1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/Metadata.h" 116 #include "llvm/IR/Module.h" 117 #include "llvm/IR/Operator.h" 118 #include "llvm/IR/PatternMatch.h" 119 #include "llvm/IR/Type.h" 120 #include "llvm/IR/Use.h" 121 #include "llvm/IR/User.h" 122 #include "llvm/IR/Value.h" 123 #include "llvm/IR/ValueHandle.h" 124 #include "llvm/IR/Verifier.h" 125 #include "llvm/InitializePasses.h" 126 #include "llvm/Pass.h" 127 #include "llvm/Support/Casting.h" 128 #include "llvm/Support/CommandLine.h" 129 #include "llvm/Support/Compiler.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/InstructionCost.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <functional> 147 #include <iterator> 148 #include <limits> 149 #include <map> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 #ifndef NDEBUG 161 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 162 #endif 163 164 /// @{ 165 /// Metadata attribute names 166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 167 const char LLVMLoopVectorizeFollowupVectorized[] = 168 "llvm.loop.vectorize.followup_vectorized"; 169 const char LLVMLoopVectorizeFollowupEpilogue[] = 170 "llvm.loop.vectorize.followup_epilogue"; 171 /// @} 172 173 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 176 177 static cl::opt<bool> EnableEpilogueVectorization( 178 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 179 cl::desc("Enable vectorization of epilogue loops.")); 180 181 static cl::opt<unsigned> EpilogueVectorizationForceVF( 182 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 183 cl::desc("When epilogue vectorization is enabled, and a value greater than " 184 "1 is specified, forces the given VF for all applicable epilogue " 185 "loops.")); 186 187 static cl::opt<unsigned> EpilogueVectorizationMinVF( 188 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 189 cl::desc("Only loops with vectorization factor equal to or larger than " 190 "the specified value are considered for epilogue vectorization.")); 191 192 /// Loops with a known constant trip count below this number are vectorized only 193 /// if no scalar iteration overheads are incurred. 194 static cl::opt<unsigned> TinyTripCountVectorThreshold( 195 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 196 cl::desc("Loops with a constant trip count that is smaller than this " 197 "value are vectorized only if no scalar iteration overheads " 198 "are incurred.")); 199 200 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 201 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 202 cl::desc("The maximum allowed number of runtime memory checks with a " 203 "vectorize(enable) pragma.")); 204 205 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 206 // that predication is preferred, and this lists all options. I.e., the 207 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 208 // and predicate the instructions accordingly. If tail-folding fails, there are 209 // different fallback strategies depending on these values: 210 namespace PreferPredicateTy { 211 enum Option { 212 ScalarEpilogue = 0, 213 PredicateElseScalarEpilogue, 214 PredicateOrDontVectorize 215 }; 216 } // namespace PreferPredicateTy 217 218 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 219 "prefer-predicate-over-epilogue", 220 cl::init(PreferPredicateTy::ScalarEpilogue), 221 cl::Hidden, 222 cl::desc("Tail-folding and predication preferences over creating a scalar " 223 "epilogue loop."), 224 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 225 "scalar-epilogue", 226 "Don't tail-predicate loops, create scalar epilogue"), 227 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 228 "predicate-else-scalar-epilogue", 229 "prefer tail-folding, create scalar epilogue if tail " 230 "folding fails."), 231 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 232 "predicate-dont-vectorize", 233 "prefers tail-folding, don't attempt vectorization if " 234 "tail-folding fails."))); 235 236 static cl::opt<bool> MaximizeBandwidth( 237 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 238 cl::desc("Maximize bandwidth when selecting vectorization factor which " 239 "will be determined by the smallest type in loop.")); 240 241 static cl::opt<bool> EnableInterleavedMemAccesses( 242 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 243 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 244 245 /// An interleave-group may need masking if it resides in a block that needs 246 /// predication, or in order to mask away gaps. 247 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 248 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 249 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 250 251 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 252 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 253 cl::desc("We don't interleave loops with a estimated constant trip count " 254 "below this number")); 255 256 static cl::opt<unsigned> ForceTargetNumScalarRegs( 257 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 258 cl::desc("A flag that overrides the target's number of scalar registers.")); 259 260 static cl::opt<unsigned> ForceTargetNumVectorRegs( 261 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 262 cl::desc("A flag that overrides the target's number of vector registers.")); 263 264 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 265 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 266 cl::desc("A flag that overrides the target's max interleave factor for " 267 "scalar loops.")); 268 269 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 270 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 271 cl::desc("A flag that overrides the target's max interleave factor for " 272 "vectorized loops.")); 273 274 static cl::opt<unsigned> ForceTargetInstructionCost( 275 "force-target-instruction-cost", cl::init(0), cl::Hidden, 276 cl::desc("A flag that overrides the target's expected cost for " 277 "an instruction to a single constant value. Mostly " 278 "useful for getting consistent testing.")); 279 280 static cl::opt<bool> ForceTargetSupportsScalableVectors( 281 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 282 cl::desc( 283 "Pretend that scalable vectors are supported, even if the target does " 284 "not support them. This flag should only be used for testing.")); 285 286 static cl::opt<unsigned> SmallLoopCost( 287 "small-loop-cost", cl::init(20), cl::Hidden, 288 cl::desc( 289 "The cost of a loop that is considered 'small' by the interleaver.")); 290 291 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 292 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 293 cl::desc("Enable the use of the block frequency analysis to access PGO " 294 "heuristics minimizing code growth in cold regions and being more " 295 "aggressive in hot regions.")); 296 297 // Runtime interleave loops for load/store throughput. 298 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 299 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 300 cl::desc( 301 "Enable runtime interleaving until load/store ports are saturated")); 302 303 /// Interleave small loops with scalar reductions. 304 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 305 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 306 cl::desc("Enable interleaving for loops with small iteration counts that " 307 "contain scalar reductions to expose ILP.")); 308 309 /// The number of stores in a loop that are allowed to need predication. 310 static cl::opt<unsigned> NumberOfStoresToPredicate( 311 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 312 cl::desc("Max number of stores to be predicated behind an if.")); 313 314 static cl::opt<bool> EnableIndVarRegisterHeur( 315 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 316 cl::desc("Count the induction variable only once when interleaving")); 317 318 static cl::opt<bool> EnableCondStoresVectorization( 319 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 320 cl::desc("Enable if predication of stores during vectorization.")); 321 322 static cl::opt<unsigned> MaxNestedScalarReductionIC( 323 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 324 cl::desc("The maximum interleave count to use when interleaving a scalar " 325 "reduction in a nested loop.")); 326 327 static cl::opt<bool> 328 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 329 cl::Hidden, 330 cl::desc("Prefer in-loop vector reductions, " 331 "overriding the targets preference.")); 332 333 static cl::opt<bool> ForceOrderedReductions( 334 "force-ordered-reductions", cl::init(false), cl::Hidden, 335 cl::desc("Enable the vectorisation of loops with in-order (strict) " 336 "FP reductions")); 337 338 static cl::opt<bool> PreferPredicatedReductionSelect( 339 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 340 cl::desc( 341 "Prefer predicating a reduction operation over an after loop select.")); 342 343 cl::opt<bool> EnableVPlanNativePath( 344 "enable-vplan-native-path", cl::init(false), cl::Hidden, 345 cl::desc("Enable VPlan-native vectorization path with " 346 "support for outer loop vectorization.")); 347 348 // FIXME: Remove this switch once we have divergence analysis. Currently we 349 // assume divergent non-backedge branches when this switch is true. 350 cl::opt<bool> EnableVPlanPredication( 351 "enable-vplan-predication", cl::init(false), cl::Hidden, 352 cl::desc("Enable VPlan-native vectorization path predicator with " 353 "support for outer loop vectorization.")); 354 355 // This flag enables the stress testing of the VPlan H-CFG construction in the 356 // VPlan-native vectorization path. It must be used in conjuction with 357 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 358 // verification of the H-CFGs built. 359 static cl::opt<bool> VPlanBuildStressTest( 360 "vplan-build-stress-test", cl::init(false), cl::Hidden, 361 cl::desc( 362 "Build VPlan for every supported loop nest in the function and bail " 363 "out right after the build (stress test the VPlan H-CFG construction " 364 "in the VPlan-native vectorization path).")); 365 366 cl::opt<bool> llvm::EnableLoopInterleaving( 367 "interleave-loops", cl::init(true), cl::Hidden, 368 cl::desc("Enable loop interleaving in Loop vectorization passes")); 369 cl::opt<bool> llvm::EnableLoopVectorization( 370 "vectorize-loops", cl::init(true), cl::Hidden, 371 cl::desc("Run the Loop vectorization passes")); 372 373 cl::opt<bool> PrintVPlansInDotFormat( 374 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 375 cl::desc("Use dot format instead of plain text when dumping VPlans")); 376 377 /// A helper function that returns true if the given type is irregular. The 378 /// type is irregular if its allocated size doesn't equal the store size of an 379 /// element of the corresponding vector type. 380 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 381 // Determine if an array of N elements of type Ty is "bitcast compatible" 382 // with a <N x Ty> vector. 383 // This is only true if there is no padding between the array elements. 384 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 385 } 386 387 /// A helper function that returns the reciprocal of the block probability of 388 /// predicated blocks. If we return X, we are assuming the predicated block 389 /// will execute once for every X iterations of the loop header. 390 /// 391 /// TODO: We should use actual block probability here, if available. Currently, 392 /// we always assume predicated blocks have a 50% chance of executing. 393 static unsigned getReciprocalPredBlockProb() { return 2; } 394 395 /// A helper function that returns an integer or floating-point constant with 396 /// value C. 397 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 398 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 399 : ConstantFP::get(Ty, C); 400 } 401 402 /// Returns "best known" trip count for the specified loop \p L as defined by 403 /// the following procedure: 404 /// 1) Returns exact trip count if it is known. 405 /// 2) Returns expected trip count according to profile data if any. 406 /// 3) Returns upper bound estimate if it is known. 407 /// 4) Returns None if all of the above failed. 408 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 409 // Check if exact trip count is known. 410 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 411 return ExpectedTC; 412 413 // Check if there is an expected trip count available from profile data. 414 if (LoopVectorizeWithBlockFrequency) 415 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 416 return EstimatedTC; 417 418 // Check if upper bound estimate is known. 419 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 420 return ExpectedTC; 421 422 return None; 423 } 424 425 // Forward declare GeneratedRTChecks. 426 class GeneratedRTChecks; 427 428 namespace llvm { 429 430 AnalysisKey ShouldRunExtraVectorPasses::Key; 431 432 /// InnerLoopVectorizer vectorizes loops which contain only one basic 433 /// block to a specified vectorization factor (VF). 434 /// This class performs the widening of scalars into vectors, or multiple 435 /// scalars. This class also implements the following features: 436 /// * It inserts an epilogue loop for handling loops that don't have iteration 437 /// counts that are known to be a multiple of the vectorization factor. 438 /// * It handles the code generation for reduction variables. 439 /// * Scalarization (implementation using scalars) of un-vectorizable 440 /// instructions. 441 /// InnerLoopVectorizer does not perform any vectorization-legality 442 /// checks, and relies on the caller to check for the different legality 443 /// aspects. The InnerLoopVectorizer relies on the 444 /// LoopVectorizationLegality class to provide information about the induction 445 /// and reduction variables that were found to a given vectorization factor. 446 class InnerLoopVectorizer { 447 public: 448 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 449 LoopInfo *LI, DominatorTree *DT, 450 const TargetLibraryInfo *TLI, 451 const TargetTransformInfo *TTI, AssumptionCache *AC, 452 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 453 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 454 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 455 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 456 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 457 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 458 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 459 PSI(PSI), RTChecks(RTChecks) { 460 // Query this against the original loop and save it here because the profile 461 // of the original loop header may change as the transformation happens. 462 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 463 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 464 } 465 466 virtual ~InnerLoopVectorizer() = default; 467 468 /// Create a new empty loop that will contain vectorized instructions later 469 /// on, while the old loop will be used as the scalar remainder. Control flow 470 /// is generated around the vectorized (and scalar epilogue) loops consisting 471 /// of various checks and bypasses. Return the pre-header block of the new 472 /// loop and the start value for the canonical induction, if it is != 0. The 473 /// latter is the case when vectorizing the epilogue loop. In the case of 474 /// epilogue vectorization, this function is overriden to handle the more 475 /// complex control flow around the loops. 476 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 477 478 /// Widen a single call instruction within the innermost loop. 479 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 480 VPTransformState &State); 481 482 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 483 void fixVectorizedLoop(VPTransformState &State, VPlan &Plan); 484 485 // Return true if any runtime check is added. 486 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 487 488 /// A type for vectorized values in the new loop. Each value from the 489 /// original loop, when vectorized, is represented by UF vector values in the 490 /// new unrolled loop, where UF is the unroll factor. 491 using VectorParts = SmallVector<Value *, 2>; 492 493 /// Vectorize a single vector PHINode in a block in the VPlan-native path 494 /// only. 495 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 496 VPTransformState &State); 497 498 /// A helper function to scalarize a single Instruction in the innermost loop. 499 /// Generates a sequence of scalar instances for each lane between \p MinLane 500 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 501 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 502 /// Instr's operands. 503 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 504 const VPIteration &Instance, bool IfPredicateInstr, 505 VPTransformState &State); 506 507 /// Construct the vector value of a scalarized value \p V one lane at a time. 508 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 509 VPTransformState &State); 510 511 /// Try to vectorize interleaved access group \p Group with the base address 512 /// given in \p Addr, optionally masking the vector operations if \p 513 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 514 /// values in the vectorized loop. 515 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 516 ArrayRef<VPValue *> VPDefs, 517 VPTransformState &State, VPValue *Addr, 518 ArrayRef<VPValue *> StoredValues, 519 VPValue *BlockInMask = nullptr); 520 521 /// Set the debug location in the builder \p Ptr using the debug location in 522 /// \p V. If \p Ptr is None then it uses the class member's Builder. 523 void setDebugLocFromInst(const Value *V, 524 Optional<IRBuilderBase *> CustomBuilder = None); 525 526 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 527 void fixNonInductionPHIs(VPTransformState &State); 528 529 /// Returns true if the reordering of FP operations is not allowed, but we are 530 /// able to vectorize with strict in-order reductions for the given RdxDesc. 531 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 532 533 /// Create a broadcast instruction. This method generates a broadcast 534 /// instruction (shuffle) for loop invariant values and for the induction 535 /// value. If this is the induction variable then we extend it to N, N+1, ... 536 /// this is needed because each iteration in the loop corresponds to a SIMD 537 /// element. 538 virtual Value *getBroadcastInstrs(Value *V); 539 540 /// Add metadata from one instruction to another. 541 /// 542 /// This includes both the original MDs from \p From and additional ones (\see 543 /// addNewMetadata). Use this for *newly created* instructions in the vector 544 /// loop. 545 void addMetadata(Instruction *To, Instruction *From); 546 547 /// Similar to the previous function but it adds the metadata to a 548 /// vector of instructions. 549 void addMetadata(ArrayRef<Value *> To, Instruction *From); 550 551 // Returns the resume value (bc.merge.rdx) for a reduction as 552 // generated by fixReduction. 553 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 554 555 protected: 556 friend class LoopVectorizationPlanner; 557 558 /// A small list of PHINodes. 559 using PhiVector = SmallVector<PHINode *, 4>; 560 561 /// A type for scalarized values in the new loop. Each value from the 562 /// original loop, when scalarized, is represented by UF x VF scalar values 563 /// in the new unrolled loop, where UF is the unroll factor and VF is the 564 /// vectorization factor. 565 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 566 567 /// Set up the values of the IVs correctly when exiting the vector loop. 568 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 569 Value *VectorTripCount, Value *EndValue, 570 BasicBlock *MiddleBlock, BasicBlock *VectorHeader); 571 572 /// Handle all cross-iteration phis in the header. 573 void fixCrossIterationPHIs(VPTransformState &State); 574 575 /// Create the exit value of first order recurrences in the middle block and 576 /// update their users. 577 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 578 VPTransformState &State); 579 580 /// Create code for the loop exit value of the reduction. 581 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 582 583 /// Clear NSW/NUW flags from reduction instructions if necessary. 584 void clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, 585 VPTransformState &State); 586 587 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 588 /// means we need to add the appropriate incoming value from the middle 589 /// block as exiting edges from the scalar epilogue loop (if present) are 590 /// already in place, and we exit the vector loop exclusively to the middle 591 /// block. 592 void fixLCSSAPHIs(VPTransformState &State); 593 594 /// Iteratively sink the scalarized operands of a predicated instruction into 595 /// the block that was created for it. 596 void sinkScalarOperands(Instruction *PredInst); 597 598 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 599 /// represented as. 600 void truncateToMinimalBitwidths(VPTransformState &State); 601 602 /// Returns (and creates if needed) the original loop trip count. 603 Value *getOrCreateTripCount(BasicBlock *InsertBlock); 604 605 /// Returns (and creates if needed) the trip count of the widened loop. 606 Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); 607 608 /// Returns a bitcasted value to the requested vector type. 609 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 610 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 611 const DataLayout &DL); 612 613 /// Emit a bypass check to see if the vector trip count is zero, including if 614 /// it overflows. 615 void emitIterationCountCheck(BasicBlock *Bypass); 616 617 /// Emit a bypass check to see if all of the SCEV assumptions we've 618 /// had to make are correct. Returns the block containing the checks or 619 /// nullptr if no checks have been added. 620 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 621 622 /// Emit bypass checks to check any memory assumptions we may have made. 623 /// Returns the block containing the checks or nullptr if no checks have been 624 /// added. 625 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); 626 627 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 628 /// vector loop preheader, middle block and scalar preheader. 629 void createVectorLoopSkeleton(StringRef Prefix); 630 631 /// Create new phi nodes for the induction variables to resume iteration count 632 /// in the scalar epilogue, from where the vectorized loop left off. 633 /// In cases where the loop skeleton is more complicated (eg. epilogue 634 /// vectorization) and the resume values can come from an additional bypass 635 /// block, the \p AdditionalBypass pair provides information about the bypass 636 /// block and the end value on the edge from bypass to this loop. 637 void createInductionResumeValues( 638 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 639 640 /// Complete the loop skeleton by adding debug MDs, creating appropriate 641 /// conditional branches in the middle block, preparing the builder and 642 /// running the verifier. Return the preheader of the completed vector loop. 643 BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID); 644 645 /// Add additional metadata to \p To that was not present on \p Orig. 646 /// 647 /// Currently this is used to add the noalias annotations based on the 648 /// inserted memchecks. Use this for instructions that are *cloned* into the 649 /// vector loop. 650 void addNewMetadata(Instruction *To, const Instruction *Orig); 651 652 /// Collect poison-generating recipes that may generate a poison value that is 653 /// used after vectorization, even when their operands are not poison. Those 654 /// recipes meet the following conditions: 655 /// * Contribute to the address computation of a recipe generating a widen 656 /// memory load/store (VPWidenMemoryInstructionRecipe or 657 /// VPInterleaveRecipe). 658 /// * Such a widen memory load/store has at least one underlying Instruction 659 /// that is in a basic block that needs predication and after vectorization 660 /// the generated instruction won't be predicated. 661 void collectPoisonGeneratingRecipes(VPTransformState &State); 662 663 /// Allow subclasses to override and print debug traces before/after vplan 664 /// execution, when trace information is requested. 665 virtual void printDebugTracesAtStart(){}; 666 virtual void printDebugTracesAtEnd(){}; 667 668 /// The original loop. 669 Loop *OrigLoop; 670 671 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 672 /// dynamic knowledge to simplify SCEV expressions and converts them to a 673 /// more usable form. 674 PredicatedScalarEvolution &PSE; 675 676 /// Loop Info. 677 LoopInfo *LI; 678 679 /// Dominator Tree. 680 DominatorTree *DT; 681 682 /// Alias Analysis. 683 AAResults *AA; 684 685 /// Target Library Info. 686 const TargetLibraryInfo *TLI; 687 688 /// Target Transform Info. 689 const TargetTransformInfo *TTI; 690 691 /// Assumption Cache. 692 AssumptionCache *AC; 693 694 /// Interface to emit optimization remarks. 695 OptimizationRemarkEmitter *ORE; 696 697 /// LoopVersioning. It's only set up (non-null) if memchecks were 698 /// used. 699 /// 700 /// This is currently only used to add no-alias metadata based on the 701 /// memchecks. The actually versioning is performed manually. 702 std::unique_ptr<LoopVersioning> LVer; 703 704 /// The vectorization SIMD factor to use. Each vector will have this many 705 /// vector elements. 706 ElementCount VF; 707 708 /// The vectorization unroll factor to use. Each scalar is vectorized to this 709 /// many different vector instructions. 710 unsigned UF; 711 712 /// The builder that we use 713 IRBuilder<> Builder; 714 715 // --- Vectorization state --- 716 717 /// The vector-loop preheader. 718 BasicBlock *LoopVectorPreHeader; 719 720 /// The scalar-loop preheader. 721 BasicBlock *LoopScalarPreHeader; 722 723 /// Middle Block between the vector and the scalar. 724 BasicBlock *LoopMiddleBlock; 725 726 /// The unique ExitBlock of the scalar loop if one exists. Note that 727 /// there can be multiple exiting edges reaching this block. 728 BasicBlock *LoopExitBlock; 729 730 /// The scalar loop body. 731 BasicBlock *LoopScalarBody; 732 733 /// A list of all bypass blocks. The first block is the entry of the loop. 734 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 735 736 /// Store instructions that were predicated. 737 SmallVector<Instruction *, 4> PredicatedInstructions; 738 739 /// Trip count of the original loop. 740 Value *TripCount = nullptr; 741 742 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 743 Value *VectorTripCount = nullptr; 744 745 /// The legality analysis. 746 LoopVectorizationLegality *Legal; 747 748 /// The profitablity analysis. 749 LoopVectorizationCostModel *Cost; 750 751 // Record whether runtime checks are added. 752 bool AddedSafetyChecks = false; 753 754 // Holds the end values for each induction variable. We save the end values 755 // so we can later fix-up the external users of the induction variables. 756 DenseMap<PHINode *, Value *> IVEndValues; 757 758 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 759 // fixed up at the end of vector code generation. 760 SmallVector<PHINode *, 8> OrigPHIsToFix; 761 762 /// BFI and PSI are used to check for profile guided size optimizations. 763 BlockFrequencyInfo *BFI; 764 ProfileSummaryInfo *PSI; 765 766 // Whether this loop should be optimized for size based on profile guided size 767 // optimizatios. 768 bool OptForSizeBasedOnProfile; 769 770 /// Structure to hold information about generated runtime checks, responsible 771 /// for cleaning the checks, if vectorization turns out unprofitable. 772 GeneratedRTChecks &RTChecks; 773 774 // Holds the resume values for reductions in the loops, used to set the 775 // correct start value of reduction PHIs when vectorizing the epilogue. 776 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 777 ReductionResumeValues; 778 }; 779 780 class InnerLoopUnroller : public InnerLoopVectorizer { 781 public: 782 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 783 LoopInfo *LI, DominatorTree *DT, 784 const TargetLibraryInfo *TLI, 785 const TargetTransformInfo *TTI, AssumptionCache *AC, 786 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 787 LoopVectorizationLegality *LVL, 788 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 789 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 790 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 791 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 792 BFI, PSI, Check) {} 793 794 private: 795 Value *getBroadcastInstrs(Value *V) override; 796 }; 797 798 /// Encapsulate information regarding vectorization of a loop and its epilogue. 799 /// This information is meant to be updated and used across two stages of 800 /// epilogue vectorization. 801 struct EpilogueLoopVectorizationInfo { 802 ElementCount MainLoopVF = ElementCount::getFixed(0); 803 unsigned MainLoopUF = 0; 804 ElementCount EpilogueVF = ElementCount::getFixed(0); 805 unsigned EpilogueUF = 0; 806 BasicBlock *MainLoopIterationCountCheck = nullptr; 807 BasicBlock *EpilogueIterationCountCheck = nullptr; 808 BasicBlock *SCEVSafetyCheck = nullptr; 809 BasicBlock *MemSafetyCheck = nullptr; 810 Value *TripCount = nullptr; 811 Value *VectorTripCount = nullptr; 812 813 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 814 ElementCount EVF, unsigned EUF) 815 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 816 assert(EUF == 1 && 817 "A high UF for the epilogue loop is likely not beneficial."); 818 } 819 }; 820 821 /// An extension of the inner loop vectorizer that creates a skeleton for a 822 /// vectorized loop that has its epilogue (residual) also vectorized. 823 /// The idea is to run the vplan on a given loop twice, firstly to setup the 824 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 825 /// from the first step and vectorize the epilogue. This is achieved by 826 /// deriving two concrete strategy classes from this base class and invoking 827 /// them in succession from the loop vectorizer planner. 828 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 829 public: 830 InnerLoopAndEpilogueVectorizer( 831 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 832 DominatorTree *DT, const TargetLibraryInfo *TLI, 833 const TargetTransformInfo *TTI, AssumptionCache *AC, 834 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 835 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 836 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 837 GeneratedRTChecks &Checks) 838 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 839 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 840 Checks), 841 EPI(EPI) {} 842 843 // Override this function to handle the more complex control flow around the 844 // three loops. 845 std::pair<BasicBlock *, Value *> 846 createVectorizedLoopSkeleton() final override { 847 return createEpilogueVectorizedLoopSkeleton(); 848 } 849 850 /// The interface for creating a vectorized skeleton using one of two 851 /// different strategies, each corresponding to one execution of the vplan 852 /// as described above. 853 virtual std::pair<BasicBlock *, Value *> 854 createEpilogueVectorizedLoopSkeleton() = 0; 855 856 /// Holds and updates state information required to vectorize the main loop 857 /// and its epilogue in two separate passes. This setup helps us avoid 858 /// regenerating and recomputing runtime safety checks. It also helps us to 859 /// shorten the iteration-count-check path length for the cases where the 860 /// iteration count of the loop is so small that the main vector loop is 861 /// completely skipped. 862 EpilogueLoopVectorizationInfo &EPI; 863 }; 864 865 /// A specialized derived class of inner loop vectorizer that performs 866 /// vectorization of *main* loops in the process of vectorizing loops and their 867 /// epilogues. 868 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 869 public: 870 EpilogueVectorizerMainLoop( 871 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 872 DominatorTree *DT, const TargetLibraryInfo *TLI, 873 const TargetTransformInfo *TTI, AssumptionCache *AC, 874 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 875 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 876 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 877 GeneratedRTChecks &Check) 878 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 879 EPI, LVL, CM, BFI, PSI, Check) {} 880 /// Implements the interface for creating a vectorized skeleton using the 881 /// *main loop* strategy (ie the first pass of vplan execution). 