1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/Metadata.h"
116 #include "llvm/IR/Module.h"
117 #include "llvm/IR/Operator.h"
118 #include "llvm/IR/PatternMatch.h"
119 #include "llvm/IR/Type.h"
120 #include "llvm/IR/Use.h"
121 #include "llvm/IR/User.h"
122 #include "llvm/IR/Value.h"
123 #include "llvm/IR/ValueHandle.h"
124 #include "llvm/IR/Verifier.h"
125 #include "llvm/InitializePasses.h"
126 #include "llvm/Pass.h"
127 #include "llvm/Support/Casting.h"
128 #include "llvm/Support/CommandLine.h"
129 #include "llvm/Support/Compiler.h"
130 #include "llvm/Support/Debug.h"
131 #include "llvm/Support/ErrorHandling.h"
132 #include "llvm/Support/InstructionCost.h"
133 #include "llvm/Support/MathExtras.h"
134 #include "llvm/Support/raw_ostream.h"
135 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
136 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
137 #include "llvm/Transforms/Utils/LoopSimplify.h"
138 #include "llvm/Transforms/Utils/LoopUtils.h"
139 #include "llvm/Transforms/Utils/LoopVersioning.h"
140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
141 #include "llvm/Transforms/Utils/SizeOpts.h"
142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
143 #include <algorithm>
144 #include <cassert>
145 #include <cstdint>
146 #include <functional>
147 #include <iterator>
148 #include <limits>
149 #include <map>
150 #include <memory>
151 #include <string>
152 #include <tuple>
153 #include <utility>
154 
155 using namespace llvm;
156 
157 #define LV_NAME "loop-vectorize"
158 #define DEBUG_TYPE LV_NAME
159 
160 #ifndef NDEBUG
161 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
162 #endif
163 
164 /// @{
165 /// Metadata attribute names
166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
167 const char LLVMLoopVectorizeFollowupVectorized[] =
168     "llvm.loop.vectorize.followup_vectorized";
169 const char LLVMLoopVectorizeFollowupEpilogue[] =
170     "llvm.loop.vectorize.followup_epilogue";
171 /// @}
172 
173 STATISTIC(LoopsVectorized, "Number of loops vectorized");
174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
176 
177 static cl::opt<bool> EnableEpilogueVectorization(
178     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
179     cl::desc("Enable vectorization of epilogue loops."));
180 
181 static cl::opt<unsigned> EpilogueVectorizationForceVF(
182     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
183     cl::desc("When epilogue vectorization is enabled, and a value greater than "
184              "1 is specified, forces the given VF for all applicable epilogue "
185              "loops."));
186 
187 static cl::opt<unsigned> EpilogueVectorizationMinVF(
188     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
189     cl::desc("Only loops with vectorization factor equal to or larger than "
190              "the specified value are considered for epilogue vectorization."));
191 
192 /// Loops with a known constant trip count below this number are vectorized only
193 /// if no scalar iteration overheads are incurred.
194 static cl::opt<unsigned> TinyTripCountVectorThreshold(
195     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
196     cl::desc("Loops with a constant trip count that is smaller than this "
197              "value are vectorized only if no scalar iteration overheads "
198              "are incurred."));
199 
200 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
201     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
202     cl::desc("The maximum allowed number of runtime memory checks with a "
203              "vectorize(enable) pragma."));
204 
205 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
206 // that predication is preferred, and this lists all options. I.e., the
207 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
208 // and predicate the instructions accordingly. If tail-folding fails, there are
209 // different fallback strategies depending on these values:
210 namespace PreferPredicateTy {
211   enum Option {
212     ScalarEpilogue = 0,
213     PredicateElseScalarEpilogue,
214     PredicateOrDontVectorize
215   };
216 } // namespace PreferPredicateTy
217 
218 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
219     "prefer-predicate-over-epilogue",
220     cl::init(PreferPredicateTy::ScalarEpilogue),
221     cl::Hidden,
222     cl::desc("Tail-folding and predication preferences over creating a scalar "
223              "epilogue loop."),
224     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
225                          "scalar-epilogue",
226                          "Don't tail-predicate loops, create scalar epilogue"),
227               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
228                          "predicate-else-scalar-epilogue",
229                          "prefer tail-folding, create scalar epilogue if tail "
230                          "folding fails."),
231               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
232                          "predicate-dont-vectorize",
233                          "prefers tail-folding, don't attempt vectorization if "
234                          "tail-folding fails.")));
235 
236 static cl::opt<bool> MaximizeBandwidth(
237     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
238     cl::desc("Maximize bandwidth when selecting vectorization factor which "
239              "will be determined by the smallest type in loop."));
240 
241 static cl::opt<bool> EnableInterleavedMemAccesses(
242     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
243     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
244 
245 /// An interleave-group may need masking if it resides in a block that needs
246 /// predication, or in order to mask away gaps.
247 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
248     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
249     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
250 
251 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
252     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
253     cl::desc("We don't interleave loops with a estimated constant trip count "
254              "below this number"));
255 
256 static cl::opt<unsigned> ForceTargetNumScalarRegs(
257     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
258     cl::desc("A flag that overrides the target's number of scalar registers."));
259 
260 static cl::opt<unsigned> ForceTargetNumVectorRegs(
261     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
262     cl::desc("A flag that overrides the target's number of vector registers."));
263 
264 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
265     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
266     cl::desc("A flag that overrides the target's max interleave factor for "
267              "scalar loops."));
268 
269 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
270     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
271     cl::desc("A flag that overrides the target's max interleave factor for "
272              "vectorized loops."));
273 
274 static cl::opt<unsigned> ForceTargetInstructionCost(
275     "force-target-instruction-cost", cl::init(0), cl::Hidden,
276     cl::desc("A flag that overrides the target's expected cost for "
277              "an instruction to a single constant value. Mostly "
278              "useful for getting consistent testing."));
279 
280 static cl::opt<bool> ForceTargetSupportsScalableVectors(
281     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
282     cl::desc(
283         "Pretend that scalable vectors are supported, even if the target does "
284         "not support them. This flag should only be used for testing."));
285 
286 static cl::opt<unsigned> SmallLoopCost(
287     "small-loop-cost", cl::init(20), cl::Hidden,
288     cl::desc(
289         "The cost of a loop that is considered 'small' by the interleaver."));
290 
291 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
292     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
293     cl::desc("Enable the use of the block frequency analysis to access PGO "
294              "heuristics minimizing code growth in cold regions and being more "
295              "aggressive in hot regions."));
296 
297 // Runtime interleave loops for load/store throughput.
298 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
299     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
300     cl::desc(
301         "Enable runtime interleaving until load/store ports are saturated"));
302 
303 /// Interleave small loops with scalar reductions.
304 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
305     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
306     cl::desc("Enable interleaving for loops with small iteration counts that "
307              "contain scalar reductions to expose ILP."));
308 
309 /// The number of stores in a loop that are allowed to need predication.
310 static cl::opt<unsigned> NumberOfStoresToPredicate(
311     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
312     cl::desc("Max number of stores to be predicated behind an if."));
313 
314 static cl::opt<bool> EnableIndVarRegisterHeur(
315     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
316     cl::desc("Count the induction variable only once when interleaving"));
317 
318 static cl::opt<bool> EnableCondStoresVectorization(
319     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
320     cl::desc("Enable if predication of stores during vectorization."));
321 
322 static cl::opt<unsigned> MaxNestedScalarReductionIC(
323     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
324     cl::desc("The maximum interleave count to use when interleaving a scalar "
325              "reduction in a nested loop."));
326 
327 static cl::opt<bool>
328     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
329                            cl::Hidden,
330                            cl::desc("Prefer in-loop vector reductions, "
331                                     "overriding the targets preference."));
332 
333 static cl::opt<bool> ForceOrderedReductions(
334     "force-ordered-reductions", cl::init(false), cl::Hidden,
335     cl::desc("Enable the vectorisation of loops with in-order (strict) "
336              "FP reductions"));
337 
338 static cl::opt<bool> PreferPredicatedReductionSelect(
339     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
340     cl::desc(
341         "Prefer predicating a reduction operation over an after loop select."));
342 
343 cl::opt<bool> EnableVPlanNativePath(
344     "enable-vplan-native-path", cl::init(false), cl::Hidden,
345     cl::desc("Enable VPlan-native vectorization path with "
346              "support for outer loop vectorization."));
347 
348 // FIXME: Remove this switch once we have divergence analysis. Currently we
349 // assume divergent non-backedge branches when this switch is true.
350 cl::opt<bool> EnableVPlanPredication(
351     "enable-vplan-predication", cl::init(false), cl::Hidden,
352     cl::desc("Enable VPlan-native vectorization path predicator with "
353              "support for outer loop vectorization."));
354 
355 // This flag enables the stress testing of the VPlan H-CFG construction in the
356 // VPlan-native vectorization path. It must be used in conjuction with
357 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
358 // verification of the H-CFGs built.
359 static cl::opt<bool> VPlanBuildStressTest(
360     "vplan-build-stress-test", cl::init(false), cl::Hidden,
361     cl::desc(
362         "Build VPlan for every supported loop nest in the function and bail "
363         "out right after the build (stress test the VPlan H-CFG construction "
364         "in the VPlan-native vectorization path)."));
365 
366 cl::opt<bool> llvm::EnableLoopInterleaving(
367     "interleave-loops", cl::init(true), cl::Hidden,
368     cl::desc("Enable loop interleaving in Loop vectorization passes"));
369 cl::opt<bool> llvm::EnableLoopVectorization(
370     "vectorize-loops", cl::init(true), cl::Hidden,
371     cl::desc("Run the Loop vectorization passes"));
372 
373 cl::opt<bool> PrintVPlansInDotFormat(
374     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
375     cl::desc("Use dot format instead of plain text when dumping VPlans"));
376 
377 /// A helper function that returns true if the given type is irregular. The
378 /// type is irregular if its allocated size doesn't equal the store size of an
379 /// element of the corresponding vector type.
380 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
381   // Determine if an array of N elements of type Ty is "bitcast compatible"
382   // with a <N x Ty> vector.
383   // This is only true if there is no padding between the array elements.
384   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
385 }
386 
387 /// A helper function that returns the reciprocal of the block probability of
388 /// predicated blocks. If we return X, we are assuming the predicated block
389 /// will execute once for every X iterations of the loop header.
390 ///
391 /// TODO: We should use actual block probability here, if available. Currently,
392 ///       we always assume predicated blocks have a 50% chance of executing.
393 static unsigned getReciprocalPredBlockProb() { return 2; }
394 
395 /// A helper function that returns an integer or floating-point constant with
396 /// value C.
397 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
398   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
399                            : ConstantFP::get(Ty, C);
400 }
401 
402 /// Returns "best known" trip count for the specified loop \p L as defined by
403 /// the following procedure:
404 ///   1) Returns exact trip count if it is known.
405 ///   2) Returns expected trip count according to profile data if any.
406 ///   3) Returns upper bound estimate if it is known.
407 ///   4) Returns None if all of the above failed.
408 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
409   // Check if exact trip count is known.
410   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
411     return ExpectedTC;
412 
413   // Check if there is an expected trip count available from profile data.
414   if (LoopVectorizeWithBlockFrequency)
415     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
416       return EstimatedTC;
417 
418   // Check if upper bound estimate is known.
419   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
420     return ExpectedTC;
421 
422   return None;
423 }
424 
425 // Forward declare GeneratedRTChecks.
426 class GeneratedRTChecks;
427 
428 namespace llvm {
429 
430 AnalysisKey ShouldRunExtraVectorPasses::Key;
431 
432 /// InnerLoopVectorizer vectorizes loops which contain only one basic
433 /// block to a specified vectorization factor (VF).
434 /// This class performs the widening of scalars into vectors, or multiple
435 /// scalars. This class also implements the following features:
436 /// * It inserts an epilogue loop for handling loops that don't have iteration
437 ///   counts that are known to be a multiple of the vectorization factor.
438 /// * It handles the code generation for reduction variables.
439 /// * Scalarization (implementation using scalars) of un-vectorizable
440 ///   instructions.
441 /// InnerLoopVectorizer does not perform any vectorization-legality
442 /// checks, and relies on the caller to check for the different legality
443 /// aspects. The InnerLoopVectorizer relies on the
444 /// LoopVectorizationLegality class to provide information about the induction
445 /// and reduction variables that were found to a given vectorization factor.
446 class InnerLoopVectorizer {
447 public:
448   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
449                       LoopInfo *LI, DominatorTree *DT,
450                       const TargetLibraryInfo *TLI,
451                       const TargetTransformInfo *TTI, AssumptionCache *AC,
452                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
453                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
454                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
455                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
456       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
457         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
458         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
459         PSI(PSI), RTChecks(RTChecks) {
460     // Query this against the original loop and save it here because the profile
461     // of the original loop header may change as the transformation happens.
462     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
463         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
464   }
465 
466   virtual ~InnerLoopVectorizer() = default;
467 
468   /// Create a new empty loop that will contain vectorized instructions later
469   /// on, while the old loop will be used as the scalar remainder. Control flow
470   /// is generated around the vectorized (and scalar epilogue) loops consisting
471   /// of various checks and bypasses. Return the pre-header block of the new
472   /// loop and the start value for the canonical induction, if it is != 0. The
473   /// latter is the case when vectorizing the epilogue loop. In the case of
474   /// epilogue vectorization, this function is overriden to handle the more
475   /// complex control flow around the loops.
476   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
477 
478   /// Widen a single call instruction within the innermost loop.
479   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
480                             VPTransformState &State);
481 
482   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
483   void fixVectorizedLoop(VPTransformState &State, VPlan &Plan);
484 
485   // Return true if any runtime check is added.
486   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
487 
488   /// A type for vectorized values in the new loop. Each value from the
489   /// original loop, when vectorized, is represented by UF vector values in the
490   /// new unrolled loop, where UF is the unroll factor.
491   using VectorParts = SmallVector<Value *, 2>;
492 
493   /// Vectorize a single vector PHINode in a block in the VPlan-native path
494   /// only.
495   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
496                            VPTransformState &State);
497 
498   /// A helper function to scalarize a single Instruction in the innermost loop.
499   /// Generates a sequence of scalar instances for each lane between \p MinLane
500   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
501   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
502   /// Instr's operands.
503   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
504                             const VPIteration &Instance, bool IfPredicateInstr,
505                             VPTransformState &State);
506 
507   /// Construct the vector value of a scalarized value \p V one lane at a time.
508   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
509                                  VPTransformState &State);
510 
511   /// Try to vectorize interleaved access group \p Group with the base address
512   /// given in \p Addr, optionally masking the vector operations if \p
513   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
514   /// values in the vectorized loop.
515   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
516                                 ArrayRef<VPValue *> VPDefs,
517                                 VPTransformState &State, VPValue *Addr,
518                                 ArrayRef<VPValue *> StoredValues,
519                                 VPValue *BlockInMask = nullptr);
520 
521   /// Set the debug location in the builder \p Ptr using the debug location in
522   /// \p V. If \p Ptr is None then it uses the class member's Builder.
523   void setDebugLocFromInst(const Value *V,
524                            Optional<IRBuilderBase *> CustomBuilder = None);
525 
526   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
527   void fixNonInductionPHIs(VPTransformState &State);
528 
529   /// Returns true if the reordering of FP operations is not allowed, but we are
530   /// able to vectorize with strict in-order reductions for the given RdxDesc.
531   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
532 
533   /// Create a broadcast instruction. This method generates a broadcast
534   /// instruction (shuffle) for loop invariant values and for the induction
535   /// value. If this is the induction variable then we extend it to N, N+1, ...
536   /// this is needed because each iteration in the loop corresponds to a SIMD
537   /// element.
538   virtual Value *getBroadcastInstrs(Value *V);
539 
540   /// Add metadata from one instruction to another.
541   ///
542   /// This includes both the original MDs from \p From and additional ones (\see
543   /// addNewMetadata).  Use this for *newly created* instructions in the vector
544   /// loop.
545   void addMetadata(Instruction *To, Instruction *From);
546 
547   /// Similar to the previous function but it adds the metadata to a
548   /// vector of instructions.
549   void addMetadata(ArrayRef<Value *> To, Instruction *From);
550 
551   // Returns the resume value (bc.merge.rdx) for a reduction as
552   // generated by fixReduction.
553   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
554 
555 protected:
556   friend class LoopVectorizationPlanner;
557 
558   /// A small list of PHINodes.
559   using PhiVector = SmallVector<PHINode *, 4>;
560 
561   /// A type for scalarized values in the new loop. Each value from the
562   /// original loop, when scalarized, is represented by UF x VF scalar values
563   /// in the new unrolled loop, where UF is the unroll factor and VF is the
564   /// vectorization factor.
565   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
566 
567   /// Set up the values of the IVs correctly when exiting the vector loop.
568   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
569                     Value *VectorTripCount, Value *EndValue,
570                     BasicBlock *MiddleBlock, BasicBlock *VectorHeader);
571 
572   /// Handle all cross-iteration phis in the header.
573   void fixCrossIterationPHIs(VPTransformState &State);
574 
575   /// Create the exit value of first order recurrences in the middle block and
576   /// update their users.
577   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
578                                VPTransformState &State);
579 
580   /// Create code for the loop exit value of the reduction.
581   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
582 
583   /// Clear NSW/NUW flags from reduction instructions if necessary.
584   void clearReductionWrapFlags(VPReductionPHIRecipe *PhiR,
585                                VPTransformState &State);
586 
587   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
588   /// means we need to add the appropriate incoming value from the middle
589   /// block as exiting edges from the scalar epilogue loop (if present) are
590   /// already in place, and we exit the vector loop exclusively to the middle
591   /// block.
592   void fixLCSSAPHIs(VPTransformState &State);
593 
594   /// Iteratively sink the scalarized operands of a predicated instruction into
595   /// the block that was created for it.
596   void sinkScalarOperands(Instruction *PredInst);
597 
598   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
599   /// represented as.
600   void truncateToMinimalBitwidths(VPTransformState &State);
601 
602   /// Returns (and creates if needed) the original loop trip count.
603   Value *getOrCreateTripCount(BasicBlock *InsertBlock);
604 
605   /// Returns (and creates if needed) the trip count of the widened loop.
606   Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock);
607 
608   /// Returns a bitcasted value to the requested vector type.
609   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
610   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
611                                 const DataLayout &DL);
612 
613   /// Emit a bypass check to see if the vector trip count is zero, including if
614   /// it overflows.
615   void emitIterationCountCheck(BasicBlock *Bypass);
616 
617   /// Emit a bypass check to see if all of the SCEV assumptions we've
618   /// had to make are correct. Returns the block containing the checks or
619   /// nullptr if no checks have been added.
620   BasicBlock *emitSCEVChecks(BasicBlock *Bypass);
621 
622   /// Emit bypass checks to check any memory assumptions we may have made.
623   /// Returns the block containing the checks or nullptr if no checks have been
624   /// added.
625   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass);
626 
627   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
628   /// vector loop preheader, middle block and scalar preheader.
629   void createVectorLoopSkeleton(StringRef Prefix);
630 
631   /// Create new phi nodes for the induction variables to resume iteration count
632   /// in the scalar epilogue, from where the vectorized loop left off.
633   /// In cases where the loop skeleton is more complicated (eg. epilogue
634   /// vectorization) and the resume values can come from an additional bypass
635   /// block, the \p AdditionalBypass pair provides information about the bypass
636   /// block and the end value on the edge from bypass to this loop.
637   void createInductionResumeValues(
638       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
639 
640   /// Complete the loop skeleton by adding debug MDs, creating appropriate
641   /// conditional branches in the middle block, preparing the builder and
642   /// running the verifier. Return the preheader of the completed vector loop.
643   BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID);
644 
645   /// Add additional metadata to \p To that was not present on \p Orig.
646   ///
647   /// Currently this is used to add the noalias annotations based on the
648   /// inserted memchecks.  Use this for instructions that are *cloned* into the
649   /// vector loop.
650   void addNewMetadata(Instruction *To, const Instruction *Orig);
651 
652   /// Collect poison-generating recipes that may generate a poison value that is
653   /// used after vectorization, even when their operands are not poison. Those
654   /// recipes meet the following conditions:
655   ///  * Contribute to the address computation of a recipe generating a widen
656   ///    memory load/store (VPWidenMemoryInstructionRecipe or
657   ///    VPInterleaveRecipe).
658   ///  * Such a widen memory load/store has at least one underlying Instruction
659   ///    that is in a basic block that needs predication and after vectorization
660   ///    the generated instruction won't be predicated.
661   void collectPoisonGeneratingRecipes(VPTransformState &State);
662 
663   /// Allow subclasses to override and print debug traces before/after vplan
664   /// execution, when trace information is requested.
665   virtual void printDebugTracesAtStart(){};
666   virtual void printDebugTracesAtEnd(){};
667 
668   /// The original loop.
669   Loop *OrigLoop;
670 
671   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
672   /// dynamic knowledge to simplify SCEV expressions and converts them to a
673   /// more usable form.
674   PredicatedScalarEvolution &PSE;
675 
676   /// Loop Info.
677   LoopInfo *LI;
678 
679   /// Dominator Tree.
680   DominatorTree *DT;
681 
682   /// Alias Analysis.
683   AAResults *AA;
684 
685   /// Target Library Info.
686   const TargetLibraryInfo *TLI;
687 
688   /// Target Transform Info.
689   const TargetTransformInfo *TTI;
690 
691   /// Assumption Cache.
692   AssumptionCache *AC;
693 
694   /// Interface to emit optimization remarks.
695   OptimizationRemarkEmitter *ORE;
696 
697   /// LoopVersioning.  It's only set up (non-null) if memchecks were
698   /// used.
699   ///
700   /// This is currently only used to add no-alias metadata based on the
701   /// memchecks.  The actually versioning is performed manually.
702   std::unique_ptr<LoopVersioning> LVer;
703 
704   /// The vectorization SIMD factor to use. Each vector will have this many
705   /// vector elements.
706   ElementCount VF;
707 
708   /// The vectorization unroll factor to use. Each scalar is vectorized to this
709   /// many different vector instructions.
710   unsigned UF;
711 
712   /// The builder that we use
713   IRBuilder<> Builder;
714 
715   // --- Vectorization state ---
716 
717   /// The vector-loop preheader.
718   BasicBlock *LoopVectorPreHeader;
719 
720   /// The scalar-loop preheader.
721   BasicBlock *LoopScalarPreHeader;
722 
723   /// Middle Block between the vector and the scalar.
724   BasicBlock *LoopMiddleBlock;
725 
726   /// The unique ExitBlock of the scalar loop if one exists.  Note that
727   /// there can be multiple exiting edges reaching this block.
728   BasicBlock *LoopExitBlock;
729 
730   /// The scalar loop body.
731   BasicBlock *LoopScalarBody;
732 
733   /// A list of all bypass blocks. The first block is the entry of the loop.
734   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
735 
736   /// Store instructions that were predicated.
737   SmallVector<Instruction *, 4> PredicatedInstructions;
738 
739   /// Trip count of the original loop.
740   Value *TripCount = nullptr;
741 
742   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
743   Value *VectorTripCount = nullptr;
744 
745   /// The legality analysis.
746   LoopVectorizationLegality *Legal;
747 
748   /// The profitablity analysis.
749   LoopVectorizationCostModel *Cost;
750 
751   // Record whether runtime checks are added.
752   bool AddedSafetyChecks = false;
753 
754   // Holds the end values for each induction variable. We save the end values
755   // so we can later fix-up the external users of the induction variables.
756   DenseMap<PHINode *, Value *> IVEndValues;
757 
758   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
759   // fixed up at the end of vector code generation.
760   SmallVector<PHINode *, 8> OrigPHIsToFix;
761 
762   /// BFI and PSI are used to check for profile guided size optimizations.
763   BlockFrequencyInfo *BFI;
764   ProfileSummaryInfo *PSI;
765 
766   // Whether this loop should be optimized for size based on profile guided size
767   // optimizatios.
768   bool OptForSizeBasedOnProfile;
769 
770   /// Structure to hold information about generated runtime checks, responsible
771   /// for cleaning the checks, if vectorization turns out unprofitable.
772   GeneratedRTChecks &RTChecks;
773 
774   // Holds the resume values for reductions in the loops, used to set the
775   // correct start value of reduction PHIs when vectorizing the epilogue.
776   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
777       ReductionResumeValues;
778 };
779 
780 class InnerLoopUnroller : public InnerLoopVectorizer {
781 public:
782   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
783                     LoopInfo *LI, DominatorTree *DT,
784                     const TargetLibraryInfo *TLI,
785                     const TargetTransformInfo *TTI, AssumptionCache *AC,
786                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
787                     LoopVectorizationLegality *LVL,
788                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
789                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
790       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
791                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
792                             BFI, PSI, Check) {}
793 
794 private:
795   Value *getBroadcastInstrs(Value *V) override;
796 };
797 
798 /// Encapsulate information regarding vectorization of a loop and its epilogue.
799 /// This information is meant to be updated and used across two stages of
800 /// epilogue vectorization.
801 struct EpilogueLoopVectorizationInfo {
802   ElementCount MainLoopVF = ElementCount::getFixed(0);
803   unsigned MainLoopUF = 0;
804   ElementCount EpilogueVF = ElementCount::getFixed(0);
805   unsigned EpilogueUF = 0;
806   BasicBlock *MainLoopIterationCountCheck = nullptr;
807   BasicBlock *EpilogueIterationCountCheck = nullptr;
808   BasicBlock *SCEVSafetyCheck = nullptr;
809   BasicBlock *MemSafetyCheck = nullptr;
810   Value *TripCount = nullptr;
811   Value *VectorTripCount = nullptr;
812 
813   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
814                                 ElementCount EVF, unsigned EUF)
815       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
816     assert(EUF == 1 &&
817            "A high UF for the epilogue loop is likely not beneficial.");
818   }
819 };
820 
821 /// An extension of the inner loop vectorizer that creates a skeleton for a
822 /// vectorized loop that has its epilogue (residual) also vectorized.
823 /// The idea is to run the vplan on a given loop twice, firstly to setup the
824 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
825 /// from the first step and vectorize the epilogue.  This is achieved by
826 /// deriving two concrete strategy classes from this base class and invoking
827 /// them in succession from the loop vectorizer planner.
828 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
829 public:
830   InnerLoopAndEpilogueVectorizer(
831       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
832       DominatorTree *DT, const TargetLibraryInfo *TLI,
833       const TargetTransformInfo *TTI, AssumptionCache *AC,
834       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
835       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
836       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
837       GeneratedRTChecks &Checks)
838       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
839                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
840                             Checks),
841         EPI(EPI) {}
842 
843   // Override this function to handle the more complex control flow around the
844   // three loops.
845   std::pair<BasicBlock *, Value *>
846   createVectorizedLoopSkeleton() final override {
847     return createEpilogueVectorizedLoopSkeleton();
848   }
849 
850   /// The interface for creating a vectorized skeleton using one of two
851   /// different strategies, each corresponding to one execution of the vplan
852   /// as described above.
853   virtual std::pair<BasicBlock *, Value *>
854   createEpilogueVectorizedLoopSkeleton() = 0;
855 
856   /// Holds and updates state information required to vectorize the main loop
857   /// and its epilogue in two separate passes. This setup helps us avoid
858   /// regenerating and recomputing runtime safety checks. It also helps us to
859   /// shorten the iteration-count-check path length for the cases where the
860   /// iteration count of the loop is so small that the main vector loop is
861   /// completely skipped.
862   EpilogueLoopVectorizationInfo &EPI;
863 };
864 
865 /// A specialized derived class of inner loop vectorizer that performs
866 /// vectorization of *main* loops in the process of vectorizing loops and their
867 /// epilogues.
868 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
869 public:
870   EpilogueVectorizerMainLoop(
871       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
872       DominatorTree *DT, const TargetLibraryInfo *TLI,
873       const TargetTransformInfo *TTI, AssumptionCache *AC,
874       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
875       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
876       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
877       GeneratedRTChecks &Check)
878       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
879                                        EPI, LVL, CM, BFI, PSI, Check) {}
880   /// Implements the interface for creating a vectorized skeleton using the
881   /// *main loop* strategy (ie the first pass of vplan execution).
882   std::pair<BasicBlock *, Value *>
883   createEpilogueVectorizedLoopSkeleton() final override;
884 
885 protected:
886   /// Emits an iteration count bypass check once for the main loop (when \p
887   /// ForEpilogue is false) and once for the epilogue loop (when \p
888   /// ForEpilogue is true).
889   BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue);
890   void printDebugTracesAtStart() override;
891   void printDebugTracesAtEnd() override;
892 };
893 
894 // A specialized derived class of inner loop vectorizer that performs
895 // vectorization of *epilogue* loops in the process of vectorizing loops and
896 // their epilogues.
897 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
898 public:
899   EpilogueVectorizerEpilogueLoop(
900       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
901       DominatorTree *DT, const TargetLibraryInfo *TLI,
902       const TargetTransformInfo *TTI, AssumptionCache *AC,
903       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
904       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
905       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
906       GeneratedRTChecks &Checks)
907       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
908                                        EPI, LVL, CM, BFI, PSI, Checks) {
909     TripCount = EPI.TripCount;
910   }
911   /// Implements the interface for creating a vectorized skeleton using the
912   /// *epilogue loop* strategy (ie the second pass of vplan execution).
913   std::pair<BasicBlock *, Value *>
914   createEpilogueVectorizedLoopSkeleton() final override;
915 
916 protected:
917   /// Emits an iteration count bypass check after the main vector loop has
918   /// finished to see if there are any iterations left to execute by either
919   /// the vector epilogue or the scalar epilogue.
920   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(
921                                                       BasicBlock *Bypass,
922                                                       BasicBlock *Insert);
923   void printDebugTracesAtStart() override;
924   void printDebugTracesAtEnd() override;
925 };
926 } // end namespace llvm
927 
928 /// Look for a meaningful debug location on the instruction or it's
929 /// operands.
930 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
931   if (!I)
932     return I;
933 
934   DebugLoc Empty;
935   if (I->getDebugLoc() != Empty)
936     return I;
937 
938   for (Use &Op : I->operands()) {
939     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
940       if (OpInst->getDebugLoc() != Empty)
941         return OpInst;
942   }
943 
944   return I;
945 }
946 
947 void InnerLoopVectorizer::setDebugLocFromInst(
948     const Value *V, Optional<IRBuilderBase *> CustomBuilder) {
949   IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
950   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
951     const DILocation *DIL = Inst->getDebugLoc();
952 
953     // When a FSDiscriminator is enabled, we don't need to add the multiply
954     // factors to the discriminators.
955     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
956         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
957       // FIXME: For scalable vectors, assume vscale=1.
958       auto NewDIL =
959           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
960       if (NewDIL)
961         B->SetCurrentDebugLocation(NewDIL.getValue());
962       else
963         LLVM_DEBUG(dbgs()
964                    << "Failed to create new discriminator: "
965                    << DIL->getFilename() << " Line: " << DIL->getLine());
966     } else
967       B->SetCurrentDebugLocation(DIL);
968   } else
969     B->SetCurrentDebugLocation(DebugLoc());
970 }
971 
972 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
973 /// is passed, the message relates to that particular instruction.
974 #ifndef NDEBUG
975 static void debugVectorizationMessage(const StringRef Prefix,
976                                       const StringRef DebugMsg,
977                                       Instruction *I) {
978   dbgs() << "LV: " << Prefix << DebugMsg;
979   if (I != nullptr)
980     dbgs() << " " << *I;
981   else
982     dbgs() << '.';
983   dbgs() << '\n';
984 }
985 #endif
986 
987 /// Create an analysis remark that explains why vectorization failed
988 ///
989 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
990 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
991 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
992 /// the location of the remark.  \return the remark object that can be
993 /// streamed to.
994 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
995     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
996   Value *CodeRegion = TheLoop->getHeader();
997   DebugLoc DL = TheLoop->getStartLoc();
998 
999   if (I) {
1000     CodeRegion = I->getParent();
1001     // If there is no debug location attached to the instruction, revert back to
1002     // using the loop's.
1003     if (I->getDebugLoc())
1004       DL = I->getDebugLoc();
1005   }
1006 
1007   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1008 }
1009 
1010 namespace llvm {
1011 
1012 /// Return a value for Step multiplied by VF.
1013 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
1014                        int64_t Step) {
1015   assert(Ty->isIntegerTy() && "Expected an integer step");
1016   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
1017   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1018 }
1019 
1020 /// Return the runtime value for VF.
1021 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) {
1022   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1023   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1024 }
1025 
1026 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
1027                                   ElementCount VF) {
1028   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1029   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1030   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1031   return B.CreateUIToFP(RuntimeVF, FTy);
1032 }
1033 
1034 void reportVectorizationFailure(const StringRef DebugMsg,
1035                                 const StringRef OREMsg, const StringRef ORETag,
1036                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1037                                 Instruction *I) {
1038   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1039   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1040   ORE->emit(
1041       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1042       << "loop not vectorized: " << OREMsg);
1043 }
1044 
1045 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1046                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1047                              Instruction *I) {
1048   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1049   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1050   ORE->emit(
1051       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1052       << Msg);
1053 }
1054 
1055 } // end namespace llvm
1056 
1057 #ifndef NDEBUG
1058 /// \return string containing a file name and a line # for the given loop.
1059 static std::string getDebugLocString(const Loop *L) {
1060   std::string Result;
1061   if (L) {
1062     raw_string_ostream OS(Result);
1063     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1064       LoopDbgLoc.print(OS);
1065     else
1066       // Just print the module name.
1067       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1068     OS.flush();
1069   }
1070   return Result;
1071 }
1072 #endif
1073 
1074 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1075                                          const Instruction *Orig) {
1076   // If the loop was versioned with memchecks, add the corresponding no-alias
1077   // metadata.
1078   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1079     LVer->annotateInstWithNoAlias(To, Orig);
1080 }
1081 
1082 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1083     VPTransformState &State) {
1084 
1085   // Collect recipes in the backward slice of `Root` that may generate a poison
1086   // value that is used after vectorization.
1087   SmallPtrSet<VPRecipeBase *, 16> Visited;
1088   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1089     SmallVector<VPRecipeBase *, 16> Worklist;
1090     Worklist.push_back(Root);
1091 
1092     // Traverse the backward slice of Root through its use-def chain.
1093     while (!Worklist.empty()) {
1094       VPRecipeBase *CurRec = Worklist.back();
1095       Worklist.pop_back();
1096 
1097       if (!Visited.insert(CurRec).second)
1098         continue;
1099 
1100       // Prune search if we find another recipe generating a widen memory
1101       // instruction. Widen memory instructions involved in address computation
1102       // will lead to gather/scatter instructions, which don't need to be
1103       // handled.
1104       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1105           isa<VPInterleaveRecipe>(CurRec) ||
1106           isa<VPScalarIVStepsRecipe>(CurRec) ||
1107           isa<VPCanonicalIVPHIRecipe>(CurRec))
1108         continue;
1109 
1110       // This recipe contributes to the address computation of a widen
1111       // load/store. Collect recipe if its underlying instruction has
1112       // poison-generating flags.
1113       Instruction *Instr = CurRec->getUnderlyingInstr();
1114       if (Instr && Instr->hasPoisonGeneratingFlags())
1115         State.MayGeneratePoisonRecipes.insert(CurRec);
1116 
1117       // Add new definitions to the worklist.
1118       for (VPValue *operand : CurRec->operands())
1119         if (VPDef *OpDef = operand->getDef())
1120           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1121     }
1122   });
1123 
1124   // Traverse all the recipes in the VPlan and collect the poison-generating
1125   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1126   // VPInterleaveRecipe.
1127   auto Iter = depth_first(
1128       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1129   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1130     for (VPRecipeBase &Recipe : *VPBB) {
1131       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1132         Instruction &UnderlyingInstr = WidenRec->getIngredient();
1133         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1134         if (AddrDef && WidenRec->isConsecutive() &&
1135             Legal->blockNeedsPredication(UnderlyingInstr.getParent()))
1136           collectPoisonGeneratingInstrsInBackwardSlice(
1137               cast<VPRecipeBase>(AddrDef));
1138       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1139         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1140         if (AddrDef) {
1141           // Check if any member of the interleave group needs predication.
1142           const InterleaveGroup<Instruction> *InterGroup =
1143               InterleaveRec->getInterleaveGroup();
1144           bool NeedPredication = false;
1145           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1146                I < NumMembers; ++I) {
1147             Instruction *Member = InterGroup->getMember(I);
1148             if (Member)
1149               NeedPredication |=
1150                   Legal->blockNeedsPredication(Member->getParent());
1151           }
1152 
1153           if (NeedPredication)
1154             collectPoisonGeneratingInstrsInBackwardSlice(
1155                 cast<VPRecipeBase>(AddrDef));
1156         }
1157       }
1158     }
1159   }
1160 }
1161 
1162 void InnerLoopVectorizer::addMetadata(Instruction *To,
1163                                       Instruction *From) {
1164   propagateMetadata(To, From);
1165   addNewMetadata(To, From);
1166 }
1167 
1168 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1169                                       Instruction *From) {
1170   for (Value *V : To) {
1171     if (Instruction *I = dyn_cast<Instruction>(V))
1172       addMetadata(I, From);
1173   }
1174 }
1175 
1176 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1177     const RecurrenceDescriptor &RdxDesc) {
1178   auto It = ReductionResumeValues.find(&RdxDesc);
1179   assert(It != ReductionResumeValues.end() &&
1180          "Expected to find a resume value for the reduction.");
1181   return It->second;
1182 }
1183 
1184 namespace llvm {
1185 
1186 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1187 // lowered.
1188 enum ScalarEpilogueLowering {
1189 
1190   // The default: allowing scalar epilogues.
1191   CM_ScalarEpilogueAllowed,
1192 
1193   // Vectorization with OptForSize: don't allow epilogues.
1194   CM_ScalarEpilogueNotAllowedOptSize,
1195 
1196   // A special case of vectorisation with OptForSize: loops with a very small
1197   // trip count are considered for vectorization under OptForSize, thereby
1198   // making sure the cost of their loop body is dominant, free of runtime
1199   // guards and scalar iteration overheads.
1200   CM_ScalarEpilogueNotAllowedLowTripLoop,
1201 
1202   // Loop hint predicate indicating an epilogue is undesired.
1203   CM_ScalarEpilogueNotNeededUsePredicate,
1204 
1205   // Directive indicating we must either tail fold or not vectorize
1206   CM_ScalarEpilogueNotAllowedUsePredicate
1207 };
1208 
1209 /// ElementCountComparator creates a total ordering for ElementCount
1210 /// for the purposes of using it in a set structure.
1211 struct ElementCountComparator {
1212   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1213     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1214            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1215   }
1216 };
1217 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1218 
1219 /// LoopVectorizationCostModel - estimates the expected speedups due to
1220 /// vectorization.
1221 /// In many cases vectorization is not profitable. This can happen because of
1222 /// a number of reasons. In this class we mainly attempt to predict the
1223 /// expected speedup/slowdowns due to the supported instruction set. We use the
1224 /// TargetTransformInfo to query the different backends for the cost of
1225 /// different operations.
1226 class LoopVectorizationCostModel {
1227 public:
1228   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1229                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1230                              LoopVectorizationLegality *Legal,
1231                              const TargetTransformInfo &TTI,
1232                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1233                              AssumptionCache *AC,
1234                              OptimizationRemarkEmitter *ORE, const Function *F,
1235                              const LoopVectorizeHints *Hints,
1236                              InterleavedAccessInfo &IAI)
1237       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1238         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1239         Hints(Hints), InterleaveInfo(IAI) {}
1240 
1241   /// \return An upper bound for the vectorization factors (both fixed and
1242   /// scalable). If the factors are 0, vectorization and interleaving should be
1243   /// avoided up front.
1244   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1245 
1246   /// \return True if runtime checks are required for vectorization, and false
1247   /// otherwise.
1248   bool runtimeChecksRequired();
1249 
1250   /// \return The most profitable vectorization factor and the cost of that VF.
1251   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1252   /// then this vectorization factor will be selected if vectorization is
1253   /// possible.
1254   VectorizationFactor
1255   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1256 
1257   VectorizationFactor
1258   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1259                                     const LoopVectorizationPlanner &LVP);
1260 
1261   /// Setup cost-based decisions for user vectorization factor.
1262   /// \return true if the UserVF is a feasible VF to be chosen.
1263   bool selectUserVectorizationFactor(ElementCount UserVF) {
1264     collectUniformsAndScalars(UserVF);
1265     collectInstsToScalarize(UserVF);
1266     return expectedCost(UserVF).first.isValid();
1267   }
1268 
1269   /// \return The size (in bits) of the smallest and widest types in the code
1270   /// that needs to be vectorized. We ignore values that remain scalar such as
1271   /// 64 bit loop indices.
1272   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1273 
1274   /// \return The desired interleave count.
1275   /// If interleave count has been specified by metadata it will be returned.
1276   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1277   /// are the selected vectorization factor and the cost of the selected VF.
1278   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1279 
1280   /// Memory access instruction may be vectorized in more than one way.
1281   /// Form of instruction after vectorization depends on cost.
1282   /// This function takes cost-based decisions for Load/Store instructions
1283   /// and collects them in a map. This decisions map is used for building
1284   /// the lists of loop-uniform and loop-scalar instructions.
1285   /// The calculated cost is saved with widening decision in order to
1286   /// avoid redundant calculations.
1287   void setCostBasedWideningDecision(ElementCount VF);
1288 
1289   /// A struct that represents some properties of the register usage
1290   /// of a loop.
1291   struct RegisterUsage {
1292     /// Holds the number of loop invariant values that are used in the loop.
1293     /// The key is ClassID of target-provided register class.
1294     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1295     /// Holds the maximum number of concurrent live intervals in the loop.
1296     /// The key is ClassID of target-provided register class.
1297     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1298   };
1299 
1300   /// \return Returns information about the register usages of the loop for the
1301   /// given vectorization factors.
1302   SmallVector<RegisterUsage, 8>
1303   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1304 
1305   /// Collect values we want to ignore in the cost model.
1306   void collectValuesToIgnore();
1307 
1308   /// Collect all element types in the loop for which widening is needed.
1309   void collectElementTypesForWidening();
1310 
1311   /// Split reductions into those that happen in the loop, and those that happen
1312   /// outside. In loop reductions are collected into InLoopReductionChains.
1313   void collectInLoopReductions();
1314 
1315   /// Returns true if we should use strict in-order reductions for the given
1316   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1317   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1318   /// of FP operations.
1319   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1320     return !Hints->allowReordering() && RdxDesc.isOrdered();
1321   }
1322 
1323   /// \returns The smallest bitwidth each instruction can be represented with.
1324   /// The vector equivalents of these instructions should be truncated to this
1325   /// type.
1326   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1327     return MinBWs;
1328   }
1329 
1330   /// \returns True if it is more profitable to scalarize instruction \p I for
1331   /// vectorization factor \p VF.
1332   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1333     assert(VF.isVector() &&
1334            "Profitable to scalarize relevant only for VF > 1.");
1335 
1336     // Cost model is not run in the VPlan-native path - return conservative
1337     // result until this changes.
1338     if (EnableVPlanNativePath)
1339       return false;
1340 
1341     auto Scalars = InstsToScalarize.find(VF);
1342     assert(Scalars != InstsToScalarize.end() &&
1343            "VF not yet analyzed for scalarization profitability");
1344     return Scalars->second.find(I) != Scalars->second.end();
1345   }
1346 
1347   /// Returns true if \p I is known to be uniform after vectorization.
1348   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1349     if (VF.isScalar())
1350       return true;
1351 
1352     // Cost model is not run in the VPlan-native path - return conservative
1353     // result until this changes.
1354     if (EnableVPlanNativePath)
1355       return false;
1356 
1357     auto UniformsPerVF = Uniforms.find(VF);
1358     assert(UniformsPerVF != Uniforms.end() &&
1359            "VF not yet analyzed for uniformity");
1360     return UniformsPerVF->second.count(I);
1361   }
1362 
1363   /// Returns true if \p I is known to be scalar after vectorization.
1364   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1365     if (VF.isScalar())
1366       return true;
1367 
1368     // Cost model is not run in the VPlan-native path - return conservative
1369     // result until this changes.
1370     if (EnableVPlanNativePath)
1371       return false;
1372 
1373     auto ScalarsPerVF = Scalars.find(VF);
1374     assert(ScalarsPerVF != Scalars.end() &&
1375            "Scalar values are not calculated for VF");
1376     return ScalarsPerVF->second.count(I);
1377   }
1378 
1379   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1380   /// for vectorization factor \p VF.
1381   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1382     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1383            !isProfitableToScalarize(I, VF) &&
1384            !isScalarAfterVectorization(I, VF);
1385   }
1386 
1387   /// Decision that was taken during cost calculation for memory instruction.
1388   enum InstWidening {
1389     CM_Unknown,
1390     CM_Widen,         // For consecutive accesses with stride +1.
1391     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1392     CM_Interleave,
1393     CM_GatherScatter,
1394     CM_Scalarize
1395   };
1396 
1397   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1398   /// instruction \p I and vector width \p VF.
1399   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1400                            InstructionCost Cost) {
1401     assert(VF.isVector() && "Expected VF >=2");
1402     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1403   }
1404 
1405   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1406   /// interleaving group \p Grp and vector width \p VF.
1407   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1408                            ElementCount VF, InstWidening W,
1409                            InstructionCost Cost) {
1410     assert(VF.isVector() && "Expected VF >=2");
1411     /// Broadcast this decicion to all instructions inside the group.
1412     /// But the cost will be assigned to one instruction only.
1413     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1414       if (auto *I = Grp->getMember(i)) {
1415         if (Grp->getInsertPos() == I)
1416           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1417         else
1418           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1419       }
1420     }
1421   }
1422 
1423   /// Return the cost model decision for the given instruction \p I and vector
1424   /// width \p VF. Return CM_Unknown if this instruction did not pass
1425   /// through the cost modeling.
