1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 static cl::opt<bool> ForceOrderedReductions( 335 "force-ordered-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns true if the given type is irregular. The 379 /// type is irregular if its allocated size doesn't equal the store size of an 380 /// element of the corresponding vector type. 381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 382 // Determine if an array of N elements of type Ty is "bitcast compatible" 383 // with a <N x Ty> vector. 384 // This is only true if there is no padding between the array elements. 385 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 386 } 387 388 /// A helper function that returns the reciprocal of the block probability of 389 /// predicated blocks. If we return X, we are assuming the predicated block 390 /// will execute once for every X iterations of the loop header. 391 /// 392 /// TODO: We should use actual block probability here, if available. Currently, 393 /// we always assume predicated blocks have a 50% chance of executing. 394 static unsigned getReciprocalPredBlockProb() { return 2; } 395 396 /// A helper function that returns an integer or floating-point constant with 397 /// value C. 398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 399 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 400 : ConstantFP::get(Ty, C); 401 } 402 403 /// Returns "best known" trip count for the specified loop \p L as defined by 404 /// the following procedure: 405 /// 1) Returns exact trip count if it is known. 406 /// 2) Returns expected trip count according to profile data if any. 407 /// 3) Returns upper bound estimate if it is known. 408 /// 4) Returns None if all of the above failed. 409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 410 // Check if exact trip count is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 412 return ExpectedTC; 413 414 // Check if there is an expected trip count available from profile data. 415 if (LoopVectorizeWithBlockFrequency) 416 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 417 return EstimatedTC; 418 419 // Check if upper bound estimate is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 421 return ExpectedTC; 422 423 return None; 424 } 425 426 // Forward declare GeneratedRTChecks. 427 class GeneratedRTChecks; 428 429 namespace llvm { 430 431 AnalysisKey ShouldRunExtraVectorPasses::Key; 432 433 /// InnerLoopVectorizer vectorizes loops which contain only one basic 434 /// block to a specified vectorization factor (VF). 435 /// This class performs the widening of scalars into vectors, or multiple 436 /// scalars. This class also implements the following features: 437 /// * It inserts an epilogue loop for handling loops that don't have iteration 438 /// counts that are known to be a multiple of the vectorization factor. 439 /// * It handles the code generation for reduction variables. 440 /// * Scalarization (implementation using scalars) of un-vectorizable 441 /// instructions. 442 /// InnerLoopVectorizer does not perform any vectorization-legality 443 /// checks, and relies on the caller to check for the different legality 444 /// aspects. The InnerLoopVectorizer relies on the 445 /// LoopVectorizationLegality class to provide information about the induction 446 /// and reduction variables that were found to a given vectorization factor. 447 class InnerLoopVectorizer { 448 public: 449 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 450 LoopInfo *LI, DominatorTree *DT, 451 const TargetLibraryInfo *TLI, 452 const TargetTransformInfo *TTI, AssumptionCache *AC, 453 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 454 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 455 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 456 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 457 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 458 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 459 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 460 PSI(PSI), RTChecks(RTChecks) { 461 // Query this against the original loop and save it here because the profile 462 // of the original loop header may change as the transformation happens. 463 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 464 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 465 } 466 467 virtual ~InnerLoopVectorizer() = default; 468 469 /// Create a new empty loop that will contain vectorized instructions later 470 /// on, while the old loop will be used as the scalar remainder. Control flow 471 /// is generated around the vectorized (and scalar epilogue) loops consisting 472 /// of various checks and bypasses. Return the pre-header block of the new 473 /// loop and the start value for the canonical induction, if it is != 0. The 474 /// latter is the case when vectorizing the epilogue loop. In the case of 475 /// epilogue vectorization, this function is overriden to handle the more 476 /// complex control flow around the loops. 477 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 478 479 /// Widen a single call instruction within the innermost loop. 480 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 481 VPTransformState &State); 482 483 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 484 void fixVectorizedLoop(VPTransformState &State); 485 486 // Return true if any runtime check is added. 487 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 488 489 /// A type for vectorized values in the new loop. Each value from the 490 /// original loop, when vectorized, is represented by UF vector values in the 491 /// new unrolled loop, where UF is the unroll factor. 492 using VectorParts = SmallVector<Value *, 2>; 493 494 /// Vectorize a single first-order recurrence or pointer induction PHINode in 495 /// a block. This method handles the induction variable canonicalization. It 496 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 497 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 498 VPTransformState &State); 499 500 /// A helper function to scalarize a single Instruction in the innermost loop. 501 /// Generates a sequence of scalar instances for each lane between \p MinLane 502 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 503 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 504 /// Instr's operands. 505 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 506 const VPIteration &Instance, bool IfPredicateInstr, 507 VPTransformState &State); 508 509 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 510 /// is provided, the integer induction variable will first be truncated to 511 /// the corresponding type. \p CanonicalIV is the scalar value generated for 512 /// the canonical induction variable. 513 void widenIntOrFpInduction(PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, 514 VPTransformState &State, Value *CanonicalIV); 515 516 /// Construct the vector value of a scalarized value \p V one lane at a time. 517 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 518 VPTransformState &State); 519 520 /// Try to vectorize interleaved access group \p Group with the base address 521 /// given in \p Addr, optionally masking the vector operations if \p 522 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 523 /// values in the vectorized loop. 524 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 525 ArrayRef<VPValue *> VPDefs, 526 VPTransformState &State, VPValue *Addr, 527 ArrayRef<VPValue *> StoredValues, 528 VPValue *BlockInMask = nullptr); 529 530 /// Set the debug location in the builder \p Ptr using the debug location in 531 /// \p V. If \p Ptr is None then it uses the class member's Builder. 532 void setDebugLocFromInst(const Value *V, 533 Optional<IRBuilder<> *> CustomBuilder = None); 534 535 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 536 void fixNonInductionPHIs(VPTransformState &State); 537 538 /// Returns true if the reordering of FP operations is not allowed, but we are 539 /// able to vectorize with strict in-order reductions for the given RdxDesc. 540 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 541 542 /// Create a broadcast instruction. This method generates a broadcast 543 /// instruction (shuffle) for loop invariant values and for the induction 544 /// value. If this is the induction variable then we extend it to N, N+1, ... 545 /// this is needed because each iteration in the loop corresponds to a SIMD 546 /// element. 547 virtual Value *getBroadcastInstrs(Value *V); 548 549 /// Add metadata from one instruction to another. 550 /// 551 /// This includes both the original MDs from \p From and additional ones (\see 552 /// addNewMetadata). Use this for *newly created* instructions in the vector 553 /// loop. 554 void addMetadata(Instruction *To, Instruction *From); 555 556 /// Similar to the previous function but it adds the metadata to a 557 /// vector of instructions. 558 void addMetadata(ArrayRef<Value *> To, Instruction *From); 559 560 // Returns the resume value (bc.merge.rdx) for a reduction as 561 // generated by fixReduction. 562 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 563 564 protected: 565 friend class LoopVectorizationPlanner; 566 567 /// A small list of PHINodes. 568 using PhiVector = SmallVector<PHINode *, 4>; 569 570 /// A type for scalarized values in the new loop. Each value from the 571 /// original loop, when scalarized, is represented by UF x VF scalar values 572 /// in the new unrolled loop, where UF is the unroll factor and VF is the 573 /// vectorization factor. 574 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 575 576 /// Set up the values of the IVs correctly when exiting the vector loop. 577 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 578 Value *CountRoundDown, Value *EndValue, 579 BasicBlock *MiddleBlock); 580 581 /// Introduce a conditional branch (on true, condition to be set later) at the 582 /// end of the header=latch connecting it to itself (across the backedge) and 583 /// to the exit block of \p L. 584 void createHeaderBranch(Loop *L); 585 586 /// Handle all cross-iteration phis in the header. 587 void fixCrossIterationPHIs(VPTransformState &State); 588 589 /// Create the exit value of first order recurrences in the middle block and 590 /// update their users. 591 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 592 VPTransformState &State); 593 594 /// Create code for the loop exit value of the reduction. 595 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 596 597 /// Clear NSW/NUW flags from reduction instructions if necessary. 598 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 599 VPTransformState &State); 600 601 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 602 /// means we need to add the appropriate incoming value from the middle 603 /// block as exiting edges from the scalar epilogue loop (if present) are 604 /// already in place, and we exit the vector loop exclusively to the middle 605 /// block. 606 void fixLCSSAPHIs(VPTransformState &State); 607 608 /// Iteratively sink the scalarized operands of a predicated instruction into 609 /// the block that was created for it. 610 void sinkScalarOperands(Instruction *PredInst); 611 612 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 613 /// represented as. 614 void truncateToMinimalBitwidths(VPTransformState &State); 615 616 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 617 /// variable on which to base the steps, \p Step is the size of the step, and 618 /// \p EntryVal is the value from the original loop that maps to the steps. 619 /// Note that \p EntryVal doesn't have to be an induction variable - it 620 /// can also be a truncate instruction. 621 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 622 const InductionDescriptor &ID, VPValue *Def, 623 VPTransformState &State); 624 625 /// Create a vector induction phi node based on an existing scalar one. \p 626 /// EntryVal is the value from the original loop that maps to the vector phi 627 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 628 /// truncate instruction, instead of widening the original IV, we widen a 629 /// version of the IV truncated to \p EntryVal's type. 630 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 631 Value *Step, Value *Start, 632 Instruction *EntryVal, VPValue *Def, 633 VPTransformState &State); 634 635 /// Returns (and creates if needed) the original loop trip count. 636 Value *getOrCreateTripCount(Loop *NewLoop); 637 638 /// Returns (and creates if needed) the trip count of the widened loop. 639 Value *getOrCreateVectorTripCount(Loop *NewLoop); 640 641 /// Returns a bitcasted value to the requested vector type. 642 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 643 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 644 const DataLayout &DL); 645 646 /// Emit a bypass check to see if the vector trip count is zero, including if 647 /// it overflows. 648 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 649 650 /// Emit a bypass check to see if all of the SCEV assumptions we've 651 /// had to make are correct. Returns the block containing the checks or 652 /// nullptr if no checks have been added. 653 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 654 655 /// Emit bypass checks to check any memory assumptions we may have made. 656 /// Returns the block containing the checks or nullptr if no checks have been 657 /// added. 658 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 659 660 /// Compute the transformed value of Index at offset StartValue using step 661 /// StepValue. 662 /// For integer induction, returns StartValue + Index * StepValue. 663 /// For pointer induction, returns StartValue[Index * StepValue]. 664 /// FIXME: The newly created binary instructions should contain nsw/nuw 665 /// flags, which can be found from the original scalar operations. 666 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 667 const DataLayout &DL, 668 const InductionDescriptor &ID, 669 BasicBlock *VectorHeader) const; 670 671 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 672 /// vector loop preheader, middle block and scalar preheader. Also 673 /// allocate a loop object for the new vector loop and return it. 674 Loop *createVectorLoopSkeleton(StringRef Prefix); 675 676 /// Create new phi nodes for the induction variables to resume iteration count 677 /// in the scalar epilogue, from where the vectorized loop left off. 678 /// In cases where the loop skeleton is more complicated (eg. epilogue 679 /// vectorization) and the resume values can come from an additional bypass 680 /// block, the \p AdditionalBypass pair provides information about the bypass 681 /// block and the end value on the edge from bypass to this loop. 682 void createInductionResumeValues( 683 Loop *L, 684 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 685 686 /// Complete the loop skeleton by adding debug MDs, creating appropriate 687 /// conditional branches in the middle block, preparing the builder and 688 /// running the verifier. Take in the vector loop \p L as argument, and return 689 /// the preheader of the completed vector loop. 690 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 691 692 /// Add additional metadata to \p To that was not present on \p Orig. 693 /// 694 /// Currently this is used to add the noalias annotations based on the 695 /// inserted memchecks. Use this for instructions that are *cloned* into the 696 /// vector loop. 697 void addNewMetadata(Instruction *To, const Instruction *Orig); 698 699 /// Collect poison-generating recipes that may generate a poison value that is 700 /// used after vectorization, even when their operands are not poison. Those 701 /// recipes meet the following conditions: 702 /// * Contribute to the address computation of a recipe generating a widen 703 /// memory load/store (VPWidenMemoryInstructionRecipe or 704 /// VPInterleaveRecipe). 705 /// * Such a widen memory load/store has at least one underlying Instruction 706 /// that is in a basic block that needs predication and after vectorization 707 /// the generated instruction won't be predicated. 708 void collectPoisonGeneratingRecipes(VPTransformState &State); 709 710 /// Allow subclasses to override and print debug traces before/after vplan 711 /// execution, when trace information is requested. 712 virtual void printDebugTracesAtStart(){}; 713 virtual void printDebugTracesAtEnd(){}; 714 715 /// The original loop. 716 Loop *OrigLoop; 717 718 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 719 /// dynamic knowledge to simplify SCEV expressions and converts them to a 720 /// more usable form. 721 PredicatedScalarEvolution &PSE; 722 723 /// Loop Info. 724 LoopInfo *LI; 725 726 /// Dominator Tree. 727 DominatorTree *DT; 728 729 /// Alias Analysis. 730 AAResults *AA; 731 732 /// Target Library Info. 733 const TargetLibraryInfo *TLI; 734 735 /// Target Transform Info. 736 const TargetTransformInfo *TTI; 737 738 /// Assumption Cache. 739 AssumptionCache *AC; 740 741 /// Interface to emit optimization remarks. 742 OptimizationRemarkEmitter *ORE; 743 744 /// LoopVersioning. It's only set up (non-null) if memchecks were 745 /// used. 746 /// 747 /// This is currently only used to add no-alias metadata based on the 748 /// memchecks. The actually versioning is performed manually. 749 std::unique_ptr<LoopVersioning> LVer; 750 751 /// The vectorization SIMD factor to use. Each vector will have this many 752 /// vector elements. 753 ElementCount VF; 754 755 /// The vectorization unroll factor to use. Each scalar is vectorized to this 756 /// many different vector instructions. 757 unsigned UF; 758 759 /// The builder that we use 760 IRBuilder<> Builder; 761 762 // --- Vectorization state --- 763 764 /// The vector-loop preheader. 765 BasicBlock *LoopVectorPreHeader; 766 767 /// The scalar-loop preheader. 768 BasicBlock *LoopScalarPreHeader; 769 770 /// Middle Block between the vector and the scalar. 771 BasicBlock *LoopMiddleBlock; 772 773 /// The unique ExitBlock of the scalar loop if one exists. Note that 774 /// there can be multiple exiting edges reaching this block. 775 BasicBlock *LoopExitBlock; 776 777 /// The vector loop body. 778 BasicBlock *LoopVectorBody; 779 780 /// The scalar loop body. 781 BasicBlock *LoopScalarBody; 782 783 /// A list of all bypass blocks. The first block is the entry of the loop. 784 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 785 786 /// Store instructions that were predicated. 787 SmallVector<Instruction *, 4> PredicatedInstructions; 788 789 /// Trip count of the original loop. 790 Value *TripCount = nullptr; 791 792 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 793 Value *VectorTripCount = nullptr; 794 795 /// The legality analysis. 796 LoopVectorizationLegality *Legal; 797 798 /// The profitablity analysis. 799 LoopVectorizationCostModel *Cost; 800 801 // Record whether runtime checks are added. 802 bool AddedSafetyChecks = false; 803 804 // Holds the end values for each induction variable. We save the end values 805 // so we can later fix-up the external users of the induction variables. 806 DenseMap<PHINode *, Value *> IVEndValues; 807 808 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 809 // fixed up at the end of vector code generation. 810 SmallVector<PHINode *, 8> OrigPHIsToFix; 811 812 /// BFI and PSI are used to check for profile guided size optimizations. 813 BlockFrequencyInfo *BFI; 814 ProfileSummaryInfo *PSI; 815 816 // Whether this loop should be optimized for size based on profile guided size 817 // optimizatios. 818 bool OptForSizeBasedOnProfile; 819 820 /// Structure to hold information about generated runtime checks, responsible 821 /// for cleaning the checks, if vectorization turns out unprofitable. 822 GeneratedRTChecks &RTChecks; 823 824 // Holds the resume values for reductions in the loops, used to set the 825 // correct start value of reduction PHIs when vectorizing the epilogue. 826 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 827 ReductionResumeValues; 828 }; 829 830 class InnerLoopUnroller : public InnerLoopVectorizer { 831 public: 832 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 833 LoopInfo *LI, DominatorTree *DT, 834 const TargetLibraryInfo *TLI, 835 const TargetTransformInfo *TTI, AssumptionCache *AC, 836 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 837 LoopVectorizationLegality *LVL, 838 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 839 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 840 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 841 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 842 BFI, PSI, Check) {} 843 844 private: 845 Value *getBroadcastInstrs(Value *V) override; 846 }; 847 848 /// Encapsulate information regarding vectorization of a loop and its epilogue. 849 /// This information is meant to be updated and used across two stages of 850 /// epilogue vectorization. 851 struct EpilogueLoopVectorizationInfo { 852 ElementCount MainLoopVF = ElementCount::getFixed(0); 853 unsigned MainLoopUF = 0; 854 ElementCount EpilogueVF = ElementCount::getFixed(0); 855 unsigned EpilogueUF = 0; 856 BasicBlock *MainLoopIterationCountCheck = nullptr; 857 BasicBlock *EpilogueIterationCountCheck = nullptr; 858 BasicBlock *SCEVSafetyCheck = nullptr; 859 BasicBlock *MemSafetyCheck = nullptr; 860 Value *TripCount = nullptr; 861 Value *VectorTripCount = nullptr; 862 863 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 864 ElementCount EVF, unsigned EUF) 865 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 866 assert(EUF == 1 && 867 "A high UF for the epilogue loop is likely not beneficial."); 868 } 869 }; 870 871 /// An extension of the inner loop vectorizer that creates a skeleton for a 872 /// vectorized loop that has its epilogue (residual) also vectorized. 873 /// The idea is to run the vplan on a given loop twice, firstly to setup the 874 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 875 /// from the first step and vectorize the epilogue. This is achieved by 876 /// deriving two concrete strategy classes from this base class and invoking 877 /// them in succession from the loop vectorizer planner. 878 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 879 public: 880 InnerLoopAndEpilogueVectorizer( 881 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 882 DominatorTree *DT, const TargetLibraryInfo *TLI, 883 const TargetTransformInfo *TTI, AssumptionCache *AC, 884 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 885 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 886 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 887 GeneratedRTChecks &Checks) 888 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 889 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 890 Checks), 891 EPI(EPI) {} 892 893 // Override this function to handle the more complex control flow around the 894 // three loops. 895 std::pair<BasicBlock *, Value *> 896 createVectorizedLoopSkeleton() final override { 897 return createEpilogueVectorizedLoopSkeleton(); 898 } 899 900 /// The interface for creating a vectorized skeleton using one of two 901 /// different strategies, each corresponding to one execution of the vplan 902 /// as described above. 903 virtual std::pair<BasicBlock *, Value *> 904 createEpilogueVectorizedLoopSkeleton() = 0; 905 906 /// Holds and updates state information required to vectorize the main loop 907 /// and its epilogue in two separate passes. This setup helps us avoid 908 /// regenerating and recomputing runtime safety checks. It also helps us to 909 /// shorten the iteration-count-check path length for the cases where the 910 /// iteration count of the loop is so small that the main vector loop is 911 /// completely skipped. 912 EpilogueLoopVectorizationInfo &EPI; 913 }; 914 915 /// A specialized derived class of inner loop vectorizer that performs 916 /// vectorization of *main* loops in the process of vectorizing loops and their 917 /// epilogues. 918 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 919 public: 920 EpilogueVectorizerMainLoop( 921 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 922 DominatorTree *DT, const TargetLibraryInfo *TLI, 923 const TargetTransformInfo *TTI, AssumptionCache *AC, 924 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 925 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 926 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 927 GeneratedRTChecks &Check) 928 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 929 EPI, LVL, CM, BFI, PSI, Check) {} 930 /// Implements the interface for creating a vectorized skeleton using the 931 /// *main loop* strategy (ie the first pass of vplan execution). 932 std::pair<BasicBlock *, Value *> 933 createEpilogueVectorizedLoopSkeleton() final override; 934 935 protected: 936 /// Emits an iteration count bypass check once for the main loop (when \p 937 /// ForEpilogue is false) and once for the epilogue loop (when \p 938 /// ForEpilogue is true). 939 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 940 bool ForEpilogue); 941 void printDebugTracesAtStart() override; 942 void printDebugTracesAtEnd() override; 943 }; 944 945 // A specialized derived class of inner loop vectorizer that performs 946 // vectorization of *epilogue* loops in the process of vectorizing loops and 947 // their epilogues. 948 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 949 public: 950 EpilogueVectorizerEpilogueLoop( 951 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 952 DominatorTree *DT, const TargetLibraryInfo *TLI, 953 const TargetTransformInfo *TTI, AssumptionCache *AC, 954 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 955 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 956 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 957 GeneratedRTChecks &Checks) 958 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 959 EPI, LVL, CM, BFI, PSI, Checks) {} 960 /// Implements the interface for creating a vectorized skeleton using the 961 /// *epilogue loop* strategy (ie the second pass of vplan execution). 962 std::pair<BasicBlock *, Value *> 963 createEpilogueVectorizedLoopSkeleton() final override; 964 965 protected: 966 /// Emits an iteration count bypass check after the main vector loop has 967 /// finished to see if there are any iterations left to execute by either 968 /// the vector epilogue or the scalar epilogue. 969 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 970 BasicBlock *Bypass, 971 BasicBlock *Insert); 972 void printDebugTracesAtStart() override; 973 void printDebugTracesAtEnd() override; 974 }; 975 } // end namespace llvm 976 977 /// Look for a meaningful debug location on the instruction or it's 978 /// operands. 979 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 980 if (!I) 981 return I; 982 983 DebugLoc Empty; 984 if (I->getDebugLoc() != Empty) 985 return I; 986 987 for (Use &Op : I->operands()) { 988 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 989 if (OpInst->getDebugLoc() != Empty) 990 return OpInst; 991 } 992 993 return I; 994 } 995 996 void InnerLoopVectorizer::setDebugLocFromInst( 997 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 998 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 999 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 1000 const DILocation *DIL = Inst->getDebugLoc(); 1001 1002 // When a FSDiscriminator is enabled, we don't need to add the multiply 1003 // factors to the discriminators. 1004 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1005 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1006 // FIXME: For scalable vectors, assume vscale=1. 1007 auto NewDIL = 1008 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1009 if (NewDIL) 1010 B->SetCurrentDebugLocation(NewDIL.getValue()); 1011 else 1012 LLVM_DEBUG(dbgs() 1013 << "Failed to create new discriminator: " 1014 << DIL->getFilename() << " Line: " << DIL->getLine()); 1015 } else 1016 B->SetCurrentDebugLocation(DIL); 1017 } else 1018 B->SetCurrentDebugLocation(DebugLoc()); 1019 } 1020 1021 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1022 /// is passed, the message relates to that particular instruction. 1023 #ifndef NDEBUG 1024 static void debugVectorizationMessage(const StringRef Prefix, 1025 const StringRef DebugMsg, 1026 Instruction *I) { 1027 dbgs() << "LV: " << Prefix << DebugMsg; 1028 if (I != nullptr) 1029 dbgs() << " " << *I; 1030 else 1031 dbgs() << '.'; 1032 dbgs() << '\n'; 1033 } 1034 #endif 1035 1036 /// Create an analysis remark that explains why vectorization failed 1037 /// 1038 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1039 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1040 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1041 /// the location of the remark. \return the remark object that can be 1042 /// streamed to. 1043 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1044 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1045 Value *CodeRegion = TheLoop->getHeader(); 1046 DebugLoc DL = TheLoop->getStartLoc(); 1047 1048 if (I) { 1049 CodeRegion = I->getParent(); 1050 // If there is no debug location attached to the instruction, revert back to 1051 // using the loop's. 1052 if (I->getDebugLoc()) 1053 DL = I->getDebugLoc(); 1054 } 1055 1056 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1057 } 1058 1059 namespace llvm { 1060 1061 /// Return a value for Step multiplied by VF. 1062 Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF, 1063 int64_t Step) { 1064 assert(Ty->isIntegerTy() && "Expected an integer step"); 1065 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1066 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1067 } 1068 1069 /// Return the runtime value for VF. 1070 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1071 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1072 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1073 } 1074 1075 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) { 1076 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1077 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1078 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1079 return B.CreateUIToFP(RuntimeVF, FTy); 1080 } 1081 1082 void reportVectorizationFailure(const StringRef DebugMsg, 1083 const StringRef OREMsg, const StringRef ORETag, 1084 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1085 Instruction *I) { 1086 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1087 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1088 ORE->emit( 1089 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1090 << "loop not vectorized: " << OREMsg); 1091 } 1092 1093 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1094 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1095 Instruction *I) { 1096 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1097 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1098 ORE->emit( 1099 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1100 << Msg); 1101 } 1102 1103 } // end namespace llvm 1104 1105 #ifndef NDEBUG 1106 /// \return string containing a file name and a line # for the given loop. 1107 static std::string getDebugLocString(const Loop *L) { 1108 std::string Result; 1109 if (L) { 1110 raw_string_ostream OS(Result); 1111 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1112 LoopDbgLoc.print(OS); 1113 else 1114 // Just print the module name. 1115 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1116 OS.flush(); 1117 } 1118 return Result; 1119 } 1120 #endif 1121 1122 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1123 const Instruction *Orig) { 1124 // If the loop was versioned with memchecks, add the corresponding no-alias 1125 // metadata. 1126 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1127 LVer->annotateInstWithNoAlias(To, Orig); 1128 } 1129 1130 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1131 VPTransformState &State) { 1132 1133 // Collect recipes in the backward slice of `Root` that may generate a poison 1134 // value that is used after vectorization. 1135 SmallPtrSet<VPRecipeBase *, 16> Visited; 1136 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1137 SmallVector<VPRecipeBase *, 16> Worklist; 1138 Worklist.push_back(Root); 1139 1140 // Traverse the backward slice of Root through its use-def chain. 1141 while (!Worklist.empty()) { 1142 VPRecipeBase *CurRec = Worklist.back(); 1143 Worklist.pop_back(); 1144 1145 if (!Visited.insert(CurRec).second) 1146 continue; 1147 1148 // Prune search if we find another recipe generating a widen memory 1149 // instruction. Widen memory instructions involved in address computation 1150 // will lead to gather/scatter instructions, which don't need to be 1151 // handled. 1152 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1153 isa<VPInterleaveRecipe>(CurRec) || 1154 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1155 continue; 1156 1157 // This recipe contributes to the address computation of a widen 1158 // load/store. Collect recipe if its underlying instruction has 1159 // poison-generating flags. 1160 Instruction *Instr = CurRec->getUnderlyingInstr(); 1161 if (Instr && Instr->hasPoisonGeneratingFlags()) 1162 State.MayGeneratePoisonRecipes.insert(CurRec); 1163 1164 // Add new definitions to the worklist. 1165 for (VPValue *operand : CurRec->operands()) 1166 if (VPDef *OpDef = operand->getDef()) 1167 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1168 } 1169 }); 1170 1171 // Traverse all the recipes in the VPlan and collect the poison-generating 1172 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1173 // VPInterleaveRecipe. 1174 auto Iter = depth_first( 1175 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1176 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1177 for (VPRecipeBase &Recipe : *VPBB) { 1178 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1179 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1180 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1181 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1182 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1183 collectPoisonGeneratingInstrsInBackwardSlice( 1184 cast<VPRecipeBase>(AddrDef)); 1185 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1186 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1187 if (AddrDef) { 1188 // Check if any member of the interleave group needs predication. 1189 const InterleaveGroup<Instruction> *InterGroup = 1190 InterleaveRec->getInterleaveGroup(); 1191 bool NeedPredication = false; 1192 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1193 I < NumMembers; ++I) { 1194 Instruction *Member = InterGroup->getMember(I); 1195 if (Member) 1196 NeedPredication |= 1197 Legal->blockNeedsPredication(Member->getParent()); 1198 } 1199 1200 if (NeedPredication) 1201 collectPoisonGeneratingInstrsInBackwardSlice( 1202 cast<VPRecipeBase>(AddrDef)); 1203 } 1204 } 1205 } 1206 } 1207 } 1208 1209 void InnerLoopVectorizer::addMetadata(Instruction *To, 1210 Instruction *From) { 1211 propagateMetadata(To, From); 1212 addNewMetadata(To, From); 1213 } 1214 1215 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1216 Instruction *From) { 1217 for (Value *V : To) { 1218 if (Instruction *I = dyn_cast<Instruction>(V)) 1219 addMetadata(I, From); 1220 } 1221 } 1222 1223 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1224 const RecurrenceDescriptor &RdxDesc) { 1225 auto It = ReductionResumeValues.find(&RdxDesc); 1226 assert(It != ReductionResumeValues.end() && 1227 "Expected to find a resume value for the reduction."); 1228 return It->second; 1229 } 1230 1231 namespace llvm { 1232 1233 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1234 // lowered. 1235 enum ScalarEpilogueLowering { 1236 1237 // The default: allowing scalar epilogues. 1238 CM_ScalarEpilogueAllowed, 1239 1240 // Vectorization with OptForSize: don't allow epilogues. 1241 CM_ScalarEpilogueNotAllowedOptSize, 1242 1243 // A special case of vectorisation with OptForSize: loops with a very small 1244 // trip count are considered for vectorization under OptForSize, thereby 1245 // making sure the cost of their loop body is dominant, free of runtime 1246 // guards and scalar iteration overheads. 1247 CM_ScalarEpilogueNotAllowedLowTripLoop, 1248 1249 // Loop hint predicate indicating an epilogue is undesired. 1250 CM_ScalarEpilogueNotNeededUsePredicate, 1251 1252 // Directive indicating we must either tail fold or not vectorize 1253 CM_ScalarEpilogueNotAllowedUsePredicate 1254 }; 1255 1256 /// ElementCountComparator creates a total ordering for ElementCount 1257 /// for the purposes of using it in a set structure. 1258 struct ElementCountComparator { 1259 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1260 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1261 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1262 } 1263 }; 1264 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1265 1266 /// LoopVectorizationCostModel - estimates the expected speedups due to 1267 /// vectorization. 1268 /// In many cases vectorization is not profitable. This can happen because of 1269 /// a number of reasons. In this class we mainly attempt to predict the 1270 /// expected speedup/slowdowns due to the supported instruction set. We use the 1271 /// TargetTransformInfo to query the different backends for the cost of 1272 /// different operations. 1273 class LoopVectorizationCostModel { 1274 public: 1275 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1276 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1277 LoopVectorizationLegality *Legal, 1278 const TargetTransformInfo &TTI, 1279 const TargetLibraryInfo *TLI, DemandedBits *DB, 1280 AssumptionCache *AC, 1281 OptimizationRemarkEmitter *ORE, const Function *F, 1282 const LoopVectorizeHints *Hints, 1283 InterleavedAccessInfo &IAI) 1284 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1285 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1286 Hints(Hints), InterleaveInfo(IAI) {} 1287 1288 /// \return An upper bound for the vectorization factors (both fixed and 1289 /// scalable). If the factors are 0, vectorization and interleaving should be 1290 /// avoided up front. 1291 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1292 1293 /// \return True if runtime checks are required for vectorization, and false 1294 /// otherwise. 1295 bool runtimeChecksRequired(); 1296 1297 /// \return The most profitable vectorization factor and the cost of that VF. 1298 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1299 /// then this vectorization factor will be selected if vectorization is 1300 /// possible. 1301 VectorizationFactor 1302 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1303 1304 VectorizationFactor 1305 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1306 const LoopVectorizationPlanner &LVP); 1307 1308 /// Setup cost-based decisions for user vectorization factor. 1309 /// \return true if the UserVF is a feasible VF to be chosen. 1310 bool selectUserVectorizationFactor(ElementCount UserVF) { 1311 collectUniformsAndScalars(UserVF); 1312 collectInstsToScalarize(UserVF); 1313 return expectedCost(UserVF).first.isValid(); 1314 } 1315 1316 /// \return The size (in bits) of the smallest and widest types in the code 1317 /// that needs to be vectorized. We ignore values that remain scalar such as 1318 /// 64 bit loop indices. 1319 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1320 1321 /// \return The desired interleave count. 1322 /// If interleave count has been specified by metadata it will be returned. 1323 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1324 /// are the selected vectorization factor and the cost of the selected VF. 1325 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1326 1327 /// Memory access instruction may be vectorized in more than one way. 1328 /// Form of instruction after vectorization depends on cost. 1329 /// This function takes cost-based decisions for Load/Store instructions 1330 /// and collects them in a map. This decisions map is used for building 1331 /// the lists of loop-uniform and loop-scalar instructions. 1332 /// The calculated cost is saved with widening decision in order to 1333 /// avoid redundant calculations. 1334 void setCostBasedWideningDecision(ElementCount VF); 1335 1336 /// A struct that represents some properties of the register usage 1337 /// of a loop. 1338 struct RegisterUsage { 1339 /// Holds the number of loop invariant values that are used in the loop. 1340 /// The key is ClassID of target-provided register class. 1341 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1342 /// Holds the maximum number of concurrent live intervals in the loop. 1343 /// The key is ClassID of target-provided register class. 1344 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1345 }; 1346 1347 /// \return Returns information about the register usages of the loop for the 1348 /// given vectorization factors. 1349 SmallVector<RegisterUsage, 8> 1350 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1351 1352 /// Collect values we want to ignore in the cost model. 1353 void collectValuesToIgnore(); 1354 1355 /// Collect all element types in the loop for which widening is needed. 1356 void collectElementTypesForWidening(); 1357 1358 /// Split reductions into those that happen in the loop, and those that happen 1359 /// outside. In loop reductions are collected into InLoopReductionChains. 1360 void collectInLoopReductions(); 1361 1362 /// Returns true if we should use strict in-order reductions for the given 1363 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1364 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1365 /// of FP operations. 1366 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1367 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1368 } 1369 1370 /// \returns The smallest bitwidth each instruction can be represented with. 1371 /// The vector equivalents of these instructions should be truncated to this 1372 /// type. 1373 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1374 return MinBWs; 1375 } 1376 1377 /// \returns True if it is more profitable to scalarize instruction \p I for 1378 /// vectorization factor \p VF. 1379 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1380 assert(VF.isVector() && 1381 "Profitable to scalarize relevant only for VF > 1."); 1382 1383 // Cost model is not run in the VPlan-native path - return conservative 1384 // result until this changes. 1385 if (EnableVPlanNativePath) 1386 return false; 1387 1388 auto Scalars = InstsToScalarize.find(VF); 1389 assert(Scalars != InstsToScalarize.end() && 1390 "VF not yet analyzed for scalarization profitability"); 1391 return Scalars->second.find(I) != Scalars->second.end(); 1392 } 1393 1394 /// Returns true if \p I is known to be uniform after vectorization. 1395 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1396 if (VF.isScalar()) 1397 return true; 1398 1399 // Cost model is not run in the VPlan-native path - return conservative 1400 // result until this changes. 1401 if (EnableVPlanNativePath) 1402 return false; 1403 1404 auto UniformsPerVF = Uniforms.find(VF); 1405 assert(UniformsPerVF != Uniforms.end() && 1406 "VF not yet analyzed for uniformity"); 1407 return UniformsPerVF->second.count(I); 1408 } 1409 1410 /// Returns true if \p I is known to be scalar after vectorization. 1411 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1412 if (VF.isScalar()) 1413 return true; 1414 1415 // Cost model is not run in the VPlan-native path - return conservative 1416 // result until this changes. 1417 if (EnableVPlanNativePath) 1418 return false; 1419 1420 auto ScalarsPerVF = Scalars.find(VF); 1421 assert(ScalarsPerVF != Scalars.end() && 1422 "Scalar values are not calculated for VF"); 1423 return ScalarsPerVF->second.count(I); 1424 } 1425 1426 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1427 /// for vectorization factor \p VF. 1428 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1429 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1430 !isProfitableToScalarize(I, VF) && 1431 !isScalarAfterVectorization(I, VF); 1432 } 1433 1434 /// Decision that was taken during cost calculation for memory instruction. 1435 enum InstWidening { 1436 CM_Unknown, 1437 CM_Widen, // For consecutive accesses with stride +1. 1438 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1439 CM_Interleave, 1440 CM_GatherScatter, 1441 CM_Scalarize 1442 }; 1443 1444 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1445 /// instruction \p I and vector width \p VF. 1446 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1447 InstructionCost Cost) { 1448 assert(VF.isVector() && "Expected VF >=2"); 1449 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1450 } 1451 1452 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1453 /// interleaving group \p Grp and vector width \p VF. 1454 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1455 ElementCount VF, InstWidening W, 1456 InstructionCost Cost) { 1457 assert(VF.isVector() && "Expected VF >=2"); 1458 /// Broadcast this decicion to all instructions inside the group. 1459 /// But the cost will be assigned to one instruction only. 1460 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1461 if (auto *I = Grp->getMember(i)) { 1462 if (Grp->getInsertPos() == I) 1463 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1464 else 1465 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1466 } 1467 } 1468 } 1469 1470 /// Return the cost model decision for the given instruction \p I and vector 1471 /// width \p VF. Return CM_Unknown if this instruction did not pass 1472 /// through the cost modeling. 1473 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1474 assert(VF.isVector() && "Expected VF to be a vector VF"); 1475 // Cost model is not run in the VPlan-native path - return conservative 1476 // result until this changes. 1477 if (EnableVPlanNativePath) 1478 return CM_GatherScatter; 1479 1480 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1481 auto Itr = WideningDecisions.find(InstOnVF); 1482 if (Itr == WideningDecisions.end()) 1483 return CM_Unknown; 1484 return Itr->second.first; 1485 } 1486 1487 /// Return the vectorization cost for the given instruction \p I and vector 1488 /// width \p VF. 1489 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1490 assert(VF.isVector() && "Expected VF >=2"); 1491 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1492 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1493 "The cost is not calculated"); 1494 return WideningDecisions[InstOnVF].second; 1495 } 1496 1497 /// Return True if instruction \p I is an optimizable truncate whose operand 1498 /// is an induction variable. Such a truncate will be removed by adding a new 1499 /// induction variable with the destination type. 1500 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1501 // If the instruction is not a truncate, return false. 1502 auto *Trunc = dyn_cast<TruncInst>(I); 1503 if (!Trunc) 1504 return false; 1505 1506 // Get the source and destination types of the truncate. 1507 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1508 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1509 1510 // If the truncate is free for the given types, return false. Replacing a 1511 // free truncate with an induction variable would add an induction variable 1512 // update instruction to each iteration of the loop. We exclude from this 1513 // check the primary induction variable since it will need an update 1514 // instruction regardless. 1515 Value *Op = Trunc->getOperand(0); 1516 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1517 return false; 1518 1519 // If the truncated value is not an induction variable, return false. 1520 return Legal->isInductionPhi(Op); 1521 } 1522 1523 /// Collects the instructions to scalarize for each predicated instruction in 1524 /// the loop. 1525 void collectInstsToScalarize(ElementCount VF); 1526 1527 /// Collect Uniform and Scalar values for the given \p VF. 1528 /// The sets depend on CM decision for Load/Store instructions 1529 /// that may be vectorized as interleave, gather-scatter or scalarized. 1530 void collectUniformsAndScalars(ElementCount VF) { 1531 // Do the analysis once. 1532 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1533 return; 1534 setCostBasedWideningDecision(VF); 1535 collectLoopUniforms(VF); 1536 collectLoopScalars(VF); 1537 } 1538 1539 /// Returns true if the target machine supports masked store operation 1540 /// for the given \p DataType and kind of access to \p Ptr. 1541 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1542 return Legal->isConsecutivePtr(DataType, Ptr) && 1543 TTI.isLegalMaskedStore(DataType, Alignment); 1544 } 1545 1546 /// Returns true if the target machine supports masked load operation 1547 /// for the given \p DataType and kind of access to \p Ptr. 1548 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1549 return Legal->isConsecutivePtr(DataType, Ptr) && 1550 TTI.isLegalMaskedLoad(DataType, Alignment); 1551 } 1552 1553 /// Returns true if the target machine can represent \p V as a masked gather 1554 /// or scatter operation. 1555 bool isLegalGatherOrScatter(Value *V, 1556 ElementCount VF = ElementCount::getFixed(1)) { 1557 bool LI = isa<LoadInst>(V); 1558 bool SI = isa<StoreInst>(V); 1559 if (!LI && !SI) 1560 return false; 1561 auto *Ty = getLoadStoreType(V); 1562 Align Align = getLoadStoreAlignment(V); 1563 if (VF.isVector()) 1564 Ty = VectorType::get(Ty, VF); 1565 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1566 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1567 } 1568 1569 /// Returns true if the target machine supports all of the reduction 1570 /// variables found for the given VF. 1571 bool canVectorizeReductions(ElementCount VF) const { 1572 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1573 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1574 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1575 })); 1576 } 1577 1578 /// Returns true if \p I is an instruction that will be scalarized with 1579 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1580 /// instructions include conditional stores and instructions that may divide 1581 /// by zero. 1582 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1583 1584 // Returns true if \p I is an instruction that will be predicated either 1585 // through scalar predication or masked load/store or masked gather/scatter. 1586 // \p VF is the vectorization factor that will be used to vectorize \p I. 1587 // Superset of instructions that return true for isScalarWithPredication. 1588 bool isPredicatedInst(Instruction *I, ElementCount VF, 1589 bool IsKnownUniform = false) { 1590 // When we know the load is uniform and the original scalar loop was not 1591 // predicated we don't need to mark it as a predicated instruction. Any 1592 // vectorised blocks created when tail-folding are something artificial we 1593 // have introduced and we know there is always at least one active lane. 1594 // That's why we call Legal->blockNeedsPredication here because it doesn't 1595 // query tail-folding. 1596 if (IsKnownUniform && isa<LoadInst>(I) && 1597 !Legal->blockNeedsPredication(I->getParent())) 1598 return false; 1599 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1600 return false; 1601 // Loads and stores that need some form of masked operation are predicated 1602 // instructions. 1603 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1604 return Legal->isMaskRequired(I); 1605 return isScalarWithPredication(I, VF); 1606 } 1607 1608 /// Returns true if \p I is a memory instruction with consecutive memory 1609 /// access that can be widened. 1610 bool 1611 memoryInstructionCanBeWidened(Instruction *I, 1612 ElementCount VF = ElementCount::getFixed(1)); 1613 1614 /// Returns true if \p I is a memory instruction in an interleaved-group 1615 /// of memory accesses that can be vectorized with wide vector loads/stores 1616 /// and shuffles. 1617 bool 1618 interleavedAccessCanBeWidened(Instruction *I, 1619 ElementCount VF = ElementCount::getFixed(1)); 1620 1621 /// Check if \p Instr belongs to any interleaved access group. 1622 bool isAccessInterleaved(Instruction *Instr) { 1623 return InterleaveInfo.isInterleaved(Instr); 1624 } 1625 1626 /// Get the interleaved access group that \p Instr belongs to. 1627 const InterleaveGroup<Instruction> * 1628 getInterleavedAccessGroup(Instruction *Instr) { 1629 return InterleaveInfo.getInterleaveGroup(Instr); 1630 } 1631 1632 /// Returns true if we're required to use a scalar epilogue for at least 1633 /// the final iteration of the original loop. 1634 bool requiresScalarEpilogue(ElementCount VF) const { 1635 if (!isScalarEpilogueAllowed()) 1636 return false; 1637 // If we might exit from anywhere but the latch, must run the exiting 1638 // iteration in scalar form. 1639 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1640 return true; 1641 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1642 } 1643 1644 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1645 /// loop hint annotation. 