882 std::pair<BasicBlock *, Value *> 883 createEpilogueVectorizedLoopSkeleton() final override; 884 885 protected: 886 /// Emits an iteration count bypass check once for the main loop (when \p 887 /// ForEpilogue is false) and once for the epilogue loop (when \p 888 /// ForEpilogue is true). 889 BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue); 890 void printDebugTracesAtStart() override; 891 void printDebugTracesAtEnd() override; 892 }; 893 894 // A specialized derived class of inner loop vectorizer that performs 895 // vectorization of *epilogue* loops in the process of vectorizing loops and 896 // their epilogues. 897 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 898 public: 899 EpilogueVectorizerEpilogueLoop( 900 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 901 DominatorTree *DT, const TargetLibraryInfo *TLI, 902 const TargetTransformInfo *TTI, AssumptionCache *AC, 903 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 904 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 905 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 906 GeneratedRTChecks &Checks) 907 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 908 EPI, LVL, CM, BFI, PSI, Checks) { 909 TripCount = EPI.TripCount; 910 } 911 /// Implements the interface for creating a vectorized skeleton using the 912 /// *epilogue loop* strategy (ie the second pass of vplan execution). 913 std::pair<BasicBlock *, Value *> 914 createEpilogueVectorizedLoopSkeleton() final override; 915 916 protected: 917 /// Emits an iteration count bypass check after the main vector loop has 918 /// finished to see if there are any iterations left to execute by either 919 /// the vector epilogue or the scalar epilogue. 920 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 921 BasicBlock *Bypass, 922 BasicBlock *Insert); 923 void printDebugTracesAtStart() override; 924 void printDebugTracesAtEnd() override; 925 }; 926 } // end namespace llvm 927 928 /// Look for a meaningful debug location on the instruction or it's 929 /// operands. 930 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 931 if (!I) 932 return I; 933 934 DebugLoc Empty; 935 if (I->getDebugLoc() != Empty) 936 return I; 937 938 for (Use &Op : I->operands()) { 939 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 940 if (OpInst->getDebugLoc() != Empty) 941 return OpInst; 942 } 943 944 return I; 945 } 946 947 void InnerLoopVectorizer::setDebugLocFromInst( 948 const Value *V, Optional<IRBuilderBase *> CustomBuilder) { 949 IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 950 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 951 const DILocation *DIL = Inst->getDebugLoc(); 952 953 // When a FSDiscriminator is enabled, we don't need to add the multiply 954 // factors to the discriminators. 955 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 956 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 957 // FIXME: For scalable vectors, assume vscale=1. 958 auto NewDIL = 959 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 960 if (NewDIL) 961 B->SetCurrentDebugLocation(NewDIL.getValue()); 962 else 963 LLVM_DEBUG(dbgs() 964 << "Failed to create new discriminator: " 965 << DIL->getFilename() << " Line: " << DIL->getLine()); 966 } else 967 B->SetCurrentDebugLocation(DIL); 968 } else 969 B->SetCurrentDebugLocation(DebugLoc()); 970 } 971 972 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 973 /// is passed, the message relates to that particular instruction. 974 #ifndef NDEBUG 975 static void debugVectorizationMessage(const StringRef Prefix, 976 const StringRef DebugMsg, 977 Instruction *I) { 978 dbgs() << "LV: " << Prefix << DebugMsg; 979 if (I != nullptr) 980 dbgs() << " " << *I; 981 else 982 dbgs() << '.'; 983 dbgs() << '\n'; 984 } 985 #endif 986 987 /// Create an analysis remark that explains why vectorization failed 988 /// 989 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 990 /// RemarkName is the identifier for the remark. If \p I is passed it is an 991 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 992 /// the location of the remark. \return the remark object that can be 993 /// streamed to. 994 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 995 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 996 Value *CodeRegion = TheLoop->getHeader(); 997 DebugLoc DL = TheLoop->getStartLoc(); 998 999 if (I) { 1000 CodeRegion = I->getParent(); 1001 // If there is no debug location attached to the instruction, revert back to 1002 // using the loop's. 1003 if (I->getDebugLoc()) 1004 DL = I->getDebugLoc(); 1005 } 1006 1007 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1008 } 1009 1010 namespace llvm { 1011 1012 /// Return a value for Step multiplied by VF. 1013 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 1014 int64_t Step) { 1015 assert(Ty->isIntegerTy() && "Expected an integer step"); 1016 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1017 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1018 } 1019 1020 /// Return the runtime value for VF. 1021 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 1022 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1023 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1024 } 1025 1026 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 1027 ElementCount VF) { 1028 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1029 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1030 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1031 return B.CreateUIToFP(RuntimeVF, FTy); 1032 } 1033 1034 void reportVectorizationFailure(const StringRef DebugMsg, 1035 const StringRef OREMsg, const StringRef ORETag, 1036 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1037 Instruction *I) { 1038 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1039 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1040 ORE->emit( 1041 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1042 << "loop not vectorized: " << OREMsg); 1043 } 1044 1045 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1046 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1047 Instruction *I) { 1048 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1049 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1050 ORE->emit( 1051 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1052 << Msg); 1053 } 1054 1055 } // end namespace llvm 1056 1057 #ifndef NDEBUG 1058 /// \return string containing a file name and a line # for the given loop. 1059 static std::string getDebugLocString(const Loop *L) { 1060 std::string Result; 1061 if (L) { 1062 raw_string_ostream OS(Result); 1063 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1064 LoopDbgLoc.print(OS); 1065 else 1066 // Just print the module name. 1067 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1068 OS.flush(); 1069 } 1070 return Result; 1071 } 1072 #endif 1073 1074 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1075 const Instruction *Orig) { 1076 // If the loop was versioned with memchecks, add the corresponding no-alias 1077 // metadata. 1078 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1079 LVer->annotateInstWithNoAlias(To, Orig); 1080 } 1081 1082 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1083 VPTransformState &State) { 1084 1085 // Collect recipes in the backward slice of `Root` that may generate a poison 1086 // value that is used after vectorization. 1087 SmallPtrSet<VPRecipeBase *, 16> Visited; 1088 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1089 SmallVector<VPRecipeBase *, 16> Worklist; 1090 Worklist.push_back(Root); 1091 1092 // Traverse the backward slice of Root through its use-def chain. 1093 while (!Worklist.empty()) { 1094 VPRecipeBase *CurRec = Worklist.back(); 1095 Worklist.pop_back(); 1096 1097 if (!Visited.insert(CurRec).second) 1098 continue; 1099 1100 // Prune search if we find another recipe generating a widen memory 1101 // instruction. Widen memory instructions involved in address computation 1102 // will lead to gather/scatter instructions, which don't need to be 1103 // handled. 1104 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1105 isa<VPInterleaveRecipe>(CurRec) || 1106 isa<VPScalarIVStepsRecipe>(CurRec) || 1107 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1108 continue; 1109 1110 // This recipe contributes to the address computation of a widen 1111 // load/store. Collect recipe if its underlying instruction has 1112 // poison-generating flags. 1113 Instruction *Instr = CurRec->getUnderlyingInstr(); 1114 if (Instr && Instr->hasPoisonGeneratingFlags()) 1115 State.MayGeneratePoisonRecipes.insert(CurRec); 1116 1117 // Add new definitions to the worklist. 1118 for (VPValue *operand : CurRec->operands()) 1119 if (VPDef *OpDef = operand->getDef()) 1120 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1121 } 1122 }); 1123 1124 // Traverse all the recipes in the VPlan and collect the poison-generating 1125 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1126 // VPInterleaveRecipe. 1127 auto Iter = depth_first( 1128 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1129 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1130 for (VPRecipeBase &Recipe : *VPBB) { 1131 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1132 Instruction &UnderlyingInstr = WidenRec->getIngredient(); 1133 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1134 if (AddrDef && WidenRec->isConsecutive() && 1135 Legal->blockNeedsPredication(UnderlyingInstr.getParent())) 1136 collectPoisonGeneratingInstrsInBackwardSlice( 1137 cast<VPRecipeBase>(AddrDef)); 1138 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1139 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1140 if (AddrDef) { 1141 // Check if any member of the interleave group needs predication. 1142 const InterleaveGroup<Instruction> *InterGroup = 1143 InterleaveRec->getInterleaveGroup(); 1144 bool NeedPredication = false; 1145 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1146 I < NumMembers; ++I) { 1147 Instruction *Member = InterGroup->getMember(I); 1148 if (Member) 1149 NeedPredication |= 1150 Legal->blockNeedsPredication(Member->getParent()); 1151 } 1152 1153 if (NeedPredication) 1154 collectPoisonGeneratingInstrsInBackwardSlice( 1155 cast<VPRecipeBase>(AddrDef)); 1156 } 1157 } 1158 } 1159 } 1160 } 1161 1162 void InnerLoopVectorizer::addMetadata(Instruction *To, 1163 Instruction *From) { 1164 propagateMetadata(To, From); 1165 addNewMetadata(To, From); 1166 } 1167 1168 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1169 Instruction *From) { 1170 for (Value *V : To) { 1171 if (Instruction *I = dyn_cast<Instruction>(V)) 1172 addMetadata(I, From); 1173 } 1174 } 1175 1176 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1177 const RecurrenceDescriptor &RdxDesc) { 1178 auto It = ReductionResumeValues.find(&RdxDesc); 1179 assert(It != ReductionResumeValues.end() && 1180 "Expected to find a resume value for the reduction."); 1181 return It->second; 1182 } 1183 1184 namespace llvm { 1185 1186 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1187 // lowered. 1188 enum ScalarEpilogueLowering { 1189 1190 // The default: allowing scalar epilogues. 1191 CM_ScalarEpilogueAllowed, 1192 1193 // Vectorization with OptForSize: don't allow epilogues. 1194 CM_ScalarEpilogueNotAllowedOptSize, 1195 1196 // A special case of vectorisation with OptForSize: loops with a very small 1197 // trip count are considered for vectorization under OptForSize, thereby 1198 // making sure the cost of their loop body is dominant, free of runtime 1199 // guards and scalar iteration overheads. 1200 CM_ScalarEpilogueNotAllowedLowTripLoop, 1201 1202 // Loop hint predicate indicating an epilogue is undesired. 1203 CM_ScalarEpilogueNotNeededUsePredicate, 1204 1205 // Directive indicating we must either tail fold or not vectorize 1206 CM_ScalarEpilogueNotAllowedUsePredicate 1207 }; 1208 1209 /// ElementCountComparator creates a total ordering for ElementCount 1210 /// for the purposes of using it in a set structure. 1211 struct ElementCountComparator { 1212 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1213 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1214 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1215 } 1216 }; 1217 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1218 1219 /// LoopVectorizationCostModel - estimates the expected speedups due to 1220 /// vectorization. 1221 /// In many cases vectorization is not profitable. This can happen because of 1222 /// a number of reasons. In this class we mainly attempt to predict the 1223 /// expected speedup/slowdowns due to the supported instruction set. We use the 1224 /// TargetTransformInfo to query the different backends for the cost of 1225 /// different operations. 1226 class LoopVectorizationCostModel { 1227 public: 1228 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1229 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1230 LoopVectorizationLegality *Legal, 1231 const TargetTransformInfo &TTI, 1232 const TargetLibraryInfo *TLI, DemandedBits *DB, 1233 AssumptionCache *AC, 1234 OptimizationRemarkEmitter *ORE, const Function *F, 1235 const LoopVectorizeHints *Hints, 1236 InterleavedAccessInfo &IAI) 1237 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1238 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1239 Hints(Hints), InterleaveInfo(IAI) {} 1240 1241 /// \return An upper bound for the vectorization factors (both fixed and 1242 /// scalable). If the factors are 0, vectorization and interleaving should be 1243 /// avoided up front. 1244 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1245 1246 /// \return True if runtime checks are required for vectorization, and false 1247 /// otherwise. 1248 bool runtimeChecksRequired(); 1249 1250 /// \return The most profitable vectorization factor and the cost of that VF. 1251 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1252 /// then this vectorization factor will be selected if vectorization is 1253 /// possible. 1254 VectorizationFactor 1255 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1256 1257 VectorizationFactor 1258 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1259 const LoopVectorizationPlanner &LVP); 1260 1261 /// Setup cost-based decisions for user vectorization factor. 1262 /// \return true if the UserVF is a feasible VF to be chosen. 1263 bool selectUserVectorizationFactor(ElementCount UserVF) { 1264 collectUniformsAndScalars(UserVF); 1265 collectInstsToScalarize(UserVF); 1266 return expectedCost(UserVF).first.isValid(); 1267 } 1268 1269 /// \return The size (in bits) of the smallest and widest types in the code 1270 /// that needs to be vectorized. We ignore values that remain scalar such as 1271 /// 64 bit loop indices. 1272 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1273 1274 /// \return The desired interleave count. 1275 /// If interleave count has been specified by metadata it will be returned. 1276 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1277 /// are the selected vectorization factor and the cost of the selected VF. 1278 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1279 1280 /// Memory access instruction may be vectorized in more than one way. 1281 /// Form of instruction after vectorization depends on cost. 1282 /// This function takes cost-based decisions for Load/Store instructions 1283 /// and collects them in a map. This decisions map is used for building 1284 /// the lists of loop-uniform and loop-scalar instructions. 1285 /// The calculated cost is saved with widening decision in order to 1286 /// avoid redundant calculations. 1287 void setCostBasedWideningDecision(ElementCount VF); 1288 1289 /// A struct that represents some properties of the register usage 1290 /// of a loop. 1291 struct RegisterUsage { 1292 /// Holds the number of loop invariant values that are used in the loop. 1293 /// The key is ClassID of target-provided register class. 1294 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1295 /// Holds the maximum number of concurrent live intervals in the loop. 1296 /// The key is ClassID of target-provided register class. 1297 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1298 }; 1299 1300 /// \return Returns information about the register usages of the loop for the 1301 /// given vectorization factors. 1302 SmallVector<RegisterUsage, 8> 1303 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1304 1305 /// Collect values we want to ignore in the cost model. 1306 void collectValuesToIgnore(); 1307 1308 /// Collect all element types in the loop for which widening is needed. 1309 void collectElementTypesForWidening(); 1310 1311 /// Split reductions into those that happen in the loop, and those that happen 1312 /// outside. In loop reductions are collected into InLoopReductionChains. 1313 void collectInLoopReductions(); 1314 1315 /// Returns true if we should use strict in-order reductions for the given 1316 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1317 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1318 /// of FP operations. 1319 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1320 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1321 } 1322 1323 /// \returns The smallest bitwidth each instruction can be represented with. 1324 /// The vector equivalents of these instructions should be truncated to this 1325 /// type. 1326 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1327 return MinBWs; 1328 } 1329 1330 /// \returns True if it is more profitable to scalarize instruction \p I for 1331 /// vectorization factor \p VF. 1332 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1333 assert(VF.isVector() && 1334 "Profitable to scalarize relevant only for VF > 1."); 1335 1336 // Cost model is not run in the VPlan-native path - return conservative 1337 // result until this changes. 1338 if (EnableVPlanNativePath) 1339 return false; 1340 1341 auto Scalars = InstsToScalarize.find(VF); 1342 assert(Scalars != InstsToScalarize.end() && 1343 "VF not yet analyzed for scalarization profitability"); 1344 return Scalars->second.find(I) != Scalars->second.end(); 1345 } 1346 1347 /// Returns true if \p I is known to be uniform after vectorization. 1348 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1349 if (VF.isScalar()) 1350 return true; 1351 1352 // Cost model is not run in the VPlan-native path - return conservative 1353 // result until this changes. 1354 if (EnableVPlanNativePath) 1355 return false; 1356 1357 auto UniformsPerVF = Uniforms.find(VF); 1358 assert(UniformsPerVF != Uniforms.end() && 1359 "VF not yet analyzed for uniformity"); 1360 return UniformsPerVF->second.count(I); 1361 } 1362 1363 /// Returns true if \p I is known to be scalar after vectorization. 1364 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1365 if (VF.isScalar()) 1366 return true; 1367 1368 // Cost model is not run in the VPlan-native path - return conservative 1369 // result until this changes. 1370 if (EnableVPlanNativePath) 1371 return false; 1372 1373 auto ScalarsPerVF = Scalars.find(VF); 1374 assert(ScalarsPerVF != Scalars.end() && 1375 "Scalar values are not calculated for VF"); 1376 return ScalarsPerVF->second.count(I); 1377 } 1378 1379 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1380 /// for vectorization factor \p VF. 1381 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1382 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1383 !isProfitableToScalarize(I, VF) && 1384 !isScalarAfterVectorization(I, VF); 1385 } 1386 1387 /// Decision that was taken during cost calculation for memory instruction. 1388 enum InstWidening { 1389 CM_Unknown, 1390 CM_Widen, // For consecutive accesses with stride +1. 1391 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1392 CM_Interleave, 1393 CM_GatherScatter, 1394 CM_Scalarize 1395 }; 1396 1397 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1398 /// instruction \p I and vector width \p VF. 1399 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1400 InstructionCost Cost) { 1401 assert(VF.isVector() && "Expected VF >=2"); 1402 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1403 } 1404 1405 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1406 /// interleaving group \p Grp and vector width \p VF. 1407 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1408 ElementCount VF, InstWidening W, 1409 InstructionCost Cost) { 1410 assert(VF.isVector() && "Expected VF >=2"); 1411 /// Broadcast this decicion to all instructions inside the group. 1412 /// But the cost will be assigned to one instruction only. 1413 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1414 if (auto *I = Grp->getMember(i)) { 1415 if (Grp->getInsertPos() == I) 1416 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1417 else 1418 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1419 } 1420 } 1421 } 1422 1423 /// Return the cost model decision for the given instruction \p I and vector 1424 /// width \p VF. Return CM_Unknown if this instruction did not pass 1425 /// through the cost modeling. 1426 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1427 assert(VF.isVector() && "Expected VF to be a vector VF"); 1428 // Cost model is not run in the VPlan-native path - return conservative 1429 // result until this changes. 1430 if (EnableVPlanNativePath) 1431 return CM_GatherScatter; 1432 1433 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1434 auto Itr = WideningDecisions.find(InstOnVF); 1435 if (Itr == WideningDecisions.end()) 1436 return CM_Unknown; 1437 return Itr->second.first; 1438 } 1439 1440 /// Return the vectorization cost for the given instruction \p I and vector 1441 /// width \p VF. 1442 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1443 assert(VF.isVector() && "Expected VF >=2"); 1444 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1445 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1446 "The cost is not calculated"); 1447 return WideningDecisions[InstOnVF].second; 1448 } 1449 1450 /// Return True if instruction \p I is an optimizable truncate whose operand 1451 /// is an induction variable. Such a truncate will be removed by adding a new 1452 /// induction variable with the destination type. 1453 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1454 // If the instruction is not a truncate, return false. 1455 auto *Trunc = dyn_cast<TruncInst>(I); 1456 if (!Trunc) 1457 return false; 1458 1459 // Get the source and destination types of the truncate. 1460 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1461 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1462 1463 // If the truncate is free for the given types, return false. Replacing a 1464 // free truncate with an induction variable would add an induction variable 1465 // update instruction to each iteration of the loop. We exclude from this 1466 // check the primary induction variable since it will need an update 1467 // instruction regardless. 1468 Value *Op = Trunc->getOperand(0); 1469 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1470 return false; 1471 1472 // If the truncated value is not an induction variable, return false. 1473 return Legal->isInductionPhi(Op); 1474 } 1475 1476 /// Collects the instructions to scalarize for each predicated instruction in 1477 /// the loop. 1478 void collectInstsToScalarize(ElementCount VF); 1479 1480 /// Collect Uniform and Scalar values for the given \p VF. 1481 /// The sets depend on CM decision for Load/Store instructions 1482 /// that may be vectorized as interleave, gather-scatter or scalarized. 1483 void collectUniformsAndScalars(ElementCount VF) { 1484 // Do the analysis once. 1485 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1486 return; 1487 setCostBasedWideningDecision(VF); 1488 collectLoopUniforms(VF); 1489 collectLoopScalars(VF); 1490 } 1491 1492 /// Returns true if the target machine supports masked store operation 1493 /// for the given \p DataType and kind of access to \p Ptr. 1494 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1495 return Legal->isConsecutivePtr(DataType, Ptr) && 1496 TTI.isLegalMaskedStore(DataType, Alignment); 1497 } 1498 1499 /// Returns true if the target machine supports masked load operation 1500 /// for the given \p DataType and kind of access to \p Ptr. 1501 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1502 return Legal->isConsecutivePtr(DataType, Ptr) && 1503 TTI.isLegalMaskedLoad(DataType, Alignment); 1504 } 1505 1506 /// Returns true if the target machine can represent \p V as a masked gather 1507 /// or scatter operation. 1508 bool isLegalGatherOrScatter(Value *V, 1509 ElementCount VF = ElementCount::getFixed(1)) { 1510 bool LI = isa<LoadInst>(V); 1511 bool SI = isa<StoreInst>(V); 1512 if (!LI && !SI) 1513 return false; 1514 auto *Ty = getLoadStoreType(V); 1515 Align Align = getLoadStoreAlignment(V); 1516 if (VF.isVector()) 1517 Ty = VectorType::get(Ty, VF); 1518 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1519 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1520 } 1521 1522 /// Returns true if the target machine supports all of the reduction 1523 /// variables found for the given VF. 1524 bool canVectorizeReductions(ElementCount VF) const { 1525 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1526 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1527 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1528 })); 1529 } 1530 1531 /// Returns true if \p I is an instruction that will be scalarized with 1532 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1533 /// instructions include conditional stores and instructions that may divide 1534 /// by zero. 1535 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1536 1537 // Returns true if \p I is an instruction that will be predicated either 1538 // through scalar predication or masked load/store or masked gather/scatter. 1539 // \p VF is the vectorization factor that will be used to vectorize \p I. 1540 // Superset of instructions that return true for isScalarWithPredication. 1541 bool isPredicatedInst(Instruction *I, ElementCount VF, 1542 bool IsKnownUniform = false) { 1543 // When we know the load is uniform and the original scalar loop was not 1544 // predicated we don't need to mark it as a predicated instruction. Any 1545 // vectorised blocks created when tail-folding are something artificial we 1546 // have introduced and we know there is always at least one active lane. 1547 // That's why we call Legal->blockNeedsPredication here because it doesn't 1548 // query tail-folding. 1549 if (IsKnownUniform && isa<LoadInst>(I) && 1550 !Legal->blockNeedsPredication(I->getParent())) 1551 return false; 1552 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1553 return false; 1554 // Loads and stores that need some form of masked operation are predicated 1555 // instructions. 1556 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1557 return Legal->isMaskRequired(I); 1558 return isScalarWithPredication(I, VF); 1559 } 1560 1561 /// Returns true if \p I is a memory instruction with consecutive memory 1562 /// access that can be widened. 1563 bool 1564 memoryInstructionCanBeWidened(Instruction *I, 1565 ElementCount VF = ElementCount::getFixed(1)); 1566 1567 /// Returns true if \p I is a memory instruction in an interleaved-group 1568 /// of memory accesses that can be vectorized with wide vector loads/stores 1569 /// and shuffles. 1570 bool 1571 interleavedAccessCanBeWidened(Instruction *I, 1572 ElementCount VF = ElementCount::getFixed(1)); 1573 1574 /// Check if \p Instr belongs to any interleaved access group. 1575 bool isAccessInterleaved(Instruction *Instr) { 1576 return InterleaveInfo.isInterleaved(Instr); 1577 } 1578 1579 /// Get the interleaved access group that \p Instr belongs to. 1580 const InterleaveGroup<Instruction> * 1581 getInterleavedAccessGroup(Instruction *Instr) { 1582 return InterleaveInfo.getInterleaveGroup(Instr); 1583 } 1584 1585 /// Returns true if we're required to use a scalar epilogue for at least 1586 /// the final iteration of the original loop. 1587 bool requiresScalarEpilogue(ElementCount VF) const { 1588 if (!isScalarEpilogueAllowed()) 1589 return false; 1590 // If we might exit from anywhere but the latch, must run the exiting 1591 // iteration in scalar form. 1592 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1593 return true; 1594 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1595 } 1596 1597 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1598 /// loop hint annotation. 1599 bool isScalarEpilogueAllowed() const { 1600 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1601 } 1602 1603 /// Returns true if all loop blocks should be masked to fold tail loop. 1604 bool foldTailByMasking() const { return FoldTailByMasking; } 1605 1606 /// Returns true if the instructions in this block requires predication 1607 /// for any reason, e.g. because tail folding now requires a predicate 1608 /// or because the block in the original loop was predicated. 1609 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1610 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1611 } 1612 1613 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1614 /// nodes to the chain of instructions representing the reductions. Uses a 1615 /// MapVector to ensure deterministic iteration order. 1616 using ReductionChainMap = 1617 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1618 1619 /// Return the chain of instructions representing an inloop reduction. 1620 const ReductionChainMap &getInLoopReductionChains() const { 1621 return InLoopReductionChains; 1622 } 1623 1624 /// Returns true if the Phi is part of an inloop reduction. 1625 bool isInLoopReduction(PHINode *Phi) const { 1626 return InLoopReductionChains.count(Phi); 1627 } 1628 1629 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1630 /// with factor VF. Return the cost of the instruction, including 1631 /// scalarization overhead if it's needed. 1632 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1633 1634 /// Estimate cost of a call instruction CI if it were vectorized with factor 1635 /// VF. Return the cost of the instruction, including scalarization overhead 1636 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1637 /// scalarized - 1638 /// i.e. either vector version isn't available, or is too expensive. 1639 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1640 bool &NeedToScalarize) const; 1641 1642 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1643 /// that of B. 1644 bool isMoreProfitable(const VectorizationFactor &A, 1645 const VectorizationFactor &B) const; 1646 1647 /// Invalidates decisions already taken by the cost model. 1648 void invalidateCostModelingDecisions() { 1649 WideningDecisions.clear(); 1650 Uniforms.clear(); 1651 Scalars.clear(); 1652 } 1653 1654 private: 1655 unsigned NumPredStores = 0; 1656 1657 /// Convenience function that returns the value of vscale_range iff 1658 /// vscale_range.min == vscale_range.max or otherwise returns the value 1659 /// returned by the corresponding TLI method. 1660 Optional<unsigned> getVScaleForTuning() const; 1661 1662 /// \return An upper bound for the vectorization factors for both 1663 /// fixed and scalable vectorization, where the minimum-known number of 1664 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1665 /// disabled or unsupported, then the scalable part will be equal to 1666 /// ElementCount::getScalable(0). 1667 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1668 ElementCount UserVF, 1669 bool FoldTailByMasking); 1670 1671 /// \return the maximized element count based on the targets vector 1672 /// registers and the loop trip-count, but limited to a maximum safe VF. 1673 /// This is a helper function of computeFeasibleMaxVF. 1674 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1675 /// issue that occurred on one of the buildbots which cannot be reproduced 1676 /// without having access to the properietary compiler (see comments on 1677 /// D98509). The issue is currently under investigation and this workaround 1678 /// will be removed as soon as possible. 1679 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1680 unsigned SmallestType, 1681 unsigned WidestType, 1682 const ElementCount &MaxSafeVF, 1683 bool FoldTailByMasking); 1684 1685 /// \return the maximum legal scalable VF, based on the safe max number 1686 /// of elements. 1687 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1688 1689 /// The vectorization cost is a combination of the cost itself and a boolean 1690 /// indicating whether any of the contributing operations will actually 1691 /// operate on vector values after type legalization in the backend. If this 1692 /// latter value is false, then all operations will be scalarized (i.e. no 1693 /// vectorization has actually taken place). 