1426   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1427     assert(VF.isVector() && "Expected VF to be a vector VF");
1428     // Cost model is not run in the VPlan-native path - return conservative
1429     // result until this changes.
1430     if (EnableVPlanNativePath)
1431       return CM_GatherScatter;
1432 
1433     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1434     auto Itr = WideningDecisions.find(InstOnVF);
1435     if (Itr == WideningDecisions.end())
1436       return CM_Unknown;
1437     return Itr->second.first;
1438   }
1439 
1440   /// Return the vectorization cost for the given instruction \p I and vector
1441   /// width \p VF.
1442   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1443     assert(VF.isVector() && "Expected VF >=2");
1444     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1445     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1446            "The cost is not calculated");
1447     return WideningDecisions[InstOnVF].second;
1448   }
1449 
1450   /// Return True if instruction \p I is an optimizable truncate whose operand
1451   /// is an induction variable. Such a truncate will be removed by adding a new
1452   /// induction variable with the destination type.
1453   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1454     // If the instruction is not a truncate, return false.
1455     auto *Trunc = dyn_cast<TruncInst>(I);
1456     if (!Trunc)
1457       return false;
1458 
1459     // Get the source and destination types of the truncate.
1460     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1461     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1462 
1463     // If the truncate is free for the given types, return false. Replacing a
1464     // free truncate with an induction variable would add an induction variable
1465     // update instruction to each iteration of the loop. We exclude from this
1466     // check the primary induction variable since it will need an update
1467     // instruction regardless.
1468     Value *Op = Trunc->getOperand(0);
1469     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1470       return false;
1471 
1472     // If the truncated value is not an induction variable, return false.
1473     return Legal->isInductionPhi(Op);
1474   }
1475 
1476   /// Collects the instructions to scalarize for each predicated instruction in
1477   /// the loop.
1478   void collectInstsToScalarize(ElementCount VF);
1479 
1480   /// Collect Uniform and Scalar values for the given \p VF.
1481   /// The sets depend on CM decision for Load/Store instructions
1482   /// that may be vectorized as interleave, gather-scatter or scalarized.
1483   void collectUniformsAndScalars(ElementCount VF) {
1484     // Do the analysis once.
1485     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1486       return;
1487     setCostBasedWideningDecision(VF);
1488     collectLoopUniforms(VF);
1489     collectLoopScalars(VF);
1490   }
1491 
1492   /// Returns true if the target machine supports masked store operation
1493   /// for the given \p DataType and kind of access to \p Ptr.
1494   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1495     return Legal->isConsecutivePtr(DataType, Ptr) &&
1496            TTI.isLegalMaskedStore(DataType, Alignment);
1497   }
1498 
1499   /// Returns true if the target machine supports masked load operation
1500   /// for the given \p DataType and kind of access to \p Ptr.
1501   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1502     return Legal->isConsecutivePtr(DataType, Ptr) &&
1503            TTI.isLegalMaskedLoad(DataType, Alignment);
1504   }
1505 
1506   /// Returns true if the target machine can represent \p V as a masked gather
1507   /// or scatter operation.
1508   bool isLegalGatherOrScatter(Value *V,
1509                               ElementCount VF = ElementCount::getFixed(1)) {
1510     bool LI = isa<LoadInst>(V);
1511     bool SI = isa<StoreInst>(V);
1512     if (!LI && !SI)
1513       return false;
1514     auto *Ty = getLoadStoreType(V);
1515     Align Align = getLoadStoreAlignment(V);
1516     if (VF.isVector())
1517       Ty = VectorType::get(Ty, VF);
1518     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1519            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1520   }
1521 
1522   /// Returns true if the target machine supports all of the reduction
1523   /// variables found for the given VF.
1524   bool canVectorizeReductions(ElementCount VF) const {
1525     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1526       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1527       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1528     }));
1529   }
1530 
1531   /// Returns true if \p I is an instruction that will be scalarized with
1532   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1533   /// instructions include conditional stores and instructions that may divide
1534   /// by zero.
1535   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1536 
1537   // Returns true if \p I is an instruction that will be predicated either
1538   // through scalar predication or masked load/store or masked gather/scatter.
1539   // \p VF is the vectorization factor that will be used to vectorize \p I.
1540   // Superset of instructions that return true for isScalarWithPredication.
1541   bool isPredicatedInst(Instruction *I, ElementCount VF,
1542                         bool IsKnownUniform = false) {
1543     // When we know the load is uniform and the original scalar loop was not
1544     // predicated we don't need to mark it as a predicated instruction. Any
1545     // vectorised blocks created when tail-folding are something artificial we
1546     // have introduced and we know there is always at least one active lane.
1547     // That's why we call Legal->blockNeedsPredication here because it doesn't
1548     // query tail-folding.
1549     if (IsKnownUniform && isa<LoadInst>(I) &&
1550         !Legal->blockNeedsPredication(I->getParent()))
1551       return false;
1552     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1553       return false;
1554     // Loads and stores that need some form of masked operation are predicated
1555     // instructions.
1556     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1557       return Legal->isMaskRequired(I);
1558     return isScalarWithPredication(I, VF);
1559   }
1560 
1561   /// Returns true if \p I is a memory instruction with consecutive memory
1562   /// access that can be widened.
1563   bool
1564   memoryInstructionCanBeWidened(Instruction *I,
1565                                 ElementCount VF = ElementCount::getFixed(1));
1566 
1567   /// Returns true if \p I is a memory instruction in an interleaved-group
1568   /// of memory accesses that can be vectorized with wide vector loads/stores
1569   /// and shuffles.
1570   bool
1571   interleavedAccessCanBeWidened(Instruction *I,
1572                                 ElementCount VF = ElementCount::getFixed(1));
1573 
1574   /// Check if \p Instr belongs to any interleaved access group.
1575   bool isAccessInterleaved(Instruction *Instr) {
1576     return InterleaveInfo.isInterleaved(Instr);
1577   }
1578 
1579   /// Get the interleaved access group that \p Instr belongs to.
1580   const InterleaveGroup<Instruction> *
1581   getInterleavedAccessGroup(Instruction *Instr) {
1582     return InterleaveInfo.getInterleaveGroup(Instr);
1583   }
1584 
1585   /// Returns true if we're required to use a scalar epilogue for at least
1586   /// the final iteration of the original loop.
1587   bool requiresScalarEpilogue(ElementCount VF) const {
1588     if (!isScalarEpilogueAllowed())
1589       return false;
1590     // If we might exit from anywhere but the latch, must run the exiting
1591     // iteration in scalar form.
1592     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1593       return true;
1594     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1595   }
1596 
1597   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1598   /// loop hint annotation.
1599   bool isScalarEpilogueAllowed() const {
1600     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1601   }
1602 
1603   /// Returns true if all loop blocks should be masked to fold tail loop.
1604   bool foldTailByMasking() const { return FoldTailByMasking; }
1605 
1606   /// Returns true if the instructions in this block requires predication
1607   /// for any reason, e.g. because tail folding now requires a predicate
1608   /// or because the block in the original loop was predicated.
1609   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1610     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1611   }
1612 
1613   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1614   /// nodes to the chain of instructions representing the reductions. Uses a
1615   /// MapVector to ensure deterministic iteration order.
1616   using ReductionChainMap =
1617       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1618 
1619   /// Return the chain of instructions representing an inloop reduction.
1620   const ReductionChainMap &getInLoopReductionChains() const {
1621     return InLoopReductionChains;
1622   }
1623 
1624   /// Returns true if the Phi is part of an inloop reduction.
1625   bool isInLoopReduction(PHINode *Phi) const {
1626     return InLoopReductionChains.count(Phi);
1627   }
1628 
1629   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1630   /// with factor VF.  Return the cost of the instruction, including
1631   /// scalarization overhead if it's needed.
1632   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1633 
1634   /// Estimate cost of a call instruction CI if it were vectorized with factor
1635   /// VF. Return the cost of the instruction, including scalarization overhead
1636   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1637   /// scalarized -
1638   /// i.e. either vector version isn't available, or is too expensive.
1639   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1640                                     bool &NeedToScalarize) const;
1641 
1642   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1643   /// that of B.
1644   bool isMoreProfitable(const VectorizationFactor &A,
1645                         const VectorizationFactor &B) const;
1646 
1647   /// Invalidates decisions already taken by the cost model.
1648   void invalidateCostModelingDecisions() {
1649     WideningDecisions.clear();
1650     Uniforms.clear();
1651     Scalars.clear();
1652   }
1653 
1654 private:
1655   unsigned NumPredStores = 0;
1656 
1657   /// Convenience function that returns the value of vscale_range iff
1658   /// vscale_range.min == vscale_range.max or otherwise returns the value
1659   /// returned by the corresponding TLI method.
1660   Optional<unsigned> getVScaleForTuning() const;
1661 
1662   /// \return An upper bound for the vectorization factors for both
1663   /// fixed and scalable vectorization, where the minimum-known number of
1664   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1665   /// disabled or unsupported, then the scalable part will be equal to
1666   /// ElementCount::getScalable(0).
1667   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1668                                            ElementCount UserVF,
1669                                            bool FoldTailByMasking);
1670 
1671   /// \return the maximized element count based on the targets vector
1672   /// registers and the loop trip-count, but limited to a maximum safe VF.
1673   /// This is a helper function of computeFeasibleMaxVF.
1674   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1675   /// issue that occurred on one of the buildbots which cannot be reproduced
1676   /// without having access to the properietary compiler (see comments on
1677   /// D98509). The issue is currently under investigation and this workaround
1678   /// will be removed as soon as possible.
1679   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1680                                        unsigned SmallestType,
1681                                        unsigned WidestType,
1682                                        const ElementCount &MaxSafeVF,
1683                                        bool FoldTailByMasking);
1684 
1685   /// \return the maximum legal scalable VF, based on the safe max number
1686   /// of elements.
1687   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1688 
1689   /// The vectorization cost is a combination of the cost itself and a boolean
1690   /// indicating whether any of the contributing operations will actually
1691   /// operate on vector values after type legalization in the backend. If this
1692   /// latter value is false, then all operations will be scalarized (i.e. no
1693   /// vectorization has actually taken place).
1694   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1695 
1696   /// Returns the expected execution cost. The unit of the cost does
1697   /// not matter because we use the 'cost' units to compare different
1698   /// vector widths. The cost that is returned is *not* normalized by
1699   /// the factor width. If \p Invalid is not nullptr, this function
1700   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1701   /// each instruction that has an Invalid cost for the given VF.
1702   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1703   VectorizationCostTy
1704   expectedCost(ElementCount VF,
1705                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1706 
1707   /// Returns the execution time cost of an instruction for a given vector
1708   /// width. Vector width of one means scalar.
1709   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1710 
1711   /// The cost-computation logic from getInstructionCost which provides
1712   /// the vector type as an output parameter.
1713   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1714                                      Type *&VectorTy);
1715 
1716   /// Return the cost of instructions in an inloop reduction pattern, if I is
1717   /// part of that pattern.
1718   Optional<InstructionCost>
1719   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1720                           TTI::TargetCostKind CostKind);
1721 
1722   /// Calculate vectorization cost of memory instruction \p I.
1723   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1724 
1725   /// The cost computation for scalarized memory instruction.
1726   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1727 
1728   /// The cost computation for interleaving group of memory instructions.
1729   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1730 
1731   /// The cost computation for Gather/Scatter instruction.
1732   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1733 
1734   /// The cost computation for widening instruction \p I with consecutive
1735   /// memory access.
1736   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1737 
1738   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1739   /// Load: scalar load + broadcast.
1740   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1741   /// element)
1742   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1743 
1744   /// Estimate the overhead of scalarizing an instruction. This is a
1745   /// convenience wrapper for the type-based getScalarizationOverhead API.
1746   InstructionCost getScalarizationOverhead(Instruction *I,
1747                                            ElementCount VF) const;
1748 
1749   /// Returns whether the instruction is a load or store and will be a emitted
1750   /// as a vector operation.
1751   bool isConsecutiveLoadOrStore(Instruction *I);
1752 
1753   /// Returns true if an artificially high cost for emulated masked memrefs
1754   /// should be used.
1755   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1756 
1757   /// Map of scalar integer values to the smallest bitwidth they can be legally
1758   /// represented as. The vector equivalents of these values should be truncated
1759   /// to this type.
1760   MapVector<Instruction *, uint64_t> MinBWs;
1761 
1762   /// A type representing the costs for instructions if they were to be
1763   /// scalarized rather than vectorized. The entries are Instruction-Cost
1764   /// pairs.
1765   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1766 
1767   /// A set containing all BasicBlocks that are known to present after
1768   /// vectorization as a predicated block.
1769   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1770 
1771   /// Records whether it is allowed to have the original scalar loop execute at
1772   /// least once. This may be needed as a fallback loop in case runtime
1773   /// aliasing/dependence checks fail, or to handle the tail/remainder
1774   /// iterations when the trip count is unknown or doesn't divide by the VF,
1775   /// or as a peel-loop to handle gaps in interleave-groups.
1776   /// Under optsize and when the trip count is very small we don't allow any
1777   /// iterations to execute in the scalar loop.
1778   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1779 
1780   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1781   bool FoldTailByMasking = false;
1782 
1783   /// A map holding scalar costs for different vectorization factors. The
1784   /// presence of a cost for an instruction in the mapping indicates that the
1785   /// instruction will be scalarized when vectorizing with the associated
1786   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1787   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1788 
1789   /// Holds the instructions known to be uniform after vectorization.
1790   /// The data is collected per VF.
1791   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1792 
1793   /// Holds the instructions known to be scalar after vectorization.
1794   /// The data is collected per VF.
1795   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1796 
1797   /// Holds the instructions (address computations) that are forced to be
1798   /// scalarized.
1799   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1800 
1801   /// PHINodes of the reductions that should be expanded in-loop along with
1802   /// their associated chains of reduction operations, in program order from top
1803   /// (PHI) to bottom
1804   ReductionChainMap InLoopReductionChains;
1805 
1806   /// A Map of inloop reduction operations and their immediate chain operand.
1807   /// FIXME: This can be removed once reductions can be costed correctly in
1808   /// vplan. This was added to allow quick lookup to the inloop operations,
1809   /// without having to loop through InLoopReductionChains.
1810   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1811 
1812   /// Returns the expected difference in cost from scalarizing the expression
1813   /// feeding a predicated instruction \p PredInst. The instructions to
1814   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1815   /// non-negative return value implies the expression will be scalarized.
1816   /// Currently, only single-use chains are considered for scalarization.
1817   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1818                               ElementCount VF);
1819 
1820   /// Collect the instructions that are uniform after vectorization. An
1821   /// instruction is uniform if we represent it with a single scalar value in
1822   /// the vectorized loop corresponding to each vector iteration. Examples of
1823   /// uniform instructions include pointer operands of consecutive or
1824   /// interleaved memory accesses. Note that although uniformity implies an
1825   /// instruction will be scalar, the reverse is not true. In general, a
1826   /// scalarized instruction will be represented by VF scalar values in the
1827   /// vectorized loop, each corresponding to an iteration of the original
1828   /// scalar loop.
1829   void collectLoopUniforms(ElementCount VF);
1830 
1831   /// Collect the instructions that are scalar after vectorization. An
1832   /// instruction is scalar if it is known to be uniform or will be scalarized
1833   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1834   /// to the list if they are used by a load/store instruction that is marked as
1835   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1836   /// VF values in the vectorized loop, each corresponding to an iteration of
1837   /// the original scalar loop.
1838   void collectLoopScalars(ElementCount VF);
1839 
1840   /// Keeps cost model vectorization decision and cost for instructions.
1841   /// Right now it is used for memory instructions only.
1842   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1843                                 std::pair<InstWidening, InstructionCost>>;
1844 
1845   DecisionList WideningDecisions;
1846 
1847   /// Returns true if \p V is expected to be vectorized and it needs to be
1848   /// extracted.
1849   bool needsExtract(Value *V, ElementCount VF) const {
1850     Instruction *I = dyn_cast<Instruction>(V);
1851     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1852         TheLoop->isLoopInvariant(I))
1853       return false;
1854 
1855     // Assume we can vectorize V (and hence we need extraction) if the
1856     // scalars are not computed yet. This can happen, because it is called
1857     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1858     // the scalars are collected. That should be a safe assumption in most
1859     // cases, because we check if the operands have vectorizable types
1860     // beforehand in LoopVectorizationLegality.
1861     return Scalars.find(VF) == Scalars.end() ||
1862            !isScalarAfterVectorization(I, VF);
1863   };
1864 
1865   /// Returns a range containing only operands needing to be extracted.
1866   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1867                                                    ElementCount VF) const {
1868     return SmallVector<Value *, 4>(make_filter_range(
1869         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1870   }
1871 
1872   /// Determines if we have the infrastructure to vectorize loop \p L and its
1873   /// epilogue, assuming the main loop is vectorized by \p VF.
1874   bool isCandidateForEpilogueVectorization(const Loop &L,
1875                                            const ElementCount VF) const;
1876 
1877   /// Returns true if epilogue vectorization is considered profitable, and
1878   /// false otherwise.
1879   /// \p VF is the vectorization factor chosen for the original loop.
1880   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1881 
1882 public:
1883   /// The loop that we evaluate.
1884   Loop *TheLoop;
1885 
1886   /// Predicated scalar evolution analysis.
1887   PredicatedScalarEvolution &PSE;
1888 
1889   /// Loop Info analysis.
1890   LoopInfo *LI;
1891 
1892   /// Vectorization legality.
1893   LoopVectorizationLegality *Legal;
1894 
1895   /// Vector target information.
1896   const TargetTransformInfo &TTI;
1897 
1898   /// Target Library Info.
1899   const TargetLibraryInfo *TLI;
1900 
1901   /// Demanded bits analysis.
1902   DemandedBits *DB;
1903 
1904   /// Assumption cache.
1905   AssumptionCache *AC;
1906 
1907   /// Interface to emit optimization remarks.
1908   OptimizationRemarkEmitter *ORE;
1909 
1910   const Function *TheFunction;
1911 
1912   /// Loop Vectorize Hint.
1913   const LoopVectorizeHints *Hints;
1914 
1915   /// The interleave access information contains groups of interleaved accesses
1916   /// with the same stride and close to each other.
1917   InterleavedAccessInfo &InterleaveInfo;
1918 
1919   /// Values to ignore in the cost model.
1920   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1921 
1922   /// Values to ignore in the cost model when VF > 1.
1923   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1924 
1925   /// All element types found in the loop.
1926   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1927 
1928   /// Profitable vector factors.
1929   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1930 };
1931 } // end namespace llvm
1932 
1933 /// Helper struct to manage generating runtime checks for vectorization.
1934 ///
1935 /// The runtime checks are created up-front in temporary blocks to allow better
1936 /// estimating the cost and un-linked from the existing IR. After deciding to
1937 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1938 /// temporary blocks are completely removed.
1939 class GeneratedRTChecks {
1940   /// Basic block which contains the generated SCEV checks, if any.
1941   BasicBlock *SCEVCheckBlock = nullptr;
1942 
1943   /// The value representing the result of the generated SCEV checks. If it is
1944   /// nullptr, either no SCEV checks have been generated or they have been used.
1945   Value *SCEVCheckCond = nullptr;
1946 
1947   /// Basic block which contains the generated memory runtime checks, if any.
1948   BasicBlock *MemCheckBlock = nullptr;
1949 
1950   /// The value representing the result of the generated memory runtime checks.
1951   /// If it is nullptr, either no memory runtime checks have been generated or
1952   /// they have been used.
1953   Value *MemRuntimeCheckCond = nullptr;
1954 
1955   DominatorTree *DT;
1956   LoopInfo *LI;
1957 
1958   SCEVExpander SCEVExp;
1959   SCEVExpander MemCheckExp;
1960 
1961 public:
1962   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1963                     const DataLayout &DL)
1964       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1965         MemCheckExp(SE, DL, "scev.check") {}
1966 
1967   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1968   /// accurately estimate the cost of the runtime checks. The blocks are
1969   /// un-linked from the IR and is added back during vector code generation. If
1970   /// there is no vector code generation, the check blocks are removed
1971   /// completely.
1972   void Create(Loop *L, const LoopAccessInfo &LAI,
1973               const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) {
1974 
1975     BasicBlock *LoopHeader = L->getHeader();
1976     BasicBlock *Preheader = L->getLoopPreheader();
1977 
1978     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1979     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1980     // may be used by SCEVExpander. The blocks will be un-linked from their
1981     // predecessors and removed from LI & DT at the end of the function.
1982     if (!UnionPred.isAlwaysTrue()) {
1983       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1984                                   nullptr, "vector.scevcheck");
1985 
1986       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1987           &UnionPred, SCEVCheckBlock->getTerminator());
1988     }
1989 
1990     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1991     if (RtPtrChecking.Need) {
1992       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1993       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1994                                  "vector.memcheck");
1995 
1996       auto DiffChecks = RtPtrChecking.getDiffChecks();
1997       if (DiffChecks) {
1998         MemRuntimeCheckCond = addDiffRuntimeChecks(
1999             MemCheckBlock->getTerminator(), L, *DiffChecks, MemCheckExp,
2000             [VF](IRBuilderBase &B, unsigned Bits) {
2001               return getRuntimeVF(B, B.getIntNTy(Bits), VF);
2002             },
2003             IC);
2004       } else {
2005         MemRuntimeCheckCond =
2006             addRuntimeChecks(MemCheckBlock->getTerminator(), L,
2007                              RtPtrChecking.getChecks(), MemCheckExp);
2008       }
2009       assert(MemRuntimeCheckCond &&
2010              "no RT checks generated although RtPtrChecking "
2011              "claimed checks are required");
2012     }
2013 
2014     if (!MemCheckBlock && !SCEVCheckBlock)
2015       return;
2016 
2017     // Unhook the temporary block with the checks, update various places
2018     // accordingly.
2019     if (SCEVCheckBlock)
2020       SCEVCheckBlock->replaceAllUsesWith(Preheader);
2021     if (MemCheckBlock)
2022       MemCheckBlock->replaceAllUsesWith(Preheader);
2023 
2024     if (SCEVCheckBlock) {
2025       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2026       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
2027       Preheader->getTerminator()->eraseFromParent();
2028     }
2029     if (MemCheckBlock) {
2030       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2031       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2032       Preheader->getTerminator()->eraseFromParent();
2033     }
2034 
2035     DT->changeImmediateDominator(LoopHeader, Preheader);
2036     if (MemCheckBlock) {
2037       DT->eraseNode(MemCheckBlock);
2038       LI->removeBlock(MemCheckBlock);
2039     }
2040     if (SCEVCheckBlock) {
2041       DT->eraseNode(SCEVCheckBlock);
2042       LI->removeBlock(SCEVCheckBlock);
2043     }
2044   }
2045 
2046   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2047   /// unused.
2048   ~GeneratedRTChecks() {
2049     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2050     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2051     if (!SCEVCheckCond)
2052       SCEVCleaner.markResultUsed();
2053 
2054     if (!MemRuntimeCheckCond)
2055       MemCheckCleaner.markResultUsed();
2056 
2057     if (MemRuntimeCheckCond) {
2058       auto &SE = *MemCheckExp.getSE();
2059       // Memory runtime check generation creates compares that use expanded
2060       // values. Remove them before running the SCEVExpanderCleaners.
2061       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2062         if (MemCheckExp.isInsertedInstruction(&I))
2063           continue;
2064         SE.forgetValue(&I);
2065         I.eraseFromParent();
2066       }
2067     }
2068     MemCheckCleaner.cleanup();
2069     SCEVCleaner.cleanup();
2070 
2071     if (SCEVCheckCond)
2072       SCEVCheckBlock->eraseFromParent();
2073     if (MemRuntimeCheckCond)
2074       MemCheckBlock->eraseFromParent();
2075   }
2076 
2077   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2078   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2079   /// depending on the generated condition.
2080   BasicBlock *emitSCEVChecks(BasicBlock *Bypass,
2081                              BasicBlock *LoopVectorPreHeader,
2082                              BasicBlock *LoopExitBlock) {
2083     if (!SCEVCheckCond)
2084       return nullptr;
2085 
2086     Value *Cond = SCEVCheckCond;
2087     // Mark the check as used, to prevent it from being removed during cleanup.
2088     SCEVCheckCond = nullptr;
2089     if (auto *C = dyn_cast<ConstantInt>(Cond))
2090       if (C->isZero())
2091         return nullptr;
2092 
2093     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2094 
2095     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2096     // Create new preheader for vector loop.
2097     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2098       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2099 
2100     SCEVCheckBlock->getTerminator()->eraseFromParent();
2101     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2102     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2103                                                 SCEVCheckBlock);
2104 
2105     DT->addNewBlock(SCEVCheckBlock, Pred);
2106     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2107 
2108     ReplaceInstWithInst(SCEVCheckBlock->getTerminator(),
2109                         BranchInst::Create(Bypass, LoopVectorPreHeader, Cond));
2110     return SCEVCheckBlock;
2111   }
2112 
2113   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2114   /// the branches to branch to the vector preheader or \p Bypass, depending on
2115   /// the generated condition.
2116   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass,
2117                                    BasicBlock *LoopVectorPreHeader) {
2118     // Check if we generated code that checks in runtime if arrays overlap.
2119     if (!MemRuntimeCheckCond)
2120       return nullptr;
2121 
2122     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2123     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2124                                                 MemCheckBlock);
2125 
2126     DT->addNewBlock(MemCheckBlock, Pred);
2127     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2128     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2129 
2130     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2131       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2132 
2133     ReplaceInstWithInst(
2134         MemCheckBlock->getTerminator(),
2135         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2136     MemCheckBlock->getTerminator()->setDebugLoc(
2137         Pred->getTerminator()->getDebugLoc());
2138 
2139     // Mark the check as used, to prevent it from being removed during cleanup.
2140     MemRuntimeCheckCond = nullptr;
2141     return MemCheckBlock;
2142   }
2143 };
2144 
2145 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2146 // vectorization. The loop needs to be annotated with #pragma omp simd
2147 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2148 // vector length information is not provided, vectorization is not considered
2149 // explicit. Interleave hints are not allowed either. These limitations will be
2150 // relaxed in the future.
2151 // Please, note that we are currently forced to abuse the pragma 'clang
2152 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2153 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2154 // provides *explicit vectorization hints* (LV can bypass legal checks and
2155 // assume that vectorization is legal). However, both hints are implemented
2156 // using the same metadata (llvm.loop.vectorize, processed by
2157 // LoopVectorizeHints). This will be fixed in the future when the native IR
2158 // representation for pragma 'omp simd' is introduced.
2159 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2160                                    OptimizationRemarkEmitter *ORE) {
2161   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2162   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2163 
2164   // Only outer loops with an explicit vectorization hint are supported.
2165   // Unannotated outer loops are ignored.
2166   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2167     return false;
2168 
2169   Function *Fn = OuterLp->getHeader()->getParent();
2170   if (!Hints.allowVectorization(Fn, OuterLp,
2171                                 true /*VectorizeOnlyWhenForced*/)) {
2172     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2173     return false;
2174   }
2175 
2176   if (Hints.getInterleave() > 1) {
2177     // TODO: Interleave support is future work.
2178     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2179                          "outer loops.\n");
2180     Hints.emitRemarkWithHints();
2181     return false;
2182   }
2183 
2184   return true;
2185 }
2186 
2187 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2188                                   OptimizationRemarkEmitter *ORE,
2189                                   SmallVectorImpl<Loop *> &V) {
2190   // Collect inner loops and outer loops without irreducible control flow. For
2191   // now, only collect outer loops that have explicit vectorization hints. If we
2192   // are stress testing the VPlan H-CFG construction, we collect the outermost
2193   // loop of every loop nest.
2194   if (L.isInnermost() || VPlanBuildStressTest ||
2195       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2196     LoopBlocksRPO RPOT(&L);
2197     RPOT.perform(LI);
2198     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2199       V.push_back(&L);
2200       // TODO: Collect inner loops inside marked outer loops in case
2201       // vectorization fails for the outer loop. Do not invoke
2202       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2203       // already known to be reducible. We can use an inherited attribute for
2204       // that.
2205       return;
2206     }
2207   }
2208   for (Loop *InnerL : L)
2209     collectSupportedLoops(*InnerL, LI, ORE, V);
2210 }
2211 
2212 namespace {
2213 
2214 /// The LoopVectorize Pass.
2215 struct LoopVectorize : public FunctionPass {
2216   /// Pass identification, replacement for typeid
2217   static char ID;
2218 
2219   LoopVectorizePass Impl;
2220 
2221   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2222                          bool VectorizeOnlyWhenForced = false)
2223       : FunctionPass(ID),
2224         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2225     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2226   }
2227 
2228   bool runOnFunction(Function &F) override {
2229     if (skipFunction(F))
2230       return false;
2231 
2232     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2233     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2234     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2235     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2236     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2237     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2238     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2239     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2240     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2241     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2242     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2243     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2244     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2245 
2246     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2247         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2248 
2249     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2250                         GetLAA, *ORE, PSI).MadeAnyChange;
2251   }
2252 
2253   void getAnalysisUsage(AnalysisUsage &AU) const override {
2254     AU.addRequired<AssumptionCacheTracker>();
2255     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2256     AU.addRequired<DominatorTreeWrapperPass>();
2257     AU.addRequired<LoopInfoWrapperPass>();
2258     AU.addRequired<ScalarEvolutionWrapperPass>();
2259     AU.addRequired<TargetTransformInfoWrapperPass>();
2260     AU.addRequired<AAResultsWrapperPass>();
2261     AU.addRequired<LoopAccessLegacyAnalysis>();
2262     AU.addRequired<DemandedBitsWrapperPass>();
2263     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2264     AU.addRequired<InjectTLIMappingsLegacy>();
2265 
2266     // We currently do not preserve loopinfo/dominator analyses with outer loop
2267     // vectorization. Until this is addressed, mark these analyses as preserved
2268     // only for non-VPlan-native path.
2269     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2270     if (!EnableVPlanNativePath) {
2271       AU.addPreserved<LoopInfoWrapperPass>();
2272       AU.addPreserved<DominatorTreeWrapperPass>();
2273     }
2274 
2275     AU.addPreserved<BasicAAWrapperPass>();
2276     AU.addPreserved<GlobalsAAWrapperPass>();
2277     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2278   }
2279 };
2280 
2281 } // end anonymous namespace
2282 
2283 //===----------------------------------------------------------------------===//
2284 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2285 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2286 //===----------------------------------------------------------------------===//
2287 
2288 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2289   // We need to place the broadcast of invariant variables outside the loop,
2290   // but only if it's proven safe to do so. Else, broadcast will be inside
2291   // vector loop body.
2292   Instruction *Instr = dyn_cast<Instruction>(V);
2293   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2294                      (!Instr ||
2295                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2296   // Place the code for broadcasting invariant variables in the new preheader.
2297   IRBuilder<>::InsertPointGuard Guard(Builder);
2298   if (SafeToHoist)
2299     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2300 
2301   // Broadcast the scalar into all locations in the vector.
2302   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2303 
2304   return Shuf;
2305 }
2306 
2307 /// This function adds
2308 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2309 /// to each vector element of Val. The sequence starts at StartIndex.
2310 /// \p Opcode is relevant for FP induction variable.
2311 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2312                             Instruction::BinaryOps BinOp, ElementCount VF,
2313                             IRBuilderBase &Builder) {
2314   assert(VF.isVector() && "only vector VFs are supported");
2315 
2316   // Create and check the types.
2317   auto *ValVTy = cast<VectorType>(Val->getType());
2318   ElementCount VLen = ValVTy->getElementCount();
2319 
2320   Type *STy = Val->getType()->getScalarType();
2321   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2322          "Induction Step must be an integer or FP");
2323   assert(Step->getType() == STy && "Step has wrong type");
2324 
2325   SmallVector<Constant *, 8> Indices;
2326 
2327   // Create a vector of consecutive numbers from zero to VF.
2328   VectorType *InitVecValVTy = ValVTy;
2329   if (STy->isFloatingPointTy()) {
2330     Type *InitVecValSTy =
2331         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2332     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2333   }
2334   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2335 
2336   // Splat the StartIdx
2337   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2338 
2339   if (STy->isIntegerTy()) {
2340     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2341     Step = Builder.CreateVectorSplat(VLen, Step);
2342     assert(Step->getType() == Val->getType() && "Invalid step vec");
2343     // FIXME: The newly created binary instructions should contain nsw/nuw
2344     // flags, which can be found from the original scalar operations.
2345     Step = Builder.CreateMul(InitVec, Step);
2346     return Builder.CreateAdd(Val, Step, "induction");
2347   }
2348 
2349   // Floating point induction.
2350   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2351          "Binary Opcode should be specified for FP induction");
2352   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2353   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2354 
2355   Step = Builder.CreateVectorSplat(VLen, Step);
2356   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2357   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2358 }
2359 
2360 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2361 /// variable on which to base the steps, \p Step is the size of the step.
2362 static void buildScalarSteps(Value *ScalarIV, Value *Step,
2363                              const InductionDescriptor &ID, VPValue *Def,
2364                              VPTransformState &State) {
2365   IRBuilderBase &Builder = State.Builder;
2366   // We shouldn't have to build scalar steps if we aren't vectorizing.
2367   assert(State.VF.isVector() && "VF should be greater than one");
2368   // Get the value type and ensure it and the step have the same integer type.
2369   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2370   assert(ScalarIVTy == Step->getType() &&
2371          "Val and Step should have the same type");
2372 
2373   // We build scalar steps for both integer and floating-point induction
2374   // variables. Here, we determine the kind of arithmetic we will perform.
2375   Instruction::BinaryOps AddOp;
2376   Instruction::BinaryOps MulOp;
2377   if (ScalarIVTy->isIntegerTy()) {
2378     AddOp = Instruction::Add;
2379     MulOp = Instruction::Mul;
2380   } else {
2381     AddOp = ID.getInductionOpcode();
2382     MulOp = Instruction::FMul;
2383   }
2384 
2385   // Determine the number of scalars we need to generate for each unroll
2386   // iteration.
2387   bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
2388   unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2389   // Compute the scalar steps and save the results in State.
2390   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2391                                      ScalarIVTy->getScalarSizeInBits());
2392   Type *VecIVTy = nullptr;
2393   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2394   if (!FirstLaneOnly && State.VF.isScalable()) {
2395     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2396     UnitStepVec =
2397         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2398     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2399     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2400   }
2401 
2402   for (unsigned Part = 0; Part < State.UF; ++Part) {
2403     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2404 
2405     if (!FirstLaneOnly && State.VF.isScalable()) {
2406       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2407       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2408       if (ScalarIVTy->isFloatingPointTy())
2409         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2410       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2411       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2412       State.set(Def, Add, Part);
2413       // It's useful to record the lane values too for the known minimum number
2414       // of elements so we do those below. This improves the code quality when
2415       // trying to extract the first element, for example.
2416     }
2417 
2418     if (ScalarIVTy->isFloatingPointTy())
2419       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2420 
2421     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2422       Value *StartIdx = Builder.CreateBinOp(
2423           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2424       // The step returned by `createStepForVF` is a runtime-evaluated value
2425       // when VF is scalable. Otherwise, it should be folded into a Constant.
2426       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2427              "Expected StartIdx to be folded to a constant when VF is not "
2428              "scalable");
2429       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2430       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2431       State.set(Def, Add, VPIteration(Part, Lane));
2432     }
2433   }
2434 }
2435 
2436 // Generate code for the induction step. Note that induction steps are
2437 // required to be loop-invariant
2438 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE,
2439                               Instruction *InsertBefore,
2440                               Loop *OrigLoop = nullptr) {
2441   const DataLayout &DL = SE.getDataLayout();
2442   assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) &&
2443          "Induction step should be loop invariant");
2444   if (auto *E = dyn_cast<SCEVUnknown>(Step))
2445     return E->getValue();
2446 
2447   SCEVExpander Exp(SE, DL, "induction");
2448   return Exp.expandCodeFor(Step, Step->getType(), InsertBefore);
2449 }
2450 
2451 /// Compute the transformed value of Index at offset StartValue using step
2452 /// StepValue.
2453 /// For integer induction, returns StartValue + Index * StepValue.
2454 /// For pointer induction, returns StartValue[Index * StepValue].
2455 /// FIXME: The newly created binary instructions should contain nsw/nuw
2456 /// flags, which can be found from the original scalar operations.
2457 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index,
2458                                    Value *StartValue, Value *Step,
2459                                    const InductionDescriptor &ID) {
2460   assert(Index->getType()->getScalarType() == Step->getType() &&
2461          "Index scalar type does not match StepValue type");
2462 
2463   // Note: the IR at this point is broken. We cannot use SE to create any new
2464   // SCEV and then expand it, hoping that SCEV's simplification will give us
2465   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2466   // lead to various SCEV crashes. So all we can do is to use builder and rely
2467   // on InstCombine for future simplifications. Here we handle some trivial
2468   // cases only.
2469   auto CreateAdd = [&B](Value *X, Value *Y) {
2470     assert(X->getType() == Y->getType() && "Types don't match!");
2471     if (auto *CX = dyn_cast<ConstantInt>(X))
2472       if (CX->isZero())
2473         return Y;
2474     if (auto *CY = dyn_cast<ConstantInt>(Y))
2475       if (CY->isZero())
2476         return X;
2477     return B.CreateAdd(X, Y);
2478   };
2479 
2480   // We allow X to be a vector type, in which case Y will potentially be
2481   // splatted into a vector with the same element count.
2482   auto CreateMul = [&B](Value *X, Value *Y) {
2483     assert(X->getType()->getScalarType() == Y->getType() &&
2484            "Types don't match!");
2485     if (auto *CX = dyn_cast<ConstantInt>(X))
2486       if (CX->isOne())
2487         return Y;
2488     if (auto *CY = dyn_cast<ConstantInt>(Y))
2489       if (CY->isOne())
2490         return X;
2491     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2492     if (XVTy && !isa<VectorType>(Y->getType()))
2493       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2494     return B.CreateMul(X, Y);
2495   };
2496 
2497   switch (ID.getKind()) {
2498   case InductionDescriptor::IK_IntInduction: {
2499     assert(!isa<VectorType>(Index->getType()) &&
2500            "Vector indices not supported for integer inductions yet");
2501     assert(Index->getType() == StartValue->getType() &&
2502            "Index type does not match StartValue type");
2503     if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2504       return B.CreateSub(StartValue, Index);
2505     auto *Offset = CreateMul(Index, Step);
2506     return CreateAdd(StartValue, Offset);
2507   }
2508   case InductionDescriptor::IK_PtrInduction: {
2509     assert(isa<Constant>(Step) &&
2510            "Expected constant step for pointer induction");
2511     return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step));
2512   }
2513   case InductionDescriptor::IK_FpInduction: {
2514     assert(!isa<VectorType>(Index->getType()) &&
2515            "Vector indices not supported for FP inductions yet");
2516     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2517     auto InductionBinOp = ID.getInductionBinOp();
2518     assert(InductionBinOp &&
2519            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2520             InductionBinOp->getOpcode() == Instruction::FSub) &&
2521            "Original bin op should be defined for FP induction");
2522 
2523     Value *MulExp = B.CreateFMul(Step, Index);
2524     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2525                          "induction");
2526   }
2527   case InductionDescriptor::IK_NoInduction:
2528     return nullptr;
2529   }
2530   llvm_unreachable("invalid enum");
2531 }
2532 
2533 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2534                                                     const VPIteration &Instance,
2535                                                     VPTransformState &State) {
2536   Value *ScalarInst = State.get(Def, Instance);
2537   Value *VectorValue = State.get(Def, Instance.Part);
2538   VectorValue = Builder.CreateInsertElement(
2539       VectorValue, ScalarInst,
2540       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2541   State.set(Def, VectorValue, Instance.Part);
2542 }
2543 
2544 // Return whether we allow using masked interleave-groups (for dealing with
2545 // strided loads/stores that reside in predicated blocks, or for dealing
2546 // with gaps).
2547 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2548   // If an override option has been passed in for interleaved accesses, use it.
2549   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2550     return EnableMaskedInterleavedMemAccesses;
2551 
2552   return TTI.enableMaskedInterleavedAccessVectorization();
2553 }
2554 
2555 // Try to vectorize the interleave group that \p Instr belongs to.
2556 //
2557 // E.g. Translate following interleaved load group (factor = 3):
2558 //   for (i = 0; i < N; i+=3) {
2559 //     R = Pic[i];             // Member of index 0
2560 //     G = Pic[i+1];           // Member of index 1
2561 //     B = Pic[i+2];           // Member of index 2
2562 //     ... // do something to R, G, B
2563 //   }
2564 // To:
2565 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2566 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2567 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2568 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2569 //
2570 // Or translate following interleaved store group (factor = 3):
2571 //   for (i = 0; i < N; i+=3) {
2572 //     ... do something to R, G, B
2573 //     Pic[i]   = R;           // Member of index 0
2574 //     Pic[i+1] = G;           // Member of index 1
2575 //     Pic[i+2] = B;           // Member of index 2
2576 //   }
2577 // To:
2578 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2579 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2580 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2581 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2582 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2583 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2584     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2585     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2586     VPValue *BlockInMask) {
2587   Instruction *Instr = Group->getInsertPos();
2588   const DataLayout &DL = Instr->getModule()->getDataLayout();
2589 
2590   // Prepare for the vector type of the interleaved load/store.
2591   Type *ScalarTy = getLoadStoreType(Instr);
2592   unsigned InterleaveFactor = Group->getFactor();
2593   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2594   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2595 
2596   // Prepare for the new pointers.
2597   SmallVector<Value *, 2> AddrParts;
2598   unsigned Index = Group->getIndex(Instr);
2599 
2600   // TODO: extend the masked interleaved-group support to reversed access.
2601   assert((!BlockInMask || !Group->isReverse()) &&
2602          "Reversed masked interleave-group not supported.");
2603 
2604   // If the group is reverse, adjust the index to refer to the last vector lane
2605   // instead of the first. We adjust the index from the first vector lane,
2606   // rather than directly getting the pointer for lane VF - 1, because the
2607   // pointer operand of the interleaved access is supposed to be uniform. For
2608   // uniform instructions, we're only required to generate a value for the
2609   // first vector lane in each unroll iteration.
2610   if (Group->isReverse())
2611     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2612 
2613   for (unsigned Part = 0; Part < UF; Part++) {
2614     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2615     setDebugLocFromInst(AddrPart);
2616 
2617     // Notice current instruction could be any index. Need to adjust the address
2618     // to the member of index 0.
2619     //
2620     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2621     //       b = A[i];       // Member of index 0
2622     // Current pointer is pointed to A[i+1], adjust it to A[i].
2623     //
2624     // E.g.  A[i+1] = a;     // Member of index 1
2625     //       A[i]   = b;     // Member of index 0
2626     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2627     // Current pointer is pointed to A[i+2], adjust it to A[i].
2628 
2629     bool InBounds = false;
2630     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2631       InBounds = gep->isInBounds();
2632     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2633     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2634 
2635     // Cast to the vector pointer type.
2636     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2637     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2638     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2639   }
2640 
2641   setDebugLocFromInst(Instr);
2642   Value *PoisonVec = PoisonValue::get(VecTy);
2643 
2644   Value *MaskForGaps = nullptr;
2645   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2646     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2647     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2648   }
2649 
2650   // Vectorize the interleaved load group.
2651   if (isa<LoadInst>(Instr)) {
2652     // For each unroll part, create a wide load for the group.
2653     SmallVector<Value *, 2> NewLoads;
2654     for (unsigned Part = 0; Part < UF; Part++) {
2655       Instruction *NewLoad;
2656       if (BlockInMask || MaskForGaps) {
2657         assert(useMaskedInterleavedAccesses(*TTI) &&
2658                "masked interleaved groups are not allowed.");
2659         Value *GroupMask = MaskForGaps;
2660         if (BlockInMask) {
2661           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2662           Value *ShuffledMask = Builder.CreateShuffleVector(
2663               BlockInMaskPart,
2664               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2665               "interleaved.mask");
2666           GroupMask = MaskForGaps
2667                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2668                                                 MaskForGaps)
2669                           : ShuffledMask;
2670         }
2671         NewLoad =
2672             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2673                                      GroupMask, PoisonVec, "wide.masked.vec");
2674       }
2675       else
2676         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2677                                             Group->getAlign(), "wide.vec");
2678       Group->addMetadata(NewLoad);
2679       NewLoads.push_back(NewLoad);
2680     }
2681 
2682     // For each member in the group, shuffle out the appropriate data from the
2683     // wide loads.
2684     unsigned J = 0;
2685     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2686       Instruction *Member = Group->getMember(I);
2687 
2688       // Skip the gaps in the group.
2689       if (!Member)
2690         continue;
2691 
2692       auto StrideMask =
2693           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2694       for (unsigned Part = 0; Part < UF; Part++) {
2695         Value *StridedVec = Builder.CreateShuffleVector(
2696             NewLoads[Part], StrideMask, "strided.vec");
2697 
2698         // If this member has different type, cast the result type.
2699         if (Member->getType() != ScalarTy) {
2700           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2701           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2702           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2703         }
2704 
2705         if (Group->isReverse())
2706           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2707 
2708         State.set(VPDefs[J], StridedVec, Part);
2709       }
2710       ++J;
2711     }
2712     return;
2713   }
2714 
2715   // The sub vector type for current instruction.
2716   auto *SubVT = VectorType::get(ScalarTy, VF);
2717 
2718   // Vectorize the interleaved store group.
2719   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2720   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2721          "masked interleaved groups are not allowed.");
2722   assert((!MaskForGaps || !VF.isScalable()) &&
2723          "masking gaps for scalable vectors is not yet supported.");
2724   for (unsigned Part = 0; Part < UF; Part++) {
2725     // Collect the stored vector from each member.
2726     SmallVector<Value *, 4> StoredVecs;
2727     for (unsigned i = 0; i < InterleaveFactor; i++) {
2728       assert((Group->getMember(i) || MaskForGaps) &&
2729              "Fail to get a member from an interleaved store group");
2730       Instruction *Member = Group->getMember(i);
2731 
2732       // Skip the gaps in the group.