1646 bool isScalarEpilogueAllowed() const { 1647 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1648 } 1649 1650 /// Returns true if all loop blocks should be masked to fold tail loop. 1651 bool foldTailByMasking() const { return FoldTailByMasking; } 1652 1653 /// Returns true if the instructions in this block requires predication 1654 /// for any reason, e.g. because tail folding now requires a predicate 1655 /// or because the block in the original loop was predicated. 1656 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1657 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1658 } 1659 1660 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1661 /// nodes to the chain of instructions representing the reductions. Uses a 1662 /// MapVector to ensure deterministic iteration order. 1663 using ReductionChainMap = 1664 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1665 1666 /// Return the chain of instructions representing an inloop reduction. 1667 const ReductionChainMap &getInLoopReductionChains() const { 1668 return InLoopReductionChains; 1669 } 1670 1671 /// Returns true if the Phi is part of an inloop reduction. 1672 bool isInLoopReduction(PHINode *Phi) const { 1673 return InLoopReductionChains.count(Phi); 1674 } 1675 1676 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1677 /// with factor VF. Return the cost of the instruction, including 1678 /// scalarization overhead if it's needed. 1679 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1680 1681 /// Estimate cost of a call instruction CI if it were vectorized with factor 1682 /// VF. Return the cost of the instruction, including scalarization overhead 1683 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1684 /// scalarized - 1685 /// i.e. either vector version isn't available, or is too expensive. 1686 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1687 bool &NeedToScalarize) const; 1688 1689 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1690 /// that of B. 1691 bool isMoreProfitable(const VectorizationFactor &A, 1692 const VectorizationFactor &B) const; 1693 1694 /// Invalidates decisions already taken by the cost model. 1695 void invalidateCostModelingDecisions() { 1696 WideningDecisions.clear(); 1697 Uniforms.clear(); 1698 Scalars.clear(); 1699 } 1700 1701 private: 1702 unsigned NumPredStores = 0; 1703 1704 /// \return An upper bound for the vectorization factors for both 1705 /// fixed and scalable vectorization, where the minimum-known number of 1706 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1707 /// disabled or unsupported, then the scalable part will be equal to 1708 /// ElementCount::getScalable(0). 1709 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1710 ElementCount UserVF, 1711 bool FoldTailByMasking); 1712 1713 /// \return the maximized element count based on the targets vector 1714 /// registers and the loop trip-count, but limited to a maximum safe VF. 1715 /// This is a helper function of computeFeasibleMaxVF. 1716 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1717 /// issue that occurred on one of the buildbots which cannot be reproduced 1718 /// without having access to the properietary compiler (see comments on 1719 /// D98509). The issue is currently under investigation and this workaround 1720 /// will be removed as soon as possible. 1721 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1722 unsigned SmallestType, 1723 unsigned WidestType, 1724 const ElementCount &MaxSafeVF, 1725 bool FoldTailByMasking); 1726 1727 /// \return the maximum legal scalable VF, based on the safe max number 1728 /// of elements. 1729 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1730 1731 /// The vectorization cost is a combination of the cost itself and a boolean 1732 /// indicating whether any of the contributing operations will actually 1733 /// operate on vector values after type legalization in the backend. If this 1734 /// latter value is false, then all operations will be scalarized (i.e. no 1735 /// vectorization has actually taken place). 1736 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1737 1738 /// Returns the expected execution cost. The unit of the cost does 1739 /// not matter because we use the 'cost' units to compare different 1740 /// vector widths. The cost that is returned is *not* normalized by 1741 /// the factor width. If \p Invalid is not nullptr, this function 1742 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1743 /// each instruction that has an Invalid cost for the given VF. 1744 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1745 VectorizationCostTy 1746 expectedCost(ElementCount VF, 1747 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1748 1749 /// Returns the execution time cost of an instruction for a given vector 1750 /// width. Vector width of one means scalar. 1751 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1752 1753 /// The cost-computation logic from getInstructionCost which provides 1754 /// the vector type as an output parameter. 1755 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1756 Type *&VectorTy); 1757 1758 /// Return the cost of instructions in an inloop reduction pattern, if I is 1759 /// part of that pattern. 1760 Optional<InstructionCost> 1761 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1762 TTI::TargetCostKind CostKind); 1763 1764 /// Calculate vectorization cost of memory instruction \p I. 1765 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1766 1767 /// The cost computation for scalarized memory instruction. 1768 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1769 1770 /// The cost computation for interleaving group of memory instructions. 1771 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1772 1773 /// The cost computation for Gather/Scatter instruction. 1774 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1775 1776 /// The cost computation for widening instruction \p I with consecutive 1777 /// memory access. 1778 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1779 1780 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1781 /// Load: scalar load + broadcast. 1782 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1783 /// element) 1784 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1785 1786 /// Estimate the overhead of scalarizing an instruction. This is a 1787 /// convenience wrapper for the type-based getScalarizationOverhead API. 1788 InstructionCost getScalarizationOverhead(Instruction *I, 1789 ElementCount VF) const; 1790 1791 /// Returns whether the instruction is a load or store and will be a emitted 1792 /// as a vector operation. 1793 bool isConsecutiveLoadOrStore(Instruction *I); 1794 1795 /// Returns true if an artificially high cost for emulated masked memrefs 1796 /// should be used. 1797 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1798 1799 /// Map of scalar integer values to the smallest bitwidth they can be legally 1800 /// represented as. The vector equivalents of these values should be truncated 1801 /// to this type. 1802 MapVector<Instruction *, uint64_t> MinBWs; 1803 1804 /// A type representing the costs for instructions if they were to be 1805 /// scalarized rather than vectorized. The entries are Instruction-Cost 1806 /// pairs. 1807 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1808 1809 /// A set containing all BasicBlocks that are known to present after 1810 /// vectorization as a predicated block. 1811 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1812 1813 /// Records whether it is allowed to have the original scalar loop execute at 1814 /// least once. This may be needed as a fallback loop in case runtime 1815 /// aliasing/dependence checks fail, or to handle the tail/remainder 1816 /// iterations when the trip count is unknown or doesn't divide by the VF, 1817 /// or as a peel-loop to handle gaps in interleave-groups. 1818 /// Under optsize and when the trip count is very small we don't allow any 1819 /// iterations to execute in the scalar loop. 1820 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1821 1822 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1823 bool FoldTailByMasking = false; 1824 1825 /// A map holding scalar costs for different vectorization factors. The 1826 /// presence of a cost for an instruction in the mapping indicates that the 1827 /// instruction will be scalarized when vectorizing with the associated 1828 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1829 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1830 1831 /// Holds the instructions known to be uniform after vectorization. 1832 /// The data is collected per VF. 1833 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1834 1835 /// Holds the instructions known to be scalar after vectorization. 1836 /// The data is collected per VF. 1837 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1838 1839 /// Holds the instructions (address computations) that are forced to be 1840 /// scalarized. 1841 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1842 1843 /// PHINodes of the reductions that should be expanded in-loop along with 1844 /// their associated chains of reduction operations, in program order from top 1845 /// (PHI) to bottom 1846 ReductionChainMap InLoopReductionChains; 1847 1848 /// A Map of inloop reduction operations and their immediate chain operand. 1849 /// FIXME: This can be removed once reductions can be costed correctly in 1850 /// vplan. This was added to allow quick lookup to the inloop operations, 1851 /// without having to loop through InLoopReductionChains. 1852 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1853 1854 /// Returns the expected difference in cost from scalarizing the expression 1855 /// feeding a predicated instruction \p PredInst. The instructions to 1856 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1857 /// non-negative return value implies the expression will be scalarized. 1858 /// Currently, only single-use chains are considered for scalarization. 1859 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1860 ElementCount VF); 1861 1862 /// Collect the instructions that are uniform after vectorization. An 1863 /// instruction is uniform if we represent it with a single scalar value in 1864 /// the vectorized loop corresponding to each vector iteration. Examples of 1865 /// uniform instructions include pointer operands of consecutive or 1866 /// interleaved memory accesses. Note that although uniformity implies an 1867 /// instruction will be scalar, the reverse is not true. In general, a 1868 /// scalarized instruction will be represented by VF scalar values in the 1869 /// vectorized loop, each corresponding to an iteration of the original 1870 /// scalar loop. 1871 void collectLoopUniforms(ElementCount VF); 1872 1873 /// Collect the instructions that are scalar after vectorization. An 1874 /// instruction is scalar if it is known to be uniform or will be scalarized 1875 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1876 /// to the list if they are used by a load/store instruction that is marked as 1877 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1878 /// VF values in the vectorized loop, each corresponding to an iteration of 1879 /// the original scalar loop. 1880 void collectLoopScalars(ElementCount VF); 1881 1882 /// Keeps cost model vectorization decision and cost for instructions. 1883 /// Right now it is used for memory instructions only. 1884 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1885 std::pair<InstWidening, InstructionCost>>; 1886 1887 DecisionList WideningDecisions; 1888 1889 /// Returns true if \p V is expected to be vectorized and it needs to be 1890 /// extracted. 1891 bool needsExtract(Value *V, ElementCount VF) const { 1892 Instruction *I = dyn_cast<Instruction>(V); 1893 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1894 TheLoop->isLoopInvariant(I)) 1895 return false; 1896 1897 // Assume we can vectorize V (and hence we need extraction) if the 1898 // scalars are not computed yet. This can happen, because it is called 1899 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1900 // the scalars are collected. That should be a safe assumption in most 1901 // cases, because we check if the operands have vectorizable types 1902 // beforehand in LoopVectorizationLegality. 1903 return Scalars.find(VF) == Scalars.end() || 1904 !isScalarAfterVectorization(I, VF); 1905 }; 1906 1907 /// Returns a range containing only operands needing to be extracted. 1908 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1909 ElementCount VF) const { 1910 return SmallVector<Value *, 4>(make_filter_range( 1911 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1912 } 1913 1914 /// Determines if we have the infrastructure to vectorize loop \p L and its 1915 /// epilogue, assuming the main loop is vectorized by \p VF. 1916 bool isCandidateForEpilogueVectorization(const Loop &L, 1917 const ElementCount VF) const; 1918 1919 /// Returns true if epilogue vectorization is considered profitable, and 1920 /// false otherwise. 1921 /// \p VF is the vectorization factor chosen for the original loop. 1922 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1923 1924 public: 1925 /// The loop that we evaluate. 1926 Loop *TheLoop; 1927 1928 /// Predicated scalar evolution analysis. 1929 PredicatedScalarEvolution &PSE; 1930 1931 /// Loop Info analysis. 1932 LoopInfo *LI; 1933 1934 /// Vectorization legality. 1935 LoopVectorizationLegality *Legal; 1936 1937 /// Vector target information. 1938 const TargetTransformInfo &TTI; 1939 1940 /// Target Library Info. 1941 const TargetLibraryInfo *TLI; 1942 1943 /// Demanded bits analysis. 1944 DemandedBits *DB; 1945 1946 /// Assumption cache. 1947 AssumptionCache *AC; 1948 1949 /// Interface to emit optimization remarks. 1950 OptimizationRemarkEmitter *ORE; 1951 1952 const Function *TheFunction; 1953 1954 /// Loop Vectorize Hint. 1955 const LoopVectorizeHints *Hints; 1956 1957 /// The interleave access information contains groups of interleaved accesses 1958 /// with the same stride and close to each other. 1959 InterleavedAccessInfo &InterleaveInfo; 1960 1961 /// Values to ignore in the cost model. 1962 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1963 1964 /// Values to ignore in the cost model when VF > 1. 1965 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1966 1967 /// All element types found in the loop. 1968 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1969 1970 /// Profitable vector factors. 1971 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1972 }; 1973 } // end namespace llvm 1974 1975 /// Helper struct to manage generating runtime checks for vectorization. 1976 /// 1977 /// The runtime checks are created up-front in temporary blocks to allow better 1978 /// estimating the cost and un-linked from the existing IR. After deciding to 1979 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1980 /// temporary blocks are completely removed. 1981 class GeneratedRTChecks { 1982 /// Basic block which contains the generated SCEV checks, if any. 1983 BasicBlock *SCEVCheckBlock = nullptr; 1984 1985 /// The value representing the result of the generated SCEV checks. If it is 1986 /// nullptr, either no SCEV checks have been generated or they have been used. 1987 Value *SCEVCheckCond = nullptr; 1988 1989 /// Basic block which contains the generated memory runtime checks, if any. 1990 BasicBlock *MemCheckBlock = nullptr; 1991 1992 /// The value representing the result of the generated memory runtime checks. 1993 /// If it is nullptr, either no memory runtime checks have been generated or 1994 /// they have been used. 1995 Value *MemRuntimeCheckCond = nullptr; 1996 1997 DominatorTree *DT; 1998 LoopInfo *LI; 1999 2000 SCEVExpander SCEVExp; 2001 SCEVExpander MemCheckExp; 2002 2003 public: 2004 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 2005 const DataLayout &DL) 2006 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 2007 MemCheckExp(SE, DL, "scev.check") {} 2008 2009 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 2010 /// accurately estimate the cost of the runtime checks. The blocks are 2011 /// un-linked from the IR and is added back during vector code generation. If 2012 /// there is no vector code generation, the check blocks are removed 2013 /// completely. 2014 void Create(Loop *L, const LoopAccessInfo &LAI, 2015 const SCEVUnionPredicate &UnionPred) { 2016 2017 BasicBlock *LoopHeader = L->getHeader(); 2018 BasicBlock *Preheader = L->getLoopPreheader(); 2019 2020 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 2021 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 2022 // may be used by SCEVExpander. The blocks will be un-linked from their 2023 // predecessors and removed from LI & DT at the end of the function. 2024 if (!UnionPred.isAlwaysTrue()) { 2025 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 2026 nullptr, "vector.scevcheck"); 2027 2028 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 2029 &UnionPred, SCEVCheckBlock->getTerminator()); 2030 } 2031 2032 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 2033 if (RtPtrChecking.Need) { 2034 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 2035 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 2036 "vector.memcheck"); 2037 2038 MemRuntimeCheckCond = 2039 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 2040 RtPtrChecking.getChecks(), MemCheckExp); 2041 assert(MemRuntimeCheckCond && 2042 "no RT checks generated although RtPtrChecking " 2043 "claimed checks are required"); 2044 } 2045 2046 if (!MemCheckBlock && !SCEVCheckBlock) 2047 return; 2048 2049 // Unhook the temporary block with the checks, update various places 2050 // accordingly. 2051 if (SCEVCheckBlock) 2052 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2053 if (MemCheckBlock) 2054 MemCheckBlock->replaceAllUsesWith(Preheader); 2055 2056 if (SCEVCheckBlock) { 2057 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2058 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2059 Preheader->getTerminator()->eraseFromParent(); 2060 } 2061 if (MemCheckBlock) { 2062 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2063 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2064 Preheader->getTerminator()->eraseFromParent(); 2065 } 2066 2067 DT->changeImmediateDominator(LoopHeader, Preheader); 2068 if (MemCheckBlock) { 2069 DT->eraseNode(MemCheckBlock); 2070 LI->removeBlock(MemCheckBlock); 2071 } 2072 if (SCEVCheckBlock) { 2073 DT->eraseNode(SCEVCheckBlock); 2074 LI->removeBlock(SCEVCheckBlock); 2075 } 2076 } 2077 2078 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2079 /// unused. 2080 ~GeneratedRTChecks() { 2081 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2082 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2083 if (!SCEVCheckCond) 2084 SCEVCleaner.markResultUsed(); 2085 2086 if (!MemRuntimeCheckCond) 2087 MemCheckCleaner.markResultUsed(); 2088 2089 if (MemRuntimeCheckCond) { 2090 auto &SE = *MemCheckExp.getSE(); 2091 // Memory runtime check generation creates compares that use expanded 2092 // values. Remove them before running the SCEVExpanderCleaners. 2093 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2094 if (MemCheckExp.isInsertedInstruction(&I)) 2095 continue; 2096 SE.forgetValue(&I); 2097 I.eraseFromParent(); 2098 } 2099 } 2100 MemCheckCleaner.cleanup(); 2101 SCEVCleaner.cleanup(); 2102 2103 if (SCEVCheckCond) 2104 SCEVCheckBlock->eraseFromParent(); 2105 if (MemRuntimeCheckCond) 2106 MemCheckBlock->eraseFromParent(); 2107 } 2108 2109 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2110 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2111 /// depending on the generated condition. 2112 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2113 BasicBlock *LoopVectorPreHeader, 2114 BasicBlock *LoopExitBlock) { 2115 if (!SCEVCheckCond) 2116 return nullptr; 2117 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2118 if (C->isZero()) 2119 return nullptr; 2120 2121 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2122 2123 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2124 // Create new preheader for vector loop. 2125 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2126 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2127 2128 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2129 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2130 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2131 SCEVCheckBlock); 2132 2133 DT->addNewBlock(SCEVCheckBlock, Pred); 2134 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2135 2136 ReplaceInstWithInst( 2137 SCEVCheckBlock->getTerminator(), 2138 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2139 // Mark the check as used, to prevent it from being removed during cleanup. 2140 SCEVCheckCond = nullptr; 2141 return SCEVCheckBlock; 2142 } 2143 2144 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2145 /// the branches to branch to the vector preheader or \p Bypass, depending on 2146 /// the generated condition. 2147 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2148 BasicBlock *LoopVectorPreHeader) { 2149 // Check if we generated code that checks in runtime if arrays overlap. 2150 if (!MemRuntimeCheckCond) 2151 return nullptr; 2152 2153 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2154 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2155 MemCheckBlock); 2156 2157 DT->addNewBlock(MemCheckBlock, Pred); 2158 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2159 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2160 2161 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2162 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2163 2164 ReplaceInstWithInst( 2165 MemCheckBlock->getTerminator(), 2166 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2167 MemCheckBlock->getTerminator()->setDebugLoc( 2168 Pred->getTerminator()->getDebugLoc()); 2169 2170 // Mark the check as used, to prevent it from being removed during cleanup. 2171 MemRuntimeCheckCond = nullptr; 2172 return MemCheckBlock; 2173 } 2174 }; 2175 2176 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2177 // vectorization. The loop needs to be annotated with #pragma omp simd 2178 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2179 // vector length information is not provided, vectorization is not considered 2180 // explicit. Interleave hints are not allowed either. These limitations will be 2181 // relaxed in the future. 2182 // Please, note that we are currently forced to abuse the pragma 'clang 2183 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2184 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2185 // provides *explicit vectorization hints* (LV can bypass legal checks and 2186 // assume that vectorization is legal). However, both hints are implemented 2187 // using the same metadata (llvm.loop.vectorize, processed by 2188 // LoopVectorizeHints). This will be fixed in the future when the native IR 2189 // representation for pragma 'omp simd' is introduced. 2190 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2191 OptimizationRemarkEmitter *ORE) { 2192 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2193 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2194 2195 // Only outer loops with an explicit vectorization hint are supported. 2196 // Unannotated outer loops are ignored. 2197 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2198 return false; 2199 2200 Function *Fn = OuterLp->getHeader()->getParent(); 2201 if (!Hints.allowVectorization(Fn, OuterLp, 2202 true /*VectorizeOnlyWhenForced*/)) { 2203 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2204 return false; 2205 } 2206 2207 if (Hints.getInterleave() > 1) { 2208 // TODO: Interleave support is future work. 2209 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2210 "outer loops.\n"); 2211 Hints.emitRemarkWithHints(); 2212 return false; 2213 } 2214 2215 return true; 2216 } 2217 2218 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2219 OptimizationRemarkEmitter *ORE, 2220 SmallVectorImpl<Loop *> &V) { 2221 // Collect inner loops and outer loops without irreducible control flow. For 2222 // now, only collect outer loops that have explicit vectorization hints. If we 2223 // are stress testing the VPlan H-CFG construction, we collect the outermost 2224 // loop of every loop nest. 2225 if (L.isInnermost() || VPlanBuildStressTest || 2226 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2227 LoopBlocksRPO RPOT(&L); 2228 RPOT.perform(LI); 2229 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2230 V.push_back(&L); 2231 // TODO: Collect inner loops inside marked outer loops in case 2232 // vectorization fails for the outer loop. Do not invoke 2233 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2234 // already known to be reducible. We can use an inherited attribute for 2235 // that. 2236 return; 2237 } 2238 } 2239 for (Loop *InnerL : L) 2240 collectSupportedLoops(*InnerL, LI, ORE, V); 2241 } 2242 2243 namespace { 2244 2245 /// The LoopVectorize Pass. 2246 struct LoopVectorize : public FunctionPass { 2247 /// Pass identification, replacement for typeid 2248 static char ID; 2249 2250 LoopVectorizePass Impl; 2251 2252 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2253 bool VectorizeOnlyWhenForced = false) 2254 : FunctionPass(ID), 2255 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2256 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2257 } 2258 2259 bool runOnFunction(Function &F) override { 2260 if (skipFunction(F)) 2261 return false; 2262 2263 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2264 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2265 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2266 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2267 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2268 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2269 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2270 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2271 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2272 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2273 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2274 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2275 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2276 2277 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2278 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2279 2280 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2281 GetLAA, *ORE, PSI).MadeAnyChange; 2282 } 2283 2284 void getAnalysisUsage(AnalysisUsage &AU) const override { 2285 AU.addRequired<AssumptionCacheTracker>(); 2286 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2287 AU.addRequired<DominatorTreeWrapperPass>(); 2288 AU.addRequired<LoopInfoWrapperPass>(); 2289 AU.addRequired<ScalarEvolutionWrapperPass>(); 2290 AU.addRequired<TargetTransformInfoWrapperPass>(); 2291 AU.addRequired<AAResultsWrapperPass>(); 2292 AU.addRequired<LoopAccessLegacyAnalysis>(); 2293 AU.addRequired<DemandedBitsWrapperPass>(); 2294 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2295 AU.addRequired<InjectTLIMappingsLegacy>(); 2296 2297 // We currently do not preserve loopinfo/dominator analyses with outer loop 2298 // vectorization. Until this is addressed, mark these analyses as preserved 2299 // only for non-VPlan-native path. 2300 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2301 if (!EnableVPlanNativePath) { 2302 AU.addPreserved<LoopInfoWrapperPass>(); 2303 AU.addPreserved<DominatorTreeWrapperPass>(); 2304 } 2305 2306 AU.addPreserved<BasicAAWrapperPass>(); 2307 AU.addPreserved<GlobalsAAWrapperPass>(); 2308 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2309 } 2310 }; 2311 2312 } // end anonymous namespace 2313 2314 //===----------------------------------------------------------------------===// 2315 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2316 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2317 //===----------------------------------------------------------------------===// 2318 2319 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2320 // We need to place the broadcast of invariant variables outside the loop, 2321 // but only if it's proven safe to do so. Else, broadcast will be inside 2322 // vector loop body. 2323 Instruction *Instr = dyn_cast<Instruction>(V); 2324 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2325 (!Instr || 2326 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2327 // Place the code for broadcasting invariant variables in the new preheader. 2328 IRBuilder<>::InsertPointGuard Guard(Builder); 2329 if (SafeToHoist) 2330 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2331 2332 // Broadcast the scalar into all locations in the vector. 2333 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2334 2335 return Shuf; 2336 } 2337 2338 /// This function adds 2339 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2340 /// to each vector element of Val. The sequence starts at StartIndex. 2341 /// \p Opcode is relevant for FP induction variable. 2342 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2343 Instruction::BinaryOps BinOp, ElementCount VF, 2344 IRBuilder<> &Builder) { 2345 assert(VF.isVector() && "only vector VFs are supported"); 2346 2347 // Create and check the types. 2348 auto *ValVTy = cast<VectorType>(Val->getType()); 2349 ElementCount VLen = ValVTy->getElementCount(); 2350 2351 Type *STy = Val->getType()->getScalarType(); 2352 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2353 "Induction Step must be an integer or FP"); 2354 assert(Step->getType() == STy && "Step has wrong type"); 2355 2356 SmallVector<Constant *, 8> Indices; 2357 2358 // Create a vector of consecutive numbers from zero to VF. 2359 VectorType *InitVecValVTy = ValVTy; 2360 Type *InitVecValSTy = STy; 2361 if (STy->isFloatingPointTy()) { 2362 InitVecValSTy = 2363 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2364 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2365 } 2366 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2367 2368 // Splat the StartIdx 2369 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2370 2371 if (STy->isIntegerTy()) { 2372 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2373 Step = Builder.CreateVectorSplat(VLen, Step); 2374 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2375 // FIXME: The newly created binary instructions should contain nsw/nuw 2376 // flags, which can be found from the original scalar operations. 2377 Step = Builder.CreateMul(InitVec, Step); 2378 return Builder.CreateAdd(Val, Step, "induction"); 2379 } 2380 2381 // Floating point induction. 2382 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2383 "Binary Opcode should be specified for FP induction"); 2384 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2385 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2386 2387 Step = Builder.CreateVectorSplat(VLen, Step); 2388 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2389 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2390 } 2391 2392 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2393 const InductionDescriptor &II, Value *Step, Value *Start, 2394 Instruction *EntryVal, VPValue *Def, VPTransformState &State) { 2395 IRBuilder<> &Builder = State.Builder; 2396 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2397 "Expected either an induction phi-node or a truncate of it!"); 2398 2399 // Construct the initial value of the vector IV in the vector loop preheader 2400 auto CurrIP = Builder.saveIP(); 2401 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2402 if (isa<TruncInst>(EntryVal)) { 2403 assert(Start->getType()->isIntegerTy() && 2404 "Truncation requires an integer type"); 2405 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2406 Step = Builder.CreateTrunc(Step, TruncType); 2407 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2408 } 2409 2410 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 2411 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 2412 Value *SteppedStart = getStepVector( 2413 SplatStart, Zero, Step, II.getInductionOpcode(), State.VF, State.Builder); 2414 2415 // We create vector phi nodes for both integer and floating-point induction 2416 // variables. Here, we determine the kind of arithmetic we will perform. 2417 Instruction::BinaryOps AddOp; 2418 Instruction::BinaryOps MulOp; 2419 if (Step->getType()->isIntegerTy()) { 2420 AddOp = Instruction::Add; 2421 MulOp = Instruction::Mul; 2422 } else { 2423 AddOp = II.getInductionOpcode(); 2424 MulOp = Instruction::FMul; 2425 } 2426 2427 // Multiply the vectorization factor by the step using integer or 2428 // floating-point arithmetic as appropriate. 2429 Type *StepType = Step->getType(); 2430 Value *RuntimeVF; 2431 if (Step->getType()->isFloatingPointTy()) 2432 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 2433 else 2434 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 2435 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2436 2437 // Create a vector splat to use in the induction update. 2438 // 2439 // FIXME: If the step is non-constant, we create the vector splat with 2440 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2441 // handle a constant vector splat. 2442 Value *SplatVF = isa<Constant>(Mul) 2443 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 2444 : Builder.CreateVectorSplat(State.VF, Mul); 2445 Builder.restoreIP(CurrIP); 2446 2447 // We may need to add the step a number of times, depending on the unroll 2448 // factor. The last of those goes into the PHI. 2449 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2450 &*LoopVectorBody->getFirstInsertionPt()); 2451 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2452 Instruction *LastInduction = VecInd; 2453 for (unsigned Part = 0; Part < UF; ++Part) { 2454 State.set(Def, LastInduction, Part); 2455 2456 if (isa<TruncInst>(EntryVal)) 2457 addMetadata(LastInduction, EntryVal); 2458 2459 LastInduction = cast<Instruction>( 2460 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2461 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2462 } 2463 2464 // Move the last step to the end of the latch block. This ensures consistent 2465 // placement of all induction updates. 2466 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2467 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2468 LastInduction->moveBefore(Br); 2469 LastInduction->setName("vec.ind.next"); 2470 2471 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2472 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2473 } 2474 2475 void InnerLoopVectorizer::widenIntOrFpInduction( 2476 PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, VPTransformState &State, 2477 Value *CanonicalIV) { 2478 Value *Start = Def->getStartValue()->getLiveInIRValue(); 2479 const InductionDescriptor &ID = Def->getInductionDescriptor(); 2480 TruncInst *Trunc = Def->getTruncInst(); 2481 IRBuilder<> &Builder = State.Builder; 2482 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2483 assert(!State.VF.isZero() && "VF must be non-zero"); 2484 2485 // The value from the original loop to which we are mapping the new induction 2486 // variable. 2487 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2488 2489 auto &DL = EntryVal->getModule()->getDataLayout(); 2490 2491 // Generate code for the induction step. Note that induction steps are 2492 // required to be loop-invariant 2493 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2494 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2495 "Induction step should be loop invariant"); 2496 if (PSE.getSE()->isSCEVable(IV->getType())) { 2497 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2498 return Exp.expandCodeFor(Step, Step->getType(), 2499 State.CFG.VectorPreHeader->getTerminator()); 2500 } 2501 return cast<SCEVUnknown>(Step)->getValue(); 2502 }; 2503 2504 // The scalar value to broadcast. This is derived from the canonical 2505 // induction variable. If a truncation type is given, truncate the canonical 2506 // induction variable and step. Otherwise, derive these values from the 2507 // induction descriptor. 2508 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2509 Value *ScalarIV = CanonicalIV; 2510 Type *NeededType = IV->getType(); 2511 if (!Def->isCanonical() || ScalarIV->getType() != NeededType) { 2512 ScalarIV = 2513 NeededType->isIntegerTy() 2514 ? Builder.CreateSExtOrTrunc(ScalarIV, NeededType) 2515 : Builder.CreateCast(Instruction::SIToFP, ScalarIV, NeededType); 2516 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID, 2517 State.CFG.PrevBB); 2518 ScalarIV->setName("offset.idx"); 2519 } 2520 if (Trunc) { 2521 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2522 assert(Step->getType()->isIntegerTy() && 2523 "Truncation requires an integer step"); 2524 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2525 Step = Builder.CreateTrunc(Step, TruncType); 2526 } 2527 return ScalarIV; 2528 }; 2529 2530 // Fast-math-flags propagate from the original induction instruction. 2531 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2532 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2533 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2534 2535 // Now do the actual transformations, and start with creating the step value. 2536 Value *Step = CreateStepValue(ID.getStep()); 2537 if (State.VF.isScalar()) { 2538 Value *ScalarIV = CreateScalarIV(Step); 2539 Type *ScalarTy = IntegerType::get(ScalarIV->getContext(), 2540 Step->getType()->getScalarSizeInBits()); 2541 2542 Instruction::BinaryOps IncOp = ID.getInductionOpcode(); 2543 if (IncOp == Instruction::BinaryOpsEnd) 2544 IncOp = Instruction::Add; 2545 for (unsigned Part = 0; Part < UF; ++Part) { 2546 Value *StartIdx = ConstantInt::get(ScalarTy, Part); 2547 Instruction::BinaryOps MulOp = Instruction::Mul; 2548 if (Step->getType()->isFloatingPointTy()) { 2549 StartIdx = Builder.CreateUIToFP(StartIdx, Step->getType()); 2550 MulOp = Instruction::FMul; 2551 } 2552 2553 Value *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2554 Value *EntryPart = Builder.CreateBinOp(IncOp, ScalarIV, Mul, "induction"); 2555 State.set(Def, EntryPart, Part); 2556 if (Trunc) { 2557 assert(!Step->getType()->isFloatingPointTy() && 2558 "fp inductions shouldn't be truncated"); 2559 addMetadata(EntryPart, Trunc); 2560 } 2561 } 2562 return; 2563 } 2564 2565 // Create a new independent vector induction variable, if one is needed. 2566 if (Def->needsVectorIV()) 2567 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State); 2568 2569 if (Def->needsScalarIV()) { 2570 // Create scalar steps that can be used by instructions we will later 2571 // scalarize. Note that the addition of the scalar steps will not increase 2572 // the number of instructions in the loop in the common case prior to 2573 // InstCombine. We will be trading one vector extract for each scalar step. 2574 Value *ScalarIV = CreateScalarIV(Step); 2575 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State); 2576 } 2577 } 2578 2579 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2580 Instruction *EntryVal, 2581 const InductionDescriptor &ID, 2582 VPValue *Def, 2583 VPTransformState &State) { 2584 IRBuilder<> &Builder = State.Builder; 2585 // We shouldn't have to build scalar steps if we aren't vectorizing. 2586 assert(State.VF.isVector() && "VF should be greater than one"); 2587 // Get the value type and ensure it and the step have the same integer type. 2588 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2589 assert(ScalarIVTy == Step->getType() && 2590 "Val and Step should have the same type"); 2591 2592 // We build scalar steps for both integer and floating-point induction 2593 // variables. Here, we determine the kind of arithmetic we will perform. 2594 Instruction::BinaryOps AddOp; 2595 Instruction::BinaryOps MulOp; 2596 if (ScalarIVTy->isIntegerTy()) { 2597 AddOp = Instruction::Add; 2598 MulOp = Instruction::Mul; 2599 } else { 2600 AddOp = ID.getInductionOpcode(); 2601 MulOp = Instruction::FMul; 2602 } 2603 2604 // Determine the number of scalars we need to generate for each unroll 2605 // iteration. If EntryVal is uniform, we only need to generate the first 2606 // lane. Otherwise, we generate all VF values. 2607 bool IsUniform = 2608 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), State.VF); 2609 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 2610 // Compute the scalar steps and save the results in State. 2611 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2612 ScalarIVTy->getScalarSizeInBits()); 2613 Type *VecIVTy = nullptr; 2614 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2615 if (!IsUniform && State.VF.isScalable()) { 2616 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2617 UnitStepVec = 2618 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2619 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2620 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2621 } 2622 2623 for (unsigned Part = 0; Part < State.UF; ++Part) { 2624 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2625 2626 if (!IsUniform && State.VF.isScalable()) { 2627 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2628 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2629 if (ScalarIVTy->isFloatingPointTy()) 2630 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2631 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2632 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2633 State.set(Def, Add, Part); 2634 // It's useful to record the lane values too for the known minimum number 2635 // of elements so we do those below. This improves the code quality when 2636 // trying to extract the first element, for example. 2637 } 2638 2639 if (ScalarIVTy->isFloatingPointTy()) 2640 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2641 2642 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2643 Value *StartIdx = Builder.CreateBinOp( 2644 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2645 // The step returned by `createStepForVF` is a runtime-evaluated value 2646 // when VF is scalable. Otherwise, it should be folded into a Constant. 2647 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2648 "Expected StartIdx to be folded to a constant when VF is not " 2649 "scalable"); 2650 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2651 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2652 State.set(Def, Add, VPIteration(Part, Lane)); 2653 } 2654 } 2655 } 2656 2657 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2658 const VPIteration &Instance, 2659 VPTransformState &State) { 2660 Value *ScalarInst = State.get(Def, Instance); 2661 Value *VectorValue = State.get(Def, Instance.Part); 2662 VectorValue = Builder.CreateInsertElement( 2663 VectorValue, ScalarInst, 2664 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2665 State.set(Def, VectorValue, Instance.Part); 2666 } 2667 2668 // Return whether we allow using masked interleave-groups (for dealing with 2669 // strided loads/stores that reside in predicated blocks, or for dealing 2670 // with gaps). 2671 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2672 // If an override option has been passed in for interleaved accesses, use it. 2673 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2674 return EnableMaskedInterleavedMemAccesses; 2675 2676 return TTI.enableMaskedInterleavedAccessVectorization(); 2677 } 2678 2679 // Try to vectorize the interleave group that \p Instr belongs to. 2680 // 2681 // E.g. Translate following interleaved load group (factor = 3): 2682 // for (i = 0; i < N; i+=3) { 2683 // R = Pic[i]; // Member of index 0 2684 // G = Pic[i+1]; // Member of index 1 2685 // B = Pic[i+2]; // Member of index 2 2686 // ... // do something to R, G, B 2687 // } 2688 // To: 2689 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2690 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2691 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2692 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2693 // 2694 // Or translate following interleaved store group (factor = 3): 2695 // for (i = 0; i < N; i+=3) { 2696 // ... do something to R, G, B 2697 // Pic[i] = R; // Member of index 0 2698 // Pic[i+1] = G; // Member of index 1 2699 // Pic[i+2] = B; // Member of index 2 2700 // } 2701 // To: 2702 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2703 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2704 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2705 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2706 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2707 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2708 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2709 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2710 VPValue *BlockInMask) { 2711 Instruction *Instr = Group->getInsertPos(); 2712 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2713 2714 // Prepare for the vector type of the interleaved load/store. 2715 Type *ScalarTy = getLoadStoreType(Instr); 2716 unsigned InterleaveFactor = Group->getFactor(); 2717 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2718 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2719 2720 // Prepare for the new pointers. 2721 SmallVector<Value *, 2> AddrParts; 2722 unsigned Index = Group->getIndex(Instr); 2723 2724 // TODO: extend the masked interleaved-group support to reversed access. 2725 assert((!BlockInMask || !Group->isReverse()) && 2726 "Reversed masked interleave-group not supported."); 2727 2728 // If the group is reverse, adjust the index to refer to the last vector lane 2729 // instead of the first. We adjust the index from the first vector lane, 2730 // rather than directly getting the pointer for lane VF - 1, because the 2731 // pointer operand of the interleaved access is supposed to be uniform. For 2732 // uniform instructions, we're only required to generate a value for the 2733 // first vector lane in each unroll iteration. 2734 if (Group->isReverse()) 2735 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2736 2737 for (unsigned Part = 0; Part < UF; Part++) { 2738 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2739 setDebugLocFromInst(AddrPart); 2740 2741 // Notice current instruction could be any index. Need to adjust the address 2742 // to the member of index 0. 2743 // 2744 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2745 // b = A[i]; // Member of index 0 2746 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2747 // 2748 // E.g. A[i+1] = a; // Member of index 1 2749 // A[i] = b; // Member of index 0 2750 // A[i+2] = c; // Member of index 2 (Current instruction) 2751 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2752 2753 bool InBounds = false; 2754 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2755 InBounds = gep->isInBounds(); 2756 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2757 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2758 2759 // Cast to the vector pointer type. 2760 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2761 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2762 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2763 } 2764 2765 setDebugLocFromInst(Instr); 2766 Value *PoisonVec = PoisonValue::get(VecTy); 2767 2768 Value *MaskForGaps = nullptr; 2769 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2770 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2771 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2772 } 2773 2774 // Vectorize the interleaved load group. 2775 if (isa<LoadInst>(Instr)) { 2776 // For each unroll part, create a wide load for the group. 2777 SmallVector<Value *, 2> NewLoads; 2778 for (unsigned Part = 0; Part < UF; Part++) { 2779 Instruction *NewLoad; 2780 if (BlockInMask || MaskForGaps) { 2781 assert(useMaskedInterleavedAccesses(*TTI) && 2782 "masked interleaved groups are not allowed."); 2783 Value *GroupMask = MaskForGaps; 2784 if (BlockInMask) { 2785 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2786 Value *ShuffledMask = Builder.CreateShuffleVector( 2787 BlockInMaskPart, 2788 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2789 "interleaved.mask"); 2790 GroupMask = MaskForGaps 2791 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2792 MaskForGaps) 2793 : ShuffledMask; 2794 } 2795 NewLoad = 2796 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2797 GroupMask, PoisonVec, "wide.masked.vec"); 2798 } 2799 else 2800 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2801 Group->getAlign(), "wide.vec"); 2802 Group->addMetadata(NewLoad); 2803 NewLoads.push_back(NewLoad); 2804 } 2805 2806 // For each member in the group, shuffle out the appropriate data from the 2807 // wide loads. 2808 unsigned J = 0; 2809 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2810 Instruction *Member = Group->getMember(I); 2811 2812 // Skip the gaps in the group. 2813 if (!Member) 2814 continue; 2815 2816 auto StrideMask = 2817 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2818 for (unsigned Part = 0; Part < UF; Part++) { 2819 Value *StridedVec = Builder.CreateShuffleVector( 2820 NewLoads[Part], StrideMask, "strided.vec"); 2821 2822 // If this member has different type, cast the result type. 2823 if (Member->getType() != ScalarTy) { 2824 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2825 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2826 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2827 } 2828 2829 if (Group->isReverse()) 2830 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2831 2832 State.set(VPDefs[J], StridedVec, Part); 2833 } 2834 ++J; 2835 } 2836 return; 2837 } 2838 2839 // The sub vector type for current instruction. 2840 auto *SubVT = VectorType::get(ScalarTy, VF); 2841 2842 // Vectorize the interleaved store group. 2843 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2844 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2845 "masked interleaved groups are not allowed."); 2846 assert((!MaskForGaps || !VF.isScalable()) && 2847 "masking gaps for scalable vectors is not yet supported."); 2848 for (unsigned Part = 0; Part < UF; Part++) { 2849 // Collect the stored vector from each member. 2850 SmallVector<Value *, 4> StoredVecs; 2851 for (unsigned i = 0; i < InterleaveFactor; i++) { 2852 assert((Group->getMember(i) || MaskForGaps) && 2853 "Fail to get a member from an interleaved store group"); 2854 Instruction *Member = Group->getMember(i); 2855 2856 // Skip the gaps in the group. 2857 if (!Member) { 2858 Value *Undef = PoisonValue::get(SubVT); 2859 StoredVecs.push_back(Undef); 2860 continue; 2861 } 2862 2863 Value *StoredVec = State.get(StoredValues[i], Part); 2864 2865 if (Group->isReverse()) 2866 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2867 2868 // If this member has different type, cast it to a unified type. 2869 2870 if (StoredVec->getType() != SubVT) 2871 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2872 2873 StoredVecs.push_back(StoredVec); 2874 } 2875 2876 // Concatenate all vectors into a wide vector. 2877 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2878 2879 // Interleave the elements in the wide vector. 2880 Value *IVec = Builder.CreateShuffleVector( 2881 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2882 "interleaved.vec"); 2883 2884 Instruction *NewStoreInstr; 2885 if (BlockInMask || MaskForGaps) { 2886 Value *GroupMask = MaskForGaps; 2887 if (BlockInMask) { 2888 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2889 Value *ShuffledMask = Builder.CreateShuffleVector( 2890 BlockInMaskPart, 2891 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2892 "interleaved.mask"); 2893 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2894 ShuffledMask, MaskForGaps) 2895 : ShuffledMask; 2896 } 2897 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2898 Group->getAlign(), GroupMask); 2899 } else 2900 NewStoreInstr = 2901 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2902 2903 Group->addMetadata(NewStoreInstr); 2904 } 2905 } 2906 2907 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2908 VPReplicateRecipe *RepRecipe, 2909 const VPIteration &Instance, 2910 bool IfPredicateInstr, 2911 VPTransformState &State) { 2912 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2913 2914 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2915 // the first lane and part. 2916 if (isa<NoAliasScopeDeclInst>(Instr)) 2917 if (!Instance.isFirstIteration()) 2918 return; 2919 2920 setDebugLocFromInst(Instr); 2921 2922 // Does this instruction return a value ? 