1694 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1695 1696 /// Returns the expected execution cost. The unit of the cost does 1697 /// not matter because we use the 'cost' units to compare different 1698 /// vector widths. The cost that is returned is *not* normalized by 1699 /// the factor width. If \p Invalid is not nullptr, this function 1700 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1701 /// each instruction that has an Invalid cost for the given VF. 1702 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1703 VectorizationCostTy 1704 expectedCost(ElementCount VF, 1705 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1706 1707 /// Returns the execution time cost of an instruction for a given vector 1708 /// width. Vector width of one means scalar. 1709 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1710 1711 /// The cost-computation logic from getInstructionCost which provides 1712 /// the vector type as an output parameter. 1713 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1714 Type *&VectorTy); 1715 1716 /// Return the cost of instructions in an inloop reduction pattern, if I is 1717 /// part of that pattern. 1718 Optional<InstructionCost> 1719 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1720 TTI::TargetCostKind CostKind); 1721 1722 /// Calculate vectorization cost of memory instruction \p I. 1723 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1724 1725 /// The cost computation for scalarized memory instruction. 1726 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1727 1728 /// The cost computation for interleaving group of memory instructions. 1729 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1730 1731 /// The cost computation for Gather/Scatter instruction. 1732 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1733 1734 /// The cost computation for widening instruction \p I with consecutive 1735 /// memory access. 1736 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1737 1738 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1739 /// Load: scalar load + broadcast. 1740 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1741 /// element) 1742 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1743 1744 /// Estimate the overhead of scalarizing an instruction. This is a 1745 /// convenience wrapper for the type-based getScalarizationOverhead API. 1746 InstructionCost getScalarizationOverhead(Instruction *I, 1747 ElementCount VF) const; 1748 1749 /// Returns whether the instruction is a load or store and will be a emitted 1750 /// as a vector operation. 1751 bool isConsecutiveLoadOrStore(Instruction *I); 1752 1753 /// Returns true if an artificially high cost for emulated masked memrefs 1754 /// should be used. 1755 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1756 1757 /// Map of scalar integer values to the smallest bitwidth they can be legally 1758 /// represented as. The vector equivalents of these values should be truncated 1759 /// to this type. 1760 MapVector<Instruction *, uint64_t> MinBWs; 1761 1762 /// A type representing the costs for instructions if they were to be 1763 /// scalarized rather than vectorized. The entries are Instruction-Cost 1764 /// pairs. 1765 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1766 1767 /// A set containing all BasicBlocks that are known to present after 1768 /// vectorization as a predicated block. 1769 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1770 1771 /// Records whether it is allowed to have the original scalar loop execute at 1772 /// least once. This may be needed as a fallback loop in case runtime 1773 /// aliasing/dependence checks fail, or to handle the tail/remainder 1774 /// iterations when the trip count is unknown or doesn't divide by the VF, 1775 /// or as a peel-loop to handle gaps in interleave-groups. 1776 /// Under optsize and when the trip count is very small we don't allow any 1777 /// iterations to execute in the scalar loop. 1778 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1779 1780 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1781 bool FoldTailByMasking = false; 1782 1783 /// A map holding scalar costs for different vectorization factors. The 1784 /// presence of a cost for an instruction in the mapping indicates that the 1785 /// instruction will be scalarized when vectorizing with the associated 1786 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1787 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1788 1789 /// Holds the instructions known to be uniform after vectorization. 1790 /// The data is collected per VF. 1791 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1792 1793 /// Holds the instructions known to be scalar after vectorization. 1794 /// The data is collected per VF. 1795 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1796 1797 /// Holds the instructions (address computations) that are forced to be 1798 /// scalarized. 1799 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1800 1801 /// PHINodes of the reductions that should be expanded in-loop along with 1802 /// their associated chains of reduction operations, in program order from top 1803 /// (PHI) to bottom 1804 ReductionChainMap InLoopReductionChains; 1805 1806 /// A Map of inloop reduction operations and their immediate chain operand. 1807 /// FIXME: This can be removed once reductions can be costed correctly in 1808 /// vplan. This was added to allow quick lookup to the inloop operations, 1809 /// without having to loop through InLoopReductionChains. 1810 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1811 1812 /// Returns the expected difference in cost from scalarizing the expression 1813 /// feeding a predicated instruction \p PredInst. The instructions to 1814 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1815 /// non-negative return value implies the expression will be scalarized. 1816 /// Currently, only single-use chains are considered for scalarization. 1817 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1818 ElementCount VF); 1819 1820 /// Collect the instructions that are uniform after vectorization. An 1821 /// instruction is uniform if we represent it with a single scalar value in 1822 /// the vectorized loop corresponding to each vector iteration. Examples of 1823 /// uniform instructions include pointer operands of consecutive or 1824 /// interleaved memory accesses. Note that although uniformity implies an 1825 /// instruction will be scalar, the reverse is not true. In general, a 1826 /// scalarized instruction will be represented by VF scalar values in the 1827 /// vectorized loop, each corresponding to an iteration of the original 1828 /// scalar loop. 1829 void collectLoopUniforms(ElementCount VF); 1830 1831 /// Collect the instructions that are scalar after vectorization. An 1832 /// instruction is scalar if it is known to be uniform or will be scalarized 1833 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1834 /// to the list if they are used by a load/store instruction that is marked as 1835 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1836 /// VF values in the vectorized loop, each corresponding to an iteration of 1837 /// the original scalar loop. 1838 void collectLoopScalars(ElementCount VF); 1839 1840 /// Keeps cost model vectorization decision and cost for instructions. 1841 /// Right now it is used for memory instructions only. 1842 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1843 std::pair<InstWidening, InstructionCost>>; 1844 1845 DecisionList WideningDecisions; 1846 1847 /// Returns true if \p V is expected to be vectorized and it needs to be 1848 /// extracted. 1849 bool needsExtract(Value *V, ElementCount VF) const { 1850 Instruction *I = dyn_cast<Instruction>(V); 1851 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1852 TheLoop->isLoopInvariant(I)) 1853 return false; 1854 1855 // Assume we can vectorize V (and hence we need extraction) if the 1856 // scalars are not computed yet. This can happen, because it is called 1857 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1858 // the scalars are collected. That should be a safe assumption in most 1859 // cases, because we check if the operands have vectorizable types 1860 // beforehand in LoopVectorizationLegality. 1861 return Scalars.find(VF) == Scalars.end() || 1862 !isScalarAfterVectorization(I, VF); 1863 }; 1864 1865 /// Returns a range containing only operands needing to be extracted. 1866 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1867 ElementCount VF) const { 1868 return SmallVector<Value *, 4>(make_filter_range( 1869 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1870 } 1871 1872 /// Determines if we have the infrastructure to vectorize loop \p L and its 1873 /// epilogue, assuming the main loop is vectorized by \p VF. 1874 bool isCandidateForEpilogueVectorization(const Loop &L, 1875 const ElementCount VF) const; 1876 1877 /// Returns true if epilogue vectorization is considered profitable, and 1878 /// false otherwise. 1879 /// \p VF is the vectorization factor chosen for the original loop. 1880 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1881 1882 public: 1883 /// The loop that we evaluate. 1884 Loop *TheLoop; 1885 1886 /// Predicated scalar evolution analysis. 1887 PredicatedScalarEvolution &PSE; 1888 1889 /// Loop Info analysis. 1890 LoopInfo *LI; 1891 1892 /// Vectorization legality. 1893 LoopVectorizationLegality *Legal; 1894 1895 /// Vector target information. 1896 const TargetTransformInfo &TTI; 1897 1898 /// Target Library Info. 1899 const TargetLibraryInfo *TLI; 1900 1901 /// Demanded bits analysis. 1902 DemandedBits *DB; 1903 1904 /// Assumption cache. 1905 AssumptionCache *AC; 1906 1907 /// Interface to emit optimization remarks. 1908 OptimizationRemarkEmitter *ORE; 1909 1910 const Function *TheFunction; 1911 1912 /// Loop Vectorize Hint. 1913 const LoopVectorizeHints *Hints; 1914 1915 /// The interleave access information contains groups of interleaved accesses 1916 /// with the same stride and close to each other. 1917 InterleavedAccessInfo &InterleaveInfo; 1918 1919 /// Values to ignore in the cost model. 1920 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1921 1922 /// Values to ignore in the cost model when VF > 1. 1923 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1924 1925 /// All element types found in the loop. 1926 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1927 1928 /// Profitable vector factors. 1929 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1930 }; 1931 } // end namespace llvm 1932 1933 /// Helper struct to manage generating runtime checks for vectorization. 1934 /// 1935 /// The runtime checks are created up-front in temporary blocks to allow better 1936 /// estimating the cost and un-linked from the existing IR. After deciding to 1937 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1938 /// temporary blocks are completely removed. 1939 class GeneratedRTChecks { 1940 /// Basic block which contains the generated SCEV checks, if any. 1941 BasicBlock *SCEVCheckBlock = nullptr; 1942 1943 /// The value representing the result of the generated SCEV checks. If it is 1944 /// nullptr, either no SCEV checks have been generated or they have been used. 1945 Value *SCEVCheckCond = nullptr; 1946 1947 /// Basic block which contains the generated memory runtime checks, if any. 1948 BasicBlock *MemCheckBlock = nullptr; 1949 1950 /// The value representing the result of the generated memory runtime checks. 1951 /// If it is nullptr, either no memory runtime checks have been generated or 1952 /// they have been used. 1953 Value *MemRuntimeCheckCond = nullptr; 1954 1955 DominatorTree *DT; 1956 LoopInfo *LI; 1957 1958 SCEVExpander SCEVExp; 1959 SCEVExpander MemCheckExp; 1960 1961 public: 1962 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1963 const DataLayout &DL) 1964 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1965 MemCheckExp(SE, DL, "scev.check") {} 1966 1967 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1968 /// accurately estimate the cost of the runtime checks. The blocks are 1969 /// un-linked from the IR and is added back during vector code generation. If 1970 /// there is no vector code generation, the check blocks are removed 1971 /// completely. 1972 void Create(Loop *L, const LoopAccessInfo &LAI, 1973 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) { 1974 1975 BasicBlock *LoopHeader = L->getHeader(); 1976 BasicBlock *Preheader = L->getLoopPreheader(); 1977 1978 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1979 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1980 // may be used by SCEVExpander. The blocks will be un-linked from their 1981 // predecessors and removed from LI & DT at the end of the function. 1982 if (!UnionPred.isAlwaysTrue()) { 1983 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1984 nullptr, "vector.scevcheck"); 1985 1986 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1987 &UnionPred, SCEVCheckBlock->getTerminator()); 1988 } 1989 1990 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1991 if (RtPtrChecking.Need) { 1992 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1993 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1994 "vector.memcheck"); 1995 1996 auto DiffChecks = RtPtrChecking.getDiffChecks(); 1997 if (DiffChecks) { 1998 MemRuntimeCheckCond = addDiffRuntimeChecks( 1999 MemCheckBlock->getTerminator(), L, *DiffChecks, MemCheckExp, 2000 [VF](IRBuilderBase &B, unsigned Bits) { 2001 return getRuntimeVF(B, B.getIntNTy(Bits), VF); 2002 }, 2003 IC); 2004 } else { 2005 MemRuntimeCheckCond = 2006 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 2007 RtPtrChecking.getChecks(), MemCheckExp); 2008 } 2009 assert(MemRuntimeCheckCond && 2010 "no RT checks generated although RtPtrChecking " 2011 "claimed checks are required"); 2012 } 2013 2014 if (!MemCheckBlock && !SCEVCheckBlock) 2015 return; 2016 2017 // Unhook the temporary block with the checks, update various places 2018 // accordingly. 2019 if (SCEVCheckBlock) 2020 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2021 if (MemCheckBlock) 2022 MemCheckBlock->replaceAllUsesWith(Preheader); 2023 2024 if (SCEVCheckBlock) { 2025 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2026 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2027 Preheader->getTerminator()->eraseFromParent(); 2028 } 2029 if (MemCheckBlock) { 2030 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2031 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2032 Preheader->getTerminator()->eraseFromParent(); 2033 } 2034 2035 DT->changeImmediateDominator(LoopHeader, Preheader); 2036 if (MemCheckBlock) { 2037 DT->eraseNode(MemCheckBlock); 2038 LI->removeBlock(MemCheckBlock); 2039 } 2040 if (SCEVCheckBlock) { 2041 DT->eraseNode(SCEVCheckBlock); 2042 LI->removeBlock(SCEVCheckBlock); 2043 } 2044 } 2045 2046 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2047 /// unused. 2048 ~GeneratedRTChecks() { 2049 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2050 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2051 if (!SCEVCheckCond) 2052 SCEVCleaner.markResultUsed(); 2053 2054 if (!MemRuntimeCheckCond) 2055 MemCheckCleaner.markResultUsed(); 2056 2057 if (MemRuntimeCheckCond) { 2058 auto &SE = *MemCheckExp.getSE(); 2059 // Memory runtime check generation creates compares that use expanded 2060 // values. Remove them before running the SCEVExpanderCleaners. 2061 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2062 if (MemCheckExp.isInsertedInstruction(&I)) 2063 continue; 2064 SE.forgetValue(&I); 2065 I.eraseFromParent(); 2066 } 2067 } 2068 MemCheckCleaner.cleanup(); 2069 SCEVCleaner.cleanup(); 2070 2071 if (SCEVCheckCond) 2072 SCEVCheckBlock->eraseFromParent(); 2073 if (MemRuntimeCheckCond) 2074 MemCheckBlock->eraseFromParent(); 2075 } 2076 2077 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2078 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2079 /// depending on the generated condition. 2080 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2081 BasicBlock *LoopVectorPreHeader, 2082 BasicBlock *LoopExitBlock) { 2083 if (!SCEVCheckCond) 2084 return nullptr; 2085 2086 Value *Cond = SCEVCheckCond; 2087 // Mark the check as used, to prevent it from being removed during cleanup. 2088 SCEVCheckCond = nullptr; 2089 if (auto *C = dyn_cast<ConstantInt>(Cond)) 2090 if (C->isZero()) 2091 return nullptr; 2092 2093 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2094 2095 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2096 // Create new preheader for vector loop. 2097 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2098 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2099 2100 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2101 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2102 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2103 SCEVCheckBlock); 2104 2105 DT->addNewBlock(SCEVCheckBlock, Pred); 2106 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2107 2108 ReplaceInstWithInst(SCEVCheckBlock->getTerminator(), 2109 BranchInst::Create(Bypass, LoopVectorPreHeader, Cond)); 2110 return SCEVCheckBlock; 2111 } 2112 2113 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2114 /// the branches to branch to the vector preheader or \p Bypass, depending on 2115 /// the generated condition. 2116 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, 2117 BasicBlock *LoopVectorPreHeader) { 2118 // Check if we generated code that checks in runtime if arrays overlap. 2119 if (!MemRuntimeCheckCond) 2120 return nullptr; 2121 2122 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2123 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2124 MemCheckBlock); 2125 2126 DT->addNewBlock(MemCheckBlock, Pred); 2127 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2128 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2129 2130 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2131 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2132 2133 ReplaceInstWithInst( 2134 MemCheckBlock->getTerminator(), 2135 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2136 MemCheckBlock->getTerminator()->setDebugLoc( 2137 Pred->getTerminator()->getDebugLoc()); 2138 2139 // Mark the check as used, to prevent it from being removed during cleanup. 2140 MemRuntimeCheckCond = nullptr; 2141 return MemCheckBlock; 2142 } 2143 }; 2144 2145 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2146 // vectorization. The loop needs to be annotated with #pragma omp simd 2147 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2148 // vector length information is not provided, vectorization is not considered 2149 // explicit. Interleave hints are not allowed either. These limitations will be 2150 // relaxed in the future. 2151 // Please, note that we are currently forced to abuse the pragma 'clang 2152 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2153 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2154 // provides *explicit vectorization hints* (LV can bypass legal checks and 2155 // assume that vectorization is legal). However, both hints are implemented 2156 // using the same metadata (llvm.loop.vectorize, processed by 2157 // LoopVectorizeHints). This will be fixed in the future when the native IR 2158 // representation for pragma 'omp simd' is introduced. 2159 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2160 OptimizationRemarkEmitter *ORE) { 2161 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2162 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2163 2164 // Only outer loops with an explicit vectorization hint are supported. 2165 // Unannotated outer loops are ignored. 2166 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2167 return false; 2168 2169 Function *Fn = OuterLp->getHeader()->getParent(); 2170 if (!Hints.allowVectorization(Fn, OuterLp, 2171 true /*VectorizeOnlyWhenForced*/)) { 2172 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2173 return false; 2174 } 2175 2176 if (Hints.getInterleave() > 1) { 2177 // TODO: Interleave support is future work. 2178 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2179 "outer loops.\n"); 2180 Hints.emitRemarkWithHints(); 2181 return false; 2182 } 2183 2184 return true; 2185 } 2186 2187 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2188 OptimizationRemarkEmitter *ORE, 2189 SmallVectorImpl<Loop *> &V) { 2190 // Collect inner loops and outer loops without irreducible control flow. For 2191 // now, only collect outer loops that have explicit vectorization hints. If we 2192 // are stress testing the VPlan H-CFG construction, we collect the outermost 2193 // loop of every loop nest. 2194 if (L.isInnermost() || VPlanBuildStressTest || 2195 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2196 LoopBlocksRPO RPOT(&L); 2197 RPOT.perform(LI); 2198 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2199 V.push_back(&L); 2200 // TODO: Collect inner loops inside marked outer loops in case 2201 // vectorization fails for the outer loop. Do not invoke 2202 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2203 // already known to be reducible. We can use an inherited attribute for 2204 // that. 2205 return; 2206 } 2207 } 2208 for (Loop *InnerL : L) 2209 collectSupportedLoops(*InnerL, LI, ORE, V); 2210 } 2211 2212 namespace { 2213 2214 /// The LoopVectorize Pass. 2215 struct LoopVectorize : public FunctionPass { 2216 /// Pass identification, replacement for typeid 2217 static char ID; 2218 2219 LoopVectorizePass Impl; 2220 2221 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2222 bool VectorizeOnlyWhenForced = false) 2223 : FunctionPass(ID), 2224 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2225 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2226 } 2227 2228 bool runOnFunction(Function &F) override { 2229 if (skipFunction(F)) 2230 return false; 2231 2232 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2233 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2234 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2235 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2236 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2237 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2238 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2239 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2240 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2241 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2242 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2243 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2244 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2245 2246 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2247 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2248 2249 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2250 GetLAA, *ORE, PSI).MadeAnyChange; 2251 } 2252 2253 void getAnalysisUsage(AnalysisUsage &AU) const override { 2254 AU.addRequired<AssumptionCacheTracker>(); 2255 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2256 AU.addRequired<DominatorTreeWrapperPass>(); 2257 AU.addRequired<LoopInfoWrapperPass>(); 2258 AU.addRequired<ScalarEvolutionWrapperPass>(); 2259 AU.addRequired<TargetTransformInfoWrapperPass>(); 2260 AU.addRequired<AAResultsWrapperPass>(); 2261 AU.addRequired<LoopAccessLegacyAnalysis>(); 2262 AU.addRequired<DemandedBitsWrapperPass>(); 2263 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2264 AU.addRequired<InjectTLIMappingsLegacy>(); 2265 2266 // We currently do not preserve loopinfo/dominator analyses with outer loop 2267 // vectorization. Until this is addressed, mark these analyses as preserved 2268 // only for non-VPlan-native path. 2269 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2270 if (!EnableVPlanNativePath) { 2271 AU.addPreserved<LoopInfoWrapperPass>(); 2272 AU.addPreserved<DominatorTreeWrapperPass>(); 2273 } 2274 2275 AU.addPreserved<BasicAAWrapperPass>(); 2276 AU.addPreserved<GlobalsAAWrapperPass>(); 2277 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2278 } 2279 }; 2280 2281 } // end anonymous namespace 2282 2283 //===----------------------------------------------------------------------===// 2284 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2285 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2286 //===----------------------------------------------------------------------===// 2287 2288 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2289 // We need to place the broadcast of invariant variables outside the loop, 2290 // but only if it's proven safe to do so. Else, broadcast will be inside 2291 // vector loop body. 2292 Instruction *Instr = dyn_cast<Instruction>(V); 2293 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2294 (!Instr || 2295 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2296 // Place the code for broadcasting invariant variables in the new preheader. 2297 IRBuilder<>::InsertPointGuard Guard(Builder); 2298 if (SafeToHoist) 2299 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2300 2301 // Broadcast the scalar into all locations in the vector. 2302 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2303 2304 return Shuf; 2305 } 2306 2307 /// This function adds 2308 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2309 /// to each vector element of Val. The sequence starts at StartIndex. 2310 /// \p Opcode is relevant for FP induction variable. 2311 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2312 Instruction::BinaryOps BinOp, ElementCount VF, 2313 IRBuilderBase &Builder) { 2314 assert(VF.isVector() && "only vector VFs are supported"); 2315 2316 // Create and check the types. 2317 auto *ValVTy = cast<VectorType>(Val->getType()); 2318 ElementCount VLen = ValVTy->getElementCount(); 2319 2320 Type *STy = Val->getType()->getScalarType(); 2321 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2322 "Induction Step must be an integer or FP"); 2323 assert(Step->getType() == STy && "Step has wrong type"); 2324 2325 SmallVector<Constant *, 8> Indices; 2326 2327 // Create a vector of consecutive numbers from zero to VF. 2328 VectorType *InitVecValVTy = ValVTy; 2329 if (STy->isFloatingPointTy()) { 2330 Type *InitVecValSTy = 2331 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2332 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2333 } 2334 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2335 2336 // Splat the StartIdx 2337 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2338 2339 if (STy->isIntegerTy()) { 2340 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2341 Step = Builder.CreateVectorSplat(VLen, Step); 2342 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2343 // FIXME: The newly created binary instructions should contain nsw/nuw 2344 // flags, which can be found from the original scalar operations. 2345 Step = Builder.CreateMul(InitVec, Step); 2346 return Builder.CreateAdd(Val, Step, "induction"); 2347 } 2348 2349 // Floating point induction. 2350 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2351 "Binary Opcode should be specified for FP induction"); 2352 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2353 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2354 2355 Step = Builder.CreateVectorSplat(VLen, Step); 2356 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2357 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2358 } 2359 2360 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 2361 /// variable on which to base the steps, \p Step is the size of the step. 2362 static void buildScalarSteps(Value *ScalarIV, Value *Step, 2363 const InductionDescriptor &ID, VPValue *Def, 2364 VPTransformState &State) { 2365 IRBuilderBase &Builder = State.Builder; 2366 // We shouldn't have to build scalar steps if we aren't vectorizing. 2367 assert(State.VF.isVector() && "VF should be greater than one"); 2368 // Get the value type and ensure it and the step have the same integer type. 2369 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2370 assert(ScalarIVTy == Step->getType() && 2371 "Val and Step should have the same type"); 2372 2373 // We build scalar steps for both integer and floating-point induction 2374 // variables. Here, we determine the kind of arithmetic we will perform. 2375 Instruction::BinaryOps AddOp; 2376 Instruction::BinaryOps MulOp; 2377 if (ScalarIVTy->isIntegerTy()) { 2378 AddOp = Instruction::Add; 2379 MulOp = Instruction::Mul; 2380 } else { 2381 AddOp = ID.getInductionOpcode(); 2382 MulOp = Instruction::FMul; 2383 } 2384 2385 // Determine the number of scalars we need to generate for each unroll 2386 // iteration. 2387 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2388 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2389 // Compute the scalar steps and save the results in State. 2390 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2391 ScalarIVTy->getScalarSizeInBits()); 2392 Type *VecIVTy = nullptr; 2393 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2394 if (!FirstLaneOnly && State.VF.isScalable()) { 2395 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2396 UnitStepVec = 2397 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2398 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2399 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2400 } 2401 2402 for (unsigned Part = 0; Part < State.UF; ++Part) { 2403 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2404 2405 if (!FirstLaneOnly && State.VF.isScalable()) { 2406 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2407 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2408 if (ScalarIVTy->isFloatingPointTy()) 2409 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2410 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2411 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2412 State.set(Def, Add, Part); 2413 // It's useful to record the lane values too for the known minimum number 2414 // of elements so we do those below. This improves the code quality when 2415 // trying to extract the first element, for example. 2416 } 2417 2418 if (ScalarIVTy->isFloatingPointTy()) 2419 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2420 2421 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2422 Value *StartIdx = Builder.CreateBinOp( 2423 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2424 // The step returned by `createStepForVF` is a runtime-evaluated value 2425 // when VF is scalable. Otherwise, it should be folded into a Constant. 2426 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2427 "Expected StartIdx to be folded to a constant when VF is not " 2428 "scalable"); 2429 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2430 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2431 State.set(Def, Add, VPIteration(Part, Lane)); 2432 } 2433 } 2434 } 2435 2436 // Generate code for the induction step. Note that induction steps are 2437 // required to be loop-invariant 2438 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, 2439 Instruction *InsertBefore, 2440 Loop *OrigLoop = nullptr) { 2441 const DataLayout &DL = SE.getDataLayout(); 2442 assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && 2443 "Induction step should be loop invariant"); 2444 if (auto *E = dyn_cast<SCEVUnknown>(Step)) 2445 return E->getValue(); 2446 2447 SCEVExpander Exp(SE, DL, "induction"); 2448 return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); 2449 } 2450 2451 /// Compute the transformed value of Index at offset StartValue using step 2452 /// StepValue. 2453 /// For integer induction, returns StartValue + Index * StepValue. 2454 /// For pointer induction, returns StartValue[Index * StepValue]. 2455 /// FIXME: The newly created binary instructions should contain nsw/nuw 2456 /// flags, which can be found from the original scalar operations. 2457 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, 2458 Value *StartValue, Value *Step, 2459 const InductionDescriptor &ID) { 2460 assert(Index->getType()->getScalarType() == Step->getType() && 2461 "Index scalar type does not match StepValue type"); 2462 2463 // Note: the IR at this point is broken. We cannot use SE to create any new 2464 // SCEV and then expand it, hoping that SCEV's simplification will give us 2465 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2466 // lead to various SCEV crashes. So all we can do is to use builder and rely 2467 // on InstCombine for future simplifications. Here we handle some trivial 2468 // cases only. 2469 auto CreateAdd = [&B](Value *X, Value *Y) { 2470 assert(X->getType() == Y->getType() && "Types don't match!"); 2471 if (auto *CX = dyn_cast<ConstantInt>(X)) 2472 if (CX->isZero()) 2473 return Y; 2474 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2475 if (CY->isZero()) 2476 return X; 2477 return B.CreateAdd(X, Y); 2478 }; 2479 2480 // We allow X to be a vector type, in which case Y will potentially be 2481 // splatted into a vector with the same element count. 