2733       if (!Member) {
2734         Value *Undef = PoisonValue::get(SubVT);
2735         StoredVecs.push_back(Undef);
2736         continue;
2737       }
2738 
2739       Value *StoredVec = State.get(StoredValues[i], Part);
2740 
2741       if (Group->isReverse())
2742         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2743 
2744       // If this member has different type, cast it to a unified type.
2745 
2746       if (StoredVec->getType() != SubVT)
2747         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2748 
2749       StoredVecs.push_back(StoredVec);
2750     }
2751 
2752     // Concatenate all vectors into a wide vector.
2753     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2754 
2755     // Interleave the elements in the wide vector.
2756     Value *IVec = Builder.CreateShuffleVector(
2757         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2758         "interleaved.vec");
2759 
2760     Instruction *NewStoreInstr;
2761     if (BlockInMask || MaskForGaps) {
2762       Value *GroupMask = MaskForGaps;
2763       if (BlockInMask) {
2764         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2765         Value *ShuffledMask = Builder.CreateShuffleVector(
2766             BlockInMaskPart,
2767             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2768             "interleaved.mask");
2769         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2770                                                       ShuffledMask, MaskForGaps)
2771                                 : ShuffledMask;
2772       }
2773       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2774                                                 Group->getAlign(), GroupMask);
2775     } else
2776       NewStoreInstr =
2777           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2778 
2779     Group->addMetadata(NewStoreInstr);
2780   }
2781 }
2782 
2783 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2784                                                VPReplicateRecipe *RepRecipe,
2785                                                const VPIteration &Instance,
2786                                                bool IfPredicateInstr,
2787                                                VPTransformState &State) {
2788   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2789 
2790   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2791   // the first lane and part.
2792   if (isa<NoAliasScopeDeclInst>(Instr))
2793     if (!Instance.isFirstIteration())
2794       return;
2795 
2796   // Does this instruction return a value ?
2797   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2798 
2799   Instruction *Cloned = Instr->clone();
2800   if (!IsVoidRetTy)
2801     Cloned->setName(Instr->getName() + ".cloned");
2802 
2803   // If the scalarized instruction contributes to the address computation of a
2804   // widen masked load/store which was in a basic block that needed predication
2805   // and is not predicated after vectorization, we can't propagate
2806   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2807   // instruction could feed a poison value to the base address of the widen
2808   // load/store.
2809   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2810     Cloned->dropPoisonGeneratingFlags();
2811 
2812   if (Instr->getDebugLoc())
2813     setDebugLocFromInst(Instr);
2814 
2815   // Replace the operands of the cloned instructions with their scalar
2816   // equivalents in the new loop.
2817   for (auto &I : enumerate(RepRecipe->operands())) {
2818     auto InputInstance = Instance;
2819     VPValue *Operand = I.value();
2820     VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand);
2821     if (OperandR && OperandR->isUniform())
2822       InputInstance.Lane = VPLane::getFirstLane();
2823     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
2824   }
2825   addNewMetadata(Cloned, Instr);
2826 
2827   // Place the cloned scalar in the new loop.
2828   State.Builder.Insert(Cloned);
2829 
2830   State.set(RepRecipe, Cloned, Instance);
2831 
2832   // If we just cloned a new assumption, add it the assumption cache.
2833   if (auto *II = dyn_cast<AssumeInst>(Cloned))
2834     AC->registerAssumption(II);
2835 
2836   // End if-block.
2837   if (IfPredicateInstr)
2838     PredicatedInstructions.push_back(Cloned);
2839 }
2840 
2841 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) {
2842   if (TripCount)
2843     return TripCount;
2844 
2845   assert(InsertBlock);
2846   IRBuilder<> Builder(InsertBlock->getTerminator());
2847   // Find the loop boundaries.
2848   ScalarEvolution *SE = PSE.getSE();
2849   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2850   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
2851          "Invalid loop count");
2852 
2853   Type *IdxTy = Legal->getWidestInductionType();
2854   assert(IdxTy && "No type for induction");
2855 
2856   // The exit count might have the type of i64 while the phi is i32. This can
2857   // happen if we have an induction variable that is sign extended before the
2858   // compare. The only way that we get a backedge taken count is that the
2859   // induction variable was signed and as such will not overflow. In such a case
2860   // truncation is legal.
2861   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2862       IdxTy->getPrimitiveSizeInBits())
2863     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2864   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2865 
2866   // Get the total trip count from the count by adding 1.
2867   const SCEV *ExitCount = SE->getAddExpr(
2868       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2869 
2870   const DataLayout &DL = InsertBlock->getModule()->getDataLayout();
2871 
2872   // Expand the trip count and place the new instructions in the preheader.
2873   // Notice that the pre-header does not change, only the loop body.
2874   SCEVExpander Exp(*SE, DL, "induction");
2875 
2876   // Count holds the overall loop count (N).
2877   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2878                                 InsertBlock->getTerminator());
2879 
2880   if (TripCount->getType()->isPointerTy())
2881     TripCount =
2882         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2883                                     InsertBlock->getTerminator());
2884 
2885   return TripCount;
2886 }
2887 
2888 Value *
2889 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) {
2890   if (VectorTripCount)
2891     return VectorTripCount;
2892 
2893   Value *TC = getOrCreateTripCount(InsertBlock);
2894   IRBuilder<> Builder(InsertBlock->getTerminator());
2895 
2896   Type *Ty = TC->getType();
2897   // This is where we can make the step a runtime constant.
2898   Value *Step = createStepForVF(Builder, Ty, VF, UF);
2899 
2900   // If the tail is to be folded by masking, round the number of iterations N
2901   // up to a multiple of Step instead of rounding down. This is done by first
2902   // adding Step-1 and then rounding down. Note that it's ok if this addition
2903   // overflows: the vector induction variable will eventually wrap to zero given
2904   // that it starts at zero and its Step is a power of two; the loop will then
2905   // exit, with the last early-exit vector comparison also producing all-true.
2906   // For scalable vectors the VF is not guaranteed to be a power of 2, but this
2907   // is accounted for in emitIterationCountCheck that adds an overflow check.
2908   if (Cost->foldTailByMasking()) {
2909     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
2910            "VF*UF must be a power of 2 when folding tail by masking");
2911     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
2912     TC = Builder.CreateAdd(
2913         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
2914   }
2915 
2916   // Now we need to generate the expression for the part of the loop that the
2917   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2918   // iterations are not required for correctness, or N - Step, otherwise. Step
2919   // is equal to the vectorization factor (number of SIMD elements) times the
2920   // unroll factor (number of SIMD instructions).
2921   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2922 
2923   // There are cases where we *must* run at least one iteration in the remainder
2924   // loop.  See the cost model for when this can happen.  If the step evenly
2925   // divides the trip count, we set the remainder to be equal to the step. If
2926   // the step does not evenly divide the trip count, no adjustment is necessary
2927   // since there will already be scalar iterations. Note that the minimum
2928   // iterations check ensures that N >= Step.
2929   if (Cost->requiresScalarEpilogue(VF)) {
2930     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2931     R = Builder.CreateSelect(IsZero, Step, R);
2932   }
2933 
2934   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2935 
2936   return VectorTripCount;
2937 }
2938 
2939 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2940                                                    const DataLayout &DL) {
2941   // Verify that V is a vector type with same number of elements as DstVTy.
2942   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
2943   unsigned VF = DstFVTy->getNumElements();
2944   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
2945   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2946   Type *SrcElemTy = SrcVecTy->getElementType();
2947   Type *DstElemTy = DstFVTy->getElementType();
2948   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2949          "Vector elements must have same size");
2950 
2951   // Do a direct cast if element types are castable.
2952   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2953     return Builder.CreateBitOrPointerCast(V, DstFVTy);
2954   }
2955   // V cannot be directly casted to desired vector type.
2956   // May happen when V is a floating point vector but DstVTy is a vector of
2957   // pointers or vice-versa. Handle this using a two-step bitcast using an
2958   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2959   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2960          "Only one type should be a pointer type");
2961   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2962          "Only one type should be a floating point type");
2963   Type *IntTy =
2964       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2965   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
2966   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2967   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
2968 }
2969 
2970 void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) {
2971   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
2972   // Reuse existing vector loop preheader for TC checks.
2973   // Note that new preheader block is generated for vector loop.
2974   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2975   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2976 
2977   // Generate code to check if the loop's trip count is less than VF * UF, or
2978   // equal to it in case a scalar epilogue is required; this implies that the
2979   // vector trip count is zero. This check also covers the case where adding one
2980   // to the backedge-taken count overflowed leading to an incorrect trip count
2981   // of zero. In this case we will also jump to the scalar loop.
2982   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
2983                                             : ICmpInst::ICMP_ULT;
2984 
2985   // If tail is to be folded, vector loop takes care of all iterations.
2986   Type *CountTy = Count->getType();
2987   Value *CheckMinIters = Builder.getFalse();
2988   Value *Step = createStepForVF(Builder, CountTy, VF, UF);
2989   if (!Cost->foldTailByMasking())
2990     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
2991   else if (VF.isScalable()) {
2992     // vscale is not necessarily a power-of-2, which means we cannot guarantee
2993     // an overflow to zero when updating induction variables and so an
2994     // additional overflow check is required before entering the vector loop.
2995 
2996     // Get the maximum unsigned value for the type.
2997     Value *MaxUIntTripCount =
2998         ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2999     Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
3000 
3001     // Don't execute the vector loop if (UMax - n) < (VF * UF).
3002     CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, Step);
3003   }
3004   // Create new preheader for vector loop.
3005   LoopVectorPreHeader =
3006       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3007                  "vector.ph");
3008 
3009   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3010                                DT->getNode(Bypass)->getIDom()) &&
3011          "TC check is expected to dominate Bypass");
3012 
3013   // Update dominator for Bypass & LoopExit (if needed).
3014   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3015   if (!Cost->requiresScalarEpilogue(VF))
3016     // If there is an epilogue which must run, there's no edge from the
3017     // middle block to exit blocks  and thus no need to update the immediate
3018     // dominator of the exit blocks.
3019     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3020 
3021   ReplaceInstWithInst(
3022       TCCheckBlock->getTerminator(),
3023       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3024   LoopBypassBlocks.push_back(TCCheckBlock);
3025 }
3026 
3027 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) {
3028 
3029   BasicBlock *const SCEVCheckBlock =
3030       RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock);
3031   if (!SCEVCheckBlock)
3032     return nullptr;
3033 
3034   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3035            (OptForSizeBasedOnProfile &&
3036             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3037          "Cannot SCEV check stride or overflow when optimizing for size");
3038 
3039 
3040   // Update dominator only if this is first RT check.
3041   if (LoopBypassBlocks.empty()) {
3042     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3043     if (!Cost->requiresScalarEpilogue(VF))
3044       // If there is an epilogue which must run, there's no edge from the
3045       // middle block to exit blocks  and thus no need to update the immediate
3046       // dominator of the exit blocks.
3047       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3048   }
3049 
3050   LoopBypassBlocks.push_back(SCEVCheckBlock);
3051   AddedSafetyChecks = true;
3052   return SCEVCheckBlock;
3053 }
3054 
3055 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) {
3056   // VPlan-native path does not do any analysis for runtime checks currently.
3057   if (EnableVPlanNativePath)
3058     return nullptr;
3059 
3060   BasicBlock *const MemCheckBlock =
3061       RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader);
3062 
3063   // Check if we generated code that checks in runtime if arrays overlap. We put
3064   // the checks into a separate block to make the more common case of few
3065   // elements faster.
3066   if (!MemCheckBlock)
3067     return nullptr;
3068 
3069   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3070     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3071            "Cannot emit memory checks when optimizing for size, unless forced "
3072            "to vectorize.");
3073     ORE->emit([&]() {
3074       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3075                                         OrigLoop->getStartLoc(),
3076                                         OrigLoop->getHeader())
3077              << "Code-size may be reduced by not forcing "
3078                 "vectorization, or by source-code modifications "
3079                 "eliminating the need for runtime checks "
3080                 "(e.g., adding 'restrict').";
3081     });
3082   }
3083 
3084   LoopBypassBlocks.push_back(MemCheckBlock);
3085 
3086   AddedSafetyChecks = true;
3087 
3088   // Only use noalias metadata when using memory checks guaranteeing no overlap
3089   // across all iterations.
3090   if (!Legal->getLAI()->getRuntimePointerChecking()->getDiffChecks()) {
3091     //  We currently don't use LoopVersioning for the actual loop cloning but we
3092     //  still use it to add the noalias metadata.
3093     LVer = std::make_unique<LoopVersioning>(
3094         *Legal->getLAI(),
3095         Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3096         DT, PSE.getSE());
3097     LVer->prepareNoAliasMetadata();
3098   }
3099   return MemCheckBlock;
3100 }
3101 
3102 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3103   LoopScalarBody = OrigLoop->getHeader();
3104   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3105   assert(LoopVectorPreHeader && "Invalid loop structure");
3106   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3107   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3108          "multiple exit loop without required epilogue?");
3109 
3110   LoopMiddleBlock =
3111       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3112                  LI, nullptr, Twine(Prefix) + "middle.block");
3113   LoopScalarPreHeader =
3114       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3115                  nullptr, Twine(Prefix) + "scalar.ph");
3116 
3117   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3118 
3119   // Set up the middle block terminator.  Two cases:
3120   // 1) If we know that we must execute the scalar epilogue, emit an
3121   //    unconditional branch.
3122   // 2) Otherwise, we must have a single unique exit block (due to how we
3123   //    implement the multiple exit case).  In this case, set up a conditonal
3124   //    branch from the middle block to the loop scalar preheader, and the
3125   //    exit block.  completeLoopSkeleton will update the condition to use an
3126   //    iteration check, if required to decide whether to execute the remainder.
3127   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3128     BranchInst::Create(LoopScalarPreHeader) :
3129     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3130                        Builder.getTrue());
3131   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3132   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3133 
3134   // Update dominator for loop exit. During skeleton creation, only the vector
3135   // pre-header and the middle block are created. The vector loop is entirely
3136   // created during VPlan exection.
3137   if (!Cost->requiresScalarEpilogue(VF))
3138     // If there is an epilogue which must run, there's no edge from the
3139     // middle block to exit blocks  and thus no need to update the immediate
3140     // dominator of the exit blocks.
3141     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3142 }
3143 
3144 void InnerLoopVectorizer::createInductionResumeValues(
3145     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3146   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3147           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3148          "Inconsistent information about additional bypass.");
3149 
3150   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3151   assert(VectorTripCount && "Expected valid arguments");
3152   // We are going to resume the execution of the scalar loop.
3153   // Go over all of the induction variables that we found and fix the
3154   // PHIs that are left in the scalar version of the loop.
3155   // The starting values of PHI nodes depend on the counter of the last
3156   // iteration in the vectorized loop.
3157   // If we come from a bypass edge then we need to start from the original
3158   // start value.
3159   Instruction *OldInduction = Legal->getPrimaryInduction();
3160   for (auto &InductionEntry : Legal->getInductionVars()) {
3161     PHINode *OrigPhi = InductionEntry.first;
3162     InductionDescriptor II = InductionEntry.second;
3163 
3164     // Create phi nodes to merge from the  backedge-taken check block.
3165     PHINode *BCResumeVal =
3166         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3167                         LoopScalarPreHeader->getTerminator());
3168     // Copy original phi DL over to the new one.
3169     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3170     Value *&EndValue = IVEndValues[OrigPhi];
3171     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3172     if (OrigPhi == OldInduction) {
3173       // We know what the end value is.
3174       EndValue = VectorTripCount;
3175     } else {
3176       IRBuilder<> B(LoopVectorPreHeader->getTerminator());
3177 
3178       // Fast-math-flags propagate from the original induction instruction.
3179       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3180         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3181 
3182       Type *StepType = II.getStep()->getType();
3183       Instruction::CastOps CastOp =
3184           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3185       Value *VTC = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.vtc");
3186       Value *Step =
3187           CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3188       EndValue = emitTransformedIndex(B, VTC, II.getStartValue(), Step, II);
3189       EndValue->setName("ind.end");
3190 
3191       // Compute the end value for the additional bypass (if applicable).
3192       if (AdditionalBypass.first) {
3193         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3194         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3195                                          StepType, true);
3196         Value *Step =
3197             CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3198         VTC =
3199             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.vtc");
3200         EndValueFromAdditionalBypass =
3201             emitTransformedIndex(B, VTC, II.getStartValue(), Step, II);
3202         EndValueFromAdditionalBypass->setName("ind.end");
3203       }
3204     }
3205     // The new PHI merges the original incoming value, in case of a bypass,
3206     // or the value at the end of the vectorized loop.
3207     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3208 
3209     // Fix the scalar body counter (PHI node).
3210     // The old induction's phi node in the scalar body needs the truncated
3211     // value.
3212     for (BasicBlock *BB : LoopBypassBlocks)
3213       BCResumeVal->addIncoming(II.getStartValue(), BB);
3214 
3215     if (AdditionalBypass.first)
3216       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3217                                             EndValueFromAdditionalBypass);
3218 
3219     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3220   }
3221 }
3222 
3223 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) {
3224   // The trip counts should be cached by now.
3225   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
3226   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3227 
3228   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3229 
3230   // Add a check in the middle block to see if we have completed
3231   // all of the iterations in the first vector loop.  Three cases:
3232   // 1) If we require a scalar epilogue, there is no conditional branch as
3233   //    we unconditionally branch to the scalar preheader.  Do nothing.
3234   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3235   //    Thus if tail is to be folded, we know we don't need to run the
3236   //    remainder and we can use the previous value for the condition (true).
3237   // 3) Otherwise, construct a runtime check.
3238   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3239     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3240                                         Count, VectorTripCount, "cmp.n",
3241                                         LoopMiddleBlock->getTerminator());
3242 
3243     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3244     // of the corresponding compare because they may have ended up with
3245     // different line numbers and we want to avoid awkward line stepping while
3246     // debugging. Eg. if the compare has got a line number inside the loop.
3247     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3248     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3249   }
3250 
3251 #ifdef EXPENSIVE_CHECKS
3252   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3253 #endif
3254 
3255   return LoopVectorPreHeader;
3256 }
3257 
3258 std::pair<BasicBlock *, Value *>
3259 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3260   /*
3261    In this function we generate a new loop. The new loop will contain
3262    the vectorized instructions while the old loop will continue to run the
3263    scalar remainder.
3264 
3265        [ ] <-- loop iteration number check.
3266     /   |
3267    /    v
3268   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3269   |  /  |
3270   | /   v
3271   ||   [ ]     <-- vector pre header.
3272   |/    |
3273   |     v
3274   |    [  ] \
3275   |    [  ]_|   <-- vector loop (created during VPlan execution).
3276   |     |
3277   |     v
3278   \   -[ ]   <--- middle-block.
3279    \/   |
3280    /\   v
3281    | ->[ ]     <--- new preheader.
3282    |    |
3283  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3284    |   [ ] \
3285    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3286     \   |
3287      \  v
3288       >[ ]     <-- exit block(s).
3289    ...
3290    */
3291 
3292   // Get the metadata of the original loop before it gets modified.
3293   MDNode *OrigLoopID = OrigLoop->getLoopID();
3294 
3295   // Workaround!  Compute the trip count of the original loop and cache it
3296   // before we start modifying the CFG.  This code has a systemic problem
3297   // wherein it tries to run analysis over partially constructed IR; this is
3298   // wrong, and not simply for SCEV.  The trip count of the original loop
3299   // simply happens to be prone to hitting this in practice.  In theory, we
3300   // can hit the same issue for any SCEV, or ValueTracking query done during
3301   // mutation.  See PR49900.
3302   getOrCreateTripCount(OrigLoop->getLoopPreheader());
3303 
3304   // Create an empty vector loop, and prepare basic blocks for the runtime
3305   // checks.
3306   createVectorLoopSkeleton("");
3307 
3308   // Now, compare the new count to zero. If it is zero skip the vector loop and
3309   // jump to the scalar loop. This check also covers the case where the
3310   // backedge-taken count is uint##_max: adding one to it will overflow leading
3311   // to an incorrect trip count of zero. In this (rare) case we will also jump
3312   // to the scalar loop.
3313   emitIterationCountCheck(LoopScalarPreHeader);
3314 
3315   // Generate the code to check any assumptions that we've made for SCEV
3316   // expressions.
3317   emitSCEVChecks(LoopScalarPreHeader);
3318 
3319   // Generate the code that checks in runtime if arrays overlap. We put the
3320   // checks into a separate block to make the more common case of few elements
3321   // faster.
3322   emitMemRuntimeChecks(LoopScalarPreHeader);
3323 
3324   // Emit phis for the new starting index of the scalar loop.
3325   createInductionResumeValues();
3326 
3327   return {completeLoopSkeleton(OrigLoopID), nullptr};
3328 }
3329 
3330 // Fix up external users of the induction variable. At this point, we are
3331 // in LCSSA form, with all external PHIs that use the IV having one input value,
3332 // coming from the remainder loop. We need those PHIs to also have a correct
3333 // value for the IV when arriving directly from the middle block.
3334 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3335                                        const InductionDescriptor &II,
3336                                        Value *VectorTripCount, Value *EndValue,
3337                                        BasicBlock *MiddleBlock,
3338                                        BasicBlock *VectorHeader) {
3339   // There are two kinds of external IV usages - those that use the value
3340   // computed in the last iteration (the PHI) and those that use the penultimate
3341   // value (the value that feeds into the phi from the loop latch).
3342   // We allow both, but they, obviously, have different values.
3343 
3344   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3345 
3346   DenseMap<Value *, Value *> MissingVals;
3347 
3348   // An external user of the last iteration's value should see the value that
3349   // the remainder loop uses to initialize its own IV.
3350   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3351   for (User *U : PostInc->users()) {
3352     Instruction *UI = cast<Instruction>(U);
3353     if (!OrigLoop->contains(UI)) {
3354       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3355       MissingVals[UI] = EndValue;
3356     }
3357   }
3358 
3359   // An external user of the penultimate value need to see EndValue - Step.
3360   // The simplest way to get this is to recompute it from the constituent SCEVs,
3361   // that is Start + (Step * (CRD - 1)).
3362   for (User *U : OrigPhi->users()) {
3363     auto *UI = cast<Instruction>(U);
3364     if (!OrigLoop->contains(UI)) {
3365       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3366 
3367       IRBuilder<> B(MiddleBlock->getTerminator());
3368 
3369       // Fast-math-flags propagate from the original induction instruction.
3370       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3371         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3372 
3373       Value *CountMinusOne = B.CreateSub(
3374           VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1));
3375       Value *CMO =
3376           !II.getStep()->getType()->isIntegerTy()
3377               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3378                              II.getStep()->getType())
3379               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3380       CMO->setName("cast.cmo");
3381 
3382       Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
3383                                     VectorHeader->getTerminator());
3384       Value *Escape =
3385           emitTransformedIndex(B, CMO, II.getStartValue(), Step, II);
3386       Escape->setName("ind.escape");
3387       MissingVals[UI] = Escape;
3388     }
3389   }
3390 
3391   for (auto &I : MissingVals) {
3392     PHINode *PHI = cast<PHINode>(I.first);
3393     // One corner case we have to handle is two IVs "chasing" each-other,
3394     // that is %IV2 = phi [...], [ %IV1, %latch ]
3395     // In this case, if IV1 has an external use, we need to avoid adding both
3396     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3397     // don't already have an incoming value for the middle block.
3398     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3399       PHI->addIncoming(I.second, MiddleBlock);
3400   }
3401 }
3402 
3403 namespace {
3404 
3405 struct CSEDenseMapInfo {
3406   static bool canHandle(const Instruction *I) {
3407     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3408            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3409   }
3410 
3411   static inline Instruction *getEmptyKey() {
3412     return DenseMapInfo<Instruction *>::getEmptyKey();
3413   }
3414 
3415   static inline Instruction *getTombstoneKey() {
3416     return DenseMapInfo<Instruction *>::getTombstoneKey();
3417   }
3418 
3419   static unsigned getHashValue(const Instruction *I) {
3420     assert(canHandle(I) && "Unknown instruction!");
3421     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3422                                                            I->value_op_end()));
3423   }
3424 
3425   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3426     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3427         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3428       return LHS == RHS;
3429     return LHS->isIdenticalTo(RHS);
3430   }
3431 };
3432 
3433 } // end anonymous namespace
3434 
3435 ///Perform cse of induction variable instructions.
3436 static void cse(BasicBlock *BB) {
3437   // Perform simple cse.
3438   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3439   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3440     if (!CSEDenseMapInfo::canHandle(&In))
3441       continue;
3442 
3443     // Check if we can replace this instruction with any of the
3444     // visited instructions.
3445     if (Instruction *V = CSEMap.lookup(&In)) {
3446       In.replaceAllUsesWith(V);
3447       In.eraseFromParent();
3448       continue;
3449     }
3450 
3451     CSEMap[&In] = &In;
3452   }
3453 }
3454 
3455 InstructionCost
3456 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3457                                               bool &NeedToScalarize) const {
3458   Function *F = CI->getCalledFunction();
3459   Type *ScalarRetTy = CI->getType();
3460   SmallVector<Type *, 4> Tys, ScalarTys;
3461   for (auto &ArgOp : CI->args())
3462     ScalarTys.push_back(ArgOp->getType());
3463 
3464   // Estimate cost of scalarized vector call. The source operands are assumed
3465   // to be vectors, so we need to extract individual elements from there,
3466   // execute VF scalar calls, and then gather the result into the vector return
3467   // value.
3468   InstructionCost ScalarCallCost =
3469       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3470   if (VF.isScalar())
3471     return ScalarCallCost;
3472 
3473   // Compute corresponding vector type for return value and arguments.
3474   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3475   for (Type *ScalarTy : ScalarTys)
3476     Tys.push_back(ToVectorTy(ScalarTy, VF));
3477 
3478   // Compute costs of unpacking argument values for the scalar calls and
3479   // packing the return values to a vector.
3480   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3481 
3482   InstructionCost Cost =
3483       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3484 
3485   // If we can't emit a vector call for this function, then the currently found
3486   // cost is the cost we need to return.
3487   NeedToScalarize = true;
3488   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3489   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3490 
3491   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3492     return Cost;
3493 
3494   // If the corresponding vector cost is cheaper, return its cost.
3495   InstructionCost VectorCallCost =
3496       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3497   if (VectorCallCost < Cost) {
3498     NeedToScalarize = false;
3499     Cost = VectorCallCost;
3500   }
3501   return Cost;
3502 }
3503 
3504 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3505   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3506     return Elt;
3507   return VectorType::get(Elt, VF);
3508 }
3509 
3510 InstructionCost
3511 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3512                                                    ElementCount VF) const {
3513   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3514   assert(ID && "Expected intrinsic call!");
3515   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3516   FastMathFlags FMF;
3517   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3518     FMF = FPMO->getFastMathFlags();
3519 
3520   SmallVector<const Value *> Arguments(CI->args());
3521   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3522   SmallVector<Type *> ParamTys;
3523   std::transform(FTy->param_begin(), FTy->param_end(),
3524                  std::back_inserter(ParamTys),
3525                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3526 
3527   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3528                                     dyn_cast<IntrinsicInst>(CI));
3529   return TTI.getIntrinsicInstrCost(CostAttrs,
3530                                    TargetTransformInfo::TCK_RecipThroughput);
3531 }
3532 
3533 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3534   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3535   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3536   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3537 }
3538 
3539 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3540   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3541   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3542   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3543 }
3544 
3545 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3546   // For every instruction `I` in MinBWs, truncate the operands, create a
3547   // truncated version of `I` and reextend its result. InstCombine runs
3548   // later and will remove any ext/trunc pairs.
3549   SmallPtrSet<Value *, 4> Erased;
3550   for (const auto &KV : Cost->getMinimalBitwidths()) {
3551     // If the value wasn't vectorized, we must maintain the original scalar
3552     // type. The absence of the value from State indicates that it
3553     // wasn't vectorized.
3554     // FIXME: Should not rely on getVPValue at this point.
3555     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3556     if (!State.hasAnyVectorValue(Def))
3557       continue;
3558     for (unsigned Part = 0; Part < UF; ++Part) {
3559       Value *I = State.get(Def, Part);
3560       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3561         continue;
3562       Type *OriginalTy = I->getType();
3563       Type *ScalarTruncatedTy =
3564           IntegerType::get(OriginalTy->getContext(), KV.second);
3565       auto *TruncatedTy = VectorType::get(
3566           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3567       if (TruncatedTy == OriginalTy)
3568         continue;
3569 
3570       IRBuilder<> B(cast<Instruction>(I));
3571       auto ShrinkOperand = [&](Value *V) -> Value * {
3572         if (auto *ZI = dyn_cast<ZExtInst>(V))
3573           if (ZI->getSrcTy() == TruncatedTy)
3574             return ZI->getOperand(0);
3575         return B.CreateZExtOrTrunc(V, TruncatedTy);
3576       };
3577 
3578       // The actual instruction modification depends on the instruction type,
3579       // unfortunately.
3580       Value *NewI = nullptr;
3581       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3582         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3583                              ShrinkOperand(BO->getOperand(1)));
3584 
3585         // Any wrapping introduced by shrinking this operation shouldn't be
3586         // considered undefined behavior. So, we can't unconditionally copy
3587         // arithmetic wrapping flags to NewI.
3588         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3589       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3590         NewI =
3591             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3592                          ShrinkOperand(CI->getOperand(1)));
3593       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3594         NewI = B.CreateSelect(SI->getCondition(),
3595                               ShrinkOperand(SI->getTrueValue()),
3596                               ShrinkOperand(SI->getFalseValue()));
3597       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3598         switch (CI->getOpcode()) {
3599         default:
3600           llvm_unreachable("Unhandled cast!");
3601         case Instruction::Trunc:
3602           NewI = ShrinkOperand(CI->getOperand(0));
3603           break;
3604         case Instruction::SExt:
3605           NewI = B.CreateSExtOrTrunc(
3606               CI->getOperand(0),
3607               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3608           break;
3609         case Instruction::ZExt:
3610           NewI = B.CreateZExtOrTrunc(
3611               CI->getOperand(0),
3612               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3613           break;
3614         }
3615       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3616         auto Elements0 =
3617             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3618         auto *O0 = B.CreateZExtOrTrunc(
3619             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3620         auto Elements1 =
3621             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3622         auto *O1 = B.CreateZExtOrTrunc(
3623             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3624 
3625         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3626       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3627         // Don't do anything with the operands, just extend the result.
3628         continue;
3629       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3630         auto Elements =
3631             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3632         auto *O0 = B.CreateZExtOrTrunc(
3633             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3634         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3635         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3636       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3637         auto Elements =
3638             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3639         auto *O0 = B.CreateZExtOrTrunc(
3640             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3641         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3642       } else {
3643         // If we don't know what to do, be conservative and don't do anything.
3644         continue;
3645       }
3646 
3647       // Lastly, extend the result.
3648       NewI->takeName(cast<Instruction>(I));
3649       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3650       I->replaceAllUsesWith(Res);
3651       cast<Instruction>(I)->eraseFromParent();
3652       Erased.insert(I);
3653       State.reset(Def, Res, Part);
3654     }
3655   }
3656 
3657   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3658   for (const auto &KV : Cost->getMinimalBitwidths()) {
3659     // If the value wasn't vectorized, we must maintain the original scalar
3660     // type. The absence of the value from State indicates that it
3661     // wasn't vectorized.
3662     // FIXME: Should not rely on getVPValue at this point.
3663     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3664     if (!State.hasAnyVectorValue(Def))
3665       continue;
3666     for (unsigned Part = 0; Part < UF; ++Part) {
3667       Value *I = State.get(Def, Part);
3668       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3669       if (Inst && Inst->use_empty()) {
3670         Value *NewI = Inst->getOperand(0);
3671         Inst->eraseFromParent();
3672         State.reset(Def, NewI, Part);
3673       }
3674     }
3675   }
3676 }
3677 
3678 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State,
3679                                             VPlan &Plan) {
3680   // Insert truncates and extends for any truncated instructions as hints to
3681   // InstCombine.
3682   if (VF.isVector())
3683     truncateToMinimalBitwidths(State);
3684 
3685   // Fix widened non-induction PHIs by setting up the PHI operands.
3686   if (OrigPHIsToFix.size()) {
3687     assert(EnableVPlanNativePath &&
3688            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3689     fixNonInductionPHIs(State);
3690   }
3691 
3692   // At this point every instruction in the original loop is widened to a
3693   // vector form. Now we need to fix the recurrences in the loop. These PHI
3694   // nodes are currently empty because we did not want to introduce cycles.
3695   // This is the second stage of vectorizing recurrences.
3696   fixCrossIterationPHIs(State);
3697 
3698   // Forget the original basic block.
3699   PSE.getSE()->forgetLoop(OrigLoop);
3700 
3701   VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitBasicBlock();
3702   Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]);
3703   // If we inserted an edge from the middle block to the unique exit block,
3704   // update uses outside the loop (phis) to account for the newly inserted
3705   // edge.
3706   if (!Cost->requiresScalarEpilogue(VF)) {
3707     // Fix-up external users of the induction variables.
3708     for (auto &Entry : Legal->getInductionVars())
3709       fixupIVUsers(Entry.first, Entry.second,
3710                    getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()),
3711                    IVEndValues[Entry.first], LoopMiddleBlock,
3712                    VectorLoop->getHeader());
3713 
3714     fixLCSSAPHIs(State);
3715   }
3716 
3717   for (Instruction *PI : PredicatedInstructions)
3718     sinkScalarOperands(&*PI);
3719 
3720   // Remove redundant induction instructions.
3721   cse(VectorLoop->getHeader());
3722 
3723   // Set/update profile weights for the vector and remainder loops as original
3724   // loop iterations are now distributed among them. Note that original loop
3725   // represented by LoopScalarBody becomes remainder loop after vectorization.
3726   //
3727   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3728   // end up getting slightly roughened result but that should be OK since
3729   // profile is not inherently precise anyway. Note also possible bypass of
3730   // vector code caused by legality checks is ignored, assigning all the weight
3731   // to the vector loop, optimistically.
3732   //
3733   // For scalable vectorization we can't know at compile time how many iterations
3734   // of the loop are handled in one vector iteration, so instead assume a pessimistic
3735   // vscale of '1'.
3736   setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop,
3737                                LI->getLoopFor(LoopScalarBody),
3738                                VF.getKnownMinValue() * UF);
3739 }
3740 
3741 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
3742   // In order to support recurrences we need to be able to vectorize Phi nodes.
3743   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3744   // stage #2: We now need to fix the recurrences by adding incoming edges to
3745   // the currently empty PHI nodes. At this point every instruction in the
3746   // original loop is widened to a vector form so we can use them to construct
3747   // the incoming edges.
3748   VPBasicBlock *Header =
3749       State.Plan->getVectorLoopRegion()->getEntryBasicBlock();
3750   for (VPRecipeBase &R : Header->phis()) {
3751     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
3752       fixReduction(ReductionPhi, State);
3753     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
3754       fixFirstOrderRecurrence(FOR, State);
3755   }
3756 }
3757 
3758 void InnerLoopVectorizer::fixFirstOrderRecurrence(
3759     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
3760   // This is the second phase of vectorizing first-order recurrences. An
3761   // overview of the transformation is described below. Suppose we have the
3762   // following loop.
3763   //
3764   //   for (int i = 0; i < n; ++i)
3765   //     b[i] = a[i] - a[i - 1];
3766   //
3767   // There is a first-order recurrence on "a". For this loop, the shorthand
3768   // scalar IR looks like:
3769   //
3770   //   scalar.ph:
3771   //     s_init = a[-1]
3772   //     br scalar.body
3773   //
3774   //   scalar.body:
3775   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3776   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3777   //     s2 = a[i]
3778   //     b[i] = s2 - s1
3779   //     br cond, scalar.body, ...
3780   //
3781   // In this example, s1 is a recurrence because it's value depends on the
3782   // previous iteration. In the first phase of vectorization, we created a
3783   // vector phi v1 for s1. We now complete the vectorization and produce the
3784   // shorthand vector IR shown below (for VF = 4, UF = 1).
3785   //
3786   //   vector.ph:
3787   //     v_init = vector(..., ..., ..., a[-1])
3788   //     br vector.body
3789   //
3790   //   vector.body
3791   //     i = phi [0, vector.ph], [i+4, vector.body]
3792   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3793   //     v2 = a[i, i+1, i+2, i+3];
3794   //     v3 = vector(v1(3), v2(0, 1, 2))
3795   //     b[i, i+1, i+2, i+3] = v2 - v3
3796   //     br cond, vector.body, middle.block
3797   //
3798   //   middle.block:
3799   //     x = v2(3)
3800   //     br scalar.ph
3801   //
3802   //   scalar.ph:
3803   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3804   //     br scalar.body
3805   //
3806   // After execution completes the vector loop, we extract the next value of
3807   // the recurrence (x) to use as the initial value in the scalar loop.
3808 
3809   // Extract the last vector element in the middle block. This will be the
3810   // initial value for the recurrence when jumping to the scalar loop.
3811   VPValue *PreviousDef = PhiR->getBackedgeValue();
3812   Value *Incoming = State.get(PreviousDef, UF - 1);
3813   auto *ExtractForScalar = Incoming;
3814   auto *IdxTy = Builder.getInt32Ty();
3815   if (VF.isVector()) {
3816     auto *One = ConstantInt::get(IdxTy, 1);
3817     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3818     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3819     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
3820     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
3821                                                     "vector.recur.extract");
3822   }
3823   // Extract the second last element in the middle block if the
3824   // Phi is used outside the loop. We need to extract the phi itself
3825   // and not the last element (the phi update in the current iteration). This
3826   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3827   // when the scalar loop is not run at all.
3828   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3829   if (VF.isVector()) {
3830     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3831     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
3832     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3833         Incoming, Idx, "vector.recur.extract.for.phi");
3834   } else if (UF > 1)
3835     // When loop is unrolled without vectorizing, initialize
3836     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
3837     // of `Incoming`. This is analogous to the vectorized case above: extracting
3838     // the second last element when VF > 1.
3839     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
3840 
3841   // Fix the initial value of the original recurrence in the scalar loop.
3842   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3843   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
3844   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3845   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
3846   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3847     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3848     Start->addIncoming(Incoming, BB);
3849   }
3850 
3851   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3852   Phi->setName("scalar.recur");
3853 
3854   // Finally, fix users of the recurrence outside the loop. The users will need
3855   // either the last value of the scalar recurrence or the last value of the
3856   // vector recurrence we extracted in the middle block. Since the loop is in
3857   // LCSSA form, we just need to find all the phi nodes for the original scalar
3858   // recurrence in the exit block, and then add an edge for the middle block.
3859   // Note that LCSSA does not imply single entry when the original scalar loop
3860   // had multiple exiting edges (as we always run the last iteration in the
3861   // scalar epilogue); in that case, there is no edge from middle to exit and
3862   // and thus no phis which needed updated.
3863   if (!Cost->requiresScalarEpilogue(VF))
3864     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
3865       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
3866         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3867 }
3868 
3869 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
3870                                        VPTransformState &State) {
3871   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
3872   // Get it's reduction variable descriptor.
3873   assert(Legal->isReductionVariable(OrigPhi) &&
3874          "Unable to find the reduction variable");
3875   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
3876 
3877   RecurKind RK = RdxDesc.getRecurrenceKind();
3878   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3879   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3880   setDebugLocFromInst(ReductionStartValue);
3881 
3882   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
3883   // This is the vector-clone of the value that leaves the loop.
3884   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
3885 
3886   // Wrap flags are in general invalid after vectorization, clear them.
3887   clearReductionWrapFlags(PhiR, State);
3888 
3889   // Before each round, move the insertion point right between
3890   // the PHIs and the values we are going to write.
3891   // This allows us to write both PHINodes and the extractelement
3892   // instructions.
3893   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3894 
3895   setDebugLocFromInst(LoopExitInst);
3896 
3897   Type *PhiTy = OrigPhi->getType();
3898 
3899   VPBasicBlock *LatchVPBB =
3900       PhiR->getParent()->getEnclosingLoopRegion()->getExitBasicBlock();
3901   BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB];
3902   // If tail is folded by masking, the vector value to leave the loop should be
3903   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3904   // instead of the former. For an inloop reduction the reduction will already
3905   // be predicated, and does not need to be handled here.
3906   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
3907     for (unsigned Part = 0; Part < UF; ++Part) {
3908       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
3909       Value *Sel = nullptr;
3910       for (User *U : VecLoopExitInst->users()) {
3911         if (isa<SelectInst>(U)) {
3912           assert(!Sel && "Reduction exit feeding two selects");
3913           Sel = U;
3914         } else
3915           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3916       }
3917       assert(Sel && "Reduction exit feeds no select");
3918       State.reset(LoopExitInstDef, Sel, Part);
3919 
3920       // If the target can create a predicated operator for the reduction at no
3921       // extra cost in the loop (for example a predicated vadd), it can be
3922       // cheaper for the select to remain in the loop than be sunk out of it,
3923       // and so use the select value for the phi instead of the old
3924       // LoopExitValue.
3925       if (PreferPredicatedReductionSelect ||
3926           TTI->preferPredicatedReductionSelect(
3927               RdxDesc.getOpcode(), PhiTy,
3928               TargetTransformInfo::ReductionFlags())) {
3929         auto *VecRdxPhi =
3930             cast<PHINode>(State.get(PhiR, Part));
3931         VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel);
3932       }
3933     }
3934   }
3935 
3936   // If the vector reduction can be performed in a smaller type, we truncate
3937   // then extend the loop exit value to enable InstCombine to evaluate the
3938   // entire expression in the smaller type.
3939   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
3940     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
3941     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3942     Builder.SetInsertPoint(VectorLoopLatch->getTerminator());
3943     VectorParts RdxParts(UF);
3944     for (unsigned Part = 0; Part < UF; ++Part) {
3945       RdxParts[Part] = State.get(LoopExitInstDef, Part);
3946       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3947       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3948                                         : Builder.CreateZExt(Trunc, VecTy);
3949       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
3950         if (U != Trunc) {
3951           U->replaceUsesOfWith(RdxParts[Part], Extnd);
3952           RdxParts[Part] = Extnd;
3953         }
3954     }
3955     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3956     for (unsigned Part = 0; Part < UF; ++Part) {
3957       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3958       State.reset(LoopExitInstDef, RdxParts[Part], Part);
3959     }
3960   }
3961 
3962   // Reduce all of the unrolled parts into a single vector.
3963   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
3964   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
3965 
3966   // The middle block terminator has already been assigned a DebugLoc here (the
3967   // OrigLoop's single latch terminator). We want the whole middle block to
3968   // appear to execute on this line because: (a) it is all compiler generated,
3969   // (b) these instructions are always executed after evaluating the latch
3970   // conditional branch, and (c) other passes may add new predecessors which
3971   // terminate on this line. This is the easiest way to ensure we don't
3972   // accidentally cause an extra step back into the loop while debugging.
3973   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
3974   if (PhiR->isOrdered())
3975     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
3976   else {
3977     // Floating-point operations should have some FMF to enable the reduction.
3978     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
3979     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
3980     for (unsigned Part = 1; Part < UF; ++Part) {
3981       Value *RdxPart = State.get(LoopExitInstDef, Part);
3982       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
3983         ReducedPartRdx = Builder.CreateBinOp(
3984             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
3985       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
3986         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
3987                                            ReducedPartRdx, RdxPart);
3988       else
3989         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
3990     }
3991   }
3992 
3993   // Create the reduction after the loop. Note that inloop reductions create the
3994   // target reduction in the loop using a Reduction recipe.
3995   if (VF.isVector() && !PhiR->isInLoop()) {
3996     ReducedPartRdx =
3997         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
3998     // If the reduction can be performed in a smaller type, we need to extend
3999     // the reduction to the wider type before we branch to the original loop.
4000     if (PhiTy != RdxDesc.getRecurrenceType())
4001       ReducedPartRdx = RdxDesc.isSigned()
4002                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4003                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4004   }
4005 
4006   PHINode *ResumePhi =
4007       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
4008 
4009   // Create a phi node that merges control-flow from the backedge-taken check
4010   // block and the middle block.
4011   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4012                                         LoopScalarPreHeader->getTerminator());
4013 
4014   // If we are fixing reductions in the epilogue loop then we should already
4015   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
4016   // we carry over the incoming values correctly.
4017   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
4018     if (Incoming == LoopMiddleBlock)
4019       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
4020     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
4021       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
4022                               Incoming);
4023     else
4024       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
4025   }
4026 
4027   // Set the resume value for this reduction
4028   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
4029 
4030   // If there were stores of the reduction value to a uniform memory address
4031   // inside the loop, create the final store here.
4032   if (StoreInst *SI = RdxDesc.IntermediateStore) {
4033     StoreInst *NewSI =
4034         Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand());
4035     propagateMetadata(NewSI, SI);
4036 
4037     // If the reduction value is used in other places,
4038     // then let the code below create PHI's for that.
4039   }
4040 
4041   // Now, we need to fix the users of the reduction variable
4042   // inside and outside of the scalar remainder loop.
4043 
4044   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4045   // in the exit blocks.  See comment on analogous loop in
4046   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4047   if (!Cost->requiresScalarEpilogue(VF))
4048     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4049       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4050         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4051 
4052   // Fix the scalar loop reduction variable with the incoming reduction sum
4053   // from the vector body and from the backedge value.
4054   int IncomingEdgeBlockIdx =
4055       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4056   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4057   // Pick the other block.
