384 reportVectorizationFailure( 8385 "Can't vectorize when the NoImplicitFloat attribute is used", 8386 "loop not vectorized due to NoImplicitFloat attribute", 8387 "NoImplicitFloat", ORE, L); 8388 Hints.emitRemarkWithHints(); 8389 return false; 8390 } 8391 8392 // Check if the target supports potentially unsafe FP vectorization. 8393 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8394 // for the target we're vectorizing for, to make sure none of the 8395 // additional fp-math flags can help. 8396 if (Hints.isPotentiallyUnsafe() && 8397 TTI->isFPVectorizationPotentiallyUnsafe()) { 8398 reportVectorizationFailure( 8399 "Potentially unsafe FP op prevents vectorization", 8400 "loop not vectorized due to unsafe FP support.", 8401 "UnsafeFP", ORE, L); 8402 Hints.emitRemarkWithHints(); 8403 return false; 8404 } 8405 8406 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 8407 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 8408 8409 // If an override option has been passed in for interleaved accesses, use it. 8410 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 8411 UseInterleaved = EnableInterleavedMemAccesses; 8412 8413 // Analyze interleaved memory accesses. 8414 if (UseInterleaved) { 8415 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 8416 } 8417 8418 // Use the cost model. 8419 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 8420 F, &Hints, IAI); 8421 CM.collectValuesToIgnore(); 8422 8423 // Use the planner for vectorization. 8424 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 8425 8426 // Get user vectorization factor and interleave count. 8427 unsigned UserVF = Hints.getWidth(); 8428 unsigned UserIC = Hints.getInterleave(); 8429 8430 // Plan how to best vectorize, return the best VF and its cost. 8431 Optional<VectorizationFactor> MaybeVF = 8432 LVP.plan(ElementCount::getFixed(UserVF), UserIC); 8433 8434 VectorizationFactor VF = VectorizationFactor::Disabled(); 8435 unsigned IC = 1; 8436 8437 if (MaybeVF) { 8438 VF = *MaybeVF; 8439 // Select the interleave count. 8440 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 8441 } 8442 8443 // Identify the diagnostic messages that should be produced. 8444 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8445 bool VectorizeLoop = true, InterleaveLoop = true; 8446 if (Requirements.doesNotMeet(F, L, Hints)) { 8447 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8448 "requirements.\n"); 8449 Hints.emitRemarkWithHints(); 8450 return false; 8451 } 8452 8453 if (VF.Width.isScalar()) { 8454 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8455 VecDiagMsg = std::make_pair( 8456 "VectorizationNotBeneficial", 8457 "the cost-model indicates that vectorization is not beneficial"); 8458 VectorizeLoop = false; 8459 } 8460 8461 if (!MaybeVF && UserIC > 1) { 8462 // Tell the user interleaving was avoided up-front, despite being explicitly 8463 // requested. 8464 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 8465 "interleaving should be avoided up front\n"); 8466 IntDiagMsg = std::make_pair( 8467 "InterleavingAvoided", 8468 "Ignoring UserIC, because interleaving was avoided up front"); 8469 InterleaveLoop = false; 8470 } else if (IC == 1 && UserIC <= 1) { 8471 // Tell the user interleaving is not beneficial. 8472 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8473 IntDiagMsg = std::make_pair( 8474 "InterleavingNotBeneficial", 8475 "the cost-model indicates that interleaving is not beneficial"); 8476 InterleaveLoop = false; 8477 if (UserIC == 1) { 8478 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8479 IntDiagMsg.second += 8480 " and is explicitly disabled or interleave count is set to 1"; 8481 } 8482 } else if (IC > 1 && UserIC == 1) { 8483 // Tell the user interleaving is beneficial, but it explicitly disabled. 8484 LLVM_DEBUG( 8485 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 8486 IntDiagMsg = std::make_pair( 8487 "InterleavingBeneficialButDisabled", 8488 "the cost-model indicates that interleaving is beneficial " 8489 "but is explicitly disabled or interleave count is set to 1"); 8490 InterleaveLoop = false; 8491 } 8492 8493 // Override IC if user provided an interleave count. 8494 IC = UserIC > 0 ? UserIC : IC; 8495 8496 // Emit diagnostic messages, if any. 8497 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8498 if (!VectorizeLoop && !InterleaveLoop) { 8499 // Do not vectorize or interleaving the loop. 8500 ORE->emit([&]() { 8501 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8502 L->getStartLoc(), L->getHeader()) 8503 << VecDiagMsg.second; 8504 }); 8505 ORE->emit([&]() { 8506 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8507 L->getStartLoc(), L->getHeader()) 8508 << IntDiagMsg.second; 8509 }); 8510 return false; 8511 } else if (!VectorizeLoop && InterleaveLoop) { 8512 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8513 ORE->emit([&]() { 8514 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8515 L->getStartLoc(), L->getHeader()) 8516 << VecDiagMsg.second; 8517 }); 8518 } else if (VectorizeLoop && !InterleaveLoop) { 8519 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 8520 << ") in " << DebugLocStr << '\n'); 8521 ORE->emit([&]() { 8522 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8523 L->getStartLoc(), L->getHeader()) 8524 << IntDiagMsg.second; 8525 }); 8526 } else if (VectorizeLoop && InterleaveLoop) { 8527 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 8528 << ") in " << DebugLocStr << '\n'); 8529 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8530 } 8531 8532 LVP.setBestPlan(VF.Width, IC); 8533 8534 using namespace ore; 8535 bool DisableRuntimeUnroll = false; 8536 MDNode *OrigLoopID = L->getLoopID(); 8537 8538 if (!VectorizeLoop) { 8539 assert(IC > 1 && "interleave count should not be 1 or 0"); 8540 // If we decided that it is not legal to vectorize the loop, then 8541 // interleave it. 8542 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, &CM, 8543 BFI, PSI); 8544 LVP.executePlan(Unroller, DT); 8545 8546 ORE->emit([&]() { 8547 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8548 L->getHeader()) 8549 << "interleaved loop (interleaved count: " 8550 << NV("InterleaveCount", IC) << ")"; 8551 }); 8552 } else { 8553 // If we decided that it is *legal* to vectorize the loop, then do it. 8554 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8555 &LVL, &CM, BFI, PSI); 8556 LVP.executePlan(LB, DT); 8557 ++LoopsVectorized; 8558 8559 // Add metadata to disable runtime unrolling a scalar loop when there are 8560 // no runtime checks about strides and memory. A scalar loop that is 8561 // rarely used is not worth unrolling. 