2923 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2924 2925 Instruction *Cloned = Instr->clone(); 2926 if (!IsVoidRetTy) 2927 Cloned->setName(Instr->getName() + ".cloned"); 2928 2929 // If the scalarized instruction contributes to the address computation of a 2930 // widen masked load/store which was in a basic block that needed predication 2931 // and is not predicated after vectorization, we can't propagate 2932 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2933 // instruction could feed a poison value to the base address of the widen 2934 // load/store. 2935 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2936 Cloned->dropPoisonGeneratingFlags(); 2937 2938 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 2939 Builder.GetInsertPoint()); 2940 // Replace the operands of the cloned instructions with their scalar 2941 // equivalents in the new loop. 2942 for (auto &I : enumerate(RepRecipe->operands())) { 2943 auto InputInstance = Instance; 2944 VPValue *Operand = I.value(); 2945 if (State.Plan->isUniformAfterVectorization(Operand)) 2946 InputInstance.Lane = VPLane::getFirstLane(); 2947 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2948 } 2949 addNewMetadata(Cloned, Instr); 2950 2951 // Place the cloned scalar in the new loop. 2952 Builder.Insert(Cloned); 2953 2954 State.set(RepRecipe, Cloned, Instance); 2955 2956 // If we just cloned a new assumption, add it the assumption cache. 2957 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2958 AC->registerAssumption(II); 2959 2960 // End if-block. 2961 if (IfPredicateInstr) 2962 PredicatedInstructions.push_back(Cloned); 2963 } 2964 2965 void InnerLoopVectorizer::createHeaderBranch(Loop *L) { 2966 BasicBlock *Header = L->getHeader(); 2967 assert(!L->getLoopLatch() && "loop should not have a latch at this point"); 2968 2969 IRBuilder<> B(Header->getTerminator()); 2970 Instruction *OldInst = 2971 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 2972 setDebugLocFromInst(OldInst, &B); 2973 2974 // Connect the header to the exit and header blocks and replace the old 2975 // terminator. 2976 B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header); 2977 2978 // Now we have two terminators. Remove the old one from the block. 2979 Header->getTerminator()->eraseFromParent(); 2980 } 2981 2982 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2983 if (TripCount) 2984 return TripCount; 2985 2986 assert(L && "Create Trip Count for null loop."); 2987 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2988 // Find the loop boundaries. 2989 ScalarEvolution *SE = PSE.getSE(); 2990 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2991 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2992 "Invalid loop count"); 2993 2994 Type *IdxTy = Legal->getWidestInductionType(); 2995 assert(IdxTy && "No type for induction"); 2996 2997 // The exit count might have the type of i64 while the phi is i32. This can 2998 // happen if we have an induction variable that is sign extended before the 2999 // compare. The only way that we get a backedge taken count is that the 3000 // induction variable was signed and as such will not overflow. In such a case 3001 // truncation is legal. 3002 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3003 IdxTy->getPrimitiveSizeInBits()) 3004 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3005 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3006 3007 // Get the total trip count from the count by adding 1. 3008 const SCEV *ExitCount = SE->getAddExpr( 3009 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3010 3011 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3012 3013 // Expand the trip count and place the new instructions in the preheader. 3014 // Notice that the pre-header does not change, only the loop body. 3015 SCEVExpander Exp(*SE, DL, "induction"); 3016 3017 // Count holds the overall loop count (N). 3018 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3019 L->getLoopPreheader()->getTerminator()); 3020 3021 if (TripCount->getType()->isPointerTy()) 3022 TripCount = 3023 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3024 L->getLoopPreheader()->getTerminator()); 3025 3026 return TripCount; 3027 } 3028 3029 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3030 if (VectorTripCount) 3031 return VectorTripCount; 3032 3033 Value *TC = getOrCreateTripCount(L); 3034 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3035 3036 Type *Ty = TC->getType(); 3037 // This is where we can make the step a runtime constant. 3038 Value *Step = createStepForVF(Builder, Ty, VF, UF); 3039 3040 // If the tail is to be folded by masking, round the number of iterations N 3041 // up to a multiple of Step instead of rounding down. This is done by first 3042 // adding Step-1 and then rounding down. Note that it's ok if this addition 3043 // overflows: the vector induction variable will eventually wrap to zero given 3044 // that it starts at zero and its Step is a power of two; the loop will then 3045 // exit, with the last early-exit vector comparison also producing all-true. 3046 if (Cost->foldTailByMasking()) { 3047 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3048 "VF*UF must be a power of 2 when folding tail by masking"); 3049 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 3050 TC = Builder.CreateAdd( 3051 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 3052 } 3053 3054 // Now we need to generate the expression for the part of the loop that the 3055 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3056 // iterations are not required for correctness, or N - Step, otherwise. Step 3057 // is equal to the vectorization factor (number of SIMD elements) times the 3058 // unroll factor (number of SIMD instructions). 3059 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3060 3061 // There are cases where we *must* run at least one iteration in the remainder 3062 // loop. See the cost model for when this can happen. If the step evenly 3063 // divides the trip count, we set the remainder to be equal to the step. If 3064 // the step does not evenly divide the trip count, no adjustment is necessary 3065 // since there will already be scalar iterations. Note that the minimum 3066 // iterations check ensures that N >= Step. 3067 if (Cost->requiresScalarEpilogue(VF)) { 3068 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3069 R = Builder.CreateSelect(IsZero, Step, R); 3070 } 3071 3072 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3073 3074 return VectorTripCount; 3075 } 3076 3077 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3078 const DataLayout &DL) { 3079 // Verify that V is a vector type with same number of elements as DstVTy. 3080 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3081 unsigned VF = DstFVTy->getNumElements(); 3082 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3083 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3084 Type *SrcElemTy = SrcVecTy->getElementType(); 3085 Type *DstElemTy = DstFVTy->getElementType(); 3086 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3087 "Vector elements must have same size"); 3088 3089 // Do a direct cast if element types are castable. 3090 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3091 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3092 } 3093 // V cannot be directly casted to desired vector type. 3094 // May happen when V is a floating point vector but DstVTy is a vector of 3095 // pointers or vice-versa. Handle this using a two-step bitcast using an 3096 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3097 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3098 "Only one type should be a pointer type"); 3099 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3100 "Only one type should be a floating point type"); 3101 Type *IntTy = 3102 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3103 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3104 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3105 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3106 } 3107 3108 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3109 BasicBlock *Bypass) { 3110 Value *Count = getOrCreateTripCount(L); 3111 // Reuse existing vector loop preheader for TC checks. 3112 // Note that new preheader block is generated for vector loop. 3113 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3114 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3115 3116 // Generate code to check if the loop's trip count is less than VF * UF, or 3117 // equal to it in case a scalar epilogue is required; this implies that the 3118 // vector trip count is zero. This check also covers the case where adding one 3119 // to the backedge-taken count overflowed leading to an incorrect trip count 3120 // of zero. In this case we will also jump to the scalar loop. 3121 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3122 : ICmpInst::ICMP_ULT; 3123 3124 // If tail is to be folded, vector loop takes care of all iterations. 3125 Value *CheckMinIters = Builder.getFalse(); 3126 if (!Cost->foldTailByMasking()) { 3127 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 3128 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3129 } 3130 // Create new preheader for vector loop. 3131 LoopVectorPreHeader = 3132 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3133 "vector.ph"); 3134 3135 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3136 DT->getNode(Bypass)->getIDom()) && 3137 "TC check is expected to dominate Bypass"); 3138 3139 // Update dominator for Bypass & LoopExit (if needed). 3140 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3141 if (!Cost->requiresScalarEpilogue(VF)) 3142 // If there is an epilogue which must run, there's no edge from the 3143 // middle block to exit blocks and thus no need to update the immediate 3144 // dominator of the exit blocks. 3145 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3146 3147 ReplaceInstWithInst( 3148 TCCheckBlock->getTerminator(), 3149 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3150 LoopBypassBlocks.push_back(TCCheckBlock); 3151 } 3152 3153 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3154 3155 BasicBlock *const SCEVCheckBlock = 3156 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3157 if (!SCEVCheckBlock) 3158 return nullptr; 3159 3160 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3161 (OptForSizeBasedOnProfile && 3162 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3163 "Cannot SCEV check stride or overflow when optimizing for size"); 3164 3165 3166 // Update dominator only if this is first RT check. 3167 if (LoopBypassBlocks.empty()) { 3168 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3169 if (!Cost->requiresScalarEpilogue(VF)) 3170 // If there is an epilogue which must run, there's no edge from the 3171 // middle block to exit blocks and thus no need to update the immediate 3172 // dominator of the exit blocks. 3173 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3174 } 3175 3176 LoopBypassBlocks.push_back(SCEVCheckBlock); 3177 AddedSafetyChecks = true; 3178 return SCEVCheckBlock; 3179 } 3180 3181 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3182 BasicBlock *Bypass) { 3183 // VPlan-native path does not do any analysis for runtime checks currently. 3184 if (EnableVPlanNativePath) 3185 return nullptr; 3186 3187 BasicBlock *const MemCheckBlock = 3188 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3189 3190 // Check if we generated code that checks in runtime if arrays overlap. We put 3191 // the checks into a separate block to make the more common case of few 3192 // elements faster. 3193 if (!MemCheckBlock) 3194 return nullptr; 3195 3196 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3197 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3198 "Cannot emit memory checks when optimizing for size, unless forced " 3199 "to vectorize."); 3200 ORE->emit([&]() { 3201 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3202 L->getStartLoc(), L->getHeader()) 3203 << "Code-size may be reduced by not forcing " 3204 "vectorization, or by source-code modifications " 3205 "eliminating the need for runtime checks " 3206 "(e.g., adding 'restrict')."; 3207 }); 3208 } 3209 3210 LoopBypassBlocks.push_back(MemCheckBlock); 3211 3212 AddedSafetyChecks = true; 3213 3214 // We currently don't use LoopVersioning for the actual loop cloning but we 3215 // still use it to add the noalias metadata. 3216 LVer = std::make_unique<LoopVersioning>( 3217 *Legal->getLAI(), 3218 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3219 DT, PSE.getSE()); 3220 LVer->prepareNoAliasMetadata(); 3221 return MemCheckBlock; 3222 } 3223 3224 Value *InnerLoopVectorizer::emitTransformedIndex( 3225 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3226 const InductionDescriptor &ID, BasicBlock *VectorHeader) const { 3227 3228 SCEVExpander Exp(*SE, DL, "induction"); 3229 auto Step = ID.getStep(); 3230 auto StartValue = ID.getStartValue(); 3231 assert(Index->getType()->getScalarType() == Step->getType() && 3232 "Index scalar type does not match StepValue type"); 3233 3234 // Note: the IR at this point is broken. We cannot use SE to create any new 3235 // SCEV and then expand it, hoping that SCEV's simplification will give us 3236 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3237 // lead to various SCEV crashes. So all we can do is to use builder and rely 3238 // on InstCombine for future simplifications. Here we handle some trivial 3239 // cases only. 3240 auto CreateAdd = [&B](Value *X, Value *Y) { 3241 assert(X->getType() == Y->getType() && "Types don't match!"); 3242 if (auto *CX = dyn_cast<ConstantInt>(X)) 3243 if (CX->isZero()) 3244 return Y; 3245 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3246 if (CY->isZero()) 3247 return X; 3248 return B.CreateAdd(X, Y); 3249 }; 3250 3251 // We allow X to be a vector type, in which case Y will potentially be 3252 // splatted into a vector with the same element count. 3253 auto CreateMul = [&B](Value *X, Value *Y) { 3254 assert(X->getType()->getScalarType() == Y->getType() && 3255 "Types don't match!"); 3256 if (auto *CX = dyn_cast<ConstantInt>(X)) 3257 if (CX->isOne()) 3258 return Y; 3259 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3260 if (CY->isOne()) 3261 return X; 3262 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3263 if (XVTy && !isa<VectorType>(Y->getType())) 3264 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3265 return B.CreateMul(X, Y); 3266 }; 3267 3268 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3269 // loop, choose the end of the vector loop header (=VectorHeader), because 3270 // the DomTree is not kept up-to-date for additional blocks generated in the 3271 // vector loop. By using the header as insertion point, we guarantee that the 3272 // expanded instructions dominate all their uses. 3273 auto GetInsertPoint = [this, &B, VectorHeader]() { 3274 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3275 if (InsertBB != LoopVectorBody && 3276 LI->getLoopFor(VectorHeader) == LI->getLoopFor(InsertBB)) 3277 return VectorHeader->getTerminator(); 3278 return &*B.GetInsertPoint(); 3279 }; 3280 3281 switch (ID.getKind()) { 3282 case InductionDescriptor::IK_IntInduction: { 3283 assert(!isa<VectorType>(Index->getType()) && 3284 "Vector indices not supported for integer inductions yet"); 3285 assert(Index->getType() == StartValue->getType() && 3286 "Index type does not match StartValue type"); 3287 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3288 return B.CreateSub(StartValue, Index); 3289 auto *Offset = CreateMul( 3290 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3291 return CreateAdd(StartValue, Offset); 3292 } 3293 case InductionDescriptor::IK_PtrInduction: { 3294 assert(isa<SCEVConstant>(Step) && 3295 "Expected constant step for pointer induction"); 3296 return B.CreateGEP( 3297 ID.getElementType(), StartValue, 3298 CreateMul(Index, 3299 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3300 GetInsertPoint()))); 3301 } 3302 case InductionDescriptor::IK_FpInduction: { 3303 assert(!isa<VectorType>(Index->getType()) && 3304 "Vector indices not supported for FP inductions yet"); 3305 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3306 auto InductionBinOp = ID.getInductionBinOp(); 3307 assert(InductionBinOp && 3308 (InductionBinOp->getOpcode() == Instruction::FAdd || 3309 InductionBinOp->getOpcode() == Instruction::FSub) && 3310 "Original bin op should be defined for FP induction"); 3311 3312 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3313 Value *MulExp = B.CreateFMul(StepValue, Index); 3314 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3315 "induction"); 3316 } 3317 case InductionDescriptor::IK_NoInduction: 3318 return nullptr; 3319 } 3320 llvm_unreachable("invalid enum"); 3321 } 3322 3323 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3324 LoopScalarBody = OrigLoop->getHeader(); 3325 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3326 assert(LoopVectorPreHeader && "Invalid loop structure"); 3327 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3328 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3329 "multiple exit loop without required epilogue?"); 3330 3331 LoopMiddleBlock = 3332 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3333 LI, nullptr, Twine(Prefix) + "middle.block"); 3334 LoopScalarPreHeader = 3335 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3336 nullptr, Twine(Prefix) + "scalar.ph"); 3337 3338 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3339 3340 // Set up the middle block terminator. Two cases: 3341 // 1) If we know that we must execute the scalar epilogue, emit an 3342 // unconditional branch. 3343 // 2) Otherwise, we must have a single unique exit block (due to how we 3344 // implement the multiple exit case). In this case, set up a conditonal 3345 // branch from the middle block to the loop scalar preheader, and the 3346 // exit block. completeLoopSkeleton will update the condition to use an 3347 // iteration check, if required to decide whether to execute the remainder. 3348 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3349 BranchInst::Create(LoopScalarPreHeader) : 3350 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3351 Builder.getTrue()); 3352 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3353 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3354 3355 // We intentionally don't let SplitBlock to update LoopInfo since 3356 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3357 // LoopVectorBody is explicitly added to the correct place few lines later. 3358 LoopVectorBody = 3359 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3360 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3361 3362 // Update dominator for loop exit. 3363 if (!Cost->requiresScalarEpilogue(VF)) 3364 // If there is an epilogue which must run, there's no edge from the 3365 // middle block to exit blocks and thus no need to update the immediate 3366 // dominator of the exit blocks. 3367 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3368 3369 // Create and register the new vector loop. 3370 Loop *Lp = LI->AllocateLoop(); 3371 Loop *ParentLoop = OrigLoop->getParentLoop(); 3372 3373 // Insert the new loop into the loop nest and register the new basic blocks 3374 // before calling any utilities such as SCEV that require valid LoopInfo. 3375 if (ParentLoop) { 3376 ParentLoop->addChildLoop(Lp); 3377 } else { 3378 LI->addTopLevelLoop(Lp); 3379 } 3380 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3381 return Lp; 3382 } 3383 3384 void InnerLoopVectorizer::createInductionResumeValues( 3385 Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) { 3386 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3387 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3388 "Inconsistent information about additional bypass."); 3389 3390 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3391 assert(VectorTripCount && L && "Expected valid arguments"); 3392 // We are going to resume the execution of the scalar loop. 3393 // Go over all of the induction variables that we found and fix the 3394 // PHIs that are left in the scalar version of the loop. 3395 // The starting values of PHI nodes depend on the counter of the last 3396 // iteration in the vectorized loop. 3397 // If we come from a bypass edge then we need to start from the original 3398 // start value. 3399 Instruction *OldInduction = Legal->getPrimaryInduction(); 3400 for (auto &InductionEntry : Legal->getInductionVars()) { 3401 PHINode *OrigPhi = InductionEntry.first; 3402 InductionDescriptor II = InductionEntry.second; 3403 3404 // Create phi nodes to merge from the backedge-taken check block. 3405 PHINode *BCResumeVal = 3406 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3407 LoopScalarPreHeader->getTerminator()); 3408 // Copy original phi DL over to the new one. 3409 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3410 Value *&EndValue = IVEndValues[OrigPhi]; 3411 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3412 if (OrigPhi == OldInduction) { 3413 // We know what the end value is. 3414 EndValue = VectorTripCount; 3415 } else { 3416 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3417 3418 // Fast-math-flags propagate from the original induction instruction. 3419 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3420 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3421 3422 Type *StepType = II.getStep()->getType(); 3423 Instruction::CastOps CastOp = 3424 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3425 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3426 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3427 EndValue = 3428 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody); 3429 EndValue->setName("ind.end"); 3430 3431 // Compute the end value for the additional bypass (if applicable). 3432 if (AdditionalBypass.first) { 3433 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3434 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3435 StepType, true); 3436 CRD = 3437 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3438 EndValueFromAdditionalBypass = 3439 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody); 3440 EndValueFromAdditionalBypass->setName("ind.end"); 3441 } 3442 } 3443 // The new PHI merges the original incoming value, in case of a bypass, 3444 // or the value at the end of the vectorized loop. 3445 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3446 3447 // Fix the scalar body counter (PHI node). 3448 // The old induction's phi node in the scalar body needs the truncated 3449 // value. 3450 for (BasicBlock *BB : LoopBypassBlocks) 3451 BCResumeVal->addIncoming(II.getStartValue(), BB); 3452 3453 if (AdditionalBypass.first) 3454 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3455 EndValueFromAdditionalBypass); 3456 3457 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3458 } 3459 } 3460 3461 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3462 MDNode *OrigLoopID) { 3463 assert(L && "Expected valid loop."); 3464 3465 // The trip counts should be cached by now. 3466 Value *Count = getOrCreateTripCount(L); 3467 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3468 3469 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3470 3471 // Add a check in the middle block to see if we have completed 3472 // all of the iterations in the first vector loop. Three cases: 3473 // 1) If we require a scalar epilogue, there is no conditional branch as 3474 // we unconditionally branch to the scalar preheader. Do nothing. 3475 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3476 // Thus if tail is to be folded, we know we don't need to run the 3477 // remainder and we can use the previous value for the condition (true). 3478 // 3) Otherwise, construct a runtime check. 3479 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3480 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3481 Count, VectorTripCount, "cmp.n", 3482 LoopMiddleBlock->getTerminator()); 3483 3484 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3485 // of the corresponding compare because they may have ended up with 3486 // different line numbers and we want to avoid awkward line stepping while 3487 // debugging. Eg. if the compare has got a line number inside the loop. 3488 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3489 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3490 } 3491 3492 // Get ready to start creating new instructions into the vectorized body. 3493 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3494 "Inconsistent vector loop preheader"); 3495 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3496 3497 #ifdef EXPENSIVE_CHECKS 3498 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3499 LI->verify(*DT); 3500 #endif 3501 3502 return LoopVectorPreHeader; 3503 } 3504 3505 std::pair<BasicBlock *, Value *> 3506 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3507 /* 3508 In this function we generate a new loop. The new loop will contain 3509 the vectorized instructions while the old loop will continue to run the 3510 scalar remainder. 3511 3512 [ ] <-- loop iteration number check. 3513 / | 3514 / v 3515 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3516 | / | 3517 | / v 3518 || [ ] <-- vector pre header. 3519 |/ | 3520 | v 3521 | [ ] \ 3522 | [ ]_| <-- vector loop. 3523 | | 3524 | v 3525 \ -[ ] <--- middle-block. 3526 \/ | 3527 /\ v 3528 | ->[ ] <--- new preheader. 3529 | | 3530 (opt) v <-- edge from middle to exit iff epilogue is not required. 3531 | [ ] \ 3532 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3533 \ | 3534 \ v 3535 >[ ] <-- exit block(s). 3536 ... 3537 */ 3538 3539 // Get the metadata of the original loop before it gets modified. 3540 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3541 3542 // Workaround! Compute the trip count of the original loop and cache it 3543 // before we start modifying the CFG. This code has a systemic problem 3544 // wherein it tries to run analysis over partially constructed IR; this is 3545 // wrong, and not simply for SCEV. The trip count of the original loop 3546 // simply happens to be prone to hitting this in practice. In theory, we 3547 // can hit the same issue for any SCEV, or ValueTracking query done during 3548 // mutation. See PR49900. 3549 getOrCreateTripCount(OrigLoop); 3550 3551 // Create an empty vector loop, and prepare basic blocks for the runtime 3552 // checks. 3553 Loop *Lp = createVectorLoopSkeleton(""); 3554 3555 // Now, compare the new count to zero. If it is zero skip the vector loop and 3556 // jump to the scalar loop. This check also covers the case where the 3557 // backedge-taken count is uint##_max: adding one to it will overflow leading 3558 // to an incorrect trip count of zero. In this (rare) case we will also jump 3559 // to the scalar loop. 3560 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3561 3562 // Generate the code to check any assumptions that we've made for SCEV 3563 // expressions. 3564 emitSCEVChecks(Lp, LoopScalarPreHeader); 3565 3566 // Generate the code that checks in runtime if arrays overlap. We put the 3567 // checks into a separate block to make the more common case of few elements 3568 // faster. 3569 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3570 3571 createHeaderBranch(Lp); 3572 3573 // Emit phis for the new starting index of the scalar loop. 3574 createInductionResumeValues(Lp); 3575 3576 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 3577 } 3578 3579 // Fix up external users of the induction variable. At this point, we are 3580 // in LCSSA form, with all external PHIs that use the IV having one input value, 3581 // coming from the remainder loop. We need those PHIs to also have a correct 3582 // value for the IV when arriving directly from the middle block. 3583 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3584 const InductionDescriptor &II, 3585 Value *CountRoundDown, Value *EndValue, 3586 BasicBlock *MiddleBlock) { 3587 // There are two kinds of external IV usages - those that use the value 3588 // computed in the last iteration (the PHI) and those that use the penultimate 3589 // value (the value that feeds into the phi from the loop latch). 3590 // We allow both, but they, obviously, have different values. 3591 3592 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3593 3594 DenseMap<Value *, Value *> MissingVals; 3595 3596 // An external user of the last iteration's value should see the value that 3597 // the remainder loop uses to initialize its own IV. 3598 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3599 for (User *U : PostInc->users()) { 3600 Instruction *UI = cast<Instruction>(U); 3601 if (!OrigLoop->contains(UI)) { 3602 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3603 MissingVals[UI] = EndValue; 3604 } 3605 } 3606 3607 // An external user of the penultimate value need to see EndValue - Step. 3608 // The simplest way to get this is to recompute it from the constituent SCEVs, 3609 // that is Start + (Step * (CRD - 1)). 3610 for (User *U : OrigPhi->users()) { 3611 auto *UI = cast<Instruction>(U); 3612 if (!OrigLoop->contains(UI)) { 3613 const DataLayout &DL = 3614 OrigLoop->getHeader()->getModule()->getDataLayout(); 3615 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3616 3617 IRBuilder<> B(MiddleBlock->getTerminator()); 3618 3619 // Fast-math-flags propagate from the original induction instruction. 3620 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3621 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3622 3623 Value *CountMinusOne = B.CreateSub( 3624 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3625 Value *CMO = 3626 !II.getStep()->getType()->isIntegerTy() 3627 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3628 II.getStep()->getType()) 3629 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3630 CMO->setName("cast.cmo"); 3631 Value *Escape = 3632 emitTransformedIndex(B, CMO, PSE.getSE(), DL, II, LoopVectorBody); 3633 Escape->setName("ind.escape"); 3634 MissingVals[UI] = Escape; 3635 } 3636 } 3637 3638 for (auto &I : MissingVals) { 3639 PHINode *PHI = cast<PHINode>(I.first); 3640 // One corner case we have to handle is two IVs "chasing" each-other, 3641 // that is %IV2 = phi [...], [ %IV1, %latch ] 3642 // In this case, if IV1 has an external use, we need to avoid adding both 3643 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3644 // don't already have an incoming value for the middle block. 3645 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3646 PHI->addIncoming(I.second, MiddleBlock); 3647 } 3648 } 3649 3650 namespace { 3651 3652 struct CSEDenseMapInfo { 3653 static bool canHandle(const Instruction *I) { 3654 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3655 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3656 } 3657 3658 static inline Instruction *getEmptyKey() { 3659 return DenseMapInfo<Instruction *>::getEmptyKey(); 3660 } 3661 3662 static inline Instruction *getTombstoneKey() { 3663 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3664 } 3665 3666 static unsigned getHashValue(const Instruction *I) { 3667 assert(canHandle(I) && "Unknown instruction!"); 3668 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3669 I->value_op_end())); 3670 } 3671 3672 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3673 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3674 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3675 return LHS == RHS; 3676 return LHS->isIdenticalTo(RHS); 3677 } 3678 }; 3679 3680 } // end anonymous namespace 3681 3682 ///Perform cse of induction variable instructions. 3683 static void cse(BasicBlock *BB) { 3684 // Perform simple cse. 3685 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3686 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3687 if (!CSEDenseMapInfo::canHandle(&In)) 3688 continue; 3689 3690 // Check if we can replace this instruction with any of the 3691 // visited instructions. 3692 if (Instruction *V = CSEMap.lookup(&In)) { 3693 In.replaceAllUsesWith(V); 3694 In.eraseFromParent(); 3695 continue; 3696 } 3697 3698 CSEMap[&In] = &In; 3699 } 3700 } 3701 3702 InstructionCost 3703 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3704 bool &NeedToScalarize) const { 3705 Function *F = CI->getCalledFunction(); 3706 Type *ScalarRetTy = CI->getType(); 3707 SmallVector<Type *, 4> Tys, ScalarTys; 3708 for (auto &ArgOp : CI->args()) 3709 ScalarTys.push_back(ArgOp->getType()); 3710 3711 // Estimate cost of scalarized vector call. The source operands are assumed 3712 // to be vectors, so we need to extract individual elements from there, 3713 // execute VF scalar calls, and then gather the result into the vector return 3714 // value. 3715 InstructionCost ScalarCallCost = 3716 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3717 if (VF.isScalar()) 3718 return ScalarCallCost; 3719 3720 // Compute corresponding vector type for return value and arguments. 3721 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3722 for (Type *ScalarTy : ScalarTys) 3723 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3724 3725 // Compute costs of unpacking argument values for the scalar calls and 3726 // packing the return values to a vector. 3727 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3728 3729 InstructionCost Cost = 3730 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3731 3732 // If we can't emit a vector call for this function, then the currently found 3733 // cost is the cost we need to return. 3734 NeedToScalarize = true; 3735 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3736 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3737 3738 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3739 return Cost; 3740 3741 // If the corresponding vector cost is cheaper, return its cost. 3742 InstructionCost VectorCallCost = 3743 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3744 if (VectorCallCost < Cost) { 3745 NeedToScalarize = false; 3746 Cost = VectorCallCost; 3747 } 3748 return Cost; 3749 } 3750 3751 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3752 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3753 return Elt; 3754 return VectorType::get(Elt, VF); 3755 } 3756 3757 InstructionCost 3758 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3759 ElementCount VF) const { 3760 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3761 assert(ID && "Expected intrinsic call!"); 3762 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3763 FastMathFlags FMF; 3764 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3765 FMF = FPMO->getFastMathFlags(); 3766 3767 SmallVector<const Value *> Arguments(CI->args()); 3768 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3769 SmallVector<Type *> ParamTys; 3770 std::transform(FTy->param_begin(), FTy->param_end(), 3771 std::back_inserter(ParamTys), 3772 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3773 3774 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3775 dyn_cast<IntrinsicInst>(CI)); 3776 return TTI.getIntrinsicInstrCost(CostAttrs, 3777 TargetTransformInfo::TCK_RecipThroughput); 3778 } 3779 3780 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3781 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3782 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3783 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3784 } 3785 3786 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3787 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3788 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3789 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3790 } 3791 3792 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3793 // For every instruction `I` in MinBWs, truncate the operands, create a 3794 // truncated version of `I` and reextend its result. InstCombine runs 3795 // later and will remove any ext/trunc pairs. 3796 SmallPtrSet<Value *, 4> Erased; 3797 for (const auto &KV : Cost->getMinimalBitwidths()) { 3798 // If the value wasn't vectorized, we must maintain the original scalar 3799 // type. The absence of the value from State indicates that it 3800 // wasn't vectorized. 3801 // FIXME: Should not rely on getVPValue at this point. 3802 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3803 if (!State.hasAnyVectorValue(Def)) 3804 continue; 3805 for (unsigned Part = 0; Part < UF; ++Part) { 3806 Value *I = State.get(Def, Part); 3807 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3808 continue; 3809 Type *OriginalTy = I->getType(); 3810 Type *ScalarTruncatedTy = 3811 IntegerType::get(OriginalTy->getContext(), KV.second); 3812 auto *TruncatedTy = VectorType::get( 3813 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3814 if (TruncatedTy == OriginalTy) 3815 continue; 3816 3817 IRBuilder<> B(cast<Instruction>(I)); 3818 auto ShrinkOperand = [&](Value *V) -> Value * { 3819 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3820 if (ZI->getSrcTy() == TruncatedTy) 3821 return ZI->getOperand(0); 3822 return B.CreateZExtOrTrunc(V, TruncatedTy); 3823 }; 3824 3825 // The actual instruction modification depends on the instruction type, 3826 // unfortunately. 3827 Value *NewI = nullptr; 3828 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3829 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3830 ShrinkOperand(BO->getOperand(1))); 3831 3832 // Any wrapping introduced by shrinking this operation shouldn't be 3833 // considered undefined behavior. So, we can't unconditionally copy 3834 // arithmetic wrapping flags to NewI. 3835 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3836 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3837 NewI = 3838 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3839 ShrinkOperand(CI->getOperand(1))); 3840 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3841 NewI = B.CreateSelect(SI->getCondition(), 3842 ShrinkOperand(SI->getTrueValue()), 3843 ShrinkOperand(SI->getFalseValue())); 3844 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3845 switch (CI->getOpcode()) { 3846 default: 3847 llvm_unreachable("Unhandled cast!"); 3848 case Instruction::Trunc: 3849 NewI = ShrinkOperand(CI->getOperand(0)); 3850 break; 3851 case Instruction::SExt: 3852 NewI = B.CreateSExtOrTrunc( 3853 CI->getOperand(0), 3854 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3855 break; 3856 case Instruction::ZExt: 3857 NewI = B.CreateZExtOrTrunc( 3858 CI->getOperand(0), 3859 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3860 break; 3861 } 3862 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3863 auto Elements0 = 3864 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3865 auto *O0 = B.CreateZExtOrTrunc( 3866 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3867 auto Elements1 = 3868 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3869 auto *O1 = B.CreateZExtOrTrunc( 3870 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3871 3872 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3873 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3874 // Don't do anything with the operands, just extend the result. 3875 continue; 3876 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3877 auto Elements = 3878 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3879 auto *O0 = B.CreateZExtOrTrunc( 3880 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3881 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3882 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3883 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3884 auto Elements = 3885 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3886 auto *O0 = B.CreateZExtOrTrunc( 3887 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3888 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3889 } else { 3890 // If we don't know what to do, be conservative and don't do anything. 3891 continue; 3892 } 3893 3894 // Lastly, extend the result. 3895 NewI->takeName(cast<Instruction>(I)); 3896 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3897 I->replaceAllUsesWith(Res); 3898 cast<Instruction>(I)->eraseFromParent(); 3899 Erased.insert(I); 3900 State.reset(Def, Res, Part); 3901 } 3902 } 3903 3904 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3905 for (const auto &KV : Cost->getMinimalBitwidths()) { 3906 // If the value wasn't vectorized, we must maintain the original scalar 3907 // type. The absence of the value from State indicates that it 3908 // wasn't vectorized. 3909 // FIXME: Should not rely on getVPValue at this point. 3910 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3911 if (!State.hasAnyVectorValue(Def)) 3912 continue; 3913 for (unsigned Part = 0; Part < UF; ++Part) { 3914 Value *I = State.get(Def, Part); 3915 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3916 if (Inst && Inst->use_empty()) { 3917 Value *NewI = Inst->getOperand(0); 3918 Inst->eraseFromParent(); 3919 State.reset(Def, NewI, Part); 3920 } 3921 } 3922 } 3923 } 3924 3925 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3926 // Insert truncates and extends for any truncated instructions as hints to 3927 // InstCombine. 3928 if (VF.isVector()) 3929 truncateToMinimalBitwidths(State); 3930 3931 // Fix widened non-induction PHIs by setting up the PHI operands. 3932 if (OrigPHIsToFix.size()) { 3933 assert(EnableVPlanNativePath && 3934 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3935 fixNonInductionPHIs(State); 3936 } 3937 3938 // At this point every instruction in the original loop is widened to a 3939 // vector form. Now we need to fix the recurrences in the loop. These PHI 3940 // nodes are currently empty because we did not want to introduce cycles. 3941 // This is the second stage of vectorizing recurrences. 3942 fixCrossIterationPHIs(State); 3943 3944 // Forget the original basic block. 3945 PSE.getSE()->forgetLoop(OrigLoop); 3946 3947 // If we inserted an edge from the middle block to the unique exit block, 3948 // update uses outside the loop (phis) to account for the newly inserted 3949 // edge. 3950 if (!Cost->requiresScalarEpilogue(VF)) { 3951 // Fix-up external users of the induction variables. 3952 for (auto &Entry : Legal->getInductionVars()) 3953 fixupIVUsers(Entry.first, Entry.second, 3954 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3955 IVEndValues[Entry.first], LoopMiddleBlock); 3956 3957 fixLCSSAPHIs(State); 3958 } 3959 3960 for (Instruction *PI : PredicatedInstructions) 3961 sinkScalarOperands(&*PI); 3962 3963 // Remove redundant induction instructions. 3964 cse(LoopVectorBody); 3965 3966 // Set/update profile weights for the vector and remainder loops as original 3967 // loop iterations are now distributed among them. Note that original loop 3968 // represented by LoopScalarBody becomes remainder loop after vectorization. 3969 // 3970 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3971 // end up getting slightly roughened result but that should be OK since 3972 // profile is not inherently precise anyway. Note also possible bypass of 3973 // vector code caused by legality checks is ignored, assigning all the weight 3974 // to the vector loop, optimistically. 3975 // 3976 // For scalable vectorization we can't know at compile time how many iterations 3977 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3978 // vscale of '1'. 3979 setProfileInfoAfterUnrolling( 3980 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 3981 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 3982 } 3983 3984 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3985 // In order to support recurrences we need to be able to vectorize Phi nodes. 3986 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3987 // stage #2: We now need to fix the recurrences by adding incoming edges to 3988 // the currently empty PHI nodes. At this point every instruction in the 3989 // original loop is widened to a vector form so we can use them to construct 3990 // the incoming edges. 3991 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 3992 for (VPRecipeBase &R : Header->phis()) { 3993 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3994 fixReduction(ReductionPhi, State); 3995 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3996 fixFirstOrderRecurrence(FOR, State); 3997 } 3998 } 3999 4000 void InnerLoopVectorizer::fixFirstOrderRecurrence( 4001 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 4002 // This is the second phase of vectorizing first-order recurrences. An 4003 // overview of the transformation is described below. Suppose we have the 4004 // following loop. 4005 // 4006 // for (int i = 0; i < n; ++i) 4007 // b[i] = a[i] - a[i - 1]; 4008 // 4009 // There is a first-order recurrence on "a". For this loop, the shorthand 4010 // scalar IR looks like: 4011 // 4012 // scalar.ph: 4013 // s_init = a[-1] 4014 // br scalar.body 4015 // 4016 // scalar.body: 4017 // i = phi [0, scalar.ph], [i+1, scalar.body] 4018 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4019 // s2 = a[i] 4020 // b[i] = s2 - s1 4021 // br cond, scalar.body, ... 4022 // 4023 // In this example, s1 is a recurrence because it's value depends on the 4024 // previous iteration. In the first phase of vectorization, we created a 4025 // vector phi v1 for s1. We now complete the vectorization and produce the 4026 // shorthand vector IR shown below (for VF = 4, UF = 1). 4027 // 4028 // vector.ph: 4029 // v_init = vector(..., ..., ..., a[-1]) 4030 // br vector.body 4031 // 4032 // vector.body 4033 // i = phi [0, vector.ph], [i+4, vector.body] 4034 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4035 // v2 = a[i, i+1, i+2, i+3]; 4036 // v3 = vector(v1(3), v2(0, 1, 2)) 4037 // b[i, i+1, i+2, i+3] = v2 - v3 4038 // br cond, vector.body, middle.block 4039 // 4040 // middle.block: 4041 // x = v2(3) 4042 // br scalar.ph 4043 // 4044 // scalar.ph: 4045 // s_init = phi [x, middle.block], [a[-1], otherwise] 4046 // br scalar.body 4047 // 4048 // After execution completes the vector loop, we extract the next value of 4049 // the recurrence (x) to use as the initial value in the scalar loop. 4050 4051 // Extract the last vector element in the middle block. This will be the 4052 // initial value for the recurrence when jumping to the scalar loop. 4053 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4054 Value *Incoming = State.get(PreviousDef, UF - 1); 4055 auto *ExtractForScalar = Incoming; 4056 auto *IdxTy = Builder.getInt32Ty(); 4057 if (VF.isVector()) { 4058 auto *One = ConstantInt::get(IdxTy, 1); 4059 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4060 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4061 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4062 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4063 "vector.recur.extract"); 4064 } 4065 // Extract the second last element in the middle block if the 4066 // Phi is used outside the loop. We need to extract the phi itself 4067 // and not the last element (the phi update in the current iteration). This 4068 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4069 // when the scalar loop is not run at all. 4070 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4071 if (VF.isVector()) { 4072 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4073 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4074 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4075 Incoming, Idx, "vector.recur.extract.for.phi"); 4076 } else if (UF > 1) 4077 // When loop is unrolled without vectorizing, initialize 4078 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4079 // of `Incoming`. This is analogous to the vectorized case above: extracting 4080 // the second last element when VF > 1. 4081 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4082 4083 // Fix the initial value of the original recurrence in the scalar loop. 4084 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4085 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4086 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4087 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4088 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4089 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4090 Start->addIncoming(Incoming, BB); 4091 } 4092 4093 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4094 Phi->setName("scalar.recur"); 4095 4096 // Finally, fix users of the recurrence outside the loop. The users will need 4097 // either the last value of the scalar recurrence or the last value of the 4098 // vector recurrence we extracted in the middle block. Since the loop is in 4099 // LCSSA form, we just need to find all the phi nodes for the original scalar 4100 // recurrence in the exit block, and then add an edge for the middle block. 4101 // Note that LCSSA does not imply single entry when the original scalar loop 4102 // had multiple exiting edges (as we always run the last iteration in the 4103 // scalar epilogue); in that case, there is no edge from middle to exit and 4104 // and thus no phis which needed updated. 4105 if (!Cost->requiresScalarEpilogue(VF)) 4106 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4107 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 4108 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4109 } 4110 4111 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4112 VPTransformState &State) { 4113 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4114 // Get it's reduction variable descriptor. 4115 assert(Legal->isReductionVariable(OrigPhi) && 4116 "Unable to find the reduction variable"); 4117 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4118 4119 RecurKind RK = RdxDesc.getRecurrenceKind(); 4120 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4121 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4122 setDebugLocFromInst(ReductionStartValue); 4123 4124 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 4125 // This is the vector-clone of the value that leaves the loop. 4126 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4127 4128 // Wrap flags are in general invalid after vectorization, clear them. 4129 clearReductionWrapFlags(RdxDesc, State); 4130 4131 // Before each round, move the insertion point right between 4132 // the PHIs and the values we are going to write. 4133 // This allows us to write both PHINodes and the extractelement 4134 // instructions. 4135 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4136 4137 setDebugLocFromInst(LoopExitInst); 4138 4139 Type *PhiTy = OrigPhi->getType(); 4140 // If tail is folded by masking, the vector value to leave the loop should be 4141 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4142 // instead of the former. For an inloop reduction the reduction will already 4143 // be predicated, and does not need to be handled here. 4144 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4145 for (unsigned Part = 0; Part < UF; ++Part) { 4146 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4147 Value *Sel = nullptr; 4148 for (User *U : VecLoopExitInst->users()) { 4149 if (isa<SelectInst>(U)) { 4150 assert(!Sel && "Reduction exit feeding two selects"); 4151 Sel = U; 4152 } else 4153 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4154 } 4155 assert(Sel && "Reduction exit feeds no select"); 4156 State.reset(LoopExitInstDef, Sel, Part); 4157 4158 // If the target can create a predicated operator for the reduction at no 4159 // extra cost in the loop (for example a predicated vadd), it can be 4160 // cheaper for the select to remain in the loop than be sunk out of it, 4161 // and so use the select value for the phi instead of the old 4162 // LoopExitValue. 4163 if (PreferPredicatedReductionSelect || 4164 TTI->preferPredicatedReductionSelect( 4165 RdxDesc.getOpcode(), PhiTy, 4166 TargetTransformInfo::ReductionFlags())) { 4167 auto *VecRdxPhi = 4168 cast<PHINode>(State.get(PhiR, Part)); 4169 VecRdxPhi->setIncomingValueForBlock( 4170 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4171 } 4172 } 4173 } 4174 4175 // If the vector reduction can be performed in a smaller type, we truncate 4176 // then extend the loop exit value to enable InstCombine to evaluate the 4177 // entire expression in the smaller type. 4178 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4179 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4180 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4181 Builder.SetInsertPoint( 4182 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4183 VectorParts RdxParts(UF); 4184 for (unsigned Part = 0; Part < UF; ++Part) { 4185 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4186 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4187 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4188 : Builder.CreateZExt(Trunc, VecTy); 4189 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 4190 if (U != Trunc) { 4191 U->replaceUsesOfWith(RdxParts[Part], Extnd); 4192 RdxParts[Part] = Extnd; 4193 } 4194 } 4195 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4196 for (unsigned Part = 0; Part < UF; ++Part) { 4197 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4198 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4199 } 4200 } 4201 4202 // Reduce all of the unrolled parts into a single vector. 