2482 auto CreateMul = [&B](Value *X, Value *Y) { 2483 assert(X->getType()->getScalarType() == Y->getType() && 2484 "Types don't match!"); 2485 if (auto *CX = dyn_cast<ConstantInt>(X)) 2486 if (CX->isOne()) 2487 return Y; 2488 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2489 if (CY->isOne()) 2490 return X; 2491 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2492 if (XVTy && !isa<VectorType>(Y->getType())) 2493 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2494 return B.CreateMul(X, Y); 2495 }; 2496 2497 switch (ID.getKind()) { 2498 case InductionDescriptor::IK_IntInduction: { 2499 assert(!isa<VectorType>(Index->getType()) && 2500 "Vector indices not supported for integer inductions yet"); 2501 assert(Index->getType() == StartValue->getType() && 2502 "Index type does not match StartValue type"); 2503 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2504 return B.CreateSub(StartValue, Index); 2505 auto *Offset = CreateMul(Index, Step); 2506 return CreateAdd(StartValue, Offset); 2507 } 2508 case InductionDescriptor::IK_PtrInduction: { 2509 assert(isa<Constant>(Step) && 2510 "Expected constant step for pointer induction"); 2511 return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); 2512 } 2513 case InductionDescriptor::IK_FpInduction: { 2514 assert(!isa<VectorType>(Index->getType()) && 2515 "Vector indices not supported for FP inductions yet"); 2516 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2517 auto InductionBinOp = ID.getInductionBinOp(); 2518 assert(InductionBinOp && 2519 (InductionBinOp->getOpcode() == Instruction::FAdd || 2520 InductionBinOp->getOpcode() == Instruction::FSub) && 2521 "Original bin op should be defined for FP induction"); 2522 2523 Value *MulExp = B.CreateFMul(Step, Index); 2524 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2525 "induction"); 2526 } 2527 case InductionDescriptor::IK_NoInduction: 2528 return nullptr; 2529 } 2530 llvm_unreachable("invalid enum"); 2531 } 2532 2533 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2534 const VPIteration &Instance, 2535 VPTransformState &State) { 2536 Value *ScalarInst = State.get(Def, Instance); 2537 Value *VectorValue = State.get(Def, Instance.Part); 2538 VectorValue = Builder.CreateInsertElement( 2539 VectorValue, ScalarInst, 2540 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2541 State.set(Def, VectorValue, Instance.Part); 2542 } 2543 2544 // Return whether we allow using masked interleave-groups (for dealing with 2545 // strided loads/stores that reside in predicated blocks, or for dealing 2546 // with gaps). 2547 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2548 // If an override option has been passed in for interleaved accesses, use it. 2549 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2550 return EnableMaskedInterleavedMemAccesses; 2551 2552 return TTI.enableMaskedInterleavedAccessVectorization(); 2553 } 2554 2555 // Try to vectorize the interleave group that \p Instr belongs to. 2556 // 2557 // E.g. Translate following interleaved load group (factor = 3): 2558 // for (i = 0; i < N; i+=3) { 2559 // R = Pic[i]; // Member of index 0 2560 // G = Pic[i+1]; // Member of index 1 2561 // B = Pic[i+2]; // Member of index 2 2562 // ... // do something to R, G, B 2563 // } 2564 // To: 2565 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2566 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2567 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2568 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2569 // 2570 // Or translate following interleaved store group (factor = 3): 2571 // for (i = 0; i < N; i+=3) { 2572 // ... do something to R, G, B 2573 // Pic[i] = R; // Member of index 0 2574 // Pic[i+1] = G; // Member of index 1 2575 // Pic[i+2] = B; // Member of index 2 2576 // } 2577 // To: 2578 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2579 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2580 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2581 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2582 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2583 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2584 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2585 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2586 VPValue *BlockInMask) { 2587 Instruction *Instr = Group->getInsertPos(); 2588 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2589 2590 // Prepare for the vector type of the interleaved load/store. 2591 Type *ScalarTy = getLoadStoreType(Instr); 2592 unsigned InterleaveFactor = Group->getFactor(); 2593 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2594 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2595 2596 // Prepare for the new pointers. 2597 SmallVector<Value *, 2> AddrParts; 2598 unsigned Index = Group->getIndex(Instr); 2599 2600 // TODO: extend the masked interleaved-group support to reversed access. 2601 assert((!BlockInMask || !Group->isReverse()) && 2602 "Reversed masked interleave-group not supported."); 2603 2604 // If the group is reverse, adjust the index to refer to the last vector lane 2605 // instead of the first. We adjust the index from the first vector lane, 2606 // rather than directly getting the pointer for lane VF - 1, because the 2607 // pointer operand of the interleaved access is supposed to be uniform. For 2608 // uniform instructions, we're only required to generate a value for the 2609 // first vector lane in each unroll iteration. 2610 if (Group->isReverse()) 2611 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2612 2613 for (unsigned Part = 0; Part < UF; Part++) { 2614 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2615 setDebugLocFromInst(AddrPart); 2616 2617 // Notice current instruction could be any index. Need to adjust the address 2618 // to the member of index 0. 2619 // 2620 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2621 // b = A[i]; // Member of index 0 2622 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2623 // 2624 // E.g. A[i+1] = a; // Member of index 1 2625 // A[i] = b; // Member of index 0 2626 // A[i+2] = c; // Member of index 2 (Current instruction) 2627 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2628 2629 bool InBounds = false; 2630 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2631 InBounds = gep->isInBounds(); 2632 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2633 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2634 2635 // Cast to the vector pointer type. 2636 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2637 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2638 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2639 } 2640 2641 setDebugLocFromInst(Instr); 2642 Value *PoisonVec = PoisonValue::get(VecTy); 2643 2644 Value *MaskForGaps = nullptr; 2645 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2646 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2647 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2648 } 2649 2650 // Vectorize the interleaved load group. 2651 if (isa<LoadInst>(Instr)) { 2652 // For each unroll part, create a wide load for the group. 2653 SmallVector<Value *, 2> NewLoads; 2654 for (unsigned Part = 0; Part < UF; Part++) { 2655 Instruction *NewLoad; 2656 if (BlockInMask || MaskForGaps) { 2657 assert(useMaskedInterleavedAccesses(*TTI) && 2658 "masked interleaved groups are not allowed."); 2659 Value *GroupMask = MaskForGaps; 2660 if (BlockInMask) { 2661 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2662 Value *ShuffledMask = Builder.CreateShuffleVector( 2663 BlockInMaskPart, 2664 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2665 "interleaved.mask"); 2666 GroupMask = MaskForGaps 2667 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2668 MaskForGaps) 2669 : ShuffledMask; 2670 } 2671 NewLoad = 2672 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2673 GroupMask, PoisonVec, "wide.masked.vec"); 2674 } 2675 else 2676 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2677 Group->getAlign(), "wide.vec"); 2678 Group->addMetadata(NewLoad); 2679 NewLoads.push_back(NewLoad); 2680 } 2681 2682 // For each member in the group, shuffle out the appropriate data from the 2683 // wide loads. 2684 unsigned J = 0; 2685 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2686 Instruction *Member = Group->getMember(I); 2687 2688 // Skip the gaps in the group. 2689 if (!Member) 2690 continue; 2691 2692 auto StrideMask = 2693 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2694 for (unsigned Part = 0; Part < UF; Part++) { 2695 Value *StridedVec = Builder.CreateShuffleVector( 2696 NewLoads[Part], StrideMask, "strided.vec"); 2697 2698 // If this member has different type, cast the result type. 2699 if (Member->getType() != ScalarTy) { 2700 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2701 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2702 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2703 } 2704 2705 if (Group->isReverse()) 2706 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2707 2708 State.set(VPDefs[J], StridedVec, Part); 2709 } 2710 ++J; 2711 } 2712 return; 2713 } 2714 2715 // The sub vector type for current instruction. 2716 auto *SubVT = VectorType::get(ScalarTy, VF); 2717 2718 // Vectorize the interleaved store group. 2719 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2720 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2721 "masked interleaved groups are not allowed."); 2722 assert((!MaskForGaps || !VF.isScalable()) && 2723 "masking gaps for scalable vectors is not yet supported."); 2724 for (unsigned Part = 0; Part < UF; Part++) { 2725 // Collect the stored vector from each member. 2726 SmallVector<Value *, 4> StoredVecs; 2727 for (unsigned i = 0; i < InterleaveFactor; i++) { 2728 assert((Group->getMember(i) || MaskForGaps) && 2729 "Fail to get a member from an interleaved store group"); 2730 Instruction *Member = Group->getMember(i); 2731 2732 // Skip the gaps in the group. 2733 if (!Member) { 2734 Value *Undef = PoisonValue::get(SubVT); 2735 StoredVecs.push_back(Undef); 2736 continue; 2737 } 2738 2739 Value *StoredVec = State.get(StoredValues[i], Part); 2740 2741 if (Group->isReverse()) 2742 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2743 2744 // If this member has different type, cast it to a unified type. 2745 2746 if (StoredVec->getType() != SubVT) 2747 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2748 2749 StoredVecs.push_back(StoredVec); 2750 } 2751 2752 // Concatenate all vectors into a wide vector. 2753 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2754 2755 // Interleave the elements in the wide vector. 2756 Value *IVec = Builder.CreateShuffleVector( 2757 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2758 "interleaved.vec"); 2759 2760 Instruction *NewStoreInstr; 2761 if (BlockInMask || MaskForGaps) { 2762 Value *GroupMask = MaskForGaps; 2763 if (BlockInMask) { 2764 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2765 Value *ShuffledMask = Builder.CreateShuffleVector( 2766 BlockInMaskPart, 2767 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2768 "interleaved.mask"); 2769 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2770 ShuffledMask, MaskForGaps) 2771 : ShuffledMask; 2772 } 2773 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2774 Group->getAlign(), GroupMask); 2775 } else 2776 NewStoreInstr = 2777 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2778 2779 Group->addMetadata(NewStoreInstr); 2780 } 2781 } 2782 2783 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2784 VPReplicateRecipe *RepRecipe, 2785 const VPIteration &Instance, 2786 bool IfPredicateInstr, 2787 VPTransformState &State) { 2788 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2789 2790 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2791 // the first lane and part. 2792 if (isa<NoAliasScopeDeclInst>(Instr)) 2793 if (!Instance.isFirstIteration()) 2794 return; 2795 2796 // Does this instruction return a value ? 2797 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2798 2799 Instruction *Cloned = Instr->clone(); 2800 if (!IsVoidRetTy) 2801 Cloned->setName(Instr->getName() + ".cloned"); 2802 2803 // If the scalarized instruction contributes to the address computation of a 2804 // widen masked load/store which was in a basic block that needed predication 2805 // and is not predicated after vectorization, we can't propagate 2806 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2807 // instruction could feed a poison value to the base address of the widen 2808 // load/store. 2809 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2810 Cloned->dropPoisonGeneratingFlags(); 2811 2812 if (Instr->getDebugLoc()) 2813 setDebugLocFromInst(Instr); 2814 2815 // Replace the operands of the cloned instructions with their scalar 2816 // equivalents in the new loop. 2817 for (auto &I : enumerate(RepRecipe->operands())) { 2818 auto InputInstance = Instance; 2819 VPValue *Operand = I.value(); 2820 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2821 if (OperandR && OperandR->isUniform()) 2822 InputInstance.Lane = VPLane::getFirstLane(); 2823 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2824 } 2825 addNewMetadata(Cloned, Instr); 2826 2827 // Place the cloned scalar in the new loop. 2828 State.Builder.Insert(Cloned); 2829 2830 State.set(RepRecipe, Cloned, Instance); 2831 2832 // If we just cloned a new assumption, add it the assumption cache. 2833 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2834 AC->registerAssumption(II); 2835 2836 // End if-block. 2837 if (IfPredicateInstr) 2838 PredicatedInstructions.push_back(Cloned); 2839 } 2840 2841 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) { 2842 if (TripCount) 2843 return TripCount; 2844 2845 assert(InsertBlock); 2846 IRBuilder<> Builder(InsertBlock->getTerminator()); 2847 // Find the loop boundaries. 2848 ScalarEvolution *SE = PSE.getSE(); 2849 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2850 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2851 "Invalid loop count"); 2852 2853 Type *IdxTy = Legal->getWidestInductionType(); 2854 assert(IdxTy && "No type for induction"); 2855 2856 // The exit count might have the type of i64 while the phi is i32. This can 2857 // happen if we have an induction variable that is sign extended before the 2858 // compare. The only way that we get a backedge taken count is that the 2859 // induction variable was signed and as such will not overflow. In such a case 2860 // truncation is legal. 2861 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2862 IdxTy->getPrimitiveSizeInBits()) 2863 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2864 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2865 2866 // Get the total trip count from the count by adding 1. 2867 const SCEV *ExitCount = SE->getAddExpr( 2868 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2869 2870 const DataLayout &DL = InsertBlock->getModule()->getDataLayout(); 2871 2872 // Expand the trip count and place the new instructions in the preheader. 2873 // Notice that the pre-header does not change, only the loop body. 2874 SCEVExpander Exp(*SE, DL, "induction"); 2875 2876 // Count holds the overall loop count (N). 2877 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2878 InsertBlock->getTerminator()); 2879 2880 if (TripCount->getType()->isPointerTy()) 2881 TripCount = 2882 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2883 InsertBlock->getTerminator()); 2884 2885 return TripCount; 2886 } 2887 2888 Value * 2889 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { 2890 if (VectorTripCount) 2891 return VectorTripCount; 2892 2893 Value *TC = getOrCreateTripCount(InsertBlock); 2894 IRBuilder<> Builder(InsertBlock->getTerminator()); 2895 2896 Type *Ty = TC->getType(); 2897 // This is where we can make the step a runtime constant. 2898 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2899 2900 // If the tail is to be folded by masking, round the number of iterations N 2901 // up to a multiple of Step instead of rounding down. This is done by first 2902 // adding Step-1 and then rounding down. Note that it's ok if this addition 2903 // overflows: the vector induction variable will eventually wrap to zero given 2904 // that it starts at zero and its Step is a power of two; the loop will then 2905 // exit, with the last early-exit vector comparison also producing all-true. 2906 // For scalable vectors the VF is not guaranteed to be a power of 2, but this 2907 // is accounted for in emitIterationCountCheck that adds an overflow check. 2908 if (Cost->foldTailByMasking()) { 2909 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2910 "VF*UF must be a power of 2 when folding tail by masking"); 2911 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 2912 TC = Builder.CreateAdd( 2913 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 2914 } 2915 2916 // Now we need to generate the expression for the part of the loop that the 2917 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2918 // iterations are not required for correctness, or N - Step, otherwise. Step 2919 // is equal to the vectorization factor (number of SIMD elements) times the 2920 // unroll factor (number of SIMD instructions). 2921 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2922 2923 // There are cases where we *must* run at least one iteration in the remainder 2924 // loop. See the cost model for when this can happen. If the step evenly 2925 // divides the trip count, we set the remainder to be equal to the step. If 2926 // the step does not evenly divide the trip count, no adjustment is necessary 2927 // since there will already be scalar iterations. Note that the minimum 2928 // iterations check ensures that N >= Step. 2929 if (Cost->requiresScalarEpilogue(VF)) { 2930 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2931 R = Builder.CreateSelect(IsZero, Step, R); 2932 } 2933 2934 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2935 2936 return VectorTripCount; 2937 } 2938 2939 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2940 const DataLayout &DL) { 2941 // Verify that V is a vector type with same number of elements as DstVTy. 2942 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2943 unsigned VF = DstFVTy->getNumElements(); 2944 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2945 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2946 Type *SrcElemTy = SrcVecTy->getElementType(); 2947 Type *DstElemTy = DstFVTy->getElementType(); 2948 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2949 "Vector elements must have same size"); 2950 2951 // Do a direct cast if element types are castable. 2952 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2953 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2954 } 2955 // V cannot be directly casted to desired vector type. 2956 // May happen when V is a floating point vector but DstVTy is a vector of 2957 // pointers or vice-versa. Handle this using a two-step bitcast using an 2958 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2959 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2960 "Only one type should be a pointer type"); 2961 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2962 "Only one type should be a floating point type"); 2963 Type *IntTy = 2964 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2965 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2966 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2967 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2968 } 2969 2970 void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) { 2971 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 2972 // Reuse existing vector loop preheader for TC checks. 2973 // Note that new preheader block is generated for vector loop. 2974 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2975 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2976 2977 // Generate code to check if the loop's trip count is less than VF * UF, or 2978 // equal to it in case a scalar epilogue is required; this implies that the 2979 // vector trip count is zero. This check also covers the case where adding one 2980 // to the backedge-taken count overflowed leading to an incorrect trip count 2981 // of zero. In this case we will also jump to the scalar loop. 2982 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 2983 : ICmpInst::ICMP_ULT; 2984 2985 // If tail is to be folded, vector loop takes care of all iterations. 2986 Type *CountTy = Count->getType(); 2987 Value *CheckMinIters = Builder.getFalse(); 2988 Value *Step = createStepForVF(Builder, CountTy, VF, UF); 2989 if (!Cost->foldTailByMasking()) 2990 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 2991 else if (VF.isScalable()) { 2992 // vscale is not necessarily a power-of-2, which means we cannot guarantee 2993 // an overflow to zero when updating induction variables and so an 2994 // additional overflow check is required before entering the vector loop. 2995 2996 // Get the maximum unsigned value for the type. 2997 Value *MaxUIntTripCount = 2998 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask()); 2999 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count); 3000 3001 // Don't execute the vector loop if (UMax - n) < (VF * UF). 3002 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, Step); 3003 } 3004 // Create new preheader for vector loop. 3005 LoopVectorPreHeader = 3006 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3007 "vector.ph"); 3008 3009 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3010 DT->getNode(Bypass)->getIDom()) && 3011 "TC check is expected to dominate Bypass"); 3012 3013 // Update dominator for Bypass & LoopExit (if needed). 3014 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3015 if (!Cost->requiresScalarEpilogue(VF)) 3016 // If there is an epilogue which must run, there's no edge from the 3017 // middle block to exit blocks and thus no need to update the immediate 3018 // dominator of the exit blocks. 3019 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3020 3021 ReplaceInstWithInst( 3022 TCCheckBlock->getTerminator(), 3023 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3024 LoopBypassBlocks.push_back(TCCheckBlock); 3025 } 3026 3027 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 3028 3029 BasicBlock *const SCEVCheckBlock = 3030 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); 3031 if (!SCEVCheckBlock) 3032 return nullptr; 3033 3034 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3035 (OptForSizeBasedOnProfile && 3036 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3037 "Cannot SCEV check stride or overflow when optimizing for size"); 3038 3039 3040 // Update dominator only if this is first RT check. 3041 if (LoopBypassBlocks.empty()) { 3042 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3043 if (!Cost->requiresScalarEpilogue(VF)) 3044 // If there is an epilogue which must run, there's no edge from the 3045 // middle block to exit blocks and thus no need to update the immediate 3046 // dominator of the exit blocks. 3047 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3048 } 3049 3050 LoopBypassBlocks.push_back(SCEVCheckBlock); 3051 AddedSafetyChecks = true; 3052 return SCEVCheckBlock; 3053 } 3054 3055 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { 3056 // VPlan-native path does not do any analysis for runtime checks currently. 3057 if (EnableVPlanNativePath) 3058 return nullptr; 3059 3060 BasicBlock *const MemCheckBlock = 3061 RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); 3062 3063 // Check if we generated code that checks in runtime if arrays overlap. We put 3064 // the checks into a separate block to make the more common case of few 3065 // elements faster. 3066 if (!MemCheckBlock) 3067 return nullptr; 3068 3069 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3070 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3071 "Cannot emit memory checks when optimizing for size, unless forced " 3072 "to vectorize."); 3073 ORE->emit([&]() { 3074 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3075 OrigLoop->getStartLoc(), 3076 OrigLoop->getHeader()) 3077 << "Code-size may be reduced by not forcing " 3078 "vectorization, or by source-code modifications " 3079 "eliminating the need for runtime checks " 3080 "(e.g., adding 'restrict')."; 3081 }); 3082 } 3083 3084 LoopBypassBlocks.push_back(MemCheckBlock); 3085 3086 AddedSafetyChecks = true; 3087 3088 // Only use noalias metadata when using memory checks guaranteeing no overlap 3089 // across all iterations. 3090 if (!Legal->getLAI()->getRuntimePointerChecking()->getDiffChecks()) { 3091 // We currently don't use LoopVersioning for the actual loop cloning but we 3092 // still use it to add the noalias metadata. 3093 LVer = std::make_unique<LoopVersioning>( 3094 *Legal->getLAI(), 3095 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3096 DT, PSE.getSE()); 3097 LVer->prepareNoAliasMetadata(); 3098 } 3099 return MemCheckBlock; 3100 } 3101 3102 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3103 LoopScalarBody = OrigLoop->getHeader(); 3104 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3105 assert(LoopVectorPreHeader && "Invalid loop structure"); 3106 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3107 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3108 "multiple exit loop without required epilogue?"); 3109 3110 LoopMiddleBlock = 3111 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3112 LI, nullptr, Twine(Prefix) + "middle.block"); 3113 LoopScalarPreHeader = 3114 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3115 nullptr, Twine(Prefix) + "scalar.ph"); 3116 3117 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3118 3119 // Set up the middle block terminator. Two cases: 3120 // 1) If we know that we must execute the scalar epilogue, emit an 3121 // unconditional branch. 3122 // 2) Otherwise, we must have a single unique exit block (due to how we 3123 // implement the multiple exit case). In this case, set up a conditonal 3124 // branch from the middle block to the loop scalar preheader, and the 3125 // exit block. completeLoopSkeleton will update the condition to use an 3126 // iteration check, if required to decide whether to execute the remainder. 3127 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3128 BranchInst::Create(LoopScalarPreHeader) : 3129 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3130 Builder.getTrue()); 3131 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3132 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3133 3134 // Update dominator for loop exit. During skeleton creation, only the vector 3135 // pre-header and the middle block are created. The vector loop is entirely 3136 // created during VPlan exection. 3137 if (!Cost->requiresScalarEpilogue(VF)) 3138 // If there is an epilogue which must run, there's no edge from the 3139 // middle block to exit blocks and thus no need to update the immediate 3140 // dominator of the exit blocks. 3141 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3142 } 3143 3144 void InnerLoopVectorizer::createInductionResumeValues( 3145 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3146 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3147 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3148 "Inconsistent information about additional bypass."); 3149 3150 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3151 assert(VectorTripCount && "Expected valid arguments"); 3152 // We are going to resume the execution of the scalar loop. 3153 // Go over all of the induction variables that we found and fix the 3154 // PHIs that are left in the scalar version of the loop. 3155 // The starting values of PHI nodes depend on the counter of the last 3156 // iteration in the vectorized loop. 3157 // If we come from a bypass edge then we need to start from the original 3158 // start value. 3159 Instruction *OldInduction = Legal->getPrimaryInduction(); 3160 for (auto &InductionEntry : Legal->getInductionVars()) { 3161 PHINode *OrigPhi = InductionEntry.first; 3162 InductionDescriptor II = InductionEntry.second; 3163 3164 // Create phi nodes to merge from the backedge-taken check block. 3165 PHINode *BCResumeVal = 3166 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3167 LoopScalarPreHeader->getTerminator()); 3168 // Copy original phi DL over to the new one. 3169 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3170 Value *&EndValue = IVEndValues[OrigPhi]; 3171 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3172 if (OrigPhi == OldInduction) { 3173 // We know what the end value is. 3174 EndValue = VectorTripCount; 3175 } else { 3176 IRBuilder<> B(LoopVectorPreHeader->getTerminator()); 3177 3178 // Fast-math-flags propagate from the original induction instruction. 3179 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3180 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3181 3182 Type *StepType = II.getStep()->getType(); 3183 Instruction::CastOps CastOp = 3184 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3185 Value *VTC = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.vtc"); 3186 Value *Step = 3187 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3188 EndValue = emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3189 EndValue->setName("ind.end"); 3190 3191 // Compute the end value for the additional bypass (if applicable). 3192 if (AdditionalBypass.first) { 3193 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3194 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3195 StepType, true); 3196 Value *Step = 3197 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3198 VTC = 3199 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.vtc"); 3200 EndValueFromAdditionalBypass = 3201 emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3202 EndValueFromAdditionalBypass->setName("ind.end"); 3203 } 3204 } 3205 // The new PHI merges the original incoming value, in case of a bypass, 3206 // or the value at the end of the vectorized loop. 3207 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3208 3209 // Fix the scalar body counter (PHI node). 3210 // The old induction's phi node in the scalar body needs the truncated 3211 // value. 3212 for (BasicBlock *BB : LoopBypassBlocks) 3213 BCResumeVal->addIncoming(II.getStartValue(), BB); 3214 3215 if (AdditionalBypass.first) 3216 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3217 EndValueFromAdditionalBypass); 3218 3219 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3220 } 3221 } 3222 3223 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) { 3224 // The trip counts should be cached by now. 3225 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 3226 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3227 3228 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3229 3230 // Add a check in the middle block to see if we have completed 3231 // all of the iterations in the first vector loop. Three cases: 3232 // 1) If we require a scalar epilogue, there is no conditional branch as 3233 // we unconditionally branch to the scalar preheader. Do nothing. 3234 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3235 // Thus if tail is to be folded, we know we don't need to run the 3236 // remainder and we can use the previous value for the condition (true). 3237 // 3) Otherwise, construct a runtime check. 3238 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3239 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3240 Count, VectorTripCount, "cmp.n", 3241 LoopMiddleBlock->getTerminator()); 3242 3243 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3244 // of the corresponding compare because they may have ended up with 3245 // different line numbers and we want to avoid awkward line stepping while 3246 // debugging. Eg. if the compare has got a line number inside the loop. 3247 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3248 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3249 } 3250 3251 #ifdef EXPENSIVE_CHECKS 3252 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3253 #endif 3254 3255 return LoopVectorPreHeader; 3256 } 3257 3258 std::pair<BasicBlock *, Value *> 3259 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3260 /* 3261 In this function we generate a new loop. The new loop will contain 3262 the vectorized instructions while the old loop will continue to run the 3263 scalar remainder. 3264 3265 [ ] <-- loop iteration number check. 