8562 if (!LB.areSafetyChecksAdded()) 8563 DisableRuntimeUnroll = true; 8564 8565 // Report the vectorization decision. 8566 ORE->emit([&]() { 8567 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8568 L->getHeader()) 8569 << "vectorized loop (vectorization width: " 8570 << NV("VectorizationFactor", VF.Width) 8571 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8572 }); 8573 } 8574 8575 Optional<MDNode *> RemainderLoopID = 8576 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 8577 LLVMLoopVectorizeFollowupEpilogue}); 8578 if (RemainderLoopID.hasValue()) { 8579 L->setLoopID(RemainderLoopID.getValue()); 8580 } else { 8581 if (DisableRuntimeUnroll) 8582 AddRuntimeUnrollDisableMetaData(L); 8583 8584 // Mark the loop as already vectorized to avoid vectorizing again. 8585 Hints.setAlreadyVectorized(); 8586 } 8587 8588 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8589 return true; 8590 } 8591 8592 LoopVectorizeResult LoopVectorizePass::runImpl( 8593 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8594 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8595 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 8596 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8597 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 8598 SE = &SE_; 8599 LI = &LI_; 8600 TTI = &TTI_; 8601 DT = &DT_; 8602 BFI = &BFI_; 8603 TLI = TLI_; 8604 AA = &AA_; 8605 AC = &AC_; 8606 GetLAA = &GetLAA_; 8607 DB = &DB_; 8608 ORE = &ORE_; 8609 PSI = PSI_; 8610 8611 // Don't attempt if 8612 // 1. the target claims to have no vector registers, and 8613 // 2. interleaving won't help ILP. 8614 // 8615 // The second condition is necessary because, even if the target has no 8616 // vector registers, loop vectorization may still enable scalar 8617 // interleaving. 8618 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 8619 TTI->getMaxInterleaveFactor(1) < 2) 8620 return LoopVectorizeResult(false, false); 8621 8622 bool Changed = false, CFGChanged = false; 8623 8624 // The vectorizer requires loops to be in simplified form. 8625 // Since simplification may add new inner loops, it has to run before the 8626 // legality and profitability checks. This means running the loop vectorizer 8627 // will simplify all loops, regardless of whether anything end up being 8628 // vectorized. 8629 for (auto &L : *LI) 8630 Changed |= CFGChanged |= 8631 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 8632 8633 // Build up a worklist of inner-loops to vectorize. This is necessary as 8634 // the act of vectorizing or partially unrolling a loop creates new loops 8635 // and can invalidate iterators across the loops. 8636 SmallVector<Loop *, 8> Worklist; 8637 8638 for (Loop *L : *LI) 8639 collectSupportedLoops(*L, LI, ORE, Worklist); 8640 8641 LoopsAnalyzed += Worklist.size(); 8642 8643 // Now walk the identified inner loops. 8644 while (!Worklist.empty()) { 8645 Loop *L = Worklist.pop_back_val(); 8646 8647 // For the inner loops we actually process, form LCSSA to simplify the 8648 // transform. 8649 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8650 8651 Changed |= CFGChanged |= processLoop(L); 8652 } 8653 8654 // Process each loop nest in the function. 8655 return LoopVectorizeResult(Changed, CFGChanged); 8656 } 8657 8658 PreservedAnalyses LoopVectorizePass::run(Function &F, 8659 FunctionAnalysisManager &AM) { 8660 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8661 auto &LI = AM.getResult<LoopAnalysis>(F); 8662 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8663 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8664 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8665 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8666 auto &AA = AM.getResult<AAManager>(F); 8667 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8668 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8669 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8670 MemorySSA *MSSA = EnableMSSALoopDependency 8671 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 8672 : nullptr; 8673 8674 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8675 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8676 [&](Loop &L) -> const LoopAccessInfo & { 8677 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 8678 TLI, TTI, nullptr, MSSA}; 8679 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8680 }; 8681 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 8682 ProfileSummaryInfo *PSI = 8683 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 8684 LoopVectorizeResult Result = 8685 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 8686 if (!Result.MadeAnyChange) 8687 return PreservedAnalyses::all(); 8688 PreservedAnalyses PA; 8689 8690 // We currently do not preserve loopinfo/dominator analyses with outer loop 8691 // vectorization. Until this is addressed, mark these analyses as preserved 8692 // only for non-VPlan-native path. 8693 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 8694 if (!EnableVPlanNativePath) { 8695 PA.preserve<LoopAnalysis>(); 8696 PA.preserve<DominatorTreeAnalysis>(); 8697 } 8698 PA.preserve<BasicAA>(); 8699 PA.preserve<GlobalsAA>(); 8700 if (!Result.MadeCFGChange) 8701 PA.preserveSet<CFGAnalyses>(); 8702 return PA; 8703 } 8704