4203 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4204 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4205 4206 // The middle block terminator has already been assigned a DebugLoc here (the 4207 // OrigLoop's single latch terminator). We want the whole middle block to 4208 // appear to execute on this line because: (a) it is all compiler generated, 4209 // (b) these instructions are always executed after evaluating the latch 4210 // conditional branch, and (c) other passes may add new predecessors which 4211 // terminate on this line. This is the easiest way to ensure we don't 4212 // accidentally cause an extra step back into the loop while debugging. 4213 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4214 if (PhiR->isOrdered()) 4215 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4216 else { 4217 // Floating-point operations should have some FMF to enable the reduction. 4218 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4219 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4220 for (unsigned Part = 1; Part < UF; ++Part) { 4221 Value *RdxPart = State.get(LoopExitInstDef, Part); 4222 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4223 ReducedPartRdx = Builder.CreateBinOp( 4224 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4225 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 4226 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 4227 ReducedPartRdx, RdxPart); 4228 else 4229 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4230 } 4231 } 4232 4233 // Create the reduction after the loop. Note that inloop reductions create the 4234 // target reduction in the loop using a Reduction recipe. 4235 if (VF.isVector() && !PhiR->isInLoop()) { 4236 ReducedPartRdx = 4237 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4238 // If the reduction can be performed in a smaller type, we need to extend 4239 // the reduction to the wider type before we branch to the original loop. 4240 if (PhiTy != RdxDesc.getRecurrenceType()) 4241 ReducedPartRdx = RdxDesc.isSigned() 4242 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4243 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4244 } 4245 4246 PHINode *ResumePhi = 4247 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 4248 4249 // Create a phi node that merges control-flow from the backedge-taken check 4250 // block and the middle block. 4251 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4252 LoopScalarPreHeader->getTerminator()); 4253 4254 // If we are fixing reductions in the epilogue loop then we should already 4255 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 4256 // we carry over the incoming values correctly. 4257 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 4258 if (Incoming == LoopMiddleBlock) 4259 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 4260 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 4261 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 4262 Incoming); 4263 else 4264 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 4265 } 4266 4267 // Set the resume value for this reduction 4268 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4269 4270 // Now, we need to fix the users of the reduction variable 4271 // inside and outside of the scalar remainder loop. 4272 4273 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4274 // in the exit blocks. See comment on analogous loop in 4275 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4276 if (!Cost->requiresScalarEpilogue(VF)) 4277 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4278 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4279 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4280 4281 // Fix the scalar loop reduction variable with the incoming reduction sum 4282 // from the vector body and from the backedge value. 4283 int IncomingEdgeBlockIdx = 4284 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4285 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4286 // Pick the other block. 4287 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4288 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4289 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4290 } 4291 4292 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4293 VPTransformState &State) { 4294 RecurKind RK = RdxDesc.getRecurrenceKind(); 4295 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4296 return; 4297 4298 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4299 assert(LoopExitInstr && "null loop exit instruction"); 4300 SmallVector<Instruction *, 8> Worklist; 4301 SmallPtrSet<Instruction *, 8> Visited; 4302 Worklist.push_back(LoopExitInstr); 4303 Visited.insert(LoopExitInstr); 4304 4305 while (!Worklist.empty()) { 4306 Instruction *Cur = Worklist.pop_back_val(); 4307 if (isa<OverflowingBinaryOperator>(Cur)) 4308 for (unsigned Part = 0; Part < UF; ++Part) { 4309 // FIXME: Should not rely on getVPValue at this point. 4310 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4311 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4312 } 4313 4314 for (User *U : Cur->users()) { 4315 Instruction *UI = cast<Instruction>(U); 4316 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4317 Visited.insert(UI).second) 4318 Worklist.push_back(UI); 4319 } 4320 } 4321 } 4322 4323 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4324 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4325 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4326 // Some phis were already hand updated by the reduction and recurrence 4327 // code above, leave them alone. 4328 continue; 4329 4330 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4331 // Non-instruction incoming values will have only one value. 4332 4333 VPLane Lane = VPLane::getFirstLane(); 4334 if (isa<Instruction>(IncomingValue) && 4335 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4336 VF)) 4337 Lane = VPLane::getLastLaneForVF(VF); 4338 4339 // Can be a loop invariant incoming value or the last scalar value to be 4340 // extracted from the vectorized loop. 4341 // FIXME: Should not rely on getVPValue at this point. 4342 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4343 Value *lastIncomingValue = 4344 OrigLoop->isLoopInvariant(IncomingValue) 4345 ? IncomingValue 4346 : State.get(State.Plan->getVPValue(IncomingValue, true), 4347 VPIteration(UF - 1, Lane)); 4348 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4349 } 4350 } 4351 4352 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4353 // The basic block and loop containing the predicated instruction. 4354 auto *PredBB = PredInst->getParent(); 4355 auto *VectorLoop = LI->getLoopFor(PredBB); 4356 4357 // Initialize a worklist with the operands of the predicated instruction. 4358 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4359 4360 // Holds instructions that we need to analyze again. An instruction may be 4361 // reanalyzed if we don't yet know if we can sink it or not. 4362 SmallVector<Instruction *, 8> InstsToReanalyze; 4363 4364 // Returns true if a given use occurs in the predicated block. Phi nodes use 4365 // their operands in their corresponding predecessor blocks. 4366 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4367 auto *I = cast<Instruction>(U.getUser()); 4368 BasicBlock *BB = I->getParent(); 4369 if (auto *Phi = dyn_cast<PHINode>(I)) 4370 BB = Phi->getIncomingBlock( 4371 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4372 return BB == PredBB; 4373 }; 4374 4375 // Iteratively sink the scalarized operands of the predicated instruction 4376 // into the block we created for it. When an instruction is sunk, it's 4377 // operands are then added to the worklist. The algorithm ends after one pass 4378 // through the worklist doesn't sink a single instruction. 4379 bool Changed; 4380 do { 4381 // Add the instructions that need to be reanalyzed to the worklist, and 4382 // reset the changed indicator. 4383 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4384 InstsToReanalyze.clear(); 4385 Changed = false; 4386 4387 while (!Worklist.empty()) { 4388 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4389 4390 // We can't sink an instruction if it is a phi node, is not in the loop, 4391 // or may have side effects. 4392 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4393 I->mayHaveSideEffects()) 4394 continue; 4395 4396 // If the instruction is already in PredBB, check if we can sink its 4397 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4398 // sinking the scalar instruction I, hence it appears in PredBB; but it 4399 // may have failed to sink I's operands (recursively), which we try 4400 // (again) here. 4401 if (I->getParent() == PredBB) { 4402 Worklist.insert(I->op_begin(), I->op_end()); 4403 continue; 4404 } 4405 4406 // It's legal to sink the instruction if all its uses occur in the 4407 // predicated block. Otherwise, there's nothing to do yet, and we may 4408 // need to reanalyze the instruction. 4409 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4410 InstsToReanalyze.push_back(I); 4411 continue; 4412 } 4413 4414 // Move the instruction to the beginning of the predicated block, and add 4415 // it's operands to the worklist. 4416 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4417 Worklist.insert(I->op_begin(), I->op_end()); 4418 4419 // The sinking may have enabled other instructions to be sunk, so we will 4420 // need to iterate. 4421 Changed = true; 4422 } 4423 } while (Changed); 4424 } 4425 4426 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4427 for (PHINode *OrigPhi : OrigPHIsToFix) { 4428 VPWidenPHIRecipe *VPPhi = 4429 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4430 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4431 // Make sure the builder has a valid insert point. 4432 Builder.SetInsertPoint(NewPhi); 4433 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4434 VPValue *Inc = VPPhi->getIncomingValue(i); 4435 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4436 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4437 } 4438 } 4439 } 4440 4441 bool InnerLoopVectorizer::useOrderedReductions( 4442 const RecurrenceDescriptor &RdxDesc) { 4443 return Cost->useOrderedReductions(RdxDesc); 4444 } 4445 4446 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4447 VPWidenPHIRecipe *PhiR, 4448 VPTransformState &State) { 4449 PHINode *P = cast<PHINode>(PN); 4450 if (EnableVPlanNativePath) { 4451 // Currently we enter here in the VPlan-native path for non-induction 4452 // PHIs where all control flow is uniform. We simply widen these PHIs. 4453 // Create a vector phi with no operands - the vector phi operands will be 4454 // set at the end of vector code generation. 4455 Type *VecTy = (State.VF.isScalar()) 4456 ? PN->getType() 4457 : VectorType::get(PN->getType(), State.VF); 4458 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4459 State.set(PhiR, VecPhi, 0); 4460 OrigPHIsToFix.push_back(P); 4461 4462 return; 4463 } 4464 4465 assert(PN->getParent() == OrigLoop->getHeader() && 4466 "Non-header phis should have been handled elsewhere"); 4467 4468 // In order to support recurrences we need to be able to vectorize Phi nodes. 4469 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4470 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4471 // this value when we vectorize all of the instructions that use the PHI. 4472 4473 assert(!Legal->isReductionVariable(P) && 4474 "reductions should be handled elsewhere"); 4475 4476 setDebugLocFromInst(P); 4477 4478 // This PHINode must be an induction variable. 4479 // Make sure that we know about it. 4480 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4481 4482 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4483 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4484 4485 auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV(); 4486 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 4487 4488 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4489 // which can be found from the original scalar operations. 4490 switch (II.getKind()) { 4491 case InductionDescriptor::IK_NoInduction: 4492 llvm_unreachable("Unknown induction"); 4493 case InductionDescriptor::IK_IntInduction: 4494 case InductionDescriptor::IK_FpInduction: 4495 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4496 case InductionDescriptor::IK_PtrInduction: { 4497 // Handle the pointer induction variable case. 4498 assert(P->getType()->isPointerTy() && "Unexpected type."); 4499 4500 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4501 // This is the normalized GEP that starts counting at zero. 4502 Value *PtrInd = 4503 Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType()); 4504 // Determine the number of scalars we need to generate for each unroll 4505 // iteration. If the instruction is uniform, we only need to generate the 4506 // first lane. Otherwise, we generate all VF values. 4507 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4508 assert((IsUniform || !State.VF.isScalable()) && 4509 "Cannot scalarize a scalable VF"); 4510 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 4511 4512 for (unsigned Part = 0; Part < UF; ++Part) { 4513 Value *PartStart = 4514 createStepForVF(Builder, PtrInd->getType(), VF, Part); 4515 4516 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4517 Value *Idx = Builder.CreateAdd( 4518 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4519 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4520 Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), 4521 DL, II, State.CFG.PrevBB); 4522 SclrGep->setName("next.gep"); 4523 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4524 } 4525 } 4526 return; 4527 } 4528 assert(isa<SCEVConstant>(II.getStep()) && 4529 "Induction step not a SCEV constant!"); 4530 Type *PhiType = II.getStep()->getType(); 4531 4532 // Build a pointer phi 4533 Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue(); 4534 Type *ScStValueType = ScalarStartValue->getType(); 4535 PHINode *NewPointerPhi = 4536 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 4537 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4538 4539 // A pointer induction, performed by using a gep 4540 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4541 Instruction *InductionLoc = LoopLatch->getTerminator(); 4542 const SCEV *ScalarStep = II.getStep(); 4543 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4544 Value *ScalarStepValue = 4545 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4546 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4547 Value *NumUnrolledElems = 4548 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4549 Value *InductionGEP = GetElementPtrInst::Create( 4550 II.getElementType(), NewPointerPhi, 4551 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4552 InductionLoc); 4553 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4554 4555 // Create UF many actual address geps that use the pointer 4556 // phi as base and a vectorized version of the step value 4557 // (<step*0, ..., step*N>) as offset. 4558 for (unsigned Part = 0; Part < State.UF; ++Part) { 4559 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4560 Value *StartOffsetScalar = 4561 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4562 Value *StartOffset = 4563 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4564 // Create a vector of consecutive numbers from zero to VF. 4565 StartOffset = 4566 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4567 4568 Value *GEP = Builder.CreateGEP( 4569 II.getElementType(), NewPointerPhi, 4570 Builder.CreateMul( 4571 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4572 "vector.gep")); 4573 State.set(PhiR, GEP, Part); 4574 } 4575 } 4576 } 4577 } 4578 4579 /// A helper function for checking whether an integer division-related 4580 /// instruction may divide by zero (in which case it must be predicated if 4581 /// executed conditionally in the scalar code). 4582 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4583 /// Non-zero divisors that are non compile-time constants will not be 4584 /// converted into multiplication, so we will still end up scalarizing 4585 /// the division, but can do so w/o predication. 4586 static bool mayDivideByZero(Instruction &I) { 4587 assert((I.getOpcode() == Instruction::UDiv || 4588 I.getOpcode() == Instruction::SDiv || 4589 I.getOpcode() == Instruction::URem || 4590 I.getOpcode() == Instruction::SRem) && 4591 "Unexpected instruction"); 4592 Value *Divisor = I.getOperand(1); 4593 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4594 return !CInt || CInt->isZero(); 4595 } 4596 4597 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4598 VPUser &ArgOperands, 4599 VPTransformState &State) { 4600 assert(!isa<DbgInfoIntrinsic>(I) && 4601 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4602 setDebugLocFromInst(&I); 4603 4604 Module *M = I.getParent()->getParent()->getParent(); 4605 auto *CI = cast<CallInst>(&I); 4606 4607 SmallVector<Type *, 4> Tys; 4608 for (Value *ArgOperand : CI->args()) 4609 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4610 4611 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4612 4613 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4614 // version of the instruction. 4615 // Is it beneficial to perform intrinsic call compared to lib call? 4616 bool NeedToScalarize = false; 4617 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4618 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4619 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4620 assert((UseVectorIntrinsic || !NeedToScalarize) && 4621 "Instruction should be scalarized elsewhere."); 4622 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4623 "Either the intrinsic cost or vector call cost must be valid"); 4624 4625 for (unsigned Part = 0; Part < UF; ++Part) { 4626 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4627 SmallVector<Value *, 4> Args; 4628 for (auto &I : enumerate(ArgOperands.operands())) { 4629 // Some intrinsics have a scalar argument - don't replace it with a 4630 // vector. 4631 Value *Arg; 4632 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4633 Arg = State.get(I.value(), Part); 4634 else { 4635 Arg = State.get(I.value(), VPIteration(0, 0)); 4636 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 4637 TysForDecl.push_back(Arg->getType()); 4638 } 4639 Args.push_back(Arg); 4640 } 4641 4642 Function *VectorF; 4643 if (UseVectorIntrinsic) { 4644 // Use vector version of the intrinsic. 4645 if (VF.isVector()) 4646 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4647 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4648 assert(VectorF && "Can't retrieve vector intrinsic."); 4649 } else { 4650 // Use vector version of the function call. 4651 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4652 #ifndef NDEBUG 4653 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4654 "Can't create vector function."); 4655 #endif 4656 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4657 } 4658 SmallVector<OperandBundleDef, 1> OpBundles; 4659 CI->getOperandBundlesAsDefs(OpBundles); 4660 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4661 4662 if (isa<FPMathOperator>(V)) 4663 V->copyFastMathFlags(CI); 4664 4665 State.set(Def, V, Part); 4666 addMetadata(V, &I); 4667 } 4668 } 4669 4670 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4671 // We should not collect Scalars more than once per VF. Right now, this 4672 // function is called from collectUniformsAndScalars(), which already does 4673 // this check. Collecting Scalars for VF=1 does not make any sense. 4674 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4675 "This function should not be visited twice for the same VF"); 4676 4677 SmallSetVector<Instruction *, 8> Worklist; 4678 4679 // These sets are used to seed the analysis with pointers used by memory 4680 // accesses that will remain scalar. 4681 SmallSetVector<Instruction *, 8> ScalarPtrs; 4682 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4683 auto *Latch = TheLoop->getLoopLatch(); 4684 4685 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4686 // The pointer operands of loads and stores will be scalar as long as the 4687 // memory access is not a gather or scatter operation. The value operand of a 4688 // store will remain scalar if the store is scalarized. 4689 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4690 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4691 assert(WideningDecision != CM_Unknown && 4692 "Widening decision should be ready at this moment"); 4693 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4694 if (Ptr == Store->getValueOperand()) 4695 return WideningDecision == CM_Scalarize; 4696 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4697 "Ptr is neither a value or pointer operand"); 4698 return WideningDecision != CM_GatherScatter; 4699 }; 4700 4701 // A helper that returns true if the given value is a bitcast or 4702 // getelementptr instruction contained in the loop. 4703 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4704 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4705 isa<GetElementPtrInst>(V)) && 4706 !TheLoop->isLoopInvariant(V); 4707 }; 4708 4709 // A helper that evaluates a memory access's use of a pointer. If the use will 4710 // be a scalar use and the pointer is only used by memory accesses, we place 4711 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4712 // PossibleNonScalarPtrs. 4713 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4714 // We only care about bitcast and getelementptr instructions contained in 4715 // the loop. 4716 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4717 return; 4718 4719 // If the pointer has already been identified as scalar (e.g., if it was 4720 // also identified as uniform), there's nothing to do. 4721 auto *I = cast<Instruction>(Ptr); 4722 if (Worklist.count(I)) 4723 return; 4724 4725 // If the use of the pointer will be a scalar use, and all users of the 4726 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4727 // place the pointer in PossibleNonScalarPtrs. 4728 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4729 return isa<LoadInst>(U) || isa<StoreInst>(U); 4730 })) 4731 ScalarPtrs.insert(I); 4732 else 4733 PossibleNonScalarPtrs.insert(I); 4734 }; 4735 4736 // We seed the scalars analysis with three classes of instructions: (1) 4737 // instructions marked uniform-after-vectorization and (2) bitcast, 4738 // getelementptr and (pointer) phi instructions used by memory accesses 4739 // requiring a scalar use. 4740 // 4741 // (1) Add to the worklist all instructions that have been identified as 4742 // uniform-after-vectorization. 4743 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4744 4745 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4746 // memory accesses requiring a scalar use. The pointer operands of loads and 4747 // stores will be scalar as long as the memory accesses is not a gather or 4748 // scatter operation. The value operand of a store will remain scalar if the 4749 // store is scalarized. 4750 for (auto *BB : TheLoop->blocks()) 4751 for (auto &I : *BB) { 4752 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4753 evaluatePtrUse(Load, Load->getPointerOperand()); 4754 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4755 evaluatePtrUse(Store, Store->getPointerOperand()); 4756 evaluatePtrUse(Store, Store->getValueOperand()); 4757 } 4758 } 4759 for (auto *I : ScalarPtrs) 4760 if (!PossibleNonScalarPtrs.count(I)) { 4761 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4762 Worklist.insert(I); 4763 } 4764 4765 // Insert the forced scalars. 4766 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4767 // induction variable when the PHI user is scalarized. 4768 auto ForcedScalar = ForcedScalars.find(VF); 4769 if (ForcedScalar != ForcedScalars.end()) 4770 for (auto *I : ForcedScalar->second) 4771 Worklist.insert(I); 4772 4773 // Expand the worklist by looking through any bitcasts and getelementptr 4774 // instructions we've already identified as scalar. This is similar to the 4775 // expansion step in collectLoopUniforms(); however, here we're only 4776 // expanding to include additional bitcasts and getelementptr instructions. 4777 unsigned Idx = 0; 4778 while (Idx != Worklist.size()) { 4779 Instruction *Dst = Worklist[Idx++]; 4780 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4781 continue; 4782 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4783 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4784 auto *J = cast<Instruction>(U); 4785 return !TheLoop->contains(J) || Worklist.count(J) || 4786 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4787 isScalarUse(J, Src)); 4788 })) { 4789 Worklist.insert(Src); 4790 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4791 } 4792 } 4793 4794 // An induction variable will remain scalar if all users of the induction 4795 // variable and induction variable update remain scalar. 4796 for (auto &Induction : Legal->getInductionVars()) { 4797 auto *Ind = Induction.first; 4798 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4799 4800 // If tail-folding is applied, the primary induction variable will be used 4801 // to feed a vector compare. 4802 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4803 continue; 4804 4805 // Returns true if \p Indvar is a pointer induction that is used directly by 4806 // load/store instruction \p I. 4807 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4808 Instruction *I) { 4809 return Induction.second.getKind() == 4810 InductionDescriptor::IK_PtrInduction && 4811 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4812 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4813 }; 4814 4815 // Determine if all users of the induction variable are scalar after 4816 // vectorization. 4817 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4818 auto *I = cast<Instruction>(U); 4819 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4820 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4821 }); 4822 if (!ScalarInd) 4823 continue; 4824 4825 // Determine if all users of the induction variable update instruction are 4826 // scalar after vectorization. 4827 auto ScalarIndUpdate = 4828 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4829 auto *I = cast<Instruction>(U); 4830 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4831 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4832 }); 4833 if (!ScalarIndUpdate) 4834 continue; 4835 4836 // The induction variable and its update instruction will remain scalar. 4837 Worklist.insert(Ind); 4838 Worklist.insert(IndUpdate); 4839 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4840 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4841 << "\n"); 4842 } 4843 4844 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4845 } 4846 4847 bool LoopVectorizationCostModel::isScalarWithPredication( 4848 Instruction *I, ElementCount VF) const { 4849 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4850 return false; 4851 switch(I->getOpcode()) { 4852 default: 4853 break; 4854 case Instruction::Load: 4855 case Instruction::Store: { 4856 if (!Legal->isMaskRequired(I)) 4857 return false; 4858 auto *Ptr = getLoadStorePointerOperand(I); 4859 auto *Ty = getLoadStoreType(I); 4860 Type *VTy = Ty; 4861 if (VF.isVector()) 4862 VTy = VectorType::get(Ty, VF); 4863 const Align Alignment = getLoadStoreAlignment(I); 4864 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4865 TTI.isLegalMaskedGather(VTy, Alignment)) 4866 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4867 TTI.isLegalMaskedScatter(VTy, Alignment)); 4868 } 4869 case Instruction::UDiv: 4870 case Instruction::SDiv: 4871 case Instruction::SRem: 4872 case Instruction::URem: 4873 return mayDivideByZero(*I); 4874 } 4875 return false; 4876 } 4877 4878 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4879 Instruction *I, ElementCount VF) { 4880 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4881 assert(getWideningDecision(I, VF) == CM_Unknown && 4882 "Decision should not be set yet."); 4883 auto *Group = getInterleavedAccessGroup(I); 4884 assert(Group && "Must have a group."); 4885 4886 // If the instruction's allocated size doesn't equal it's type size, it 4887 // requires padding and will be scalarized. 4888 auto &DL = I->getModule()->getDataLayout(); 4889 auto *ScalarTy = getLoadStoreType(I); 4890 if (hasIrregularType(ScalarTy, DL)) 4891 return false; 4892 4893 // Check if masking is required. 4894 // A Group may need masking for one of two reasons: it resides in a block that 4895 // needs predication, or it was decided to use masking to deal with gaps 4896 // (either a gap at the end of a load-access that may result in a speculative 4897 // load, or any gaps in a store-access). 4898 bool PredicatedAccessRequiresMasking = 4899 blockNeedsPredicationForAnyReason(I->getParent()) && 4900 Legal->isMaskRequired(I); 4901 bool LoadAccessWithGapsRequiresEpilogMasking = 4902 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4903 !isScalarEpilogueAllowed(); 4904 bool StoreAccessWithGapsRequiresMasking = 4905 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4906 if (!PredicatedAccessRequiresMasking && 4907 !LoadAccessWithGapsRequiresEpilogMasking && 4908 !StoreAccessWithGapsRequiresMasking) 4909 return true; 4910 4911 // If masked interleaving is required, we expect that the user/target had 4912 // enabled it, because otherwise it either wouldn't have been created or 4913 // it should have been invalidated by the CostModel. 4914 assert(useMaskedInterleavedAccesses(TTI) && 4915 "Masked interleave-groups for predicated accesses are not enabled."); 4916 4917 if (Group->isReverse()) 4918 return false; 4919 4920 auto *Ty = getLoadStoreType(I); 4921 const Align Alignment = getLoadStoreAlignment(I); 4922 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4923 : TTI.isLegalMaskedStore(Ty, Alignment); 4924 } 4925 4926 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4927 Instruction *I, ElementCount VF) { 4928 // Get and ensure we have a valid memory instruction. 4929 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4930 4931 auto *Ptr = getLoadStorePointerOperand(I); 4932 auto *ScalarTy = getLoadStoreType(I); 4933 4934 // In order to be widened, the pointer should be consecutive, first of all. 4935 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4936 return false; 4937 4938 // If the instruction is a store located in a predicated block, it will be 4939 // scalarized. 4940 if (isScalarWithPredication(I, VF)) 4941 return false; 4942 4943 // If the instruction's allocated size doesn't equal it's type size, it 4944 // requires padding and will be scalarized. 4945 auto &DL = I->getModule()->getDataLayout(); 4946 if (hasIrregularType(ScalarTy, DL)) 4947 return false; 4948 4949 return true; 4950 } 4951 4952 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4953 // We should not collect Uniforms more than once per VF. Right now, 4954 // this function is called from collectUniformsAndScalars(), which 4955 // already does this check. Collecting Uniforms for VF=1 does not make any 4956 // sense. 4957 4958 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4959 "This function should not be visited twice for the same VF"); 4960 4961 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4962 // not analyze again. Uniforms.count(VF) will return 1. 4963 Uniforms[VF].clear(); 4964 4965 // We now know that the loop is vectorizable! 4966 // Collect instructions inside the loop that will remain uniform after 4967 // vectorization. 4968 4969 // Global values, params and instructions outside of current loop are out of 4970 // scope. 4971 auto isOutOfScope = [&](Value *V) -> bool { 4972 Instruction *I = dyn_cast<Instruction>(V); 4973 return (!I || !TheLoop->contains(I)); 4974 }; 4975 4976 // Worklist containing uniform instructions demanding lane 0. 4977 SetVector<Instruction *> Worklist; 4978 BasicBlock *Latch = TheLoop->getLoopLatch(); 4979 4980 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4981 // that are scalar with predication must not be considered uniform after 4982 // vectorization, because that would create an erroneous replicating region 4983 // where only a single instance out of VF should be formed. 4984 // TODO: optimize such seldom cases if found important, see PR40816. 4985 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4986 if (isOutOfScope(I)) { 4987 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4988 << *I << "\n"); 4989 return; 4990 } 4991 if (isScalarWithPredication(I, VF)) { 4992 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4993 << *I << "\n"); 4994 return; 4995 } 4996 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4997 Worklist.insert(I); 4998 }; 4999 5000 // Start with the conditional branch. If the branch condition is an 5001 // instruction contained in the loop that is only used by the branch, it is 5002 // uniform. 5003 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5004 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5005 addToWorklistIfAllowed(Cmp); 5006 5007 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5008 InstWidening WideningDecision = getWideningDecision(I, VF); 5009 assert(WideningDecision != CM_Unknown && 5010 "Widening decision should be ready at this moment"); 5011 5012 // A uniform memory op is itself uniform. We exclude uniform stores 5013 // here as they demand the last lane, not the first one. 5014 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5015 assert(WideningDecision == CM_Scalarize); 5016 return true; 5017 } 5018 5019 return (WideningDecision == CM_Widen || 5020 WideningDecision == CM_Widen_Reverse || 5021 WideningDecision == CM_Interleave); 5022 }; 5023 5024 5025 // Returns true if Ptr is the pointer operand of a memory access instruction 5026 // I, and I is known to not require scalarization. 5027 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5028 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5029 }; 5030 5031 // Holds a list of values which are known to have at least one uniform use. 5032 // Note that there may be other uses which aren't uniform. A "uniform use" 5033 // here is something which only demands lane 0 of the unrolled iterations; 5034 // it does not imply that all lanes produce the same value (e.g. this is not 5035 // the usual meaning of uniform) 5036 SetVector<Value *> HasUniformUse; 5037 5038 // Scan the loop for instructions which are either a) known to have only 5039 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5040 for (auto *BB : TheLoop->blocks()) 5041 for (auto &I : *BB) { 5042 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 5043 switch (II->getIntrinsicID()) { 5044 case Intrinsic::sideeffect: 5045 case Intrinsic::experimental_noalias_scope_decl: 5046 case Intrinsic::assume: 5047 case Intrinsic::lifetime_start: 5048 case Intrinsic::lifetime_end: 5049 if (TheLoop->hasLoopInvariantOperands(&I)) 5050 addToWorklistIfAllowed(&I); 5051 break; 5052 default: 5053 break; 5054 } 5055 } 5056 5057 // ExtractValue instructions must be uniform, because the operands are 5058 // known to be loop-invariant. 5059 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 5060 assert(isOutOfScope(EVI->getAggregateOperand()) && 5061 "Expected aggregate value to be loop invariant"); 5062 addToWorklistIfAllowed(EVI); 5063 continue; 5064 } 5065 5066 // If there's no pointer operand, there's nothing to do. 5067 auto *Ptr = getLoadStorePointerOperand(&I); 5068 if (!Ptr) 5069 continue; 5070 5071 // A uniform memory op is itself uniform. We exclude uniform stores 5072 // here as they demand the last lane, not the first one. 5073 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5074 addToWorklistIfAllowed(&I); 5075 5076 if (isUniformDecision(&I, VF)) { 5077 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5078 HasUniformUse.insert(Ptr); 5079 } 5080 } 5081 5082 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5083 // demanding) users. Since loops are assumed to be in LCSSA form, this 5084 // disallows uses outside the loop as well. 5085 for (auto *V : HasUniformUse) { 5086 if (isOutOfScope(V)) 5087 continue; 5088 auto *I = cast<Instruction>(V); 5089 auto UsersAreMemAccesses = 5090 llvm::all_of(I->users(), [&](User *U) -> bool { 5091 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5092 }); 5093 if (UsersAreMemAccesses) 5094 addToWorklistIfAllowed(I); 5095 } 5096 5097 // Expand Worklist in topological order: whenever a new instruction 5098 // is added , its users should be already inside Worklist. It ensures 5099 // a uniform instruction will only be used by uniform instructions. 5100 unsigned idx = 0; 5101 while (idx != Worklist.size()) { 5102 Instruction *I = Worklist[idx++]; 5103 5104 for (auto OV : I->operand_values()) { 5105 // isOutOfScope operands cannot be uniform instructions. 5106 if (isOutOfScope(OV)) 5107 continue; 5108 // First order recurrence Phi's should typically be considered 5109 // non-uniform. 5110 auto *OP = dyn_cast<PHINode>(OV); 5111 if (OP && Legal->isFirstOrderRecurrence(OP)) 5112 continue; 5113 // If all the users of the operand are uniform, then add the 5114 // operand into the uniform worklist. 5115 auto *OI = cast<Instruction>(OV); 5116 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5117 auto *J = cast<Instruction>(U); 5118 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5119 })) 5120 addToWorklistIfAllowed(OI); 5121 } 5122 } 5123 5124 // For an instruction to be added into Worklist above, all its users inside 5125 // the loop should also be in Worklist. However, this condition cannot be 5126 // true for phi nodes that form a cyclic dependence. We must process phi 5127 // nodes separately. An induction variable will remain uniform if all users 5128 // of the induction variable and induction variable update remain uniform. 5129 // The code below handles both pointer and non-pointer induction variables. 5130 for (auto &Induction : Legal->getInductionVars()) { 5131 auto *Ind = Induction.first; 5132 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5133 5134 // Determine if all users of the induction variable are uniform after 5135 // vectorization. 5136 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5137 auto *I = cast<Instruction>(U); 5138 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5139 isVectorizedMemAccessUse(I, Ind); 5140 }); 5141 if (!UniformInd) 5142 continue; 5143 5144 // Determine if all users of the induction variable update instruction are 5145 // uniform after vectorization. 5146 auto UniformIndUpdate = 5147 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5148 auto *I = cast<Instruction>(U); 5149 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5150 isVectorizedMemAccessUse(I, IndUpdate); 5151 }); 5152 if (!UniformIndUpdate) 5153 continue; 5154 5155 // The induction variable and its update instruction will remain uniform. 5156 addToWorklistIfAllowed(Ind); 5157 addToWorklistIfAllowed(IndUpdate); 5158 } 5159 5160 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5161 } 5162 5163 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5164 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5165 5166 if (Legal->getRuntimePointerChecking()->Need) { 5167 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5168 "runtime pointer checks needed. Enable vectorization of this " 5169 "loop with '#pragma clang loop vectorize(enable)' when " 5170 "compiling with -Os/-Oz", 5171 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5172 return true; 5173 } 5174 5175 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5176 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5177 "runtime SCEV checks needed. Enable vectorization of this " 5178 "loop with '#pragma clang loop vectorize(enable)' when " 5179 "compiling with -Os/-Oz", 5180 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5181 return true; 5182 } 5183 5184 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5185 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5186 reportVectorizationFailure("Runtime stride check for small trip count", 5187 "runtime stride == 1 checks needed. Enable vectorization of " 5188 "this loop without such check by compiling with -Os/-Oz", 5189 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5190 return true; 5191 } 5192 5193 return false; 5194 } 5195 5196 ElementCount 5197 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5198 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 5199 return ElementCount::getScalable(0); 5200 5201 if (Hints->isScalableVectorizationDisabled()) { 5202 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5203 "ScalableVectorizationDisabled", ORE, TheLoop); 5204 return ElementCount::getScalable(0); 5205 } 5206 5207 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5208 5209 auto MaxScalableVF = ElementCount::getScalable( 5210 std::numeric_limits<ElementCount::ScalarTy>::max()); 5211 5212 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5213 // FIXME: While for scalable vectors this is currently sufficient, this should 5214 // be replaced by a more detailed mechanism that filters out specific VFs, 5215 // instead of invalidating vectorization for a whole set of VFs based on the 5216 // MaxVF. 5217 5218 // Disable scalable vectorization if the loop contains unsupported reductions. 5219 if (!canVectorizeReductions(MaxScalableVF)) { 5220 reportVectorizationInfo( 5221 "Scalable vectorization not supported for the reduction " 5222 "operations found in this loop.", 5223 "ScalableVFUnfeasible", ORE, TheLoop); 5224 return ElementCount::getScalable(0); 5225 } 5226 5227 // Disable scalable vectorization if the loop contains any instructions 5228 // with element types not supported for scalable vectors. 5229 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5230 return !Ty->isVoidTy() && 5231 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5232 })) { 5233 reportVectorizationInfo("Scalable vectorization is not supported " 5234 "for all element types found in this loop.", 5235 "ScalableVFUnfeasible", ORE, TheLoop); 5236 return ElementCount::getScalable(0); 5237 } 5238 5239 if (Legal->isSafeForAnyVectorWidth()) 5240 return MaxScalableVF; 5241 5242 // Limit MaxScalableVF by the maximum safe dependence distance. 5243 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5244 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 5245 MaxVScale = 5246 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 5247 MaxScalableVF = ElementCount::getScalable( 5248 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5249 if (!MaxScalableVF) 5250 reportVectorizationInfo( 5251 "Max legal vector width too small, scalable vectorization " 5252 "unfeasible.", 5253 "ScalableVFUnfeasible", ORE, TheLoop); 5254 5255 return MaxScalableVF; 5256 } 5257 5258 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 5259 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 5260 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5261 unsigned SmallestType, WidestType; 5262 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5263 5264 // Get the maximum safe dependence distance in bits computed by LAA. 5265 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5266 // the memory accesses that is most restrictive (involved in the smallest 5267 // dependence distance). 5268 unsigned MaxSafeElements = 5269 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5270 5271 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5272 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5273 5274 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5275 << ".\n"); 5276 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5277 << ".\n"); 5278 5279 // First analyze the UserVF, fall back if the UserVF should be ignored. 5280 if (UserVF) { 5281 auto MaxSafeUserVF = 5282 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5283 5284 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5285 // If `VF=vscale x N` is safe, then so is `VF=N` 5286 if (UserVF.isScalable()) 5287 return FixedScalableVFPair( 5288 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5289 else 5290 return UserVF; 5291 } 5292 5293 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5294 5295 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5296 // is better to ignore the hint and let the compiler choose a suitable VF. 5297 if (!UserVF.isScalable()) { 5298 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5299 << " is unsafe, clamping to max safe VF=" 5300 << MaxSafeFixedVF << ".\n"); 5301 ORE->emit([&]() { 5302 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5303 TheLoop->getStartLoc(), 5304 TheLoop->getHeader()) 5305 << "User-specified vectorization factor " 5306 << ore::NV("UserVectorizationFactor", UserVF) 5307 << " is unsafe, clamping to maximum safe vectorization factor " 5308 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5309 }); 5310 return MaxSafeFixedVF; 5311 } 5312 5313 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5314 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5315 << " is ignored because scalable vectors are not " 5316 "available.\n"); 5317 ORE->emit([&]() { 5318 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5319 TheLoop->getStartLoc(), 5320 TheLoop->getHeader()) 5321 << "User-specified vectorization factor " 5322 << ore::NV("UserVectorizationFactor", UserVF) 5323 << " is ignored because the target does not support scalable " 5324 "vectors. The compiler will pick a more suitable value."; 5325 }); 5326 } else { 5327 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5328 << " is unsafe. Ignoring scalable UserVF.\n"); 5329 ORE->emit([&]() { 5330 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5331 TheLoop->getStartLoc(), 5332 TheLoop->getHeader()) 5333 << "User-specified vectorization factor " 5334 << ore::NV("UserVectorizationFactor", UserVF) 5335 << " is unsafe. Ignoring the hint to let the compiler pick a " 5336 "more suitable value."; 5337 }); 5338 } 5339 } 5340 5341 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5342 << " / " << WidestType << " bits.\n"); 5343 5344 FixedScalableVFPair Result(ElementCount::getFixed(1), 5345 ElementCount::getScalable(0)); 5346 if (auto MaxVF = 5347 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5348 MaxSafeFixedVF, FoldTailByMasking)) 5349 Result.FixedVF = MaxVF; 5350 5351 if (auto MaxVF = 5352 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5353 MaxSafeScalableVF, FoldTailByMasking)) 5354 if (MaxVF.isScalable()) { 5355 Result.ScalableVF = MaxVF; 5356 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5357 << "\n"); 5358 } 5359 5360 return Result; 5361 } 5362 5363 FixedScalableVFPair 5364 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5365 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5366 // TODO: It may by useful to do since it's still likely to be dynamically 5367 // uniform if the target can skip. 5368 reportVectorizationFailure( 5369 "Not inserting runtime ptr check for divergent target", 5370 "runtime pointer checks needed. Not enabled for divergent target", 5371 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5372 return FixedScalableVFPair::getNone(); 5373 } 5374 5375 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5376 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5377 if (TC == 1) { 5378 reportVectorizationFailure("Single iteration (non) loop", 5379 "loop trip count is one, irrelevant for vectorization", 5380 "SingleIterationLoop", ORE, TheLoop); 5381 return FixedScalableVFPair::getNone(); 5382 } 5383 5384 switch (ScalarEpilogueStatus) { 5385 case CM_ScalarEpilogueAllowed: 5386 return computeFeasibleMaxVF(TC, UserVF, false); 5387 case CM_ScalarEpilogueNotAllowedUsePredicate: 5388 LLVM_FALLTHROUGH; 5389 case CM_ScalarEpilogueNotNeededUsePredicate: 5390 LLVM_DEBUG( 5391 dbgs() << "LV: vector predicate hint/switch found.\n" 5392 << "LV: Not allowing scalar epilogue, creating predicated " 5393 << "vector loop.\n"); 5394 break; 5395 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5396 // fallthrough as a special case of OptForSize 5397 case CM_ScalarEpilogueNotAllowedOptSize: 5398 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5399 LLVM_DEBUG( 5400 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5401 else 5402 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5403 << "count.\n"); 5404 5405 // Bail if runtime checks are required, which are not good when optimising 5406 // for size. 5407 if (runtimeChecksRequired()) 5408 return FixedScalableVFPair::getNone(); 5409 5410 break; 5411 } 5412 5413 // The only loops we can vectorize without a scalar epilogue, are loops with 5414 // a bottom-test and a single exiting block. We'd have to handle the fact 5415 // that not every instruction executes on the last iteration. This will 5416 // require a lane mask which varies through the vector loop body. (TODO) 5417 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5418 // If there was a tail-folding hint/switch, but we can't fold the tail by 5419 // masking, fallback to a vectorization with a scalar epilogue. 5420 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5421 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5422 "scalar epilogue instead.\n"); 5423 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5424 return computeFeasibleMaxVF(TC, UserVF, false); 5425 } 5426 return FixedScalableVFPair::getNone(); 5427 } 5428 5429 // Now try the tail folding 5430 5431 // Invalidate interleave groups that require an epilogue if we can't mask 5432 // the interleave-group. 5433 if (!useMaskedInterleavedAccesses(TTI)) { 5434 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5435 "No decisions should have been taken at this point"); 5436 // Note: There is no need to invalidate any cost modeling decisions here, as 5437 // non where taken so far. 5438 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5439 } 5440 5441 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5442 // Avoid tail folding if the trip count is known to be a multiple of any VF 5443 // we chose. 5444 // FIXME: The condition below pessimises the case for fixed-width vectors, 5445 // when scalable VFs are also candidates for vectorization. 5446 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5447 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5448 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5449 "MaxFixedVF must be a power of 2"); 5450 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5451 : MaxFixedVF.getFixedValue(); 5452 ScalarEvolution *SE = PSE.getSE(); 5453 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5454 const SCEV *ExitCount = SE->getAddExpr( 5455 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5456 const SCEV *Rem = SE->getURemExpr( 5457 SE->applyLoopGuards(ExitCount, TheLoop), 5458 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5459 if (Rem->isZero()) { 5460 // Accept MaxFixedVF if we do not have a tail. 5461 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5462 return MaxFactors; 5463 } 5464 } 5465 5466 // For scalable vectors don't use tail folding for low trip counts or 5467 // optimizing for code size. We only permit this if the user has explicitly 5468 // requested it. 5469 if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate && 5470 ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate && 5471 MaxFactors.ScalableVF.isVector()) 5472 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5473 5474 // If we don't know the precise trip count, or if the trip count that we 5475 // found modulo the vectorization factor is not zero, try to fold the tail 5476 // by masking. 5477 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5478 if (Legal->prepareToFoldTailByMasking()) { 5479 FoldTailByMasking = true; 5480 return MaxFactors; 5481 } 5482 5483 // If there was a tail-folding hint/switch, but we can't fold the tail by 5484 // masking, fallback to a vectorization with a scalar epilogue. 5485 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5486 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5487 "scalar epilogue instead.