3266 / | 3267 / v 3268 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3269 | / | 3270 | / v 3271 || [ ] <-- vector pre header. 3272 |/ | 3273 | v 3274 | [ ] \ 3275 | [ ]_| <-- vector loop (created during VPlan execution). 3276 | | 3277 | v 3278 \ -[ ] <--- middle-block. 3279 \/ | 3280 /\ v 3281 | ->[ ] <--- new preheader. 3282 | | 3283 (opt) v <-- edge from middle to exit iff epilogue is not required. 3284 | [ ] \ 3285 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3286 \ | 3287 \ v 3288 >[ ] <-- exit block(s). 3289 ... 3290 */ 3291 3292 // Get the metadata of the original loop before it gets modified. 3293 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3294 3295 // Workaround! Compute the trip count of the original loop and cache it 3296 // before we start modifying the CFG. This code has a systemic problem 3297 // wherein it tries to run analysis over partially constructed IR; this is 3298 // wrong, and not simply for SCEV. The trip count of the original loop 3299 // simply happens to be prone to hitting this in practice. In theory, we 3300 // can hit the same issue for any SCEV, or ValueTracking query done during 3301 // mutation. See PR49900. 3302 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 3303 3304 // Create an empty vector loop, and prepare basic blocks for the runtime 3305 // checks. 3306 createVectorLoopSkeleton(""); 3307 3308 // Now, compare the new count to zero. If it is zero skip the vector loop and 3309 // jump to the scalar loop. This check also covers the case where the 3310 // backedge-taken count is uint##_max: adding one to it will overflow leading 3311 // to an incorrect trip count of zero. In this (rare) case we will also jump 3312 // to the scalar loop. 3313 emitIterationCountCheck(LoopScalarPreHeader); 3314 3315 // Generate the code to check any assumptions that we've made for SCEV 3316 // expressions. 3317 emitSCEVChecks(LoopScalarPreHeader); 3318 3319 // Generate the code that checks in runtime if arrays overlap. We put the 3320 // checks into a separate block to make the more common case of few elements 3321 // faster. 3322 emitMemRuntimeChecks(LoopScalarPreHeader); 3323 3324 // Emit phis for the new starting index of the scalar loop. 3325 createInductionResumeValues(); 3326 3327 return {completeLoopSkeleton(OrigLoopID), nullptr}; 3328 } 3329 3330 // Fix up external users of the induction variable. At this point, we are 3331 // in LCSSA form, with all external PHIs that use the IV having one input value, 3332 // coming from the remainder loop. We need those PHIs to also have a correct 3333 // value for the IV when arriving directly from the middle block. 3334 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3335 const InductionDescriptor &II, 3336 Value *VectorTripCount, Value *EndValue, 3337 BasicBlock *MiddleBlock, 3338 BasicBlock *VectorHeader) { 3339 // There are two kinds of external IV usages - those that use the value 3340 // computed in the last iteration (the PHI) and those that use the penultimate 3341 // value (the value that feeds into the phi from the loop latch). 3342 // We allow both, but they, obviously, have different values. 3343 3344 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3345 3346 DenseMap<Value *, Value *> MissingVals; 3347 3348 // An external user of the last iteration's value should see the value that 3349 // the remainder loop uses to initialize its own IV. 3350 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3351 for (User *U : PostInc->users()) { 3352 Instruction *UI = cast<Instruction>(U); 3353 if (!OrigLoop->contains(UI)) { 3354 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3355 MissingVals[UI] = EndValue; 3356 } 3357 } 3358 3359 // An external user of the penultimate value need to see EndValue - Step. 3360 // The simplest way to get this is to recompute it from the constituent SCEVs, 3361 // that is Start + (Step * (CRD - 1)). 3362 for (User *U : OrigPhi->users()) { 3363 auto *UI = cast<Instruction>(U); 3364 if (!OrigLoop->contains(UI)) { 3365 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3366 3367 IRBuilder<> B(MiddleBlock->getTerminator()); 3368 3369 // Fast-math-flags propagate from the original induction instruction. 3370 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3371 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3372 3373 Value *CountMinusOne = B.CreateSub( 3374 VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1)); 3375 Value *CMO = 3376 !II.getStep()->getType()->isIntegerTy() 3377 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3378 II.getStep()->getType()) 3379 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3380 CMO->setName("cast.cmo"); 3381 3382 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 3383 VectorHeader->getTerminator()); 3384 Value *Escape = 3385 emitTransformedIndex(B, CMO, II.getStartValue(), Step, II); 3386 Escape->setName("ind.escape"); 3387 MissingVals[UI] = Escape; 3388 } 3389 } 3390 3391 for (auto &I : MissingVals) { 3392 PHINode *PHI = cast<PHINode>(I.first); 3393 // One corner case we have to handle is two IVs "chasing" each-other, 3394 // that is %IV2 = phi [...], [ %IV1, %latch ] 3395 // In this case, if IV1 has an external use, we need to avoid adding both 3396 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3397 // don't already have an incoming value for the middle block. 3398 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3399 PHI->addIncoming(I.second, MiddleBlock); 3400 } 3401 } 3402 3403 namespace { 3404 3405 struct CSEDenseMapInfo { 3406 static bool canHandle(const Instruction *I) { 3407 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3408 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3409 } 3410 3411 static inline Instruction *getEmptyKey() { 3412 return DenseMapInfo<Instruction *>::getEmptyKey(); 3413 } 3414 3415 static inline Instruction *getTombstoneKey() { 3416 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3417 } 3418 3419 static unsigned getHashValue(const Instruction *I) { 3420 assert(canHandle(I) && "Unknown instruction!"); 3421 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3422 I->value_op_end())); 3423 } 3424 3425 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3426 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3427 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3428 return LHS == RHS; 3429 return LHS->isIdenticalTo(RHS); 3430 } 3431 }; 3432 3433 } // end anonymous namespace 3434 3435 ///Perform cse of induction variable instructions. 3436 static void cse(BasicBlock *BB) { 3437 // Perform simple cse. 3438 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3439 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3440 if (!CSEDenseMapInfo::canHandle(&In)) 3441 continue; 3442 3443 // Check if we can replace this instruction with any of the 3444 // visited instructions. 3445 if (Instruction *V = CSEMap.lookup(&In)) { 3446 In.replaceAllUsesWith(V); 3447 In.eraseFromParent(); 3448 continue; 3449 } 3450 3451 CSEMap[&In] = &In; 3452 } 3453 } 3454 3455 InstructionCost 3456 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3457 bool &NeedToScalarize) const { 3458 Function *F = CI->getCalledFunction(); 3459 Type *ScalarRetTy = CI->getType(); 3460 SmallVector<Type *, 4> Tys, ScalarTys; 3461 for (auto &ArgOp : CI->args()) 3462 ScalarTys.push_back(ArgOp->getType()); 3463 3464 // Estimate cost of scalarized vector call. The source operands are assumed 3465 // to be vectors, so we need to extract individual elements from there, 3466 // execute VF scalar calls, and then gather the result into the vector return 3467 // value. 3468 InstructionCost ScalarCallCost = 3469 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3470 if (VF.isScalar()) 3471 return ScalarCallCost; 3472 3473 // Compute corresponding vector type for return value and arguments. 3474 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3475 for (Type *ScalarTy : ScalarTys) 3476 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3477 3478 // Compute costs of unpacking argument values for the scalar calls and 3479 // packing the return values to a vector. 3480 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3481 3482 InstructionCost Cost = 3483 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3484 3485 // If we can't emit a vector call for this function, then the currently found 3486 // cost is the cost we need to return. 3487 NeedToScalarize = true; 3488 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3489 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3490 3491 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3492 return Cost; 3493 3494 // If the corresponding vector cost is cheaper, return its cost. 3495 InstructionCost VectorCallCost = 3496 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3497 if (VectorCallCost < Cost) { 3498 NeedToScalarize = false; 3499 Cost = VectorCallCost; 3500 } 3501 return Cost; 3502 } 3503 3504 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3505 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3506 return Elt; 3507 return VectorType::get(Elt, VF); 3508 } 3509 3510 InstructionCost 3511 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3512 ElementCount VF) const { 3513 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3514 assert(ID && "Expected intrinsic call!"); 3515 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3516 FastMathFlags FMF; 3517 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3518 FMF = FPMO->getFastMathFlags(); 3519 3520 SmallVector<const Value *> Arguments(CI->args()); 3521 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3522 SmallVector<Type *> ParamTys; 3523 std::transform(FTy->param_begin(), FTy->param_end(), 3524 std::back_inserter(ParamTys), 3525 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3526 3527 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3528 dyn_cast<IntrinsicInst>(CI)); 3529 return TTI.getIntrinsicInstrCost(CostAttrs, 3530 TargetTransformInfo::TCK_RecipThroughput); 3531 } 3532 3533 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3534 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3535 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3536 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3537 } 3538 3539 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3540 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3541 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3542 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3543 } 3544 3545 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3546 // For every instruction `I` in MinBWs, truncate the operands, create a 3547 // truncated version of `I` and reextend its result. InstCombine runs 3548 // later and will remove any ext/trunc pairs. 3549 SmallPtrSet<Value *, 4> Erased; 3550 for (const auto &KV : Cost->getMinimalBitwidths()) { 3551 // If the value wasn't vectorized, we must maintain the original scalar 3552 // type. The absence of the value from State indicates that it 3553 // wasn't vectorized. 3554 // FIXME: Should not rely on getVPValue at this point. 3555 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3556 if (!State.hasAnyVectorValue(Def)) 3557 continue; 3558 for (unsigned Part = 0; Part < UF; ++Part) { 3559 Value *I = State.get(Def, Part); 3560 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3561 continue; 3562 Type *OriginalTy = I->getType(); 3563 Type *ScalarTruncatedTy = 3564 IntegerType::get(OriginalTy->getContext(), KV.second); 3565 auto *TruncatedTy = VectorType::get( 3566 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3567 if (TruncatedTy == OriginalTy) 3568 continue; 3569 3570 IRBuilder<> B(cast<Instruction>(I)); 3571 auto ShrinkOperand = [&](Value *V) -> Value * { 3572 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3573 if (ZI->getSrcTy() == TruncatedTy) 3574 return ZI->getOperand(0); 3575 return B.CreateZExtOrTrunc(V, TruncatedTy); 3576 }; 3577 3578 // The actual instruction modification depends on the instruction type, 3579 // unfortunately. 3580 Value *NewI = nullptr; 3581 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3582 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3583 ShrinkOperand(BO->getOperand(1))); 3584 3585 // Any wrapping introduced by shrinking this operation shouldn't be 3586 // considered undefined behavior. So, we can't unconditionally copy 3587 // arithmetic wrapping flags to NewI. 3588 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3589 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3590 NewI = 3591 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3592 ShrinkOperand(CI->getOperand(1))); 3593 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3594 NewI = B.CreateSelect(SI->getCondition(), 3595 ShrinkOperand(SI->getTrueValue()), 3596 ShrinkOperand(SI->getFalseValue())); 3597 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3598 switch (CI->getOpcode()) { 3599 default: 3600 llvm_unreachable("Unhandled cast!"); 3601 case Instruction::Trunc: 3602 NewI = ShrinkOperand(CI->getOperand(0)); 3603 break; 3604 case Instruction::SExt: 3605 NewI = B.CreateSExtOrTrunc( 3606 CI->getOperand(0), 3607 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3608 break; 3609 case Instruction::ZExt: 3610 NewI = B.CreateZExtOrTrunc( 3611 CI->getOperand(0), 3612 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3613 break; 3614 } 3615 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3616 auto Elements0 = 3617 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3618 auto *O0 = B.CreateZExtOrTrunc( 3619 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3620 auto Elements1 = 3621 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3622 auto *O1 = B.CreateZExtOrTrunc( 3623 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3624 3625 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3626 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3627 // Don't do anything with the operands, just extend the result. 3628 continue; 3629 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3630 auto Elements = 3631 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3632 auto *O0 = B.CreateZExtOrTrunc( 3633 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3634 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3635 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3636 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3637 auto Elements = 3638 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3639 auto *O0 = B.CreateZExtOrTrunc( 3640 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3641 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3642 } else { 3643 // If we don't know what to do, be conservative and don't do anything. 3644 continue; 3645 } 3646 3647 // Lastly, extend the result. 3648 NewI->takeName(cast<Instruction>(I)); 3649 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3650 I->replaceAllUsesWith(Res); 3651 cast<Instruction>(I)->eraseFromParent(); 3652 Erased.insert(I); 3653 State.reset(Def, Res, Part); 3654 } 3655 } 3656 3657 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3658 for (const auto &KV : Cost->getMinimalBitwidths()) { 3659 // If the value wasn't vectorized, we must maintain the original scalar 3660 // type. The absence of the value from State indicates that it 3661 // wasn't vectorized. 3662 // FIXME: Should not rely on getVPValue at this point. 3663 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3664 if (!State.hasAnyVectorValue(Def)) 3665 continue; 3666 for (unsigned Part = 0; Part < UF; ++Part) { 3667 Value *I = State.get(Def, Part); 3668 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3669 if (Inst && Inst->use_empty()) { 3670 Value *NewI = Inst->getOperand(0); 3671 Inst->eraseFromParent(); 3672 State.reset(Def, NewI, Part); 3673 } 3674 } 3675 } 3676 } 3677 3678 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State, 3679 VPlan &Plan) { 3680 // Insert truncates and extends for any truncated instructions as hints to 3681 // InstCombine. 3682 if (VF.isVector()) 3683 truncateToMinimalBitwidths(State); 3684 3685 // Fix widened non-induction PHIs by setting up the PHI operands. 3686 if (OrigPHIsToFix.size()) { 3687 assert(EnableVPlanNativePath && 3688 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3689 fixNonInductionPHIs(State); 3690 } 3691 3692 // At this point every instruction in the original loop is widened to a 3693 // vector form. Now we need to fix the recurrences in the loop. These PHI 3694 // nodes are currently empty because we did not want to introduce cycles. 3695 // This is the second stage of vectorizing recurrences. 3696 fixCrossIterationPHIs(State); 3697 3698 // Forget the original basic block. 3699 PSE.getSE()->forgetLoop(OrigLoop); 3700 3701 VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitBasicBlock(); 3702 Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]); 3703 // If we inserted an edge from the middle block to the unique exit block, 3704 // update uses outside the loop (phis) to account for the newly inserted 3705 // edge. 3706 if (!Cost->requiresScalarEpilogue(VF)) { 3707 // Fix-up external users of the induction variables. 3708 for (auto &Entry : Legal->getInductionVars()) 3709 fixupIVUsers(Entry.first, Entry.second, 3710 getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()), 3711 IVEndValues[Entry.first], LoopMiddleBlock, 3712 VectorLoop->getHeader()); 3713 3714 fixLCSSAPHIs(State); 3715 } 3716 3717 for (Instruction *PI : PredicatedInstructions) 3718 sinkScalarOperands(&*PI); 3719 3720 // Remove redundant induction instructions. 3721 cse(VectorLoop->getHeader()); 3722 3723 // Set/update profile weights for the vector and remainder loops as original 3724 // loop iterations are now distributed among them. Note that original loop 3725 // represented by LoopScalarBody becomes remainder loop after vectorization. 3726 // 3727 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3728 // end up getting slightly roughened result but that should be OK since 3729 // profile is not inherently precise anyway. Note also possible bypass of 3730 // vector code caused by legality checks is ignored, assigning all the weight 3731 // to the vector loop, optimistically. 3732 // 3733 // For scalable vectorization we can't know at compile time how many iterations 3734 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3735 // vscale of '1'. 3736 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, 3737 LI->getLoopFor(LoopScalarBody), 3738 VF.getKnownMinValue() * UF); 3739 } 3740 3741 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3742 // In order to support recurrences we need to be able to vectorize Phi nodes. 3743 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3744 // stage #2: We now need to fix the recurrences by adding incoming edges to 3745 // the currently empty PHI nodes. At this point every instruction in the 3746 // original loop is widened to a vector form so we can use them to construct 3747 // the incoming edges. 3748 VPBasicBlock *Header = 3749 State.Plan->getVectorLoopRegion()->getEntryBasicBlock(); 3750 for (VPRecipeBase &R : Header->phis()) { 3751 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3752 fixReduction(ReductionPhi, State); 3753 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3754 fixFirstOrderRecurrence(FOR, State); 3755 } 3756 } 3757 3758 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3759 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3760 // This is the second phase of vectorizing first-order recurrences. An 3761 // overview of the transformation is described below. Suppose we have the 3762 // following loop. 3763 // 3764 // for (int i = 0; i < n; ++i) 3765 // b[i] = a[i] - a[i - 1]; 3766 // 3767 // There is a first-order recurrence on "a". For this loop, the shorthand 3768 // scalar IR looks like: 3769 // 3770 // scalar.ph: 3771 // s_init = a[-1] 3772 // br scalar.body 3773 // 3774 // scalar.body: 3775 // i = phi [0, scalar.ph], [i+1, scalar.body] 3776 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3777 // s2 = a[i] 3778 // b[i] = s2 - s1 3779 // br cond, scalar.body, ... 3780 // 3781 // In this example, s1 is a recurrence because it's value depends on the 3782 // previous iteration. In the first phase of vectorization, we created a 3783 // vector phi v1 for s1. We now complete the vectorization and produce the 3784 // shorthand vector IR shown below (for VF = 4, UF = 1). 3785 // 3786 // vector.ph: 3787 // v_init = vector(..., ..., ..., a[-1]) 3788 // br vector.body 3789 // 3790 // vector.body 3791 // i = phi [0, vector.ph], [i+4, vector.body] 3792 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3793 // v2 = a[i, i+1, i+2, i+3]; 3794 // v3 = vector(v1(3), v2(0, 1, 2)) 3795 // b[i, i+1, i+2, i+3] = v2 - v3 3796 // br cond, vector.body, middle.block 3797 // 3798 // middle.block: 3799 // x = v2(3) 3800 // br scalar.ph 3801 // 3802 // scalar.ph: 3803 // s_init = phi [x, middle.block], [a[-1], otherwise] 3804 // br scalar.body 3805 // 3806 // After execution completes the vector loop, we extract the next value of 3807 // the recurrence (x) to use as the initial value in the scalar loop. 3808 3809 // Extract the last vector element in the middle block. This will be the 3810 // initial value for the recurrence when jumping to the scalar loop. 3811 VPValue *PreviousDef = PhiR->getBackedgeValue(); 3812 Value *Incoming = State.get(PreviousDef, UF - 1); 3813 auto *ExtractForScalar = Incoming; 3814 auto *IdxTy = Builder.getInt32Ty(); 3815 if (VF.isVector()) { 3816 auto *One = ConstantInt::get(IdxTy, 1); 3817 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3818 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3819 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 3820 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 3821 "vector.recur.extract"); 3822 } 3823 // Extract the second last element in the middle block if the 3824 // Phi is used outside the loop. We need to extract the phi itself 3825 // and not the last element (the phi update in the current iteration). This 3826 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3827 // when the scalar loop is not run at all. 3828 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3829 if (VF.isVector()) { 3830 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3831 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 3832 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3833 Incoming, Idx, "vector.recur.extract.for.phi"); 3834 } else if (UF > 1) 3835 // When loop is unrolled without vectorizing, initialize 3836 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 3837 // of `Incoming`. This is analogous to the vectorized case above: extracting 3838 // the second last element when VF > 1. 3839 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 3840 3841 // Fix the initial value of the original recurrence in the scalar loop. 3842 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3843 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 3844 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3845 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 3846 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3847 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3848 Start->addIncoming(Incoming, BB); 3849 } 3850 3851 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3852 Phi->setName("scalar.recur"); 3853 3854 // Finally, fix users of the recurrence outside the loop. The users will need 3855 // either the last value of the scalar recurrence or the last value of the 3856 // vector recurrence we extracted in the middle block. Since the loop is in 3857 // LCSSA form, we just need to find all the phi nodes for the original scalar 3858 // recurrence in the exit block, and then add an edge for the middle block. 3859 // Note that LCSSA does not imply single entry when the original scalar loop 3860 // had multiple exiting edges (as we always run the last iteration in the 3861 // scalar epilogue); in that case, there is no edge from middle to exit and 3862 // and thus no phis which needed updated. 3863 if (!Cost->requiresScalarEpilogue(VF)) 3864 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 3865 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 3866 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3867 } 3868 3869 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 3870 VPTransformState &State) { 3871 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 3872 // Get it's reduction variable descriptor. 3873 assert(Legal->isReductionVariable(OrigPhi) && 3874 "Unable to find the reduction variable"); 3875 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 3876 3877 RecurKind RK = RdxDesc.getRecurrenceKind(); 3878 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3879 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3880 setDebugLocFromInst(ReductionStartValue); 3881 3882 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 3883 // This is the vector-clone of the value that leaves the loop. 3884 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 3885 3886 // Wrap flags are in general invalid after vectorization, clear them. 3887 clearReductionWrapFlags(PhiR, State); 3888 3889 // Before each round, move the insertion point right between 3890 // the PHIs and the values we are going to write. 3891 // This allows us to write both PHINodes and the extractelement 3892 // instructions. 3893 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3894 3895 setDebugLocFromInst(LoopExitInst); 3896 3897 Type *PhiTy = OrigPhi->getType(); 3898 3899 VPBasicBlock *LatchVPBB = 3900 PhiR->getParent()->getEnclosingLoopRegion()->getExitBasicBlock(); 3901 BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB]; 3902 // If tail is folded by masking, the vector value to leave the loop should be 3903 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3904 // instead of the former. For an inloop reduction the reduction will already 3905 // be predicated, and does not need to be handled here. 3906 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 3907 for (unsigned Part = 0; Part < UF; ++Part) { 3908 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 3909 Value *Sel = nullptr; 3910 for (User *U : VecLoopExitInst->users()) { 3911 if (isa<SelectInst>(U)) { 3912 assert(!Sel && "Reduction exit feeding two selects"); 3913 Sel = U; 3914 } else 3915 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3916 } 3917 assert(Sel && "Reduction exit feeds no select"); 3918 State.reset(LoopExitInstDef, Sel, Part); 3919 3920 // If the target can create a predicated operator for the reduction at no 3921 // extra cost in the loop (for example a predicated vadd), it can be 3922 // cheaper for the select to remain in the loop than be sunk out of it, 3923 // and so use the select value for the phi instead of the old 3924 // LoopExitValue. 3925 if (PreferPredicatedReductionSelect || 3926 TTI->preferPredicatedReductionSelect( 3927 RdxDesc.getOpcode(), PhiTy, 3928 TargetTransformInfo::ReductionFlags())) { 3929 auto *VecRdxPhi = 3930 cast<PHINode>(State.get(PhiR, Part)); 3931 VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); 3932 } 3933 } 3934 } 3935 3936 // If the vector reduction can be performed in a smaller type, we truncate 3937 // then extend the loop exit value to enable InstCombine to evaluate the 3938 // entire expression in the smaller type. 3939 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 3940 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 3941 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3942 Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); 3943 VectorParts RdxParts(UF); 3944 for (unsigned Part = 0; Part < UF; ++Part) { 3945 RdxParts[Part] = State.get(LoopExitInstDef, Part); 3946 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3947 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3948 : Builder.CreateZExt(Trunc, VecTy); 3949 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 3950 if (U != Trunc) { 3951 U->replaceUsesOfWith(RdxParts[Part], Extnd); 3952 RdxParts[Part] = Extnd; 3953 } 3954 } 3955 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3956 for (unsigned Part = 0; Part < UF; ++Part) { 3957 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3958 State.reset(LoopExitInstDef, RdxParts[Part], Part); 3959 } 3960 } 3961 3962 // Reduce all of the unrolled parts into a single vector. 3963 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 3964 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 3965 3966 // The middle block terminator has already been assigned a DebugLoc here (the 3967 // OrigLoop's single latch terminator). We want the whole middle block to 3968 // appear to execute on this line because: (a) it is all compiler generated, 3969 // (b) these instructions are always executed after evaluating the latch 3970 // conditional branch, and (c) other passes may add new predecessors which 3971 // terminate on this line. This is the easiest way to ensure we don't 3972 // accidentally cause an extra step back into the loop while debugging. 3973 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 3974 if (PhiR->isOrdered()) 3975 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 3976 else { 3977 // Floating-point operations should have some FMF to enable the reduction. 3978 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 3979 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 3980 for (unsigned Part = 1; Part < UF; ++Part) { 3981 Value *RdxPart = State.get(LoopExitInstDef, Part); 3982 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 3983 ReducedPartRdx = Builder.CreateBinOp( 3984 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 3985 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 3986 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 3987 ReducedPartRdx, RdxPart); 3988 else 3989 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 3990 } 3991 } 3992 3993 // Create the reduction after the loop. Note that inloop reductions create the 3994 // target reduction in the loop using a Reduction recipe. 3995 if (VF.isVector() && !PhiR->isInLoop()) { 3996 ReducedPartRdx = 3997 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 3998 // If the reduction can be performed in a smaller type, we need to extend 3999 // the reduction to the wider type before we branch to the original loop. 4000 if (PhiTy != RdxDesc.getRecurrenceType()) 4001 ReducedPartRdx = RdxDesc.isSigned() 4002 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4003 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4004 } 4005 4006 PHINode *ResumePhi = 4007 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 4008 4009 // Create a phi node that merges control-flow from the backedge-taken check 4010 // block and the middle block. 4011 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4012 LoopScalarPreHeader->getTerminator()); 4013 4014 // If we are fixing reductions in the epilogue loop then we should already 4015 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 4016 // we carry over the incoming values correctly. 4017 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 4018 if (Incoming == LoopMiddleBlock) 4019 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 4020 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 4021 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 4022 Incoming); 4023 else 4024 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 4025 } 4026 4027 // Set the resume value for this reduction 4028 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4029 4030 // If there were stores of the reduction value to a uniform memory address 4031 // inside the loop, create the final store here. 4032 if (StoreInst *SI = RdxDesc.IntermediateStore) { 4033 StoreInst *NewSI = 4034 Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand()); 4035 propagateMetadata(NewSI, SI); 4036 4037 // If the reduction value is used in other places, 4038 // then let the code below create PHI's for that. 4039 } 4040 4041 // Now, we need to fix the users of the reduction variable 4042 // inside and outside of the scalar remainder loop. 4043 4044 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4045 // in the exit blocks. See comment on analogous loop in 4046 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4047 if (!Cost->requiresScalarEpilogue(VF)) 4048 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4049 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4050 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4051 4052 // Fix the scalar loop reduction variable with the incoming reduction sum 4053 // from the vector body and from the backedge value. 4054 int IncomingEdgeBlockIdx = 4055 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4056 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4057 // Pick the other block. 