4058   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4059   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4060   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4061 }
4062 
4063 void InnerLoopVectorizer::clearReductionWrapFlags(VPReductionPHIRecipe *PhiR,
4064                                                   VPTransformState &State) {
4065   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4066   RecurKind RK = RdxDesc.getRecurrenceKind();
4067   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4068     return;
4069 
4070   SmallVector<VPValue *, 8> Worklist;
4071   SmallPtrSet<VPValue *, 8> Visited;
4072   Worklist.push_back(PhiR);
4073   Visited.insert(PhiR);
4074 
4075   while (!Worklist.empty()) {
4076     VPValue *Cur = Worklist.pop_back_val();
4077     for (unsigned Part = 0; Part < UF; ++Part) {
4078       Value *V = State.get(Cur, Part);
4079       if (!isa<OverflowingBinaryOperator>(V))
4080         break;
4081       cast<Instruction>(V)->dropPoisonGeneratingFlags();
4082       }
4083 
4084       for (VPUser *U : Cur->users()) {
4085         auto *UserRecipe = dyn_cast<VPRecipeBase>(U);
4086         if (!UserRecipe)
4087           continue;
4088         for (VPValue *V : UserRecipe->definedValues())
4089           if (Visited.insert(V).second)
4090             Worklist.push_back(V);
4091       }
4092   }
4093 }
4094 
4095 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4096   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4097     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4098       // Some phis were already hand updated by the reduction and recurrence
4099       // code above, leave them alone.
4100       continue;
4101 
4102     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4103     // Non-instruction incoming values will have only one value.
4104 
4105     VPLane Lane = VPLane::getFirstLane();
4106     if (isa<Instruction>(IncomingValue) &&
4107         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4108                                            VF))
4109       Lane = VPLane::getLastLaneForVF(VF);
4110 
4111     // Can be a loop invariant incoming value or the last scalar value to be
4112     // extracted from the vectorized loop.
4113     // FIXME: Should not rely on getVPValue at this point.
4114     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4115     Value *lastIncomingValue =
4116         OrigLoop->isLoopInvariant(IncomingValue)
4117             ? IncomingValue
4118             : State.get(State.Plan->getVPValue(IncomingValue, true),
4119                         VPIteration(UF - 1, Lane));
4120     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4121   }
4122 }
4123 
4124 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4125   // The basic block and loop containing the predicated instruction.
4126   auto *PredBB = PredInst->getParent();
4127   auto *VectorLoop = LI->getLoopFor(PredBB);
4128 
4129   // Initialize a worklist with the operands of the predicated instruction.
4130   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4131 
4132   // Holds instructions that we need to analyze again. An instruction may be
4133   // reanalyzed if we don't yet know if we can sink it or not.
4134   SmallVector<Instruction *, 8> InstsToReanalyze;
4135 
4136   // Returns true if a given use occurs in the predicated block. Phi nodes use
4137   // their operands in their corresponding predecessor blocks.
4138   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4139     auto *I = cast<Instruction>(U.getUser());
4140     BasicBlock *BB = I->getParent();
4141     if (auto *Phi = dyn_cast<PHINode>(I))
4142       BB = Phi->getIncomingBlock(
4143           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4144     return BB == PredBB;
4145   };
4146 
4147   // Iteratively sink the scalarized operands of the predicated instruction
4148   // into the block we created for it. When an instruction is sunk, it's
4149   // operands are then added to the worklist. The algorithm ends after one pass
4150   // through the worklist doesn't sink a single instruction.
4151   bool Changed;
4152   do {
4153     // Add the instructions that need to be reanalyzed to the worklist, and
4154     // reset the changed indicator.
4155     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4156     InstsToReanalyze.clear();
4157     Changed = false;
4158 
4159     while (!Worklist.empty()) {
4160       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4161 
4162       // We can't sink an instruction if it is a phi node, is not in the loop,
4163       // or may have side effects.
4164       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4165           I->mayHaveSideEffects())
4166         continue;
4167 
4168       // If the instruction is already in PredBB, check if we can sink its
4169       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4170       // sinking the scalar instruction I, hence it appears in PredBB; but it
4171       // may have failed to sink I's operands (recursively), which we try
4172       // (again) here.
4173       if (I->getParent() == PredBB) {
4174         Worklist.insert(I->op_begin(), I->op_end());
4175         continue;
4176       }
4177 
4178       // It's legal to sink the instruction if all its uses occur in the
4179       // predicated block. Otherwise, there's nothing to do yet, and we may
4180       // need to reanalyze the instruction.
4181       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4182         InstsToReanalyze.push_back(I);
4183         continue;
4184       }
4185 
4186       // Move the instruction to the beginning of the predicated block, and add
4187       // it's operands to the worklist.
4188       I->moveBefore(&*PredBB->getFirstInsertionPt());
4189       Worklist.insert(I->op_begin(), I->op_end());
4190 
4191       // The sinking may have enabled other instructions to be sunk, so we will
4192       // need to iterate.
4193       Changed = true;
4194     }
4195   } while (Changed);
4196 }
4197 
4198 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4199   for (PHINode *OrigPhi : OrigPHIsToFix) {
4200     VPWidenPHIRecipe *VPPhi =
4201         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4202     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4203     // Make sure the builder has a valid insert point.
4204     Builder.SetInsertPoint(NewPhi);
4205     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4206       VPValue *Inc = VPPhi->getIncomingValue(i);
4207       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4208       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4209     }
4210   }
4211 }
4212 
4213 bool InnerLoopVectorizer::useOrderedReductions(
4214     const RecurrenceDescriptor &RdxDesc) {
4215   return Cost->useOrderedReductions(RdxDesc);
4216 }
4217 
4218 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4219                                               VPWidenPHIRecipe *PhiR,
4220                                               VPTransformState &State) {
4221   assert(EnableVPlanNativePath &&
4222          "Non-native vplans are not expected to have VPWidenPHIRecipes.");
4223   // Currently we enter here in the VPlan-native path for non-induction
4224   // PHIs where all control flow is uniform. We simply widen these PHIs.
4225   // Create a vector phi with no operands - the vector phi operands will be
4226   // set at the end of vector code generation.
4227   Type *VecTy = (State.VF.isScalar())
4228                     ? PN->getType()
4229                     : VectorType::get(PN->getType(), State.VF);
4230   Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4231   State.set(PhiR, VecPhi, 0);
4232   OrigPHIsToFix.push_back(cast<PHINode>(PN));
4233 }
4234 
4235 /// A helper function for checking whether an integer division-related
4236 /// instruction may divide by zero (in which case it must be predicated if
4237 /// executed conditionally in the scalar code).
4238 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4239 /// Non-zero divisors that are non compile-time constants will not be
4240 /// converted into multiplication, so we will still end up scalarizing
4241 /// the division, but can do so w/o predication.
4242 static bool mayDivideByZero(Instruction &I) {
4243   assert((I.getOpcode() == Instruction::UDiv ||
4244           I.getOpcode() == Instruction::SDiv ||
4245           I.getOpcode() == Instruction::URem ||
4246           I.getOpcode() == Instruction::SRem) &&
4247          "Unexpected instruction");
4248   Value *Divisor = I.getOperand(1);
4249   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4250   return !CInt || CInt->isZero();
4251 }
4252 
4253 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4254                                                VPUser &ArgOperands,
4255                                                VPTransformState &State) {
4256   assert(!isa<DbgInfoIntrinsic>(I) &&
4257          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4258   setDebugLocFromInst(&I);
4259 
4260   Module *M = I.getParent()->getParent()->getParent();
4261   auto *CI = cast<CallInst>(&I);
4262 
4263   SmallVector<Type *, 4> Tys;
4264   for (Value *ArgOperand : CI->args())
4265     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4266 
4267   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4268 
4269   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4270   // version of the instruction.
4271   // Is it beneficial to perform intrinsic call compared to lib call?
4272   bool NeedToScalarize = false;
4273   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4274   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4275   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4276   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4277          "Instruction should be scalarized elsewhere.");
4278   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4279          "Either the intrinsic cost or vector call cost must be valid");
4280 
4281   for (unsigned Part = 0; Part < UF; ++Part) {
4282     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4283     SmallVector<Value *, 4> Args;
4284     for (auto &I : enumerate(ArgOperands.operands())) {
4285       // Some intrinsics have a scalar argument - don't replace it with a
4286       // vector.
4287       Value *Arg;
4288       if (!UseVectorIntrinsic ||
4289           !isVectorIntrinsicWithScalarOpAtArg(ID, I.index()))
4290         Arg = State.get(I.value(), Part);
4291       else
4292         Arg = State.get(I.value(), VPIteration(0, 0));
4293       if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I.index()))
4294         TysForDecl.push_back(Arg->getType());
4295       Args.push_back(Arg);
4296     }
4297 
4298     Function *VectorF;
4299     if (UseVectorIntrinsic) {
4300       // Use vector version of the intrinsic.
4301       if (VF.isVector())
4302         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4303       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4304       assert(VectorF && "Can't retrieve vector intrinsic.");
4305     } else {
4306       // Use vector version of the function call.
4307       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4308 #ifndef NDEBUG
4309       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4310              "Can't create vector function.");
4311 #endif
4312         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4313     }
4314       SmallVector<OperandBundleDef, 1> OpBundles;
4315       CI->getOperandBundlesAsDefs(OpBundles);
4316       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4317 
4318       if (isa<FPMathOperator>(V))
4319         V->copyFastMathFlags(CI);
4320 
4321       State.set(Def, V, Part);
4322       addMetadata(V, &I);
4323   }
4324 }
4325 
4326 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4327   // We should not collect Scalars more than once per VF. Right now, this
4328   // function is called from collectUniformsAndScalars(), which already does
4329   // this check. Collecting Scalars for VF=1 does not make any sense.
4330   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4331          "This function should not be visited twice for the same VF");
4332 
4333   // This avoids any chances of creating a REPLICATE recipe during planning
4334   // since that would result in generation of scalarized code during execution,
4335   // which is not supported for scalable vectors.
4336   if (VF.isScalable()) {
4337     Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end());
4338     return;
4339   }
4340 
4341   SmallSetVector<Instruction *, 8> Worklist;
4342 
4343   // These sets are used to seed the analysis with pointers used by memory
4344   // accesses that will remain scalar.
4345   SmallSetVector<Instruction *, 8> ScalarPtrs;
4346   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4347   auto *Latch = TheLoop->getLoopLatch();
4348 
4349   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4350   // The pointer operands of loads and stores will be scalar as long as the
4351   // memory access is not a gather or scatter operation. The value operand of a
4352   // store will remain scalar if the store is scalarized.
4353   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4354     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4355     assert(WideningDecision != CM_Unknown &&
4356            "Widening decision should be ready at this moment");
4357     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4358       if (Ptr == Store->getValueOperand())
4359         return WideningDecision == CM_Scalarize;
4360     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4361            "Ptr is neither a value or pointer operand");
4362     return WideningDecision != CM_GatherScatter;
4363   };
4364 
4365   // A helper that returns true if the given value is a bitcast or
4366   // getelementptr instruction contained in the loop.
4367   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4368     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4369             isa<GetElementPtrInst>(V)) &&
4370            !TheLoop->isLoopInvariant(V);
4371   };
4372 
4373   // A helper that evaluates a memory access's use of a pointer. If the use will
4374   // be a scalar use and the pointer is only used by memory accesses, we place
4375   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4376   // PossibleNonScalarPtrs.
4377   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4378     // We only care about bitcast and getelementptr instructions contained in
4379     // the loop.
4380     if (!isLoopVaryingBitCastOrGEP(Ptr))
4381       return;
4382 
4383     // If the pointer has already been identified as scalar (e.g., if it was
4384     // also identified as uniform), there's nothing to do.
4385     auto *I = cast<Instruction>(Ptr);
4386     if (Worklist.count(I))
4387       return;
4388 
4389     // If the use of the pointer will be a scalar use, and all users of the
4390     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4391     // place the pointer in PossibleNonScalarPtrs.
4392     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4393           return isa<LoadInst>(U) || isa<StoreInst>(U);
4394         }))
4395       ScalarPtrs.insert(I);
4396     else
4397       PossibleNonScalarPtrs.insert(I);
4398   };
4399 
4400   // We seed the scalars analysis with three classes of instructions: (1)
4401   // instructions marked uniform-after-vectorization and (2) bitcast,
4402   // getelementptr and (pointer) phi instructions used by memory accesses
4403   // requiring a scalar use.
4404   //
4405   // (1) Add to the worklist all instructions that have been identified as
4406   // uniform-after-vectorization.
4407   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4408 
4409   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4410   // memory accesses requiring a scalar use. The pointer operands of loads and
4411   // stores will be scalar as long as the memory accesses is not a gather or
4412   // scatter operation. The value operand of a store will remain scalar if the
4413   // store is scalarized.
4414   for (auto *BB : TheLoop->blocks())
4415     for (auto &I : *BB) {
4416       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4417         evaluatePtrUse(Load, Load->getPointerOperand());
4418       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4419         evaluatePtrUse(Store, Store->getPointerOperand());
4420         evaluatePtrUse(Store, Store->getValueOperand());
4421       }
4422     }
4423   for (auto *I : ScalarPtrs)
4424     if (!PossibleNonScalarPtrs.count(I)) {
4425       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4426       Worklist.insert(I);
4427     }
4428 
4429   // Insert the forced scalars.
4430   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4431   // induction variable when the PHI user is scalarized.
4432   auto ForcedScalar = ForcedScalars.find(VF);
4433   if (ForcedScalar != ForcedScalars.end())
4434     for (auto *I : ForcedScalar->second)
4435       Worklist.insert(I);
4436 
4437   // Expand the worklist by looking through any bitcasts and getelementptr
4438   // instructions we've already identified as scalar. This is similar to the
4439   // expansion step in collectLoopUniforms(); however, here we're only
4440   // expanding to include additional bitcasts and getelementptr instructions.
4441   unsigned Idx = 0;
4442   while (Idx != Worklist.size()) {
4443     Instruction *Dst = Worklist[Idx++];
4444     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4445       continue;
4446     auto *Src = cast<Instruction>(Dst->getOperand(0));
4447     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4448           auto *J = cast<Instruction>(U);
4449           return !TheLoop->contains(J) || Worklist.count(J) ||
4450                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4451                   isScalarUse(J, Src));
4452         })) {
4453       Worklist.insert(Src);
4454       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4455     }
4456   }
4457 
4458   // An induction variable will remain scalar if all users of the induction
4459   // variable and induction variable update remain scalar.
4460   for (auto &Induction : Legal->getInductionVars()) {
4461     auto *Ind = Induction.first;
4462     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4463 
4464     // If tail-folding is applied, the primary induction variable will be used
4465     // to feed a vector compare.
4466     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4467       continue;
4468 
4469     // Returns true if \p Indvar is a pointer induction that is used directly by
4470     // load/store instruction \p I.
4471     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4472                                               Instruction *I) {
4473       return Induction.second.getKind() ==
4474                  InductionDescriptor::IK_PtrInduction &&
4475              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4476              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4477     };
4478 
4479     // Determine if all users of the induction variable are scalar after
4480     // vectorization.
4481     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4482       auto *I = cast<Instruction>(U);
4483       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4484              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4485     });
4486     if (!ScalarInd)
4487       continue;
4488 
4489     // Determine if all users of the induction variable update instruction are
4490     // scalar after vectorization.
4491     auto ScalarIndUpdate =
4492         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4493           auto *I = cast<Instruction>(U);
4494           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4495                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4496         });
4497     if (!ScalarIndUpdate)
4498       continue;
4499 
4500     // The induction variable and its update instruction will remain scalar.
4501     Worklist.insert(Ind);
4502     Worklist.insert(IndUpdate);
4503     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4504     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4505                       << "\n");
4506   }
4507 
4508   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4509 }
4510 
4511 bool LoopVectorizationCostModel::isScalarWithPredication(
4512     Instruction *I, ElementCount VF) const {
4513   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4514     return false;
4515   switch(I->getOpcode()) {
4516   default:
4517     break;
4518   case Instruction::Load:
4519   case Instruction::Store: {
4520     if (!Legal->isMaskRequired(I))
4521       return false;
4522     auto *Ptr = getLoadStorePointerOperand(I);
4523     auto *Ty = getLoadStoreType(I);
4524     Type *VTy = Ty;
4525     if (VF.isVector())
4526       VTy = VectorType::get(Ty, VF);
4527     const Align Alignment = getLoadStoreAlignment(I);
4528     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4529                                 TTI.isLegalMaskedGather(VTy, Alignment))
4530                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4531                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4532   }
4533   case Instruction::UDiv:
4534   case Instruction::SDiv:
4535   case Instruction::SRem:
4536   case Instruction::URem:
4537     return mayDivideByZero(*I);
4538   }
4539   return false;
4540 }
4541 
4542 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4543     Instruction *I, ElementCount VF) {
4544   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4545   assert(getWideningDecision(I, VF) == CM_Unknown &&
4546          "Decision should not be set yet.");
4547   auto *Group = getInterleavedAccessGroup(I);
4548   assert(Group && "Must have a group.");
4549 
4550   // If the instruction's allocated size doesn't equal it's type size, it
4551   // requires padding and will be scalarized.
4552   auto &DL = I->getModule()->getDataLayout();
4553   auto *ScalarTy = getLoadStoreType(I);
4554   if (hasIrregularType(ScalarTy, DL))
4555     return false;
4556 
4557   // If the group involves a non-integral pointer, we may not be able to
4558   // losslessly cast all values to a common type.
4559   unsigned InterleaveFactor = Group->getFactor();
4560   bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
4561   for (unsigned i = 0; i < InterleaveFactor; i++) {
4562     Instruction *Member = Group->getMember(i);
4563     if (!Member)
4564       continue;
4565     auto *MemberTy = getLoadStoreType(Member);
4566     bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
4567     // Don't coerce non-integral pointers to integers or vice versa.
4568     if (MemberNI != ScalarNI) {
4569       // TODO: Consider adding special nullptr value case here
4570       return false;
4571     } else if (MemberNI && ScalarNI &&
4572                ScalarTy->getPointerAddressSpace() !=
4573                MemberTy->getPointerAddressSpace()) {
4574       return false;
4575     }
4576   }
4577 
4578   // Check if masking is required.
4579   // A Group may need masking for one of two reasons: it resides in a block that
4580   // needs predication, or it was decided to use masking to deal with gaps
4581   // (either a gap at the end of a load-access that may result in a speculative
4582   // load, or any gaps in a store-access).
4583   bool PredicatedAccessRequiresMasking =
4584       blockNeedsPredicationForAnyReason(I->getParent()) &&
4585       Legal->isMaskRequired(I);
4586   bool LoadAccessWithGapsRequiresEpilogMasking =
4587       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4588       !isScalarEpilogueAllowed();
4589   bool StoreAccessWithGapsRequiresMasking =
4590       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4591   if (!PredicatedAccessRequiresMasking &&
4592       !LoadAccessWithGapsRequiresEpilogMasking &&
4593       !StoreAccessWithGapsRequiresMasking)
4594     return true;
4595 
4596   // If masked interleaving is required, we expect that the user/target had
4597   // enabled it, because otherwise it either wouldn't have been created or
4598   // it should have been invalidated by the CostModel.
4599   assert(useMaskedInterleavedAccesses(TTI) &&
4600          "Masked interleave-groups for predicated accesses are not enabled.");
4601 
4602   if (Group->isReverse())
4603     return false;
4604 
4605   auto *Ty = getLoadStoreType(I);
4606   const Align Alignment = getLoadStoreAlignment(I);
4607   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4608                           : TTI.isLegalMaskedStore(Ty, Alignment);
4609 }
4610 
4611 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4612     Instruction *I, ElementCount VF) {
4613   // Get and ensure we have a valid memory instruction.
4614   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4615 
4616   auto *Ptr = getLoadStorePointerOperand(I);
4617   auto *ScalarTy = getLoadStoreType(I);
4618 
4619   // In order to be widened, the pointer should be consecutive, first of all.
4620   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4621     return false;
4622 
4623   // If the instruction is a store located in a predicated block, it will be
4624   // scalarized.
4625   if (isScalarWithPredication(I, VF))
4626     return false;
4627 
4628   // If the instruction's allocated size doesn't equal it's type size, it
4629   // requires padding and will be scalarized.
4630   auto &DL = I->getModule()->getDataLayout();
4631   if (hasIrregularType(ScalarTy, DL))
4632     return false;
4633 
4634   return true;
4635 }
4636 
4637 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4638   // We should not collect Uniforms more than once per VF. Right now,
4639   // this function is called from collectUniformsAndScalars(), which
4640   // already does this check. Collecting Uniforms for VF=1 does not make any
4641   // sense.
4642 
4643   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4644          "This function should not be visited twice for the same VF");
4645 
4646   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4647   // not analyze again.  Uniforms.count(VF) will return 1.
4648   Uniforms[VF].clear();
4649 
4650   // We now know that the loop is vectorizable!
4651   // Collect instructions inside the loop that will remain uniform after
4652   // vectorization.
4653 
4654   // Global values, params and instructions outside of current loop are out of
4655   // scope.
4656   auto isOutOfScope = [&](Value *V) -> bool {
4657     Instruction *I = dyn_cast<Instruction>(V);
4658     return (!I || !TheLoop->contains(I));
4659   };
4660 
4661   // Worklist containing uniform instructions demanding lane 0.
4662   SetVector<Instruction *> Worklist;
4663   BasicBlock *Latch = TheLoop->getLoopLatch();
4664 
4665   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4666   // that are scalar with predication must not be considered uniform after
4667   // vectorization, because that would create an erroneous replicating region
4668   // where only a single instance out of VF should be formed.
4669   // TODO: optimize such seldom cases if found important, see PR40816.
4670   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4671     if (isOutOfScope(I)) {
4672       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
4673                         << *I << "\n");
4674       return;
4675     }
4676     if (isScalarWithPredication(I, VF)) {
4677       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4678                         << *I << "\n");
4679       return;
4680     }
4681     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4682     Worklist.insert(I);
4683   };
4684 
4685   // Start with the conditional branch. If the branch condition is an
4686   // instruction contained in the loop that is only used by the branch, it is
4687   // uniform.
4688   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4689   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4690     addToWorklistIfAllowed(Cmp);
4691 
4692   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
4693     InstWidening WideningDecision = getWideningDecision(I, VF);
4694     assert(WideningDecision != CM_Unknown &&
4695            "Widening decision should be ready at this moment");
4696 
4697     // A uniform memory op is itself uniform.  We exclude uniform stores
4698     // here as they demand the last lane, not the first one.
4699     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
4700       assert(WideningDecision == CM_Scalarize);
4701       return true;
4702     }
4703 
4704     return (WideningDecision == CM_Widen ||
4705             WideningDecision == CM_Widen_Reverse ||
4706             WideningDecision == CM_Interleave);
4707   };
4708 
4709 
4710   // Returns true if Ptr is the pointer operand of a memory access instruction
4711   // I, and I is known to not require scalarization.
4712   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4713     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4714   };
4715 
4716   // Holds a list of values which are known to have at least one uniform use.
4717   // Note that there may be other uses which aren't uniform.  A "uniform use"
4718   // here is something which only demands lane 0 of the unrolled iterations;
4719   // it does not imply that all lanes produce the same value (e.g. this is not
4720   // the usual meaning of uniform)
4721   SetVector<Value *> HasUniformUse;
4722 
4723   // Scan the loop for instructions which are either a) known to have only
4724   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
4725   for (auto *BB : TheLoop->blocks())
4726     for (auto &I : *BB) {
4727       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
4728         switch (II->getIntrinsicID()) {
4729         case Intrinsic::sideeffect:
4730         case Intrinsic::experimental_noalias_scope_decl:
4731         case Intrinsic::assume:
4732         case Intrinsic::lifetime_start:
4733         case Intrinsic::lifetime_end:
4734           if (TheLoop->hasLoopInvariantOperands(&I))
4735             addToWorklistIfAllowed(&I);
4736           break;
4737         default:
4738           break;
4739         }
4740       }
4741 
4742       // ExtractValue instructions must be uniform, because the operands are
4743       // known to be loop-invariant.
4744       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
4745         assert(isOutOfScope(EVI->getAggregateOperand()) &&
4746                "Expected aggregate value to be loop invariant");
4747         addToWorklistIfAllowed(EVI);
4748         continue;
4749       }
4750 
4751       // If there's no pointer operand, there's nothing to do.
4752       auto *Ptr = getLoadStorePointerOperand(&I);
4753       if (!Ptr)
4754         continue;
4755 
4756       // A uniform memory op is itself uniform.  We exclude uniform stores
4757       // here as they demand the last lane, not the first one.
4758       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
4759         addToWorklistIfAllowed(&I);
4760 
4761       if (isUniformDecision(&I, VF)) {
4762         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
4763         HasUniformUse.insert(Ptr);
4764       }
4765     }
4766 
4767   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
4768   // demanding) users.  Since loops are assumed to be in LCSSA form, this
4769   // disallows uses outside the loop as well.
4770   for (auto *V : HasUniformUse) {
4771     if (isOutOfScope(V))
4772       continue;
4773     auto *I = cast<Instruction>(V);
4774     auto UsersAreMemAccesses =
4775       llvm::all_of(I->users(), [&](User *U) -> bool {
4776         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
4777       });
4778     if (UsersAreMemAccesses)
4779       addToWorklistIfAllowed(I);
4780   }
4781 
4782   // Expand Worklist in topological order: whenever a new instruction
4783   // is added , its users should be already inside Worklist.  It ensures
4784   // a uniform instruction will only be used by uniform instructions.
4785   unsigned idx = 0;
4786   while (idx != Worklist.size()) {
4787     Instruction *I = Worklist[idx++];
4788 
4789     for (auto OV : I->operand_values()) {
4790       // isOutOfScope operands cannot be uniform instructions.
4791       if (isOutOfScope(OV))
4792         continue;
4793       // First order recurrence Phi's should typically be considered
4794       // non-uniform.
4795       auto *OP = dyn_cast<PHINode>(OV);
4796       if (OP && Legal->isFirstOrderRecurrence(OP))
4797         continue;
4798       // If all the users of the operand are uniform, then add the
4799       // operand into the uniform worklist.
4800       auto *OI = cast<Instruction>(OV);
4801       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4802             auto *J = cast<Instruction>(U);
4803             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
4804           }))
4805         addToWorklistIfAllowed(OI);
4806     }
4807   }
4808 
4809   // For an instruction to be added into Worklist above, all its users inside
4810   // the loop should also be in Worklist. However, this condition cannot be
4811   // true for phi nodes that form a cyclic dependence. We must process phi
4812   // nodes separately. An induction variable will remain uniform if all users
4813   // of the induction variable and induction variable update remain uniform.
4814   // The code below handles both pointer and non-pointer induction variables.
4815   for (auto &Induction : Legal->getInductionVars()) {
4816     auto *Ind = Induction.first;
4817     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4818 
4819     // Determine if all users of the induction variable are uniform after
4820     // vectorization.
4821     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4822       auto *I = cast<Instruction>(U);
4823       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4824              isVectorizedMemAccessUse(I, Ind);
4825     });
4826     if (!UniformInd)
4827       continue;
4828 
4829     // Determine if all users of the induction variable update instruction are
4830     // uniform after vectorization.
4831     auto UniformIndUpdate =
4832         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4833           auto *I = cast<Instruction>(U);
4834           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4835                  isVectorizedMemAccessUse(I, IndUpdate);
4836         });
4837     if (!UniformIndUpdate)
4838       continue;
4839 
4840     // The induction variable and its update instruction will remain uniform.
4841     addToWorklistIfAllowed(Ind);
4842     addToWorklistIfAllowed(IndUpdate);
4843   }
4844 
4845   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4846 }
4847 
4848 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4849   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4850 
4851   if (Legal->getRuntimePointerChecking()->Need) {
4852     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4853         "runtime pointer checks needed. Enable vectorization of this "
4854         "loop with '#pragma clang loop vectorize(enable)' when "
4855         "compiling with -Os/-Oz",
4856         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4857     return true;
4858   }
4859 
4860   if (!PSE.getPredicate().isAlwaysTrue()) {
4861     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4862         "runtime SCEV checks needed. Enable vectorization of this "
4863         "loop with '#pragma clang loop vectorize(enable)' when "
4864         "compiling with -Os/-Oz",
4865         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4866     return true;
4867   }
4868 
4869   // FIXME: Avoid specializing for stride==1 instead of bailing out.
4870   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
4871     reportVectorizationFailure("Runtime stride check for small trip count",
4872         "runtime stride == 1 checks needed. Enable vectorization of "
4873         "this loop without such check by compiling with -Os/-Oz",
4874         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4875     return true;
4876   }
4877 
4878   return false;
4879 }
4880 
4881 ElementCount
4882 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
4883   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
4884     return ElementCount::getScalable(0);
4885 
4886   if (Hints->isScalableVectorizationDisabled()) {
4887     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
4888                             "ScalableVectorizationDisabled", ORE, TheLoop);
4889     return ElementCount::getScalable(0);
4890   }
4891 
4892   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
4893 
4894   auto MaxScalableVF = ElementCount::getScalable(
4895       std::numeric_limits<ElementCount::ScalarTy>::max());
4896 
4897   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
4898   // FIXME: While for scalable vectors this is currently sufficient, this should
4899   // be replaced by a more detailed mechanism that filters out specific VFs,
4900   // instead of invalidating vectorization for a whole set of VFs based on the
4901   // MaxVF.
4902 
4903   // Disable scalable vectorization if the loop contains unsupported reductions.
4904   if (!canVectorizeReductions(MaxScalableVF)) {
4905     reportVectorizationInfo(
4906         "Scalable vectorization not supported for the reduction "
4907         "operations found in this loop.",
4908         "ScalableVFUnfeasible", ORE, TheLoop);
4909     return ElementCount::getScalable(0);
4910   }
4911 
4912   // Disable scalable vectorization if the loop contains any instructions
4913   // with element types not supported for scalable vectors.
4914   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
4915         return !Ty->isVoidTy() &&
4916                !this->TTI.isElementTypeLegalForScalableVector(Ty);
4917       })) {
4918     reportVectorizationInfo("Scalable vectorization is not supported "
4919                             "for all element types found in this loop.",
4920                             "ScalableVFUnfeasible", ORE, TheLoop);
4921     return ElementCount::getScalable(0);
4922   }
4923 
4924   if (Legal->isSafeForAnyVectorWidth())
4925     return MaxScalableVF;
4926 
4927   // Limit MaxScalableVF by the maximum safe dependence distance.
4928   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
4929   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
4930     MaxVScale =
4931         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
4932   MaxScalableVF = ElementCount::getScalable(
4933       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
4934   if (!MaxScalableVF)
4935     reportVectorizationInfo(
4936         "Max legal vector width too small, scalable vectorization "
4937         "unfeasible.",
4938         "ScalableVFUnfeasible", ORE, TheLoop);
4939 
4940   return MaxScalableVF;
4941 }
4942 
4943 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
4944     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
4945   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
4946   unsigned SmallestType, WidestType;
4947   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
4948 
4949   // Get the maximum safe dependence distance in bits computed by LAA.
4950   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
4951   // the memory accesses that is most restrictive (involved in the smallest
4952   // dependence distance).
4953   unsigned MaxSafeElements =
4954       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
4955 
4956   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
4957   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
4958 
4959   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
4960                     << ".\n");
4961   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
4962                     << ".\n");
4963 
4964   // First analyze the UserVF, fall back if the UserVF should be ignored.
4965   if (UserVF) {
4966     auto MaxSafeUserVF =
4967         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
4968 
4969     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
4970       // If `VF=vscale x N` is safe, then so is `VF=N`
4971       if (UserVF.isScalable())
4972         return FixedScalableVFPair(
4973             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
4974       else
4975         return UserVF;
4976     }
4977 
4978     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
4979 
4980     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
4981     // is better to ignore the hint and let the compiler choose a suitable VF.
4982     if (!UserVF.isScalable()) {
4983       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4984                         << " is unsafe, clamping to max safe VF="
4985                         << MaxSafeFixedVF << ".\n");
4986       ORE->emit([&]() {
4987         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4988                                           TheLoop->getStartLoc(),
4989                                           TheLoop->getHeader())
4990                << "User-specified vectorization factor "
4991                << ore::NV("UserVectorizationFactor", UserVF)
4992                << " is unsafe, clamping to maximum safe vectorization factor "
4993                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
4994       });
4995       return MaxSafeFixedVF;
4996     }
4997 
4998     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
4999       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5000                         << " is ignored because scalable vectors are not "
5001                            "available.\n");
5002       ORE->emit([&]() {
5003         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5004                                           TheLoop->getStartLoc(),
5005                                           TheLoop->getHeader())
5006                << "User-specified vectorization factor "
5007                << ore::NV("UserVectorizationFactor", UserVF)
5008                << " is ignored because the target does not support scalable "
5009                   "vectors. The compiler will pick a more suitable value.";
5010       });
5011     } else {
5012       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5013                         << " is unsafe. Ignoring scalable UserVF.\n");
5014       ORE->emit([&]() {
5015         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5016                                           TheLoop->getStartLoc(),
5017                                           TheLoop->getHeader())
5018                << "User-specified vectorization factor "
5019                << ore::NV("UserVectorizationFactor", UserVF)
5020                << " is unsafe. Ignoring the hint to let the compiler pick a "
5021                   "more suitable value.";
5022       });
5023     }
5024   }
5025 
5026   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5027                     << " / " << WidestType << " bits.\n");
5028 
5029   FixedScalableVFPair Result(ElementCount::getFixed(1),
5030                              ElementCount::getScalable(0));
5031   if (auto MaxVF =
5032           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5033                                   MaxSafeFixedVF, FoldTailByMasking))
5034     Result.FixedVF = MaxVF;
5035 
5036   if (auto MaxVF =
5037           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5038                                   MaxSafeScalableVF, FoldTailByMasking))
5039     if (MaxVF.isScalable()) {
5040       Result.ScalableVF = MaxVF;
5041       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5042                         << "\n");
5043     }
5044 
5045   return Result;
5046 }
5047 
5048 FixedScalableVFPair
5049 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5050   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5051     // TODO: It may by useful to do since it's still likely to be dynamically
5052     // uniform if the target can skip.
5053     reportVectorizationFailure(
5054         "Not inserting runtime ptr check for divergent target",
5055         "runtime pointer checks needed. Not enabled for divergent target",
5056         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5057     return FixedScalableVFPair::getNone();
5058   }
5059 
5060   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5061   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5062   if (TC == 1) {
5063     reportVectorizationFailure("Single iteration (non) loop",
5064         "loop trip count is one, irrelevant for vectorization",
5065         "SingleIterationLoop", ORE, TheLoop);
5066     return FixedScalableVFPair::getNone();
5067   }
5068 
5069   switch (ScalarEpilogueStatus) {
5070   case CM_ScalarEpilogueAllowed:
5071     return computeFeasibleMaxVF(TC, UserVF, false);
5072   case CM_ScalarEpilogueNotAllowedUsePredicate:
5073     LLVM_FALLTHROUGH;
5074   case CM_ScalarEpilogueNotNeededUsePredicate:
5075     LLVM_DEBUG(
5076         dbgs() << "LV: vector predicate hint/switch found.\n"
5077                << "LV: Not allowing scalar epilogue, creating predicated "
5078                << "vector loop.\n");
5079     break;
5080   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5081     // fallthrough as a special case of OptForSize
5082   case CM_ScalarEpilogueNotAllowedOptSize:
5083     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5084       LLVM_DEBUG(
5085           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5086     else
5087       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5088                         << "count.\n");
5089 
5090     // Bail if runtime checks are required, which are not good when optimising
5091     // for size.
5092     if (runtimeChecksRequired())
5093       return FixedScalableVFPair::getNone();
5094 
5095     break;
5096   }
5097 
5098   // The only loops we can vectorize without a scalar epilogue, are loops with
5099   // a bottom-test and a single exiting block. We'd have to handle the fact
5100   // that not every instruction executes on the last iteration.  This will
5101   // require a lane mask which varies through the vector loop body.  (TODO)
5102   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5103     // If there was a tail-folding hint/switch, but we can't fold the tail by
5104     // masking, fallback to a vectorization with a scalar epilogue.
5105     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5106       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5107                            "scalar epilogue instead.\n");
5108       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5109       return computeFeasibleMaxVF(TC, UserVF, false);
5110     }
5111     return FixedScalableVFPair::getNone();
5112   }
5113 
5114   // Now try the tail folding
5115 
5116   // Invalidate interleave groups that require an epilogue if we can't mask
5117   // the interleave-group.
5118   if (!useMaskedInterleavedAccesses(TTI)) {
5119     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5120            "No decisions should have been taken at this point");
5121     // Note: There is no need to invalidate any cost modeling decisions here, as
5122     // non where taken so far.
5123     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5124   }
5125 
5126   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5127   // Avoid tail folding if the trip count is known to be a multiple of any VF
5128   // we chose.
5129   // FIXME: The condition below pessimises the case for fixed-width vectors,
5130   // when scalable VFs are also candidates for vectorization.
5131   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5132     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5133     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5134            "MaxFixedVF must be a power of 2");
5135     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5136                                    : MaxFixedVF.getFixedValue();
5137     ScalarEvolution *SE = PSE.getSE();
5138     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5139     const SCEV *ExitCount = SE->getAddExpr(
5140         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5141     const SCEV *Rem = SE->getURemExpr(
5142         SE->applyLoopGuards(ExitCount, TheLoop),
5143         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5144     if (Rem->isZero()) {
5145       // Accept MaxFixedVF if we do not have a tail.
5146       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5147       return MaxFactors;
5148     }
5149   }
5150 
5151   // If we don't know the precise trip count, or if the trip count that we
5152   // found modulo the vectorization factor is not zero, try to fold the tail
5153   // by masking.
5154   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5155   if (Legal->prepareToFoldTailByMasking()) {
5156     FoldTailByMasking = true;
5157     return MaxFactors;
5158   }
5159 
5160   // If there was a tail-folding hint/switch, but we can't fold the tail by
5161   // masking, fallback to a vectorization with a scalar epilogue.
5162   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5163     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5164                          "scalar epilogue instead.\n");
5165     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5166     return MaxFactors;
5167   }
5168 
5169   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5170     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5171     return FixedScalableVFPair::getNone();
5172   }
5173 
5174   if (TC == 0) {
5175     reportVectorizationFailure(
5176         "Unable to calculate the loop count due to complex control flow",
5177         "unable to calculate the loop count due to complex control flow",
5178         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5179     return FixedScalableVFPair::getNone();
5180   }
5181 
5182   reportVectorizationFailure(
5183       "Cannot optimize for size and vectorize at the same time.",
5184       "cannot optimize for size and vectorize at the same time. "
5185       "Enable vectorization of this loop with '#pragma clang loop "
5186       "vectorize(enable)' when compiling with -Os/-Oz",
5187       "NoTailLoopWithOptForSize", ORE, TheLoop);
5188   return FixedScalableVFPair::getNone();
5189 }
5190 
5191 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5192     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5193     const ElementCount &MaxSafeVF, bool FoldTailByMasking) {
5194   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5195   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5196       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5197                            : TargetTransformInfo::RGK_FixedWidthVector);
5198 
5199   // Convenience function to return the minimum of two ElementCounts.
5200   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5201     assert((LHS.isScalable() == RHS.isScalable()) &&
5202            "Scalable flags must match");
5203     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5204   };
5205 
5206   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5207   // Note that both WidestRegister and WidestType may not be a powers of 2.
5208   auto MaxVectorElementCount = ElementCount::get(
5209       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5210       ComputeScalableMaxVF);
5211   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5212   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5213                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5214 
5215   if (!MaxVectorElementCount) {
5216     LLVM_DEBUG(dbgs() << "LV: The target has no "
5217                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5218                       << " vector registers.\n");
5219     return ElementCount::getFixed(1);
5220   }
5221 
5222   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5223   if (ConstTripCount &&
5224       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5225       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5226     // If loop trip count (TC) is known at compile time there is no point in
5227     // choosing VF greater than TC (as done in the loop below). Select maximum
5228     // power of two which doesn't exceed TC.
5229     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5230     // when the TC is less than or equal to the known number of lanes.
5231     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5232     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5233                          "exceeding the constant trip count: "
5234                       << ClampedConstTripCount << "\n");
5235     return ElementCount::getFixed(ClampedConstTripCount);
5236   }
5237 
5238   ElementCount MaxVF = MaxVectorElementCount;
5239   if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
5240                             TTI.shouldMaximizeVectorBandwidth())) {
5241     auto MaxVectorElementCountMaxBW = ElementCount::get(
5242         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5243         ComputeScalableMaxVF);
5244     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5245 
5246     // Collect all viable vectorization factors larger than the default MaxVF
5247     // (i.e. MaxVectorElementCount).
5248     SmallVector<ElementCount, 8> VFs;
5249     for (ElementCount VS = MaxVectorElementCount * 2;
5250          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5251       VFs.push_back(VS);
5252 
5253     // For each VF calculate its register usage.
5254     auto RUs = calculateRegisterUsage(VFs);
5255 
5256     // Select the largest VF which doesn't require more registers than existing
5257     // ones.
5258     for (int i = RUs.size() - 1; i >= 0; --i) {
5259       bool Selected = true;
5260       for (auto &pair : RUs[i].MaxLocalUsers) {
5261         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5262         if (pair.second > TargetNumRegisters)
5263           Selected = false;
5264       }
5265       if (Selected) {
5266         MaxVF = VFs[i];
5267         break;
5268       }
5269     }
5270     if (ElementCount MinVF =
5271             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5272       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5273         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5274                           << ") with target's minimum: " << MinVF << '\n');
5275         MaxVF = MinVF;
5276       }
5277     }
5278 
5279     // Invalidate any widening decisions we might have made, in case the loop
5280     // requires prediction (decided later), but we have already made some
5281     // load/store widening decisions.
5282     invalidateCostModelingDecisions();
5283   }
5284   return MaxVF;
5285 }
5286 
5287 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
5288   if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5289     auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
5290     auto Min = Attr.getVScaleRangeMin();
5291     auto Max = Attr.getVScaleRangeMax();
5292     if (Max && Min == Max)
5293       return Max;
5294   }
5295 
5296   return TTI.getVScaleForTuning();
5297 }
5298 
5299 bool LoopVectorizationCostModel::isMoreProfitable(
5300     const VectorizationFactor &A, const VectorizationFactor &B) const {
5301   InstructionCost CostA = A.Cost;
5302   InstructionCost CostB = B.Cost;
5303 
5304   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5305 
5306   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5307       MaxTripCount) {
5308     // If we are folding the tail and the trip count is a known (possibly small)
5309     // constant, the trip count will be rounded up to an integer number of
5310     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5311     // which we compare directly. When not folding the tail, the total cost will
5312     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5313     // approximated with the per-lane cost below instead of using the tripcount
5314     // as here.
5315     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5316     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5317     return RTCostA < RTCostB;
5318   }
5319 
5320   // Improve estimate for the vector width if it is scalable.
5321   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5322   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5323   if (Optional<unsigned> VScale = getVScaleForTuning()) {
5324     if (A.Width.isScalable())
5325       EstimatedWidthA *= VScale.getValue();
5326     if (B.Width.isScalable())
5327       EstimatedWidthB *= VScale.getValue();
5328   }
5329 
5330   // Assume vscale may be larger than 1 (or the value being tuned for),
5331   // so that scalable vectorization is slightly favorable over fixed-width
5332   // vectorization.
5333   if (A.Width.isScalable() && !B.Width.isScalable())
5334     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5335 
5336   // To avoid the need for FP division:
5337   //      (CostA / A.Width) < (CostB / B.Width)
5338   // <=>  (CostA * B.Width) < (CostB * A.Width)
5339   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5340 }
5341 
5342 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5343     const ElementCountSet &VFCandidates) {
5344   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5345   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5346   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5347   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5348          "Expected Scalar VF to be a candidate");
5349 
5350   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5351   VectorizationFactor ChosenFactor = ScalarCost;
5352 
5353   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5354   if (ForceVectorization && VFCandidates.size() > 1) {
5355     // Ignore scalar width, because the user explicitly wants vectorization.
5356     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5357     // evaluation.
5358     ChosenFactor.Cost = InstructionCost::getMax();
5359   }
5360 
5361   SmallVector<InstructionVFPair> InvalidCosts;
5362   for (const auto &i : VFCandidates) {
5363     // The cost for scalar VF=1 is already calculated, so ignore it.
5364     if (i.isScalar())
5365       continue;
5366 
5367     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5368     VectorizationFactor Candidate(i, C.first);
5369 
5370 #ifndef NDEBUG
5371     unsigned AssumedMinimumVscale = 1;
5372     if (Optional<unsigned> VScale = getVScaleForTuning())
5373       AssumedMinimumVscale = VScale.getValue();
5374     unsigned Width =
5375         Candidate.Width.isScalable()
5376             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5377             : Candidate.Width.getFixedValue();
5378     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5379                       << " costs: " << (Candidate.Cost / Width));
5380     if (i.isScalable())
5381       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5382                         << AssumedMinimumVscale << ")");
5383     LLVM_DEBUG(dbgs() << ".\n");
5384 #endif
5385 
5386     if (!C.second && !ForceVectorization) {
5387       LLVM_DEBUG(
5388           dbgs() << "LV: Not considering vector loop of width " << i
5389                  << " because it will not generate any vector instructions.\n");
5390       continue;
5391     }
5392 
5393     // If profitable add it to ProfitableVF list.
5394     if (isMoreProfitable(Candidate, ScalarCost))
5395       ProfitableVFs.push_back(Candidate);
5396 
5397     if (isMoreProfitable(Candidate, ChosenFactor))
5398       ChosenFactor = Candidate;
5399   }
5400 
5401   // Emit a report of VFs with invalid costs in the loop.
5402   if (!InvalidCosts.empty()) {
5403     // Group the remarks per instruction, keeping the instruction order from
5404     // InvalidCosts.
5405     std::map<Instruction *, unsigned> Numbering;
5406     unsigned I = 0;
5407     for (auto &Pair : InvalidCosts)
5408       if (!Numbering.count(Pair.first))
5409         Numbering[Pair.first] = I++;
5410 
5411     // Sort the list, first on instruction(number) then on VF.