\n"); 5488 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5489 return MaxFactors; 5490 } 5491 5492 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5493 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5494 return FixedScalableVFPair::getNone(); 5495 } 5496 5497 if (TC == 0) { 5498 reportVectorizationFailure( 5499 "Unable to calculate the loop count due to complex control flow", 5500 "unable to calculate the loop count due to complex control flow", 5501 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5502 return FixedScalableVFPair::getNone(); 5503 } 5504 5505 reportVectorizationFailure( 5506 "Cannot optimize for size and vectorize at the same time.", 5507 "cannot optimize for size and vectorize at the same time. " 5508 "Enable vectorization of this loop with '#pragma clang loop " 5509 "vectorize(enable)' when compiling with -Os/-Oz", 5510 "NoTailLoopWithOptForSize", ORE, TheLoop); 5511 return FixedScalableVFPair::getNone(); 5512 } 5513 5514 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5515 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5516 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5517 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5518 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5519 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5520 : TargetTransformInfo::RGK_FixedWidthVector); 5521 5522 // Convenience function to return the minimum of two ElementCounts. 5523 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5524 assert((LHS.isScalable() == RHS.isScalable()) && 5525 "Scalable flags must match"); 5526 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5527 }; 5528 5529 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5530 // Note that both WidestRegister and WidestType may not be a powers of 2. 5531 auto MaxVectorElementCount = ElementCount::get( 5532 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5533 ComputeScalableMaxVF); 5534 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5535 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5536 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5537 5538 if (!MaxVectorElementCount) { 5539 LLVM_DEBUG(dbgs() << "LV: The target has no " 5540 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5541 << " vector registers.\n"); 5542 return ElementCount::getFixed(1); 5543 } 5544 5545 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5546 if (ConstTripCount && 5547 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5548 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5549 // If loop trip count (TC) is known at compile time there is no point in 5550 // choosing VF greater than TC (as done in the loop below). Select maximum 5551 // power of two which doesn't exceed TC. 5552 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5553 // when the TC is less than or equal to the known number of lanes. 5554 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5555 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5556 "exceeding the constant trip count: " 5557 << ClampedConstTripCount << "\n"); 5558 return ElementCount::getFixed(ClampedConstTripCount); 5559 } 5560 5561 ElementCount MaxVF = MaxVectorElementCount; 5562 if (TTI.shouldMaximizeVectorBandwidth() || 5563 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5564 auto MaxVectorElementCountMaxBW = ElementCount::get( 5565 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5566 ComputeScalableMaxVF); 5567 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5568 5569 // Collect all viable vectorization factors larger than the default MaxVF 5570 // (i.e. MaxVectorElementCount). 5571 SmallVector<ElementCount, 8> VFs; 5572 for (ElementCount VS = MaxVectorElementCount * 2; 5573 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5574 VFs.push_back(VS); 5575 5576 // For each VF calculate its register usage. 5577 auto RUs = calculateRegisterUsage(VFs); 5578 5579 // Select the largest VF which doesn't require more registers than existing 5580 // ones. 5581 for (int i = RUs.size() - 1; i >= 0; --i) { 5582 bool Selected = true; 5583 for (auto &pair : RUs[i].MaxLocalUsers) { 5584 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5585 if (pair.second > TargetNumRegisters) 5586 Selected = false; 5587 } 5588 if (Selected) { 5589 MaxVF = VFs[i]; 5590 break; 5591 } 5592 } 5593 if (ElementCount MinVF = 5594 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5595 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5596 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5597 << ") with target's minimum: " << MinVF << '\n'); 5598 MaxVF = MinVF; 5599 } 5600 } 5601 } 5602 return MaxVF; 5603 } 5604 5605 bool LoopVectorizationCostModel::isMoreProfitable( 5606 const VectorizationFactor &A, const VectorizationFactor &B) const { 5607 InstructionCost CostA = A.Cost; 5608 InstructionCost CostB = B.Cost; 5609 5610 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5611 5612 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5613 MaxTripCount) { 5614 // If we are folding the tail and the trip count is a known (possibly small) 5615 // constant, the trip count will be rounded up to an integer number of 5616 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5617 // which we compare directly. When not folding the tail, the total cost will 5618 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5619 // approximated with the per-lane cost below instead of using the tripcount 5620 // as here. 5621 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5622 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5623 return RTCostA < RTCostB; 5624 } 5625 5626 // Improve estimate for the vector width if it is scalable. 5627 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5628 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5629 if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) { 5630 if (A.Width.isScalable()) 5631 EstimatedWidthA *= VScale.getValue(); 5632 if (B.Width.isScalable()) 5633 EstimatedWidthB *= VScale.getValue(); 5634 } 5635 5636 // Assume vscale may be larger than 1 (or the value being tuned for), 5637 // so that scalable vectorization is slightly favorable over fixed-width 5638 // vectorization. 5639 if (A.Width.isScalable() && !B.Width.isScalable()) 5640 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5641 5642 // To avoid the need for FP division: 5643 // (CostA / A.Width) < (CostB / B.Width) 5644 // <=> (CostA * B.Width) < (CostB * A.Width) 5645 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5646 } 5647 5648 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5649 const ElementCountSet &VFCandidates) { 5650 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5651 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5652 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5653 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5654 "Expected Scalar VF to be a candidate"); 5655 5656 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5657 VectorizationFactor ChosenFactor = ScalarCost; 5658 5659 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5660 if (ForceVectorization && VFCandidates.size() > 1) { 5661 // Ignore scalar width, because the user explicitly wants vectorization. 5662 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5663 // evaluation. 5664 ChosenFactor.Cost = InstructionCost::getMax(); 5665 } 5666 5667 SmallVector<InstructionVFPair> InvalidCosts; 5668 for (const auto &i : VFCandidates) { 5669 // The cost for scalar VF=1 is already calculated, so ignore it. 5670 if (i.isScalar()) 5671 continue; 5672 5673 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5674 VectorizationFactor Candidate(i, C.first); 5675 5676 #ifndef NDEBUG 5677 unsigned AssumedMinimumVscale = 1; 5678 if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) 5679 AssumedMinimumVscale = VScale.getValue(); 5680 unsigned Width = 5681 Candidate.Width.isScalable() 5682 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5683 : Candidate.Width.getFixedValue(); 5684 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5685 << " costs: " << (Candidate.Cost / Width)); 5686 if (i.isScalable()) 5687 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5688 << AssumedMinimumVscale << ")"); 5689 LLVM_DEBUG(dbgs() << ".\n"); 5690 #endif 5691 5692 if (!C.second && !ForceVectorization) { 5693 LLVM_DEBUG( 5694 dbgs() << "LV: Not considering vector loop of width " << i 5695 << " because it will not generate any vector instructions.\n"); 5696 continue; 5697 } 5698 5699 // If profitable add it to ProfitableVF list. 5700 if (isMoreProfitable(Candidate, ScalarCost)) 5701 ProfitableVFs.push_back(Candidate); 5702 5703 if (isMoreProfitable(Candidate, ChosenFactor)) 5704 ChosenFactor = Candidate; 5705 } 5706 5707 // Emit a report of VFs with invalid costs in the loop. 5708 if (!InvalidCosts.empty()) { 5709 // Group the remarks per instruction, keeping the instruction order from 5710 // InvalidCosts. 5711 std::map<Instruction *, unsigned> Numbering; 5712 unsigned I = 0; 5713 for (auto &Pair : InvalidCosts) 5714 if (!Numbering.count(Pair.first)) 5715 Numbering[Pair.first] = I++; 5716 5717 // Sort the list, first on instruction(number) then on VF. 5718 llvm::sort(InvalidCosts, 5719 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5720 if (Numbering[A.first] != Numbering[B.first]) 5721 return Numbering[A.first] < Numbering[B.first]; 5722 ElementCountComparator ECC; 5723 return ECC(A.second, B.second); 5724 }); 5725 5726 // For a list of ordered instruction-vf pairs: 5727 // [(load, vf1), (load, vf2), (store, vf1)] 5728 // Group the instructions together to emit separate remarks for: 5729 // load (vf1, vf2) 5730 // store (vf1) 5731 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5732 auto Subset = ArrayRef<InstructionVFPair>(); 5733 do { 5734 if (Subset.empty()) 5735 Subset = Tail.take_front(1); 5736 5737 Instruction *I = Subset.front().first; 5738 5739 // If the next instruction is different, or if there are no other pairs, 5740 // emit a remark for the collated subset. e.g. 5741 // [(load, vf1), (load, vf2))] 5742 // to emit: 5743 // remark: invalid costs for 'load' at VF=(vf, vf2) 5744 if (Subset == Tail || Tail[Subset.size()].first != I) { 5745 std::string OutString; 5746 raw_string_ostream OS(OutString); 5747 assert(!Subset.empty() && "Unexpected empty range"); 5748 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5749 for (auto &Pair : Subset) 5750 OS << (Pair.second == Subset.front().second ? "" : ", ") 5751 << Pair.second; 5752 OS << "):"; 5753 if (auto *CI = dyn_cast<CallInst>(I)) 5754 OS << " call to " << CI->getCalledFunction()->getName(); 5755 else 5756 OS << " " << I->getOpcodeName(); 5757 OS.flush(); 5758 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5759 Tail = Tail.drop_front(Subset.size()); 5760 Subset = {}; 5761 } else 5762 // Grow the subset by one element 5763 Subset = Tail.take_front(Subset.size() + 1); 5764 } while (!Tail.empty()); 5765 } 5766 5767 if (!EnableCondStoresVectorization && NumPredStores) { 5768 reportVectorizationFailure("There are conditional stores.", 5769 "store that is conditionally executed prevents vectorization", 5770 "ConditionalStore", ORE, TheLoop); 5771 ChosenFactor = ScalarCost; 5772 } 5773 5774 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5775 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5776 << "LV: Vectorization seems to be not beneficial, " 5777 << "but was forced by a user.\n"); 5778 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5779 return ChosenFactor; 5780 } 5781 5782 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5783 const Loop &L, ElementCount VF) const { 5784 // Cross iteration phis such as reductions need special handling and are 5785 // currently unsupported. 5786 if (any_of(L.getHeader()->phis(), 5787 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5788 return false; 5789 5790 // Phis with uses outside of the loop require special handling and are 5791 // currently unsupported. 5792 for (auto &Entry : Legal->getInductionVars()) { 5793 // Look for uses of the value of the induction at the last iteration. 5794 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5795 for (User *U : PostInc->users()) 5796 if (!L.contains(cast<Instruction>(U))) 5797 return false; 5798 // Look for uses of penultimate value of the induction. 5799 for (User *U : Entry.first->users()) 5800 if (!L.contains(cast<Instruction>(U))) 5801 return false; 5802 } 5803 5804 // Induction variables that are widened require special handling that is 5805 // currently not supported. 5806 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5807 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5808 this->isProfitableToScalarize(Entry.first, VF)); 5809 })) 5810 return false; 5811 5812 // Epilogue vectorization code has not been auditted to ensure it handles 5813 // non-latch exits properly. It may be fine, but it needs auditted and 5814 // tested. 5815 if (L.getExitingBlock() != L.getLoopLatch()) 5816 return false; 5817 5818 return true; 5819 } 5820 5821 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5822 const ElementCount VF) const { 5823 // FIXME: We need a much better cost-model to take different parameters such 5824 // as register pressure, code size increase and cost of extra branches into 5825 // account. For now we apply a very crude heuristic and only consider loops 5826 // with vectorization factors larger than a certain value. 5827 // We also consider epilogue vectorization unprofitable for targets that don't 5828 // consider interleaving beneficial (eg. MVE). 5829 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5830 return false; 5831 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 5832 return true; 5833 return false; 5834 } 5835 5836 VectorizationFactor 5837 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5838 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5839 VectorizationFactor Result = VectorizationFactor::Disabled(); 5840 if (!EnableEpilogueVectorization) { 5841 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5842 return Result; 5843 } 5844 5845 if (!isScalarEpilogueAllowed()) { 5846 LLVM_DEBUG( 5847 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5848 "allowed.\n";); 5849 return Result; 5850 } 5851 5852 // Not really a cost consideration, but check for unsupported cases here to 5853 // simplify the logic. 5854 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5855 LLVM_DEBUG( 5856 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5857 "not a supported candidate.\n";); 5858 return Result; 5859 } 5860 5861 if (EpilogueVectorizationForceVF > 1) { 5862 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5863 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5864 if (LVP.hasPlanWithVF(ForcedEC)) 5865 return {ForcedEC, 0}; 5866 else { 5867 LLVM_DEBUG( 5868 dbgs() 5869 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5870 return Result; 5871 } 5872 } 5873 5874 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5875 TheLoop->getHeader()->getParent()->hasMinSize()) { 5876 LLVM_DEBUG( 5877 dbgs() 5878 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5879 return Result; 5880 } 5881 5882 auto FixedMainLoopVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5883 if (MainLoopVF.isScalable()) 5884 LLVM_DEBUG( 5885 dbgs() << "LEV: Epilogue vectorization using scalable vectors not " 5886 "yet supported. Converting to fixed-width (VF=" 5887 << FixedMainLoopVF << ") instead\n"); 5888 5889 if (!isEpilogueVectorizationProfitable(FixedMainLoopVF)) { 5890 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5891 "this loop\n"); 5892 return Result; 5893 } 5894 5895 for (auto &NextVF : ProfitableVFs) 5896 if (ElementCount::isKnownLT(NextVF.Width, FixedMainLoopVF) && 5897 (Result.Width.getFixedValue() == 1 || 5898 isMoreProfitable(NextVF, Result)) && 5899 LVP.hasPlanWithVF(NextVF.Width)) 5900 Result = NextVF; 5901 5902 if (Result != VectorizationFactor::Disabled()) 5903 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5904 << Result.Width.getFixedValue() << "\n";); 5905 return Result; 5906 } 5907 5908 std::pair<unsigned, unsigned> 5909 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5910 unsigned MinWidth = -1U; 5911 unsigned MaxWidth = 8; 5912 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5913 // For in-loop reductions, no element types are added to ElementTypesInLoop 5914 // if there are no loads/stores in the loop. In this case, check through the 5915 // reduction variables to determine the maximum width. 5916 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5917 // Reset MaxWidth so that we can find the smallest type used by recurrences 5918 // in the loop. 5919 MaxWidth = -1U; 5920 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5921 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5922 // When finding the min width used by the recurrence we need to account 5923 // for casts on the input operands of the recurrence. 5924 MaxWidth = std::min<unsigned>( 5925 MaxWidth, std::min<unsigned>( 5926 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5927 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5928 } 5929 } else { 5930 for (Type *T : ElementTypesInLoop) { 5931 MinWidth = std::min<unsigned>( 5932 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5933 MaxWidth = std::max<unsigned>( 5934 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5935 } 5936 } 5937 return {MinWidth, MaxWidth}; 5938 } 5939 5940 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5941 ElementTypesInLoop.clear(); 5942 // For each block. 5943 for (BasicBlock *BB : TheLoop->blocks()) { 5944 // For each instruction in the loop. 5945 for (Instruction &I : BB->instructionsWithoutDebug()) { 5946 Type *T = I.getType(); 5947 5948 // Skip ignored values. 5949 if (ValuesToIgnore.count(&I)) 5950 continue; 5951 5952 // Only examine Loads, Stores and PHINodes. 5953 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5954 continue; 5955 5956 // Examine PHI nodes that are reduction variables. Update the type to 5957 // account for the recurrence type. 5958 if (auto *PN = dyn_cast<PHINode>(&I)) { 5959 if (!Legal->isReductionVariable(PN)) 5960 continue; 5961 const RecurrenceDescriptor &RdxDesc = 5962 Legal->getReductionVars().find(PN)->second; 5963 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5964 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5965 RdxDesc.getRecurrenceType(), 5966 TargetTransformInfo::ReductionFlags())) 5967 continue; 5968 T = RdxDesc.getRecurrenceType(); 5969 } 5970 5971 // Examine the stored values. 5972 if (auto *ST = dyn_cast<StoreInst>(&I)) 5973 T = ST->getValueOperand()->getType(); 5974 5975 assert(T->isSized() && 5976 "Expected the load/store/recurrence type to be sized"); 5977 5978 ElementTypesInLoop.insert(T); 5979 } 5980 } 5981 } 5982 5983 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5984 unsigned LoopCost) { 5985 // -- The interleave heuristics -- 5986 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5987 // There are many micro-architectural considerations that we can't predict 5988 // at this level. For example, frontend pressure (on decode or fetch) due to 5989 // code size, or the number and capabilities of the execution ports. 5990 // 5991 // We use the following heuristics to select the interleave count: 5992 // 1. If the code has reductions, then we interleave to break the cross 5993 // iteration dependency. 5994 // 2. If the loop is really small, then we interleave to reduce the loop 5995 // overhead. 5996 // 3. We don't interleave if we think that we will spill registers to memory 5997 // due to the increased register pressure. 5998 5999 if (!isScalarEpilogueAllowed()) 6000 return 1; 6001 6002 // We used the distance for the interleave count. 6003 if (Legal->getMaxSafeDepDistBytes() != -1U) 6004 return 1; 6005 6006 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6007 const bool HasReductions = !Legal->getReductionVars().empty(); 6008 // Do not interleave loops with a relatively small known or estimated trip 6009 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6010 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6011 // because with the above conditions interleaving can expose ILP and break 6012 // cross iteration dependences for reductions. 6013 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6014 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6015 return 1; 6016 6017 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6018 // We divide by these constants so assume that we have at least one 6019 // instruction that uses at least one register. 6020 for (auto& pair : R.MaxLocalUsers) { 6021 pair.second = std::max(pair.second, 1U); 6022 } 6023 6024 // We calculate the interleave count using the following formula. 6025 // Subtract the number of loop invariants from the number of available 6026 // registers. These registers are used by all of the interleaved instances. 6027 // Next, divide the remaining registers by the number of registers that is 6028 // required by the loop, in order to estimate how many parallel instances 6029 // fit without causing spills. All of this is rounded down if necessary to be 6030 // a power of two. We want power of two interleave count to simplify any 6031 // addressing operations or alignment considerations. 6032 // We also want power of two interleave counts to ensure that the induction 6033 // variable of the vector loop wraps to zero, when tail is folded by masking; 6034 // this currently happens when OptForSize, in which case IC is set to 1 above. 6035 unsigned IC = UINT_MAX; 6036 6037 for (auto& pair : R.MaxLocalUsers) { 6038 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6039 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6040 << " registers of " 6041 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6042 if (VF.isScalar()) { 6043 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6044 TargetNumRegisters = ForceTargetNumScalarRegs; 6045 } else { 6046 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6047 TargetNumRegisters = ForceTargetNumVectorRegs; 6048 } 6049 unsigned MaxLocalUsers = pair.second; 6050 unsigned LoopInvariantRegs = 0; 6051 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6052 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6053 6054 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6055 // Don't count the induction variable as interleaved. 6056 if (EnableIndVarRegisterHeur) { 6057 TmpIC = 6058 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6059 std::max(1U, (MaxLocalUsers - 1))); 6060 } 6061 6062 IC = std::min(IC, TmpIC); 6063 } 6064 6065 // Clamp the interleave ranges to reasonable counts. 6066 unsigned MaxInterleaveCount = 6067 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6068 6069 // Check if the user has overridden the max. 6070 if (VF.isScalar()) { 6071 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6072 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6073 } else { 6074 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6075 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6076 } 6077 6078 // If trip count is known or estimated compile time constant, limit the 6079 // interleave count to be less than the trip count divided by VF, provided it 6080 // is at least 1. 6081 // 6082 // For scalable vectors we can't know if interleaving is beneficial. It may 6083 // not be beneficial for small loops if none of the lanes in the second vector 6084 // iterations is enabled. However, for larger loops, there is likely to be a 6085 // similar benefit as for fixed-width vectors. For now, we choose to leave 6086 // the InterleaveCount as if vscale is '1', although if some information about 6087 // the vector is known (e.g. min vector size), we can make a better decision. 6088 if (BestKnownTC) { 6089 MaxInterleaveCount = 6090 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6091 // Make sure MaxInterleaveCount is greater than 0. 6092 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6093 } 6094 6095 assert(MaxInterleaveCount > 0 && 6096 "Maximum interleave count must be greater than 0"); 6097 6098 // Clamp the calculated IC to be between the 1 and the max interleave count 6099 // that the target and trip count allows. 6100 if (IC > MaxInterleaveCount) 6101 IC = MaxInterleaveCount; 6102 else 6103 // Make sure IC is greater than 0. 6104 IC = std::max(1u, IC); 6105 6106 assert(IC > 0 && "Interleave count must be greater than 0."); 6107 6108 // If we did not calculate the cost for VF (because the user selected the VF) 6109 // then we calculate the cost of VF here. 6110 if (LoopCost == 0) { 6111 InstructionCost C = expectedCost(VF).first; 6112 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6113 LoopCost = *C.getValue(); 6114 } 6115 6116 assert(LoopCost && "Non-zero loop cost expected"); 6117 6118 // Interleave if we vectorized this loop and there is a reduction that could 6119 // benefit from interleaving. 6120 if (VF.isVector() && HasReductions) { 6121 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6122 return IC; 6123 } 6124 6125 // Note that if we've already vectorized the loop we will have done the 6126 // runtime check and so interleaving won't require further checks. 6127 bool InterleavingRequiresRuntimePointerCheck = 6128 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6129 6130 // We want to interleave small loops in order to reduce the loop overhead and 6131 // potentially expose ILP opportunities. 6132 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6133 << "LV: IC is " << IC << '\n' 6134 << "LV: VF is " << VF << '\n'); 6135 const bool AggressivelyInterleaveReductions = 6136 TTI.enableAggressiveInterleaving(HasReductions); 6137 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6138 // We assume that the cost overhead is 1 and we use the cost model 6139 // to estimate the cost of the loop and interleave until the cost of the 6140 // loop overhead is about 5% of the cost of the loop. 6141 unsigned SmallIC = 6142 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6143 6144 // Interleave until store/load ports (estimated by max interleave count) are 6145 // saturated. 6146 unsigned NumStores = Legal->getNumStores(); 6147 unsigned NumLoads = Legal->getNumLoads(); 6148 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6149 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6150 6151 // There is little point in interleaving for reductions containing selects 6152 // and compares when VF=1 since it may just create more overhead than it's 6153 // worth for loops with small trip counts. This is because we still have to 6154 // do the final reduction after the loop. 6155 bool HasSelectCmpReductions = 6156 HasReductions && 6157 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6158 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6159 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 6160 RdxDesc.getRecurrenceKind()); 6161 }); 6162 if (HasSelectCmpReductions) { 6163 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 6164 return 1; 6165 } 6166 6167 // If we have a scalar reduction (vector reductions are already dealt with 6168 // by this point), we can increase the critical path length if the loop 6169 // we're interleaving is inside another loop. For tree-wise reductions 6170 // set the limit to 2, and for ordered reductions it's best to disable 6171 // interleaving entirely. 6172 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6173 bool HasOrderedReductions = 6174 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6175 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6176 return RdxDesc.isOrdered(); 6177 }); 6178 if (HasOrderedReductions) { 6179 LLVM_DEBUG( 6180 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6181 return 1; 6182 } 6183 6184 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6185 SmallIC = std::min(SmallIC, F); 6186 StoresIC = std::min(StoresIC, F); 6187 LoadsIC = std::min(LoadsIC, F); 6188 } 6189 6190 if (EnableLoadStoreRuntimeInterleave && 6191 std::max(StoresIC, LoadsIC) > SmallIC) { 6192 LLVM_DEBUG( 6193 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6194 return std::max(StoresIC, LoadsIC); 6195 } 6196 6197 // If there are scalar reductions and TTI has enabled aggressive 6198 // interleaving for reductions, we will interleave to expose ILP. 6199 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6200 AggressivelyInterleaveReductions) { 6201 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6202 // Interleave no less than SmallIC but not as aggressive as the normal IC 6203 // to satisfy the rare situation when resources are too limited. 6204 return std::max(IC / 2, SmallIC); 6205 } else { 6206 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6207 return SmallIC; 6208 } 6209 } 6210 6211 // Interleave if this is a large loop (small loops are already dealt with by 6212 // this point) that could benefit from interleaving. 6213 if (AggressivelyInterleaveReductions) { 6214 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6215 return IC; 6216 } 6217 6218 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6219 return 1; 6220 } 6221 6222 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6223 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6224 // This function calculates the register usage by measuring the highest number 6225 // of values that are alive at a single location. Obviously, this is a very 6226 // rough estimation. We scan the loop in a topological order in order and 6227 // assign a number to each instruction. We use RPO to ensure that defs are 6228 // met before their users. We assume that each instruction that has in-loop 6229 // users starts an interval. We record every time that an in-loop value is 6230 // used, so we have a list of the first and last occurrences of each 6231 // instruction. Next, we transpose this data structure into a multi map that 6232 // holds the list of intervals that *end* at a specific location. This multi 6233 // map allows us to perform a linear search. We scan the instructions linearly 6234 // and record each time that a new interval starts, by placing it in a set. 6235 // If we find this value in the multi-map then we remove it from the set. 6236 // The max register usage is the maximum size of the set. 6237 // We also search for instructions that are defined outside the loop, but are 6238 // used inside the loop. We need this number separately from the max-interval 6239 // usage number because when we unroll, loop-invariant values do not take 6240 // more register. 6241 LoopBlocksDFS DFS(TheLoop); 6242 DFS.perform(LI); 6243 6244 RegisterUsage RU; 6245 6246 // Each 'key' in the map opens a new interval. The values 6247 // of the map are the index of the 'last seen' usage of the 6248 // instruction that is the key. 6249 using IntervalMap = DenseMap<Instruction *, unsigned>; 6250 6251 // Maps instruction to its index. 6252 SmallVector<Instruction *, 64> IdxToInstr; 6253 // Marks the end of each interval. 6254 IntervalMap EndPoint; 6255 // Saves the list of instruction indices that are used in the loop. 6256 SmallPtrSet<Instruction *, 8> Ends; 6257 // Saves the list of values that are used in the loop but are 6258 // defined outside the loop, such as arguments and constants. 6259 SmallPtrSet<Value *, 8> LoopInvariants; 6260 6261 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6262 for (Instruction &I : BB->instructionsWithoutDebug()) { 6263 IdxToInstr.push_back(&I); 6264 6265 // Save the end location of each USE. 6266 for (Value *U : I.operands()) { 6267 auto *Instr = dyn_cast<Instruction>(U); 6268 6269 // Ignore non-instruction values such as arguments, constants, etc. 6270 if (!Instr) 6271 continue; 6272 6273 // If this instruction is outside the loop then record it and continue. 6274 if (!TheLoop->contains(Instr)) { 6275 LoopInvariants.insert(Instr); 6276 continue; 6277 } 6278 6279 // Overwrite previous end points. 6280 EndPoint[Instr] = IdxToInstr.size(); 6281 Ends.insert(Instr); 6282 } 6283 } 6284 } 6285 6286 // Saves the list of intervals that end with the index in 'key'. 6287 using InstrList = SmallVector<Instruction *, 2>; 6288 DenseMap<unsigned, InstrList> TransposeEnds; 6289 6290 // Transpose the EndPoints to a list of values that end at each index. 6291 for (auto &Interval : EndPoint) 6292 TransposeEnds[Interval.second].push_back(Interval.first); 6293 6294 SmallPtrSet<Instruction *, 8> OpenIntervals; 6295 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6296 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6297 6298 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6299 6300 // A lambda that gets the register usage for the given type and VF. 6301 const auto &TTICapture = TTI; 6302 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6303 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6304 return 0; 6305 InstructionCost::CostType RegUsage = 6306 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6307 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6308 "Nonsensical values for register usage."); 6309 return RegUsage; 6310 }; 6311 6312 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6313 Instruction *I = IdxToInstr[i]; 6314 6315 // Remove all of the instructions that end at this location. 6316 InstrList &List = TransposeEnds[i]; 6317 for (Instruction *ToRemove : List) 6318 OpenIntervals.erase(ToRemove); 6319 6320 // Ignore instructions that are never used within the loop. 6321 if (!Ends.count(I)) 6322 continue; 6323 6324 // Skip ignored values. 6325 if (ValuesToIgnore.count(I)) 6326 continue; 6327 6328 // For each VF find the maximum usage of registers. 6329 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6330 // Count the number of live intervals. 6331 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6332 6333 if (VFs[j].isScalar()) { 6334 for (auto Inst : OpenIntervals) { 6335 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6336 if (RegUsage.find(ClassID) == RegUsage.end()) 6337 RegUsage[ClassID] = 1; 6338 else 6339 RegUsage[ClassID] += 1; 6340 } 6341 } else { 6342 collectUniformsAndScalars(VFs[j]); 6343 for (auto Inst : OpenIntervals) { 6344 // Skip ignored values for VF > 1. 6345 if (VecValuesToIgnore.count(Inst)) 6346 continue; 6347 if (isScalarAfterVectorization(Inst, VFs[j])) { 6348 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6349 if (RegUsage.find(ClassID) == RegUsage.end()) 6350 RegUsage[ClassID] = 1; 6351 else 6352 RegUsage[ClassID] += 1; 6353 } else { 6354 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6355 if (RegUsage.find(ClassID) == RegUsage.end()) 6356 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6357 else 6358 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6359 } 6360 } 6361 } 6362 6363 for (auto& pair : RegUsage) { 6364 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6365 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6366 else 6367 MaxUsages[j][pair.first] = pair.second; 6368 } 6369 } 6370 6371 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6372 << OpenIntervals.size() << '\n'); 6373 6374 // Add the current instruction to the list of open intervals. 6375 OpenIntervals.insert(I); 6376 } 6377 6378 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6379 SmallMapVector<unsigned, unsigned, 4> Invariant; 6380 6381 for (auto Inst : LoopInvariants) { 6382 unsigned Usage = 6383 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6384 unsigned ClassID = 6385 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6386 if (Invariant.find(ClassID) == Invariant.end()) 6387 Invariant[ClassID] = Usage; 6388 else 6389 Invariant[ClassID] += Usage; 6390 } 6391 6392 LLVM_DEBUG({ 6393 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6394 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6395 << " item\n"; 6396 for (const auto &pair : MaxUsages[i]) { 6397 dbgs() << "LV(REG): RegisterClass: " 6398 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6399 << " registers\n"; 6400 } 6401 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6402 << " item\n"; 6403 for (const auto &pair : Invariant) { 6404 dbgs() << "LV(REG): RegisterClass: " 6405 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6406 << " registers\n"; 6407 } 6408 }); 6409 6410 RU.LoopInvariantRegs = Invariant; 6411 RU.MaxLocalUsers = MaxUsages[i]; 6412 RUs[i] = RU; 6413 } 6414 6415 return RUs; 6416 } 6417 6418 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6419 ElementCount VF) { 6420 // TODO: Cost model for emulated masked load/store is completely 6421 // broken. This hack guides the cost model to use an artificially 6422 // high enough value to practically disable vectorization with such 6423 // operations, except where previously deployed legality hack allowed 6424 // using very low cost values. This is to avoid regressions coming simply 6425 // from moving "masked load/store" check from legality to cost model. 6426 // Masked Load/Gather emulation was previously never allowed. 6427 // Limited number of Masked Store/Scatter emulation was allowed. 6428 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6429 return isa<LoadInst>(I) || 6430 (isa<StoreInst>(I) && 6431 NumPredStores > NumberOfStoresToPredicate); 6432 } 6433 6434 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6435 // If we aren't vectorizing the loop, or if we've already collected the 6436 // instructions to scalarize, there's nothing to do. Collection may already 6437 // have occurred if we have a user-selected VF and are now computing the 6438 // expected cost for interleaving. 6439 if (VF.isScalar() || VF.isZero() || 6440 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6441 return; 6442 6443 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6444 // not profitable to scalarize any instructions, the presence of VF in the 6445 // map will indicate that we've analyzed it already. 6446 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6447 6448 // Find all the instructions that are scalar with predication in the loop and 6449 // determine if it would be better to not if-convert the blocks they are in. 6450 // If so, we also record the instructions to scalarize. 6451 for (BasicBlock *BB : TheLoop->blocks()) { 6452 if (!blockNeedsPredicationForAnyReason(BB)) 6453 continue; 6454 for (Instruction &I : *BB) 6455 if (isScalarWithPredication(&I, VF)) { 6456 ScalarCostsTy ScalarCosts; 6457 // Do not apply discount if scalable, because that would lead to 6458 // invalid scalarization costs. 6459 // Do not apply discount logic if hacked cost is needed 6460 // for emulated masked memrefs. 6461 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6462 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6463 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6464 // Remember that BB will remain after vectorization. 6465 PredicatedBBsAfterVectorization.insert(BB); 6466 } 6467 } 6468 } 6469 6470 int LoopVectorizationCostModel::computePredInstDiscount( 6471 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6472 assert(!isUniformAfterVectorization(PredInst, VF) && 6473 "Instruction marked uniform-after-vectorization will be predicated"); 6474 6475 // Initialize the discount to zero, meaning that the scalar version and the 6476 // vector version cost the same. 6477 InstructionCost Discount = 0; 6478 6479 // Holds instructions to analyze. The instructions we visit are mapped in 6480 // ScalarCosts. Those instructions are the ones that would be scalarized if 6481 // we find that the scalar version costs less. 6482 SmallVector<Instruction *, 8> Worklist; 6483 6484 // Returns true if the given instruction can be scalarized. 6485 auto canBeScalarized = [&](Instruction *I) -> bool { 6486 // We only attempt to scalarize instructions forming a single-use chain 6487 // from the original predicated block that would otherwise be vectorized. 6488 // Although not strictly necessary, we give up on instructions we know will 6489 // already be scalar to avoid traversing chains that are unlikely to be 6490 // beneficial. 6491 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6492 isScalarAfterVectorization(I, VF)) 6493 return false; 6494 6495 // If the instruction is scalar with predication, it will be analyzed 6496 // separately. We ignore it within the context of PredInst. 6497 if (isScalarWithPredication(I, VF)) 6498 return false; 6499 6500 // If any of the instruction's operands are uniform after vectorization, 6501 // the instruction cannot be scalarized. This prevents, for example, a 6502 // masked load from being scalarized. 6503 // 6504 // We assume we will only emit a value for lane zero of an instruction 6505 // marked uniform after vectorization, rather than VF identical values. 6506 // Thus, if we scalarize an instruction that uses a uniform, we would 6507 // create uses of values corresponding to the lanes we aren't emitting code 6508 // for. This behavior can be changed by allowing getScalarValue to clone 6509 // the lane zero values for uniforms rather than asserting. 6510 for (Use &U : I->operands()) 6511 if (auto *J = dyn_cast<Instruction>(U.get())) 6512 if (isUniformAfterVectorization(J, VF)) 6513 return false; 6514 6515 // Otherwise, we can scalarize the instruction. 6516 return true; 6517 }; 6518 6519 // Compute the expected cost discount from scalarizing the entire expression 6520 // feeding the predicated instruction. We currently only consider expressions 6521 // that are single-use instruction chains. 6522 Worklist.push_back(PredInst); 6523 while (!Worklist.empty()) { 6524 Instruction *I = Worklist.pop_back_val(); 6525 6526 // If we've already analyzed the instruction, there's nothing to do. 6527 if (ScalarCosts.find(I) != ScalarCosts.end()) 6528 continue; 6529 6530 // Compute the cost of the vector instruction. Note that this cost already 6531 // includes the scalarization overhead of the predicated instruction. 6532 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6533 6534 // Compute the cost of the scalarized instruction. This cost is the cost of 6535 // the instruction as if it wasn't if-converted and instead remained in the 6536 // predicated block. We will scale this cost by block probability after 6537 // computing the scalarization overhead. 6538 InstructionCost ScalarCost = 6539 VF.getFixedValue() * 6540 getInstructionCost(I, ElementCount::getFixed(1)).first; 6541 6542 // Compute the scalarization overhead of needed insertelement instructions 6543 // and phi nodes. 6544 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6545 ScalarCost += TTI.getScalarizationOverhead( 6546 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6547 APInt::getAllOnes(VF.getFixedValue()), true, false); 6548 ScalarCost += 6549 VF.getFixedValue() * 6550 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6551 } 6552 6553 // Compute the scalarization overhead of needed extractelement 6554 // instructions. For each of the instruction's operands, if the operand can 6555 // be scalarized, add it to the worklist; otherwise, account for the 6556 // overhead. 6557 for (Use &U : I->operands()) 6558 if (auto *J = dyn_cast<Instruction>(U.get())) { 6559 assert(VectorType::isValidElementType(J->getType()) && 6560 "Instruction has non-scalar type"); 6561 if (canBeScalarized(J)) 6562 Worklist.push_back(J); 6563 else if (needsExtract(J, VF)) { 6564 ScalarCost += TTI.getScalarizationOverhead( 6565 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6566 APInt::getAllOnes(VF.getFixedValue()), false, true); 6567 } 6568 } 6569 6570 // Scale the total scalar cost by block probability. 6571 ScalarCost /= getReciprocalPredBlockProb(); 6572 6573 // Compute the discount. A non-negative discount means the vector version 6574 // of the instruction costs more, and scalarizing would be beneficial. 6575 Discount += VectorCost - ScalarCost; 6576 ScalarCosts[I] = ScalarCost; 6577 } 6578 6579 return *Discount.getValue(); 6580 } 6581 6582 LoopVectorizationCostModel::VectorizationCostTy 6583 LoopVectorizationCostModel::expectedCost( 6584 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6585 VectorizationCostTy Cost; 6586 6587 // For each block. 6588 for (BasicBlock *BB : TheLoop->blocks()) { 6589 VectorizationCostTy BlockCost; 6590 6591 // For each instruction in the old loop. 6592 for (Instruction &I : BB->instructionsWithoutDebug()) { 6593 // Skip ignored values. 6594 if (ValuesToIgnore.count(&I) || 6595 (VF.isVector() && VecValuesToIgnore.count(&I))) 6596 continue; 6597 6598 VectorizationCostTy C = getInstructionCost(&I, VF); 6599 6600 // Check if we should override the cost. 6601 if (C.first.isValid() && 6602 ForceTargetInstructionCost.getNumOccurrences() > 0) 6603 C.first = InstructionCost(ForceTargetInstructionCost); 6604 6605 // Keep a list of instructions with invalid costs. 6606 if (Invalid && !C.first.isValid()) 6607 Invalid->emplace_back(&I, VF); 6608 6609 BlockCost.first += C.first; 6610 BlockCost.second |= C.second; 6611 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6612 << " for VF " << VF << " For instruction: " << I 6613 << '\n'); 6614 } 6615 6616 // If we are vectorizing a predicated block, it will have been 6617 // if-converted. This means that the block's instructions (aside from 6618 // stores and instructions that may divide by zero) will now be 6619 // unconditionally executed. For the scalar case, we may not always execute 6620 // the predicated block, if it is an if-else block. Thus, scale the block's 6621 // cost by the probability of executing it. blockNeedsPredication from 6622 // Legal is used so as to not include all blocks in tail folded loops. 6623 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6624 BlockCost.first /= getReciprocalPredBlockProb(); 6625 6626 Cost.first += BlockCost.first; 6627 Cost.second |= BlockCost.second; 6628 } 6629 6630 return Cost; 6631 } 6632 6633 /// Gets Address Access SCEV after verifying that the access pattern 6634 /// is loop invariant except the induction variable dependence. 6635 /// 6636 /// This SCEV can be sent to the Target in order to estimate the address 6637 /// calculation cost. 6638 static const SCEV *getAddressAccessSCEV( 6639 Value *Ptr, 6640 LoopVectorizationLegality *Legal, 6641 PredicatedScalarEvolution &PSE, 6642 const Loop *TheLoop) { 6643 6644 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6645 if (!Gep) 6646 return nullptr; 6647 6648 // We are looking for a gep with all loop invariant indices except for one 6649 // which should be an induction variable. 6650 auto SE = PSE.getSE(); 6651 unsigned NumOperands = Gep->getNumOperands(); 6652 for (unsigned i = 1; i < NumOperands; ++i) { 6653 Value *Opd = Gep->getOperand(i); 6654 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6655 !Legal->isInductionVariable(Opd)) 6656 return nullptr; 6657 } 6658 6659 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6660 return PSE.getSCEV(Ptr); 6661 } 6662 6663 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6664 return Legal->hasStride(I->getOperand(0)) || 6665 Legal->hasStride(I->getOperand(1)); 6666 } 6667 6668 InstructionCost 6669 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6670 ElementCount VF) { 6671 assert(VF.isVector() && 6672 "Scalarization cost of instruction implies vectorization."); 6673 if (VF.isScalable()) 6674 return InstructionCost::getInvalid(); 6675 6676 Type *ValTy = getLoadStoreType(I); 6677 auto SE = PSE.getSE(); 6678 6679 unsigned AS = getLoadStoreAddressSpace(I); 6680 Value *Ptr = getLoadStorePointerOperand(I); 6681 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6682 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6683 // that it is being called from this specific place. 6684 6685 // Figure out whether the access is strided and get the stride value 6686 // if it's known in compile time 6687 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6688 6689 // Get the cost of the scalar memory instruction and address computation. 6690 InstructionCost Cost = 6691 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6692 6693 // Don't pass *I here, since it is scalar but will actually be part of a 6694 // vectorized loop where the user of it is a vectorized instruction. 6695 const Align Alignment = getLoadStoreAlignment(I); 6696 Cost += VF.getKnownMinValue() * 6697 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6698 AS, TTI::TCK_RecipThroughput); 6699 6700 // Get the overhead of the extractelement and insertelement instructions 6701 // we might create due to scalarization. 6702 Cost += getScalarizationOverhead(I, VF); 6703 6704 // If we have a predicated load/store, it will need extra i1 extracts and 6705 // conditional branches, but may not be executed for each vector lane. Scale 6706 // the cost by the probability of executing the predicated block. 6707 if (isPredicatedInst(I, VF)) { 6708 Cost /= getReciprocalPredBlockProb(); 6709 6710 // Add the cost of an i1 extract and a branch 6711 auto *Vec_i1Ty = 6712 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6713 Cost += TTI.getScalarizationOverhead( 6714 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6715 /*Insert=*/false, /*Extract=*/true); 6716 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6717 6718 if (useEmulatedMaskMemRefHack(I, VF)) 6719 // Artificially setting to a high enough value to practically disable 6720 // vectorization with such operations. 6721 Cost = 3000000; 6722 } 6723 6724 return Cost; 6725 } 6726 6727 InstructionCost 6728 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6729 ElementCount VF) { 6730 Type *ValTy = getLoadStoreType(I); 6731 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6732 Value *Ptr = getLoadStorePointerOperand(I); 6733 unsigned AS = getLoadStoreAddressSpace(I); 6734 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6735 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6736 6737 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6738 "Stride should be 1 or -1 for consecutive memory access"); 6739 const Align Alignment = getLoadStoreAlignment(I); 6740 InstructionCost Cost = 0; 6741 if (Legal->isMaskRequired(I)) 6742 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6743 CostKind); 6744 else 6745 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6746 CostKind, I); 6747 6748 bool Reverse = ConsecutiveStride < 0; 6749 if (Reverse) 6750 Cost += 6751 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6752 return Cost; 6753 } 6754 6755 InstructionCost 6756 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6757 ElementCount VF) { 6758 assert(Legal->isUniformMemOp(*I)); 6759 6760 Type *ValTy = getLoadStoreType(I); 6761 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6762 const Align Alignment = getLoadStoreAlignment(I); 6763 unsigned AS = getLoadStoreAddressSpace(I); 6764 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6765 if (isa<LoadInst>(I)) { 6766 return TTI.getAddressComputationCost(ValTy) + 6767 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6768 CostKind) + 6769 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6770 } 6771 StoreInst *SI = cast<StoreInst>(I); 6772 6773 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6774 return TTI.getAddressComputationCost(ValTy) + 6775 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6776 CostKind) + 6777 (isLoopInvariantStoreValue 6778 ? 0 6779 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6780 VF.getKnownMinValue() - 1)); 6781 } 6782 6783 InstructionCost 6784 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6785 ElementCount VF) { 6786 Type *ValTy = getLoadStoreType(I); 6787 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6788 const Align Alignment = getLoadStoreAlignment(I); 6789 const Value *Ptr = getLoadStorePointerOperand(I); 6790 6791 return TTI.getAddressComputationCost(VectorTy) + 6792 TTI.getGatherScatterOpCost( 6793 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6794 TargetTransformInfo::TCK_RecipThroughput, I); 6795 } 6796 6797 InstructionCost 6798 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6799 ElementCount VF) { 6800 // TODO: Once we have support for interleaving with scalable vectors 6801 // we can calculate the cost properly here. 6802 if (VF.isScalable()) 6803 return InstructionCost::getInvalid(); 6804 6805 Type *ValTy = getLoadStoreType(I); 6806 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6807 unsigned AS = getLoadStoreAddressSpace(I); 6808 6809 auto Group = getInterleavedAccessGroup(I); 6810 assert(Group && "Fail to get an interleaved access group."); 6811 6812 unsigned InterleaveFactor = Group->getFactor(); 6813 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6814 6815 // Holds the indices of existing members in the interleaved group. 6816 SmallVector<unsigned, 4> Indices; 6817 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6818 if (Group->getMember(IF)) 6819 Indices.push_back(IF); 6820 6821 // Calculate the cost of the whole interleaved group. 