4058 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4059 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4060 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4061 } 4062 4063 void InnerLoopVectorizer::clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, 4064 VPTransformState &State) { 4065 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4066 RecurKind RK = RdxDesc.getRecurrenceKind(); 4067 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4068 return; 4069 4070 SmallVector<VPValue *, 8> Worklist; 4071 SmallPtrSet<VPValue *, 8> Visited; 4072 Worklist.push_back(PhiR); 4073 Visited.insert(PhiR); 4074 4075 while (!Worklist.empty()) { 4076 VPValue *Cur = Worklist.pop_back_val(); 4077 for (unsigned Part = 0; Part < UF; ++Part) { 4078 Value *V = State.get(Cur, Part); 4079 if (!isa<OverflowingBinaryOperator>(V)) 4080 break; 4081 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4082 } 4083 4084 for (VPUser *U : Cur->users()) { 4085 auto *UserRecipe = dyn_cast<VPRecipeBase>(U); 4086 if (!UserRecipe) 4087 continue; 4088 for (VPValue *V : UserRecipe->definedValues()) 4089 if (Visited.insert(V).second) 4090 Worklist.push_back(V); 4091 } 4092 } 4093 } 4094 4095 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4096 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4097 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4098 // Some phis were already hand updated by the reduction and recurrence 4099 // code above, leave them alone. 4100 continue; 4101 4102 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4103 // Non-instruction incoming values will have only one value. 4104 4105 VPLane Lane = VPLane::getFirstLane(); 4106 if (isa<Instruction>(IncomingValue) && 4107 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4108 VF)) 4109 Lane = VPLane::getLastLaneForVF(VF); 4110 4111 // Can be a loop invariant incoming value or the last scalar value to be 4112 // extracted from the vectorized loop. 4113 // FIXME: Should not rely on getVPValue at this point. 4114 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4115 Value *lastIncomingValue = 4116 OrigLoop->isLoopInvariant(IncomingValue) 4117 ? IncomingValue 4118 : State.get(State.Plan->getVPValue(IncomingValue, true), 4119 VPIteration(UF - 1, Lane)); 4120 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4121 } 4122 } 4123 4124 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4125 // The basic block and loop containing the predicated instruction. 4126 auto *PredBB = PredInst->getParent(); 4127 auto *VectorLoop = LI->getLoopFor(PredBB); 4128 4129 // Initialize a worklist with the operands of the predicated instruction. 4130 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4131 4132 // Holds instructions that we need to analyze again. An instruction may be 4133 // reanalyzed if we don't yet know if we can sink it or not. 4134 SmallVector<Instruction *, 8> InstsToReanalyze; 4135 4136 // Returns true if a given use occurs in the predicated block. Phi nodes use 4137 // their operands in their corresponding predecessor blocks. 4138 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4139 auto *I = cast<Instruction>(U.getUser()); 4140 BasicBlock *BB = I->getParent(); 4141 if (auto *Phi = dyn_cast<PHINode>(I)) 4142 BB = Phi->getIncomingBlock( 4143 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4144 return BB == PredBB; 4145 }; 4146 4147 // Iteratively sink the scalarized operands of the predicated instruction 4148 // into the block we created for it. When an instruction is sunk, it's 4149 // operands are then added to the worklist. The algorithm ends after one pass 4150 // through the worklist doesn't sink a single instruction. 4151 bool Changed; 4152 do { 4153 // Add the instructions that need to be reanalyzed to the worklist, and 4154 // reset the changed indicator. 4155 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4156 InstsToReanalyze.clear(); 4157 Changed = false; 4158 4159 while (!Worklist.empty()) { 4160 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4161 4162 // We can't sink an instruction if it is a phi node, is not in the loop, 4163 // or may have side effects. 4164 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4165 I->mayHaveSideEffects()) 4166 continue; 4167 4168 // If the instruction is already in PredBB, check if we can sink its 4169 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4170 // sinking the scalar instruction I, hence it appears in PredBB; but it 4171 // may have failed to sink I's operands (recursively), which we try 4172 // (again) here. 4173 if (I->getParent() == PredBB) { 4174 Worklist.insert(I->op_begin(), I->op_end()); 4175 continue; 4176 } 4177 4178 // It's legal to sink the instruction if all its uses occur in the 4179 // predicated block. Otherwise, there's nothing to do yet, and we may 4180 // need to reanalyze the instruction. 4181 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4182 InstsToReanalyze.push_back(I); 4183 continue; 4184 } 4185 4186 // Move the instruction to the beginning of the predicated block, and add 4187 // it's operands to the worklist. 4188 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4189 Worklist.insert(I->op_begin(), I->op_end()); 4190 4191 // The sinking may have enabled other instructions to be sunk, so we will 4192 // need to iterate. 4193 Changed = true; 4194 } 4195 } while (Changed); 4196 } 4197 4198 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4199 for (PHINode *OrigPhi : OrigPHIsToFix) { 4200 VPWidenPHIRecipe *VPPhi = 4201 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4202 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4203 // Make sure the builder has a valid insert point. 4204 Builder.SetInsertPoint(NewPhi); 4205 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4206 VPValue *Inc = VPPhi->getIncomingValue(i); 4207 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4208 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4209 } 4210 } 4211 } 4212 4213 bool InnerLoopVectorizer::useOrderedReductions( 4214 const RecurrenceDescriptor &RdxDesc) { 4215 return Cost->useOrderedReductions(RdxDesc); 4216 } 4217 4218 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4219 VPWidenPHIRecipe *PhiR, 4220 VPTransformState &State) { 4221 assert(EnableVPlanNativePath && 4222 "Non-native vplans are not expected to have VPWidenPHIRecipes."); 4223 // Currently we enter here in the VPlan-native path for non-induction 4224 // PHIs where all control flow is uniform. We simply widen these PHIs. 4225 // Create a vector phi with no operands - the vector phi operands will be 4226 // set at the end of vector code generation. 4227 Type *VecTy = (State.VF.isScalar()) 4228 ? PN->getType() 4229 : VectorType::get(PN->getType(), State.VF); 4230 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4231 State.set(PhiR, VecPhi, 0); 4232 OrigPHIsToFix.push_back(cast<PHINode>(PN)); 4233 } 4234 4235 /// A helper function for checking whether an integer division-related 4236 /// instruction may divide by zero (in which case it must be predicated if 4237 /// executed conditionally in the scalar code). 4238 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4239 /// Non-zero divisors that are non compile-time constants will not be 4240 /// converted into multiplication, so we will still end up scalarizing 4241 /// the division, but can do so w/o predication. 4242 static bool mayDivideByZero(Instruction &I) { 4243 assert((I.getOpcode() == Instruction::UDiv || 4244 I.getOpcode() == Instruction::SDiv || 4245 I.getOpcode() == Instruction::URem || 4246 I.getOpcode() == Instruction::SRem) && 4247 "Unexpected instruction"); 4248 Value *Divisor = I.getOperand(1); 4249 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4250 return !CInt || CInt->isZero(); 4251 } 4252 4253 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4254 VPUser &ArgOperands, 4255 VPTransformState &State) { 4256 assert(!isa<DbgInfoIntrinsic>(I) && 4257 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4258 setDebugLocFromInst(&I); 4259 4260 Module *M = I.getParent()->getParent()->getParent(); 4261 auto *CI = cast<CallInst>(&I); 4262 4263 SmallVector<Type *, 4> Tys; 4264 for (Value *ArgOperand : CI->args()) 4265 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4266 4267 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4268 4269 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4270 // version of the instruction. 4271 // Is it beneficial to perform intrinsic call compared to lib call? 4272 bool NeedToScalarize = false; 4273 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4274 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4275 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4276 assert((UseVectorIntrinsic || !NeedToScalarize) && 4277 "Instruction should be scalarized elsewhere."); 4278 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4279 "Either the intrinsic cost or vector call cost must be valid"); 4280 4281 for (unsigned Part = 0; Part < UF; ++Part) { 4282 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4283 SmallVector<Value *, 4> Args; 4284 for (auto &I : enumerate(ArgOperands.operands())) { 4285 // Some intrinsics have a scalar argument - don't replace it with a 4286 // vector. 4287 Value *Arg; 4288 if (!UseVectorIntrinsic || 4289 !isVectorIntrinsicWithScalarOpAtArg(ID, I.index())) 4290 Arg = State.get(I.value(), Part); 4291 else 4292 Arg = State.get(I.value(), VPIteration(0, 0)); 4293 if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I.index())) 4294 TysForDecl.push_back(Arg->getType()); 4295 Args.push_back(Arg); 4296 } 4297 4298 Function *VectorF; 4299 if (UseVectorIntrinsic) { 4300 // Use vector version of the intrinsic. 4301 if (VF.isVector()) 4302 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4303 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4304 assert(VectorF && "Can't retrieve vector intrinsic."); 4305 } else { 4306 // Use vector version of the function call. 4307 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4308 #ifndef NDEBUG 4309 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4310 "Can't create vector function."); 4311 #endif 4312 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4313 } 4314 SmallVector<OperandBundleDef, 1> OpBundles; 4315 CI->getOperandBundlesAsDefs(OpBundles); 4316 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4317 4318 if (isa<FPMathOperator>(V)) 4319 V->copyFastMathFlags(CI); 4320 4321 State.set(Def, V, Part); 4322 addMetadata(V, &I); 4323 } 4324 } 4325 4326 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4327 // We should not collect Scalars more than once per VF. Right now, this 4328 // function is called from collectUniformsAndScalars(), which already does 4329 // this check. Collecting Scalars for VF=1 does not make any sense. 4330 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4331 "This function should not be visited twice for the same VF"); 4332 4333 // This avoids any chances of creating a REPLICATE recipe during planning 4334 // since that would result in generation of scalarized code during execution, 4335 // which is not supported for scalable vectors. 4336 if (VF.isScalable()) { 4337 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4338 return; 4339 } 4340 4341 SmallSetVector<Instruction *, 8> Worklist; 4342 4343 // These sets are used to seed the analysis with pointers used by memory 4344 // accesses that will remain scalar. 4345 SmallSetVector<Instruction *, 8> ScalarPtrs; 4346 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4347 auto *Latch = TheLoop->getLoopLatch(); 4348 4349 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4350 // The pointer operands of loads and stores will be scalar as long as the 4351 // memory access is not a gather or scatter operation. The value operand of a 4352 // store will remain scalar if the store is scalarized. 4353 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4354 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4355 assert(WideningDecision != CM_Unknown && 4356 "Widening decision should be ready at this moment"); 4357 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4358 if (Ptr == Store->getValueOperand()) 4359 return WideningDecision == CM_Scalarize; 4360 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4361 "Ptr is neither a value or pointer operand"); 4362 return WideningDecision != CM_GatherScatter; 4363 }; 4364 4365 // A helper that returns true if the given value is a bitcast or 4366 // getelementptr instruction contained in the loop. 4367 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4368 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4369 isa<GetElementPtrInst>(V)) && 4370 !TheLoop->isLoopInvariant(V); 4371 }; 4372 4373 // A helper that evaluates a memory access's use of a pointer. If the use will 4374 // be a scalar use and the pointer is only used by memory accesses, we place 4375 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4376 // PossibleNonScalarPtrs. 4377 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4378 // We only care about bitcast and getelementptr instructions contained in 4379 // the loop. 4380 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4381 return; 4382 4383 // If the pointer has already been identified as scalar (e.g., if it was 4384 // also identified as uniform), there's nothing to do. 4385 auto *I = cast<Instruction>(Ptr); 4386 if (Worklist.count(I)) 4387 return; 4388 4389 // If the use of the pointer will be a scalar use, and all users of the 4390 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4391 // place the pointer in PossibleNonScalarPtrs. 4392 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4393 return isa<LoadInst>(U) || isa<StoreInst>(U); 4394 })) 4395 ScalarPtrs.insert(I); 4396 else 4397 PossibleNonScalarPtrs.insert(I); 4398 }; 4399 4400 // We seed the scalars analysis with three classes of instructions: (1) 4401 // instructions marked uniform-after-vectorization and (2) bitcast, 4402 // getelementptr and (pointer) phi instructions used by memory accesses 4403 // requiring a scalar use. 4404 // 4405 // (1) Add to the worklist all instructions that have been identified as 4406 // uniform-after-vectorization. 4407 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4408 4409 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4410 // memory accesses requiring a scalar use. The pointer operands of loads and 4411 // stores will be scalar as long as the memory accesses is not a gather or 4412 // scatter operation. The value operand of a store will remain scalar if the 4413 // store is scalarized. 4414 for (auto *BB : TheLoop->blocks()) 4415 for (auto &I : *BB) { 4416 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4417 evaluatePtrUse(Load, Load->getPointerOperand()); 4418 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4419 evaluatePtrUse(Store, Store->getPointerOperand()); 4420 evaluatePtrUse(Store, Store->getValueOperand()); 4421 } 4422 } 4423 for (auto *I : ScalarPtrs) 4424 if (!PossibleNonScalarPtrs.count(I)) { 4425 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4426 Worklist.insert(I); 4427 } 4428 4429 // Insert the forced scalars. 4430 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4431 // induction variable when the PHI user is scalarized. 4432 auto ForcedScalar = ForcedScalars.find(VF); 4433 if (ForcedScalar != ForcedScalars.end()) 4434 for (auto *I : ForcedScalar->second) 4435 Worklist.insert(I); 4436 4437 // Expand the worklist by looking through any bitcasts and getelementptr 4438 // instructions we've already identified as scalar. This is similar to the 4439 // expansion step in collectLoopUniforms(); however, here we're only 4440 // expanding to include additional bitcasts and getelementptr instructions. 4441 unsigned Idx = 0; 4442 while (Idx != Worklist.size()) { 4443 Instruction *Dst = Worklist[Idx++]; 4444 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4445 continue; 4446 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4447 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4448 auto *J = cast<Instruction>(U); 4449 return !TheLoop->contains(J) || Worklist.count(J) || 4450 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4451 isScalarUse(J, Src)); 4452 })) { 4453 Worklist.insert(Src); 4454 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4455 } 4456 } 4457 4458 // An induction variable will remain scalar if all users of the induction 4459 // variable and induction variable update remain scalar. 4460 for (auto &Induction : Legal->getInductionVars()) { 4461 auto *Ind = Induction.first; 4462 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4463 4464 // If tail-folding is applied, the primary induction variable will be used 4465 // to feed a vector compare. 4466 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4467 continue; 4468 4469 // Returns true if \p Indvar is a pointer induction that is used directly by 4470 // load/store instruction \p I. 4471 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4472 Instruction *I) { 4473 return Induction.second.getKind() == 4474 InductionDescriptor::IK_PtrInduction && 4475 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4476 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4477 }; 4478 4479 // Determine if all users of the induction variable are scalar after 4480 // vectorization. 4481 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4482 auto *I = cast<Instruction>(U); 4483 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4484 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4485 }); 4486 if (!ScalarInd) 4487 continue; 4488 4489 // Determine if all users of the induction variable update instruction are 4490 // scalar after vectorization. 4491 auto ScalarIndUpdate = 4492 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4493 auto *I = cast<Instruction>(U); 4494 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4495 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4496 }); 4497 if (!ScalarIndUpdate) 4498 continue; 4499 4500 // The induction variable and its update instruction will remain scalar. 4501 Worklist.insert(Ind); 4502 Worklist.insert(IndUpdate); 4503 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4504 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4505 << "\n"); 4506 } 4507 4508 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4509 } 4510 4511 bool LoopVectorizationCostModel::isScalarWithPredication( 4512 Instruction *I, ElementCount VF) const { 4513 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4514 return false; 4515 switch(I->getOpcode()) { 4516 default: 4517 break; 4518 case Instruction::Load: 4519 case Instruction::Store: { 4520 if (!Legal->isMaskRequired(I)) 4521 return false; 4522 auto *Ptr = getLoadStorePointerOperand(I); 4523 auto *Ty = getLoadStoreType(I); 4524 Type *VTy = Ty; 4525 if (VF.isVector()) 4526 VTy = VectorType::get(Ty, VF); 4527 const Align Alignment = getLoadStoreAlignment(I); 4528 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4529 TTI.isLegalMaskedGather(VTy, Alignment)) 4530 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4531 TTI.isLegalMaskedScatter(VTy, Alignment)); 4532 } 4533 case Instruction::UDiv: 4534 case Instruction::SDiv: 4535 case Instruction::SRem: 4536 case Instruction::URem: 4537 return mayDivideByZero(*I); 4538 } 4539 return false; 4540 } 4541 4542 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4543 Instruction *I, ElementCount VF) { 4544 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4545 assert(getWideningDecision(I, VF) == CM_Unknown && 4546 "Decision should not be set yet."); 4547 auto *Group = getInterleavedAccessGroup(I); 4548 assert(Group && "Must have a group."); 4549 4550 // If the instruction's allocated size doesn't equal it's type size, it 4551 // requires padding and will be scalarized. 4552 auto &DL = I->getModule()->getDataLayout(); 4553 auto *ScalarTy = getLoadStoreType(I); 4554 if (hasIrregularType(ScalarTy, DL)) 4555 return false; 4556 4557 // If the group involves a non-integral pointer, we may not be able to 4558 // losslessly cast all values to a common type. 4559 unsigned InterleaveFactor = Group->getFactor(); 4560 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy); 4561 for (unsigned i = 0; i < InterleaveFactor; i++) { 4562 Instruction *Member = Group->getMember(i); 4563 if (!Member) 4564 continue; 4565 auto *MemberTy = getLoadStoreType(Member); 4566 bool MemberNI = DL.isNonIntegralPointerType(MemberTy); 4567 // Don't coerce non-integral pointers to integers or vice versa. 4568 if (MemberNI != ScalarNI) { 4569 // TODO: Consider adding special nullptr value case here 4570 return false; 4571 } else if (MemberNI && ScalarNI && 4572 ScalarTy->getPointerAddressSpace() != 4573 MemberTy->getPointerAddressSpace()) { 4574 return false; 4575 } 4576 } 4577 4578 // Check if masking is required. 4579 // A Group may need masking for one of two reasons: it resides in a block that 4580 // needs predication, or it was decided to use masking to deal with gaps 4581 // (either a gap at the end of a load-access that may result in a speculative 4582 // load, or any gaps in a store-access). 4583 bool PredicatedAccessRequiresMasking = 4584 blockNeedsPredicationForAnyReason(I->getParent()) && 4585 Legal->isMaskRequired(I); 4586 bool LoadAccessWithGapsRequiresEpilogMasking = 4587 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4588 !isScalarEpilogueAllowed(); 4589 bool StoreAccessWithGapsRequiresMasking = 4590 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4591 if (!PredicatedAccessRequiresMasking && 4592 !LoadAccessWithGapsRequiresEpilogMasking && 4593 !StoreAccessWithGapsRequiresMasking) 4594 return true; 4595 4596 // If masked interleaving is required, we expect that the user/target had 4597 // enabled it, because otherwise it either wouldn't have been created or 4598 // it should have been invalidated by the CostModel. 4599 assert(useMaskedInterleavedAccesses(TTI) && 4600 "Masked interleave-groups for predicated accesses are not enabled."); 4601 4602 if (Group->isReverse()) 4603 return false; 4604 4605 auto *Ty = getLoadStoreType(I); 4606 const Align Alignment = getLoadStoreAlignment(I); 4607 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4608 : TTI.isLegalMaskedStore(Ty, Alignment); 4609 } 4610 4611 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4612 Instruction *I, ElementCount VF) { 4613 // Get and ensure we have a valid memory instruction. 4614 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4615 4616 auto *Ptr = getLoadStorePointerOperand(I); 4617 auto *ScalarTy = getLoadStoreType(I); 4618 4619 // In order to be widened, the pointer should be consecutive, first of all. 4620 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4621 return false; 4622 4623 // If the instruction is a store located in a predicated block, it will be 4624 // scalarized. 4625 if (isScalarWithPredication(I, VF)) 4626 return false; 4627 4628 // If the instruction's allocated size doesn't equal it's type size, it 4629 // requires padding and will be scalarized. 4630 auto &DL = I->getModule()->getDataLayout(); 4631 if (hasIrregularType(ScalarTy, DL)) 4632 return false; 4633 4634 return true; 4635 } 4636 4637 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4638 // We should not collect Uniforms more than once per VF. Right now, 4639 // this function is called from collectUniformsAndScalars(), which 4640 // already does this check. Collecting Uniforms for VF=1 does not make any 4641 // sense. 4642 4643 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4644 "This function should not be visited twice for the same VF"); 4645 4646 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4647 // not analyze again. Uniforms.count(VF) will return 1. 4648 Uniforms[VF].clear(); 4649 4650 // We now know that the loop is vectorizable! 4651 // Collect instructions inside the loop that will remain uniform after 4652 // vectorization. 4653 4654 // Global values, params and instructions outside of current loop are out of 4655 // scope. 4656 auto isOutOfScope = [&](Value *V) -> bool { 4657 Instruction *I = dyn_cast<Instruction>(V); 4658 return (!I || !TheLoop->contains(I)); 4659 }; 4660 4661 // Worklist containing uniform instructions demanding lane 0. 4662 SetVector<Instruction *> Worklist; 4663 BasicBlock *Latch = TheLoop->getLoopLatch(); 4664 4665 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4666 // that are scalar with predication must not be considered uniform after 4667 // vectorization, because that would create an erroneous replicating region 4668 // where only a single instance out of VF should be formed. 4669 // TODO: optimize such seldom cases if found important, see PR40816. 4670 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4671 if (isOutOfScope(I)) { 4672 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4673 << *I << "\n"); 4674 return; 4675 } 4676 if (isScalarWithPredication(I, VF)) { 4677 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4678 << *I << "\n"); 4679 return; 4680 } 4681 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4682 Worklist.insert(I); 4683 }; 4684 4685 // Start with the conditional branch. If the branch condition is an 4686 // instruction contained in the loop that is only used by the branch, it is 4687 // uniform. 4688 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4689 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4690 addToWorklistIfAllowed(Cmp); 4691 4692 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 4693 InstWidening WideningDecision = getWideningDecision(I, VF); 4694 assert(WideningDecision != CM_Unknown && 4695 "Widening decision should be ready at this moment"); 4696 4697 // A uniform memory op is itself uniform. We exclude uniform stores 4698 // here as they demand the last lane, not the first one. 4699 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 4700 assert(WideningDecision == CM_Scalarize); 4701 return true; 4702 } 4703 4704 return (WideningDecision == CM_Widen || 4705 WideningDecision == CM_Widen_Reverse || 4706 WideningDecision == CM_Interleave); 4707 }; 4708 4709 4710 // Returns true if Ptr is the pointer operand of a memory access instruction 4711 // I, and I is known to not require scalarization. 4712 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4713 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4714 }; 4715 4716 // Holds a list of values which are known to have at least one uniform use. 4717 // Note that there may be other uses which aren't uniform. A "uniform use" 4718 // here is something which only demands lane 0 of the unrolled iterations; 4719 // it does not imply that all lanes produce the same value (e.g. this is not 4720 // the usual meaning of uniform) 4721 SetVector<Value *> HasUniformUse; 4722 4723 // Scan the loop for instructions which are either a) known to have only 4724 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 4725 for (auto *BB : TheLoop->blocks()) 4726 for (auto &I : *BB) { 4727 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 4728 switch (II->getIntrinsicID()) { 4729 case Intrinsic::sideeffect: 4730 case Intrinsic::experimental_noalias_scope_decl: 4731 case Intrinsic::assume: 4732 case Intrinsic::lifetime_start: 4733 case Intrinsic::lifetime_end: 4734 if (TheLoop->hasLoopInvariantOperands(&I)) 4735 addToWorklistIfAllowed(&I); 4736 break; 4737 default: 4738 break; 4739 } 4740 } 4741 4742 // ExtractValue instructions must be uniform, because the operands are 4743 // known to be loop-invariant. 4744 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 4745 assert(isOutOfScope(EVI->getAggregateOperand()) && 4746 "Expected aggregate value to be loop invariant"); 4747 addToWorklistIfAllowed(EVI); 4748 continue; 4749 } 4750 4751 // If there's no pointer operand, there's nothing to do. 4752 auto *Ptr = getLoadStorePointerOperand(&I); 4753 if (!Ptr) 4754 continue; 4755 4756 // A uniform memory op is itself uniform. We exclude uniform stores 4757 // here as they demand the last lane, not the first one. 4758 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 4759 addToWorklistIfAllowed(&I); 4760 4761 if (isUniformDecision(&I, VF)) { 4762 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 4763 HasUniformUse.insert(Ptr); 4764 } 4765 } 4766 4767 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 4768 // demanding) users. Since loops are assumed to be in LCSSA form, this 4769 // disallows uses outside the loop as well. 4770 for (auto *V : HasUniformUse) { 4771 if (isOutOfScope(V)) 4772 continue; 4773 auto *I = cast<Instruction>(V); 4774 auto UsersAreMemAccesses = 4775 llvm::all_of(I->users(), [&](User *U) -> bool { 4776 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 4777 }); 4778 if (UsersAreMemAccesses) 4779 addToWorklistIfAllowed(I); 4780 } 4781 4782 // Expand Worklist in topological order: whenever a new instruction 4783 // is added , its users should be already inside Worklist. It ensures 4784 // a uniform instruction will only be used by uniform instructions. 4785 unsigned idx = 0; 4786 while (idx != Worklist.size()) { 4787 Instruction *I = Worklist[idx++]; 4788 4789 for (auto OV : I->operand_values()) { 4790 // isOutOfScope operands cannot be uniform instructions. 4791 if (isOutOfScope(OV)) 4792 continue; 4793 // First order recurrence Phi's should typically be considered 4794 // non-uniform. 4795 auto *OP = dyn_cast<PHINode>(OV); 4796 if (OP && Legal->isFirstOrderRecurrence(OP)) 4797 continue; 4798 // If all the users of the operand are uniform, then add the 4799 // operand into the uniform worklist. 4800 auto *OI = cast<Instruction>(OV); 4801 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4802 auto *J = cast<Instruction>(U); 4803 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 4804 })) 4805 addToWorklistIfAllowed(OI); 4806 } 4807 } 4808 4809 // For an instruction to be added into Worklist above, all its users inside 4810 // the loop should also be in Worklist. However, this condition cannot be 4811 // true for phi nodes that form a cyclic dependence. We must process phi 4812 // nodes separately. An induction variable will remain uniform if all users 4813 // of the induction variable and induction variable update remain uniform. 4814 // The code below handles both pointer and non-pointer induction variables. 4815 for (auto &Induction : Legal->getInductionVars()) { 4816 auto *Ind = Induction.first; 4817 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4818 4819 // Determine if all users of the induction variable are uniform after 4820 // vectorization. 4821 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4822 auto *I = cast<Instruction>(U); 4823 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4824 isVectorizedMemAccessUse(I, Ind); 4825 }); 4826 if (!UniformInd) 4827 continue; 4828 4829 // Determine if all users of the induction variable update instruction are 4830 // uniform after vectorization. 4831 auto UniformIndUpdate = 4832 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4833 auto *I = cast<Instruction>(U); 4834 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4835 isVectorizedMemAccessUse(I, IndUpdate); 4836 }); 4837 if (!UniformIndUpdate) 4838 continue; 4839 4840 // The induction variable and its update instruction will remain uniform. 4841 addToWorklistIfAllowed(Ind); 4842 addToWorklistIfAllowed(IndUpdate); 4843 } 4844 4845 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4846 } 4847 4848 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4849 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4850 4851 if (Legal->getRuntimePointerChecking()->Need) { 4852 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4853 "runtime pointer checks needed. Enable vectorization of this " 4854 "loop with '#pragma clang loop vectorize(enable)' when " 4855 "compiling with -Os/-Oz", 4856 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4857 return true; 4858 } 4859 4860 if (!PSE.getPredicate().isAlwaysTrue()) { 4861 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4862 "runtime SCEV checks needed. Enable vectorization of this " 4863 "loop with '#pragma clang loop vectorize(enable)' when " 4864 "compiling with -Os/-Oz", 4865 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4866 return true; 4867 } 4868 4869 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4870 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4871 reportVectorizationFailure("Runtime stride check for small trip count", 4872 "runtime stride == 1 checks needed. Enable vectorization of " 4873 "this loop without such check by compiling with -Os/-Oz", 4874 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4875 return true; 4876 } 4877 4878 return false; 4879 } 4880 4881 ElementCount 4882 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 4883 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 4884 return ElementCount::getScalable(0); 4885 4886 if (Hints->isScalableVectorizationDisabled()) { 4887 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 4888 "ScalableVectorizationDisabled", ORE, TheLoop); 4889 return ElementCount::getScalable(0); 4890 } 4891 4892 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 4893 4894 auto MaxScalableVF = ElementCount::getScalable( 4895 std::numeric_limits<ElementCount::ScalarTy>::max()); 4896 4897 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 4898 // FIXME: While for scalable vectors this is currently sufficient, this should 4899 // be replaced by a more detailed mechanism that filters out specific VFs, 4900 // instead of invalidating vectorization for a whole set of VFs based on the 4901 // MaxVF. 