5412     llvm::sort(InvalidCosts,
5413                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5414                  if (Numbering[A.first] != Numbering[B.first])
5415                    return Numbering[A.first] < Numbering[B.first];
5416                  ElementCountComparator ECC;
5417                  return ECC(A.second, B.second);
5418                });
5419 
5420     // For a list of ordered instruction-vf pairs:
5421     //   [(load, vf1), (load, vf2), (store, vf1)]
5422     // Group the instructions together to emit separate remarks for:
5423     //   load  (vf1, vf2)
5424     //   store (vf1)
5425     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5426     auto Subset = ArrayRef<InstructionVFPair>();
5427     do {
5428       if (Subset.empty())
5429         Subset = Tail.take_front(1);
5430 
5431       Instruction *I = Subset.front().first;
5432 
5433       // If the next instruction is different, or if there are no other pairs,
5434       // emit a remark for the collated subset. e.g.
5435       //   [(load, vf1), (load, vf2))]
5436       // to emit:
5437       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5438       if (Subset == Tail || Tail[Subset.size()].first != I) {
5439         std::string OutString;
5440         raw_string_ostream OS(OutString);
5441         assert(!Subset.empty() && "Unexpected empty range");
5442         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5443         for (auto &Pair : Subset)
5444           OS << (Pair.second == Subset.front().second ? "" : ", ")
5445              << Pair.second;
5446         OS << "):";
5447         if (auto *CI = dyn_cast<CallInst>(I))
5448           OS << " call to " << CI->getCalledFunction()->getName();
5449         else
5450           OS << " " << I->getOpcodeName();
5451         OS.flush();
5452         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5453         Tail = Tail.drop_front(Subset.size());
5454         Subset = {};
5455       } else
5456         // Grow the subset by one element
5457         Subset = Tail.take_front(Subset.size() + 1);
5458     } while (!Tail.empty());
5459   }
5460 
5461   if (!EnableCondStoresVectorization && NumPredStores) {
5462     reportVectorizationFailure("There are conditional stores.",
5463         "store that is conditionally executed prevents vectorization",
5464         "ConditionalStore", ORE, TheLoop);
5465     ChosenFactor = ScalarCost;
5466   }
5467 
5468   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5469                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5470              << "LV: Vectorization seems to be not beneficial, "
5471              << "but was forced by a user.\n");
5472   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5473   return ChosenFactor;
5474 }
5475 
5476 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5477     const Loop &L, ElementCount VF) const {
5478   // Cross iteration phis such as reductions need special handling and are
5479   // currently unsupported.
5480   if (any_of(L.getHeader()->phis(),
5481              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5482     return false;
5483 
5484   // Phis with uses outside of the loop require special handling and are
5485   // currently unsupported.
5486   for (auto &Entry : Legal->getInductionVars()) {
5487     // Look for uses of the value of the induction at the last iteration.
5488     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5489     for (User *U : PostInc->users())
5490       if (!L.contains(cast<Instruction>(U)))
5491         return false;
5492     // Look for uses of penultimate value of the induction.
5493     for (User *U : Entry.first->users())
5494       if (!L.contains(cast<Instruction>(U)))
5495         return false;
5496   }
5497 
5498   // Induction variables that are widened require special handling that is
5499   // currently not supported.
5500   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5501         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5502                  this->isProfitableToScalarize(Entry.first, VF));
5503       }))
5504     return false;
5505 
5506   // Epilogue vectorization code has not been auditted to ensure it handles
5507   // non-latch exits properly.  It may be fine, but it needs auditted and
5508   // tested.
5509   if (L.getExitingBlock() != L.getLoopLatch())
5510     return false;
5511 
5512   return true;
5513 }
5514 
5515 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5516     const ElementCount VF) const {
5517   // FIXME: We need a much better cost-model to take different parameters such
5518   // as register pressure, code size increase and cost of extra branches into
5519   // account. For now we apply a very crude heuristic and only consider loops
5520   // with vectorization factors larger than a certain value.
5521   // We also consider epilogue vectorization unprofitable for targets that don't
5522   // consider interleaving beneficial (eg. MVE).
5523   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5524     return false;
5525   // FIXME: We should consider changing the threshold for scalable
5526   // vectors to take VScaleForTuning into account.
5527   if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
5528     return true;
5529   return false;
5530 }
5531 
5532 VectorizationFactor
5533 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5534     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5535   VectorizationFactor Result = VectorizationFactor::Disabled();
5536   if (!EnableEpilogueVectorization) {
5537     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5538     return Result;
5539   }
5540 
5541   if (!isScalarEpilogueAllowed()) {
5542     LLVM_DEBUG(
5543         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5544                   "allowed.\n";);
5545     return Result;
5546   }
5547 
5548   // Not really a cost consideration, but check for unsupported cases here to
5549   // simplify the logic.
5550   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5551     LLVM_DEBUG(
5552         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5553                   "not a supported candidate.\n";);
5554     return Result;
5555   }
5556 
5557   if (EpilogueVectorizationForceVF > 1) {
5558     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5559     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5560     if (LVP.hasPlanWithVF(ForcedEC))
5561       return {ForcedEC, 0};
5562     else {
5563       LLVM_DEBUG(
5564           dbgs()
5565               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5566       return Result;
5567     }
5568   }
5569 
5570   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5571       TheLoop->getHeader()->getParent()->hasMinSize()) {
5572     LLVM_DEBUG(
5573         dbgs()
5574             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5575     return Result;
5576   }
5577 
5578   if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
5579     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5580                          "this loop\n");
5581     return Result;
5582   }
5583 
5584   // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
5585   // the main loop handles 8 lanes per iteration. We could still benefit from
5586   // vectorizing the epilogue loop with VF=4.
5587   ElementCount EstimatedRuntimeVF = MainLoopVF;
5588   if (MainLoopVF.isScalable()) {
5589     EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5590     if (Optional<unsigned> VScale = getVScaleForTuning())
5591       EstimatedRuntimeVF *= VScale.getValue();
5592   }
5593 
5594   for (auto &NextVF : ProfitableVFs)
5595     if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
5596           ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
5597          ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
5598         (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
5599         LVP.hasPlanWithVF(NextVF.Width))
5600       Result = NextVF;
5601 
5602   if (Result != VectorizationFactor::Disabled())
5603     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5604                       << Result.Width << "\n";);
5605   return Result;
5606 }
5607 
5608 std::pair<unsigned, unsigned>
5609 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5610   unsigned MinWidth = -1U;
5611   unsigned MaxWidth = 8;
5612   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5613   // For in-loop reductions, no element types are added to ElementTypesInLoop
5614   // if there are no loads/stores in the loop. In this case, check through the
5615   // reduction variables to determine the maximum width.
5616   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5617     // Reset MaxWidth so that we can find the smallest type used by recurrences
5618     // in the loop.
5619     MaxWidth = -1U;
5620     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5621       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5622       // When finding the min width used by the recurrence we need to account
5623       // for casts on the input operands of the recurrence.
5624       MaxWidth = std::min<unsigned>(
5625           MaxWidth, std::min<unsigned>(
5626                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5627                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5628     }
5629   } else {
5630     for (Type *T : ElementTypesInLoop) {
5631       MinWidth = std::min<unsigned>(
5632           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5633       MaxWidth = std::max<unsigned>(
5634           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5635     }
5636   }
5637   return {MinWidth, MaxWidth};
5638 }
5639 
5640 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5641   ElementTypesInLoop.clear();
5642   // For each block.
5643   for (BasicBlock *BB : TheLoop->blocks()) {
5644     // For each instruction in the loop.
5645     for (Instruction &I : BB->instructionsWithoutDebug()) {
5646       Type *T = I.getType();
5647 
5648       // Skip ignored values.
5649       if (ValuesToIgnore.count(&I))
5650         continue;
5651 
5652       // Only examine Loads, Stores and PHINodes.
5653       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5654         continue;
5655 
5656       // Examine PHI nodes that are reduction variables. Update the type to
5657       // account for the recurrence type.
5658       if (auto *PN = dyn_cast<PHINode>(&I)) {
5659         if (!Legal->isReductionVariable(PN))
5660           continue;
5661         const RecurrenceDescriptor &RdxDesc =
5662             Legal->getReductionVars().find(PN)->second;
5663         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5664             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5665                                       RdxDesc.getRecurrenceType(),
5666                                       TargetTransformInfo::ReductionFlags()))
5667           continue;
5668         T = RdxDesc.getRecurrenceType();
5669       }
5670 
5671       // Examine the stored values.
5672       if (auto *ST = dyn_cast<StoreInst>(&I))
5673         T = ST->getValueOperand()->getType();
5674 
5675       assert(T->isSized() &&
5676              "Expected the load/store/recurrence type to be sized");
5677 
5678       ElementTypesInLoop.insert(T);
5679     }
5680   }
5681 }
5682 
5683 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5684                                                            unsigned LoopCost) {
5685   // -- The interleave heuristics --
5686   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5687   // There are many micro-architectural considerations that we can't predict
5688   // at this level. For example, frontend pressure (on decode or fetch) due to
5689   // code size, or the number and capabilities of the execution ports.
5690   //
5691   // We use the following heuristics to select the interleave count:
5692   // 1. If the code has reductions, then we interleave to break the cross
5693   // iteration dependency.
5694   // 2. If the loop is really small, then we interleave to reduce the loop
5695   // overhead.
5696   // 3. We don't interleave if we think that we will spill registers to memory
5697   // due to the increased register pressure.
5698 
5699   if (!isScalarEpilogueAllowed())
5700     return 1;
5701 
5702   // We used the distance for the interleave count.
5703   if (Legal->getMaxSafeDepDistBytes() != -1U)
5704     return 1;
5705 
5706   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5707   const bool HasReductions = !Legal->getReductionVars().empty();
5708   // Do not interleave loops with a relatively small known or estimated trip
5709   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
5710   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
5711   // because with the above conditions interleaving can expose ILP and break
5712   // cross iteration dependences for reductions.
5713   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
5714       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
5715     return 1;
5716 
5717   // If we did not calculate the cost for VF (because the user selected the VF)
5718   // then we calculate the cost of VF here.
5719   if (LoopCost == 0) {
5720     InstructionCost C = expectedCost(VF).first;
5721     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
5722     LoopCost = *C.getValue();
5723 
5724     // Loop body is free and there is no need for interleaving.
5725     if (LoopCost == 0)
5726       return 1;
5727   }
5728 
5729   RegisterUsage R = calculateRegisterUsage({VF})[0];
5730   // We divide by these constants so assume that we have at least one
5731   // instruction that uses at least one register.
5732   for (auto& pair : R.MaxLocalUsers) {
5733     pair.second = std::max(pair.second, 1U);
5734   }
5735 
5736   // We calculate the interleave count using the following formula.
5737   // Subtract the number of loop invariants from the number of available
5738   // registers. These registers are used by all of the interleaved instances.
5739   // Next, divide the remaining registers by the number of registers that is
5740   // required by the loop, in order to estimate how many parallel instances
5741   // fit without causing spills. All of this is rounded down if necessary to be
5742   // a power of two. We want power of two interleave count to simplify any
5743   // addressing operations or alignment considerations.
5744   // We also want power of two interleave counts to ensure that the induction
5745   // variable of the vector loop wraps to zero, when tail is folded by masking;
5746   // this currently happens when OptForSize, in which case IC is set to 1 above.
5747   unsigned IC = UINT_MAX;
5748 
5749   for (auto& pair : R.MaxLocalUsers) {
5750     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5751     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5752                       << " registers of "
5753                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5754     if (VF.isScalar()) {
5755       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5756         TargetNumRegisters = ForceTargetNumScalarRegs;
5757     } else {
5758       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5759         TargetNumRegisters = ForceTargetNumVectorRegs;
5760     }
5761     unsigned MaxLocalUsers = pair.second;
5762     unsigned LoopInvariantRegs = 0;
5763     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5764       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5765 
5766     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5767     // Don't count the induction variable as interleaved.
5768     if (EnableIndVarRegisterHeur) {
5769       TmpIC =
5770           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5771                         std::max(1U, (MaxLocalUsers - 1)));
5772     }
5773 
5774     IC = std::min(IC, TmpIC);
5775   }
5776 
5777   // Clamp the interleave ranges to reasonable counts.
5778   unsigned MaxInterleaveCount =
5779       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
5780 
5781   // Check if the user has overridden the max.
5782   if (VF.isScalar()) {
5783     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5784       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5785   } else {
5786     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5787       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5788   }
5789 
5790   // If trip count is known or estimated compile time constant, limit the
5791   // interleave count to be less than the trip count divided by VF, provided it
5792   // is at least 1.
5793   //
5794   // For scalable vectors we can't know if interleaving is beneficial. It may
5795   // not be beneficial for small loops if none of the lanes in the second vector
5796   // iterations is enabled. However, for larger loops, there is likely to be a
5797   // similar benefit as for fixed-width vectors. For now, we choose to leave
5798   // the InterleaveCount as if vscale is '1', although if some information about
5799   // the vector is known (e.g. min vector size), we can make a better decision.
5800   if (BestKnownTC) {
5801     MaxInterleaveCount =
5802         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
5803     // Make sure MaxInterleaveCount is greater than 0.
5804     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
5805   }
5806 
5807   assert(MaxInterleaveCount > 0 &&
5808          "Maximum interleave count must be greater than 0");
5809 
5810   // Clamp the calculated IC to be between the 1 and the max interleave count
5811   // that the target and trip count allows.
5812   if (IC > MaxInterleaveCount)
5813     IC = MaxInterleaveCount;
5814   else
5815     // Make sure IC is greater than 0.
5816     IC = std::max(1u, IC);
5817 
5818   assert(IC > 0 && "Interleave count must be greater than 0.");
5819 
5820   // Interleave if we vectorized this loop and there is a reduction that could
5821   // benefit from interleaving.
5822   if (VF.isVector() && HasReductions) {
5823     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5824     return IC;
5825   }
5826 
5827   // For any scalar loop that either requires runtime checks or predication we
5828   // are better off leaving this to the unroller. Note that if we've already
5829   // vectorized the loop we will have done the runtime check and so interleaving
5830   // won't require further checks.
5831   bool ScalarInterleavingRequiresPredication =
5832       (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
5833          return Legal->blockNeedsPredication(BB);
5834        }));
5835   bool ScalarInterleavingRequiresRuntimePointerCheck =
5836       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
5837 
5838   // We want to interleave small loops in order to reduce the loop overhead and
5839   // potentially expose ILP opportunities.
5840   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
5841                     << "LV: IC is " << IC << '\n'
5842                     << "LV: VF is " << VF << '\n');
5843   const bool AggressivelyInterleaveReductions =
5844       TTI.enableAggressiveInterleaving(HasReductions);
5845   if (!ScalarInterleavingRequiresRuntimePointerCheck &&
5846       !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
5847     // We assume that the cost overhead is 1 and we use the cost model
5848     // to estimate the cost of the loop and interleave until the cost of the
5849     // loop overhead is about 5% of the cost of the loop.
5850     unsigned SmallIC =
5851         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5852 
5853     // Interleave until store/load ports (estimated by max interleave count) are
5854     // saturated.
5855     unsigned NumStores = Legal->getNumStores();
5856     unsigned NumLoads = Legal->getNumLoads();
5857     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5858     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5859 
5860     // There is little point in interleaving for reductions containing selects
5861     // and compares when VF=1 since it may just create more overhead than it's
5862     // worth for loops with small trip counts. This is because we still have to
5863     // do the final reduction after the loop.
5864     bool HasSelectCmpReductions =
5865         HasReductions &&
5866         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5867           const RecurrenceDescriptor &RdxDesc = Reduction.second;
5868           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
5869               RdxDesc.getRecurrenceKind());
5870         });
5871     if (HasSelectCmpReductions) {
5872       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
5873       return 1;
5874     }
5875 
5876     // If we have a scalar reduction (vector reductions are already dealt with
5877     // by this point), we can increase the critical path length if the loop
5878     // we're interleaving is inside another loop. For tree-wise reductions
5879     // set the limit to 2, and for ordered reductions it's best to disable
5880     // interleaving entirely.
5881     if (HasReductions && TheLoop->getLoopDepth() > 1) {
5882       bool HasOrderedReductions =
5883           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5884             const RecurrenceDescriptor &RdxDesc = Reduction.second;
5885             return RdxDesc.isOrdered();
5886           });
5887       if (HasOrderedReductions) {
5888         LLVM_DEBUG(
5889             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
5890         return 1;
5891       }
5892 
5893       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5894       SmallIC = std::min(SmallIC, F);
5895       StoresIC = std::min(StoresIC, F);
5896       LoadsIC = std::min(LoadsIC, F);
5897     }
5898 
5899     if (EnableLoadStoreRuntimeInterleave &&
5900         std::max(StoresIC, LoadsIC) > SmallIC) {
5901       LLVM_DEBUG(
5902           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5903       return std::max(StoresIC, LoadsIC);
5904     }
5905 
5906     // If there are scalar reductions and TTI has enabled aggressive
5907     // interleaving for reductions, we will interleave to expose ILP.
5908     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
5909         AggressivelyInterleaveReductions) {
5910       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5911       // Interleave no less than SmallIC but not as aggressive as the normal IC
5912       // to satisfy the rare situation when resources are too limited.
5913       return std::max(IC / 2, SmallIC);
5914     } else {
5915       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5916       return SmallIC;
5917     }
5918   }
5919 
5920   // Interleave if this is a large loop (small loops are already dealt with by
5921   // this point) that could benefit from interleaving.
5922   if (AggressivelyInterleaveReductions) {
5923     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5924     return IC;
5925   }
5926 
5927   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5928   return 1;
5929 }
5930 
5931 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5932 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
5933   // This function calculates the register usage by measuring the highest number
5934   // of values that are alive at a single location. Obviously, this is a very
5935   // rough estimation. We scan the loop in a topological order in order and
5936   // assign a number to each instruction. We use RPO to ensure that defs are
5937   // met before their users. We assume that each instruction that has in-loop
5938   // users starts an interval. We record every time that an in-loop value is
5939   // used, so we have a list of the first and last occurrences of each
5940   // instruction. Next, we transpose this data structure into a multi map that
5941   // holds the list of intervals that *end* at a specific location. This multi
5942   // map allows us to perform a linear search. We scan the instructions linearly
5943   // and record each time that a new interval starts, by placing it in a set.
5944   // If we find this value in the multi-map then we remove it from the set.
5945   // The max register usage is the maximum size of the set.
5946   // We also search for instructions that are defined outside the loop, but are
5947   // used inside the loop. We need this number separately from the max-interval
5948   // usage number because when we unroll, loop-invariant values do not take
5949   // more register.
5950   LoopBlocksDFS DFS(TheLoop);
5951   DFS.perform(LI);
5952 
5953   RegisterUsage RU;
5954 
5955   // Each 'key' in the map opens a new interval. The values
5956   // of the map are the index of the 'last seen' usage of the
5957   // instruction that is the key.
5958   using IntervalMap = DenseMap<Instruction *, unsigned>;
5959 
5960   // Maps instruction to its index.
5961   SmallVector<Instruction *, 64> IdxToInstr;
5962   // Marks the end of each interval.
5963   IntervalMap EndPoint;
5964   // Saves the list of instruction indices that are used in the loop.
5965   SmallPtrSet<Instruction *, 8> Ends;
5966   // Saves the list of values that are used in the loop but are
5967   // defined outside the loop, such as arguments and constants.
5968   SmallPtrSet<Value *, 8> LoopInvariants;
5969 
5970   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5971     for (Instruction &I : BB->instructionsWithoutDebug()) {
5972       IdxToInstr.push_back(&I);
5973 
5974       // Save the end location of each USE.
5975       for (Value *U : I.operands()) {
5976         auto *Instr = dyn_cast<Instruction>(U);
5977 
5978         // Ignore non-instruction values such as arguments, constants, etc.
5979         if (!Instr)
5980           continue;
5981 
5982         // If this instruction is outside the loop then record it and continue.
5983         if (!TheLoop->contains(Instr)) {
5984           LoopInvariants.insert(Instr);
5985           continue;
5986         }
5987 
5988         // Overwrite previous end points.
5989         EndPoint[Instr] = IdxToInstr.size();
5990         Ends.insert(Instr);
5991       }
5992     }
5993   }
5994 
5995   // Saves the list of intervals that end with the index in 'key'.
5996   using InstrList = SmallVector<Instruction *, 2>;
5997   DenseMap<unsigned, InstrList> TransposeEnds;
5998 
5999   // Transpose the EndPoints to a list of values that end at each index.
6000   for (auto &Interval : EndPoint)
6001     TransposeEnds[Interval.second].push_back(Interval.first);
6002 
6003   SmallPtrSet<Instruction *, 8> OpenIntervals;
6004   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6005   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6006 
6007   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6008 
6009   // A lambda that gets the register usage for the given type and VF.
6010   const auto &TTICapture = TTI;
6011   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6012     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6013       return 0;
6014     InstructionCost::CostType RegUsage =
6015         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6016     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6017            "Nonsensical values for register usage.");
6018     return RegUsage;
6019   };
6020 
6021   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6022     Instruction *I = IdxToInstr[i];
6023 
6024     // Remove all of the instructions that end at this location.
6025     InstrList &List = TransposeEnds[i];
6026     for (Instruction *ToRemove : List)
6027       OpenIntervals.erase(ToRemove);
6028 
6029     // Ignore instructions that are never used within the loop.
6030     if (!Ends.count(I))
6031       continue;
6032 
6033     // Skip ignored values.
6034     if (ValuesToIgnore.count(I))
6035       continue;
6036 
6037     // For each VF find the maximum usage of registers.
6038     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6039       // Count the number of live intervals.
6040       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6041 
6042       if (VFs[j].isScalar()) {
6043         for (auto Inst : OpenIntervals) {
6044           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6045           if (RegUsage.find(ClassID) == RegUsage.end())
6046             RegUsage[ClassID] = 1;
6047           else
6048             RegUsage[ClassID] += 1;
6049         }
6050       } else {
6051         collectUniformsAndScalars(VFs[j]);
6052         for (auto Inst : OpenIntervals) {
6053           // Skip ignored values for VF > 1.
6054           if (VecValuesToIgnore.count(Inst))
6055             continue;
6056           if (isScalarAfterVectorization(Inst, VFs[j])) {
6057             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6058             if (RegUsage.find(ClassID) == RegUsage.end())
6059               RegUsage[ClassID] = 1;
6060             else
6061               RegUsage[ClassID] += 1;
6062           } else {
6063             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6064             if (RegUsage.find(ClassID) == RegUsage.end())
6065               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6066             else
6067               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6068           }
6069         }
6070       }
6071 
6072       for (auto& pair : RegUsage) {
6073         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6074           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6075         else
6076           MaxUsages[j][pair.first] = pair.second;
6077       }
6078     }
6079 
6080     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6081                       << OpenIntervals.size() << '\n');
6082 
6083     // Add the current instruction to the list of open intervals.
6084     OpenIntervals.insert(I);
6085   }
6086 
6087   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6088     SmallMapVector<unsigned, unsigned, 4> Invariant;
6089 
6090     for (auto Inst : LoopInvariants) {
6091       unsigned Usage =
6092           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6093       unsigned ClassID =
6094           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6095       if (Invariant.find(ClassID) == Invariant.end())
6096         Invariant[ClassID] = Usage;
6097       else
6098         Invariant[ClassID] += Usage;
6099     }
6100 
6101     LLVM_DEBUG({
6102       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6103       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6104              << " item\n";
6105       for (const auto &pair : MaxUsages[i]) {
6106         dbgs() << "LV(REG): RegisterClass: "
6107                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6108                << " registers\n";
6109       }
6110       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6111              << " item\n";
6112       for (const auto &pair : Invariant) {
6113         dbgs() << "LV(REG): RegisterClass: "
6114                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6115                << " registers\n";
6116       }
6117     });
6118 
6119     RU.LoopInvariantRegs = Invariant;
6120     RU.MaxLocalUsers = MaxUsages[i];
6121     RUs[i] = RU;
6122   }
6123 
6124   return RUs;
6125 }
6126 
6127 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6128                                                            ElementCount VF) {
6129   // TODO: Cost model for emulated masked load/store is completely
6130   // broken. This hack guides the cost model to use an artificially
6131   // high enough value to practically disable vectorization with such
6132   // operations, except where previously deployed legality hack allowed
6133   // using very low cost values. This is to avoid regressions coming simply
6134   // from moving "masked load/store" check from legality to cost model.
6135   // Masked Load/Gather emulation was previously never allowed.
6136   // Limited number of Masked Store/Scatter emulation was allowed.
6137   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6138   return isa<LoadInst>(I) ||
6139          (isa<StoreInst>(I) &&
6140           NumPredStores > NumberOfStoresToPredicate);
6141 }
6142 
6143 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6144   // If we aren't vectorizing the loop, or if we've already collected the
6145   // instructions to scalarize, there's nothing to do. Collection may already
6146   // have occurred if we have a user-selected VF and are now computing the
6147   // expected cost for interleaving.
6148   if (VF.isScalar() || VF.isZero() ||
6149       InstsToScalarize.find(VF) != InstsToScalarize.end())
6150     return;
6151 
6152   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6153   // not profitable to scalarize any instructions, the presence of VF in the
6154   // map will indicate that we've analyzed it already.
6155   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6156 
6157   // Find all the instructions that are scalar with predication in the loop and
6158   // determine if it would be better to not if-convert the blocks they are in.
6159   // If so, we also record the instructions to scalarize.
6160   for (BasicBlock *BB : TheLoop->blocks()) {
6161     if (!blockNeedsPredicationForAnyReason(BB))
6162       continue;
6163     for (Instruction &I : *BB)
6164       if (isScalarWithPredication(&I, VF)) {
6165         ScalarCostsTy ScalarCosts;
6166         // Do not apply discount if scalable, because that would lead to
6167         // invalid scalarization costs.
6168         // Do not apply discount logic if hacked cost is needed
6169         // for emulated masked memrefs.
6170         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6171             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6172           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6173         // Remember that BB will remain after vectorization.
6174         PredicatedBBsAfterVectorization.insert(BB);
6175       }
6176   }
6177 }
6178 
6179 int LoopVectorizationCostModel::computePredInstDiscount(
6180     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6181   assert(!isUniformAfterVectorization(PredInst, VF) &&
6182          "Instruction marked uniform-after-vectorization will be predicated");
6183 
6184   // Initialize the discount to zero, meaning that the scalar version and the
6185   // vector version cost the same.
6186   InstructionCost Discount = 0;
6187 
6188   // Holds instructions to analyze. The instructions we visit are mapped in
6189   // ScalarCosts. Those instructions are the ones that would be scalarized if
6190   // we find that the scalar version costs less.
6191   SmallVector<Instruction *, 8> Worklist;
6192 
6193   // Returns true if the given instruction can be scalarized.
6194   auto canBeScalarized = [&](Instruction *I) -> bool {
6195     // We only attempt to scalarize instructions forming a single-use chain
6196     // from the original predicated block that would otherwise be vectorized.
6197     // Although not strictly necessary, we give up on instructions we know will
6198     // already be scalar to avoid traversing chains that are unlikely to be
6199     // beneficial.
6200     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6201         isScalarAfterVectorization(I, VF))
6202       return false;
6203 
6204     // If the instruction is scalar with predication, it will be analyzed
6205     // separately. We ignore it within the context of PredInst.
6206     if (isScalarWithPredication(I, VF))
6207       return false;
6208 
6209     // If any of the instruction's operands are uniform after vectorization,
6210     // the instruction cannot be scalarized. This prevents, for example, a
6211     // masked load from being scalarized.
6212     //
6213     // We assume we will only emit a value for lane zero of an instruction
6214     // marked uniform after vectorization, rather than VF identical values.
6215     // Thus, if we scalarize an instruction that uses a uniform, we would
6216     // create uses of values corresponding to the lanes we aren't emitting code
6217     // for. This behavior can be changed by allowing getScalarValue to clone
6218     // the lane zero values for uniforms rather than asserting.
6219     for (Use &U : I->operands())
6220       if (auto *J = dyn_cast<Instruction>(U.get()))
6221         if (isUniformAfterVectorization(J, VF))
6222           return false;
6223 
6224     // Otherwise, we can scalarize the instruction.
6225     return true;
6226   };
6227 
6228   // Compute the expected cost discount from scalarizing the entire expression
6229   // feeding the predicated instruction. We currently only consider expressions
6230   // that are single-use instruction chains.
6231   Worklist.push_back(PredInst);
6232   while (!Worklist.empty()) {
6233     Instruction *I = Worklist.pop_back_val();
6234 
6235     // If we've already analyzed the instruction, there's nothing to do.
6236     if (ScalarCosts.find(I) != ScalarCosts.end())
6237       continue;
6238 
6239     // Compute the cost of the vector instruction. Note that this cost already
6240     // includes the scalarization overhead of the predicated instruction.
6241     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6242 
6243     // Compute the cost of the scalarized instruction. This cost is the cost of
6244     // the instruction as if it wasn't if-converted and instead remained in the
6245     // predicated block. We will scale this cost by block probability after
6246     // computing the scalarization overhead.
6247     InstructionCost ScalarCost =
6248         VF.getFixedValue() *
6249         getInstructionCost(I, ElementCount::getFixed(1)).first;
6250 
6251     // Compute the scalarization overhead of needed insertelement instructions
6252     // and phi nodes.
6253     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6254       ScalarCost += TTI.getScalarizationOverhead(
6255           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6256           APInt::getAllOnes(VF.getFixedValue()), true, false);
6257       ScalarCost +=
6258           VF.getFixedValue() *
6259           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6260     }
6261 
6262     // Compute the scalarization overhead of needed extractelement
6263     // instructions. For each of the instruction's operands, if the operand can
6264     // be scalarized, add it to the worklist; otherwise, account for the
6265     // overhead.
6266     for (Use &U : I->operands())
6267       if (auto *J = dyn_cast<Instruction>(U.get())) {
6268         assert(VectorType::isValidElementType(J->getType()) &&
6269                "Instruction has non-scalar type");
6270         if (canBeScalarized(J))
6271           Worklist.push_back(J);
6272         else if (needsExtract(J, VF)) {
6273           ScalarCost += TTI.getScalarizationOverhead(
6274               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6275               APInt::getAllOnes(VF.getFixedValue()), false, true);
6276         }
6277       }
6278 
6279     // Scale the total scalar cost by block probability.
6280     ScalarCost /= getReciprocalPredBlockProb();
6281 
6282     // Compute the discount. A non-negative discount means the vector version
6283     // of the instruction costs more, and scalarizing would be beneficial.
6284     Discount += VectorCost - ScalarCost;
6285     ScalarCosts[I] = ScalarCost;
6286   }
6287 
6288   return *Discount.getValue();
6289 }
6290 
6291 LoopVectorizationCostModel::VectorizationCostTy
6292 LoopVectorizationCostModel::expectedCost(
6293     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6294   VectorizationCostTy Cost;
6295 
6296   // For each block.
6297   for (BasicBlock *BB : TheLoop->blocks()) {
6298     VectorizationCostTy BlockCost;
6299 
6300     // For each instruction in the old loop.
6301     for (Instruction &I : BB->instructionsWithoutDebug()) {
6302       // Skip ignored values.
6303       if (ValuesToIgnore.count(&I) ||
6304           (VF.isVector() && VecValuesToIgnore.count(&I)))
6305         continue;
6306 
6307       VectorizationCostTy C = getInstructionCost(&I, VF);
6308 
6309       // Check if we should override the cost.
6310       if (C.first.isValid() &&
6311           ForceTargetInstructionCost.getNumOccurrences() > 0)
6312         C.first = InstructionCost(ForceTargetInstructionCost);
6313 
6314       // Keep a list of instructions with invalid costs.
6315       if (Invalid && !C.first.isValid())
6316         Invalid->emplace_back(&I, VF);
6317 
6318       BlockCost.first += C.first;
6319       BlockCost.second |= C.second;
6320       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6321                         << " for VF " << VF << " For instruction: " << I
6322                         << '\n');
6323     }
6324 
6325     // If we are vectorizing a predicated block, it will have been
6326     // if-converted. This means that the block's instructions (aside from
6327     // stores and instructions that may divide by zero) will now be
6328     // unconditionally executed. For the scalar case, we may not always execute
6329     // the predicated block, if it is an if-else block. Thus, scale the block's
6330     // cost by the probability of executing it. blockNeedsPredication from
6331     // Legal is used so as to not include all blocks in tail folded loops.
6332     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6333       BlockCost.first /= getReciprocalPredBlockProb();
6334 
6335     Cost.first += BlockCost.first;
6336     Cost.second |= BlockCost.second;
6337   }
6338 
6339   return Cost;
6340 }
6341 
6342 /// Gets Address Access SCEV after verifying that the access pattern
6343 /// is loop invariant except the induction variable dependence.
6344 ///
6345 /// This SCEV can be sent to the Target in order to estimate the address
6346 /// calculation cost.
6347 static const SCEV *getAddressAccessSCEV(
6348               Value *Ptr,
6349               LoopVectorizationLegality *Legal,
6350               PredicatedScalarEvolution &PSE,
6351               const Loop *TheLoop) {
6352 
6353   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6354   if (!Gep)
6355     return nullptr;
6356 
6357   // We are looking for a gep with all loop invariant indices except for one
6358   // which should be an induction variable.
6359   auto SE = PSE.getSE();
6360   unsigned NumOperands = Gep->getNumOperands();
6361   for (unsigned i = 1; i < NumOperands; ++i) {
6362     Value *Opd = Gep->getOperand(i);
6363     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6364         !Legal->isInductionVariable(Opd))
6365       return nullptr;
6366   }
6367 
6368   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6369   return PSE.getSCEV(Ptr);
6370 }
6371 
6372 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6373   return Legal->hasStride(I->getOperand(0)) ||
6374          Legal->hasStride(I->getOperand(1));
6375 }
6376 
6377 InstructionCost
6378 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6379                                                         ElementCount VF) {
6380   assert(VF.isVector() &&
6381          "Scalarization cost of instruction implies vectorization.");
6382   if (VF.isScalable())
6383     return InstructionCost::getInvalid();
6384 
6385   Type *ValTy = getLoadStoreType(I);
6386   auto SE = PSE.getSE();
6387 
6388   unsigned AS = getLoadStoreAddressSpace(I);
6389   Value *Ptr = getLoadStorePointerOperand(I);
6390   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6391   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6392   //       that it is being called from this specific place.
6393 
6394   // Figure out whether the access is strided and get the stride value
6395   // if it's known in compile time
6396   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6397 
6398   // Get the cost of the scalar memory instruction and address computation.
6399   InstructionCost Cost =
6400       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6401 
6402   // Don't pass *I here, since it is scalar but will actually be part of a
6403   // vectorized loop where the user of it is a vectorized instruction.
6404   const Align Alignment = getLoadStoreAlignment(I);
6405   Cost += VF.getKnownMinValue() *
6406           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6407                               AS, TTI::TCK_RecipThroughput);
6408 
6409   // Get the overhead of the extractelement and insertelement instructions
6410   // we might create due to scalarization.
6411   Cost += getScalarizationOverhead(I, VF);
6412 
6413   // If we have a predicated load/store, it will need extra i1 extracts and
6414   // conditional branches, but may not be executed for each vector lane. Scale
6415   // the cost by the probability of executing the predicated block.
6416   if (isPredicatedInst(I, VF)) {
6417     Cost /= getReciprocalPredBlockProb();
6418 
6419     // Add the cost of an i1 extract and a branch
6420     auto *Vec_i1Ty =
6421         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6422     Cost += TTI.getScalarizationOverhead(
6423         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6424         /*Insert=*/false, /*Extract=*/true);
6425     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6426 
6427     if (useEmulatedMaskMemRefHack(I, VF))
6428       // Artificially setting to a high enough value to practically disable
6429       // vectorization with such operations.
6430       Cost = 3000000;
6431   }
6432 
6433   return Cost;
6434 }
6435 
6436 InstructionCost
6437 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6438                                                     ElementCount VF) {
6439   Type *ValTy = getLoadStoreType(I);
6440   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6441   Value *Ptr = getLoadStorePointerOperand(I);
6442   unsigned AS = getLoadStoreAddressSpace(I);
6443   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6444   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6445 
6446   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6447          "Stride should be 1 or -1 for consecutive memory access");
6448   const Align Alignment = getLoadStoreAlignment(I);
6449   InstructionCost Cost = 0;
6450   if (Legal->isMaskRequired(I))
6451     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6452                                       CostKind);
6453   else
6454     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6455                                 CostKind, I);
6456 
6457   bool Reverse = ConsecutiveStride < 0;
6458   if (Reverse)
6459     Cost +=
6460         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6461   return Cost;
6462 }
6463 
6464 InstructionCost
6465 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6466                                                 ElementCount VF) {
6467   assert(Legal->isUniformMemOp(*I));
6468 
6469   Type *ValTy = getLoadStoreType(I);
6470   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6471   const Align Alignment = getLoadStoreAlignment(I);
6472   unsigned AS = getLoadStoreAddressSpace(I);
6473   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6474   if (isa<LoadInst>(I)) {
6475     return TTI.getAddressComputationCost(ValTy) +
6476            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6477                                CostKind) +
6478            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6479   }
6480   StoreInst *SI = cast<StoreInst>(I);
6481 
6482   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6483   return TTI.getAddressComputationCost(ValTy) +
6484          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6485                              CostKind) +
6486          (isLoopInvariantStoreValue
6487               ? 0
6488               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6489                                        VF.getKnownMinValue() - 1));
6490 }
6491 
6492 InstructionCost
6493 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6494                                                  ElementCount VF) {
6495   Type *ValTy = getLoadStoreType(I);
6496   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6497   const Align Alignment = getLoadStoreAlignment(I);
6498   const Value *Ptr = getLoadStorePointerOperand(I);
6499 
6500   return TTI.getAddressComputationCost(VectorTy) +
6501          TTI.getGatherScatterOpCost(
6502              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6503              TargetTransformInfo::TCK_RecipThroughput, I);
6504 }
6505 
6506 InstructionCost
6507 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6508                                                    ElementCount VF) {
6509   // TODO: Once we have support for interleaving with scalable vectors
6510   // we can calculate the cost properly here.
6511   if (VF.isScalable())
6512     return InstructionCost::getInvalid();
6513 
6514   Type *ValTy = getLoadStoreType(I);
6515   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6516   unsigned AS = getLoadStoreAddressSpace(I);
6517 
6518   auto Group = getInterleavedAccessGroup(I);
6519   assert(Group && "Fail to get an interleaved access group.");
6520 
6521   unsigned InterleaveFactor = Group->getFactor();
6522   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6523 
6524   // Holds the indices of existing members in the interleaved group.
6525   SmallVector<unsigned, 4> Indices;
6526   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6527     if (Group->getMember(IF))
6528       Indices.push_back(IF);
6529 
6530   // Calculate the cost of the whole interleaved group.
6531   bool UseMaskForGaps =
6532       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6533       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6534   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6535       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6536       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6537 
6538   if (Group->isReverse()) {
6539     // TODO: Add support for reversed masked interleaved access.
6540     assert(!Legal->isMaskRequired(I) &&
6541            "Reverse masked interleaved access not supported.");
6542     Cost +=
6543         Group->getNumMembers() *
6544         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6545   }
6546   return Cost;
6547 }
6548 
6549 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6550     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6551   using namespace llvm::PatternMatch;
6552   // Early exit for no inloop reductions
6553   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6554     return None;
6555   auto *VectorTy = cast<VectorType>(Ty);
6556 
6557   // We are looking for a pattern of, and finding the minimal acceptable cost:
6558   //  reduce(mul(ext(A), ext(B))) or
6559   //  reduce(mul(A, B)) or
6560   //  reduce(ext(A)) or
6561   //  reduce(A).
6562   // The basic idea is that we walk down the tree to do that, finding the root
6563   // reduction instruction in InLoopReductionImmediateChains. From there we find
6564   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6565   // of the components. If the reduction cost is lower then we return it for the
6566   // reduction instruction and 0 for the other instructions in the pattern. If
6567   // it is not we return an invalid cost specifying the orignal cost method
6568   // should be used.
6569   Instruction *RetI = I;
6570   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6571     if (!RetI->hasOneUser())
6572       return None;
6573     RetI = RetI->user_back();
6574   }
6575   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6576       RetI->user_back()->getOpcode() == Instruction::Add) {
6577     if (!RetI->hasOneUser())
6578       return None;
6579     RetI = RetI->user_back();
6580   }
6581 
6582   // Test if the found instruction is a reduction, and if not return an invalid
6583   // cost specifying the parent to use the original cost modelling.
6584   if (!InLoopReductionImmediateChains.count(RetI))
6585     return None;
6586 
6587   // Find the reduction this chain is a part of and calculate the basic cost of
6588   // the reduction on its own.
6589   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6590   Instruction *ReductionPhi = LastChain;
6591   while (!isa<PHINode>(ReductionPhi))
6592     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6593 
6594   const RecurrenceDescriptor &RdxDesc =
6595       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6596 
6597   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6598       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6599 
6600   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6601   // normal fmul instruction to the cost of the fadd reduction.
6602   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6603     BaseCost +=
6604         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6605 
6606   // If we're using ordered reductions then we can just return the base cost
6607   // here, since getArithmeticReductionCost calculates the full ordered
6608   // reduction cost when FP reassociation is not allowed.
6609   if (useOrderedReductions(RdxDesc))
6610     return BaseCost;
6611 
6612   // Get the operand that was not the reduction chain and match it to one of the
6613   // patterns, returning the better cost if it is found.
6614   Instruction *RedOp = RetI->getOperand(1) == LastChain
6615                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6616                            : dyn_cast<Instruction>(RetI->getOperand(1));
6617 
6618   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6619 
6620   Instruction *Op0, *Op1;
6621   if (RedOp &&
6622       match(RedOp,
6623             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6624       match(Op0, m_ZExtOrSExt(m_Value())) &&
6625       Op0->getOpcode() == Op1->getOpcode() &&
6626       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6627       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6628       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6629 
6630     // Matched reduce(ext(mul(ext(A), ext(B)))
6631     // Note that the extend opcodes need to all match, or if A==B they will have
6632     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6633     // which is equally fine.
6634     bool IsUnsigned = isa<ZExtInst>(Op0);
6635     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6636     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6637 
6638     InstructionCost ExtCost =
6639         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6640                              TTI::CastContextHint::None, CostKind, Op0);
6641     InstructionCost MulCost =
6642         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6643     InstructionCost Ext2Cost =
6644         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6645                              TTI::CastContextHint::None, CostKind, RedOp);
6646 
6647     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6648         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6649         CostKind);
6650 
6651     if (RedCost.isValid() &&
6652         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6653       return I == RetI ? RedCost : 0;
6654   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6655              !TheLoop->isLoopInvariant(RedOp)) {
6656     // Matched reduce(ext(A))
6657     bool IsUnsigned = isa<ZExtInst>(RedOp);
6658     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6659     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6660         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6661         CostKind);
6662 
6663     InstructionCost ExtCost =
6664         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6665                              TTI::CastContextHint::None, CostKind, RedOp);
6666     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6667       return I == RetI ? RedCost : 0;
6668   } else if (RedOp &&
6669              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6670     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6671         Op0->getOpcode() == Op1->getOpcode() &&
6672         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6673       bool IsUnsigned = isa<ZExtInst>(Op0);
6674       Type *Op0Ty = Op0->getOperand(0)->getType();
6675       Type *Op1Ty = Op1->getOperand(0)->getType();
6676       Type *LargestOpTy =
6677           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6678                                                                     : Op0Ty;
6679       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6680 
6681       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6682       // different sizes. We take the largest type as the ext to reduce, and add
6683       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6684       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6685           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6686           TTI::CastContextHint::None, CostKind, Op0);
6687       InstructionCost ExtCost1 = TTI.getCastInstrCost(
6688           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
6689           TTI::CastContextHint::None, CostKind, Op1);
6690       InstructionCost MulCost =
6691           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6692 
6693       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6694           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6695           CostKind);
6696       InstructionCost ExtraExtCost = 0;
6697       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6698         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6699         ExtraExtCost = TTI.getCastInstrCost(
6700             ExtraExtOp->getOpcode(), ExtType,
6701             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
6702             TTI::CastContextHint::None, CostKind, ExtraExtOp);
6703       }
6704 
6705       if (RedCost.isValid() &&
6706           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6707         return I == RetI ? RedCost : 0;
6708     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
6709       // Matched reduce(mul())
6710       InstructionCost MulCost =
6711           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6712 
6713       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6714           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
6715           CostKind);
6716 
6717       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
6718         return I == RetI ? RedCost : 0;
6719     }
6720   }
6721 
6722   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
6723 }
6724 
6725 InstructionCost
6726 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
6727                                                      ElementCount VF) {
6728   // Calculate scalar cost only. Vectorization cost should be ready at this
6729   // moment.
6730   if (VF.isScalar()) {
6731     Type *ValTy = getLoadStoreType(I);
6732     const Align Alignment = getLoadStoreAlignment(I);
6733     unsigned AS = getLoadStoreAddressSpace(I);
6734 
6735     return TTI.getAddressComputationCost(ValTy) +
6736            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
6737                                TTI::TCK_RecipThroughput, I);
6738   }
6739   return getWideningCost(I, VF);
6740 }
6741 
6742 LoopVectorizationCostModel::VectorizationCostTy
6743 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6744                                                ElementCount VF) {
6745   // If we know that this instruction will remain uniform, check the cost of
6746   // the scalar version.
6747   if (isUniformAfterVectorization(I, VF))
6748     VF = ElementCount::getFixed(1);
6749 
6750   if (VF.isVector() && isProfitableToScalarize(I, VF))
6751     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6752 
6753   // Forced scalars do not have any scalarization overhead.