6822 bool UseMaskForGaps = 6823 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6824 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6825 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6826 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6827 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6828 6829 if (Group->isReverse()) { 6830 // TODO: Add support for reversed masked interleaved access. 6831 assert(!Legal->isMaskRequired(I) && 6832 "Reverse masked interleaved access not supported."); 6833 Cost += 6834 Group->getNumMembers() * 6835 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6836 } 6837 return Cost; 6838 } 6839 6840 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6841 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6842 using namespace llvm::PatternMatch; 6843 // Early exit for no inloop reductions 6844 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6845 return None; 6846 auto *VectorTy = cast<VectorType>(Ty); 6847 6848 // We are looking for a pattern of, and finding the minimal acceptable cost: 6849 // reduce(mul(ext(A), ext(B))) or 6850 // reduce(mul(A, B)) or 6851 // reduce(ext(A)) or 6852 // reduce(A). 6853 // The basic idea is that we walk down the tree to do that, finding the root 6854 // reduction instruction in InLoopReductionImmediateChains. From there we find 6855 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6856 // of the components. If the reduction cost is lower then we return it for the 6857 // reduction instruction and 0 for the other instructions in the pattern. If 6858 // it is not we return an invalid cost specifying the orignal cost method 6859 // should be used. 6860 Instruction *RetI = I; 6861 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6862 if (!RetI->hasOneUser()) 6863 return None; 6864 RetI = RetI->user_back(); 6865 } 6866 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6867 RetI->user_back()->getOpcode() == Instruction::Add) { 6868 if (!RetI->hasOneUser()) 6869 return None; 6870 RetI = RetI->user_back(); 6871 } 6872 6873 // Test if the found instruction is a reduction, and if not return an invalid 6874 // cost specifying the parent to use the original cost modelling. 6875 if (!InLoopReductionImmediateChains.count(RetI)) 6876 return None; 6877 6878 // Find the reduction this chain is a part of and calculate the basic cost of 6879 // the reduction on its own. 6880 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6881 Instruction *ReductionPhi = LastChain; 6882 while (!isa<PHINode>(ReductionPhi)) 6883 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6884 6885 const RecurrenceDescriptor &RdxDesc = 6886 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6887 6888 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6889 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6890 6891 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6892 // normal fmul instruction to the cost of the fadd reduction. 6893 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6894 BaseCost += 6895 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6896 6897 // If we're using ordered reductions then we can just return the base cost 6898 // here, since getArithmeticReductionCost calculates the full ordered 6899 // reduction cost when FP reassociation is not allowed. 6900 if (useOrderedReductions(RdxDesc)) 6901 return BaseCost; 6902 6903 // Get the operand that was not the reduction chain and match it to one of the 6904 // patterns, returning the better cost if it is found. 6905 Instruction *RedOp = RetI->getOperand(1) == LastChain 6906 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6907 : dyn_cast<Instruction>(RetI->getOperand(1)); 6908 6909 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6910 6911 Instruction *Op0, *Op1; 6912 if (RedOp && 6913 match(RedOp, 6914 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6915 match(Op0, m_ZExtOrSExt(m_Value())) && 6916 Op0->getOpcode() == Op1->getOpcode() && 6917 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6918 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6919 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6920 6921 // Matched reduce(ext(mul(ext(A), ext(B))) 6922 // Note that the extend opcodes need to all match, or if A==B they will have 6923 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6924 // which is equally fine. 6925 bool IsUnsigned = isa<ZExtInst>(Op0); 6926 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6927 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6928 6929 InstructionCost ExtCost = 6930 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6931 TTI::CastContextHint::None, CostKind, Op0); 6932 InstructionCost MulCost = 6933 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6934 InstructionCost Ext2Cost = 6935 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6936 TTI::CastContextHint::None, CostKind, RedOp); 6937 6938 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6939 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6940 CostKind); 6941 6942 if (RedCost.isValid() && 6943 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6944 return I == RetI ? RedCost : 0; 6945 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6946 !TheLoop->isLoopInvariant(RedOp)) { 6947 // Matched reduce(ext(A)) 6948 bool IsUnsigned = isa<ZExtInst>(RedOp); 6949 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6950 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6951 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6952 CostKind); 6953 6954 InstructionCost ExtCost = 6955 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6956 TTI::CastContextHint::None, CostKind, RedOp); 6957 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6958 return I == RetI ? RedCost : 0; 6959 } else if (RedOp && 6960 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6961 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6962 Op0->getOpcode() == Op1->getOpcode() && 6963 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6964 bool IsUnsigned = isa<ZExtInst>(Op0); 6965 Type *Op0Ty = Op0->getOperand(0)->getType(); 6966 Type *Op1Ty = Op1->getOperand(0)->getType(); 6967 Type *LargestOpTy = 6968 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6969 : Op0Ty; 6970 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6971 6972 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6973 // different sizes. We take the largest type as the ext to reduce, and add 6974 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6975 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6976 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6977 TTI::CastContextHint::None, CostKind, Op0); 6978 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6979 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6980 TTI::CastContextHint::None, CostKind, Op1); 6981 InstructionCost MulCost = 6982 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6983 6984 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6985 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6986 CostKind); 6987 InstructionCost ExtraExtCost = 0; 6988 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6989 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6990 ExtraExtCost = TTI.getCastInstrCost( 6991 ExtraExtOp->getOpcode(), ExtType, 6992 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6993 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6994 } 6995 6996 if (RedCost.isValid() && 6997 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6998 return I == RetI ? RedCost : 0; 6999 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 7000 // Matched reduce(mul()) 7001 InstructionCost MulCost = 7002 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7003 7004 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7005 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7006 CostKind); 7007 7008 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7009 return I == RetI ? RedCost : 0; 7010 } 7011 } 7012 7013 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7014 } 7015 7016 InstructionCost 7017 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7018 ElementCount VF) { 7019 // Calculate scalar cost only. Vectorization cost should be ready at this 7020 // moment. 7021 if (VF.isScalar()) { 7022 Type *ValTy = getLoadStoreType(I); 7023 const Align Alignment = getLoadStoreAlignment(I); 7024 unsigned AS = getLoadStoreAddressSpace(I); 7025 7026 return TTI.getAddressComputationCost(ValTy) + 7027 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7028 TTI::TCK_RecipThroughput, I); 7029 } 7030 return getWideningCost(I, VF); 7031 } 7032 7033 LoopVectorizationCostModel::VectorizationCostTy 7034 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7035 ElementCount VF) { 7036 // If we know that this instruction will remain uniform, check the cost of 7037 // the scalar version. 7038 if (isUniformAfterVectorization(I, VF)) 7039 VF = ElementCount::getFixed(1); 7040 7041 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7042 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7043 7044 // Forced scalars do not have any scalarization overhead. 7045 auto ForcedScalar = ForcedScalars.find(VF); 7046 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7047 auto InstSet = ForcedScalar->second; 7048 if (InstSet.count(I)) 7049 return VectorizationCostTy( 7050 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7051 VF.getKnownMinValue()), 7052 false); 7053 } 7054 7055 Type *VectorTy; 7056 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7057 7058 bool TypeNotScalarized = false; 7059 if (VF.isVector() && VectorTy->isVectorTy()) { 7060 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 7061 if (NumParts) 7062 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 7063 else 7064 C = InstructionCost::getInvalid(); 7065 } 7066 return VectorizationCostTy(C, TypeNotScalarized); 7067 } 7068 7069 InstructionCost 7070 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7071 ElementCount VF) const { 7072 7073 // There is no mechanism yet to create a scalable scalarization loop, 7074 // so this is currently Invalid. 7075 if (VF.isScalable()) 7076 return InstructionCost::getInvalid(); 7077 7078 if (VF.isScalar()) 7079 return 0; 7080 7081 InstructionCost Cost = 0; 7082 Type *RetTy = ToVectorTy(I->getType(), VF); 7083 if (!RetTy->isVoidTy() && 7084 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7085 Cost += TTI.getScalarizationOverhead( 7086 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 7087 false); 7088 7089 // Some targets keep addresses scalar. 7090 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7091 return Cost; 7092 7093 // Some targets support efficient element stores. 7094 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7095 return Cost; 7096 7097 // Collect operands to consider. 7098 CallInst *CI = dyn_cast<CallInst>(I); 7099 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 7100 7101 // Skip operands that do not require extraction/scalarization and do not incur 7102 // any overhead. 7103 SmallVector<Type *> Tys; 7104 for (auto *V : filterExtractingOperands(Ops, VF)) 7105 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7106 return Cost + TTI.getOperandsScalarizationOverhead( 7107 filterExtractingOperands(Ops, VF), Tys); 7108 } 7109 7110 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7111 if (VF.isScalar()) 7112 return; 7113 NumPredStores = 0; 7114 for (BasicBlock *BB : TheLoop->blocks()) { 7115 // For each instruction in the old loop. 7116 for (Instruction &I : *BB) { 7117 Value *Ptr = getLoadStorePointerOperand(&I); 7118 if (!Ptr) 7119 continue; 7120 7121 // TODO: We should generate better code and update the cost model for 7122 // predicated uniform stores. Today they are treated as any other 7123 // predicated store (see added test cases in 7124 // invariant-store-vectorization.ll). 7125 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 7126 NumPredStores++; 7127 7128 if (Legal->isUniformMemOp(I)) { 7129 // TODO: Avoid replicating loads and stores instead of 7130 // relying on instcombine to remove them. 7131 // Load: Scalar load + broadcast 7132 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7133 InstructionCost Cost; 7134 if (isa<StoreInst>(&I) && VF.isScalable() && 7135 isLegalGatherOrScatter(&I, VF)) { 7136 Cost = getGatherScatterCost(&I, VF); 7137 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7138 } else { 7139 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7140 "Cannot yet scalarize uniform stores"); 7141 Cost = getUniformMemOpCost(&I, VF); 7142 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7143 } 7144 continue; 7145 } 7146 7147 // We assume that widening is the best solution when possible. 7148 if (memoryInstructionCanBeWidened(&I, VF)) { 7149 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7150 int ConsecutiveStride = Legal->isConsecutivePtr( 7151 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 7152 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7153 "Expected consecutive stride."); 7154 InstWidening Decision = 7155 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7156 setWideningDecision(&I, VF, Decision, Cost); 7157 continue; 7158 } 7159 7160 // Choose between Interleaving, Gather/Scatter or Scalarization. 7161 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7162 unsigned NumAccesses = 1; 7163 if (isAccessInterleaved(&I)) { 7164 auto Group = getInterleavedAccessGroup(&I); 7165 assert(Group && "Fail to get an interleaved access group."); 7166 7167 // Make one decision for the whole group. 7168 if (getWideningDecision(&I, VF) != CM_Unknown) 7169 continue; 7170 7171 NumAccesses = Group->getNumMembers(); 7172 if (interleavedAccessCanBeWidened(&I, VF)) 7173 InterleaveCost = getInterleaveGroupCost(&I, VF); 7174 } 7175 7176 InstructionCost GatherScatterCost = 7177 isLegalGatherOrScatter(&I, VF) 7178 ? getGatherScatterCost(&I, VF) * NumAccesses 7179 : InstructionCost::getInvalid(); 7180 7181 InstructionCost ScalarizationCost = 7182 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7183 7184 // Choose better solution for the current VF, 7185 // write down this decision and use it during vectorization. 7186 InstructionCost Cost; 7187 InstWidening Decision; 7188 if (InterleaveCost <= GatherScatterCost && 7189 InterleaveCost < ScalarizationCost) { 7190 Decision = CM_Interleave; 7191 Cost = InterleaveCost; 7192 } else if (GatherScatterCost < ScalarizationCost) { 7193 Decision = CM_GatherScatter; 7194 Cost = GatherScatterCost; 7195 } else { 7196 Decision = CM_Scalarize; 7197 Cost = ScalarizationCost; 7198 } 7199 // If the instructions belongs to an interleave group, the whole group 7200 // receives the same decision. The whole group receives the cost, but 7201 // the cost will actually be assigned to one instruction. 7202 if (auto Group = getInterleavedAccessGroup(&I)) 7203 setWideningDecision(Group, VF, Decision, Cost); 7204 else 7205 setWideningDecision(&I, VF, Decision, Cost); 7206 } 7207 } 7208 7209 // Make sure that any load of address and any other address computation 7210 // remains scalar unless there is gather/scatter support. This avoids 7211 // inevitable extracts into address registers, and also has the benefit of 7212 // activating LSR more, since that pass can't optimize vectorized 7213 // addresses. 7214 if (TTI.prefersVectorizedAddressing()) 7215 return; 7216 7217 // Start with all scalar pointer uses. 7218 SmallPtrSet<Instruction *, 8> AddrDefs; 7219 for (BasicBlock *BB : TheLoop->blocks()) 7220 for (Instruction &I : *BB) { 7221 Instruction *PtrDef = 7222 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7223 if (PtrDef && TheLoop->contains(PtrDef) && 7224 getWideningDecision(&I, VF) != CM_GatherScatter) 7225 AddrDefs.insert(PtrDef); 7226 } 7227 7228 // Add all instructions used to generate the addresses. 7229 SmallVector<Instruction *, 4> Worklist; 7230 append_range(Worklist, AddrDefs); 7231 while (!Worklist.empty()) { 7232 Instruction *I = Worklist.pop_back_val(); 7233 for (auto &Op : I->operands()) 7234 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7235 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7236 AddrDefs.insert(InstOp).second) 7237 Worklist.push_back(InstOp); 7238 } 7239 7240 for (auto *I : AddrDefs) { 7241 if (isa<LoadInst>(I)) { 7242 // Setting the desired widening decision should ideally be handled in 7243 // by cost functions, but since this involves the task of finding out 7244 // if the loaded register is involved in an address computation, it is 7245 // instead changed here when we know this is the case. 7246 InstWidening Decision = getWideningDecision(I, VF); 7247 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7248 // Scalarize a widened load of address. 7249 setWideningDecision( 7250 I, VF, CM_Scalarize, 7251 (VF.getKnownMinValue() * 7252 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7253 else if (auto Group = getInterleavedAccessGroup(I)) { 7254 // Scalarize an interleave group of address loads. 7255 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7256 if (Instruction *Member = Group->getMember(I)) 7257 setWideningDecision( 7258 Member, VF, CM_Scalarize, 7259 (VF.getKnownMinValue() * 7260 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7261 } 7262 } 7263 } else 7264 // Make sure I gets scalarized and a cost estimate without 7265 // scalarization overhead. 7266 ForcedScalars[VF].insert(I); 7267 } 7268 } 7269 7270 InstructionCost 7271 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7272 Type *&VectorTy) { 7273 Type *RetTy = I->getType(); 7274 if (canTruncateToMinimalBitwidth(I, VF)) 7275 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7276 auto SE = PSE.getSE(); 7277 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7278 7279 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7280 ElementCount VF) -> bool { 7281 if (VF.isScalar()) 7282 return true; 7283 7284 auto Scalarized = InstsToScalarize.find(VF); 7285 assert(Scalarized != InstsToScalarize.end() && 7286 "VF not yet analyzed for scalarization profitability"); 7287 return !Scalarized->second.count(I) && 7288 llvm::all_of(I->users(), [&](User *U) { 7289 auto *UI = cast<Instruction>(U); 7290 return !Scalarized->second.count(UI); 7291 }); 7292 }; 7293 (void) hasSingleCopyAfterVectorization; 7294 7295 if (isScalarAfterVectorization(I, VF)) { 7296 // With the exception of GEPs and PHIs, after scalarization there should 7297 // only be one copy of the instruction generated in the loop. This is 7298 // because the VF is either 1, or any instructions that need scalarizing 7299 // have already been dealt with by the the time we get here. As a result, 7300 // it means we don't have to multiply the instruction cost by VF. 7301 assert(I->getOpcode() == Instruction::GetElementPtr || 7302 I->getOpcode() == Instruction::PHI || 7303 (I->getOpcode() == Instruction::BitCast && 7304 I->getType()->isPointerTy()) || 7305 hasSingleCopyAfterVectorization(I, VF)); 7306 VectorTy = RetTy; 7307 } else 7308 VectorTy = ToVectorTy(RetTy, VF); 7309 7310 // TODO: We need to estimate the cost of intrinsic calls. 7311 switch (I->getOpcode()) { 7312 case Instruction::GetElementPtr: 7313 // We mark this instruction as zero-cost because the cost of GEPs in 7314 // vectorized code depends on whether the corresponding memory instruction 7315 // is scalarized or not. Therefore, we handle GEPs with the memory 7316 // instruction cost. 7317 return 0; 7318 case Instruction::Br: { 7319 // In cases of scalarized and predicated instructions, there will be VF 7320 // predicated blocks in the vectorized loop. Each branch around these 7321 // blocks requires also an extract of its vector compare i1 element. 7322 bool ScalarPredicatedBB = false; 7323 BranchInst *BI = cast<BranchInst>(I); 7324 if (VF.isVector() && BI->isConditional() && 7325 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7326 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7327 ScalarPredicatedBB = true; 7328 7329 if (ScalarPredicatedBB) { 7330 // Not possible to scalarize scalable vector with predicated instructions. 7331 if (VF.isScalable()) 7332 return InstructionCost::getInvalid(); 7333 // Return cost for branches around scalarized and predicated blocks. 7334 auto *Vec_i1Ty = 7335 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7336 return ( 7337 TTI.getScalarizationOverhead( 7338 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7339 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7340 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7341 // The back-edge branch will remain, as will all scalar branches. 7342 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7343 else 7344 // This branch will be eliminated by if-conversion. 7345 return 0; 7346 // Note: We currently assume zero cost for an unconditional branch inside 7347 // a predicated block since it will become a fall-through, although we 7348 // may decide in the future to call TTI for all branches. 7349 } 7350 case Instruction::PHI: { 7351 auto *Phi = cast<PHINode>(I); 7352 7353 // First-order recurrences are replaced by vector shuffles inside the loop. 7354 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7355 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7356 return TTI.getShuffleCost( 7357 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7358 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7359 7360 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7361 // converted into select instructions. We require N - 1 selects per phi 7362 // node, where N is the number of incoming values. 7363 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7364 return (Phi->getNumIncomingValues() - 1) * 7365 TTI.getCmpSelInstrCost( 7366 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7367 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7368 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7369 7370 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7371 } 7372 case Instruction::UDiv: 7373 case Instruction::SDiv: 7374 case Instruction::URem: 7375 case Instruction::SRem: 7376 // If we have a predicated instruction, it may not be executed for each 7377 // vector lane. Get the scalarization cost and scale this amount by the 7378 // probability of executing the predicated block. If the instruction is not 7379 // predicated, we fall through to the next case. 7380 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7381 InstructionCost Cost = 0; 7382 7383 // These instructions have a non-void type, so account for the phi nodes 7384 // that we will create. This cost is likely to be zero. The phi node 7385 // cost, if any, should be scaled by the block probability because it 7386 // models a copy at the end of each predicated block. 7387 Cost += VF.getKnownMinValue() * 7388 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7389 7390 // The cost of the non-predicated instruction. 7391 Cost += VF.getKnownMinValue() * 7392 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7393 7394 // The cost of insertelement and extractelement instructions needed for 7395 // scalarization. 7396 Cost += getScalarizationOverhead(I, VF); 7397 7398 // Scale the cost by the probability of executing the predicated blocks. 7399 // This assumes the predicated block for each vector lane is equally 7400 // likely. 7401 return Cost / getReciprocalPredBlockProb(); 7402 } 7403 LLVM_FALLTHROUGH; 7404 case Instruction::Add: 7405 case Instruction::FAdd: 7406 case Instruction::Sub: 7407 case Instruction::FSub: 7408 case Instruction::Mul: 7409 case Instruction::FMul: 7410 case Instruction::FDiv: 7411 case Instruction::FRem: 7412 case Instruction::Shl: 7413 case Instruction::LShr: 7414 case Instruction::AShr: 7415 case Instruction::And: 7416 case Instruction::Or: 7417 case Instruction::Xor: { 7418 // Since we will replace the stride by 1 the multiplication should go away. 7419 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7420 return 0; 7421 7422 // Detect reduction patterns 7423 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7424 return *RedCost; 7425 7426 // Certain instructions can be cheaper to vectorize if they have a constant 7427 // second vector operand. One example of this are shifts on x86. 7428 Value *Op2 = I->getOperand(1); 7429 TargetTransformInfo::OperandValueProperties Op2VP; 7430 TargetTransformInfo::OperandValueKind Op2VK = 7431 TTI.getOperandInfo(Op2, Op2VP); 7432 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7433 Op2VK = TargetTransformInfo::OK_UniformValue; 7434 7435 SmallVector<const Value *, 4> Operands(I->operand_values()); 7436 return TTI.getArithmeticInstrCost( 7437 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7438 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7439 } 7440 case Instruction::FNeg: { 7441 return TTI.getArithmeticInstrCost( 7442 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7443 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7444 TargetTransformInfo::OP_None, I->getOperand(0), I); 7445 } 7446 case Instruction::Select: { 7447 SelectInst *SI = cast<SelectInst>(I); 7448 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7449 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7450 7451 const Value *Op0, *Op1; 7452 using namespace llvm::PatternMatch; 7453 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7454 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7455 // select x, y, false --> x & y 7456 // select x, true, y --> x | y 7457 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7458 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7459 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7460 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7461 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7462 Op1->getType()->getScalarSizeInBits() == 1); 7463 7464 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7465 return TTI.getArithmeticInstrCost( 7466 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7467 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7468 } 7469 7470 Type *CondTy = SI->getCondition()->getType(); 7471 if (!ScalarCond) 7472 CondTy = VectorType::get(CondTy, VF); 7473 7474 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7475 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7476 Pred = Cmp->getPredicate(); 7477 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7478 CostKind, I); 7479 } 7480 case Instruction::ICmp: 7481 case Instruction::FCmp: { 7482 Type *ValTy = I->getOperand(0)->getType(); 7483 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7484 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7485 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7486 VectorTy = ToVectorTy(ValTy, VF); 7487 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7488 cast<CmpInst>(I)->getPredicate(), CostKind, 7489 I); 7490 } 7491 case Instruction::Store: 7492 case Instruction::Load: { 7493 ElementCount Width = VF; 7494 if (Width.isVector()) { 7495 InstWidening Decision = getWideningDecision(I, Width); 7496 assert(Decision != CM_Unknown && 7497 "CM decision should be taken at this point"); 7498 if (Decision == CM_Scalarize) 7499 Width = ElementCount::getFixed(1); 7500 } 7501 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7502 return getMemoryInstructionCost(I, VF); 7503 } 7504 case Instruction::BitCast: 7505 if (I->getType()->isPointerTy()) 7506 return 0; 7507 LLVM_FALLTHROUGH; 7508 case Instruction::ZExt: 7509 case Instruction::SExt: 7510 case Instruction::FPToUI: 7511 case Instruction::FPToSI: 7512 case Instruction::FPExt: 7513 case Instruction::PtrToInt: 7514 case Instruction::IntToPtr: 7515 case Instruction::SIToFP: 7516 case Instruction::UIToFP: 7517 case Instruction::Trunc: 7518 case Instruction::FPTrunc: { 7519 // Computes the CastContextHint from a Load/Store instruction. 7520 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7521 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7522 "Expected a load or a store!"); 7523 7524 if (VF.isScalar() || !TheLoop->contains(I)) 7525 return TTI::CastContextHint::Normal; 7526 7527 switch (getWideningDecision(I, VF)) { 7528 case LoopVectorizationCostModel::CM_GatherScatter: 7529 return TTI::CastContextHint::GatherScatter; 7530 case LoopVectorizationCostModel::CM_Interleave: 7531 return TTI::CastContextHint::Interleave; 7532 case LoopVectorizationCostModel::CM_Scalarize: 7533 case LoopVectorizationCostModel::CM_Widen: 7534 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7535 : TTI::CastContextHint::Normal; 7536 case LoopVectorizationCostModel::CM_Widen_Reverse: 7537 return TTI::CastContextHint::Reversed; 7538 case LoopVectorizationCostModel::CM_Unknown: 7539 llvm_unreachable("Instr did not go through cost modelling?"); 7540 } 7541 7542 llvm_unreachable("Unhandled case!"); 7543 }; 7544 7545 unsigned Opcode = I->getOpcode(); 7546 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7547 // For Trunc, the context is the only user, which must be a StoreInst. 7548 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7549 if (I->hasOneUse()) 7550 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7551 CCH = ComputeCCH(Store); 7552 } 7553 // For Z/Sext, the context is the operand, which must be a LoadInst. 7554 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7555 Opcode == Instruction::FPExt) { 7556 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7557 CCH = ComputeCCH(Load); 7558 } 7559 7560 // We optimize the truncation of induction variables having constant 7561 // integer steps. The cost of these truncations is the same as the scalar 7562 // operation. 7563 if (isOptimizableIVTruncate(I, VF)) { 7564 auto *Trunc = cast<TruncInst>(I); 7565 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7566 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7567 } 7568 7569 // Detect reduction patterns 7570 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7571 return *RedCost; 7572 7573 Type *SrcScalarTy = I->getOperand(0)->getType(); 7574 Type *SrcVecTy = 7575 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7576 if (canTruncateToMinimalBitwidth(I, VF)) { 7577 // This cast is going to be shrunk. This may remove the cast or it might 7578 // turn it into slightly different cast. For example, if MinBW == 16, 7579 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7580 // 7581 // Calculate the modified src and dest types. 7582 Type *MinVecTy = VectorTy; 7583 if (Opcode == Instruction::Trunc) { 7584 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7585 VectorTy = 7586 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7587 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7588 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7589 VectorTy = 7590 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7591 } 7592 } 7593 7594 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7595 } 7596 case Instruction::Call: { 7597 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7598 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7599 return *RedCost; 7600 bool NeedToScalarize; 7601 CallInst *CI = cast<CallInst>(I); 7602 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7603 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7604 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7605 return std::min(CallCost, IntrinsicCost); 7606 } 7607 return CallCost; 7608 } 7609 case Instruction::ExtractValue: 7610 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7611 case Instruction::Alloca: 7612 // We cannot easily widen alloca to a scalable alloca, as 7613 // the result would need to be a vector of pointers. 7614 if (VF.isScalable()) 7615 return InstructionCost::getInvalid(); 7616 LLVM_FALLTHROUGH; 7617 default: 7618 // This opcode is unknown. Assume that it is the same as 'mul'. 7619 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7620 } // end of switch. 7621 } 7622 7623 char LoopVectorize::ID = 0; 7624 7625 static const char lv_name[] = "Loop Vectorization"; 7626 7627 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7628 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7629 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7630 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7631 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7632 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7633 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7634 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7635 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7636 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7637 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7638 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7639 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7640 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7641 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7642 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7643 7644 namespace llvm { 7645 7646 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7647 7648 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7649 bool VectorizeOnlyWhenForced) { 7650 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7651 } 7652 7653 } // end namespace llvm 7654 7655 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7656 // Check if the pointer operand of a load or store instruction is 7657 // consecutive. 7658 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7659 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7660 return false; 7661 } 7662 7663 void LoopVectorizationCostModel::collectValuesToIgnore() { 7664 // Ignore ephemeral values. 7665 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7666 7667 // Ignore type-promoting instructions we identified during reduction 7668 // detection. 7669 for (auto &Reduction : Legal->getReductionVars()) { 7670 const RecurrenceDescriptor &RedDes = Reduction.second; 7671 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7672 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7673 } 7674 // Ignore type-casting instructions we identified during induction 7675 // detection. 7676 for (auto &Induction : Legal->getInductionVars()) { 7677 const InductionDescriptor &IndDes = Induction.second; 7678 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7679 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7680 } 7681 } 7682 7683 void LoopVectorizationCostModel::collectInLoopReductions() { 7684 for (auto &Reduction : Legal->getReductionVars()) { 7685 PHINode *Phi = Reduction.first; 7686 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7687 7688 // We don't collect reductions that are type promoted (yet). 7689 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7690 continue; 7691 7692 // If the target would prefer this reduction to happen "in-loop", then we 7693 // want to record it as such. 7694 unsigned Opcode = RdxDesc.getOpcode(); 7695 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7696 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7697 TargetTransformInfo::ReductionFlags())) 7698 continue; 7699 7700 // Check that we can correctly put the reductions into the loop, by 7701 // finding the chain of operations that leads from the phi to the loop 7702 // exit value. 7703 SmallVector<Instruction *, 4> ReductionOperations = 7704 RdxDesc.getReductionOpChain(Phi, TheLoop); 7705 bool InLoop = !ReductionOperations.empty(); 7706 if (InLoop) { 7707 InLoopReductionChains[Phi] = ReductionOperations; 7708 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7709 Instruction *LastChain = Phi; 7710 for (auto *I : ReductionOperations) { 7711 InLoopReductionImmediateChains[I] = LastChain; 7712 LastChain = I; 7713 } 7714 } 7715 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7716 << " reduction for phi: " << *Phi << "\n"); 7717 } 7718 } 7719 7720 // TODO: we could return a pair of values that specify the max VF and 7721 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7722 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7723 // doesn't have a cost model that can choose which plan to execute if 7724 // more than one is generated. 7725 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7726 LoopVectorizationCostModel &CM) { 7727 unsigned WidestType; 7728 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7729 return WidestVectorRegBits / WidestType; 7730 } 7731 7732 VectorizationFactor 7733 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7734 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7735 ElementCount VF = UserVF; 7736 // Outer loop handling: They may require CFG and instruction level 7737 // transformations before even evaluating whether vectorization is profitable. 7738 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7739 // the vectorization pipeline. 7740 if (!OrigLoop->isInnermost()) { 7741 // If the user doesn't provide a vectorization factor, determine a 7742 // reasonable one. 7743 if (UserVF.isZero()) { 7744 VF = ElementCount::getFixed(determineVPlanVF( 7745 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7746 .getFixedSize(), 7747 CM)); 7748 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7749 7750 // Make sure we have a VF > 1 for stress testing. 7751 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7752 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7753 << "overriding computed VF.\n"); 7754 VF = ElementCount::getFixed(4); 7755 } 7756 } 7757 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7758 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7759 "VF needs to be a power of two"); 7760 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7761 << "VF " << VF << " to build VPlans.\n"); 7762 buildVPlans(VF, VF); 7763 7764 // For VPlan build stress testing, we bail out after VPlan construction. 7765 if (VPlanBuildStressTest) 7766 return VectorizationFactor::Disabled(); 7767 7768 return {VF, 0 /*Cost*/}; 7769 } 7770 7771 LLVM_DEBUG( 7772 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7773 "VPlan-native path.\n"); 7774 return VectorizationFactor::Disabled(); 7775 } 7776 7777 Optional<VectorizationFactor> 7778 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7779 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7780 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7781 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7782 return None; 7783 7784 // Invalidate interleave groups if all blocks of loop will be predicated. 7785 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7786 !useMaskedInterleavedAccesses(*TTI)) { 7787 LLVM_DEBUG( 7788 dbgs() 7789 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7790 "which requires masked-interleaved support.\n"); 7791 if (CM.InterleaveInfo.invalidateGroups()) 7792 // Invalidating interleave groups also requires invalidating all decisions 7793 // based on them, which includes widening decisions and uniform and scalar 7794 // values. 7795 CM.invalidateCostModelingDecisions(); 7796 } 7797 7798 ElementCount MaxUserVF = 7799 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7800 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7801 if (!UserVF.isZero() && UserVFIsLegal) { 7802 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7803 "VF needs to be a power of two"); 7804 // Collect the instructions (and their associated costs) that will be more 7805 // profitable to scalarize. 7806 if (CM.selectUserVectorizationFactor(UserVF)) { 7807 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7808 CM.collectInLoopReductions(); 7809 buildVPlansWithVPRecipes(UserVF, UserVF); 7810 LLVM_DEBUG(printPlans(dbgs())); 7811 return {{UserVF, 0}}; 7812 } else 7813 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7814 "InvalidCost", ORE, OrigLoop); 7815 } 7816 7817 // Populate the set of Vectorization Factor Candidates. 7818 ElementCountSet VFCandidates; 7819 for (auto VF = ElementCount::getFixed(1); 7820 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7821 VFCandidates.insert(VF); 7822 for (auto VF = ElementCount::getScalable(1); 7823 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7824 VFCandidates.insert(VF); 7825 7826 for (const auto &VF : VFCandidates) { 7827 // Collect Uniform and Scalar instructions after vectorization with VF. 7828 CM.collectUniformsAndScalars(VF); 7829 7830 // Collect the instructions (and their associated costs) that will be more 7831 // profitable to scalarize. 7832 if (VF.isVector()) 7833 CM.collectInstsToScalarize(VF); 7834 } 7835 7836 CM.collectInLoopReductions(); 7837 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7838 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7839 7840 LLVM_DEBUG(printPlans(dbgs())); 7841 if (!MaxFactors.hasVector()) 7842 return VectorizationFactor::Disabled(); 7843 7844 // Select the optimal vectorization factor. 7845 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7846 7847 // Check if it is profitable to vectorize with runtime checks. 7848 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7849 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7850 bool PragmaThresholdReached = 7851 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7852 bool ThresholdReached = 7853 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7854 if ((ThresholdReached && !Hints.allowReordering()) || 7855 PragmaThresholdReached) { 7856 ORE->emit([&]() { 7857 return OptimizationRemarkAnalysisAliasing( 7858 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7859 OrigLoop->getHeader()) 7860 << "loop not vectorized: cannot prove it is safe to reorder " 7861 "memory operations"; 7862 }); 7863 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7864 Hints.emitRemarkWithHints(); 7865 return VectorizationFactor::Disabled(); 7866 } 7867 } 7868 return SelectedVF; 7869 } 7870 7871 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7872 assert(count_if(VPlans, 7873 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7874 1 && 7875 "Best VF has not a single VPlan."); 7876 7877 for (const VPlanPtr &Plan : VPlans) { 7878 if (Plan->hasVF(VF)) 7879 return *Plan.get(); 7880 } 7881 llvm_unreachable("No plan found!"); 7882 } 7883 7884 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7885 SmallVector<Metadata *, 4> MDs; 7886 // Reserve first location for self reference to the LoopID metadata node. 7887 MDs.push_back(nullptr); 7888 bool IsUnrollMetadata = false; 7889 MDNode *LoopID = L->getLoopID(); 7890 if (LoopID) { 7891 // First find existing loop unrolling disable metadata. 7892 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7893 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7894 if (MD) { 7895 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7896 IsUnrollMetadata = 7897 S && S->getString().startswith("llvm.loop.unroll.disable"); 7898 } 7899 MDs.push_back(LoopID->getOperand(i)); 7900 } 7901 } 7902 7903 if (!IsUnrollMetadata) { 7904 // Add runtime unroll disable metadata. 7905 LLVMContext &Context = L->getHeader()->getContext(); 7906 SmallVector<Metadata *, 1> DisableOperands; 7907 DisableOperands.push_back( 7908 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7909 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7910 MDs.push_back(DisableNode); 7911 MDNode *NewLoopID = MDNode::get(Context, MDs); 7912 // Set operand 0 to refer to the loop id itself. 7913 NewLoopID->replaceOperandWith(0, NewLoopID); 7914 L->setLoopID(NewLoopID); 7915 } 7916 } 7917 7918 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7919 VPlan &BestVPlan, 7920 InnerLoopVectorizer &ILV, 7921 DominatorTree *DT) { 7922 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7923 << '\n'); 7924 7925 // Perform the actual loop transformation. 7926 7927 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7928 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7929 Value *CanonicalIVStartValue; 7930 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7931 ILV.createVectorizedLoopSkeleton(); 7932 ILV.collectPoisonGeneratingRecipes(State); 7933 7934 ILV.printDebugTracesAtStart(); 7935 7936 //===------------------------------------------------===// 7937 // 7938 // Notice: any optimization or new instruction that go 7939 // into the code below should also be implemented in 7940 // the cost-model. 7941 // 7942 //===------------------------------------------------===// 7943 7944 // 2. Copy and widen instructions from the old loop into the new loop. 7945 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7946 ILV.getOrCreateVectorTripCount(nullptr), 7947 CanonicalIVStartValue, State); 7948 BestVPlan.execute(&State); 7949 7950 // Keep all loop hints from the original loop on the vector loop (we'll 7951 // replace the vectorizer-specific hints below). 7952 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7953 7954 Optional<MDNode *> VectorizedLoopID = 7955 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7956 LLVMLoopVectorizeFollowupVectorized}); 7957 7958 Loop *L = LI->getLoopFor(State.CFG.PrevBB); 7959 if (VectorizedLoopID.hasValue()) 7960 L->setLoopID(VectorizedLoopID.getValue()); 7961 else { 7962 // Keep all loop hints from the original loop on the vector loop (we'll 7963 // replace the vectorizer-specific hints below). 7964 if (MDNode *LID = OrigLoop->getLoopID()) 7965 L->setLoopID(LID); 7966 7967 LoopVectorizeHints Hints(L, true, *ORE); 7968 Hints.setAlreadyVectorized(); 7969 } 7970 // Disable runtime unrolling when vectorizing the epilogue loop. 7971 if (CanonicalIVStartValue) 7972 AddRuntimeUnrollDisableMetaData(L); 7973 7974 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7975 // predication, updating analyses. 7976 ILV.fixVectorizedLoop(State); 7977 7978 ILV.printDebugTracesAtEnd(); 7979 } 7980 7981 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7982 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7983 for (const auto &Plan : VPlans) 7984 if (PrintVPlansInDotFormat) 7985 Plan->printDOT(O); 7986 else 7987 Plan->print(O); 7988 } 7989 #endif 7990 7991 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7992 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7993 7994 // We create new control-flow for the vectorized loop, so the original exit 7995 // conditions will be dead after vectorization if it's only used by the 7996 // terminator 7997 SmallVector<BasicBlock*> ExitingBlocks; 7998 OrigLoop->getExitingBlocks(ExitingBlocks); 7999 for (auto *BB : ExitingBlocks) { 8000 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8001 if (!Cmp || !Cmp->hasOneUse()) 8002 continue; 8003 8004 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8005 if (!DeadInstructions.insert(Cmp).second) 8006 continue; 8007 8008 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8009 // TODO: can recurse through operands in general 8010 for (Value *Op : Cmp->operands()) { 8011 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8012 DeadInstructions.insert(cast<Instruction>(Op)); 8013 } 8014 } 8015 8016 // We create new "steps" for induction variable updates to which the original 8017 // induction variables map. An original update instruction will be dead if 8018 // all its users except the induction variable are dead. 8019 auto *Latch = OrigLoop->getLoopLatch(); 8020 for (auto &Induction : Legal->getInductionVars()) { 8021 PHINode *Ind = Induction.first; 8022 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8023 8024 // If the tail is to be folded by masking, the primary induction variable, 8025 // if exists, isn't dead: it will be used for masking. Don't kill it. 8026 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8027 continue; 8028 8029 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8030 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8031 })) 8032 DeadInstructions.insert(IndUpdate); 8033 } 8034 } 8035 8036 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8037 8038 //===--------------------------------------------------------------------===// 8039 // EpilogueVectorizerMainLoop 8040 //===--------------------------------------------------------------------===// 8041 8042 /// This function is partially responsible for generating the control flow 8043 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8044 std::pair<BasicBlock *, Value *> 8045 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8046 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8047 Loop *Lp = createVectorLoopSkeleton(""); 8048 8049 // Generate the code to check the minimum iteration count of the vector 8050 // epilogue (see below). 8051 EPI.EpilogueIterationCountCheck = 8052 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8053 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8054 8055 // Generate the code to check any assumptions that we've made for SCEV 8056 // expressions. 8057 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8058 8059 // Generate the code that checks at runtime if arrays overlap. We put the 8060 // checks into a separate block to make the more common case of few elements 8061 // faster. 8062 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8063 8064 // Generate the iteration count check for the main loop, *after* the check 8065 // for the epilogue loop, so that the path-length is shorter for the case 8066 // that goes directly through the vector epilogue. The longer-path length for 8067 // the main loop is compensated for, by the gain from vectorizing the larger 8068 // trip count. Note: the branch will get updated later on when we vectorize 8069 // the epilogue. 8070 EPI.MainLoopIterationCountCheck = 8071 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8072 8073 // Generate the induction variable. 8074 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8075 EPI.VectorTripCount = CountRoundDown; 8076 createHeaderBranch(Lp); 8077 8078 // Skip induction resume value creation here because they will be created in 8079 // the second pass. If we created them here, they wouldn't be used anyway, 8080 // because the vplan in the second pass still contains the inductions from the 8081 // original loop. 8082 8083 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 8084 } 8085 8086 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8087 LLVM_DEBUG({ 8088 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8089 << "Main Loop VF:" << EPI.MainLoopVF 8090 << ", Main Loop UF:" << EPI.MainLoopUF 8091 << ", Epilogue Loop VF:" << EPI.EpilogueVF 8092 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8093 }); 8094 } 8095 8096 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8097 DEBUG_WITH_TYPE(VerboseDebug, { 8098 dbgs() << "intermediate fn:\n" 8099 << *OrigLoop->getHeader()->getParent() << "\n"; 8100 }); 8101 } 8102 8103 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8104 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8105 assert(L && "Expected valid Loop."); 8106 assert(Bypass && "Expected valid bypass basic block."); 8107 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 8108 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8109 Value *Count = getOrCreateTripCount(L); 8110 // Reuse existing vector loop preheader for TC checks. 8111 // Note that new preheader block is generated for vector loop. 8112 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8113 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8114 8115 // Generate code to check if the loop's trip count is less than VF * UF of the 8116 // main vector loop. 8117 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8118 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8119 8120 Value *CheckMinIters = Builder.CreateICmp( 8121 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 8122 "min.iters.check"); 8123 8124 if (!ForEpilogue) 8125 TCCheckBlock->setName("vector.main.loop.iter.check"); 8126 8127 // Create new preheader for vector loop. 8128 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8129 DT, LI, nullptr, "vector.ph"); 8130 8131 if (ForEpilogue) { 8132 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8133 DT->getNode(Bypass)->getIDom()) && 8134 "TC check is expected to dominate Bypass"); 8135 8136 // Update dominator for Bypass & LoopExit. 8137 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8138 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8139 // For loops with multiple exits, there's no edge from the middle block 8140 // to exit blocks (as the epilogue must run) and thus no need to update 8141 // the immediate dominator of the exit blocks. 8142 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8143 8144 LoopBypassBlocks.push_back(TCCheckBlock); 8145 8146 // Save the trip count so we don't have to regenerate it in the 8147 // vec.epilog.iter.check. This is safe to do because the trip count 8148 // generated here dominates the vector epilog iter check. 