4902 4903 // Disable scalable vectorization if the loop contains unsupported reductions. 4904 if (!canVectorizeReductions(MaxScalableVF)) { 4905 reportVectorizationInfo( 4906 "Scalable vectorization not supported for the reduction " 4907 "operations found in this loop.", 4908 "ScalableVFUnfeasible", ORE, TheLoop); 4909 return ElementCount::getScalable(0); 4910 } 4911 4912 // Disable scalable vectorization if the loop contains any instructions 4913 // with element types not supported for scalable vectors. 4914 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 4915 return !Ty->isVoidTy() && 4916 !this->TTI.isElementTypeLegalForScalableVector(Ty); 4917 })) { 4918 reportVectorizationInfo("Scalable vectorization is not supported " 4919 "for all element types found in this loop.", 4920 "ScalableVFUnfeasible", ORE, TheLoop); 4921 return ElementCount::getScalable(0); 4922 } 4923 4924 if (Legal->isSafeForAnyVectorWidth()) 4925 return MaxScalableVF; 4926 4927 // Limit MaxScalableVF by the maximum safe dependence distance. 4928 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 4929 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 4930 MaxVScale = 4931 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 4932 MaxScalableVF = ElementCount::getScalable( 4933 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 4934 if (!MaxScalableVF) 4935 reportVectorizationInfo( 4936 "Max legal vector width too small, scalable vectorization " 4937 "unfeasible.", 4938 "ScalableVFUnfeasible", ORE, TheLoop); 4939 4940 return MaxScalableVF; 4941 } 4942 4943 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 4944 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 4945 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4946 unsigned SmallestType, WidestType; 4947 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4948 4949 // Get the maximum safe dependence distance in bits computed by LAA. 4950 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4951 // the memory accesses that is most restrictive (involved in the smallest 4952 // dependence distance). 4953 unsigned MaxSafeElements = 4954 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 4955 4956 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 4957 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 4958 4959 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 4960 << ".\n"); 4961 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 4962 << ".\n"); 4963 4964 // First analyze the UserVF, fall back if the UserVF should be ignored. 4965 if (UserVF) { 4966 auto MaxSafeUserVF = 4967 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 4968 4969 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 4970 // If `VF=vscale x N` is safe, then so is `VF=N` 4971 if (UserVF.isScalable()) 4972 return FixedScalableVFPair( 4973 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 4974 else 4975 return UserVF; 4976 } 4977 4978 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 4979 4980 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 4981 // is better to ignore the hint and let the compiler choose a suitable VF. 4982 if (!UserVF.isScalable()) { 4983 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4984 << " is unsafe, clamping to max safe VF=" 4985 << MaxSafeFixedVF << ".\n"); 4986 ORE->emit([&]() { 4987 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4988 TheLoop->getStartLoc(), 4989 TheLoop->getHeader()) 4990 << "User-specified vectorization factor " 4991 << ore::NV("UserVectorizationFactor", UserVF) 4992 << " is unsafe, clamping to maximum safe vectorization factor " 4993 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 4994 }); 4995 return MaxSafeFixedVF; 4996 } 4997 4998 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 4999 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5000 << " is ignored because scalable vectors are not " 5001 "available.\n"); 5002 ORE->emit([&]() { 5003 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5004 TheLoop->getStartLoc(), 5005 TheLoop->getHeader()) 5006 << "User-specified vectorization factor " 5007 << ore::NV("UserVectorizationFactor", UserVF) 5008 << " is ignored because the target does not support scalable " 5009 "vectors. The compiler will pick a more suitable value."; 5010 }); 5011 } else { 5012 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5013 << " is unsafe. Ignoring scalable UserVF.\n"); 5014 ORE->emit([&]() { 5015 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5016 TheLoop->getStartLoc(), 5017 TheLoop->getHeader()) 5018 << "User-specified vectorization factor " 5019 << ore::NV("UserVectorizationFactor", UserVF) 5020 << " is unsafe. Ignoring the hint to let the compiler pick a " 5021 "more suitable value."; 5022 }); 5023 } 5024 } 5025 5026 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5027 << " / " << WidestType << " bits.\n"); 5028 5029 FixedScalableVFPair Result(ElementCount::getFixed(1), 5030 ElementCount::getScalable(0)); 5031 if (auto MaxVF = 5032 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5033 MaxSafeFixedVF, FoldTailByMasking)) 5034 Result.FixedVF = MaxVF; 5035 5036 if (auto MaxVF = 5037 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5038 MaxSafeScalableVF, FoldTailByMasking)) 5039 if (MaxVF.isScalable()) { 5040 Result.ScalableVF = MaxVF; 5041 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5042 << "\n"); 5043 } 5044 5045 return Result; 5046 } 5047 5048 FixedScalableVFPair 5049 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5050 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5051 // TODO: It may by useful to do since it's still likely to be dynamically 5052 // uniform if the target can skip. 5053 reportVectorizationFailure( 5054 "Not inserting runtime ptr check for divergent target", 5055 "runtime pointer checks needed. Not enabled for divergent target", 5056 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5057 return FixedScalableVFPair::getNone(); 5058 } 5059 5060 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5061 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5062 if (TC == 1) { 5063 reportVectorizationFailure("Single iteration (non) loop", 5064 "loop trip count is one, irrelevant for vectorization", 5065 "SingleIterationLoop", ORE, TheLoop); 5066 return FixedScalableVFPair::getNone(); 5067 } 5068 5069 switch (ScalarEpilogueStatus) { 5070 case CM_ScalarEpilogueAllowed: 5071 return computeFeasibleMaxVF(TC, UserVF, false); 5072 case CM_ScalarEpilogueNotAllowedUsePredicate: 5073 LLVM_FALLTHROUGH; 5074 case CM_ScalarEpilogueNotNeededUsePredicate: 5075 LLVM_DEBUG( 5076 dbgs() << "LV: vector predicate hint/switch found.\n" 5077 << "LV: Not allowing scalar epilogue, creating predicated " 5078 << "vector loop.\n"); 5079 break; 5080 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5081 // fallthrough as a special case of OptForSize 5082 case CM_ScalarEpilogueNotAllowedOptSize: 5083 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5084 LLVM_DEBUG( 5085 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5086 else 5087 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5088 << "count.\n"); 5089 5090 // Bail if runtime checks are required, which are not good when optimising 5091 // for size. 5092 if (runtimeChecksRequired()) 5093 return FixedScalableVFPair::getNone(); 5094 5095 break; 5096 } 5097 5098 // The only loops we can vectorize without a scalar epilogue, are loops with 5099 // a bottom-test and a single exiting block. We'd have to handle the fact 5100 // that not every instruction executes on the last iteration. This will 5101 // require a lane mask which varies through the vector loop body. (TODO) 5102 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5103 // If there was a tail-folding hint/switch, but we can't fold the tail by 5104 // masking, fallback to a vectorization with a scalar epilogue. 5105 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5106 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5107 "scalar epilogue instead.\n"); 5108 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5109 return computeFeasibleMaxVF(TC, UserVF, false); 5110 } 5111 return FixedScalableVFPair::getNone(); 5112 } 5113 5114 // Now try the tail folding 5115 5116 // Invalidate interleave groups that require an epilogue if we can't mask 5117 // the interleave-group. 5118 if (!useMaskedInterleavedAccesses(TTI)) { 5119 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5120 "No decisions should have been taken at this point"); 5121 // Note: There is no need to invalidate any cost modeling decisions here, as 5122 // non where taken so far. 5123 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5124 } 5125 5126 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5127 // Avoid tail folding if the trip count is known to be a multiple of any VF 5128 // we chose. 5129 // FIXME: The condition below pessimises the case for fixed-width vectors, 5130 // when scalable VFs are also candidates for vectorization. 5131 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5132 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5133 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5134 "MaxFixedVF must be a power of 2"); 5135 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5136 : MaxFixedVF.getFixedValue(); 5137 ScalarEvolution *SE = PSE.getSE(); 5138 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5139 const SCEV *ExitCount = SE->getAddExpr( 5140 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5141 const SCEV *Rem = SE->getURemExpr( 5142 SE->applyLoopGuards(ExitCount, TheLoop), 5143 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5144 if (Rem->isZero()) { 5145 // Accept MaxFixedVF if we do not have a tail. 5146 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5147 return MaxFactors; 5148 } 5149 } 5150 5151 // If we don't know the precise trip count, or if the trip count that we 5152 // found modulo the vectorization factor is not zero, try to fold the tail 5153 // by masking. 5154 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5155 if (Legal->prepareToFoldTailByMasking()) { 5156 FoldTailByMasking = true; 5157 return MaxFactors; 5158 } 5159 5160 // If there was a tail-folding hint/switch, but we can't fold the tail by 5161 // masking, fallback to a vectorization with a scalar epilogue. 5162 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5163 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5164 "scalar epilogue instead.\n"); 5165 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5166 return MaxFactors; 5167 } 5168 5169 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5170 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5171 return FixedScalableVFPair::getNone(); 5172 } 5173 5174 if (TC == 0) { 5175 reportVectorizationFailure( 5176 "Unable to calculate the loop count due to complex control flow", 5177 "unable to calculate the loop count due to complex control flow", 5178 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5179 return FixedScalableVFPair::getNone(); 5180 } 5181 5182 reportVectorizationFailure( 5183 "Cannot optimize for size and vectorize at the same time.", 5184 "cannot optimize for size and vectorize at the same time. " 5185 "Enable vectorization of this loop with '#pragma clang loop " 5186 "vectorize(enable)' when compiling with -Os/-Oz", 5187 "NoTailLoopWithOptForSize", ORE, TheLoop); 5188 return FixedScalableVFPair::getNone(); 5189 } 5190 5191 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5192 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5193 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5194 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5195 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5196 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5197 : TargetTransformInfo::RGK_FixedWidthVector); 5198 5199 // Convenience function to return the minimum of two ElementCounts. 5200 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5201 assert((LHS.isScalable() == RHS.isScalable()) && 5202 "Scalable flags must match"); 5203 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5204 }; 5205 5206 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5207 // Note that both WidestRegister and WidestType may not be a powers of 2. 5208 auto MaxVectorElementCount = ElementCount::get( 5209 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5210 ComputeScalableMaxVF); 5211 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5212 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5213 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5214 5215 if (!MaxVectorElementCount) { 5216 LLVM_DEBUG(dbgs() << "LV: The target has no " 5217 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5218 << " vector registers.\n"); 5219 return ElementCount::getFixed(1); 5220 } 5221 5222 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5223 if (ConstTripCount && 5224 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5225 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5226 // If loop trip count (TC) is known at compile time there is no point in 5227 // choosing VF greater than TC (as done in the loop below). Select maximum 5228 // power of two which doesn't exceed TC. 5229 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5230 // when the TC is less than or equal to the known number of lanes. 5231 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5232 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5233 "exceeding the constant trip count: " 5234 << ClampedConstTripCount << "\n"); 5235 return ElementCount::getFixed(ClampedConstTripCount); 5236 } 5237 5238 ElementCount MaxVF = MaxVectorElementCount; 5239 if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 && 5240 TTI.shouldMaximizeVectorBandwidth())) { 5241 auto MaxVectorElementCountMaxBW = ElementCount::get( 5242 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5243 ComputeScalableMaxVF); 5244 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5245 5246 // Collect all viable vectorization factors larger than the default MaxVF 5247 // (i.e. MaxVectorElementCount). 5248 SmallVector<ElementCount, 8> VFs; 5249 for (ElementCount VS = MaxVectorElementCount * 2; 5250 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5251 VFs.push_back(VS); 5252 5253 // For each VF calculate its register usage. 5254 auto RUs = calculateRegisterUsage(VFs); 5255 5256 // Select the largest VF which doesn't require more registers than existing 5257 // ones. 5258 for (int i = RUs.size() - 1; i >= 0; --i) { 5259 bool Selected = true; 5260 for (auto &pair : RUs[i].MaxLocalUsers) { 5261 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5262 if (pair.second > TargetNumRegisters) 5263 Selected = false; 5264 } 5265 if (Selected) { 5266 MaxVF = VFs[i]; 5267 break; 5268 } 5269 } 5270 if (ElementCount MinVF = 5271 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5272 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5273 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5274 << ") with target's minimum: " << MinVF << '\n'); 5275 MaxVF = MinVF; 5276 } 5277 } 5278 5279 // Invalidate any widening decisions we might have made, in case the loop 5280 // requires prediction (decided later), but we have already made some 5281 // load/store widening decisions. 5282 invalidateCostModelingDecisions(); 5283 } 5284 return MaxVF; 5285 } 5286 5287 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5288 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5289 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5290 auto Min = Attr.getVScaleRangeMin(); 5291 auto Max = Attr.getVScaleRangeMax(); 5292 if (Max && Min == Max) 5293 return Max; 5294 } 5295 5296 return TTI.getVScaleForTuning(); 5297 } 5298 5299 bool LoopVectorizationCostModel::isMoreProfitable( 5300 const VectorizationFactor &A, const VectorizationFactor &B) const { 5301 InstructionCost CostA = A.Cost; 5302 InstructionCost CostB = B.Cost; 5303 5304 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5305 5306 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5307 MaxTripCount) { 5308 // If we are folding the tail and the trip count is a known (possibly small) 5309 // constant, the trip count will be rounded up to an integer number of 5310 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5311 // which we compare directly. When not folding the tail, the total cost will 5312 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5313 // approximated with the per-lane cost below instead of using the tripcount 5314 // as here. 5315 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5316 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5317 return RTCostA < RTCostB; 5318 } 5319 5320 // Improve estimate for the vector width if it is scalable. 5321 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5322 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5323 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5324 if (A.Width.isScalable()) 5325 EstimatedWidthA *= VScale.getValue(); 5326 if (B.Width.isScalable()) 5327 EstimatedWidthB *= VScale.getValue(); 5328 } 5329 5330 // Assume vscale may be larger than 1 (or the value being tuned for), 5331 // so that scalable vectorization is slightly favorable over fixed-width 5332 // vectorization. 5333 if (A.Width.isScalable() && !B.Width.isScalable()) 5334 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5335 5336 // To avoid the need for FP division: 5337 // (CostA / A.Width) < (CostB / B.Width) 5338 // <=> (CostA * B.Width) < (CostB * A.Width) 5339 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5340 } 5341 5342 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5343 const ElementCountSet &VFCandidates) { 5344 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5345 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5346 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5347 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5348 "Expected Scalar VF to be a candidate"); 5349 5350 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5351 VectorizationFactor ChosenFactor = ScalarCost; 5352 5353 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5354 if (ForceVectorization && VFCandidates.size() > 1) { 5355 // Ignore scalar width, because the user explicitly wants vectorization. 5356 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5357 // evaluation. 5358 ChosenFactor.Cost = InstructionCost::getMax(); 5359 } 5360 5361 SmallVector<InstructionVFPair> InvalidCosts; 5362 for (const auto &i : VFCandidates) { 5363 // The cost for scalar VF=1 is already calculated, so ignore it. 5364 if (i.isScalar()) 5365 continue; 5366 5367 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5368 VectorizationFactor Candidate(i, C.first); 5369 5370 #ifndef NDEBUG 5371 unsigned AssumedMinimumVscale = 1; 5372 if (Optional<unsigned> VScale = getVScaleForTuning()) 5373 AssumedMinimumVscale = VScale.getValue(); 5374 unsigned Width = 5375 Candidate.Width.isScalable() 5376 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5377 : Candidate.Width.getFixedValue(); 5378 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5379 << " costs: " << (Candidate.Cost / Width)); 5380 if (i.isScalable()) 5381 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5382 << AssumedMinimumVscale << ")"); 5383 LLVM_DEBUG(dbgs() << ".\n"); 5384 #endif 5385 5386 if (!C.second && !ForceVectorization) { 5387 LLVM_DEBUG( 5388 dbgs() << "LV: Not considering vector loop of width " << i 5389 << " because it will not generate any vector instructions.\n"); 5390 continue; 5391 } 5392 5393 // If profitable add it to ProfitableVF list. 5394 if (isMoreProfitable(Candidate, ScalarCost)) 5395 ProfitableVFs.push_back(Candidate); 5396 5397 if (isMoreProfitable(Candidate, ChosenFactor)) 5398 ChosenFactor = Candidate; 5399 } 5400 5401 // Emit a report of VFs with invalid costs in the loop. 5402 if (!InvalidCosts.empty()) { 5403 // Group the remarks per instruction, keeping the instruction order from 5404 // InvalidCosts. 5405 std::map<Instruction *, unsigned> Numbering; 5406 unsigned I = 0; 5407 for (auto &Pair : InvalidCosts) 5408 if (!Numbering.count(Pair.first)) 5409 Numbering[Pair.first] = I++; 5410 5411 // Sort the list, first on instruction(number) then on VF. 5412 llvm::sort(InvalidCosts, 5413 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5414 if (Numbering[A.first] != Numbering[B.first]) 5415 return Numbering[A.first] < Numbering[B.first]; 5416 ElementCountComparator ECC; 5417 return ECC(A.second, B.second); 5418 }); 5419 5420 // For a list of ordered instruction-vf pairs: 5421 // [(load, vf1), (load, vf2), (store, vf1)] 5422 // Group the instructions together to emit separate remarks for: 5423 // load (vf1, vf2) 5424 // store (vf1) 5425 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5426 auto Subset = ArrayRef<InstructionVFPair>(); 5427 do { 5428 if (Subset.empty()) 5429 Subset = Tail.take_front(1); 5430 5431 Instruction *I = Subset.front().first; 5432 5433 // If the next instruction is different, or if there are no other pairs, 5434 // emit a remark for the collated subset. e.g. 5435 // [(load, vf1), (load, vf2))] 5436 // to emit: 5437 // remark: invalid costs for 'load' at VF=(vf, vf2) 5438 if (Subset == Tail || Tail[Subset.size()].first != I) { 5439 std::string OutString; 5440 raw_string_ostream OS(OutString); 5441 assert(!Subset.empty() && "Unexpected empty range"); 5442 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5443 for (auto &Pair : Subset) 5444 OS << (Pair.second == Subset.front().second ? "" : ", ") 5445 << Pair.second; 5446 OS << "):"; 5447 if (auto *CI = dyn_cast<CallInst>(I)) 5448 OS << " call to " << CI->getCalledFunction()->getName(); 5449 else 5450 OS << " " << I->getOpcodeName(); 5451 OS.flush(); 5452 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5453 Tail = Tail.drop_front(Subset.size()); 5454 Subset = {}; 5455 } else 5456 // Grow the subset by one element 5457 Subset = Tail.take_front(Subset.size() + 1); 5458 } while (!Tail.empty()); 5459 } 5460 5461 if (!EnableCondStoresVectorization && NumPredStores) { 5462 reportVectorizationFailure("There are conditional stores.", 5463 "store that is conditionally executed prevents vectorization", 5464 "ConditionalStore", ORE, TheLoop); 5465 ChosenFactor = ScalarCost; 5466 } 5467 5468 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5469 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5470 << "LV: Vectorization seems to be not beneficial, " 5471 << "but was forced by a user.\n"); 5472 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5473 return ChosenFactor; 5474 } 5475 5476 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5477 const Loop &L, ElementCount VF) const { 5478 // Cross iteration phis such as reductions need special handling and are 5479 // currently unsupported. 5480 if (any_of(L.getHeader()->phis(), 5481 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5482 return false; 5483 5484 // Phis with uses outside of the loop require special handling and are 5485 // currently unsupported. 5486 for (auto &Entry : Legal->getInductionVars()) { 5487 // Look for uses of the value of the induction at the last iteration. 5488 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5489 for (User *U : PostInc->users()) 5490 if (!L.contains(cast<Instruction>(U))) 5491 return false; 5492 // Look for uses of penultimate value of the induction. 5493 for (User *U : Entry.first->users()) 5494 if (!L.contains(cast<Instruction>(U))) 5495 return false; 5496 } 5497 5498 // Induction variables that are widened require special handling that is 5499 // currently not supported. 5500 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5501 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5502 this->isProfitableToScalarize(Entry.first, VF)); 5503 })) 5504 return false; 5505 5506 // Epilogue vectorization code has not been auditted to ensure it handles 5507 // non-latch exits properly. It may be fine, but it needs auditted and 5508 // tested. 5509 if (L.getExitingBlock() != L.getLoopLatch()) 5510 return false; 5511 5512 return true; 5513 } 5514 5515 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5516 const ElementCount VF) const { 5517 // FIXME: We need a much better cost-model to take different parameters such 5518 // as register pressure, code size increase and cost of extra branches into 5519 // account. For now we apply a very crude heuristic and only consider loops 5520 // with vectorization factors larger than a certain value. 5521 // We also consider epilogue vectorization unprofitable for targets that don't 5522 // consider interleaving beneficial (eg. MVE). 5523 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5524 return false; 5525 // FIXME: We should consider changing the threshold for scalable 5526 // vectors to take VScaleForTuning into account. 5527 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5528 return true; 5529 return false; 5530 } 5531 5532 VectorizationFactor 5533 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5534 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5535 VectorizationFactor Result = VectorizationFactor::Disabled(); 5536 if (!EnableEpilogueVectorization) { 5537 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5538 return Result; 5539 } 5540 5541 if (!isScalarEpilogueAllowed()) { 5542 LLVM_DEBUG( 5543 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5544 "allowed.\n";); 5545 return Result; 5546 } 5547 5548 // Not really a cost consideration, but check for unsupported cases here to 5549 // simplify the logic. 5550 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5551 LLVM_DEBUG( 5552 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5553 "not a supported candidate.\n";); 5554 return Result; 5555 } 5556 5557 if (EpilogueVectorizationForceVF > 1) { 5558 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5559 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5560 if (LVP.hasPlanWithVF(ForcedEC)) 5561 return {ForcedEC, 0}; 5562 else { 5563 LLVM_DEBUG( 5564 dbgs() 5565 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5566 return Result; 5567 } 5568 } 5569 5570 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5571 TheLoop->getHeader()->getParent()->hasMinSize()) { 5572 LLVM_DEBUG( 5573 dbgs() 5574 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5575 return Result; 5576 } 5577 5578 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5579 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5580 "this loop\n"); 5581 return Result; 5582 } 5583 5584 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5585 // the main loop handles 8 lanes per iteration. We could still benefit from 5586 // vectorizing the epilogue loop with VF=4. 5587 ElementCount EstimatedRuntimeVF = MainLoopVF; 5588 if (MainLoopVF.isScalable()) { 5589 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5590 if (Optional<unsigned> VScale = getVScaleForTuning()) 5591 EstimatedRuntimeVF *= VScale.getValue(); 5592 } 5593 5594 for (auto &NextVF : ProfitableVFs) 5595 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5596 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5597 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5598 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5599 LVP.hasPlanWithVF(NextVF.Width)) 5600 Result = NextVF; 5601 5602 if (Result != VectorizationFactor::Disabled()) 5603 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5604 << Result.Width << "\n";); 5605 return Result; 5606 } 5607 5608 std::pair<unsigned, unsigned> 5609 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5610 unsigned MinWidth = -1U; 5611 unsigned MaxWidth = 8; 5612 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5613 // For in-loop reductions, no element types are added to ElementTypesInLoop 5614 // if there are no loads/stores in the loop. In this case, check through the 5615 // reduction variables to determine the maximum width. 5616 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5617 // Reset MaxWidth so that we can find the smallest type used by recurrences 5618 // in the loop. 5619 MaxWidth = -1U; 5620 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5621 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5622 // When finding the min width used by the recurrence we need to account 5623 // for casts on the input operands of the recurrence. 5624 MaxWidth = std::min<unsigned>( 5625 MaxWidth, std::min<unsigned>( 5626 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5627 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5628 } 5629 } else { 5630 for (Type *T : ElementTypesInLoop) { 5631 MinWidth = std::min<unsigned>( 5632 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5633 MaxWidth = std::max<unsigned>( 5634 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5635 } 5636 } 5637 return {MinWidth, MaxWidth}; 5638 } 5639 5640 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5641 ElementTypesInLoop.clear(); 5642 // For each block. 5643 for (BasicBlock *BB : TheLoop->blocks()) { 5644 // For each instruction in the loop. 5645 for (Instruction &I : BB->instructionsWithoutDebug()) { 5646 Type *T = I.getType(); 5647 5648 // Skip ignored values. 5649 if (ValuesToIgnore.count(&I)) 5650 continue; 5651 5652 // Only examine Loads, Stores and PHINodes. 5653 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5654 continue; 5655 5656 // Examine PHI nodes that are reduction variables. Update the type to 5657 // account for the recurrence type. 5658 if (auto *PN = dyn_cast<PHINode>(&I)) { 5659 if (!Legal->isReductionVariable(PN)) 5660 continue; 5661 const RecurrenceDescriptor &RdxDesc = 5662 Legal->getReductionVars().find(PN)->second; 5663 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5664 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5665 RdxDesc.getRecurrenceType(), 5666 TargetTransformInfo::ReductionFlags())) 5667 continue; 5668 T = RdxDesc.getRecurrenceType(); 5669 } 5670 5671 // Examine the stored values. 5672 if (auto *ST = dyn_cast<StoreInst>(&I)) 5673 T = ST->getValueOperand()->getType(); 5674 5675 assert(T->isSized() && 5676 "Expected the load/store/recurrence type to be sized"); 5677 5678 ElementTypesInLoop.insert(T); 5679 } 5680 } 5681 } 5682 5683 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5684 unsigned LoopCost) { 5685 // -- The interleave heuristics -- 5686 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5687 // There are many micro-architectural considerations that we can't predict 5688 // at this level. For example, frontend pressure (on decode or fetch) due to 5689 // code size, or the number and capabilities of the execution ports. 5690 // 5691 // We use the following heuristics to select the interleave count: 5692 // 1. If the code has reductions, then we interleave to break the cross 5693 // iteration dependency. 5694 // 2. If the loop is really small, then we interleave to reduce the loop 5695 // overhead. 5696 // 3. We don't interleave if we think that we will spill registers to memory 5697 // due to the increased register pressure. 5698 5699 if (!isScalarEpilogueAllowed()) 5700 return 1; 5701 5702 // We used the distance for the interleave count. 5703 if (Legal->getMaxSafeDepDistBytes() != -1U) 5704 return 1; 5705 5706 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5707 const bool HasReductions = !Legal->getReductionVars().empty(); 5708 // Do not interleave loops with a relatively small known or estimated trip 5709 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5710 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5711 // because with the above conditions interleaving can expose ILP and break 5712 // cross iteration dependences for reductions. 