6754   auto ForcedScalar = ForcedScalars.find(VF);
6755   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6756     auto InstSet = ForcedScalar->second;
6757     if (InstSet.count(I))
6758       return VectorizationCostTy(
6759           (getInstructionCost(I, ElementCount::getFixed(1)).first *
6760            VF.getKnownMinValue()),
6761           false);
6762   }
6763 
6764   Type *VectorTy;
6765   InstructionCost C = getInstructionCost(I, VF, VectorTy);
6766 
6767   bool TypeNotScalarized = false;
6768   if (VF.isVector() && VectorTy->isVectorTy()) {
6769     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
6770     if (NumParts)
6771       TypeNotScalarized = NumParts < VF.getKnownMinValue();
6772     else
6773       C = InstructionCost::getInvalid();
6774   }
6775   return VectorizationCostTy(C, TypeNotScalarized);
6776 }
6777 
6778 InstructionCost
6779 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6780                                                      ElementCount VF) const {
6781 
6782   // There is no mechanism yet to create a scalable scalarization loop,
6783   // so this is currently Invalid.
6784   if (VF.isScalable())
6785     return InstructionCost::getInvalid();
6786 
6787   if (VF.isScalar())
6788     return 0;
6789 
6790   InstructionCost Cost = 0;
6791   Type *RetTy = ToVectorTy(I->getType(), VF);
6792   if (!RetTy->isVoidTy() &&
6793       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6794     Cost += TTI.getScalarizationOverhead(
6795         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
6796         false);
6797 
6798   // Some targets keep addresses scalar.
6799   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6800     return Cost;
6801 
6802   // Some targets support efficient element stores.
6803   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6804     return Cost;
6805 
6806   // Collect operands to consider.
6807   CallInst *CI = dyn_cast<CallInst>(I);
6808   Instruction::op_range Ops = CI ? CI->args() : I->operands();
6809 
6810   // Skip operands that do not require extraction/scalarization and do not incur
6811   // any overhead.
6812   SmallVector<Type *> Tys;
6813   for (auto *V : filterExtractingOperands(Ops, VF))
6814     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
6815   return Cost + TTI.getOperandsScalarizationOverhead(
6816                     filterExtractingOperands(Ops, VF), Tys);
6817 }
6818 
6819 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
6820   if (VF.isScalar())
6821     return;
6822   NumPredStores = 0;
6823   for (BasicBlock *BB : TheLoop->blocks()) {
6824     // For each instruction in the old loop.
6825     for (Instruction &I : *BB) {
6826       Value *Ptr =  getLoadStorePointerOperand(&I);
6827       if (!Ptr)
6828         continue;
6829 
6830       // TODO: We should generate better code and update the cost model for
6831       // predicated uniform stores. Today they are treated as any other
6832       // predicated store (see added test cases in
6833       // invariant-store-vectorization.ll).
6834       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
6835         NumPredStores++;
6836 
6837       if (Legal->isUniformMemOp(I)) {
6838         // TODO: Avoid replicating loads and stores instead of
6839         // relying on instcombine to remove them.
6840         // Load: Scalar load + broadcast
6841         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6842         InstructionCost Cost;
6843         if (isa<StoreInst>(&I) && VF.isScalable() &&
6844             isLegalGatherOrScatter(&I, VF)) {
6845           Cost = getGatherScatterCost(&I, VF);
6846           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
6847         } else {
6848           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
6849                  "Cannot yet scalarize uniform stores");
6850           Cost = getUniformMemOpCost(&I, VF);
6851           setWideningDecision(&I, VF, CM_Scalarize, Cost);
6852         }
6853         continue;
6854       }
6855 
6856       // We assume that widening is the best solution when possible.
6857       if (memoryInstructionCanBeWidened(&I, VF)) {
6858         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
6859         int ConsecutiveStride = Legal->isConsecutivePtr(
6860             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
6861         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6862                "Expected consecutive stride.");
6863         InstWidening Decision =
6864             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6865         setWideningDecision(&I, VF, Decision, Cost);
6866         continue;
6867       }
6868 
6869       // Choose between Interleaving, Gather/Scatter or Scalarization.
6870       InstructionCost InterleaveCost = InstructionCost::getInvalid();
6871       unsigned NumAccesses = 1;
6872       if (isAccessInterleaved(&I)) {
6873         auto Group = getInterleavedAccessGroup(&I);
6874         assert(Group && "Fail to get an interleaved access group.");
6875 
6876         // Make one decision for the whole group.
6877         if (getWideningDecision(&I, VF) != CM_Unknown)
6878           continue;
6879 
6880         NumAccesses = Group->getNumMembers();
6881         if (interleavedAccessCanBeWidened(&I, VF))
6882           InterleaveCost = getInterleaveGroupCost(&I, VF);
6883       }
6884 
6885       InstructionCost GatherScatterCost =
6886           isLegalGatherOrScatter(&I, VF)
6887               ? getGatherScatterCost(&I, VF) * NumAccesses
6888               : InstructionCost::getInvalid();
6889 
6890       InstructionCost ScalarizationCost =
6891           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6892 
6893       // Choose better solution for the current VF,
6894       // write down this decision and use it during vectorization.
6895       InstructionCost Cost;
6896       InstWidening Decision;
6897       if (InterleaveCost <= GatherScatterCost &&
6898           InterleaveCost < ScalarizationCost) {
6899         Decision = CM_Interleave;
6900         Cost = InterleaveCost;
6901       } else if (GatherScatterCost < ScalarizationCost) {
6902         Decision = CM_GatherScatter;
6903         Cost = GatherScatterCost;
6904       } else {
6905         Decision = CM_Scalarize;
6906         Cost = ScalarizationCost;
6907       }
6908       // If the instructions belongs to an interleave group, the whole group
6909       // receives the same decision. The whole group receives the cost, but
6910       // the cost will actually be assigned to one instruction.
6911       if (auto Group = getInterleavedAccessGroup(&I))
6912         setWideningDecision(Group, VF, Decision, Cost);
6913       else
6914         setWideningDecision(&I, VF, Decision, Cost);
6915     }
6916   }
6917 
6918   // Make sure that any load of address and any other address computation
6919   // remains scalar unless there is gather/scatter support. This avoids
6920   // inevitable extracts into address registers, and also has the benefit of
6921   // activating LSR more, since that pass can't optimize vectorized
6922   // addresses.
6923   if (TTI.prefersVectorizedAddressing())
6924     return;
6925 
6926   // Start with all scalar pointer uses.
6927   SmallPtrSet<Instruction *, 8> AddrDefs;
6928   for (BasicBlock *BB : TheLoop->blocks())
6929     for (Instruction &I : *BB) {
6930       Instruction *PtrDef =
6931         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6932       if (PtrDef && TheLoop->contains(PtrDef) &&
6933           getWideningDecision(&I, VF) != CM_GatherScatter)
6934         AddrDefs.insert(PtrDef);
6935     }
6936 
6937   // Add all instructions used to generate the addresses.
6938   SmallVector<Instruction *, 4> Worklist;
6939   append_range(Worklist, AddrDefs);
6940   while (!Worklist.empty()) {
6941     Instruction *I = Worklist.pop_back_val();
6942     for (auto &Op : I->operands())
6943       if (auto *InstOp = dyn_cast<Instruction>(Op))
6944         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6945             AddrDefs.insert(InstOp).second)
6946           Worklist.push_back(InstOp);
6947   }
6948 
6949   for (auto *I : AddrDefs) {
6950     if (isa<LoadInst>(I)) {
6951       // Setting the desired widening decision should ideally be handled in
6952       // by cost functions, but since this involves the task of finding out
6953       // if the loaded register is involved in an address computation, it is
6954       // instead changed here when we know this is the case.
6955       InstWidening Decision = getWideningDecision(I, VF);
6956       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6957         // Scalarize a widened load of address.
6958         setWideningDecision(
6959             I, VF, CM_Scalarize,
6960             (VF.getKnownMinValue() *
6961              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
6962       else if (auto Group = getInterleavedAccessGroup(I)) {
6963         // Scalarize an interleave group of address loads.
6964         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6965           if (Instruction *Member = Group->getMember(I))
6966             setWideningDecision(
6967                 Member, VF, CM_Scalarize,
6968                 (VF.getKnownMinValue() *
6969                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
6970         }
6971       }
6972     } else
6973       // Make sure I gets scalarized and a cost estimate without
6974       // scalarization overhead.
6975       ForcedScalars[VF].insert(I);
6976   }
6977 }
6978 
6979 InstructionCost
6980 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
6981                                                Type *&VectorTy) {
6982   Type *RetTy = I->getType();
6983   if (canTruncateToMinimalBitwidth(I, VF))
6984     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6985   auto SE = PSE.getSE();
6986   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6987 
6988   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
6989                                                 ElementCount VF) -> bool {
6990     if (VF.isScalar())
6991       return true;
6992 
6993     auto Scalarized = InstsToScalarize.find(VF);
6994     assert(Scalarized != InstsToScalarize.end() &&
6995            "VF not yet analyzed for scalarization profitability");
6996     return !Scalarized->second.count(I) &&
6997            llvm::all_of(I->users(), [&](User *U) {
6998              auto *UI = cast<Instruction>(U);
6999              return !Scalarized->second.count(UI);
7000            });
7001   };
7002   (void) hasSingleCopyAfterVectorization;
7003 
7004   if (isScalarAfterVectorization(I, VF)) {
7005     // With the exception of GEPs and PHIs, after scalarization there should
7006     // only be one copy of the instruction generated in the loop. This is
7007     // because the VF is either 1, or any instructions that need scalarizing
7008     // have already been dealt with by the the time we get here. As a result,
7009     // it means we don't have to multiply the instruction cost by VF.
7010     assert(I->getOpcode() == Instruction::GetElementPtr ||
7011            I->getOpcode() == Instruction::PHI ||
7012            (I->getOpcode() == Instruction::BitCast &&
7013             I->getType()->isPointerTy()) ||
7014            hasSingleCopyAfterVectorization(I, VF));
7015     VectorTy = RetTy;
7016   } else
7017     VectorTy = ToVectorTy(RetTy, VF);
7018 
7019   // TODO: We need to estimate the cost of intrinsic calls.
7020   switch (I->getOpcode()) {
7021   case Instruction::GetElementPtr:
7022     // We mark this instruction as zero-cost because the cost of GEPs in
7023     // vectorized code depends on whether the corresponding memory instruction
7024     // is scalarized or not. Therefore, we handle GEPs with the memory
7025     // instruction cost.
7026     return 0;
7027   case Instruction::Br: {
7028     // In cases of scalarized and predicated instructions, there will be VF
7029     // predicated blocks in the vectorized loop. Each branch around these
7030     // blocks requires also an extract of its vector compare i1 element.
7031     bool ScalarPredicatedBB = false;
7032     BranchInst *BI = cast<BranchInst>(I);
7033     if (VF.isVector() && BI->isConditional() &&
7034         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7035          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7036       ScalarPredicatedBB = true;
7037 
7038     if (ScalarPredicatedBB) {
7039       // Not possible to scalarize scalable vector with predicated instructions.
7040       if (VF.isScalable())
7041         return InstructionCost::getInvalid();
7042       // Return cost for branches around scalarized and predicated blocks.
7043       auto *Vec_i1Ty =
7044           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7045       return (
7046           TTI.getScalarizationOverhead(
7047               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7048           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7049     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7050       // The back-edge branch will remain, as will all scalar branches.
7051       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7052     else
7053       // This branch will be eliminated by if-conversion.
7054       return 0;
7055     // Note: We currently assume zero cost for an unconditional branch inside
7056     // a predicated block since it will become a fall-through, although we
7057     // may decide in the future to call TTI for all branches.
7058   }
7059   case Instruction::PHI: {
7060     auto *Phi = cast<PHINode>(I);
7061 
7062     // First-order recurrences are replaced by vector shuffles inside the loop.
7063     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7064     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7065       return TTI.getShuffleCost(
7066           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7067           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7068 
7069     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7070     // converted into select instructions. We require N - 1 selects per phi
7071     // node, where N is the number of incoming values.
7072     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7073       return (Phi->getNumIncomingValues() - 1) *
7074              TTI.getCmpSelInstrCost(
7075                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7076                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7077                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7078 
7079     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7080   }
7081   case Instruction::UDiv:
7082   case Instruction::SDiv:
7083   case Instruction::URem:
7084   case Instruction::SRem:
7085     // If we have a predicated instruction, it may not be executed for each
7086     // vector lane. Get the scalarization cost and scale this amount by the
7087     // probability of executing the predicated block. If the instruction is not
7088     // predicated, we fall through to the next case.
7089     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7090       InstructionCost Cost = 0;
7091 
7092       // These instructions have a non-void type, so account for the phi nodes
7093       // that we will create. This cost is likely to be zero. The phi node
7094       // cost, if any, should be scaled by the block probability because it
7095       // models a copy at the end of each predicated block.
7096       Cost += VF.getKnownMinValue() *
7097               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7098 
7099       // The cost of the non-predicated instruction.
7100       Cost += VF.getKnownMinValue() *
7101               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7102 
7103       // The cost of insertelement and extractelement instructions needed for
7104       // scalarization.
7105       Cost += getScalarizationOverhead(I, VF);
7106 
7107       // Scale the cost by the probability of executing the predicated blocks.
7108       // This assumes the predicated block for each vector lane is equally
7109       // likely.
7110       return Cost / getReciprocalPredBlockProb();
7111     }
7112     LLVM_FALLTHROUGH;
7113   case Instruction::Add:
7114   case Instruction::FAdd:
7115   case Instruction::Sub:
7116   case Instruction::FSub:
7117   case Instruction::Mul:
7118   case Instruction::FMul:
7119   case Instruction::FDiv:
7120   case Instruction::FRem:
7121   case Instruction::Shl:
7122   case Instruction::LShr:
7123   case Instruction::AShr:
7124   case Instruction::And:
7125   case Instruction::Or:
7126   case Instruction::Xor: {
7127     // Since we will replace the stride by 1 the multiplication should go away.
7128     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7129       return 0;
7130 
7131     // Detect reduction patterns
7132     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7133       return *RedCost;
7134 
7135     // Certain instructions can be cheaper to vectorize if they have a constant
7136     // second vector operand. One example of this are shifts on x86.
7137     Value *Op2 = I->getOperand(1);
7138     TargetTransformInfo::OperandValueProperties Op2VP;
7139     TargetTransformInfo::OperandValueKind Op2VK =
7140         TTI.getOperandInfo(Op2, Op2VP);
7141     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7142       Op2VK = TargetTransformInfo::OK_UniformValue;
7143 
7144     SmallVector<const Value *, 4> Operands(I->operand_values());
7145     return TTI.getArithmeticInstrCost(
7146         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7147         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7148   }
7149   case Instruction::FNeg: {
7150     return TTI.getArithmeticInstrCost(
7151         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7152         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7153         TargetTransformInfo::OP_None, I->getOperand(0), I);
7154   }
7155   case Instruction::Select: {
7156     SelectInst *SI = cast<SelectInst>(I);
7157     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7158     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7159 
7160     const Value *Op0, *Op1;
7161     using namespace llvm::PatternMatch;
7162     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7163                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7164       // select x, y, false --> x & y
7165       // select x, true, y --> x | y
7166       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7167       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7168       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7169       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7170       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7171               Op1->getType()->getScalarSizeInBits() == 1);
7172 
7173       SmallVector<const Value *, 2> Operands{Op0, Op1};
7174       return TTI.getArithmeticInstrCost(
7175           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7176           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7177     }
7178 
7179     Type *CondTy = SI->getCondition()->getType();
7180     if (!ScalarCond)
7181       CondTy = VectorType::get(CondTy, VF);
7182 
7183     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7184     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7185       Pred = Cmp->getPredicate();
7186     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7187                                   CostKind, I);
7188   }
7189   case Instruction::ICmp:
7190   case Instruction::FCmp: {
7191     Type *ValTy = I->getOperand(0)->getType();
7192     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7193     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7194       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7195     VectorTy = ToVectorTy(ValTy, VF);
7196     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7197                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7198                                   I);
7199   }
7200   case Instruction::Store:
7201   case Instruction::Load: {
7202     ElementCount Width = VF;
7203     if (Width.isVector()) {
7204       InstWidening Decision = getWideningDecision(I, Width);
7205       assert(Decision != CM_Unknown &&
7206              "CM decision should be taken at this point");
7207       if (Decision == CM_Scalarize)
7208         Width = ElementCount::getFixed(1);
7209     }
7210     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7211     return getMemoryInstructionCost(I, VF);
7212   }
7213   case Instruction::BitCast:
7214     if (I->getType()->isPointerTy())
7215       return 0;
7216     LLVM_FALLTHROUGH;
7217   case Instruction::ZExt:
7218   case Instruction::SExt:
7219   case Instruction::FPToUI:
7220   case Instruction::FPToSI:
7221   case Instruction::FPExt:
7222   case Instruction::PtrToInt:
7223   case Instruction::IntToPtr:
7224   case Instruction::SIToFP:
7225   case Instruction::UIToFP:
7226   case Instruction::Trunc:
7227   case Instruction::FPTrunc: {
7228     // Computes the CastContextHint from a Load/Store instruction.
7229     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7230       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7231              "Expected a load or a store!");
7232 
7233       if (VF.isScalar() || !TheLoop->contains(I))
7234         return TTI::CastContextHint::Normal;
7235 
7236       switch (getWideningDecision(I, VF)) {
7237       case LoopVectorizationCostModel::CM_GatherScatter:
7238         return TTI::CastContextHint::GatherScatter;
7239       case LoopVectorizationCostModel::CM_Interleave:
7240         return TTI::CastContextHint::Interleave;
7241       case LoopVectorizationCostModel::CM_Scalarize:
7242       case LoopVectorizationCostModel::CM_Widen:
7243         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7244                                         : TTI::CastContextHint::Normal;
7245       case LoopVectorizationCostModel::CM_Widen_Reverse:
7246         return TTI::CastContextHint::Reversed;
7247       case LoopVectorizationCostModel::CM_Unknown:
7248         llvm_unreachable("Instr did not go through cost modelling?");
7249       }
7250 
7251       llvm_unreachable("Unhandled case!");
7252     };
7253 
7254     unsigned Opcode = I->getOpcode();
7255     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7256     // For Trunc, the context is the only user, which must be a StoreInst.
7257     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7258       if (I->hasOneUse())
7259         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7260           CCH = ComputeCCH(Store);
7261     }
7262     // For Z/Sext, the context is the operand, which must be a LoadInst.
7263     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7264              Opcode == Instruction::FPExt) {
7265       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7266         CCH = ComputeCCH(Load);
7267     }
7268 
7269     // We optimize the truncation of induction variables having constant
7270     // integer steps. The cost of these truncations is the same as the scalar
7271     // operation.
7272     if (isOptimizableIVTruncate(I, VF)) {
7273       auto *Trunc = cast<TruncInst>(I);
7274       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7275                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7276     }
7277 
7278     // Detect reduction patterns
7279     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7280       return *RedCost;
7281 
7282     Type *SrcScalarTy = I->getOperand(0)->getType();
7283     Type *SrcVecTy =
7284         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7285     if (canTruncateToMinimalBitwidth(I, VF)) {
7286       // This cast is going to be shrunk. This may remove the cast or it might
7287       // turn it into slightly different cast. For example, if MinBW == 16,
7288       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7289       //
7290       // Calculate the modified src and dest types.
7291       Type *MinVecTy = VectorTy;
7292       if (Opcode == Instruction::Trunc) {
7293         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7294         VectorTy =
7295             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7296       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7297         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7298         VectorTy =
7299             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7300       }
7301     }
7302 
7303     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7304   }
7305   case Instruction::Call: {
7306     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7307       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7308         return *RedCost;
7309     bool NeedToScalarize;
7310     CallInst *CI = cast<CallInst>(I);
7311     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7312     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7313       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7314       return std::min(CallCost, IntrinsicCost);
7315     }
7316     return CallCost;
7317   }
7318   case Instruction::ExtractValue:
7319     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7320   case Instruction::Alloca:
7321     // We cannot easily widen alloca to a scalable alloca, as
7322     // the result would need to be a vector of pointers.
7323     if (VF.isScalable())
7324       return InstructionCost::getInvalid();
7325     LLVM_FALLTHROUGH;
7326   default:
7327     // This opcode is unknown. Assume that it is the same as 'mul'.
7328     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7329   } // end of switch.
7330 }
7331 
7332 char LoopVectorize::ID = 0;
7333 
7334 static const char lv_name[] = "Loop Vectorization";
7335 
7336 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7337 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7338 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7339 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7340 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7341 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7342 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7343 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7344 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7345 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7346 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7347 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7348 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7349 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7350 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7351 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7352 
7353 namespace llvm {
7354 
7355 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7356 
7357 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7358                               bool VectorizeOnlyWhenForced) {
7359   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7360 }
7361 
7362 } // end namespace llvm
7363 
7364 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7365   // Check if the pointer operand of a load or store instruction is
7366   // consecutive.
7367   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7368     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7369   return false;
7370 }
7371 
7372 void LoopVectorizationCostModel::collectValuesToIgnore() {
7373   // Ignore ephemeral values.
7374   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7375 
7376   // Find all stores to invariant variables. Since they are going to sink
7377   // outside the loop we do not need calculate cost for them.
7378   for (BasicBlock *BB : TheLoop->blocks())
7379     for (Instruction &I : *BB) {
7380       StoreInst *SI;
7381       if ((SI = dyn_cast<StoreInst>(&I)) &&
7382           Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
7383         ValuesToIgnore.insert(&I);
7384     }
7385 
7386   // Ignore type-promoting instructions we identified during reduction
7387   // detection.
7388   for (auto &Reduction : Legal->getReductionVars()) {
7389     const RecurrenceDescriptor &RedDes = Reduction.second;
7390     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7391     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7392   }
7393   // Ignore type-casting instructions we identified during induction
7394   // detection.
7395   for (auto &Induction : Legal->getInductionVars()) {
7396     const InductionDescriptor &IndDes = Induction.second;
7397     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7398     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7399   }
7400 }
7401 
7402 void LoopVectorizationCostModel::collectInLoopReductions() {
7403   for (auto &Reduction : Legal->getReductionVars()) {
7404     PHINode *Phi = Reduction.first;
7405     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7406 
7407     // We don't collect reductions that are type promoted (yet).
7408     if (RdxDesc.getRecurrenceType() != Phi->getType())
7409       continue;
7410 
7411     // If the target would prefer this reduction to happen "in-loop", then we
7412     // want to record it as such.
7413     unsigned Opcode = RdxDesc.getOpcode();
7414     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7415         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7416                                    TargetTransformInfo::ReductionFlags()))
7417       continue;
7418 
7419     // Check that we can correctly put the reductions into the loop, by
7420     // finding the chain of operations that leads from the phi to the loop
7421     // exit value.
7422     SmallVector<Instruction *, 4> ReductionOperations =
7423         RdxDesc.getReductionOpChain(Phi, TheLoop);
7424     bool InLoop = !ReductionOperations.empty();
7425     if (InLoop) {
7426       InLoopReductionChains[Phi] = ReductionOperations;
7427       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7428       Instruction *LastChain = Phi;
7429       for (auto *I : ReductionOperations) {
7430         InLoopReductionImmediateChains[I] = LastChain;
7431         LastChain = I;
7432       }
7433     }
7434     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7435                       << " reduction for phi: " << *Phi << "\n");
7436   }
7437 }
7438 
7439 // TODO: we could return a pair of values that specify the max VF and
7440 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7441 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7442 // doesn't have a cost model that can choose which plan to execute if
7443 // more than one is generated.
7444 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7445                                  LoopVectorizationCostModel &CM) {
7446   unsigned WidestType;
7447   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7448   return WidestVectorRegBits / WidestType;
7449 }
7450 
7451 VectorizationFactor
7452 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7453   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7454   ElementCount VF = UserVF;
7455   // Outer loop handling: They may require CFG and instruction level
7456   // transformations before even evaluating whether vectorization is profitable.
7457   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7458   // the vectorization pipeline.
7459   if (!OrigLoop->isInnermost()) {
7460     // If the user doesn't provide a vectorization factor, determine a
7461     // reasonable one.
7462     if (UserVF.isZero()) {
7463       VF = ElementCount::getFixed(determineVPlanVF(
7464           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7465               .getFixedSize(),
7466           CM));
7467       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7468 
7469       // Make sure we have a VF > 1 for stress testing.
7470       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7471         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7472                           << "overriding computed VF.\n");
7473         VF = ElementCount::getFixed(4);
7474       }
7475     }
7476     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7477     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7478            "VF needs to be a power of two");
7479     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7480                       << "VF " << VF << " to build VPlans.\n");
7481     buildVPlans(VF, VF);
7482 
7483     // For VPlan build stress testing, we bail out after VPlan construction.
7484     if (VPlanBuildStressTest)
7485       return VectorizationFactor::Disabled();
7486 
7487     return {VF, 0 /*Cost*/};
7488   }
7489 
7490   LLVM_DEBUG(
7491       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7492                 "VPlan-native path.\n");
7493   return VectorizationFactor::Disabled();
7494 }
7495 
7496 bool LoopVectorizationPlanner::requiresTooManyRuntimeChecks() const {
7497   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7498   return (NumRuntimePointerChecks >
7499               VectorizerParams::RuntimeMemoryCheckThreshold &&
7500           !Hints.allowReordering()) ||
7501          NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7502 }
7503 
7504 Optional<VectorizationFactor>
7505 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7506   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7507   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7508   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7509     return None;
7510 
7511   // Invalidate interleave groups if all blocks of loop will be predicated.
7512   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7513       !useMaskedInterleavedAccesses(*TTI)) {
7514     LLVM_DEBUG(
7515         dbgs()
7516         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7517            "which requires masked-interleaved support.\n");
7518     if (CM.InterleaveInfo.invalidateGroups())
7519       // Invalidating interleave groups also requires invalidating all decisions
7520       // based on them, which includes widening decisions and uniform and scalar
7521       // values.
7522       CM.invalidateCostModelingDecisions();
7523   }
7524 
7525   ElementCount MaxUserVF =
7526       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7527   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7528   if (!UserVF.isZero() && UserVFIsLegal) {
7529     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7530            "VF needs to be a power of two");
7531     // Collect the instructions (and their associated costs) that will be more
7532     // profitable to scalarize.
7533     if (CM.selectUserVectorizationFactor(UserVF)) {
7534       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7535       CM.collectInLoopReductions();
7536       buildVPlansWithVPRecipes(UserVF, UserVF);
7537       LLVM_DEBUG(printPlans(dbgs()));
7538       return {{UserVF, 0}};
7539     } else
7540       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7541                               "InvalidCost", ORE, OrigLoop);
7542   }
7543 
7544   // Populate the set of Vectorization Factor Candidates.
7545   ElementCountSet VFCandidates;
7546   for (auto VF = ElementCount::getFixed(1);
7547        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7548     VFCandidates.insert(VF);
7549   for (auto VF = ElementCount::getScalable(1);
7550        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7551     VFCandidates.insert(VF);
7552 
7553   for (const auto &VF : VFCandidates) {
7554     // Collect Uniform and Scalar instructions after vectorization with VF.
7555     CM.collectUniformsAndScalars(VF);
7556 
7557     // Collect the instructions (and their associated costs) that will be more
7558     // profitable to scalarize.
7559     if (VF.isVector())
7560       CM.collectInstsToScalarize(VF);
7561   }
7562 
7563   CM.collectInLoopReductions();
7564   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7565   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7566 
7567   LLVM_DEBUG(printPlans(dbgs()));
7568   if (!MaxFactors.hasVector())
7569     return VectorizationFactor::Disabled();
7570 
7571   // Select the optimal vectorization factor.
7572   return CM.selectVectorizationFactor(VFCandidates);
7573 }
7574 
7575 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7576   assert(count_if(VPlans,
7577                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7578              1 &&
7579          "Best VF has not a single VPlan.");
7580 
7581   for (const VPlanPtr &Plan : VPlans) {
7582     if (Plan->hasVF(VF))
7583       return *Plan.get();
7584   }
7585   llvm_unreachable("No plan found!");
7586 }
7587 
7588 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7589   SmallVector<Metadata *, 4> MDs;
7590   // Reserve first location for self reference to the LoopID metadata node.
7591   MDs.push_back(nullptr);
7592   bool IsUnrollMetadata = false;
7593   MDNode *LoopID = L->getLoopID();
7594   if (LoopID) {
7595     // First find existing loop unrolling disable metadata.
7596     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7597       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7598       if (MD) {
7599         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7600         IsUnrollMetadata =
7601             S && S->getString().startswith("llvm.loop.unroll.disable");
7602       }
7603       MDs.push_back(LoopID->getOperand(i));
7604     }
7605   }
7606 
7607   if (!IsUnrollMetadata) {
7608     // Add runtime unroll disable metadata.
7609     LLVMContext &Context = L->getHeader()->getContext();
7610     SmallVector<Metadata *, 1> DisableOperands;
7611     DisableOperands.push_back(
7612         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7613     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7614     MDs.push_back(DisableNode);
7615     MDNode *NewLoopID = MDNode::get(Context, MDs);
7616     // Set operand 0 to refer to the loop id itself.
7617     NewLoopID->replaceOperandWith(0, NewLoopID);
7618     L->setLoopID(NewLoopID);
7619   }
7620 }
7621 
7622 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7623                                            VPlan &BestVPlan,
7624                                            InnerLoopVectorizer &ILV,
7625                                            DominatorTree *DT) {
7626   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7627                     << '\n');
7628 
7629   // Perform the actual loop transformation.
7630 
7631   // 1. Set up the skeleton for vectorization, including vector pre-header and
7632   // middle block. The vector loop is created during VPlan execution.
7633   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7634   Value *CanonicalIVStartValue;
7635   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7636       ILV.createVectorizedLoopSkeleton();
7637   ILV.collectPoisonGeneratingRecipes(State);
7638 
7639   ILV.printDebugTracesAtStart();
7640 
7641   //===------------------------------------------------===//
7642   //
7643   // Notice: any optimization or new instruction that go
7644   // into the code below should also be implemented in
7645   // the cost-model.
7646   //
7647   //===------------------------------------------------===//
7648 
7649   // 2. Copy and widen instructions from the old loop into the new loop.
7650   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7651                              ILV.getOrCreateVectorTripCount(nullptr),
7652                              CanonicalIVStartValue, State);
7653   BestVPlan.execute(&State);
7654 
7655   // Keep all loop hints from the original loop on the vector loop (we'll
7656   // replace the vectorizer-specific hints below).
7657   MDNode *OrigLoopID = OrigLoop->getLoopID();
7658 
7659   Optional<MDNode *> VectorizedLoopID =
7660       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7661                                       LLVMLoopVectorizeFollowupVectorized});
7662 
7663   VPBasicBlock *HeaderVPBB =
7664       BestVPlan.getVectorLoopRegion()->getEntryBasicBlock();
7665   Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]);
7666   if (VectorizedLoopID.hasValue())
7667     L->setLoopID(VectorizedLoopID.getValue());
7668   else {
7669     // Keep all loop hints from the original loop on the vector loop (we'll
7670     // replace the vectorizer-specific hints below).
7671     if (MDNode *LID = OrigLoop->getLoopID())
7672       L->setLoopID(LID);
7673 
7674     LoopVectorizeHints Hints(L, true, *ORE);
7675     Hints.setAlreadyVectorized();
7676   }
7677   // Disable runtime unrolling when vectorizing the epilogue loop.
7678   if (CanonicalIVStartValue)
7679     AddRuntimeUnrollDisableMetaData(L);
7680 
7681   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7682   //    predication, updating analyses.
7683   ILV.fixVectorizedLoop(State, BestVPlan);
7684 
7685   ILV.printDebugTracesAtEnd();
7686 }
7687 
7688 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7689 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7690   for (const auto &Plan : VPlans)
7691     if (PrintVPlansInDotFormat)
7692       Plan->printDOT(O);
7693     else
7694       Plan->print(O);
7695 }
7696 #endif
7697 
7698 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7699     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7700 
7701   // We create new control-flow for the vectorized loop, so the original exit
7702   // conditions will be dead after vectorization if it's only used by the
7703   // terminator
7704   SmallVector<BasicBlock*> ExitingBlocks;
7705   OrigLoop->getExitingBlocks(ExitingBlocks);
7706   for (auto *BB : ExitingBlocks) {
7707     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7708     if (!Cmp || !Cmp->hasOneUse())
7709       continue;
7710 
7711     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7712     if (!DeadInstructions.insert(Cmp).second)
7713       continue;
7714 
7715     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7716     // TODO: can recurse through operands in general
7717     for (Value *Op : Cmp->operands()) {
7718       if (isa<TruncInst>(Op) && Op->hasOneUse())
7719           DeadInstructions.insert(cast<Instruction>(Op));
7720     }
7721   }
7722 
7723   // We create new "steps" for induction variable updates to which the original
7724   // induction variables map. An original update instruction will be dead if
7725   // all its users except the induction variable are dead.
7726   auto *Latch = OrigLoop->getLoopLatch();
7727   for (auto &Induction : Legal->getInductionVars()) {
7728     PHINode *Ind = Induction.first;
7729     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7730 
7731     // If the tail is to be folded by masking, the primary induction variable,
7732     // if exists, isn't dead: it will be used for masking. Don't kill it.
7733     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
7734       continue;
7735 
7736     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7737           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7738         }))
7739       DeadInstructions.insert(IndUpdate);
7740   }
7741 }
7742 
7743 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7744 
7745 //===--------------------------------------------------------------------===//
7746 // EpilogueVectorizerMainLoop
7747 //===--------------------------------------------------------------------===//
7748 
7749 /// This function is partially responsible for generating the control flow
7750 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7751 std::pair<BasicBlock *, Value *>
7752 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
7753   MDNode *OrigLoopID = OrigLoop->getLoopID();
7754 
7755   // Workaround!  Compute the trip count of the original loop and cache it
7756   // before we start modifying the CFG.  This code has a systemic problem
7757   // wherein it tries to run analysis over partially constructed IR; this is
7758   // wrong, and not simply for SCEV.  The trip count of the original loop
7759   // simply happens to be prone to hitting this in practice.  In theory, we
7760   // can hit the same issue for any SCEV, or ValueTracking query done during
7761   // mutation.  See PR49900.
7762   getOrCreateTripCount(OrigLoop->getLoopPreheader());
7763   createVectorLoopSkeleton("");
7764 
7765   // Generate the code to check the minimum iteration count of the vector
7766   // epilogue (see below).
7767   EPI.EpilogueIterationCountCheck =
7768       emitIterationCountCheck(LoopScalarPreHeader, true);
7769   EPI.EpilogueIterationCountCheck->setName("iter.check");
7770 
7771   // Generate the code to check any assumptions that we've made for SCEV
7772   // expressions.
7773   EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader);
7774 
7775   // Generate the code that checks at runtime if arrays overlap. We put the
7776   // checks into a separate block to make the more common case of few elements
7777   // faster.
7778   EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader);
7779 
7780   // Generate the iteration count check for the main loop, *after* the check
7781   // for the epilogue loop, so that the path-length is shorter for the case
7782   // that goes directly through the vector epilogue. The longer-path length for
7783   // the main loop is compensated for, by the gain from vectorizing the larger
7784   // trip count. Note: the branch will get updated later on when we vectorize
7785   // the epilogue.
7786   EPI.MainLoopIterationCountCheck =
7787       emitIterationCountCheck(LoopScalarPreHeader, false);
7788 
7789   // Generate the induction variable.
7790   EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
7791 
7792   // Skip induction resume value creation here because they will be created in
7793   // the second pass. If we created them here, they wouldn't be used anyway,
7794   // because the vplan in the second pass still contains the inductions from the
7795   // original loop.
7796 
7797   return {completeLoopSkeleton(OrigLoopID), nullptr};
7798 }
7799 
7800 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
7801   LLVM_DEBUG({
7802     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7803            << "Main Loop VF:" << EPI.MainLoopVF
7804            << ", Main Loop UF:" << EPI.MainLoopUF
7805            << ", Epilogue Loop VF:" << EPI.EpilogueVF
7806            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7807   });
7808 }
7809 
7810 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
7811   DEBUG_WITH_TYPE(VerboseDebug, {
7812     dbgs() << "intermediate fn:\n"
7813            << *OrigLoop->getHeader()->getParent() << "\n";
7814   });
7815 }
7816 
7817 BasicBlock *
7818 EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass,
7819                                                     bool ForEpilogue) {
7820   assert(Bypass && "Expected valid bypass basic block.");
7821   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
7822   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
7823   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
7824   // Reuse existing vector loop preheader for TC checks.
7825   // Note that new preheader block is generated for vector loop.
7826   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
7827   IRBuilder<> Builder(TCCheckBlock->getTerminator());
7828 
7829   // Generate code to check if the loop's trip count is less than VF * UF of the
7830   // main vector loop.
7831   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
7832       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7833 
7834   Value *CheckMinIters = Builder.CreateICmp(
7835       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
7836       "min.iters.check");
7837 
7838   if (!ForEpilogue)
7839     TCCheckBlock->setName("vector.main.loop.iter.check");
7840 
7841   // Create new preheader for vector loop.
7842   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7843                                    DT, LI, nullptr, "vector.ph");
7844 
7845   if (ForEpilogue) {
7846     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
7847                                  DT->getNode(Bypass)->getIDom()) &&
7848            "TC check is expected to dominate Bypass");
7849 
7850     // Update dominator for Bypass & LoopExit.
7851     DT->changeImmediateDominator(Bypass, TCCheckBlock);
7852     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7853       // For loops with multiple exits, there's no edge from the middle block
7854       // to exit blocks (as the epilogue must run) and thus no need to update
7855       // the immediate dominator of the exit blocks.
7856       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
7857 
7858     LoopBypassBlocks.push_back(TCCheckBlock);
7859 
7860     // Save the trip count so we don't have to regenerate it in the
7861     // vec.epilog.iter.check. This is safe to do because the trip count
7862     // generated here dominates the vector epilog iter check.
7863     EPI.TripCount = Count;
7864   }
7865 
7866   ReplaceInstWithInst(
7867       TCCheckBlock->getTerminator(),
7868       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7869 
7870   return TCCheckBlock;
7871 }
7872 
7873 //===--------------------------------------------------------------------===//
7874 // EpilogueVectorizerEpilogueLoop
7875 //===--------------------------------------------------------------------===//
7876 
7877 /// This function is partially responsible for generating the control flow
7878 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7879 std::pair<BasicBlock *, Value *>
7880 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
7881   MDNode *OrigLoopID = OrigLoop->getLoopID();
7882   createVectorLoopSkeleton("vec.epilog.");
7883 
7884   // Now, compare the remaining count and if there aren't enough iterations to
7885   // execute the vectorized epilogue skip to the scalar part.
7886   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
7887   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
7888   LoopVectorPreHeader =
7889       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
7890                  LI, nullptr, "vec.epilog.ph");
7891   emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader,
7892                                           VecEpilogueIterationCountCheck);
7893 
7894   // Adjust the control flow taking the state info from the main loop
7895   // vectorization into account.
7896   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
7897          "expected this to be saved from the previous pass.");
7898   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
7899       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
7900 
7901   DT->changeImmediateDominator(LoopVectorPreHeader,
7902                                EPI.MainLoopIterationCountCheck);
7903 
7904   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
7905       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7906 
7907   if (EPI.SCEVSafetyCheck)
7908     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
7909         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7910   if (EPI.MemSafetyCheck)
7911     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
7912         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7913 
7914   DT->changeImmediateDominator(
7915       VecEpilogueIterationCountCheck,
7916       VecEpilogueIterationCountCheck->getSinglePredecessor());
7917 
7918   DT->changeImmediateDominator(LoopScalarPreHeader,
7919                                EPI.EpilogueIterationCountCheck);
7920   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7921     // If there is an epilogue which must run, there's no edge from the
7922     // middle block to exit blocks  and thus no need to update the immediate
7923     // dominator of the exit blocks.
7924     DT->changeImmediateDominator(LoopExitBlock,
7925                                  EPI.EpilogueIterationCountCheck);
7926 
7927   // Keep track of bypass blocks, as they feed start values to the induction
7928   // phis in the scalar loop preheader.
7929   if (EPI.SCEVSafetyCheck)
7930     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
7931   if (EPI.MemSafetyCheck)
7932     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
7933   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
7934 
7935   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
7936   // merge control-flow from the latch block and the middle block. Update the
7937   // incoming values here and move the Phi into the preheader.
7938   SmallVector<PHINode *, 4> PhisInBlock;
7939   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
7940     PhisInBlock.push_back(&Phi);
7941 
7942   for (PHINode *Phi : PhisInBlock) {
7943     Phi->replaceIncomingBlockWith(
7944         VecEpilogueIterationCountCheck->getSinglePredecessor(),
7945         VecEpilogueIterationCountCheck);
7946     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
7947     if (EPI.SCEVSafetyCheck)
7948       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
7949     if (EPI.MemSafetyCheck)
7950       Phi->removeIncomingValue(EPI.MemSafetyCheck);
7951     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
7952   }
7953 
7954   // Generate a resume induction for the vector epilogue and put it in the
7955   // vector epilogue preheader
7956   Type *IdxTy = Legal->getWidestInductionType();
7957   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
7958                                          LoopVectorPreHeader->getFirstNonPHI());
7959   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
7960   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
7961                            EPI.MainLoopIterationCountCheck);
7962 
7963   // Generate induction resume values. These variables save the new starting
7964   // indexes for the scalar loop. They are used to test if there are any tail
7965   // iterations left once the vector loop has completed.
7966   // Note that when the vectorized epilogue is skipped due to iteration count
7967   // check, then the resume value for the induction variable comes from
7968   // the trip count of the main vector loop, hence passing the AdditionalBypass
7969   // argument.
7970   createInductionResumeValues({VecEpilogueIterationCountCheck,
7971                                EPI.VectorTripCount} /* AdditionalBypass */);
7972 
7973   return {completeLoopSkeleton(OrigLoopID), EPResumeVal};
7974 }
7975 
7976 BasicBlock *
7977 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
7978     BasicBlock *Bypass, BasicBlock *Insert) {
7979 
7980   assert(EPI.TripCount &&
7981          "Expected trip count to have been safed in the first pass.");
7982   assert(
7983       (!isa<Instruction>(EPI.TripCount) ||
7984        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
7985       "saved trip count does not dominate insertion point.");
7986   Value *TC = EPI.TripCount;
7987   IRBuilder<> Builder(Insert->getTerminator());
7988   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
7989 
7990   // Generate code to check if the loop's trip count is less than VF * UF of the
7991   // vector epilogue loop.
7992   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
7993       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7994 
7995   Value *CheckMinIters =
7996       Builder.CreateICmp(P, Count,
7997                          createStepForVF(Builder, Count->getType(),
7998                                          EPI.EpilogueVF, EPI.EpilogueUF),
7999                          "min.epilog.iters.check");
8000 
8001   ReplaceInstWithInst(
8002       Insert->getTerminator(),
8003       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8004 
8005   LoopBypassBlocks.push_back(Insert);
8006   return Insert;
8007 }
8008 
8009 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8010   LLVM_DEBUG({
8011     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8012            << "Epilogue Loop VF:" << EPI.EpilogueVF
8013            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8014   });
8015 }
8016 
8017 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8018   DEBUG_WITH_TYPE(VerboseDebug, {
8019     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
8020   });
8021 }
8022 
8023 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8024     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8025   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8026   bool PredicateAtRangeStart = Predicate(Range.Start);
8027 
8028   for (ElementCount TmpVF = Range.Start * 2;
8029        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8030     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8031       Range.End = TmpVF;
8032       break;
8033     }
8034 
8035   return PredicateAtRangeStart;
8036 }
8037 
8038 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8039 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8040 /// of VF's starting at a given VF and extending it as much as possible. Each
8041 /// vectorization decision can potentially shorten this sub-range during
8042 /// buildVPlan().
8043 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8044                                            ElementCount MaxVF) {
8045   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8046   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8047     VFRange SubRange = {VF, MaxVFPlusOne};
8048     VPlans.push_back(buildVPlan(SubRange));
8049     VF = SubRange.End;
8050   }
8051 }
8052 
8053 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8054                                          VPlanPtr &Plan) {
8055   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8056 
8057   // Look for cached value.
8058   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8059   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8060   if (ECEntryIt != EdgeMaskCache.end())
8061     return ECEntryIt->second;
8062 
8063   VPValue *SrcMask = createBlockInMask(Src, Plan);
8064 
8065   // The terminator has to be a branch inst!
8066   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8067   assert(BI && "Unexpected terminator found");
8068 
8069   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8070     return EdgeMaskCache[Edge] = SrcMask;
8071 
8072   // If source is an exiting block, we know the exit edge is dynamically dead
8073   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8074   // adding uses of an otherwise potentially dead instruction.
8075   if (OrigLoop->isLoopExiting(Src))
8076     return EdgeMaskCache[Edge] = SrcMask;
8077 
8078   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8079   assert(EdgeMask && "No Edge Mask found for condition");
8080 
8081   if (BI->getSuccessor(0) != Dst)
8082     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8083 
8084   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8085     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8086     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8087     // The select version does not introduce new UB if SrcMask is false and
8088     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8089     VPValue *False = Plan->getOrAddVPValue(
8090         ConstantInt::getFalse(BI->getCondition()->getType()));
8091     EdgeMask =
8092         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8093   }
8094 
8095   return EdgeMaskCache[Edge] = EdgeMask;
8096 }
8097 
8098 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8099   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8100 
8101   // Look for cached value.
8102   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8103   if (BCEntryIt != BlockMaskCache.end())
8104     return BCEntryIt->second;
8105 
8106   // All-one mask is modelled as no-mask following the convention for masked
8107   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8108   VPValue *BlockMask = nullptr;
8109 
8110   if (OrigLoop->getHeader() == BB) {
8111     if (!CM.blockNeedsPredicationForAnyReason(BB))
8112       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8113 
8114     // Introduce the early-exit compare IV <= BTC to form header block mask.
8115     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8116     // constructing the desired canonical IV in the header block as its first
8117     // non-phi instructions.
8118     assert(CM.foldTailByMasking() && "must fold the tail");
8119     VPBasicBlock *HeaderVPBB =
8120         Plan->getVectorLoopRegion()->getEntryBasicBlock();
8121     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8122     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8123     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8124 
8125     VPBuilder::InsertPointGuard Guard(Builder);
8126     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8127     if (CM.TTI.emitGetActiveLaneMask()) {
8128       VPValue *TC = Plan->getOrCreateTripCount();
8129       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8130     } else {
8131       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8132       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8133     }
8134     return BlockMaskCache[BB] = BlockMask;
8135   }
8136 
8137   // This is the block mask. We OR all incoming edges.