8149 EPI.TripCount = Count; 8150 } 8151 8152 ReplaceInstWithInst( 8153 TCCheckBlock->getTerminator(), 8154 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8155 8156 return TCCheckBlock; 8157 } 8158 8159 //===--------------------------------------------------------------------===// 8160 // EpilogueVectorizerEpilogueLoop 8161 //===--------------------------------------------------------------------===// 8162 8163 /// This function is partially responsible for generating the control flow 8164 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8165 std::pair<BasicBlock *, Value *> 8166 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8167 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8168 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8169 8170 // Now, compare the remaining count and if there aren't enough iterations to 8171 // execute the vectorized epilogue skip to the scalar part. 8172 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8173 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8174 LoopVectorPreHeader = 8175 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8176 LI, nullptr, "vec.epilog.ph"); 8177 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8178 VecEpilogueIterationCountCheck); 8179 8180 // Adjust the control flow taking the state info from the main loop 8181 // vectorization into account. 8182 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8183 "expected this to be saved from the previous pass."); 8184 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8185 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8186 8187 DT->changeImmediateDominator(LoopVectorPreHeader, 8188 EPI.MainLoopIterationCountCheck); 8189 8190 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8191 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8192 8193 if (EPI.SCEVSafetyCheck) 8194 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8195 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8196 if (EPI.MemSafetyCheck) 8197 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8198 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8199 8200 DT->changeImmediateDominator( 8201 VecEpilogueIterationCountCheck, 8202 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8203 8204 DT->changeImmediateDominator(LoopScalarPreHeader, 8205 EPI.EpilogueIterationCountCheck); 8206 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8207 // If there is an epilogue which must run, there's no edge from the 8208 // middle block to exit blocks and thus no need to update the immediate 8209 // dominator of the exit blocks. 8210 DT->changeImmediateDominator(LoopExitBlock, 8211 EPI.EpilogueIterationCountCheck); 8212 8213 // Keep track of bypass blocks, as they feed start values to the induction 8214 // phis in the scalar loop preheader. 8215 if (EPI.SCEVSafetyCheck) 8216 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8217 if (EPI.MemSafetyCheck) 8218 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8219 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8220 8221 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 8222 // merge control-flow from the latch block and the middle block. Update the 8223 // incoming values here and move the Phi into the preheader. 8224 SmallVector<PHINode *, 4> PhisInBlock; 8225 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 8226 PhisInBlock.push_back(&Phi); 8227 8228 for (PHINode *Phi : PhisInBlock) { 8229 Phi->replaceIncomingBlockWith( 8230 VecEpilogueIterationCountCheck->getSinglePredecessor(), 8231 VecEpilogueIterationCountCheck); 8232 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 8233 if (EPI.SCEVSafetyCheck) 8234 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 8235 if (EPI.MemSafetyCheck) 8236 Phi->removeIncomingValue(EPI.MemSafetyCheck); 8237 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 8238 } 8239 8240 // Generate a resume induction for the vector epilogue and put it in the 8241 // vector epilogue preheader 8242 Type *IdxTy = Legal->getWidestInductionType(); 8243 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8244 LoopVectorPreHeader->getFirstNonPHI()); 8245 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8246 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8247 EPI.MainLoopIterationCountCheck); 8248 8249 // Generate the induction variable. 8250 createHeaderBranch(Lp); 8251 8252 // Generate induction resume values. These variables save the new starting 8253 // indexes for the scalar loop. They are used to test if there are any tail 8254 // iterations left once the vector loop has completed. 8255 // Note that when the vectorized epilogue is skipped due to iteration count 8256 // check, then the resume value for the induction variable comes from 8257 // the trip count of the main vector loop, hence passing the AdditionalBypass 8258 // argument. 8259 createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck, 8260 EPI.VectorTripCount} /* AdditionalBypass */); 8261 8262 return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal}; 8263 } 8264 8265 BasicBlock * 8266 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8267 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8268 8269 assert(EPI.TripCount && 8270 "Expected trip count to have been safed in the first pass."); 8271 assert( 8272 (!isa<Instruction>(EPI.TripCount) || 8273 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8274 "saved trip count does not dominate insertion point."); 8275 Value *TC = EPI.TripCount; 8276 IRBuilder<> Builder(Insert->getTerminator()); 8277 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8278 8279 // Generate code to check if the loop's trip count is less than VF * UF of the 8280 // vector epilogue loop. 8281 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8282 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8283 8284 Value *CheckMinIters = 8285 Builder.CreateICmp(P, Count, 8286 createStepForVF(Builder, Count->getType(), 8287 EPI.EpilogueVF, EPI.EpilogueUF), 8288 "min.epilog.iters.check"); 8289 8290 ReplaceInstWithInst( 8291 Insert->getTerminator(), 8292 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8293 8294 LoopBypassBlocks.push_back(Insert); 8295 return Insert; 8296 } 8297 8298 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8299 LLVM_DEBUG({ 8300 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8301 << "Epilogue Loop VF:" << EPI.EpilogueVF 8302 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8303 }); 8304 } 8305 8306 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8307 DEBUG_WITH_TYPE(VerboseDebug, { 8308 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8309 }); 8310 } 8311 8312 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8313 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8314 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8315 bool PredicateAtRangeStart = Predicate(Range.Start); 8316 8317 for (ElementCount TmpVF = Range.Start * 2; 8318 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8319 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8320 Range.End = TmpVF; 8321 break; 8322 } 8323 8324 return PredicateAtRangeStart; 8325 } 8326 8327 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8328 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8329 /// of VF's starting at a given VF and extending it as much as possible. Each 8330 /// vectorization decision can potentially shorten this sub-range during 8331 /// buildVPlan(). 8332 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8333 ElementCount MaxVF) { 8334 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8335 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8336 VFRange SubRange = {VF, MaxVFPlusOne}; 8337 VPlans.push_back(buildVPlan(SubRange)); 8338 VF = SubRange.End; 8339 } 8340 } 8341 8342 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8343 VPlanPtr &Plan) { 8344 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8345 8346 // Look for cached value. 8347 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8348 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8349 if (ECEntryIt != EdgeMaskCache.end()) 8350 return ECEntryIt->second; 8351 8352 VPValue *SrcMask = createBlockInMask(Src, Plan); 8353 8354 // The terminator has to be a branch inst! 8355 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8356 assert(BI && "Unexpected terminator found"); 8357 8358 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8359 return EdgeMaskCache[Edge] = SrcMask; 8360 8361 // If source is an exiting block, we know the exit edge is dynamically dead 8362 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8363 // adding uses of an otherwise potentially dead instruction. 8364 if (OrigLoop->isLoopExiting(Src)) 8365 return EdgeMaskCache[Edge] = SrcMask; 8366 8367 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8368 assert(EdgeMask && "No Edge Mask found for condition"); 8369 8370 if (BI->getSuccessor(0) != Dst) 8371 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8372 8373 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8374 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8375 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8376 // The select version does not introduce new UB if SrcMask is false and 8377 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8378 VPValue *False = Plan->getOrAddVPValue( 8379 ConstantInt::getFalse(BI->getCondition()->getType())); 8380 EdgeMask = 8381 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8382 } 8383 8384 return EdgeMaskCache[Edge] = EdgeMask; 8385 } 8386 8387 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8388 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8389 8390 // Look for cached value. 8391 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8392 if (BCEntryIt != BlockMaskCache.end()) 8393 return BCEntryIt->second; 8394 8395 // All-one mask is modelled as no-mask following the convention for masked 8396 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8397 VPValue *BlockMask = nullptr; 8398 8399 if (OrigLoop->getHeader() == BB) { 8400 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8401 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8402 8403 // Introduce the early-exit compare IV <= BTC to form header block mask. 8404 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8405 // constructing the desired canonical IV in the header block as its first 8406 // non-phi instructions. 8407 assert(CM.foldTailByMasking() && "must fold the tail"); 8408 VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock(); 8409 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8410 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8411 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8412 8413 VPBuilder::InsertPointGuard Guard(Builder); 8414 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8415 if (CM.TTI.emitGetActiveLaneMask()) { 8416 VPValue *TC = Plan->getOrCreateTripCount(); 8417 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8418 } else { 8419 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8420 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8421 } 8422 return BlockMaskCache[BB] = BlockMask; 8423 } 8424 8425 // This is the block mask. We OR all incoming edges. 8426 for (auto *Predecessor : predecessors(BB)) { 8427 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8428 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8429 return BlockMaskCache[BB] = EdgeMask; 8430 8431 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8432 BlockMask = EdgeMask; 8433 continue; 8434 } 8435 8436 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8437 } 8438 8439 return BlockMaskCache[BB] = BlockMask; 8440 } 8441 8442 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8443 ArrayRef<VPValue *> Operands, 8444 VFRange &Range, 8445 VPlanPtr &Plan) { 8446 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8447 "Must be called with either a load or store"); 8448 8449 auto willWiden = [&](ElementCount VF) -> bool { 8450 if (VF.isScalar()) 8451 return false; 8452 LoopVectorizationCostModel::InstWidening Decision = 8453 CM.getWideningDecision(I, VF); 8454 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8455 "CM decision should be taken at this point."); 8456 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8457 return true; 8458 if (CM.isScalarAfterVectorization(I, VF) || 8459 CM.isProfitableToScalarize(I, VF)) 8460 return false; 8461 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8462 }; 8463 8464 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8465 return nullptr; 8466 8467 VPValue *Mask = nullptr; 8468 if (Legal->isMaskRequired(I)) 8469 Mask = createBlockInMask(I->getParent(), Plan); 8470 8471 // Determine if the pointer operand of the access is either consecutive or 8472 // reverse consecutive. 8473 LoopVectorizationCostModel::InstWidening Decision = 8474 CM.getWideningDecision(I, Range.Start); 8475 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8476 bool Consecutive = 8477 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8478 8479 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8480 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8481 Consecutive, Reverse); 8482 8483 StoreInst *Store = cast<StoreInst>(I); 8484 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8485 Mask, Consecutive, Reverse); 8486 } 8487 8488 static VPWidenIntOrFpInductionRecipe * 8489 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc, 8490 VPValue *Start, const InductionDescriptor &IndDesc, 8491 LoopVectorizationCostModel &CM, Loop &OrigLoop, 8492 VFRange &Range) { 8493 // Returns true if an instruction \p I should be scalarized instead of 8494 // vectorized for the chosen vectorization factor. 8495 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8496 return CM.isScalarAfterVectorization(I, VF) || 8497 CM.isProfitableToScalarize(I, VF); 8498 }; 8499 8500 bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange( 8501 [&](ElementCount VF) { 8502 // Returns true if we should generate a scalar version of \p IV. 8503 if (ShouldScalarizeInstruction(PhiOrTrunc, VF)) 8504 return true; 8505 auto isScalarInst = [&](User *U) -> bool { 8506 auto *I = cast<Instruction>(U); 8507 return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF); 8508 }; 8509 return any_of(PhiOrTrunc->users(), isScalarInst); 8510 }, 8511 Range); 8512 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8513 [&](ElementCount VF) { 8514 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8515 }, 8516 Range); 8517 assert(IndDesc.getStartValue() == 8518 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8519 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8520 return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, TruncI, 8521 NeedsScalarIV, !NeedsScalarIVOnly); 8522 } 8523 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8524 return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV, 8525 !NeedsScalarIVOnly); 8526 } 8527 8528 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI( 8529 PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const { 8530 8531 // Check if this is an integer or fp induction. If so, build the recipe that 8532 // produces its scalar and vector values. 8533 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8534 return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, *OrigLoop, 8535 Range); 8536 8537 return nullptr; 8538 } 8539 8540 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8541 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8542 VPlan &Plan) const { 8543 // Optimize the special case where the source is a constant integer 8544 // induction variable. Notice that we can only optimize the 'trunc' case 8545 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8546 // (c) other casts depend on pointer size. 8547 8548 // Determine whether \p K is a truncation based on an induction variable that 8549 // can be optimized. 8550 auto isOptimizableIVTruncate = 8551 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8552 return [=](ElementCount VF) -> bool { 8553 return CM.isOptimizableIVTruncate(K, VF); 8554 }; 8555 }; 8556 8557 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8558 isOptimizableIVTruncate(I), Range)) { 8559 8560 auto *Phi = cast<PHINode>(I->getOperand(0)); 8561 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8562 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8563 return createWidenInductionRecipe(Phi, I, Start, II, CM, *OrigLoop, Range); 8564 } 8565 return nullptr; 8566 } 8567 8568 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8569 ArrayRef<VPValue *> Operands, 8570 VPlanPtr &Plan) { 8571 // If all incoming values are equal, the incoming VPValue can be used directly 8572 // instead of creating a new VPBlendRecipe. 8573 VPValue *FirstIncoming = Operands[0]; 8574 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8575 return FirstIncoming == Inc; 8576 })) { 8577 return Operands[0]; 8578 } 8579 8580 // We know that all PHIs in non-header blocks are converted into selects, so 8581 // we don't have to worry about the insertion order and we can just use the 8582 // builder. At this point we generate the predication tree. There may be 8583 // duplications since this is a simple recursive scan, but future 8584 // optimizations will clean it up. 8585 SmallVector<VPValue *, 2> OperandsWithMask; 8586 unsigned NumIncoming = Phi->getNumIncomingValues(); 8587 8588 for (unsigned In = 0; In < NumIncoming; In++) { 8589 VPValue *EdgeMask = 8590 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8591 assert((EdgeMask || NumIncoming == 1) && 8592 "Multiple predecessors with one having a full mask"); 8593 OperandsWithMask.push_back(Operands[In]); 8594 if (EdgeMask) 8595 OperandsWithMask.push_back(EdgeMask); 8596 } 8597 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8598 } 8599 8600 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8601 ArrayRef<VPValue *> Operands, 8602 VFRange &Range) const { 8603 8604 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8605 [this, CI](ElementCount VF) { 8606 return CM.isScalarWithPredication(CI, VF); 8607 }, 8608 Range); 8609 8610 if (IsPredicated) 8611 return nullptr; 8612 8613 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8614 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8615 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8616 ID == Intrinsic::pseudoprobe || 8617 ID == Intrinsic::experimental_noalias_scope_decl)) 8618 return nullptr; 8619 8620 auto willWiden = [&](ElementCount VF) -> bool { 8621 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8622 // The following case may be scalarized depending on the VF. 8623 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8624 // version of the instruction. 8625 // Is it beneficial to perform intrinsic call compared to lib call? 8626 bool NeedToScalarize = false; 8627 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8628 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8629 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8630 return UseVectorIntrinsic || !NeedToScalarize; 8631 }; 8632 8633 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8634 return nullptr; 8635 8636 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8637 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8638 } 8639 8640 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8641 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8642 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8643 // Instruction should be widened, unless it is scalar after vectorization, 8644 // scalarization is profitable or it is predicated. 8645 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8646 return CM.isScalarAfterVectorization(I, VF) || 8647 CM.isProfitableToScalarize(I, VF) || 8648 CM.isScalarWithPredication(I, VF); 8649 }; 8650 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8651 Range); 8652 } 8653 8654 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8655 ArrayRef<VPValue *> Operands) const { 8656 auto IsVectorizableOpcode = [](unsigned Opcode) { 8657 switch (Opcode) { 8658 case Instruction::Add: 8659 case Instruction::And: 8660 case Instruction::AShr: 8661 case Instruction::BitCast: 8662 case Instruction::FAdd: 8663 case Instruction::FCmp: 8664 case Instruction::FDiv: 8665 case Instruction::FMul: 8666 case Instruction::FNeg: 8667 case Instruction::FPExt: 8668 case Instruction::FPToSI: 8669 case Instruction::FPToUI: 8670 case Instruction::FPTrunc: 8671 case Instruction::FRem: 8672 case Instruction::FSub: 8673 case Instruction::ICmp: 8674 case Instruction::IntToPtr: 8675 case Instruction::LShr: 8676 case Instruction::Mul: 8677 case Instruction::Or: 8678 case Instruction::PtrToInt: 8679 case Instruction::SDiv: 8680 case Instruction::Select: 8681 case Instruction::SExt: 8682 case Instruction::Shl: 8683 case Instruction::SIToFP: 8684 case Instruction::SRem: 8685 case Instruction::Sub: 8686 case Instruction::Trunc: 8687 case Instruction::UDiv: 8688 case Instruction::UIToFP: 8689 case Instruction::URem: 8690 case Instruction::Xor: 8691 case Instruction::ZExt: 8692 return true; 8693 } 8694 return false; 8695 }; 8696 8697 if (!IsVectorizableOpcode(I->getOpcode())) 8698 return nullptr; 8699 8700 // Success: widen this instruction. 8701 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8702 } 8703 8704 void VPRecipeBuilder::fixHeaderPhis() { 8705 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8706 for (VPHeaderPHIRecipe *R : PhisToFix) { 8707 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8708 VPRecipeBase *IncR = 8709 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8710 R->addOperand(IncR->getVPSingleValue()); 8711 } 8712 } 8713 8714 VPBasicBlock *VPRecipeBuilder::handleReplication( 8715 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8716 VPlanPtr &Plan) { 8717 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8718 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8719 Range); 8720 8721 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8722 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8723 Range); 8724 8725 // Even if the instruction is not marked as uniform, there are certain 8726 // intrinsic calls that can be effectively treated as such, so we check for 8727 // them here. Conservatively, we only do this for scalable vectors, since 8728 // for fixed-width VFs we can always fall back on full scalarization. 8729 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8730 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8731 case Intrinsic::assume: 8732 case Intrinsic::lifetime_start: 8733 case Intrinsic::lifetime_end: 8734 // For scalable vectors if one of the operands is variant then we still 8735 // want to mark as uniform, which will generate one instruction for just 8736 // the first lane of the vector. We can't scalarize the call in the same 8737 // way as for fixed-width vectors because we don't know how many lanes 8738 // there are. 8739 // 8740 // The reasons for doing it this way for scalable vectors are: 8741 // 1. For the assume intrinsic generating the instruction for the first 8742 // lane is still be better than not generating any at all. For 8743 // example, the input may be a splat across all lanes. 8744 // 2. For the lifetime start/end intrinsics the pointer operand only 8745 // does anything useful when the input comes from a stack object, 8746 // which suggests it should always be uniform. For non-stack objects 8747 // the effect is to poison the object, which still allows us to 8748 // remove the call. 8749 IsUniform = true; 8750 break; 8751 default: 8752 break; 8753 } 8754 } 8755 8756 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8757 IsUniform, IsPredicated); 8758 setRecipe(I, Recipe); 8759 Plan->addVPValue(I, Recipe); 8760 8761 // Find if I uses a predicated instruction. If so, it will use its scalar 8762 // value. Avoid hoisting the insert-element which packs the scalar value into 8763 // a vector value, as that happens iff all users use the vector value. 8764 for (VPValue *Op : Recipe->operands()) { 8765 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8766 if (!PredR) 8767 continue; 8768 auto *RepR = 8769 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8770 assert(RepR->isPredicated() && 8771 "expected Replicate recipe to be predicated"); 8772 RepR->setAlsoPack(false); 8773 } 8774 8775 // Finalize the recipe for Instr, first if it is not predicated. 8776 if (!IsPredicated) { 8777 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8778 VPBB->appendRecipe(Recipe); 8779 return VPBB; 8780 } 8781 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8782 8783 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8784 assert(SingleSucc && "VPBB must have a single successor when handling " 8785 "predicated replication."); 8786 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8787 // Record predicated instructions for above packing optimizations. 8788 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8789 VPBlockUtils::insertBlockAfter(Region, VPBB); 8790 auto *RegSucc = new VPBasicBlock(); 8791 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8792 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8793 return RegSucc; 8794 } 8795 8796 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8797 VPRecipeBase *PredRecipe, 8798 VPlanPtr &Plan) { 8799 // Instructions marked for predication are replicated and placed under an 8800 // if-then construct to prevent side-effects. 8801 8802 // Generate recipes to compute the block mask for this region. 8803 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8804 8805 // Build the triangular if-then region. 8806 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8807 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8808 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8809 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8810 auto *PHIRecipe = Instr->getType()->isVoidTy() 8811 ? nullptr 8812 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8813 if (PHIRecipe) { 8814 Plan->removeVPValueFor(Instr); 8815 Plan->addVPValue(Instr, PHIRecipe); 8816 } 8817 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8818 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8819 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8820 8821 // Note: first set Entry as region entry and then connect successors starting 8822 // from it in order, to propagate the "parent" of each VPBasicBlock. 8823 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8824 VPBlockUtils::connectBlocks(Pred, Exit); 8825 8826 return Region; 8827 } 8828 8829 VPRecipeOrVPValueTy 8830 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8831 ArrayRef<VPValue *> Operands, 8832 VFRange &Range, VPlanPtr &Plan) { 8833 // First, check for specific widening recipes that deal with calls, memory 8834 // operations, inductions and Phi nodes. 8835 if (auto *CI = dyn_cast<CallInst>(Instr)) 8836 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8837 8838 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8839 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8840 8841 VPRecipeBase *Recipe; 8842 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8843 if (Phi->getParent() != OrigLoop->getHeader()) 8844 return tryToBlend(Phi, Operands, Plan); 8845 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range))) 8846 return toVPRecipeResult(Recipe); 8847 8848 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8849 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8850 VPValue *StartV = Operands[0]; 8851 if (Legal->isReductionVariable(Phi)) { 8852 const RecurrenceDescriptor &RdxDesc = 8853 Legal->getReductionVars().find(Phi)->second; 8854 assert(RdxDesc.getRecurrenceStartValue() == 8855 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8856 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8857 CM.isInLoopReduction(Phi), 8858 CM.useOrderedReductions(RdxDesc)); 8859 } else { 8860 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8861 } 8862 8863 // Record the incoming value from the backedge, so we can add the incoming 8864 // value from the backedge after all recipes have been created. 8865 recordRecipeOf(cast<Instruction>( 8866 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8867 PhisToFix.push_back(PhiRecipe); 8868 } else { 8869 // TODO: record backedge value for remaining pointer induction phis. 8870 assert(Phi->getType()->isPointerTy() && 8871 "only pointer phis should be handled here"); 8872 assert(Legal->getInductionVars().count(Phi) && 8873 "Not an induction variable"); 8874 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8875 VPValue *Start = Plan->getOrAddVPValue(II.getStartValue()); 8876 PhiRecipe = new VPWidenPHIRecipe(Phi, Start); 8877 } 8878 8879 return toVPRecipeResult(PhiRecipe); 8880 } 8881 8882 if (isa<TruncInst>(Instr) && 8883 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8884 Range, *Plan))) 8885 return toVPRecipeResult(Recipe); 8886 8887 if (!shouldWiden(Instr, Range)) 8888 return nullptr; 8889 8890 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8891 return toVPRecipeResult(new VPWidenGEPRecipe( 8892 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8893 8894 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8895 bool InvariantCond = 8896 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8897 return toVPRecipeResult(new VPWidenSelectRecipe( 8898 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8899 } 8900 8901 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8902 } 8903 8904 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8905 ElementCount MaxVF) { 8906 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8907 8908 // Collect instructions from the original loop that will become trivially dead 8909 // in the vectorized loop. We don't need to vectorize these instructions. For 8910 // example, original induction update instructions can become dead because we 8911 // separately emit induction "steps" when generating code for the new loop. 8912 // Similarly, we create a new latch condition when setting up the structure 8913 // of the new loop, so the old one can become dead. 8914 SmallPtrSet<Instruction *, 4> DeadInstructions; 8915 collectTriviallyDeadInstructions(DeadInstructions); 8916 8917 // Add assume instructions we need to drop to DeadInstructions, to prevent 8918 // them from being added to the VPlan. 8919 // TODO: We only need to drop assumes in blocks that get flattend. If the 8920 // control flow is preserved, we should keep them. 8921 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8922 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8923 8924 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8925 // Dead instructions do not need sinking. Remove them from SinkAfter. 8926 for (Instruction *I : DeadInstructions) 8927 SinkAfter.erase(I); 8928 8929 // Cannot sink instructions after dead instructions (there won't be any 8930 // recipes for them). Instead, find the first non-dead previous instruction. 8931 for (auto &P : Legal->getSinkAfter()) { 8932 Instruction *SinkTarget = P.second; 8933 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8934 (void)FirstInst; 8935 while (DeadInstructions.contains(SinkTarget)) { 8936 assert( 8937 SinkTarget != FirstInst && 8938 "Must find a live instruction (at least the one feeding the " 8939 "first-order recurrence PHI) before reaching beginning of the block"); 8940 SinkTarget = SinkTarget->getPrevNode(); 8941 assert(SinkTarget != P.first && 8942 "sink source equals target, no sinking required"); 8943 } 8944 P.second = SinkTarget; 8945 } 8946 8947 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8948 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8949 VFRange SubRange = {VF, MaxVFPlusOne}; 8950 VPlans.push_back( 8951 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8952 VF = SubRange.End; 8953 } 8954 } 8955 8956 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8957 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8958 // BranchOnCount VPInstruction to the latch. 8959 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8960 bool HasNUW, bool IsVPlanNative) { 8961 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8962 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8963 8964 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8965 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8966 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8967 if (IsVPlanNative) 8968 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 8969 Header->insert(CanonicalIVPHI, Header->begin()); 8970 8971 auto *CanonicalIVIncrement = 8972 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8973 : VPInstruction::CanonicalIVIncrement, 8974 {CanonicalIVPHI}, DL); 8975 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8976 8977 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8978 if (IsVPlanNative) { 8979 EB = cast<VPBasicBlock>(EB->getSinglePredecessor()); 8980 EB->setCondBit(nullptr); 8981 } 8982 EB->appendRecipe(CanonicalIVIncrement); 8983 8984 auto *BranchOnCount = 8985 new VPInstruction(VPInstruction::BranchOnCount, 8986 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8987 EB->appendRecipe(BranchOnCount); 8988 } 8989 8990 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8991 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8992 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8993 8994 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8995 8996 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8997 8998 // --------------------------------------------------------------------------- 8999 // Pre-construction: record ingredients whose recipes we'll need to further 9000 // process after constructing the initial VPlan. 9001 // --------------------------------------------------------------------------- 9002 9003 // Mark instructions we'll need to sink later and their targets as 9004 // ingredients whose recipe we'll need to record. 9005 for (auto &Entry : SinkAfter) { 9006 RecipeBuilder.recordRecipeOf(Entry.first); 9007 RecipeBuilder.recordRecipeOf(Entry.second); 9008 } 9009 for (auto &Reduction : CM.getInLoopReductionChains()) { 9010 PHINode *Phi = Reduction.first; 9011 RecurKind Kind = 9012 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 9013 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9014 9015 RecipeBuilder.recordRecipeOf(Phi); 9016 for (auto &R : ReductionOperations) { 9017 RecipeBuilder.recordRecipeOf(R); 9018 // For min/max reducitons, where we have a pair of icmp/select, we also 9019 // need to record the ICmp recipe, so it can be removed later. 9020 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9021 "Only min/max recurrences allowed for inloop reductions"); 9022 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9023 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9024 } 9025 } 9026 9027 // For each interleave group which is relevant for this (possibly trimmed) 9028 // Range, add it to the set of groups to be later applied to the VPlan and add 9029 // placeholders for its members' Recipes which we'll be replacing with a 9030 // single VPInterleaveRecipe. 9031 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9032 auto applyIG = [IG, this](ElementCount VF) -> bool { 9033 return (VF.isVector() && // Query is illegal for VF == 1 9034 CM.getWideningDecision(IG->getInsertPos(), VF) == 9035 LoopVectorizationCostModel::CM_Interleave); 9036 }; 9037 if (!getDecisionAndClampRange(applyIG, Range)) 9038 continue; 9039 InterleaveGroups.insert(IG); 9040 for (unsigned i = 0; i < IG->getFactor(); i++) 9041 if (Instruction *Member = IG->getMember(i)) 9042 RecipeBuilder.recordRecipeOf(Member); 9043 }; 9044 9045 // --------------------------------------------------------------------------- 9046 // Build initial VPlan: Scan the body of the loop in a topological order to 9047 // visit each basic block after having visited its predecessor basic blocks. 9048 // --------------------------------------------------------------------------- 9049 9050 // Create initial VPlan skeleton, with separate header and latch blocks. 9051 VPBasicBlock *HeaderVPBB = new VPBasicBlock(); 9052 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 9053 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 9054 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 9055 auto Plan = std::make_unique<VPlan>(TopRegion); 9056 9057 Instruction *DLInst = 9058 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 9059 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 9060 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 9061 !CM.foldTailByMasking(), false); 9062 9063 // Scan the body of the loop in a topological order to visit each basic block 9064 // after having visited its predecessor basic blocks. 9065 LoopBlocksDFS DFS(OrigLoop); 9066 DFS.perform(LI); 9067 9068 VPBasicBlock *VPBB = HeaderVPBB; 9069 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 9070 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9071 // Relevant instructions from basic block BB will be grouped into VPRecipe 9072 // ingredients and fill a new VPBasicBlock. 9073 unsigned VPBBsForBB = 0; 9074 VPBB->setName(BB->getName()); 9075 Builder.setInsertPoint(VPBB); 9076 9077 // Introduce each ingredient into VPlan. 9078 // TODO: Model and preserve debug instrinsics in VPlan. 9079 for (Instruction &I : BB->instructionsWithoutDebug()) { 9080 Instruction *Instr = &I; 9081 9082 // First filter out irrelevant instructions, to ensure no recipes are 9083 // built for them. 9084 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9085 continue; 9086 9087 SmallVector<VPValue *, 4> Operands; 9088 auto *Phi = dyn_cast<PHINode>(Instr); 9089 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9090 Operands.push_back(Plan->getOrAddVPValue( 9091 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9092 } else { 9093 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9094 Operands = {OpRange.begin(), OpRange.end()}; 9095 } 9096 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9097 Instr, Operands, Range, Plan)) { 9098 // If Instr can be simplified to an existing VPValue, use it. 9099 if (RecipeOrValue.is<VPValue *>()) { 9100 auto *VPV = RecipeOrValue.get<VPValue *>(); 9101 Plan->addVPValue(Instr, VPV); 9102 // If the re-used value is a recipe, register the recipe for the 9103 // instruction, in case the recipe for Instr needs to be recorded. 9104 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9105 RecipeBuilder.setRecipe(Instr, R); 9106 continue; 9107 } 9108 // Otherwise, add the new recipe. 9109 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9110 for (auto *Def : Recipe->definedValues()) { 9111 auto *UV = Def->getUnderlyingValue(); 9112 Plan->addVPValue(UV, Def); 9113 } 9114 9115 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 9116 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 9117 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 9118 // of the header block. That can happen for truncates of induction 9119 // variables. Those recipes are moved to the phi section of the header 9120 // block after applying SinkAfter, which relies on the original 9121 // position of the trunc. 9122 assert(isa<TruncInst>(Instr)); 9123 InductionsToMove.push_back( 9124 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 9125 } 9126 RecipeBuilder.setRecipe(Instr, Recipe); 9127 VPBB->appendRecipe(Recipe); 9128 continue; 9129 } 9130 9131 // Otherwise, if all widening options failed, Instruction is to be 9132 // replicated. This may create a successor for VPBB. 9133 VPBasicBlock *NextVPBB = 9134 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9135 if (NextVPBB != VPBB) { 9136 VPBB = NextVPBB; 9137 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9138 : ""); 9139 } 9140 } 9141 9142 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 9143 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 9144 } 9145 9146 // Fold the last, empty block into its predecessor. 9147 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 9148 assert(VPBB && "expected to fold last (empty) block"); 9149 // After here, VPBB should not be used. 9150 VPBB = nullptr; 9151 9152 assert(isa<VPRegionBlock>(Plan->getEntry()) && 9153 !Plan->getEntry()->getEntryBasicBlock()->empty() && 9154 "entry block must be set to a VPRegionBlock having a non-empty entry " 9155 "VPBasicBlock"); 9156 RecipeBuilder.fixHeaderPhis(); 9157 9158 // --------------------------------------------------------------------------- 9159 // Transform initial VPlan: Apply previously taken decisions, in order, to 9160 // bring the VPlan to its final state. 9161 // --------------------------------------------------------------------------- 9162 9163 // Apply Sink-After legal constraints. 9164 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9165 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9166 if (Region && Region->isReplicator()) { 9167 assert(Region->getNumSuccessors() == 1 && 9168 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9169 assert(R->getParent()->size() == 1 && 9170 "A recipe in an original replicator region must be the only " 9171 "recipe in its block"); 9172 return Region; 9173 } 9174 return nullptr; 9175 }; 9176 for (auto &Entry : SinkAfter) { 9177 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9178 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9179 9180 auto *TargetRegion = GetReplicateRegion(Target); 9181 auto *SinkRegion = GetReplicateRegion(Sink); 9182 if (!SinkRegion) { 9183 // If the sink source is not a replicate region, sink the recipe directly. 9184 if (TargetRegion) { 9185 // The target is in a replication region, make sure to move Sink to 9186 // the block after it, not into the replication region itself. 9187 VPBasicBlock *NextBlock = 9188 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9189 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9190 } else 9191 Sink->moveAfter(Target); 9192 continue; 9193 } 9194 9195 // The sink source is in a replicate region. Unhook the region from the CFG. 9196 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9197 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9198 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9199 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9200 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9201 9202 if (TargetRegion) { 9203 // The target recipe is also in a replicate region, move the sink region 9204 // after the target region. 9205 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9206 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9207 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9208 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9209 } else { 9210 // The sink source is in a replicate region, we need to move the whole 9211 // replicate region, which should only contain a single recipe in the 9212 // main block. 9213 auto *SplitBlock = 9214 Target->getParent()->splitAt(std::next(Target->getIterator())); 9215 9216 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9217 9218 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9219 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9220 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9221 } 9222 } 9223 9224 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 9225 VPlanTransforms::removeRedundantInductionCasts(*Plan); 9226 9227 // Now that sink-after is done, move induction recipes for optimized truncates 9228 // to the phi section of the header block. 9229 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 9230 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 9231 9232 // Adjust the recipes for any inloop reductions. 9233 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 9234 RecipeBuilder, Range.Start); 9235 9236 // Introduce a recipe to combine the incoming and previous values of a 9237 // first-order recurrence. 9238 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9239 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9240 if (!RecurPhi) 9241 continue; 9242 9243 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9244 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 9245 auto *Region = GetReplicateRegion(PrevRecipe); 9246 if (Region) 9247 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9248 if (Region || PrevRecipe->isPhi()) 9249 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 9250 else 9251 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 9252 9253 auto *RecurSplice = cast<VPInstruction>( 9254 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9255 {RecurPhi, RecurPhi->getBackedgeValue()})); 9256 9257 RecurPhi->replaceAllUsesWith(RecurSplice); 9258 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9259 // all users. 9260 RecurSplice->setOperand(0, RecurPhi); 9261 } 9262 9263 // Interleave memory: for each Interleave Group we marked earlier as relevant 9264 // for this VPlan, replace the Recipes widening its memory instructions with a 9265 // single VPInterleaveRecipe at its insertion point. 9266 for (auto IG : InterleaveGroups) { 9267 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9268 RecipeBuilder.getRecipe(IG->getInsertPos())); 9269 SmallVector<VPValue *, 4> StoredValues; 9270 for (unsigned i = 0; i < IG->getFactor(); ++i) 9271 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9272 auto *StoreR = 9273 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9274 StoredValues.push_back(StoreR->getStoredValue()); 9275 } 9276 9277 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9278 Recipe->getMask()); 9279 VPIG->insertBefore(Recipe); 9280 unsigned J = 0; 9281 for (unsigned i = 0; i < IG->getFactor(); ++i) 9282 if (Instruction *Member = IG->getMember(i)) { 9283 if (!Member->getType()->isVoidTy()) { 9284 VPValue *OriginalV = Plan->getVPValue(Member); 9285 Plan->removeVPValueFor(Member); 9286 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9287 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9288 J++; 9289 } 9290 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9291 } 9292 } 9293 9294 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9295 // in ways that accessing values using original IR values is incorrect. 9296 Plan->disableValue2VPValue(); 9297 9298 VPlanTransforms::sinkScalarOperands(*Plan); 9299 VPlanTransforms::mergeReplicateRegions(*Plan); 9300 9301 std::string PlanName; 9302 raw_string_ostream RSO(PlanName); 9303 ElementCount VF = Range.Start; 9304 Plan->addVF(VF); 9305 RSO << "Initial VPlan for VF={" << VF; 9306 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9307 Plan->addVF(VF); 9308 RSO << "," << VF; 9309 } 9310 RSO << "},UF>=1"; 9311 RSO.flush(); 9312 Plan->setName(PlanName); 9313 9314 // Fold Exit block into its predecessor if possible. 9315 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9316 // VPBasicBlock as exit. 9317 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9318 9319 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9320 return Plan; 9321 } 9322 9323 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9324 // Outer loop handling: They may require CFG and instruction level 9325 // transformations before even evaluating whether vectorization is profitable. 9326 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9327 // the vectorization pipeline. 9328 assert(!OrigLoop->isInnermost()); 9329 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9330 9331 // Create new empty VPlan 9332 auto Plan = std::make_unique<VPlan>(); 9333 9334 // Build hierarchical CFG 9335 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9336 HCFGBuilder.buildHierarchicalCFG(); 9337 9338 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9339 VF *= 2) 9340 Plan->addVF(VF); 9341 9342 if (EnableVPlanPredication) { 9343 VPlanPredicator VPP(*Plan); 9344 VPP.predicate(); 9345 9346 // Avoid running transformation to recipes until masked code generation in 9347 // VPlan-native path is in place. 9348 return Plan; 9349 } 9350 9351 SmallPtrSet<Instruction *, 1> DeadInstructions; 9352 VPlanTransforms::VPInstructionsToVPRecipes( 9353 OrigLoop, Plan, 9354 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9355 DeadInstructions, *PSE.getSE()); 9356 9357 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9358 true, true); 9359 return Plan; 9360 } 9361 9362 // Adjust the recipes for reductions. For in-loop reductions the chain of 9363 // instructions leading from the loop exit instr to the phi need to be converted 9364 // to reductions, with one operand being vector and the other being the scalar 9365 // reduction chain. For other reductions, a select is introduced between the phi 9366 // and live-out recipes when folding the tail. 9367 void LoopVectorizationPlanner::adjustRecipesForReductions( 9368 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9369 ElementCount MinVF) { 9370 for (auto &Reduction : CM.getInLoopReductionChains()) { 9371 PHINode *Phi = Reduction.first; 9372 const RecurrenceDescriptor &RdxDesc = 9373 Legal->getReductionVars().find(Phi)->second; 9374 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9375 9376 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9377 continue; 9378 9379 // ReductionOperations are orders top-down from the phi's use to the 9380 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9381 // which of the two operands will remain scalar and which will be reduced. 9382 // For minmax the chain will be the select instructions. 9383 Instruction *Chain = Phi; 9384 for (Instruction *R : ReductionOperations) { 9385 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9386 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9387 9388 VPValue *ChainOp = Plan->getVPValue(Chain); 9389 unsigned FirstOpId; 9390 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9391 "Only min/max recurrences allowed for inloop reductions"); 9392 // Recognize a call to the llvm.fmuladd intrinsic. 9393 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9394 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9395 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9396 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9397 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9398 "Expected to replace a VPWidenSelectSC"); 9399 FirstOpId = 1; 9400 } else { 9401 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9402 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9403 "Expected to replace a VPWidenSC"); 9404 FirstOpId = 0; 9405 } 9406 unsigned VecOpId = 9407 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9408 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9409 9410 auto *CondOp = CM.foldTailByMasking() 9411 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9412 : nullptr; 9413 9414 if (IsFMulAdd) { 9415 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9416 // need to create an fmul recipe to use as the vector operand for the 9417 // fadd reduction. 9418 VPInstruction *FMulRecipe = new VPInstruction( 9419 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9420 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9421 WidenRecipe->getParent()->insert(FMulRecipe, 9422 WidenRecipe->getIterator()); 9423 VecOp = FMulRecipe; 9424 } 9425 VPReductionRecipe *RedRecipe = 9426 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9427 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9428 Plan->removeVPValueFor(R); 9429 Plan->addVPValue(R, RedRecipe); 9430 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9431 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9432 WidenRecipe->eraseFromParent(); 9433 9434 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9435 VPRecipeBase *CompareRecipe = 9436 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9437 assert(isa<VPWidenRecipe>(CompareRecipe) && 9438 "Expected to replace a VPWidenSC"); 9439 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9440 "Expected no remaining users"); 9441 CompareRecipe->eraseFromParent(); 9442 } 9443 Chain = R; 9444 } 9445 } 9446 9447 // If tail is folded by masking, introduce selects between the phi 9448 // and the live-out instruction of each reduction, at the beginning of the 9449 // dedicated latch block. 