8138   for (auto *Predecessor : predecessors(BB)) {
8139     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8140     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8141       return BlockMaskCache[BB] = EdgeMask;
8142 
8143     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8144       BlockMask = EdgeMask;
8145       continue;
8146     }
8147 
8148     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8149   }
8150 
8151   return BlockMaskCache[BB] = BlockMask;
8152 }
8153 
8154 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8155                                                 ArrayRef<VPValue *> Operands,
8156                                                 VFRange &Range,
8157                                                 VPlanPtr &Plan) {
8158   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8159          "Must be called with either a load or store");
8160 
8161   auto willWiden = [&](ElementCount VF) -> bool {
8162     if (VF.isScalar())
8163       return false;
8164     LoopVectorizationCostModel::InstWidening Decision =
8165         CM.getWideningDecision(I, VF);
8166     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8167            "CM decision should be taken at this point.");
8168     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8169       return true;
8170     if (CM.isScalarAfterVectorization(I, VF) ||
8171         CM.isProfitableToScalarize(I, VF))
8172       return false;
8173     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8174   };
8175 
8176   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8177     return nullptr;
8178 
8179   VPValue *Mask = nullptr;
8180   if (Legal->isMaskRequired(I))
8181     Mask = createBlockInMask(I->getParent(), Plan);
8182 
8183   // Determine if the pointer operand of the access is either consecutive or
8184   // reverse consecutive.
8185   LoopVectorizationCostModel::InstWidening Decision =
8186       CM.getWideningDecision(I, Range.Start);
8187   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8188   bool Consecutive =
8189       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8190 
8191   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8192     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8193                                               Consecutive, Reverse);
8194 
8195   StoreInst *Store = cast<StoreInst>(I);
8196   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8197                                             Mask, Consecutive, Reverse);
8198 }
8199 
8200 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also
8201 /// insert a recipe to expand the step for the induction recipe.
8202 static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes(
8203     PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start,
8204     const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM,
8205     VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) {
8206   // Returns true if an instruction \p I should be scalarized instead of
8207   // vectorized for the chosen vectorization factor.
8208   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8209     return CM.isScalarAfterVectorization(I, VF) ||
8210            CM.isProfitableToScalarize(I, VF);
8211   };
8212 
8213   bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange(
8214       [&](ElementCount VF) {
8215         // Returns true if we should generate a scalar version of \p IV.
8216         if (ShouldScalarizeInstruction(PhiOrTrunc, VF))
8217           return true;
8218         auto isScalarInst = [&](User *U) -> bool {
8219           auto *I = cast<Instruction>(U);
8220           return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF);
8221         };
8222         return any_of(PhiOrTrunc->users(), isScalarInst);
8223       },
8224       Range);
8225   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8226       [&](ElementCount VF) {
8227         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8228       },
8229       Range);
8230   assert(IndDesc.getStartValue() ==
8231          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8232   assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
8233          "step must be loop invariant");
8234 
8235   VPValue *Step =
8236       vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE);
8237   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8238     return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI,
8239                                              NeedsScalarIV, !NeedsScalarIVOnly);
8240   }
8241   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8242   return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc,
8243                                            NeedsScalarIV, !NeedsScalarIVOnly);
8244 }
8245 
8246 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI(
8247     PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) {
8248 
8249   // Check if this is an integer or fp induction. If so, build the recipe that
8250   // produces its scalar and vector values.
8251   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8252     return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan,
8253                                        *PSE.getSE(), *OrigLoop, Range);
8254 
8255   // Check if this is pointer induction. If so, build the recipe for it.
8256   if (auto *II = Legal->getPointerInductionDescriptor(Phi))
8257     return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II,
8258                                              *PSE.getSE());
8259   return nullptr;
8260 }
8261 
8262 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8263     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) {
8264   // Optimize the special case where the source is a constant integer
8265   // induction variable. Notice that we can only optimize the 'trunc' case
8266   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8267   // (c) other casts depend on pointer size.
8268 
8269   // Determine whether \p K is a truncation based on an induction variable that
8270   // can be optimized.
8271   auto isOptimizableIVTruncate =
8272       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8273     return [=](ElementCount VF) -> bool {
8274       return CM.isOptimizableIVTruncate(K, VF);
8275     };
8276   };
8277 
8278   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8279           isOptimizableIVTruncate(I), Range)) {
8280 
8281     auto *Phi = cast<PHINode>(I->getOperand(0));
8282     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8283     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8284     return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan,
8285                                        *PSE.getSE(), *OrigLoop, Range);
8286   }
8287   return nullptr;
8288 }
8289 
8290 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8291                                                 ArrayRef<VPValue *> Operands,
8292                                                 VPlanPtr &Plan) {
8293   // If all incoming values are equal, the incoming VPValue can be used directly
8294   // instead of creating a new VPBlendRecipe.
8295   VPValue *FirstIncoming = Operands[0];
8296   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8297         return FirstIncoming == Inc;
8298       })) {
8299     return Operands[0];
8300   }
8301 
8302   unsigned NumIncoming = Phi->getNumIncomingValues();
8303   // For in-loop reductions, we do not need to create an additional select.
8304   VPValue *InLoopVal = nullptr;
8305   for (unsigned In = 0; In < NumIncoming; In++) {
8306     PHINode *PhiOp =
8307         dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue());
8308     if (PhiOp && CM.isInLoopReduction(PhiOp)) {
8309       assert(!InLoopVal && "Found more than one in-loop reduction!");
8310       InLoopVal = Operands[In];
8311     }
8312   }
8313 
8314   assert((!InLoopVal || NumIncoming == 2) &&
8315          "Found an in-loop reduction for PHI with unexpected number of "
8316          "incoming values");
8317   if (InLoopVal)
8318     return Operands[Operands[0] == InLoopVal ? 1 : 0];
8319 
8320   // We know that all PHIs in non-header blocks are converted into selects, so
8321   // we don't have to worry about the insertion order and we can just use the
8322   // builder. At this point we generate the predication tree. There may be
8323   // duplications since this is a simple recursive scan, but future
8324   // optimizations will clean it up.
8325   SmallVector<VPValue *, 2> OperandsWithMask;
8326 
8327   for (unsigned In = 0; In < NumIncoming; In++) {
8328     VPValue *EdgeMask =
8329       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8330     assert((EdgeMask || NumIncoming == 1) &&
8331            "Multiple predecessors with one having a full mask");
8332     OperandsWithMask.push_back(Operands[In]);
8333     if (EdgeMask)
8334       OperandsWithMask.push_back(EdgeMask);
8335   }
8336   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8337 }
8338 
8339 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8340                                                    ArrayRef<VPValue *> Operands,
8341                                                    VFRange &Range) const {
8342 
8343   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8344       [this, CI](ElementCount VF) {
8345         return CM.isScalarWithPredication(CI, VF);
8346       },
8347       Range);
8348 
8349   if (IsPredicated)
8350     return nullptr;
8351 
8352   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8353   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8354              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8355              ID == Intrinsic::pseudoprobe ||
8356              ID == Intrinsic::experimental_noalias_scope_decl))
8357     return nullptr;
8358 
8359   auto willWiden = [&](ElementCount VF) -> bool {
8360     if (VF.isScalar())
8361        return false;
8362     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8363     // The following case may be scalarized depending on the VF.
8364     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8365     // version of the instruction.
8366     // Is it beneficial to perform intrinsic call compared to lib call?
8367     bool NeedToScalarize = false;
8368     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8369     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8370     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8371     return UseVectorIntrinsic || !NeedToScalarize;
8372   };
8373 
8374   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8375     return nullptr;
8376 
8377   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8378   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8379 }
8380 
8381 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8382   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8383          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8384   // Instruction should be widened, unless it is scalar after vectorization,
8385   // scalarization is profitable or it is predicated.
8386   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8387     return CM.isScalarAfterVectorization(I, VF) ||
8388            CM.isProfitableToScalarize(I, VF) ||
8389            CM.isScalarWithPredication(I, VF);
8390   };
8391   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8392                                                              Range);
8393 }
8394 
8395 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8396                                            ArrayRef<VPValue *> Operands) const {
8397   auto IsVectorizableOpcode = [](unsigned Opcode) {
8398     switch (Opcode) {
8399     case Instruction::Add:
8400     case Instruction::And:
8401     case Instruction::AShr:
8402     case Instruction::BitCast:
8403     case Instruction::FAdd:
8404     case Instruction::FCmp:
8405     case Instruction::FDiv:
8406     case Instruction::FMul:
8407     case Instruction::FNeg:
8408     case Instruction::FPExt:
8409     case Instruction::FPToSI:
8410     case Instruction::FPToUI:
8411     case Instruction::FPTrunc:
8412     case Instruction::FRem:
8413     case Instruction::FSub:
8414     case Instruction::ICmp:
8415     case Instruction::IntToPtr:
8416     case Instruction::LShr:
8417     case Instruction::Mul:
8418     case Instruction::Or:
8419     case Instruction::PtrToInt:
8420     case Instruction::SDiv:
8421     case Instruction::Select:
8422     case Instruction::SExt:
8423     case Instruction::Shl:
8424     case Instruction::SIToFP:
8425     case Instruction::SRem:
8426     case Instruction::Sub:
8427     case Instruction::Trunc:
8428     case Instruction::UDiv:
8429     case Instruction::UIToFP:
8430     case Instruction::URem:
8431     case Instruction::Xor:
8432     case Instruction::ZExt:
8433     case Instruction::Freeze:
8434       return true;
8435     }
8436     return false;
8437   };
8438 
8439   if (!IsVectorizableOpcode(I->getOpcode()))
8440     return nullptr;
8441 
8442   // Success: widen this instruction.
8443   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8444 }
8445 
8446 void VPRecipeBuilder::fixHeaderPhis() {
8447   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8448   for (VPHeaderPHIRecipe *R : PhisToFix) {
8449     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8450     VPRecipeBase *IncR =
8451         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8452     R->addOperand(IncR->getVPSingleValue());
8453   }
8454 }
8455 
8456 VPBasicBlock *VPRecipeBuilder::handleReplication(
8457     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8458     VPlanPtr &Plan) {
8459   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8460       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8461       Range);
8462 
8463   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8464       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8465       Range);
8466 
8467   // Even if the instruction is not marked as uniform, there are certain
8468   // intrinsic calls that can be effectively treated as such, so we check for
8469   // them here. Conservatively, we only do this for scalable vectors, since
8470   // for fixed-width VFs we can always fall back on full scalarization.
8471   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8472     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8473     case Intrinsic::assume:
8474     case Intrinsic::lifetime_start:
8475     case Intrinsic::lifetime_end:
8476       // For scalable vectors if one of the operands is variant then we still
8477       // want to mark as uniform, which will generate one instruction for just
8478       // the first lane of the vector. We can't scalarize the call in the same
8479       // way as for fixed-width vectors because we don't know how many lanes
8480       // there are.
8481       //
8482       // The reasons for doing it this way for scalable vectors are:
8483       //   1. For the assume intrinsic generating the instruction for the first
8484       //      lane is still be better than not generating any at all. For
8485       //      example, the input may be a splat across all lanes.
8486       //   2. For the lifetime start/end intrinsics the pointer operand only
8487       //      does anything useful when the input comes from a stack object,
8488       //      which suggests it should always be uniform. For non-stack objects
8489       //      the effect is to poison the object, which still allows us to
8490       //      remove the call.
8491       IsUniform = true;
8492       break;
8493     default:
8494       break;
8495     }
8496   }
8497 
8498   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8499                                        IsUniform, IsPredicated);
8500   setRecipe(I, Recipe);
8501   Plan->addVPValue(I, Recipe);
8502 
8503   // Find if I uses a predicated instruction. If so, it will use its scalar
8504   // value. Avoid hoisting the insert-element which packs the scalar value into
8505   // a vector value, as that happens iff all users use the vector value.
8506   for (VPValue *Op : Recipe->operands()) {
8507     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8508     if (!PredR)
8509       continue;
8510     auto *RepR =
8511         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8512     assert(RepR->isPredicated() &&
8513            "expected Replicate recipe to be predicated");
8514     RepR->setAlsoPack(false);
8515   }
8516 
8517   // Finalize the recipe for Instr, first if it is not predicated.
8518   if (!IsPredicated) {
8519     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8520     VPBB->appendRecipe(Recipe);
8521     return VPBB;
8522   }
8523   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8524 
8525   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8526   assert(SingleSucc && "VPBB must have a single successor when handling "
8527                        "predicated replication.");
8528   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8529   // Record predicated instructions for above packing optimizations.
8530   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8531   VPBlockUtils::insertBlockAfter(Region, VPBB);
8532   auto *RegSucc = new VPBasicBlock();
8533   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8534   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8535   return RegSucc;
8536 }
8537 
8538 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8539                                                       VPRecipeBase *PredRecipe,
8540                                                       VPlanPtr &Plan) {
8541   // Instructions marked for predication are replicated and placed under an
8542   // if-then construct to prevent side-effects.
8543 
8544   // Generate recipes to compute the block mask for this region.
8545   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8546 
8547   // Build the triangular if-then region.
8548   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8549   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8550   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8551   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8552   auto *PHIRecipe = Instr->getType()->isVoidTy()
8553                         ? nullptr
8554                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8555   if (PHIRecipe) {
8556     Plan->removeVPValueFor(Instr);
8557     Plan->addVPValue(Instr, PHIRecipe);
8558   }
8559   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8560   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8561   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8562 
8563   // Note: first set Entry as region entry and then connect successors starting
8564   // from it in order, to propagate the "parent" of each VPBasicBlock.
8565   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8566   VPBlockUtils::connectBlocks(Pred, Exit);
8567 
8568   return Region;
8569 }
8570 
8571 VPRecipeOrVPValueTy
8572 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8573                                         ArrayRef<VPValue *> Operands,
8574                                         VFRange &Range, VPlanPtr &Plan) {
8575   // First, check for specific widening recipes that deal with calls, memory
8576   // operations, inductions and Phi nodes.
8577   if (auto *CI = dyn_cast<CallInst>(Instr))
8578     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8579 
8580   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8581     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8582 
8583   VPRecipeBase *Recipe;
8584   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8585     if (Phi->getParent() != OrigLoop->getHeader())
8586       return tryToBlend(Phi, Operands, Plan);
8587     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range)))
8588       return toVPRecipeResult(Recipe);
8589 
8590     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8591     assert((Legal->isReductionVariable(Phi) ||
8592             Legal->isFirstOrderRecurrence(Phi)) &&
8593            "can only widen reductions and first-order recurrences here");
8594     VPValue *StartV = Operands[0];
8595     if (Legal->isReductionVariable(Phi)) {
8596       const RecurrenceDescriptor &RdxDesc =
8597           Legal->getReductionVars().find(Phi)->second;
8598       assert(RdxDesc.getRecurrenceStartValue() ==
8599              Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8600       PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8601                                            CM.isInLoopReduction(Phi),
8602                                            CM.useOrderedReductions(RdxDesc));
8603     } else {
8604       PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8605     }
8606 
8607       // Record the incoming value from the backedge, so we can add the incoming
8608       // value from the backedge after all recipes have been created.
8609       recordRecipeOf(cast<Instruction>(
8610           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8611       PhisToFix.push_back(PhiRecipe);
8612       return toVPRecipeResult(PhiRecipe);
8613   }
8614 
8615   if (isa<TruncInst>(Instr) &&
8616       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8617                                                Range, *Plan)))
8618     return toVPRecipeResult(Recipe);
8619 
8620   if (!shouldWiden(Instr, Range))
8621     return nullptr;
8622 
8623   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8624     return toVPRecipeResult(new VPWidenGEPRecipe(
8625         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8626 
8627   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8628     bool InvariantCond =
8629         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8630     return toVPRecipeResult(new VPWidenSelectRecipe(
8631         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8632   }
8633 
8634   return toVPRecipeResult(tryToWiden(Instr, Operands));
8635 }
8636 
8637 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8638                                                         ElementCount MaxVF) {
8639   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8640 
8641   // Collect instructions from the original loop that will become trivially dead
8642   // in the vectorized loop. We don't need to vectorize these instructions. For
8643   // example, original induction update instructions can become dead because we
8644   // separately emit induction "steps" when generating code for the new loop.
8645   // Similarly, we create a new latch condition when setting up the structure
8646   // of the new loop, so the old one can become dead.
8647   SmallPtrSet<Instruction *, 4> DeadInstructions;
8648   collectTriviallyDeadInstructions(DeadInstructions);
8649 
8650   // Add assume instructions we need to drop to DeadInstructions, to prevent
8651   // them from being added to the VPlan.
8652   // TODO: We only need to drop assumes in blocks that get flattend. If the
8653   // control flow is preserved, we should keep them.
8654   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8655   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8656 
8657   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8658   // Dead instructions do not need sinking. Remove them from SinkAfter.
8659   for (Instruction *I : DeadInstructions)
8660     SinkAfter.erase(I);
8661 
8662   // Cannot sink instructions after dead instructions (there won't be any
8663   // recipes for them). Instead, find the first non-dead previous instruction.
8664   for (auto &P : Legal->getSinkAfter()) {
8665     Instruction *SinkTarget = P.second;
8666     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8667     (void)FirstInst;
8668     while (DeadInstructions.contains(SinkTarget)) {
8669       assert(
8670           SinkTarget != FirstInst &&
8671           "Must find a live instruction (at least the one feeding the "
8672           "first-order recurrence PHI) before reaching beginning of the block");
8673       SinkTarget = SinkTarget->getPrevNode();
8674       assert(SinkTarget != P.first &&
8675              "sink source equals target, no sinking required");
8676     }
8677     P.second = SinkTarget;
8678   }
8679 
8680   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8681   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8682     VFRange SubRange = {VF, MaxVFPlusOne};
8683     VPlans.push_back(
8684         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8685     VF = SubRange.End;
8686   }
8687 }
8688 
8689 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a
8690 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a
8691 // BranchOnCount VPInstruction to the latch.
8692 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8693                                   bool HasNUW, bool IsVPlanNative) {
8694   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8695   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8696 
8697   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8698   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8699   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8700   Header->insert(CanonicalIVPHI, Header->begin());
8701 
8702   auto *CanonicalIVIncrement =
8703       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8704                                : VPInstruction::CanonicalIVIncrement,
8705                         {CanonicalIVPHI}, DL);
8706   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8707 
8708   VPBasicBlock *EB = TopRegion->getExitBasicBlock();
8709   if (IsVPlanNative)
8710     EB->setCondBit(nullptr);
8711   EB->appendRecipe(CanonicalIVIncrement);
8712 
8713   auto *BranchOnCount =
8714       new VPInstruction(VPInstruction::BranchOnCount,
8715                         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
8716   EB->appendRecipe(BranchOnCount);
8717 }
8718 
8719 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8720     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8721     const MapVector<Instruction *, Instruction *> &SinkAfter) {
8722 
8723   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8724 
8725   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8726 
8727   // ---------------------------------------------------------------------------
8728   // Pre-construction: record ingredients whose recipes we'll need to further
8729   // process after constructing the initial VPlan.
8730   // ---------------------------------------------------------------------------
8731 
8732   // Mark instructions we'll need to sink later and their targets as
8733   // ingredients whose recipe we'll need to record.
8734   for (auto &Entry : SinkAfter) {
8735     RecipeBuilder.recordRecipeOf(Entry.first);
8736     RecipeBuilder.recordRecipeOf(Entry.second);
8737   }
8738   for (auto &Reduction : CM.getInLoopReductionChains()) {
8739     PHINode *Phi = Reduction.first;
8740     RecurKind Kind =
8741         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
8742     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8743 
8744     RecipeBuilder.recordRecipeOf(Phi);
8745     for (auto &R : ReductionOperations) {
8746       RecipeBuilder.recordRecipeOf(R);
8747       // For min/max reductions, where we have a pair of icmp/select, we also
8748       // need to record the ICmp recipe, so it can be removed later.
8749       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
8750              "Only min/max recurrences allowed for inloop reductions");
8751       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8752         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8753     }
8754   }
8755 
8756   // For each interleave group which is relevant for this (possibly trimmed)
8757   // Range, add it to the set of groups to be later applied to the VPlan and add
8758   // placeholders for its members' Recipes which we'll be replacing with a
8759   // single VPInterleaveRecipe.
8760   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8761     auto applyIG = [IG, this](ElementCount VF) -> bool {
8762       return (VF.isVector() && // Query is illegal for VF == 1
8763               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8764                   LoopVectorizationCostModel::CM_Interleave);
8765     };
8766     if (!getDecisionAndClampRange(applyIG, Range))
8767       continue;
8768     InterleaveGroups.insert(IG);
8769     for (unsigned i = 0; i < IG->getFactor(); i++)
8770       if (Instruction *Member = IG->getMember(i))
8771         RecipeBuilder.recordRecipeOf(Member);
8772   };
8773 
8774   // ---------------------------------------------------------------------------
8775   // Build initial VPlan: Scan the body of the loop in a topological order to
8776   // visit each basic block after having visited its predecessor basic blocks.
8777   // ---------------------------------------------------------------------------
8778 
8779   // Create initial VPlan skeleton, starting with a block for the pre-header,
8780   // followed by a region for the vector loop, followed by the middle block. The
8781   // skeleton vector loop region contains a header and latch block.
8782   VPBasicBlock *Preheader = new VPBasicBlock("vector.ph");
8783   auto Plan = std::make_unique<VPlan>(Preheader);
8784 
8785   VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
8786   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
8787   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
8788   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
8789   VPBlockUtils::insertBlockAfter(TopRegion, Preheader);
8790   VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
8791   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
8792 
8793   Instruction *DLInst =
8794       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
8795   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
8796                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
8797                         !CM.foldTailByMasking(), false);
8798 
8799   // Scan the body of the loop in a topological order to visit each basic block
8800   // after having visited its predecessor basic blocks.
8801   LoopBlocksDFS DFS(OrigLoop);
8802   DFS.perform(LI);
8803 
8804   VPBasicBlock *VPBB = HeaderVPBB;
8805   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
8806   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8807     // Relevant instructions from basic block BB will be grouped into VPRecipe
8808     // ingredients and fill a new VPBasicBlock.
8809     unsigned VPBBsForBB = 0;
8810     if (VPBB != HeaderVPBB)
8811       VPBB->setName(BB->getName());
8812     Builder.setInsertPoint(VPBB);
8813 
8814     // Introduce each ingredient into VPlan.
8815     // TODO: Model and preserve debug intrinsics in VPlan.
8816     for (Instruction &I : BB->instructionsWithoutDebug()) {
8817       Instruction *Instr = &I;
8818 
8819       // First filter out irrelevant instructions, to ensure no recipes are
8820       // built for them.
8821       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
8822         continue;
8823 
8824       SmallVector<VPValue *, 4> Operands;
8825       auto *Phi = dyn_cast<PHINode>(Instr);
8826       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
8827         Operands.push_back(Plan->getOrAddVPValue(
8828             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
8829       } else {
8830         auto OpRange = Plan->mapToVPValues(Instr->operands());
8831         Operands = {OpRange.begin(), OpRange.end()};
8832       }
8833       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
8834               Instr, Operands, Range, Plan)) {
8835         // If Instr can be simplified to an existing VPValue, use it.
8836         if (RecipeOrValue.is<VPValue *>()) {
8837           auto *VPV = RecipeOrValue.get<VPValue *>();
8838           Plan->addVPValue(Instr, VPV);
8839           // If the re-used value is a recipe, register the recipe for the
8840           // instruction, in case the recipe for Instr needs to be recorded.
8841           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
8842             RecipeBuilder.setRecipe(Instr, R);
8843           continue;
8844         }
8845         // Otherwise, add the new recipe.
8846         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
8847         for (auto *Def : Recipe->definedValues()) {
8848           auto *UV = Def->getUnderlyingValue();
8849           Plan->addVPValue(UV, Def);
8850         }
8851 
8852         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
8853             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
8854           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
8855           // of the header block. That can happen for truncates of induction
8856           // variables. Those recipes are moved to the phi section of the header
8857           // block after applying SinkAfter, which relies on the original
8858           // position of the trunc.
8859           assert(isa<TruncInst>(Instr));
8860           InductionsToMove.push_back(
8861               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
8862         }
8863         RecipeBuilder.setRecipe(Instr, Recipe);
8864         VPBB->appendRecipe(Recipe);
8865         continue;
8866       }
8867 
8868       // Invariant stores inside loop will be deleted and a single store
8869       // with the final reduction value will be added to the exit block
8870       StoreInst *SI;
8871       if ((SI = dyn_cast<StoreInst>(&I)) &&
8872           Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
8873         continue;
8874 
8875       // Otherwise, if all widening options failed, Instruction is to be
8876       // replicated. This may create a successor for VPBB.
8877       VPBasicBlock *NextVPBB =
8878           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
8879       if (NextVPBB != VPBB) {
8880         VPBB = NextVPBB;
8881         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8882                                     : "");
8883       }
8884     }
8885 
8886     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
8887     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
8888   }
8889 
8890   HeaderVPBB->setName("vector.body");
8891 
8892   // Fold the last, empty block into its predecessor.
8893   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
8894   assert(VPBB && "expected to fold last (empty) block");
8895   // After here, VPBB should not be used.
8896   VPBB = nullptr;
8897 
8898   assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
8899          !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8900          "entry block must be set to a VPRegionBlock having a non-empty entry "
8901          "VPBasicBlock");
8902   RecipeBuilder.fixHeaderPhis();
8903 
8904   // ---------------------------------------------------------------------------
8905   // Transform initial VPlan: Apply previously taken decisions, in order, to
8906   // bring the VPlan to its final state.
8907   // ---------------------------------------------------------------------------
8908 
8909   // Apply Sink-After legal constraints.
8910   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
8911     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
8912     if (Region && Region->isReplicator()) {
8913       assert(Region->getNumSuccessors() == 1 &&
8914              Region->getNumPredecessors() == 1 && "Expected SESE region!");
8915       assert(R->getParent()->size() == 1 &&
8916              "A recipe in an original replicator region must be the only "
8917              "recipe in its block");
8918       return Region;
8919     }
8920     return nullptr;
8921   };
8922   for (auto &Entry : SinkAfter) {
8923     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
8924     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
8925 
8926     auto *TargetRegion = GetReplicateRegion(Target);
8927     auto *SinkRegion = GetReplicateRegion(Sink);
8928     if (!SinkRegion) {
8929       // If the sink source is not a replicate region, sink the recipe directly.
8930       if (TargetRegion) {
8931         // The target is in a replication region, make sure to move Sink to
8932         // the block after it, not into the replication region itself.
8933         VPBasicBlock *NextBlock =
8934             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
8935         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
8936       } else
8937         Sink->moveAfter(Target);
8938       continue;
8939     }
8940 
8941     // The sink source is in a replicate region. Unhook the region from the CFG.
8942     auto *SinkPred = SinkRegion->getSinglePredecessor();
8943     auto *SinkSucc = SinkRegion->getSingleSuccessor();
8944     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
8945     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
8946     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
8947 
8948     if (TargetRegion) {
8949       // The target recipe is also in a replicate region, move the sink region
8950       // after the target region.
8951       auto *TargetSucc = TargetRegion->getSingleSuccessor();
8952       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
8953       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
8954       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
8955     } else {
8956       // The sink source is in a replicate region, we need to move the whole
8957       // replicate region, which should only contain a single recipe in the
8958       // main block.
8959       auto *SplitBlock =
8960           Target->getParent()->splitAt(std::next(Target->getIterator()));
8961 
8962       auto *SplitPred = SplitBlock->getSinglePredecessor();
8963 
8964       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
8965       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
8966       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
8967     }
8968   }
8969 
8970   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
8971   VPlanTransforms::removeRedundantInductionCasts(*Plan);
8972 
8973   // Now that sink-after is done, move induction recipes for optimized truncates
8974   // to the phi section of the header block.
8975   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
8976     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8977 
8978   // Adjust the recipes for any inloop reductions.
8979   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan,
8980                              RecipeBuilder, Range.Start);
8981 
8982   // Introduce a recipe to combine the incoming and previous values of a
8983   // first-order recurrence.
8984   for (VPRecipeBase &R :
8985        Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8986     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
8987     if (!RecurPhi)
8988       continue;
8989 
8990     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
8991     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
8992     auto *Region = GetReplicateRegion(PrevRecipe);
8993     if (Region)
8994       InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor());
8995     if (Region || PrevRecipe->isPhi())
8996       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
8997     else
8998       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
8999 
9000     auto *RecurSplice = cast<VPInstruction>(
9001         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9002                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9003 
9004     RecurPhi->replaceAllUsesWith(RecurSplice);
9005     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9006     // all users.
9007     RecurSplice->setOperand(0, RecurPhi);
9008   }
9009 
9010   // Interleave memory: for each Interleave Group we marked earlier as relevant
9011   // for this VPlan, replace the Recipes widening its memory instructions with a
9012   // single VPInterleaveRecipe at its insertion point.
9013   for (auto IG : InterleaveGroups) {
9014     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9015         RecipeBuilder.getRecipe(IG->getInsertPos()));
9016     SmallVector<VPValue *, 4> StoredValues;
9017     for (unsigned i = 0; i < IG->getFactor(); ++i)
9018       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9019         auto *StoreR =
9020             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9021         StoredValues.push_back(StoreR->getStoredValue());
9022       }
9023 
9024     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9025                                         Recipe->getMask());
9026     VPIG->insertBefore(Recipe);
9027     unsigned J = 0;
9028     for (unsigned i = 0; i < IG->getFactor(); ++i)
9029       if (Instruction *Member = IG->getMember(i)) {
9030         if (!Member->getType()->isVoidTy()) {
9031           VPValue *OriginalV = Plan->getVPValue(Member);
9032           Plan->removeVPValueFor(Member);
9033           Plan->addVPValue(Member, VPIG->getVPValue(J));
9034           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9035           J++;
9036         }
9037         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9038       }
9039   }
9040 
9041   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9042   // in ways that accessing values using original IR values is incorrect.
9043   Plan->disableValue2VPValue();
9044 
9045   VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE());
9046   VPlanTransforms::sinkScalarOperands(*Plan);
9047   VPlanTransforms::mergeReplicateRegions(*Plan);
9048   VPlanTransforms::removeDeadRecipes(*Plan, *OrigLoop);
9049   VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan);
9050 
9051   std::string PlanName;
9052   raw_string_ostream RSO(PlanName);
9053   ElementCount VF = Range.Start;
9054   Plan->addVF(VF);
9055   RSO << "Initial VPlan for VF={" << VF;
9056   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9057     Plan->addVF(VF);
9058     RSO << "," << VF;
9059   }
9060   RSO << "},UF>=1";
9061   RSO.flush();
9062   Plan->setName(PlanName);
9063 
9064   // Fold Exit block into its predecessor if possible.
9065   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9066   // VPBasicBlock as exit.
9067   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit());
9068 
9069   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9070   return Plan;
9071 }
9072 
9073 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9074   // Outer loop handling: They may require CFG and instruction level
9075   // transformations before even evaluating whether vectorization is profitable.
9076   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9077   // the vectorization pipeline.
9078   assert(!OrigLoop->isInnermost());
9079   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9080 
9081   // Create new empty VPlan
9082   auto Plan = std::make_unique<VPlan>();
9083 
9084   // Build hierarchical CFG
9085   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9086   HCFGBuilder.buildHierarchicalCFG();
9087 
9088   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9089        VF *= 2)
9090     Plan->addVF(VF);
9091 
9092   if (EnableVPlanPredication) {
9093     VPlanPredicator VPP(*Plan);
9094     VPP.predicate();
9095 
9096     // Avoid running transformation to recipes until masked code generation in
9097     // VPlan-native path is in place.
9098     return Plan;
9099   }
9100 
9101   SmallPtrSet<Instruction *, 1> DeadInstructions;
9102   VPlanTransforms::VPInstructionsToVPRecipes(
9103       OrigLoop, Plan,
9104       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9105       DeadInstructions, *PSE.getSE());
9106 
9107   // Update plan to be compatible with the inner loop vectorizer for
9108   // code-generation.
9109   VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
9110   VPBasicBlock *Preheader = LoopRegion->getEntryBasicBlock();
9111   VPBasicBlock *Exit = LoopRegion->getExitBasicBlock();
9112   VPBlockBase *Latch = Exit->getSinglePredecessor();
9113   VPBlockBase *Header = Preheader->getSingleSuccessor();
9114 
9115   // 1. Move preheader block out of main vector loop.
9116   Preheader->setParent(LoopRegion->getParent());
9117   VPBlockUtils::disconnectBlocks(Preheader, Header);
9118   VPBlockUtils::connectBlocks(Preheader, LoopRegion);
9119   Plan->setEntry(Preheader);
9120 
9121   // 2. Disconnect backedge and exit block.
9122   VPBlockUtils::disconnectBlocks(Latch, Header);
9123   VPBlockUtils::disconnectBlocks(Latch, Exit);
9124 
9125   // 3. Update entry and exit of main vector loop region.
9126   LoopRegion->setEntry(Header);
9127   LoopRegion->setExit(Latch);
9128 
9129   // 4. Remove exit block.
9130   delete Exit;
9131 
9132   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9133                         true, true);
9134   return Plan;
9135 }
9136 
9137 // Adjust the recipes for reductions. For in-loop reductions the chain of
9138 // instructions leading from the loop exit instr to the phi need to be converted
9139 // to reductions, with one operand being vector and the other being the scalar
9140 // reduction chain. For other reductions, a select is introduced between the phi
9141 // and live-out recipes when folding the tail.
9142 void LoopVectorizationPlanner::adjustRecipesForReductions(
9143     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9144     ElementCount MinVF) {
9145   for (auto &Reduction : CM.getInLoopReductionChains()) {
9146     PHINode *Phi = Reduction.first;
9147     const RecurrenceDescriptor &RdxDesc =
9148         Legal->getReductionVars().find(Phi)->second;
9149     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9150 
9151     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9152       continue;
9153 
9154     // ReductionOperations are orders top-down from the phi's use to the
9155     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9156     // which of the two operands will remain scalar and which will be reduced.
9157     // For minmax the chain will be the select instructions.
9158     Instruction *Chain = Phi;
9159     for (Instruction *R : ReductionOperations) {
9160       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9161       RecurKind Kind = RdxDesc.getRecurrenceKind();
9162 
9163       VPValue *ChainOp = Plan->getVPValue(Chain);
9164       unsigned FirstOpId;
9165       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9166              "Only min/max recurrences allowed for inloop reductions");
9167       // Recognize a call to the llvm.fmuladd intrinsic.
9168       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9169       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9170              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9171       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9172         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9173                "Expected to replace a VPWidenSelectSC");
9174         FirstOpId = 1;
9175       } else {
9176         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9177                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9178                "Expected to replace a VPWidenSC");
9179         FirstOpId = 0;
9180       }
9181       unsigned VecOpId =
9182           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9183       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9184 
9185       auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent())
9186                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9187                          : nullptr;
9188 
9189       if (IsFMulAdd) {
9190         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9191         // need to create an fmul recipe to use as the vector operand for the
9192         // fadd reduction.
9193         VPInstruction *FMulRecipe = new VPInstruction(
9194             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9195         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9196         WidenRecipe->getParent()->insert(FMulRecipe,
9197                                          WidenRecipe->getIterator());
9198         VecOp = FMulRecipe;
9199       }
9200       VPReductionRecipe *RedRecipe =
9201           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9202       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9203       Plan->removeVPValueFor(R);
9204       Plan->addVPValue(R, RedRecipe);
9205       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9206       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9207       WidenRecipe->eraseFromParent();
9208 
9209       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9210         VPRecipeBase *CompareRecipe =
9211             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9212         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9213                "Expected to replace a VPWidenSC");
9214         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9215                "Expected no remaining users");
9216         CompareRecipe->eraseFromParent();
9217       }
9218       Chain = R;
9219     }
9220   }
9221 
9222   // If tail is folded by masking, introduce selects between the phi
9223   // and the live-out instruction of each reduction, at the beginning of the
9224   // dedicated latch block.
9225   if (CM.foldTailByMasking()) {
9226     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9227     for (VPRecipeBase &R :
9228          Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9229       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9230       if (!PhiR || PhiR->isInLoop())
9231         continue;
9232       VPValue *Cond =
9233           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9234       VPValue *Red = PhiR->getBackedgeValue();
9235       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9236              "reduction recipe must be defined before latch");
9237       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9238     }
9239   }
9240 }
9241 
9242 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9243 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9244                                VPSlotTracker &SlotTracker) const {
9245   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9246   IG->getInsertPos()->printAsOperand(O, false);
9247   O << ", ";
9248   getAddr()->printAsOperand(O, SlotTracker);
9249   VPValue *Mask = getMask();
9250   if (Mask) {
9251     O << ", ";
9252     Mask->printAsOperand(O, SlotTracker);
9253   }
9254 
9255   unsigned OpIdx = 0;
9256   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9257     if (!IG->getMember(i))
9258       continue;
9259     if (getNumStoreOperands() > 0) {
9260       O << "\n" << Indent << "  store ";
9261       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9262       O << " to index " << i;
9263     } else {
9264       O << "\n" << Indent << "  ";
9265       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9266       O << " = load from index " << i;
9267     }
9268     ++OpIdx;
9269   }
9270 }
9271 #endif
9272 
9273 void VPWidenCallRecipe::execute(VPTransformState &State) {
9274   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9275                                   *this, State);
9276 }
9277 
9278 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9279   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9280   State.ILV->setDebugLocFromInst(&I);
9281 
9282   // The condition can be loop invariant  but still defined inside the
9283   // loop. This means that we can't just use the original 'cond' value.
9284   // We have to take the 'vectorized' value and pick the first lane.
9285   // Instcombine will make this a no-op.
9286   auto *InvarCond =
9287       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9288 
9289   for (unsigned Part = 0; Part < State.UF; ++Part) {
9290     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9291     Value *Op0 = State.get(getOperand(1), Part);
9292     Value *Op1 = State.get(getOperand(2), Part);
9293     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9294     State.set(this, Sel, Part);
9295     State.ILV->addMetadata(Sel, &I);
9296   }
9297 }
9298 
9299 void VPWidenRecipe::execute(VPTransformState &State) {
9300   auto &I = *cast<Instruction>(getUnderlyingValue());
9301   auto &Builder = State.Builder;
9302   switch (I.getOpcode()) {
9303   case Instruction::Call:
9304   case Instruction::Br:
9305   case Instruction::PHI:
9306   case Instruction::GetElementPtr:
9307   case Instruction::Select:
9308     llvm_unreachable("This instruction is handled by a different recipe.");
9309   case Instruction::UDiv:
9310   case Instruction::SDiv:
9311   case Instruction::SRem:
9312   case Instruction::URem:
9313   case Instruction::Add:
9314   case Instruction::FAdd:
9315   case Instruction::Sub:
9316   case Instruction::FSub:
9317   case Instruction::FNeg:
9318   case Instruction::Mul:
9319   case Instruction::FMul:
9320   case Instruction::FDiv:
9321   case Instruction::FRem:
9322   case Instruction::Shl:
9323   case Instruction::LShr:
9324   case Instruction::AShr:
9325   case Instruction::And:
9326   case Instruction::Or:
9327   case Instruction::Xor: {
9328     // Just widen unops and binops.
9329     State.ILV->setDebugLocFromInst(&I);
9330 
9331     for (unsigned Part = 0; Part < State.UF; ++Part) {
9332       SmallVector<Value *, 2> Ops;
9333       for (VPValue *VPOp : operands())
9334         Ops.push_back(State.get(VPOp, Part));
9335 
9336       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9337 
9338       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9339         VecOp->copyIRFlags(&I);
9340 
9341         // If the instruction is vectorized and was in a basic block that needed
9342         // predication, we can't propagate poison-generating flags (nuw/nsw,
9343         // exact, etc.). The control flow has been linearized and the
9344         // instruction is no longer guarded by the predicate, which could make
9345         // the flag properties to no longer hold.
9346         if (State.MayGeneratePoisonRecipes.contains(this))
9347           VecOp->dropPoisonGeneratingFlags();
9348       }
9349 
9350       // Use this vector value for all users of the original instruction.
9351       State.set(this, V, Part);
9352       State.ILV->addMetadata(V, &I);
9353     }
9354 
9355     break;
9356   }
9357   case Instruction::Freeze: {
9358     State.ILV->setDebugLocFromInst(&I);
9359 
9360     for (unsigned Part = 0; Part < State.UF; ++Part) {
9361       Value *Op = State.get(getOperand(0), Part);
9362 
9363       Value *Freeze = Builder.CreateFreeze(Op);
9364       State.set(this, Freeze, Part);
9365     }
9366     break;
9367   }
9368   case Instruction::ICmp:
9369   case Instruction::FCmp: {
9370     // Widen compares. Generate vector compares.
9371     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9372     auto *Cmp = cast<CmpInst>(&I);
9373     State.ILV->setDebugLocFromInst(Cmp);
9374     for (unsigned Part = 0; Part < State.UF; ++Part) {
9375       Value *A = State.get(getOperand(0), Part);
9376       Value *B = State.get(getOperand(1), Part);
9377       Value *C = nullptr;
9378       if (FCmp) {
9379         // Propagate fast math flags.
9380         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9381         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9382         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9383       } else {
9384         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9385       }
9386       State.set(this, C, Part);
9387       State.ILV->addMetadata(C, &I);
9388     }
9389 
9390     break;
9391   }
9392 
9393   case Instruction::ZExt:
9394   case Instruction::SExt:
9395   case Instruction::FPToUI:
9396   case Instruction::FPToSI:
9397   case Instruction::FPExt:
9398   case Instruction::PtrToInt:
9399   case Instruction::IntToPtr:
9400   case Instruction::SIToFP:
9401   case Instruction::UIToFP:
9402   case Instruction::Trunc:
9403   case Instruction::FPTrunc:
9404   case Instruction::BitCast: {
9405     auto *CI = cast<CastInst>(&I);
9406     State.ILV->setDebugLocFromInst(CI);
9407 
9408     /// Vectorize casts.
9409     Type *DestTy = (State.VF.isScalar())
9410                        ? CI->getType()
9411                        : VectorType::get(CI->getType(), State.VF);
9412 
9413     for (unsigned Part = 0; Part < State.UF; ++Part) {
9414       Value *A = State.get(getOperand(0), Part);
9415       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9416       State.set(this, Cast, Part);
9417       State.ILV->addMetadata(Cast, &I);
9418     }
9419     break;
9420   }
9421   default:
9422     // This instruction is not vectorized by simple widening.
9423     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9424     llvm_unreachable("Unhandled instruction!");
9425   } // end of switch.
9426 }
9427 
9428 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9429   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9430   // Construct a vector GEP by widening the operands of the scalar GEP as
9431   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9432   // results in a vector of pointers when at least one operand of the GEP
9433   // is vector-typed. Thus, to keep the representation compact, we only use
9434   // vector-typed operands for loop-varying values.
9435 
9436   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9437     // If we are vectorizing, but the GEP has only loop-invariant operands,
9438     // the GEP we build (by only using vector-typed operands for
9439     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9440     // produce a vector of pointers, we need to either arbitrarily pick an
9441     // operand to broadcast, or broadcast a clone of the original GEP.
9442     // Here, we broadcast a clone of the original.
9443     //
9444     // TODO: If at some point we decide to scalarize instructions having
9445     //       loop-invariant operands, this special case will no longer be
9446     //       required. We would add the scalarization decision to
9447     //       collectLoopScalars() and teach getVectorValue() to broadcast
9448     //       the lane-zero scalar value.
9449     auto *Clone = State.Builder.Insert(GEP->clone());
9450     for (unsigned Part = 0; Part < State.UF; ++Part) {
9451       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9452       State.set(this, EntryPart, Part);
9453       State.ILV->addMetadata(EntryPart, GEP);
9454     }
9455   } else {
9456     // If the GEP has at least one loop-varying operand, we are sure to
9457     // produce a vector of pointers. But if we are only unrolling, we want
9458     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9459     // produce with the code below will be scalar (if VF == 1) or vector
9460     // (otherwise). Note that for the unroll-only case, we still maintain
9461     // values in the vector mapping with initVector, as we do for other
9462     // instructions.
9463     for (unsigned Part = 0; Part < State.UF; ++Part) {
9464       // The pointer operand of the new GEP. If it's loop-invariant, we
9465       // won't broadcast it.
9466       auto *Ptr = IsPtrLoopInvariant
9467                       ? State.get(getOperand(0), VPIteration(0, 0))
9468                       : State.get(getOperand(0), Part);
9469 
9470       // Collect all the indices for the new GEP. If any index is
9471       // loop-invariant, we won't broadcast it.
9472       SmallVector<Value *, 4> Indices;
9473       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9474         VPValue *Operand = getOperand(I);
9475         if (IsIndexLoopInvariant[I - 1])
9476           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9477         else
9478           Indices.push_back(State.get(Operand, Part));
9479       }
9480 
9481       // If the GEP instruction is vectorized and was in a basic block that
9482       // needed predication, we can't propagate the poison-generating 'inbounds'
9483       // flag. The control flow has been linearized and the GEP is no longer
9484       // guarded by the predicate, which could make the 'inbounds' properties to
9485       // no longer hold.
9486       bool IsInBounds =
9487           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9488 
9489       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9490       // but it should be a vector, otherwise.
9491       auto *NewGEP = State.Builder.CreateGEP(GEP->getSourceElementType(), Ptr,
9492                                              Indices, "", IsInBounds);
9493       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9494              "NewGEP is not a pointer vector");
9495       State.set(this, NewGEP, Part);
9496       State.ILV->addMetadata(NewGEP, GEP);
9497     }
9498   }
9499 }
9500 
9501 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9502   assert(!State.Instance && "Int or FP induction being replicated.");
9503 
9504   Value *Start = getStartValue()->getLiveInIRValue();
9505   const InductionDescriptor &ID = getInductionDescriptor();
9506   TruncInst *Trunc = getTruncInst();
9507   IRBuilderBase &Builder = State.Builder;
9508   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
9509   assert(State.VF.isVector() && "must have vector VF");
9510 
9511   // The value from the original loop to which we are mapping the new induction
9512   // variable.
9513   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
9514 
9515   // Fast-math-flags propagate from the original induction instruction.
9516   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9517   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
9518     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
9519 
9520   // Now do the actual transformations, and start with fetching the step value.
9521   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9522 
9523   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
9524          "Expected either an induction phi-node or a truncate of it!");
9525 
9526   // Construct the initial value of the vector IV in the vector loop preheader
9527   auto CurrIP = Builder.saveIP();
9528   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
9529   Builder.SetInsertPoint(VectorPH->getTerminator());
9530   if (isa<TruncInst>(EntryVal)) {
9531     assert(Start->getType()->isIntegerTy() &&
9532            "Truncation requires an integer type");
9533     auto *TruncType = cast<IntegerType>(EntryVal->getType());
9534     Step = Builder.CreateTrunc(Step, TruncType);
9535     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
9536   }
9537 
9538   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
9539   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
9540   Value *SteppedStart = getStepVector(
9541       SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder);
9542 
9543   // We create vector phi nodes for both integer and floating-point induction
9544   // variables. Here, we determine the kind of arithmetic we will perform.
9545   Instruction::BinaryOps AddOp;
9546   Instruction::BinaryOps MulOp;
9547   if (Step->getType()->isIntegerTy()) {
9548     AddOp = Instruction::Add;
9549     MulOp = Instruction::Mul;
9550   } else {
9551     AddOp = ID.getInductionOpcode();
9552     MulOp = Instruction::FMul;
9553   }
9554 
9555   // Multiply the vectorization factor by the step using integer or
9556   // floating-point arithmetic as appropriate.
9557   Type *StepType = Step->getType();
9558   Value *RuntimeVF;
9559   if (Step->getType()->isFloatingPointTy())
9560     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
9561   else
9562     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
9563   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
9564 
9565   // Create a vector splat to use in the induction update.
9566   //
9567   // FIXME: If the step is non-constant, we create the vector splat with
9568   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
9569   //        handle a constant vector splat.
9570   Value *SplatVF = isa<Constant>(Mul)
9571                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
9572                        : Builder.CreateVectorSplat(State.VF, Mul);
9573   Builder.restoreIP(CurrIP);
9574 
9575   // We may need to add the step a number of times, depending on the unroll
9576   // factor. The last of those goes into the PHI.
9577   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
9578                                     &*State.CFG.PrevBB->getFirstInsertionPt());
9579   VecInd->setDebugLoc(EntryVal->getDebugLoc());
9580   Instruction *LastInduction = VecInd;
9581   for (unsigned Part = 0; Part < State.UF; ++Part) {
9582     State.set(this, LastInduction, Part);
9583 
9584     if (isa<TruncInst>(EntryVal))
9585       State.ILV->addMetadata(LastInduction, EntryVal);
9586 
9587     LastInduction = cast<Instruction>(
9588         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
9589     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
9590   }
9591 
9592   LastInduction->setName("vec.ind.next");
9593   VecInd->addIncoming(SteppedStart, VectorPH);
9594   // Add induction update using an incorrect block temporarily. The phi node
9595   // will be fixed after VPlan execution. Note that at this point the latch
9596   // block cannot be used, as it does not exist yet.
9597   // TODO: Model increment value in VPlan, by turning the recipe into a
9598   // multi-def and a subclass of VPHeaderPHIRecipe.
9599   VecInd->addIncoming(LastInduction, VectorPH);
9600 }
9601 
9602 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) {
9603   assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction &&
9604          "Not a pointer induction according to InductionDescriptor!");
9605   assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() &&
9606          "Unexpected type.");
9607 
9608   auto *IVR = getParent()->getPlan()->getCanonicalIV();
9609   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
9610 
9611   if (all_of(users(),
9612              [this](const VPUser *U) { return U->usesScalars(this); })) {
9613     // This is the normalized GEP that starts counting at zero.
9614     Value *PtrInd = State.Builder.CreateSExtOrTrunc(
9615         CanonicalIV, IndDesc.getStep()->getType());
9616     // Determine the number of scalars we need to generate for each unroll
9617     // iteration. If the instruction is uniform, we only need to generate the
9618     // first lane. Otherwise, we generate all VF values.
9619     bool IsUniform = vputils::onlyFirstLaneUsed(this);
9620     assert((IsUniform || !State.VF.isScalable()) &&
9621            "Cannot scalarize a scalable VF");
9622     unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
9623 
9624     for (unsigned Part = 0; Part < State.UF; ++Part) {
9625       Value *PartStart =
9626           createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part);
9627 
9628       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
9629         Value *Idx = State.Builder.CreateAdd(
9630             PartStart, ConstantInt::get(PtrInd->getType(), Lane));
9631         Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx);
9632 
9633         Value *Step = CreateStepValue(IndDesc.getStep(), SE,
9634                                       State.CFG.PrevBB->getTerminator());
9635         Value *SclrGep = emitTransformedIndex(
9636             State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc);
9637         SclrGep->setName("next.gep");
9638         State.set(this, SclrGep, VPIteration(Part, Lane));
9639       }
9640     }
9641     return;
9642   }
9643 
9644   assert(isa<SCEVConstant>(IndDesc.getStep()) &&
9645          "Induction step not a SCEV constant!");
9646   Type *PhiType = IndDesc.getStep()->getType();
9647 
9648   // Build a pointer phi
9649   Value *ScalarStartValue = getStartValue()->getLiveInIRValue();
9650   Type *ScStValueType = ScalarStartValue->getType();
9651   PHINode *NewPointerPhi =
9652       PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
9653 
9654   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
9655   NewPointerPhi->addIncoming(ScalarStartValue, VectorPH);
9656 
9657   // A pointer induction, performed by using a gep
9658   const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout();
9659   Instruction *InductionLoc = &*State.Builder.GetInsertPoint();
9660 
9661   const SCEV *ScalarStep = IndDesc.getStep();
9662   SCEVExpander Exp(SE, DL, "induction");
9663   Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
9664   Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF);
9665   Value *NumUnrolledElems =
9666       State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
9667   Value *InductionGEP = GetElementPtrInst::Create(
9668       IndDesc.getElementType(), NewPointerPhi,
9669       State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
9670       InductionLoc);
9671   // Add induction update using an incorrect block temporarily. The phi node
9672   // will be fixed after VPlan execution. Note that at this point the latch
9673   // block cannot be used, as it does not exist yet.
9674   // TODO: Model increment value in VPlan, by turning the recipe into a
9675   // multi-def and a subclass of VPHeaderPHIRecipe.
9676   NewPointerPhi->addIncoming(InductionGEP, VectorPH);
9677 
9678   // Create UF many actual address geps that use the pointer
9679   // phi as base and a vectorized version of the step value
9680   // (<step*0, ..., step*N>) as offset.
9681   for (unsigned Part = 0; Part < State.UF; ++Part) {
9682     Type *VecPhiType = VectorType::get(PhiType, State.VF);
9683     Value *StartOffsetScalar =
9684         State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
9685     Value *StartOffset =
9686         State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
9687     // Create a vector of consecutive numbers from zero to VF.
9688     StartOffset = State.Builder.CreateAdd(
9689         StartOffset, State.Builder.CreateStepVector(VecPhiType));
9690 
9691     Value *GEP = State.Builder.CreateGEP(
9692         IndDesc.getElementType(), NewPointerPhi,
9693         State.Builder.CreateMul(
9694             StartOffset,
9695             State.Builder.CreateVectorSplat(State.VF, ScalarStepValue),
9696             "vector.gep"));
9697     State.set(this, GEP, Part);
9698   }
9699 }
9700 
9701 void VPScalarIVStepsRecipe::execute(VPTransformState &State) {
9702   assert(!State.Instance && "VPScalarIVStepsRecipe being replicated.");
9703 
9704   // Fast-math-flags propagate from the original induction instruction.
9705   IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9706   if (IndDesc.getInductionBinOp() &&
9707       isa<FPMathOperator>(IndDesc.getInductionBinOp()))
9708     State.Builder.setFastMathFlags(
9709         IndDesc.getInductionBinOp()->getFastMathFlags());
9710 
9711   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9712   auto CreateScalarIV = [&](Value *&Step) -> Value * {
9713     Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0));
9714     auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9715     if (!isCanonical() || CanonicalIV->getType() != Ty) {
9716       ScalarIV =
9717           Ty->isIntegerTy()
9718               ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty)
9719               : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty);
9720       ScalarIV = emitTransformedIndex(State.Builder, ScalarIV,
9721                                       getStartValue()->getLiveInIRValue(), Step,
9722                                       IndDesc);
9723       ScalarIV->setName("offset.idx");
9724     }
9725     if (TruncToTy) {
9726       assert(Step->getType()->isIntegerTy() &&
9727              "Truncation requires an integer step");
9728       ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy);
9729       Step = State.Builder.CreateTrunc(Step, TruncToTy);
9730     }
9731     return ScalarIV;
9732   };
9733 
9734   Value *ScalarIV = CreateScalarIV(Step);
9735   if (State.VF.isVector()) {
9736     buildScalarSteps(ScalarIV, Step, IndDesc, this, State);
9737     return;
9738   }
9739 
9740   for (unsigned Part = 0; Part < State.UF; ++Part) {
9741     assert(!State.VF.isScalable() && "scalable vectors not yet supported.");
9742     Value *EntryPart;
9743     if (Step->getType()->isFloatingPointTy()) {
9744       Value *StartIdx =
9745           getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part);
9746       // Floating-point operations inherit FMF via the builder's flags.
9747       Value *MulOp = State.Builder.CreateFMul(StartIdx, Step);
9748       EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(),
9749                                             ScalarIV, MulOp);
9750     } else {
9751       Value *StartIdx =
9752           getRuntimeVF(State.Builder, Step->getType(), State.VF * Part);
9753       EntryPart = State.Builder.CreateAdd(
9754           ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction");
9755     }
9756     State.set(this, EntryPart, Part);
9757   }
9758 }
9759 
9760 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9761   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9762                                  State);
9763 }
9764 
9765 void VPBlendRecipe::execute(VPTransformState &State) {
9766   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9767   // We know that all PHIs in non-header blocks are converted into
9768   // selects, so we don't have to worry about the insertion order and we
9769   // can just use the builder.
9770   // At this point we generate the predication tree. There may be
9771   // duplications since this is a simple recursive scan, but future
9772   // optimizations will clean it up.
9773 
9774   unsigned NumIncoming = getNumIncomingValues();
9775 
9776   // Generate a sequence of selects of the form:
9777   // SELECT(Mask3, In3,
9778   //        SELECT(Mask2, In2,
9779   //               SELECT(Mask1, In1,
9780   //                      In0)))
9781   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9782   // are essentially undef are taken from In0.
9783   InnerLoopVectorizer::VectorParts Entry(State.UF);
9784   for (unsigned In = 0; In < NumIncoming; ++In) {
9785     for (unsigned Part = 0; Part < State.UF; ++Part) {
9786       // We might have single edge PHIs (blocks) - use an identity
9787       // 'select' for the first PHI operand.
9788       Value *In0 = State.get(getIncomingValue(In), Part);
9789       if (In == 0)
9790         Entry[Part] = In0; // Initialize with the first incoming value.
9791       else {
9792         // Select between the current value and the previous incoming edge
9793         // based on the incoming mask.
9794         Value *Cond = State.get(getMask(In), Part);
9795         Entry[Part] =
9796             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9797       }
9798     }
9799   }
9800   for (unsigned Part = 0; Part < State.UF; ++Part)
9801     State.set(this, Entry[Part], Part);
9802 }
9803 
9804 void VPInterleaveRecipe::execute(VPTransformState &State) {
9805   assert(!State.Instance && "Interleave group being replicated.");
9806   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9807                                       getStoredValues(), getMask());
9808 }
9809 
9810 void VPReductionRecipe::execute(VPTransformState &State) {
9811   assert(!State.Instance && "Reduction being replicated.");
9812   Value *PrevInChain = State.get(getChainOp(), 0);
9813   RecurKind Kind = RdxDesc->getRecurrenceKind();
9814   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9815   // Propagate the fast-math flags carried by the underlying instruction.
9816   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9817   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9818   for (unsigned Part = 0; Part < State.UF; ++Part) {
9819     Value *NewVecOp = State.get(getVecOp(), Part);
9820     if (VPValue *Cond = getCondOp()) {
9821       Value *NewCond = State.get(Cond, Part);
9822       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9823       Value *Iden = RdxDesc->getRecurrenceIdentity(
9824           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9825       Value *IdenVec =
9826           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9827       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9828       NewVecOp = Select;
9829     }
9830     Value *NewRed;
9831     Value *NextInChain;
9832     if (IsOrdered) {
9833       if (State.VF.isVector())
9834         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9835                                         PrevInChain);
9836       else
9837         NewRed = State.Builder.CreateBinOp(
9838             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9839             NewVecOp);
9840       PrevInChain = NewRed;
9841     } else {
9842       PrevInChain = State.get(getChainOp(), Part);
9843       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9844     }
9845     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9846       NextInChain =
9847           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9848                          NewRed, PrevInChain);
9849     } else if (IsOrdered)
9850       NextInChain = NewRed;
9851     else
9852       NextInChain = State.Builder.CreateBinOp(
9853           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9854           PrevInChain);
9855     State.set(this, NextInChain, Part);
9856   }
9857 }
9858 
9859 void VPReplicateRecipe::execute(VPTransformState &State) {
9860   if (State.Instance) { // Generate a single instance.
9861     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9862     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9863                                     IsPredicated, State);
9864     // Insert scalar instance packing it into a vector.
9865     if (AlsoPack && State.VF.isVector()) {
9866       // If we're constructing lane 0, initialize to start from poison.
9867       if (State.Instance->Lane.isFirstLane()) {
9868         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9869         Value *Poison = PoisonValue::get(
9870             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9871         State.set(this, Poison, State.Instance->Part);
9872       }
9873       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9874     }
9875     return;
9876   }
9877 
9878   // Generate scalar instances for all VF lanes of all UF parts, unless the
9879   // instruction is uniform inwhich case generate only the first lane for each
9880   // of the UF parts.
9881   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9882   assert((!State.VF.isScalable() || IsUniform) &&
9883          "Can't scalarize a scalable vector");
9884   for (unsigned Part = 0; Part < State.UF; ++Part)
9885     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9886       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9887                                       VPIteration(Part, Lane), IsPredicated,
9888                                       State);
9889 }
9890 
9891 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9892   assert(State.Instance && "Branch on Mask works only on single instance.");
9893 
9894   unsigned Part = State.Instance->Part;
9895   unsigned Lane = State.Instance->Lane.getKnownLane();
9896 
9897   Value *ConditionBit = nullptr;
9898   VPValue *BlockInMask = getMask();
9899   if (BlockInMask) {
9900     ConditionBit = State.get(BlockInMask, Part);
9901     if (ConditionBit->getType()->isVectorTy())
9902       ConditionBit = State.Builder.CreateExtractElement(
9903           ConditionBit, State.Builder.getInt32(Lane));
9904   } else // Block in mask is all-one.
9905     ConditionBit = State.Builder.getTrue();
9906 
9907   // Replace the temporary unreachable terminator with a new conditional branch,
9908   // whose two destinations will be set later when they are created.
9909   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9910   assert(isa<UnreachableInst>(CurrentTerminator) &&
9911          "Expected to replace unreachable terminator with conditional branch.");
9912   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9913   CondBr->setSuccessor(0, nullptr);
9914   ReplaceInstWithInst(CurrentTerminator, CondBr);
9915 }
9916 
9917 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9918   assert(State.Instance && "Predicated instruction PHI works per instance.");
9919   Instruction *ScalarPredInst =
9920       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9921   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9922   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9923   assert(PredicatingBB && "Predicated block has no single predecessor.");
9924   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9925          "operand must be VPReplicateRecipe");
9926 
9927   // By current pack/unpack logic we need to generate only a single phi node: if
9928   // a vector value for the predicated instruction exists at this point it means
9929   // the instruction has vector users only, and a phi for the vector value is
9930   // needed. In this case the recipe of the predicated instruction is marked to
9931   // also do that packing, thereby "hoisting" the insert-element sequence.
9932   // Otherwise, a phi node for the scalar value is needed.
9933   unsigned Part = State.Instance->Part;
9934   if (State.hasVectorValue(getOperand(0), Part)) {
9935     Value *VectorValue = State.get(getOperand(0), Part);
9936     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9937     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9938     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9939     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9940     if (State.hasVectorValue(this, Part))
9941       State.reset(this, VPhi, Part);
9942     else
9943       State.set(this, VPhi, Part);
9944     // NOTE: Currently we need to update the value of the operand, so the next
9945     // predicated iteration inserts its generated value in the correct vector.
9946     State.reset(getOperand(0), VPhi, Part);
9947   } else {
9948     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9949     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9950     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9951                      PredicatingBB);
9952     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9953     if (State.hasScalarValue(this, *State.Instance))
9954       State.reset(this, Phi, *State.Instance);
9955     else
9956       State.set(this, Phi, *State.Instance);
9957     // NOTE: Currently we need to update the value of the operand, so the next
9958     // predicated iteration inserts its generated value in the correct vector.
9959     State.reset(getOperand(0), Phi, *State.Instance);
9960   }
9961 }
9962 
9963 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9964   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9965 
9966   // Attempt to issue a wide load.
9967   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9968   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9969 
9970   assert((LI || SI) && "Invalid Load/Store instruction");
9971   assert((!SI || StoredValue) && "No stored value provided for widened store");
9972   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9973 
9974   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9975 
9976   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9977   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9978   bool CreateGatherScatter = !Consecutive;
9979 
9980   auto &Builder = State.Builder;
9981   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9982   bool isMaskRequired = getMask();
9983   if (isMaskRequired)
9984     for (unsigned Part = 0; Part < State.UF; ++Part)
9985       BlockInMaskParts[Part] = State.get(getMask(), Part);
9986 
9987   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9988     // Calculate the pointer for the specific unroll-part.
9989     GetElementPtrInst *PartPtr = nullptr;
9990 
9991     bool InBounds = false;
9992     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9993       InBounds = gep->isInBounds();
9994     if (Reverse) {
9995       // If the address is consecutive but reversed, then the
9996       // wide store needs to start at the last vector element.
9997       // RunTimeVF =  VScale * VF.getKnownMinValue()
9998       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9999       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
10000       // NumElt = -Part * RunTimeVF
10001       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
10002       // LastLane = 1 - RunTimeVF
10003       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
10004       PartPtr =
10005           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
10006       PartPtr->setIsInBounds(InBounds);
10007       PartPtr = cast<GetElementPtrInst>(
10008           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
10009       PartPtr->setIsInBounds(InBounds);
10010       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
10011         BlockInMaskParts[Part] =
10012             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
10013     } else {
10014       Value *Increment =
10015           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
10016       PartPtr = cast<GetElementPtrInst>(
10017           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
10018       PartPtr->setIsInBounds(InBounds);
10019     }
10020 
10021     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
10022     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
10023   };
10024 
10025   // Handle Stores:
10026   if (SI) {
10027     State.ILV->setDebugLocFromInst(SI);
10028 
10029     for (unsigned Part = 0; Part < State.UF; ++Part) {
10030       Instruction *NewSI = nullptr;
10031       Value *StoredVal = State.get(StoredValue, Part);
10032       if (CreateGatherScatter) {
10033         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10034         Value *VectorGep = State.get(getAddr(), Part);
10035         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
10036                                             MaskPart);
10037       } else {
10038         if (Reverse) {
10039           // If we store to reverse consecutive memory locations, then we need
10040           // to reverse the order of elements in the stored value.
10041           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
10042           // We don't want to update the value in the map as it might be used in
10043           // another expression. So don't call resetVectorValue(StoredVal).
10044         }
10045         auto *VecPtr =
10046             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10047         if (isMaskRequired)
10048           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
10049                                             BlockInMaskParts[Part]);
10050         else
10051           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
10052       }
10053       State.ILV->addMetadata(NewSI, SI);
10054     }
10055     return;
10056   }
10057 
10058   // Handle loads.
10059   assert(LI && "Must have a load instruction");
10060   State.ILV->setDebugLocFromInst(LI);
10061   for (unsigned Part = 0; Part < State.UF; ++Part) {
10062     Value *NewLI;
10063     if (CreateGatherScatter) {
10064       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10065       Value *VectorGep = State.get(getAddr(), Part);
10066       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
10067                                          nullptr, "wide.masked.gather");
10068       State.ILV->addMetadata(NewLI, LI);
10069     } else {
10070       auto *VecPtr =
10071           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10072       if (isMaskRequired)
10073         NewLI = Builder.CreateMaskedLoad(
10074             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
10075             PoisonValue::get(DataTy), "wide.masked.load");
10076       else
10077         NewLI =
10078             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
10079 
10080       // Add metadata to the load, but setVectorValue to the reverse shuffle.
10081       State.ILV->addMetadata(NewLI, LI);
10082       if (Reverse)
10083         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10084     }
10085 
10086     State.set(getVPSingleValue(), NewLI, Part);
10087   }
10088 }
10089 
10090 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10091 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10092 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10093 // for predication.
10094 static ScalarEpilogueLowering getScalarEpilogueLowering(
10095     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10096     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10097     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10098     LoopVectorizationLegality &LVL) {
10099   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10100   // don't look at hints or options, and don't request a scalar epilogue.
10101   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10102   // LoopAccessInfo (due to code dependency and not being able to reliably get
10103   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10104   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10105   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10106   // back to the old way and vectorize with versioning when forced. See D81345.)
10107   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10108                                                       PGSOQueryType::IRPass) &&
10109                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10110     return CM_ScalarEpilogueNotAllowedOptSize;
10111 
10112   // 2) If set, obey the directives
10113   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10114     switch (PreferPredicateOverEpilogue) {
10115     case PreferPredicateTy::ScalarEpilogue:
10116       return CM_ScalarEpilogueAllowed;
10117     case PreferPredicateTy::PredicateElseScalarEpilogue:
10118       return CM_ScalarEpilogueNotNeededUsePredicate;
10119     case PreferPredicateTy::PredicateOrDontVectorize:
10120       return CM_ScalarEpilogueNotAllowedUsePredicate;
10121     };
10122   }
10123 
10124   // 3) If set, obey the hints
10125   switch (Hints.getPredicate()) {
10126   case LoopVectorizeHints::FK_Enabled:
10127     return CM_ScalarEpilogueNotNeededUsePredicate;
10128   case LoopVectorizeHints::FK_Disabled:
10129     return CM_ScalarEpilogueAllowed;
10130   };
10131 
10132   // 4) if the TTI hook indicates this is profitable, request predication.
10133   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10134                                        LVL.getLAI()))
10135     return CM_ScalarEpilogueNotNeededUsePredicate;
10136 
10137   return CM_ScalarEpilogueAllowed;
10138 }
10139 
10140 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10141   // If Values have been set for this Def return the one relevant for \p Part.
10142   if (hasVectorValue(Def, Part))
10143     return Data.PerPartOutput[Def][Part];
10144 
10145   if (!hasScalarValue(Def, {Part, 0})) {
10146     Value *IRV = Def->getLiveInIRValue();
10147     Value *B = ILV->getBroadcastInstrs(IRV);
10148     set(Def, B, Part);
10149     return B;
10150   }
10151 
10152   Value *ScalarValue = get(Def, {Part, 0});
10153   // If we aren't vectorizing, we can just copy the scalar map values over
10154   // to the vector map.
10155   if (VF.isScalar()) {
10156     set(Def, ScalarValue, Part);
10157     return ScalarValue;
10158   }
10159 
10160   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10161   bool IsUniform = RepR && RepR->isUniform();
10162 
10163   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10164   // Check if there is a scalar value for the selected lane.
10165   if (!hasScalarValue(Def, {Part, LastLane})) {
10166     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10167     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) ||
10168             isa<VPScalarIVStepsRecipe>(Def->getDef())) &&
10169            "unexpected recipe found to be invariant");
10170     IsUniform = true;
10171     LastLane = 0;
10172   }
10173 
10174   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10175   // Set the insert point after the last scalarized instruction or after the
10176   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10177   // will directly follow the scalar definitions.
10178   auto OldIP = Builder.saveIP();
10179   auto NewIP =
10180       isa<PHINode>(LastInst)
10181           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10182           : std::next(BasicBlock::iterator(LastInst));
10183   Builder.SetInsertPoint(&*NewIP);
10184 
10185   // However, if we are vectorizing, we need to construct the vector values.
10186   // If the value is known to be uniform after vectorization, we can just
10187   // broadcast the scalar value corresponding to lane zero for each unroll
10188   // iteration. Otherwise, we construct the vector values using
10189   // insertelement instructions. Since the resulting vectors are stored in
10190   // State, we will only generate the insertelements once.
10191   Value *VectorValue = nullptr;
10192   if (IsUniform) {
10193     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10194     set(Def, VectorValue, Part);
10195   } else {
10196     // Initialize packing with insertelements to start from undef.
10197     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10198     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10199     set(Def, Undef, Part);
10200     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10201       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10202     VectorValue = get(Def, Part);
10203   }
10204   Builder.restoreIP(OldIP);
10205   return VectorValue;
10206 }
10207 
10208 // Process the loop in the VPlan-native vectorization path. This path builds
10209 // VPlan upfront in the vectorization pipeline, which allows to apply
10210 // VPlan-to-VPlan transformations from the very beginning without modifying the
10211 // input LLVM IR.
10212 static bool processLoopInVPlanNativePath(
10213     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10214     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10215     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10216     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10217     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10218     LoopVectorizationRequirements &Requirements) {
10219 
10220   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10221     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10222     return false;
10223   }
10224   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10225   Function *F = L->getHeader()->getParent();
10226   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10227 
10228   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10229       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10230 
10231   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10232                                 &Hints, IAI);
10233   // Use the planner for outer loop vectorization.
10234   // TODO: CM is not used at this point inside the planner. Turn CM into an
10235   // optional argument if we don't need it in the future.
10236   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10237                                Requirements, ORE);
10238 
10239   // Get user vectorization factor.
10240   ElementCount UserVF = Hints.getWidth();
10241 
10242   CM.collectElementTypesForWidening();
10243 
10244   // Plan how to best vectorize, return the best VF and its cost.
10245   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10246 
10247   // If we are stress testing VPlan builds, do not attempt to generate vector
10248   // code. Masked vector code generation support will follow soon.
10249   // Also, do not attempt to vectorize if no vector code will be produced.
10250   if (VPlanBuildStressTest || EnableVPlanPredication ||
10251       VectorizationFactor::Disabled() == VF)
10252     return false;
10253 
10254   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10255 
10256   {
10257     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10258                              F->getParent()->getDataLayout());
10259     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10260                            &CM, BFI, PSI, Checks);
10261     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10262                       << L->getHeader()->getParent()->getName() << "\"\n");
10263     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10264   }
10265 
10266   // Mark the loop as already vectorized to avoid vectorizing again.
10267   Hints.setAlreadyVectorized();
10268   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10269   return true;
10270 }
10271 
10272 // Emit a remark if there are stores to floats that required a floating point
10273 // extension. If the vectorized loop was generated with floating point there
10274 // will be a performance penalty from the conversion overhead and the change in
10275 // the vector width.
10276 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10277   SmallVector<Instruction *, 4> Worklist;
10278   for (BasicBlock *BB : L->getBlocks()) {
10279     for (Instruction &Inst : *BB) {
10280       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10281         if (S->getValueOperand()->getType()->isFloatTy())
10282           Worklist.push_back(S);
10283       }
10284     }
10285   }
10286 
10287   // Traverse the floating point stores upwards searching, for floating point
10288   // conversions.
10289   SmallPtrSet<const Instruction *, 4> Visited;
10290   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10291   while (!Worklist.empty()) {
10292     auto *I = Worklist.pop_back_val();
10293     if (!L->contains(I))
10294       continue;
10295     if (!Visited.insert(I).second)
10296       continue;
10297 
10298     // Emit a remark if the floating point store required a floating
10299     // point conversion.
10300     // TODO: More work could be done to identify the root cause such as a
10301     // constant or a function return type and point the user to it.
10302     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10303       ORE->emit([&]() {
10304         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10305                                           I->getDebugLoc(), L->getHeader())
10306                << "floating point conversion changes vector width. "
10307                << "Mixed floating point precision requires an up/down "
10308                << "cast that will negatively impact performance.";
10309       });
10310 
10311     for (Use &Op : I->operands())
10312       if (auto *OpI = dyn_cast<Instruction>(Op))
10313         Worklist.push_back(OpI);
10314   }
10315 }
10316 
10317 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10318     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10319                                !EnableLoopInterleaving),
10320       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10321                               !EnableLoopVectorization) {}
10322 
10323 bool LoopVectorizePass::processLoop(Loop *L) {
10324   assert((EnableVPlanNativePath || L->isInnermost()) &&
10325          "VPlan-native path is not enabled. Only process inner loops.");
10326 
10327 #ifndef NDEBUG
10328   const std::string DebugLocStr = getDebugLocString(L);
10329 #endif /* NDEBUG */
10330 
10331   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
10332                     << L->getHeader()->getParent()->getName() << "' from "
10333                     << DebugLocStr << "\n");
10334 
10335   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10336 
10337   LLVM_DEBUG(
10338       dbgs() << "LV: Loop hints:"
10339              << " force="
10340              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10341                      ? "disabled"
10342                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10343                             ? "enabled"
10344                             : "?"))
10345              << " width=" << Hints.getWidth()
10346              << " interleave=" << Hints.getInterleave() << "\n");
10347 
10348   // Function containing loop
10349   Function *F = L->getHeader()->getParent();
10350 
10351   // Looking at the diagnostic output is the only way to determine if a loop
10352   // was vectorized (other than looking at the IR or machine code), so it
10353   // is important to generate an optimization remark for each loop. Most of
10354   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10355   // generated as OptimizationRemark and OptimizationRemarkMissed are
10356   // less verbose reporting vectorized loops and unvectorized loops that may
10357   // benefit from vectorization, respectively.
10358 
10359   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10360     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10361     return false;
10362   }
10363 
10364   PredicatedScalarEvolution PSE(*SE, *L);
10365 
10366   // Check if it is legal to vectorize the loop.
10367   LoopVectorizationRequirements Requirements;
10368   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10369                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10370   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10371     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10372     Hints.emitRemarkWithHints();
10373     return false;
10374   }
10375 
10376   // Check the function attributes and profiles to find out if this function
10377   // should be optimized for size.
10378   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10379       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10380 
10381   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10382   // here. They may require CFG and instruction level transformations before
10383   // even evaluating whether vectorization is profitable. Since we cannot modify
10384   // the incoming IR, we need to build VPlan upfront in the vectorization
10385   // pipeline.
10386   if (!L->isInnermost())
10387     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10388                                         ORE, BFI, PSI, Hints, Requirements);
10389 
10390   assert(L->isInnermost() && "Inner loop expected.");
10391 
10392   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10393   // count by optimizing for size, to minimize overheads.
10394   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10395   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10396     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10397                       << "This loop is worth vectorizing only if no scalar "
10398                       << "iteration overheads are incurred.");
10399     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10400       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10401     else {
10402       LLVM_DEBUG(dbgs() << "\n");
10403       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10404     }
10405   }
10406 
10407   // Check the function attributes to see if implicit floats are allowed.
10408   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10409   // an integer loop and the vector instructions selected are purely integer
10410   // vector instructions?
10411   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10412     reportVectorizationFailure(
10413         "Can't vectorize when the NoImplicitFloat attribute is used",
10414         "loop not vectorized due to NoImplicitFloat attribute",
10415         "NoImplicitFloat", ORE, L);
10416     Hints.emitRemarkWithHints();
10417     return false;
10418   }
10419 
10420   // Check if the target supports potentially unsafe FP vectorization.
10421   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10422   // for the target we're vectorizing for, to make sure none of the
10423   // additional fp-math flags can help.
10424   if (Hints.isPotentiallyUnsafe() &&
10425       TTI->isFPVectorizationPotentiallyUnsafe()) {
10426     reportVectorizationFailure(
10427         "Potentially unsafe FP op prevents vectorization",
10428         "loop not vectorized due to unsafe FP support.",
10429         "UnsafeFP", ORE, L);
10430     Hints.emitRemarkWithHints();
10431     return false;
10432   }
10433 
10434   bool AllowOrderedReductions;
10435   // If the flag is set, use that instead and override the TTI behaviour.
10436   if (ForceOrderedReductions.getNumOccurrences() > 0)
10437     AllowOrderedReductions = ForceOrderedReductions;
10438   else
10439     AllowOrderedReductions = TTI->enableOrderedReductions();
10440   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10441     ORE->emit([&]() {
10442       auto *ExactFPMathInst = Requirements.getExactFPInst();
10443       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10444                                                  ExactFPMathInst->getDebugLoc(),
10445                                                  ExactFPMathInst->getParent())
10446              << "loop not vectorized: cannot prove it is safe to reorder "
10447                 "floating-point operations";
10448     });
10449     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10450                          "reorder floating-point operations\n");
10451     Hints.emitRemarkWithHints();
10452     return false;
10453   }
10454 
10455   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10456   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10457 
10458   // If an override option has been passed in for interleaved accesses, use it.
10459   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10460     UseInterleaved = EnableInterleavedMemAccesses;
10461 
10462   // Analyze interleaved memory accesses.
10463   if (UseInterleaved) {
10464     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10465   }
10466 
10467   // Use the cost model.
10468   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10469                                 F, &Hints, IAI);
10470   CM.collectValuesToIgnore();
10471   CM.collectElementTypesForWidening();
10472 
10473   // Use the planner for vectorization.
10474   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10475                                Requirements, ORE);
10476 
10477   // Get user vectorization factor and interleave count.
10478   ElementCount UserVF = Hints.getWidth();
10479   unsigned UserIC = Hints.getInterleave();
10480 
10481   // Plan how to best vectorize, return the best VF and its cost.
10482   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10483 
10484   VectorizationFactor VF = VectorizationFactor::Disabled();
10485   unsigned IC = 1;
10486 
10487   if (MaybeVF) {
10488     if (LVP.requiresTooManyRuntimeChecks()) {
10489       ORE->emit([&]() {
10490         return OptimizationRemarkAnalysisAliasing(
10491                    DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
10492                    L->getHeader())
10493                << "loop not vectorized: cannot prove it is safe to reorder "
10494                   "memory operations";
10495       });
10496       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
10497       Hints.emitRemarkWithHints();
10498       return false;
10499     }
10500     VF = *MaybeVF;
10501     // Select the interleave count.
10502     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10503   }
10504 
10505   // Identify the diagnostic messages that should be produced.
10506   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10507   bool VectorizeLoop = true, InterleaveLoop = true;
10508   if (VF.Width.isScalar()) {
10509     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10510     VecDiagMsg = std::make_pair(
10511         "VectorizationNotBeneficial",
10512         "the cost-model indicates that vectorization is not beneficial");
10513     VectorizeLoop = false;
10514   }
10515 
10516   if (!MaybeVF && UserIC > 1) {
10517     // Tell the user interleaving was avoided up-front, despite being explicitly
10518     // requested.
10519     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10520                          "interleaving should be avoided up front\n");
10521     IntDiagMsg = std::make_pair(
10522         "InterleavingAvoided",
10523         "Ignoring UserIC, because interleaving was avoided up front");
10524     InterleaveLoop = false;
10525   } else if (IC == 1 && UserIC <= 1) {
10526     // Tell the user interleaving is not beneficial.
10527     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10528     IntDiagMsg = std::make_pair(
10529         "InterleavingNotBeneficial",
10530         "the cost-model indicates that interleaving is not beneficial");
10531     InterleaveLoop = false;
10532     if (UserIC == 1) {
10533       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10534       IntDiagMsg.second +=
10535           " and is explicitly disabled or interleave count is set to 1";
10536     }
10537   } else if (IC > 1 && UserIC == 1) {
10538     // Tell the user interleaving is beneficial, but it explicitly disabled.
10539     LLVM_DEBUG(
10540         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10541     IntDiagMsg = std::make_pair(
10542         "InterleavingBeneficialButDisabled",
10543         "the cost-model indicates that interleaving is beneficial "
10544         "but is explicitly disabled or interleave count is set to 1");
10545     InterleaveLoop = false;
10546   }
10547 
10548   // Override IC if user provided an interleave count.
10549   IC = UserIC > 0 ? UserIC : IC;
10550 
10551   // Emit diagnostic messages, if any.
10552   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10553   if (!VectorizeLoop && !InterleaveLoop) {
10554     // Do not vectorize or interleaving the loop.
10555     ORE->emit([&]() {
10556       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10557                                       L->getStartLoc(), L->getHeader())
10558              << VecDiagMsg.second;
10559     });
10560     ORE->emit([&]() {
10561       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10562                                       L->getStartLoc(), L->getHeader())
10563              << IntDiagMsg.second;
10564     });
10565     return false;
10566   } else if (!VectorizeLoop && InterleaveLoop) {
10567     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10568     ORE->emit([&]() {
10569       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10570                                         L->getStartLoc(), L->getHeader())
10571              << VecDiagMsg.second;
10572     });
10573   } else if (VectorizeLoop && !InterleaveLoop) {
10574     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10575                       << ") in " << DebugLocStr << '\n');
10576     ORE->emit([&]() {
10577       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10578                                         L->getStartLoc(), L->getHeader())
10579              << IntDiagMsg.second;
10580     });
10581   } else if (VectorizeLoop && InterleaveLoop) {
10582     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10583                       << ") in " << DebugLocStr << '\n');
10584     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10585   }
10586 
10587   bool DisableRuntimeUnroll = false;
10588   MDNode *OrigLoopID = L->getLoopID();
10589   {
10590     // Optimistically generate runtime checks. Drop them if they turn out to not
10591     // be profitable. Limit the scope of Checks, so the cleanup happens
10592     // immediately after vector codegeneration is done.
10593     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10594                              F->getParent()->getDataLayout());
10595     if (!VF.Width.isScalar() || IC > 1)
10596       Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, IC);
10597 
10598     using namespace ore;
10599     if (!VectorizeLoop) {
10600       assert(IC > 1 && "interleave count should not be 1 or 0");
10601       // If we decided that it is not legal to vectorize the loop, then
10602       // interleave it.
10603       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10604                                  &CM, BFI, PSI, Checks);
10605 
10606       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10607       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10608 
10609       ORE->emit([&]() {
10610         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10611                                   L->getHeader())
10612                << "interleaved loop (interleaved count: "
10613                << NV("InterleaveCount", IC) << ")";
10614       });
10615     } else {
10616       // If we decided that it is *legal* to vectorize the loop, then do it.
10617 
10618       // Consider vectorizing the epilogue too if it's profitable.
10619       VectorizationFactor EpilogueVF =
10620           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10621       if (EpilogueVF.Width.isVector()) {
10622 
10623         // The first pass vectorizes the main loop and creates a scalar epilogue
10624         // to be vectorized by executing the plan (potentially with a different
10625         // factor) again shortly afterwards.
10626         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10627         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10628                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10629 
10630         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10631         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10632                         DT);
10633         ++LoopsVectorized;
10634 
10635         // Second pass vectorizes the epilogue and adjusts the control flow
10636         // edges from the first pass.
10637         EPI.MainLoopVF = EPI.EpilogueVF;
10638         EPI.MainLoopUF = EPI.EpilogueUF;
10639         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10640                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10641                                                  Checks);
10642 
10643         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10644         VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion();
10645         VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
10646         Header->setName("vec.epilog.vector.body");
10647 
10648         // Ensure that the start values for any VPReductionPHIRecipes are
10649         // updated before vectorising the epilogue loop.
10650         for (VPRecipeBase &R : Header->phis()) {
10651           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10652             if (auto *Resume = MainILV.getReductionResumeValue(
10653                     ReductionPhi->getRecurrenceDescriptor())) {
10654               VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(Resume);
10655               ReductionPhi->setOperand(0, StartVal);
10656             }
10657           }
10658         }
10659 
10660         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10661                         DT);
10662         ++LoopsEpilogueVectorized;
10663 
10664         if (!MainILV.areSafetyChecksAdded())
10665           DisableRuntimeUnroll = true;
10666       } else {
10667         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10668                                &LVL, &CM, BFI, PSI, Checks);
10669 
10670         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10671         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10672         ++LoopsVectorized;
10673 
10674         // Add metadata to disable runtime unrolling a scalar loop when there
10675         // are no runtime checks about strides and memory. A scalar loop that is
10676         // rarely used is not worth unrolling.
10677         if (!LB.areSafetyChecksAdded())
10678           DisableRuntimeUnroll = true;
10679       }
10680       // Report the vectorization decision.
10681       ORE->emit([&]() {
10682         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10683                                   L->getHeader())
10684                << "vectorized loop (vectorization width: "
10685                << NV("VectorizationFactor", VF.Width)
10686                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10687       });
10688     }
10689 
10690     if (ORE->allowExtraAnalysis(LV_NAME))
10691       checkMixedPrecision(L, ORE);
10692   }
10693 
10694   Optional<MDNode *> RemainderLoopID =
10695       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10696                                       LLVMLoopVectorizeFollowupEpilogue});
10697   if (RemainderLoopID.hasValue()) {
10698     L->setLoopID(RemainderLoopID.getValue());
10699   } else {
10700     if (DisableRuntimeUnroll)
10701       AddRuntimeUnrollDisableMetaData(L);
10702 
10703     // Mark the loop as already vectorized to avoid vectorizing again.
10704     Hints.setAlreadyVectorized();
10705   }
10706 
10707   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10708   return true;
10709 }
10710 
10711 LoopVectorizeResult LoopVectorizePass::runImpl(
10712     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10713     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10714     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10715     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10716     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10717   SE = &SE_;
10718   LI = &LI_;
10719   TTI = &TTI_;
10720   DT = &DT_;
10721   BFI = &BFI_;
10722   TLI = TLI_;
10723   AA = &AA_;
10724   AC = &AC_;
10725   GetLAA = &GetLAA_;
10726   DB = &DB_;
10727   ORE = &ORE_;
10728   PSI = PSI_;
10729 
10730   // Don't attempt if
10731   // 1. the target claims to have no vector registers, and
10732   // 2. interleaving won't help ILP.
10733   //
10734   // The second condition is necessary because, even if the target has no
10735   // vector registers, loop vectorization may still enable scalar
10736   // interleaving.
10737   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10738       TTI->getMaxInterleaveFactor(1) < 2)
10739     return LoopVectorizeResult(false, false);
10740 
10741   bool Changed = false, CFGChanged = false;
10742 
10743   // The vectorizer requires loops to be in simplified form.
10744   // Since simplification may add new inner loops, it has to run before the
10745   // legality and profitability checks. This means running the loop vectorizer
10746   // will simplify all loops, regardless of whether anything end up being
10747   // vectorized.
10748   for (auto &L : *LI)
10749     Changed |= CFGChanged |=
10750         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10751 
10752   // Build up a worklist of inner-loops to vectorize. This is necessary as
10753   // the act of vectorizing or partially unrolling a loop creates new loops
10754   // and can invalidate iterators across the loops.
10755   SmallVector<Loop *, 8> Worklist;
10756 
10757   for (Loop *L : *LI)
10758     collectSupportedLoops(*L, LI, ORE, Worklist);
10759 
10760   LoopsAnalyzed += Worklist.size();
10761 
10762   // Now walk the identified inner loops.
10763   while (!Worklist.empty()) {
10764     Loop *L = Worklist.pop_back_val();
10765 
10766     // For the inner loops we actually process, form LCSSA to simplify the
10767     // transform.
10768     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10769 
10770     Changed |= CFGChanged |= processLoop(L);
10771   }
10772 
10773   // Process each loop nest in the function.
10774   return LoopVectorizeResult(Changed, CFGChanged);
10775 }
10776 
10777 PreservedAnalyses LoopVectorizePass::run(Function &F,
10778                                          FunctionAnalysisManager &AM) {
10779     auto &LI = AM.getResult<LoopAnalysis>(F);
10780     // There are no loops in the function. Return before computing other expensive
10781     // analyses.
10782     if (LI.empty())
10783       return PreservedAnalyses::all();
10784     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10785     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10786     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10787     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10788     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10789     auto &AA = AM.getResult<AAManager>(F);
10790     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10791     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10792     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10793 
10794     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10795     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10796         [&](Loop &L) -> const LoopAccessInfo & {
10797       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10798                                         TLI, TTI, nullptr, nullptr, nullptr};
10799       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10800     };
10801     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10802     ProfileSummaryInfo *PSI =
10803         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10804     LoopVectorizeResult Result =
10805         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10806     if (!Result.MadeAnyChange)
10807       return PreservedAnalyses::all();
10808     PreservedAnalyses PA;
10809 
10810     // We currently do not preserve loopinfo/dominator analyses with outer loop
10811     // vectorization. Until this is addressed, mark these analyses as preserved
10812     // only for non-VPlan-native path.
10813     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10814     if (!EnableVPlanNativePath) {
10815       PA.preserve<LoopAnalysis>();
10816       PA.preserve<DominatorTreeAnalysis>();
10817     }
10818 
10819     if (Result.MadeCFGChange) {
10820       // Making CFG changes likely means a loop got vectorized. Indicate that
10821       // extra simplification passes should be run.
10822       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10823       // be run if runtime checks have been added.
10824       AM.getResult<ShouldRunExtraVectorPasses>(F);
10825       PA.preserve<ShouldRunExtraVectorPasses>();
10826     } else {
10827       PA.preserveSet<CFGAnalyses>();
10828     }
10829     return PA;
10830 }
10831 
10832 void LoopVectorizePass::printPipeline(
10833     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10834   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10835       OS, MapClassName2PassName);
10836 
10837   OS << "<";
10838   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10839   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10840   OS << ">";
10841 }
10842