9450 if (CM.foldTailByMasking()) { 9451 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9452 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9453 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9454 if (!PhiR || PhiR->isInLoop()) 9455 continue; 9456 VPValue *Cond = 9457 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9458 VPValue *Red = PhiR->getBackedgeValue(); 9459 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9460 "reduction recipe must be defined before latch"); 9461 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9462 } 9463 } 9464 } 9465 9466 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9467 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9468 VPSlotTracker &SlotTracker) const { 9469 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9470 IG->getInsertPos()->printAsOperand(O, false); 9471 O << ", "; 9472 getAddr()->printAsOperand(O, SlotTracker); 9473 VPValue *Mask = getMask(); 9474 if (Mask) { 9475 O << ", "; 9476 Mask->printAsOperand(O, SlotTracker); 9477 } 9478 9479 unsigned OpIdx = 0; 9480 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9481 if (!IG->getMember(i)) 9482 continue; 9483 if (getNumStoreOperands() > 0) { 9484 O << "\n" << Indent << " store "; 9485 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9486 O << " to index " << i; 9487 } else { 9488 O << "\n" << Indent << " "; 9489 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9490 O << " = load from index " << i; 9491 } 9492 ++OpIdx; 9493 } 9494 } 9495 #endif 9496 9497 void VPWidenCallRecipe::execute(VPTransformState &State) { 9498 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9499 *this, State); 9500 } 9501 9502 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9503 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9504 State.ILV->setDebugLocFromInst(&I); 9505 9506 // The condition can be loop invariant but still defined inside the 9507 // loop. This means that we can't just use the original 'cond' value. 9508 // We have to take the 'vectorized' value and pick the first lane. 9509 // Instcombine will make this a no-op. 9510 auto *InvarCond = 9511 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9512 9513 for (unsigned Part = 0; Part < State.UF; ++Part) { 9514 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9515 Value *Op0 = State.get(getOperand(1), Part); 9516 Value *Op1 = State.get(getOperand(2), Part); 9517 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9518 State.set(this, Sel, Part); 9519 State.ILV->addMetadata(Sel, &I); 9520 } 9521 } 9522 9523 void VPWidenRecipe::execute(VPTransformState &State) { 9524 auto &I = *cast<Instruction>(getUnderlyingValue()); 9525 auto &Builder = State.Builder; 9526 switch (I.getOpcode()) { 9527 case Instruction::Call: 9528 case Instruction::Br: 9529 case Instruction::PHI: 9530 case Instruction::GetElementPtr: 9531 case Instruction::Select: 9532 llvm_unreachable("This instruction is handled by a different recipe."); 9533 case Instruction::UDiv: 9534 case Instruction::SDiv: 9535 case Instruction::SRem: 9536 case Instruction::URem: 9537 case Instruction::Add: 9538 case Instruction::FAdd: 9539 case Instruction::Sub: 9540 case Instruction::FSub: 9541 case Instruction::FNeg: 9542 case Instruction::Mul: 9543 case Instruction::FMul: 9544 case Instruction::FDiv: 9545 case Instruction::FRem: 9546 case Instruction::Shl: 9547 case Instruction::LShr: 9548 case Instruction::AShr: 9549 case Instruction::And: 9550 case Instruction::Or: 9551 case Instruction::Xor: { 9552 // Just widen unops and binops. 9553 State.ILV->setDebugLocFromInst(&I); 9554 9555 for (unsigned Part = 0; Part < State.UF; ++Part) { 9556 SmallVector<Value *, 2> Ops; 9557 for (VPValue *VPOp : operands()) 9558 Ops.push_back(State.get(VPOp, Part)); 9559 9560 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9561 9562 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9563 VecOp->copyIRFlags(&I); 9564 9565 // If the instruction is vectorized and was in a basic block that needed 9566 // predication, we can't propagate poison-generating flags (nuw/nsw, 9567 // exact, etc.). The control flow has been linearized and the 9568 // instruction is no longer guarded by the predicate, which could make 9569 // the flag properties to no longer hold. 9570 if (State.MayGeneratePoisonRecipes.contains(this)) 9571 VecOp->dropPoisonGeneratingFlags(); 9572 } 9573 9574 // Use this vector value for all users of the original instruction. 9575 State.set(this, V, Part); 9576 State.ILV->addMetadata(V, &I); 9577 } 9578 9579 break; 9580 } 9581 case Instruction::ICmp: 9582 case Instruction::FCmp: { 9583 // Widen compares. Generate vector compares. 9584 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9585 auto *Cmp = cast<CmpInst>(&I); 9586 State.ILV->setDebugLocFromInst(Cmp); 9587 for (unsigned Part = 0; Part < State.UF; ++Part) { 9588 Value *A = State.get(getOperand(0), Part); 9589 Value *B = State.get(getOperand(1), Part); 9590 Value *C = nullptr; 9591 if (FCmp) { 9592 // Propagate fast math flags. 9593 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9594 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9595 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9596 } else { 9597 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9598 } 9599 State.set(this, C, Part); 9600 State.ILV->addMetadata(C, &I); 9601 } 9602 9603 break; 9604 } 9605 9606 case Instruction::ZExt: 9607 case Instruction::SExt: 9608 case Instruction::FPToUI: 9609 case Instruction::FPToSI: 9610 case Instruction::FPExt: 9611 case Instruction::PtrToInt: 9612 case Instruction::IntToPtr: 9613 case Instruction::SIToFP: 9614 case Instruction::UIToFP: 9615 case Instruction::Trunc: 9616 case Instruction::FPTrunc: 9617 case Instruction::BitCast: { 9618 auto *CI = cast<CastInst>(&I); 9619 State.ILV->setDebugLocFromInst(CI); 9620 9621 /// Vectorize casts. 9622 Type *DestTy = (State.VF.isScalar()) 9623 ? CI->getType() 9624 : VectorType::get(CI->getType(), State.VF); 9625 9626 for (unsigned Part = 0; Part < State.UF; ++Part) { 9627 Value *A = State.get(getOperand(0), Part); 9628 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9629 State.set(this, Cast, Part); 9630 State.ILV->addMetadata(Cast, &I); 9631 } 9632 break; 9633 } 9634 default: 9635 // This instruction is not vectorized by simple widening. 9636 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9637 llvm_unreachable("Unhandled instruction!"); 9638 } // end of switch. 9639 } 9640 9641 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9642 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9643 // Construct a vector GEP by widening the operands of the scalar GEP as 9644 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9645 // results in a vector of pointers when at least one operand of the GEP 9646 // is vector-typed. Thus, to keep the representation compact, we only use 9647 // vector-typed operands for loop-varying values. 9648 9649 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9650 // If we are vectorizing, but the GEP has only loop-invariant operands, 9651 // the GEP we build (by only using vector-typed operands for 9652 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9653 // produce a vector of pointers, we need to either arbitrarily pick an 9654 // operand to broadcast, or broadcast a clone of the original GEP. 9655 // Here, we broadcast a clone of the original. 9656 // 9657 // TODO: If at some point we decide to scalarize instructions having 9658 // loop-invariant operands, this special case will no longer be 9659 // required. We would add the scalarization decision to 9660 // collectLoopScalars() and teach getVectorValue() to broadcast 9661 // the lane-zero scalar value. 9662 auto *Clone = State.Builder.Insert(GEP->clone()); 9663 for (unsigned Part = 0; Part < State.UF; ++Part) { 9664 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9665 State.set(this, EntryPart, Part); 9666 State.ILV->addMetadata(EntryPart, GEP); 9667 } 9668 } else { 9669 // If the GEP has at least one loop-varying operand, we are sure to 9670 // produce a vector of pointers. But if we are only unrolling, we want 9671 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9672 // produce with the code below will be scalar (if VF == 1) or vector 9673 // (otherwise). Note that for the unroll-only case, we still maintain 9674 // values in the vector mapping with initVector, as we do for other 9675 // instructions. 9676 for (unsigned Part = 0; Part < State.UF; ++Part) { 9677 // The pointer operand of the new GEP. If it's loop-invariant, we 9678 // won't broadcast it. 9679 auto *Ptr = IsPtrLoopInvariant 9680 ? State.get(getOperand(0), VPIteration(0, 0)) 9681 : State.get(getOperand(0), Part); 9682 9683 // Collect all the indices for the new GEP. If any index is 9684 // loop-invariant, we won't broadcast it. 9685 SmallVector<Value *, 4> Indices; 9686 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9687 VPValue *Operand = getOperand(I); 9688 if (IsIndexLoopInvariant[I - 1]) 9689 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9690 else 9691 Indices.push_back(State.get(Operand, Part)); 9692 } 9693 9694 // If the GEP instruction is vectorized and was in a basic block that 9695 // needed predication, we can't propagate the poison-generating 'inbounds' 9696 // flag. The control flow has been linearized and the GEP is no longer 9697 // guarded by the predicate, which could make the 'inbounds' properties to 9698 // no longer hold. 9699 bool IsInBounds = 9700 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9701 9702 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9703 // but it should be a vector, otherwise. 9704 auto *NewGEP = IsInBounds 9705 ? State.Builder.CreateInBoundsGEP( 9706 GEP->getSourceElementType(), Ptr, Indices) 9707 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9708 Ptr, Indices); 9709 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9710 "NewGEP is not a pointer vector"); 9711 State.set(this, NewGEP, Part); 9712 State.ILV->addMetadata(NewGEP, GEP); 9713 } 9714 } 9715 } 9716 9717 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9718 assert(!State.Instance && "Int or FP induction being replicated."); 9719 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9720 State.ILV->widenIntOrFpInduction(IV, this, State, CanonicalIV); 9721 } 9722 9723 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9724 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9725 State); 9726 } 9727 9728 void VPBlendRecipe::execute(VPTransformState &State) { 9729 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9730 // We know that all PHIs in non-header blocks are converted into 9731 // selects, so we don't have to worry about the insertion order and we 9732 // can just use the builder. 9733 // At this point we generate the predication tree. There may be 9734 // duplications since this is a simple recursive scan, but future 9735 // optimizations will clean it up. 9736 9737 unsigned NumIncoming = getNumIncomingValues(); 9738 9739 // Generate a sequence of selects of the form: 9740 // SELECT(Mask3, In3, 9741 // SELECT(Mask2, In2, 9742 // SELECT(Mask1, In1, 9743 // In0))) 9744 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9745 // are essentially undef are taken from In0. 9746 InnerLoopVectorizer::VectorParts Entry(State.UF); 9747 for (unsigned In = 0; In < NumIncoming; ++In) { 9748 for (unsigned Part = 0; Part < State.UF; ++Part) { 9749 // We might have single edge PHIs (blocks) - use an identity 9750 // 'select' for the first PHI operand. 9751 Value *In0 = State.get(getIncomingValue(In), Part); 9752 if (In == 0) 9753 Entry[Part] = In0; // Initialize with the first incoming value. 9754 else { 9755 // Select between the current value and the previous incoming edge 9756 // based on the incoming mask. 9757 Value *Cond = State.get(getMask(In), Part); 9758 Entry[Part] = 9759 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9760 } 9761 } 9762 } 9763 for (unsigned Part = 0; Part < State.UF; ++Part) 9764 State.set(this, Entry[Part], Part); 9765 } 9766 9767 void VPInterleaveRecipe::execute(VPTransformState &State) { 9768 assert(!State.Instance && "Interleave group being replicated."); 9769 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9770 getStoredValues(), getMask()); 9771 } 9772 9773 void VPReductionRecipe::execute(VPTransformState &State) { 9774 assert(!State.Instance && "Reduction being replicated."); 9775 Value *PrevInChain = State.get(getChainOp(), 0); 9776 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9777 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9778 // Propagate the fast-math flags carried by the underlying instruction. 9779 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9780 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9781 for (unsigned Part = 0; Part < State.UF; ++Part) { 9782 Value *NewVecOp = State.get(getVecOp(), Part); 9783 if (VPValue *Cond = getCondOp()) { 9784 Value *NewCond = State.get(Cond, Part); 9785 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9786 Value *Iden = RdxDesc->getRecurrenceIdentity( 9787 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9788 Value *IdenVec = 9789 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9790 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9791 NewVecOp = Select; 9792 } 9793 Value *NewRed; 9794 Value *NextInChain; 9795 if (IsOrdered) { 9796 if (State.VF.isVector()) 9797 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9798 PrevInChain); 9799 else 9800 NewRed = State.Builder.CreateBinOp( 9801 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9802 NewVecOp); 9803 PrevInChain = NewRed; 9804 } else { 9805 PrevInChain = State.get(getChainOp(), Part); 9806 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9807 } 9808 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9809 NextInChain = 9810 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9811 NewRed, PrevInChain); 9812 } else if (IsOrdered) 9813 NextInChain = NewRed; 9814 else 9815 NextInChain = State.Builder.CreateBinOp( 9816 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9817 PrevInChain); 9818 State.set(this, NextInChain, Part); 9819 } 9820 } 9821 9822 void VPReplicateRecipe::execute(VPTransformState &State) { 9823 if (State.Instance) { // Generate a single instance. 9824 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9825 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9826 IsPredicated, State); 9827 // Insert scalar instance packing it into a vector. 9828 if (AlsoPack && State.VF.isVector()) { 9829 // If we're constructing lane 0, initialize to start from poison. 9830 if (State.Instance->Lane.isFirstLane()) { 9831 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9832 Value *Poison = PoisonValue::get( 9833 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9834 State.set(this, Poison, State.Instance->Part); 9835 } 9836 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9837 } 9838 return; 9839 } 9840 9841 // Generate scalar instances for all VF lanes of all UF parts, unless the 9842 // instruction is uniform inwhich case generate only the first lane for each 9843 // of the UF parts. 9844 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9845 assert((!State.VF.isScalable() || IsUniform) && 9846 "Can't scalarize a scalable vector"); 9847 for (unsigned Part = 0; Part < State.UF; ++Part) 9848 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9849 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9850 VPIteration(Part, Lane), IsPredicated, 9851 State); 9852 } 9853 9854 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9855 assert(State.Instance && "Branch on Mask works only on single instance."); 9856 9857 unsigned Part = State.Instance->Part; 9858 unsigned Lane = State.Instance->Lane.getKnownLane(); 9859 9860 Value *ConditionBit = nullptr; 9861 VPValue *BlockInMask = getMask(); 9862 if (BlockInMask) { 9863 ConditionBit = State.get(BlockInMask, Part); 9864 if (ConditionBit->getType()->isVectorTy()) 9865 ConditionBit = State.Builder.CreateExtractElement( 9866 ConditionBit, State.Builder.getInt32(Lane)); 9867 } else // Block in mask is all-one. 9868 ConditionBit = State.Builder.getTrue(); 9869 9870 // Replace the temporary unreachable terminator with a new conditional branch, 9871 // whose two destinations will be set later when they are created. 9872 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9873 assert(isa<UnreachableInst>(CurrentTerminator) && 9874 "Expected to replace unreachable terminator with conditional branch."); 9875 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9876 CondBr->setSuccessor(0, nullptr); 9877 ReplaceInstWithInst(CurrentTerminator, CondBr); 9878 } 9879 9880 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9881 assert(State.Instance && "Predicated instruction PHI works per instance."); 9882 Instruction *ScalarPredInst = 9883 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9884 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9885 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9886 assert(PredicatingBB && "Predicated block has no single predecessor."); 9887 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9888 "operand must be VPReplicateRecipe"); 9889 9890 // By current pack/unpack logic we need to generate only a single phi node: if 9891 // a vector value for the predicated instruction exists at this point it means 9892 // the instruction has vector users only, and a phi for the vector value is 9893 // needed. In this case the recipe of the predicated instruction is marked to 9894 // also do that packing, thereby "hoisting" the insert-element sequence. 9895 // Otherwise, a phi node for the scalar value is needed. 9896 unsigned Part = State.Instance->Part; 9897 if (State.hasVectorValue(getOperand(0), Part)) { 9898 Value *VectorValue = State.get(getOperand(0), Part); 9899 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9900 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9901 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9902 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9903 if (State.hasVectorValue(this, Part)) 9904 State.reset(this, VPhi, Part); 9905 else 9906 State.set(this, VPhi, Part); 9907 // NOTE: Currently we need to update the value of the operand, so the next 9908 // predicated iteration inserts its generated value in the correct vector. 9909 State.reset(getOperand(0), VPhi, Part); 9910 } else { 9911 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9912 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9913 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9914 PredicatingBB); 9915 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9916 if (State.hasScalarValue(this, *State.Instance)) 9917 State.reset(this, Phi, *State.Instance); 9918 else 9919 State.set(this, Phi, *State.Instance); 9920 // NOTE: Currently we need to update the value of the operand, so the next 9921 // predicated iteration inserts its generated value in the correct vector. 9922 State.reset(getOperand(0), Phi, *State.Instance); 9923 } 9924 } 9925 9926 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9927 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9928 9929 // Attempt to issue a wide load. 9930 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9931 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9932 9933 assert((LI || SI) && "Invalid Load/Store instruction"); 9934 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9935 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9936 9937 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9938 9939 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9940 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9941 bool CreateGatherScatter = !Consecutive; 9942 9943 auto &Builder = State.Builder; 9944 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9945 bool isMaskRequired = getMask(); 9946 if (isMaskRequired) 9947 for (unsigned Part = 0; Part < State.UF; ++Part) 9948 BlockInMaskParts[Part] = State.get(getMask(), Part); 9949 9950 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9951 // Calculate the pointer for the specific unroll-part. 9952 GetElementPtrInst *PartPtr = nullptr; 9953 9954 bool InBounds = false; 9955 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9956 InBounds = gep->isInBounds(); 9957 if (Reverse) { 9958 // If the address is consecutive but reversed, then the 9959 // wide store needs to start at the last vector element. 9960 // RunTimeVF = VScale * VF.getKnownMinValue() 9961 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9962 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9963 // NumElt = -Part * RunTimeVF 9964 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9965 // LastLane = 1 - RunTimeVF 9966 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9967 PartPtr = 9968 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9969 PartPtr->setIsInBounds(InBounds); 9970 PartPtr = cast<GetElementPtrInst>( 9971 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9972 PartPtr->setIsInBounds(InBounds); 9973 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9974 BlockInMaskParts[Part] = 9975 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9976 } else { 9977 Value *Increment = 9978 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9979 PartPtr = cast<GetElementPtrInst>( 9980 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9981 PartPtr->setIsInBounds(InBounds); 9982 } 9983 9984 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9985 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9986 }; 9987 9988 // Handle Stores: 9989 if (SI) { 9990 State.ILV->setDebugLocFromInst(SI); 9991 9992 for (unsigned Part = 0; Part < State.UF; ++Part) { 9993 Instruction *NewSI = nullptr; 9994 Value *StoredVal = State.get(StoredValue, Part); 9995 if (CreateGatherScatter) { 9996 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9997 Value *VectorGep = State.get(getAddr(), Part); 9998 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9999 MaskPart); 10000 } else { 10001 if (Reverse) { 10002 // If we store to reverse consecutive memory locations, then we need 10003 // to reverse the order of elements in the stored value. 10004 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 10005 // We don't want to update the value in the map as it might be used in 10006 // another expression. So don't call resetVectorValue(StoredVal). 10007 } 10008 auto *VecPtr = 10009 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10010 if (isMaskRequired) 10011 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 10012 BlockInMaskParts[Part]); 10013 else 10014 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 10015 } 10016 State.ILV->addMetadata(NewSI, SI); 10017 } 10018 return; 10019 } 10020 10021 // Handle loads. 10022 assert(LI && "Must have a load instruction"); 10023 State.ILV->setDebugLocFromInst(LI); 10024 for (unsigned Part = 0; Part < State.UF; ++Part) { 10025 Value *NewLI; 10026 if (CreateGatherScatter) { 10027 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10028 Value *VectorGep = State.get(getAddr(), Part); 10029 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10030 nullptr, "wide.masked.gather"); 10031 State.ILV->addMetadata(NewLI, LI); 10032 } else { 10033 auto *VecPtr = 10034 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10035 if (isMaskRequired) 10036 NewLI = Builder.CreateMaskedLoad( 10037 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10038 PoisonValue::get(DataTy), "wide.masked.load"); 10039 else 10040 NewLI = 10041 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10042 10043 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10044 State.ILV->addMetadata(NewLI, LI); 10045 if (Reverse) 10046 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10047 } 10048 10049 State.set(this, NewLI, Part); 10050 } 10051 } 10052 10053 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10054 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10055 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10056 // for predication. 10057 static ScalarEpilogueLowering getScalarEpilogueLowering( 10058 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10059 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10060 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10061 LoopVectorizationLegality &LVL) { 10062 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10063 // don't look at hints or options, and don't request a scalar epilogue. 10064 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10065 // LoopAccessInfo (due to code dependency and not being able to reliably get 10066 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10067 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10068 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10069 // back to the old way and vectorize with versioning when forced. See D81345.) 10070 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10071 PGSOQueryType::IRPass) && 10072 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10073 return CM_ScalarEpilogueNotAllowedOptSize; 10074 10075 // 2) If set, obey the directives 10076 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10077 switch (PreferPredicateOverEpilogue) { 10078 case PreferPredicateTy::ScalarEpilogue: 10079 return CM_ScalarEpilogueAllowed; 10080 case PreferPredicateTy::PredicateElseScalarEpilogue: 10081 return CM_ScalarEpilogueNotNeededUsePredicate; 10082 case PreferPredicateTy::PredicateOrDontVectorize: 10083 return CM_ScalarEpilogueNotAllowedUsePredicate; 10084 }; 10085 } 10086 10087 // 3) If set, obey the hints 10088 switch (Hints.getPredicate()) { 10089 case LoopVectorizeHints::FK_Enabled: 10090 return CM_ScalarEpilogueNotNeededUsePredicate; 10091 case LoopVectorizeHints::FK_Disabled: 10092 return CM_ScalarEpilogueAllowed; 10093 }; 10094 10095 // 4) if the TTI hook indicates this is profitable, request predication. 10096 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10097 LVL.getLAI())) 10098 return CM_ScalarEpilogueNotNeededUsePredicate; 10099 10100 return CM_ScalarEpilogueAllowed; 10101 } 10102 10103 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10104 // If Values have been set for this Def return the one relevant for \p Part. 10105 if (hasVectorValue(Def, Part)) 10106 return Data.PerPartOutput[Def][Part]; 10107 10108 if (!hasScalarValue(Def, {Part, 0})) { 10109 Value *IRV = Def->getLiveInIRValue(); 10110 Value *B = ILV->getBroadcastInstrs(IRV); 10111 set(Def, B, Part); 10112 return B; 10113 } 10114 10115 Value *ScalarValue = get(Def, {Part, 0}); 10116 // If we aren't vectorizing, we can just copy the scalar map values over 10117 // to the vector map. 10118 if (VF.isScalar()) { 10119 set(Def, ScalarValue, Part); 10120 return ScalarValue; 10121 } 10122 10123 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10124 bool IsUniform = RepR && RepR->isUniform(); 10125 10126 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10127 // Check if there is a scalar value for the selected lane. 10128 if (!hasScalarValue(Def, {Part, LastLane})) { 10129 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10130 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 10131 "unexpected recipe found to be invariant"); 10132 IsUniform = true; 10133 LastLane = 0; 10134 } 10135 10136 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10137 // Set the insert point after the last scalarized instruction or after the 10138 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10139 // will directly follow the scalar definitions. 10140 auto OldIP = Builder.saveIP(); 10141 auto NewIP = 10142 isa<PHINode>(LastInst) 10143 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10144 : std::next(BasicBlock::iterator(LastInst)); 10145 Builder.SetInsertPoint(&*NewIP); 10146 10147 // However, if we are vectorizing, we need to construct the vector values. 10148 // If the value is known to be uniform after vectorization, we can just 10149 // broadcast the scalar value corresponding to lane zero for each unroll 10150 // iteration. Otherwise, we construct the vector values using 10151 // insertelement instructions. Since the resulting vectors are stored in 10152 // State, we will only generate the insertelements once. 10153 Value *VectorValue = nullptr; 10154 if (IsUniform) { 10155 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10156 set(Def, VectorValue, Part); 10157 } else { 10158 // Initialize packing with insertelements to start from undef. 10159 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10160 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10161 set(Def, Undef, Part); 10162 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10163 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10164 VectorValue = get(Def, Part); 10165 } 10166 Builder.restoreIP(OldIP); 10167 return VectorValue; 10168 } 10169 10170 // Process the loop in the VPlan-native vectorization path. This path builds 10171 // VPlan upfront in the vectorization pipeline, which allows to apply 10172 // VPlan-to-VPlan transformations from the very beginning without modifying the 10173 // input LLVM IR. 10174 static bool processLoopInVPlanNativePath( 10175 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10176 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10177 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10178 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10179 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10180 LoopVectorizationRequirements &Requirements) { 10181 10182 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10183 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10184 return false; 10185 } 10186 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10187 Function *F = L->getHeader()->getParent(); 10188 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10189 10190 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10191 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10192 10193 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10194 &Hints, IAI); 10195 // Use the planner for outer loop vectorization. 10196 // TODO: CM is not used at this point inside the planner. Turn CM into an 10197 // optional argument if we don't need it in the future. 10198 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10199 Requirements, ORE); 10200 10201 // Get user vectorization factor. 10202 ElementCount UserVF = Hints.getWidth(); 10203 10204 CM.collectElementTypesForWidening(); 10205 10206 // Plan how to best vectorize, return the best VF and its cost. 10207 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10208 10209 // If we are stress testing VPlan builds, do not attempt to generate vector 10210 // code. Masked vector code generation support will follow soon. 10211 // Also, do not attempt to vectorize if no vector code will be produced. 10212 if (VPlanBuildStressTest || EnableVPlanPredication || 10213 VectorizationFactor::Disabled() == VF) 10214 return false; 10215 10216 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10217 10218 { 10219 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10220 F->getParent()->getDataLayout()); 10221 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10222 &CM, BFI, PSI, Checks); 10223 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10224 << L->getHeader()->getParent()->getName() << "\"\n"); 10225 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10226 } 10227 10228 // Mark the loop as already vectorized to avoid vectorizing again. 10229 Hints.setAlreadyVectorized(); 10230 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10231 return true; 10232 } 10233 10234 // Emit a remark if there are stores to floats that required a floating point 10235 // extension. If the vectorized loop was generated with floating point there 10236 // will be a performance penalty from the conversion overhead and the change in 10237 // the vector width. 10238 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10239 SmallVector<Instruction *, 4> Worklist; 10240 for (BasicBlock *BB : L->getBlocks()) { 10241 for (Instruction &Inst : *BB) { 10242 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10243 if (S->getValueOperand()->getType()->isFloatTy()) 10244 Worklist.push_back(S); 10245 } 10246 } 10247 } 10248 10249 // Traverse the floating point stores upwards searching, for floating point 10250 // conversions. 10251 SmallPtrSet<const Instruction *, 4> Visited; 10252 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10253 while (!Worklist.empty()) { 10254 auto *I = Worklist.pop_back_val(); 10255 if (!L->contains(I)) 10256 continue; 10257 if (!Visited.insert(I).second) 10258 continue; 10259 10260 // Emit a remark if the floating point store required a floating 10261 // point conversion. 10262 // TODO: More work could be done to identify the root cause such as a 10263 // constant or a function return type and point the user to it. 10264 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10265 ORE->emit([&]() { 10266 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10267 I->getDebugLoc(), L->getHeader()) 10268 << "floating point conversion changes vector width. " 10269 << "Mixed floating point precision requires an up/down " 10270 << "cast that will negatively impact performance."; 10271 }); 10272 10273 for (Use &Op : I->operands()) 10274 if (auto *OpI = dyn_cast<Instruction>(Op)) 10275 Worklist.push_back(OpI); 10276 } 10277 } 10278 10279 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10280 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10281 !EnableLoopInterleaving), 10282 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10283 !EnableLoopVectorization) {} 10284 10285 bool LoopVectorizePass::processLoop(Loop *L) { 10286 assert((EnableVPlanNativePath || L->isInnermost()) && 10287 "VPlan-native path is not enabled. Only process inner loops."); 10288 10289 #ifndef NDEBUG 10290 const std::string DebugLocStr = getDebugLocString(L); 10291 #endif /* NDEBUG */ 10292 10293 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10294 << L->getHeader()->getParent()->getName() << "\" from " 10295 << DebugLocStr << "\n"); 10296 10297 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10298 10299 LLVM_DEBUG( 10300 dbgs() << "LV: Loop hints:" 10301 << " force=" 10302 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10303 ? "disabled" 10304 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10305 ? "enabled" 10306 : "?")) 10307 << " width=" << Hints.getWidth() 10308 << " interleave=" << Hints.getInterleave() << "\n"); 10309 10310 // Function containing loop 10311 Function *F = L->getHeader()->getParent(); 10312 10313 // Looking at the diagnostic output is the only way to determine if a loop 10314 // was vectorized (other than looking at the IR or machine code), so it 10315 // is important to generate an optimization remark for each loop. Most of 10316 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10317 // generated as OptimizationRemark and OptimizationRemarkMissed are 10318 // less verbose reporting vectorized loops and unvectorized loops that may 10319 // benefit from vectorization, respectively. 10320 10321 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10322 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10323 return false; 10324 } 10325 10326 PredicatedScalarEvolution PSE(*SE, *L); 10327 10328 // Check if it is legal to vectorize the loop. 10329 LoopVectorizationRequirements Requirements; 10330 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10331 &Requirements, &Hints, DB, AC, BFI, PSI); 10332 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10333 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10334 Hints.emitRemarkWithHints(); 10335 return false; 10336 } 10337 10338 // Check the function attributes and profiles to find out if this function 10339 // should be optimized for size. 10340 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10341 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10342 10343 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10344 // here. They may require CFG and instruction level transformations before 10345 // even evaluating whether vectorization is profitable. Since we cannot modify 10346 // the incoming IR, we need to build VPlan upfront in the vectorization 10347 // pipeline. 10348 if (!L->isInnermost()) 10349 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10350 ORE, BFI, PSI, Hints, Requirements); 10351 10352 assert(L->isInnermost() && "Inner loop expected."); 10353 10354 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10355 // count by optimizing for size, to minimize overheads. 10356 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10357 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10358 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10359 << "This loop is worth vectorizing only if no scalar " 10360 << "iteration overheads are incurred."); 10361 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10362 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10363 else { 10364 LLVM_DEBUG(dbgs() << "\n"); 10365 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10366 } 10367 } 10368 10369 // Check the function attributes to see if implicit floats are allowed. 10370 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10371 // an integer loop and the vector instructions selected are purely integer 10372 // vector instructions? 10373 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10374 reportVectorizationFailure( 10375 "Can't vectorize when the NoImplicitFloat attribute is used", 10376 "loop not vectorized due to NoImplicitFloat attribute", 10377 "NoImplicitFloat", ORE, L); 10378 Hints.emitRemarkWithHints(); 10379 return false; 10380 } 10381 10382 // Check if the target supports potentially unsafe FP vectorization. 10383 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10384 // for the target we're vectorizing for, to make sure none of the 10385 // additional fp-math flags can help. 10386 if (Hints.isPotentiallyUnsafe() && 10387 TTI->isFPVectorizationPotentiallyUnsafe()) { 10388 reportVectorizationFailure( 10389 "Potentially unsafe FP op prevents vectorization", 10390 "loop not vectorized due to unsafe FP support.", 10391 "UnsafeFP", ORE, L); 10392 Hints.emitRemarkWithHints(); 10393 return false; 10394 } 10395 10396 bool AllowOrderedReductions; 10397 // If the flag is set, use that instead and override the TTI behaviour. 10398 if (ForceOrderedReductions.getNumOccurrences() > 0) 10399 AllowOrderedReductions = ForceOrderedReductions; 10400 else 10401 AllowOrderedReductions = TTI->enableOrderedReductions(); 10402 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10403 ORE->emit([&]() { 10404 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10405 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10406 ExactFPMathInst->getDebugLoc(), 10407 ExactFPMathInst->getParent()) 10408 << "loop not vectorized: cannot prove it is safe to reorder " 10409 "floating-point operations"; 10410 }); 10411 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10412 "reorder floating-point operations\n"); 10413 Hints.emitRemarkWithHints(); 10414 return false; 10415 } 10416 10417 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10418 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10419 10420 // If an override option has been passed in for interleaved accesses, use it. 10421 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10422 UseInterleaved = EnableInterleavedMemAccesses; 10423 10424 // Analyze interleaved memory accesses. 10425 if (UseInterleaved) { 10426 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10427 } 10428 10429 // Use the cost model. 10430 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10431 F, &Hints, IAI); 10432 CM.collectValuesToIgnore(); 10433 CM.collectElementTypesForWidening(); 10434 10435 // Use the planner for vectorization. 10436 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10437 Requirements, ORE); 10438 10439 // Get user vectorization factor and interleave count. 10440 ElementCount UserVF = Hints.getWidth(); 10441 unsigned UserIC = Hints.getInterleave(); 10442 10443 // Plan how to best vectorize, return the best VF and its cost. 10444 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10445 10446 VectorizationFactor VF = VectorizationFactor::Disabled(); 10447 unsigned IC = 1; 10448 10449 if (MaybeVF) { 10450 VF = *MaybeVF; 10451 // Select the interleave count. 10452 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10453 } 10454 10455 // Identify the diagnostic messages that should be produced. 10456 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10457 bool VectorizeLoop = true, InterleaveLoop = true; 10458 if (VF.Width.isScalar()) { 10459 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10460 VecDiagMsg = std::make_pair( 10461 "VectorizationNotBeneficial", 10462 "the cost-model indicates that vectorization is not beneficial"); 10463 VectorizeLoop = false; 10464 } 10465 10466 if (!MaybeVF && UserIC > 1) { 10467 // Tell the user interleaving was avoided up-front, despite being explicitly 10468 // requested. 10469 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10470 "interleaving should be avoided up front\n"); 10471 IntDiagMsg = std::make_pair( 10472 "InterleavingAvoided", 10473 "Ignoring UserIC, because interleaving was avoided up front"); 10474 InterleaveLoop = false; 10475 } else if (IC == 1 && UserIC <= 1) { 10476 // Tell the user interleaving is not beneficial. 10477 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10478 IntDiagMsg = std::make_pair( 10479 "InterleavingNotBeneficial", 10480 "the cost-model indicates that interleaving is not beneficial"); 10481 InterleaveLoop = false; 10482 if (UserIC == 1) { 10483 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10484 IntDiagMsg.second += 10485 " and is explicitly disabled or interleave count is set to 1"; 10486 } 10487 } else if (IC > 1 && UserIC == 1) { 10488 // Tell the user interleaving is beneficial, but it explicitly disabled. 10489 LLVM_DEBUG( 10490 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10491 IntDiagMsg = std::make_pair( 10492 "InterleavingBeneficialButDisabled", 10493 "the cost-model indicates that interleaving is beneficial " 10494 "but is explicitly disabled or interleave count is set to 1"); 10495 InterleaveLoop = false; 10496 } 10497 10498 // Override IC if user provided an interleave count. 10499 IC = UserIC > 0 ? UserIC : IC; 10500 10501 // Emit diagnostic messages, if any. 10502 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10503 if (!VectorizeLoop && !InterleaveLoop) { 10504 // Do not vectorize or interleaving the loop. 10505 ORE->emit([&]() { 10506 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10507 L->getStartLoc(), L->getHeader()) 10508 << VecDiagMsg.second; 10509 }); 10510 ORE->emit([&]() { 10511 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10512 L->getStartLoc(), L->getHeader()) 10513 << IntDiagMsg.second; 10514 }); 10515 return false; 10516 } else if (!VectorizeLoop && InterleaveLoop) { 10517 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10518 ORE->emit([&]() { 10519 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10520 L->getStartLoc(), L->getHeader()) 10521 << VecDiagMsg.second; 10522 }); 10523 } else if (VectorizeLoop && !InterleaveLoop) { 10524 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10525 << ") in " << DebugLocStr << '\n'); 10526 ORE->emit([&]() { 10527 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10528 L->getStartLoc(), L->getHeader()) 10529 << IntDiagMsg.second; 10530 }); 10531 } else if (VectorizeLoop && InterleaveLoop) { 10532 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10533 << ") in " << DebugLocStr << '\n'); 10534 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10535 } 10536 10537 bool DisableRuntimeUnroll = false; 10538 MDNode *OrigLoopID = L->getLoopID(); 10539 { 10540 // Optimistically generate runtime checks. Drop them if they turn out to not 10541 // be profitable. Limit the scope of Checks, so the cleanup happens 10542 // immediately after vector codegeneration is done. 10543 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10544 F->getParent()->getDataLayout()); 10545 if (!VF.Width.isScalar() || IC > 1) 10546 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10547 10548 using namespace ore; 10549 if (!VectorizeLoop) { 10550 assert(IC > 1 && "interleave count should not be 1 or 0"); 10551 // If we decided that it is not legal to vectorize the loop, then 10552 // interleave it. 10553 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10554 &CM, BFI, PSI, Checks); 10555 10556 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10557 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10558 10559 ORE->emit([&]() { 10560 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10561 L->getHeader()) 10562 << "interleaved loop (interleaved count: " 10563 << NV("InterleaveCount", IC) << ")"; 10564 }); 10565 } else { 10566 // If we decided that it is *legal* to vectorize the loop, then do it. 10567 10568 // Consider vectorizing the epilogue too if it's profitable. 10569 VectorizationFactor EpilogueVF = 10570 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10571 if (EpilogueVF.Width.isVector()) { 10572 10573 // The first pass vectorizes the main loop and creates a scalar epilogue 10574 // to be vectorized by executing the plan (potentially with a different 10575 // factor) again shortly afterwards. 10576 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10577 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10578 EPI, &LVL, &CM, BFI, PSI, Checks); 10579 10580 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10581 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10582 DT); 10583 ++LoopsVectorized; 10584 10585 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10586 formLCSSARecursively(*L, *DT, LI, SE); 10587 10588 // Second pass vectorizes the epilogue and adjusts the control flow 10589 // edges from the first pass. 10590 EPI.MainLoopVF = EPI.EpilogueVF; 10591 EPI.MainLoopUF = EPI.EpilogueUF; 10592 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10593 ORE, EPI, &LVL, &CM, BFI, PSI, 10594 Checks); 10595 10596 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10597 10598 // Ensure that the start values for any VPReductionPHIRecipes are 10599 // updated before vectorising the epilogue loop. 10600 VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock(); 10601 for (VPRecipeBase &R : Header->phis()) { 10602 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10603 if (auto *Resume = MainILV.getReductionResumeValue( 10604 ReductionPhi->getRecurrenceDescriptor())) { 10605 VPValue *StartVal = new VPValue(Resume); 10606 BestEpiPlan.addExternalDef(StartVal); 10607 ReductionPhi->setOperand(0, StartVal); 10608 } 10609 } 10610 } 10611 10612 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10613 DT); 10614 ++LoopsEpilogueVectorized; 10615 10616 if (!MainILV.areSafetyChecksAdded()) 10617 DisableRuntimeUnroll = true; 10618 } else { 10619 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10620 &LVL, &CM, BFI, PSI, Checks); 10621 10622 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10623 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10624 ++LoopsVectorized; 10625 10626 // Add metadata to disable runtime unrolling a scalar loop when there 10627 // are no runtime checks about strides and memory. A scalar loop that is 10628 // rarely used is not worth unrolling. 10629 if (!LB.areSafetyChecksAdded()) 10630 DisableRuntimeUnroll = true; 10631 } 10632 // Report the vectorization decision. 10633 ORE->emit([&]() { 10634 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10635 L->getHeader()) 10636 << "vectorized loop (vectorization width: " 10637 << NV("VectorizationFactor", VF.Width) 10638 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10639 }); 10640 } 10641 10642 if (ORE->allowExtraAnalysis(LV_NAME)) 10643 checkMixedPrecision(L, ORE); 10644 } 10645 10646 Optional<MDNode *> RemainderLoopID = 10647 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10648 LLVMLoopVectorizeFollowupEpilogue}); 10649 if (RemainderLoopID.hasValue()) { 10650 L->setLoopID(RemainderLoopID.getValue()); 10651 } else { 10652 if (DisableRuntimeUnroll) 10653 AddRuntimeUnrollDisableMetaData(L); 10654 10655 // Mark the loop as already vectorized to avoid vectorizing again. 10656 Hints.setAlreadyVectorized(); 10657 } 10658 10659 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10660 return true; 10661 } 10662 10663 LoopVectorizeResult LoopVectorizePass::runImpl( 10664 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10665 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10666 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10667 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10668 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10669 SE = &SE_; 10670 LI = &LI_; 10671 TTI = &TTI_; 10672 DT = &DT_; 10673 BFI = &BFI_; 10674 TLI = TLI_; 10675 AA = &AA_; 10676 AC = &AC_; 10677 GetLAA = &GetLAA_; 10678 DB = &DB_; 10679 ORE = &ORE_; 10680 PSI = PSI_; 10681 10682 // Don't attempt if 10683 // 1. the target claims to have no vector registers, and 10684 // 2. interleaving won't help ILP. 10685 // 10686 // The second condition is necessary because, even if the target has no 10687 // vector registers, loop vectorization may still enable scalar 10688 // interleaving. 10689 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10690 TTI->getMaxInterleaveFactor(1) < 2) 10691 return LoopVectorizeResult(false, false); 10692 10693 bool Changed = false, CFGChanged = false; 10694 10695 // The vectorizer requires loops to be in simplified form. 10696 // Since simplification may add new inner loops, it has to run before the 10697 // legality and profitability checks. This means running the loop vectorizer 10698 // will simplify all loops, regardless of whether anything end up being 10699 // vectorized. 10700 for (auto &L : *LI) 10701 Changed |= CFGChanged |= 10702 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10703 10704 // Build up a worklist of inner-loops to vectorize. This is necessary as 10705 // the act of vectorizing or partially unrolling a loop creates new loops 10706 // and can invalidate iterators across the loops. 10707 SmallVector<Loop *, 8> Worklist; 10708 10709 for (Loop *L : *LI) 10710 collectSupportedLoops(*L, LI, ORE, Worklist); 10711 10712 LoopsAnalyzed += Worklist.size(); 10713 10714 // Now walk the identified inner loops. 10715 while (!Worklist.empty()) { 10716 Loop *L = Worklist.pop_back_val(); 10717 10718 // For the inner loops we actually process, form LCSSA to simplify the 10719 // transform. 10720 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10721 10722 Changed |= CFGChanged |= processLoop(L); 10723 } 10724 10725 // Process each loop nest in the function. 10726 return LoopVectorizeResult(Changed, CFGChanged); 10727 } 10728 10729 PreservedAnalyses LoopVectorizePass::run(Function &F, 10730 FunctionAnalysisManager &AM) { 10731 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10732 auto &LI = AM.getResult<LoopAnalysis>(F); 10733 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10734 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10735 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10736 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10737 auto &AA = AM.getResult<AAManager>(F); 10738 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10739 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10740 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10741 10742 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10743 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10744 [&](Loop &L) -> const LoopAccessInfo & { 10745 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10746 TLI, TTI, nullptr, nullptr, nullptr}; 10747 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10748 }; 10749 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10750 ProfileSummaryInfo *PSI = 10751 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10752 LoopVectorizeResult Result = 10753 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10754 if (!Result.MadeAnyChange) 10755 return PreservedAnalyses::all(); 10756 PreservedAnalyses PA; 10757 10758 // We currently do not preserve loopinfo/dominator analyses with outer loop 10759 // vectorization. Until this is addressed, mark these analyses as preserved 10760 // only for non-VPlan-native path. 10761 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10762 if (!EnableVPlanNativePath) { 10763 PA.preserve<LoopAnalysis>(); 10764 PA.preserve<DominatorTreeAnalysis>(); 10765 } 10766 10767 if (Result.MadeCFGChange) { 10768 // Making CFG changes likely means a loop got vectorized. Indicate that 10769 // extra simplification passes should be run. 10770 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10771 // be run if runtime checks have been added. 10772 AM.getResult<ShouldRunExtraVectorPasses>(F); 10773 PA.preserve<ShouldRunExtraVectorPasses>(); 10774 } else { 10775 PA.preserveSet<CFGAnalyses>(); 10776 } 10777 return PA; 10778 } 10779 10780 void LoopVectorizePass::printPipeline( 10781 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10782 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10783 OS, MapClassName2PassName); 10784 10785 OS << "<"; 10786 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10787 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10788 OS << ">"; 10789 } 10790