5713 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5714 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5715 return 1; 5716 5717 // If we did not calculate the cost for VF (because the user selected the VF) 5718 // then we calculate the cost of VF here. 5719 if (LoopCost == 0) { 5720 InstructionCost C = expectedCost(VF).first; 5721 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 5722 LoopCost = *C.getValue(); 5723 5724 // Loop body is free and there is no need for interleaving. 5725 if (LoopCost == 0) 5726 return 1; 5727 } 5728 5729 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5730 // We divide by these constants so assume that we have at least one 5731 // instruction that uses at least one register. 5732 for (auto& pair : R.MaxLocalUsers) { 5733 pair.second = std::max(pair.second, 1U); 5734 } 5735 5736 // We calculate the interleave count using the following formula. 5737 // Subtract the number of loop invariants from the number of available 5738 // registers. These registers are used by all of the interleaved instances. 5739 // Next, divide the remaining registers by the number of registers that is 5740 // required by the loop, in order to estimate how many parallel instances 5741 // fit without causing spills. All of this is rounded down if necessary to be 5742 // a power of two. We want power of two interleave count to simplify any 5743 // addressing operations or alignment considerations. 5744 // We also want power of two interleave counts to ensure that the induction 5745 // variable of the vector loop wraps to zero, when tail is folded by masking; 5746 // this currently happens when OptForSize, in which case IC is set to 1 above. 5747 unsigned IC = UINT_MAX; 5748 5749 for (auto& pair : R.MaxLocalUsers) { 5750 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5751 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5752 << " registers of " 5753 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5754 if (VF.isScalar()) { 5755 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5756 TargetNumRegisters = ForceTargetNumScalarRegs; 5757 } else { 5758 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5759 TargetNumRegisters = ForceTargetNumVectorRegs; 5760 } 5761 unsigned MaxLocalUsers = pair.second; 5762 unsigned LoopInvariantRegs = 0; 5763 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5764 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5765 5766 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5767 // Don't count the induction variable as interleaved. 5768 if (EnableIndVarRegisterHeur) { 5769 TmpIC = 5770 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5771 std::max(1U, (MaxLocalUsers - 1))); 5772 } 5773 5774 IC = std::min(IC, TmpIC); 5775 } 5776 5777 // Clamp the interleave ranges to reasonable counts. 5778 unsigned MaxInterleaveCount = 5779 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5780 5781 // Check if the user has overridden the max. 5782 if (VF.isScalar()) { 5783 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5784 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5785 } else { 5786 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5787 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5788 } 5789 5790 // If trip count is known or estimated compile time constant, limit the 5791 // interleave count to be less than the trip count divided by VF, provided it 5792 // is at least 1. 5793 // 5794 // For scalable vectors we can't know if interleaving is beneficial. It may 5795 // not be beneficial for small loops if none of the lanes in the second vector 5796 // iterations is enabled. However, for larger loops, there is likely to be a 5797 // similar benefit as for fixed-width vectors. For now, we choose to leave 5798 // the InterleaveCount as if vscale is '1', although if some information about 5799 // the vector is known (e.g. min vector size), we can make a better decision. 5800 if (BestKnownTC) { 5801 MaxInterleaveCount = 5802 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5803 // Make sure MaxInterleaveCount is greater than 0. 5804 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5805 } 5806 5807 assert(MaxInterleaveCount > 0 && 5808 "Maximum interleave count must be greater than 0"); 5809 5810 // Clamp the calculated IC to be between the 1 and the max interleave count 5811 // that the target and trip count allows. 5812 if (IC > MaxInterleaveCount) 5813 IC = MaxInterleaveCount; 5814 else 5815 // Make sure IC is greater than 0. 5816 IC = std::max(1u, IC); 5817 5818 assert(IC > 0 && "Interleave count must be greater than 0."); 5819 5820 // Interleave if we vectorized this loop and there is a reduction that could 5821 // benefit from interleaving. 5822 if (VF.isVector() && HasReductions) { 5823 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5824 return IC; 5825 } 5826 5827 // For any scalar loop that either requires runtime checks or predication we 5828 // are better off leaving this to the unroller. Note that if we've already 5829 // vectorized the loop we will have done the runtime check and so interleaving 5830 // won't require further checks. 5831 bool ScalarInterleavingRequiresPredication = 5832 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5833 return Legal->blockNeedsPredication(BB); 5834 })); 5835 bool ScalarInterleavingRequiresRuntimePointerCheck = 5836 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5837 5838 // We want to interleave small loops in order to reduce the loop overhead and 5839 // potentially expose ILP opportunities. 5840 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5841 << "LV: IC is " << IC << '\n' 5842 << "LV: VF is " << VF << '\n'); 5843 const bool AggressivelyInterleaveReductions = 5844 TTI.enableAggressiveInterleaving(HasReductions); 5845 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5846 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5847 // We assume that the cost overhead is 1 and we use the cost model 5848 // to estimate the cost of the loop and interleave until the cost of the 5849 // loop overhead is about 5% of the cost of the loop. 5850 unsigned SmallIC = 5851 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5852 5853 // Interleave until store/load ports (estimated by max interleave count) are 5854 // saturated. 5855 unsigned NumStores = Legal->getNumStores(); 5856 unsigned NumLoads = Legal->getNumLoads(); 5857 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5858 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5859 5860 // There is little point in interleaving for reductions containing selects 5861 // and compares when VF=1 since it may just create more overhead than it's 5862 // worth for loops with small trip counts. This is because we still have to 5863 // do the final reduction after the loop. 5864 bool HasSelectCmpReductions = 5865 HasReductions && 5866 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5867 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5868 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 5869 RdxDesc.getRecurrenceKind()); 5870 }); 5871 if (HasSelectCmpReductions) { 5872 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5873 return 1; 5874 } 5875 5876 // If we have a scalar reduction (vector reductions are already dealt with 5877 // by this point), we can increase the critical path length if the loop 5878 // we're interleaving is inside another loop. For tree-wise reductions 5879 // set the limit to 2, and for ordered reductions it's best to disable 5880 // interleaving entirely. 5881 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5882 bool HasOrderedReductions = 5883 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5884 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5885 return RdxDesc.isOrdered(); 5886 }); 5887 if (HasOrderedReductions) { 5888 LLVM_DEBUG( 5889 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5890 return 1; 5891 } 5892 5893 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5894 SmallIC = std::min(SmallIC, F); 5895 StoresIC = std::min(StoresIC, F); 5896 LoadsIC = std::min(LoadsIC, F); 5897 } 5898 5899 if (EnableLoadStoreRuntimeInterleave && 5900 std::max(StoresIC, LoadsIC) > SmallIC) { 5901 LLVM_DEBUG( 5902 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5903 return std::max(StoresIC, LoadsIC); 5904 } 5905 5906 // If there are scalar reductions and TTI has enabled aggressive 5907 // interleaving for reductions, we will interleave to expose ILP. 5908 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5909 AggressivelyInterleaveReductions) { 5910 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5911 // Interleave no less than SmallIC but not as aggressive as the normal IC 5912 // to satisfy the rare situation when resources are too limited. 5913 return std::max(IC / 2, SmallIC); 5914 } else { 5915 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5916 return SmallIC; 5917 } 5918 } 5919 5920 // Interleave if this is a large loop (small loops are already dealt with by 5921 // this point) that could benefit from interleaving. 5922 if (AggressivelyInterleaveReductions) { 5923 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5924 return IC; 5925 } 5926 5927 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5928 return 1; 5929 } 5930 5931 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5932 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5933 // This function calculates the register usage by measuring the highest number 5934 // of values that are alive at a single location. Obviously, this is a very 5935 // rough estimation. We scan the loop in a topological order in order and 5936 // assign a number to each instruction. We use RPO to ensure that defs are 5937 // met before their users. We assume that each instruction that has in-loop 5938 // users starts an interval. We record every time that an in-loop value is 5939 // used, so we have a list of the first and last occurrences of each 5940 // instruction. Next, we transpose this data structure into a multi map that 5941 // holds the list of intervals that *end* at a specific location. This multi 5942 // map allows us to perform a linear search. We scan the instructions linearly 5943 // and record each time that a new interval starts, by placing it in a set. 5944 // If we find this value in the multi-map then we remove it from the set. 5945 // The max register usage is the maximum size of the set. 5946 // We also search for instructions that are defined outside the loop, but are 5947 // used inside the loop. We need this number separately from the max-interval 5948 // usage number because when we unroll, loop-invariant values do not take 5949 // more register. 5950 LoopBlocksDFS DFS(TheLoop); 5951 DFS.perform(LI); 5952 5953 RegisterUsage RU; 5954 5955 // Each 'key' in the map opens a new interval. The values 5956 // of the map are the index of the 'last seen' usage of the 5957 // instruction that is the key. 5958 using IntervalMap = DenseMap<Instruction *, unsigned>; 5959 5960 // Maps instruction to its index. 5961 SmallVector<Instruction *, 64> IdxToInstr; 5962 // Marks the end of each interval. 5963 IntervalMap EndPoint; 5964 // Saves the list of instruction indices that are used in the loop. 5965 SmallPtrSet<Instruction *, 8> Ends; 5966 // Saves the list of values that are used in the loop but are 5967 // defined outside the loop, such as arguments and constants. 5968 SmallPtrSet<Value *, 8> LoopInvariants; 5969 5970 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5971 for (Instruction &I : BB->instructionsWithoutDebug()) { 5972 IdxToInstr.push_back(&I); 5973 5974 // Save the end location of each USE. 5975 for (Value *U : I.operands()) { 5976 auto *Instr = dyn_cast<Instruction>(U); 5977 5978 // Ignore non-instruction values such as arguments, constants, etc. 5979 if (!Instr) 5980 continue; 5981 5982 // If this instruction is outside the loop then record it and continue. 5983 if (!TheLoop->contains(Instr)) { 5984 LoopInvariants.insert(Instr); 5985 continue; 5986 } 5987 5988 // Overwrite previous end points. 5989 EndPoint[Instr] = IdxToInstr.size(); 5990 Ends.insert(Instr); 5991 } 5992 } 5993 } 5994 5995 // Saves the list of intervals that end with the index in 'key'. 5996 using InstrList = SmallVector<Instruction *, 2>; 5997 DenseMap<unsigned, InstrList> TransposeEnds; 5998 5999 // Transpose the EndPoints to a list of values that end at each index. 6000 for (auto &Interval : EndPoint) 6001 TransposeEnds[Interval.second].push_back(Interval.first); 6002 6003 SmallPtrSet<Instruction *, 8> OpenIntervals; 6004 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6005 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6006 6007 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6008 6009 // A lambda that gets the register usage for the given type and VF. 6010 const auto &TTICapture = TTI; 6011 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6012 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6013 return 0; 6014 InstructionCost::CostType RegUsage = 6015 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6016 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6017 "Nonsensical values for register usage."); 6018 return RegUsage; 6019 }; 6020 6021 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6022 Instruction *I = IdxToInstr[i]; 6023 6024 // Remove all of the instructions that end at this location. 6025 InstrList &List = TransposeEnds[i]; 6026 for (Instruction *ToRemove : List) 6027 OpenIntervals.erase(ToRemove); 6028 6029 // Ignore instructions that are never used within the loop. 6030 if (!Ends.count(I)) 6031 continue; 6032 6033 // Skip ignored values. 6034 if (ValuesToIgnore.count(I)) 6035 continue; 6036 6037 // For each VF find the maximum usage of registers. 6038 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6039 // Count the number of live intervals. 6040 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6041 6042 if (VFs[j].isScalar()) { 6043 for (auto Inst : OpenIntervals) { 6044 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6045 if (RegUsage.find(ClassID) == RegUsage.end()) 6046 RegUsage[ClassID] = 1; 6047 else 6048 RegUsage[ClassID] += 1; 6049 } 6050 } else { 6051 collectUniformsAndScalars(VFs[j]); 6052 for (auto Inst : OpenIntervals) { 6053 // Skip ignored values for VF > 1. 6054 if (VecValuesToIgnore.count(Inst)) 6055 continue; 6056 if (isScalarAfterVectorization(Inst, VFs[j])) { 6057 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6058 if (RegUsage.find(ClassID) == RegUsage.end()) 6059 RegUsage[ClassID] = 1; 6060 else 6061 RegUsage[ClassID] += 1; 6062 } else { 6063 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6064 if (RegUsage.find(ClassID) == RegUsage.end()) 6065 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6066 else 6067 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6068 } 6069 } 6070 } 6071 6072 for (auto& pair : RegUsage) { 6073 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6074 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6075 else 6076 MaxUsages[j][pair.first] = pair.second; 6077 } 6078 } 6079 6080 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6081 << OpenIntervals.size() << '\n'); 6082 6083 // Add the current instruction to the list of open intervals. 6084 OpenIntervals.insert(I); 6085 } 6086 6087 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6088 SmallMapVector<unsigned, unsigned, 4> Invariant; 6089 6090 for (auto Inst : LoopInvariants) { 6091 unsigned Usage = 6092 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6093 unsigned ClassID = 6094 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6095 if (Invariant.find(ClassID) == Invariant.end()) 6096 Invariant[ClassID] = Usage; 6097 else 6098 Invariant[ClassID] += Usage; 6099 } 6100 6101 LLVM_DEBUG({ 6102 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6103 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6104 << " item\n"; 6105 for (const auto &pair : MaxUsages[i]) { 6106 dbgs() << "LV(REG): RegisterClass: " 6107 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6108 << " registers\n"; 6109 } 6110 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6111 << " item\n"; 6112 for (const auto &pair : Invariant) { 6113 dbgs() << "LV(REG): RegisterClass: " 6114 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6115 << " registers\n"; 6116 } 6117 }); 6118 6119 RU.LoopInvariantRegs = Invariant; 6120 RU.MaxLocalUsers = MaxUsages[i]; 6121 RUs[i] = RU; 6122 } 6123 6124 return RUs; 6125 } 6126 6127 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6128 ElementCount VF) { 6129 // TODO: Cost model for emulated masked load/store is completely 6130 // broken. This hack guides the cost model to use an artificially 6131 // high enough value to practically disable vectorization with such 6132 // operations, except where previously deployed legality hack allowed 6133 // using very low cost values. This is to avoid regressions coming simply 6134 // from moving "masked load/store" check from legality to cost model. 6135 // Masked Load/Gather emulation was previously never allowed. 6136 // Limited number of Masked Store/Scatter emulation was allowed. 6137 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6138 return isa<LoadInst>(I) || 6139 (isa<StoreInst>(I) && 6140 NumPredStores > NumberOfStoresToPredicate); 6141 } 6142 6143 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6144 // If we aren't vectorizing the loop, or if we've already collected the 6145 // instructions to scalarize, there's nothing to do. Collection may already 6146 // have occurred if we have a user-selected VF and are now computing the 6147 // expected cost for interleaving. 6148 if (VF.isScalar() || VF.isZero() || 6149 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6150 return; 6151 6152 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6153 // not profitable to scalarize any instructions, the presence of VF in the 6154 // map will indicate that we've analyzed it already. 6155 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6156 6157 // Find all the instructions that are scalar with predication in the loop and 6158 // determine if it would be better to not if-convert the blocks they are in. 6159 // If so, we also record the instructions to scalarize. 6160 for (BasicBlock *BB : TheLoop->blocks()) { 6161 if (!blockNeedsPredicationForAnyReason(BB)) 6162 continue; 6163 for (Instruction &I : *BB) 6164 if (isScalarWithPredication(&I, VF)) { 6165 ScalarCostsTy ScalarCosts; 6166 // Do not apply discount if scalable, because that would lead to 6167 // invalid scalarization costs. 6168 // Do not apply discount logic if hacked cost is needed 6169 // for emulated masked memrefs. 6170 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6171 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6172 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6173 // Remember that BB will remain after vectorization. 6174 PredicatedBBsAfterVectorization.insert(BB); 6175 } 6176 } 6177 } 6178 6179 int LoopVectorizationCostModel::computePredInstDiscount( 6180 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6181 assert(!isUniformAfterVectorization(PredInst, VF) && 6182 "Instruction marked uniform-after-vectorization will be predicated"); 6183 6184 // Initialize the discount to zero, meaning that the scalar version and the 6185 // vector version cost the same. 6186 InstructionCost Discount = 0; 6187 6188 // Holds instructions to analyze. The instructions we visit are mapped in 6189 // ScalarCosts. Those instructions are the ones that would be scalarized if 6190 // we find that the scalar version costs less. 6191 SmallVector<Instruction *, 8> Worklist; 6192 6193 // Returns true if the given instruction can be scalarized. 6194 auto canBeScalarized = [&](Instruction *I) -> bool { 6195 // We only attempt to scalarize instructions forming a single-use chain 6196 // from the original predicated block that would otherwise be vectorized. 6197 // Although not strictly necessary, we give up on instructions we know will 6198 // already be scalar to avoid traversing chains that are unlikely to be 6199 // beneficial. 6200 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6201 isScalarAfterVectorization(I, VF)) 6202 return false; 6203 6204 // If the instruction is scalar with predication, it will be analyzed 6205 // separately. We ignore it within the context of PredInst. 6206 if (isScalarWithPredication(I, VF)) 6207 return false; 6208 6209 // If any of the instruction's operands are uniform after vectorization, 6210 // the instruction cannot be scalarized. This prevents, for example, a 6211 // masked load from being scalarized. 6212 // 6213 // We assume we will only emit a value for lane zero of an instruction 6214 // marked uniform after vectorization, rather than VF identical values. 6215 // Thus, if we scalarize an instruction that uses a uniform, we would 6216 // create uses of values corresponding to the lanes we aren't emitting code 6217 // for. This behavior can be changed by allowing getScalarValue to clone 6218 // the lane zero values for uniforms rather than asserting. 6219 for (Use &U : I->operands()) 6220 if (auto *J = dyn_cast<Instruction>(U.get())) 6221 if (isUniformAfterVectorization(J, VF)) 6222 return false; 6223 6224 // Otherwise, we can scalarize the instruction. 6225 return true; 6226 }; 6227 6228 // Compute the expected cost discount from scalarizing the entire expression 6229 // feeding the predicated instruction. We currently only consider expressions 6230 // that are single-use instruction chains. 6231 Worklist.push_back(PredInst); 6232 while (!Worklist.empty()) { 6233 Instruction *I = Worklist.pop_back_val(); 6234 6235 // If we've already analyzed the instruction, there's nothing to do. 6236 if (ScalarCosts.find(I) != ScalarCosts.end()) 6237 continue; 6238 6239 // Compute the cost of the vector instruction. Note that this cost already 6240 // includes the scalarization overhead of the predicated instruction. 6241 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6242 6243 // Compute the cost of the scalarized instruction. This cost is the cost of 6244 // the instruction as if it wasn't if-converted and instead remained in the 6245 // predicated block. We will scale this cost by block probability after 6246 // computing the scalarization overhead. 6247 InstructionCost ScalarCost = 6248 VF.getFixedValue() * 6249 getInstructionCost(I, ElementCount::getFixed(1)).first; 6250 6251 // Compute the scalarization overhead of needed insertelement instructions 6252 // and phi nodes. 6253 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6254 ScalarCost += TTI.getScalarizationOverhead( 6255 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6256 APInt::getAllOnes(VF.getFixedValue()), true, false); 6257 ScalarCost += 6258 VF.getFixedValue() * 6259 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6260 } 6261 6262 // Compute the scalarization overhead of needed extractelement 6263 // instructions. For each of the instruction's operands, if the operand can 6264 // be scalarized, add it to the worklist; otherwise, account for the 6265 // overhead. 6266 for (Use &U : I->operands()) 6267 if (auto *J = dyn_cast<Instruction>(U.get())) { 6268 assert(VectorType::isValidElementType(J->getType()) && 6269 "Instruction has non-scalar type"); 6270 if (canBeScalarized(J)) 6271 Worklist.push_back(J); 6272 else if (needsExtract(J, VF)) { 6273 ScalarCost += TTI.getScalarizationOverhead( 6274 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6275 APInt::getAllOnes(VF.getFixedValue()), false, true); 6276 } 6277 } 6278 6279 // Scale the total scalar cost by block probability. 6280 ScalarCost /= getReciprocalPredBlockProb(); 6281 6282 // Compute the discount. A non-negative discount means the vector version 6283 // of the instruction costs more, and scalarizing would be beneficial. 6284 Discount += VectorCost - ScalarCost; 6285 ScalarCosts[I] = ScalarCost; 6286 } 6287 6288 return *Discount.getValue(); 6289 } 6290 6291 LoopVectorizationCostModel::VectorizationCostTy 6292 LoopVectorizationCostModel::expectedCost( 6293 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6294 VectorizationCostTy Cost; 6295 6296 // For each block. 6297 for (BasicBlock *BB : TheLoop->blocks()) { 6298 VectorizationCostTy BlockCost; 6299 6300 // For each instruction in the old loop. 6301 for (Instruction &I : BB->instructionsWithoutDebug()) { 6302 // Skip ignored values. 6303 if (ValuesToIgnore.count(&I) || 6304 (VF.isVector() && VecValuesToIgnore.count(&I))) 6305 continue; 6306 6307 VectorizationCostTy C = getInstructionCost(&I, VF); 6308 6309 // Check if we should override the cost. 6310 if (C.first.isValid() && 6311 ForceTargetInstructionCost.getNumOccurrences() > 0) 6312 C.first = InstructionCost(ForceTargetInstructionCost); 6313 6314 // Keep a list of instructions with invalid costs. 6315 if (Invalid && !C.first.isValid()) 6316 Invalid->emplace_back(&I, VF); 6317 6318 BlockCost.first += C.first; 6319 BlockCost.second |= C.second; 6320 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6321 << " for VF " << VF << " For instruction: " << I 6322 << '\n'); 6323 } 6324 6325 // If we are vectorizing a predicated block, it will have been 6326 // if-converted. This means that the block's instructions (aside from 6327 // stores and instructions that may divide by zero) will now be 6328 // unconditionally executed. For the scalar case, we may not always execute 6329 // the predicated block, if it is an if-else block. Thus, scale the block's 6330 // cost by the probability of executing it. blockNeedsPredication from 6331 // Legal is used so as to not include all blocks in tail folded loops. 6332 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6333 BlockCost.first /= getReciprocalPredBlockProb(); 6334 6335 Cost.first += BlockCost.first; 6336 Cost.second |= BlockCost.second; 6337 } 6338 6339 return Cost; 6340 } 6341 6342 /// Gets Address Access SCEV after verifying that the access pattern 6343 /// is loop invariant except the induction variable dependence. 6344 /// 6345 /// This SCEV can be sent to the Target in order to estimate the address 6346 /// calculation cost. 6347 static const SCEV *getAddressAccessSCEV( 6348 Value *Ptr, 6349 LoopVectorizationLegality *Legal, 6350 PredicatedScalarEvolution &PSE, 6351 const Loop *TheLoop) { 6352 6353 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6354 if (!Gep) 6355 return nullptr; 6356 6357 // We are looking for a gep with all loop invariant indices except for one 6358 // which should be an induction variable. 6359 auto SE = PSE.getSE(); 6360 unsigned NumOperands = Gep->getNumOperands(); 6361 for (unsigned i = 1; i < NumOperands; ++i) { 6362 Value *Opd = Gep->getOperand(i); 6363 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6364 !Legal->isInductionVariable(Opd)) 6365 return nullptr; 6366 } 6367 6368 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6369 return PSE.getSCEV(Ptr); 6370 } 6371 6372 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6373 return Legal->hasStride(I->getOperand(0)) || 6374 Legal->hasStride(I->getOperand(1)); 6375 } 6376 6377 InstructionCost 6378 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6379 ElementCount VF) { 6380 assert(VF.isVector() && 6381 "Scalarization cost of instruction implies vectorization."); 6382 if (VF.isScalable()) 6383 return InstructionCost::getInvalid(); 6384 6385 Type *ValTy = getLoadStoreType(I); 6386 auto SE = PSE.getSE(); 6387 6388 unsigned AS = getLoadStoreAddressSpace(I); 6389 Value *Ptr = getLoadStorePointerOperand(I); 6390 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6391 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6392 // that it is being called from this specific place. 6393 6394 // Figure out whether the access is strided and get the stride value 6395 // if it's known in compile time 6396 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6397 6398 // Get the cost of the scalar memory instruction and address computation. 6399 InstructionCost Cost = 6400 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6401 6402 // Don't pass *I here, since it is scalar but will actually be part of a 6403 // vectorized loop where the user of it is a vectorized instruction. 6404 const Align Alignment = getLoadStoreAlignment(I); 6405 Cost += VF.getKnownMinValue() * 6406 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6407 AS, TTI::TCK_RecipThroughput); 6408 6409 // Get the overhead of the extractelement and insertelement instructions 6410 // we might create due to scalarization. 6411 Cost += getScalarizationOverhead(I, VF); 6412 6413 // If we have a predicated load/store, it will need extra i1 extracts and 6414 // conditional branches, but may not be executed for each vector lane. Scale 6415 // the cost by the probability of executing the predicated block. 6416 if (isPredicatedInst(I, VF)) { 6417 Cost /= getReciprocalPredBlockProb(); 6418 6419 // Add the cost of an i1 extract and a branch 6420 auto *Vec_i1Ty = 6421 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6422 Cost += TTI.getScalarizationOverhead( 6423 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6424 /*Insert=*/false, /*Extract=*/true); 6425 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6426 6427 if (useEmulatedMaskMemRefHack(I, VF)) 6428 // Artificially setting to a high enough value to practically disable 6429 // vectorization with such operations. 6430 Cost = 3000000; 6431 } 6432 6433 return Cost; 6434 } 6435 6436 InstructionCost 6437 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6438 ElementCount VF) { 6439 Type *ValTy = getLoadStoreType(I); 6440 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6441 Value *Ptr = getLoadStorePointerOperand(I); 6442 unsigned AS = getLoadStoreAddressSpace(I); 6443 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6444 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6445 6446 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6447 "Stride should be 1 or -1 for consecutive memory access"); 6448 const Align Alignment = getLoadStoreAlignment(I); 6449 InstructionCost Cost = 0; 6450 if (Legal->isMaskRequired(I)) 6451 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6452 CostKind); 6453 else 6454 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6455 CostKind, I); 6456 6457 bool Reverse = ConsecutiveStride < 0; 6458 if (Reverse) 6459 Cost += 6460 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6461 return Cost; 6462 } 6463 6464 InstructionCost 6465 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6466 ElementCount VF) { 6467 assert(Legal->isUniformMemOp(*I)); 6468 6469 Type *ValTy = getLoadStoreType(I); 6470 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6471 const Align Alignment = getLoadStoreAlignment(I); 6472 unsigned AS = getLoadStoreAddressSpace(I); 6473 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6474 if (isa<LoadInst>(I)) { 6475 return TTI.getAddressComputationCost(ValTy) + 6476 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6477 CostKind) + 6478 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6479 } 6480 StoreInst *SI = cast<StoreInst>(I); 6481 6482 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6483 return TTI.getAddressComputationCost(ValTy) + 6484 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6485 CostKind) + 6486 (isLoopInvariantStoreValue 6487 ? 0 6488 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6489 VF.getKnownMinValue() - 1)); 6490 } 6491 6492 InstructionCost 6493 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6494 ElementCount VF) { 6495 Type *ValTy = getLoadStoreType(I); 6496 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6497 const Align Alignment = getLoadStoreAlignment(I); 6498 const Value *Ptr = getLoadStorePointerOperand(I); 6499 6500 return TTI.getAddressComputationCost(VectorTy) + 6501 TTI.getGatherScatterOpCost( 6502 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6503 TargetTransformInfo::TCK_RecipThroughput, I); 6504 } 6505 6506 InstructionCost 6507 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6508 ElementCount VF) { 6509 // TODO: Once we have support for interleaving with scalable vectors 6510 // we can calculate the cost properly here. 6511 if (VF.isScalable()) 6512 return InstructionCost::getInvalid(); 6513 6514 Type *ValTy = getLoadStoreType(I); 6515 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6516 unsigned AS = getLoadStoreAddressSpace(I); 6517 6518 auto Group = getInterleavedAccessGroup(I); 6519 assert(Group && "Fail to get an interleaved access group."); 6520 6521 unsigned InterleaveFactor = Group->getFactor(); 6522 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6523 6524 // Holds the indices of existing members in the interleaved group. 6525 SmallVector<unsigned, 4> Indices; 6526 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6527 if (Group->getMember(IF)) 6528 Indices.push_back(IF); 6529 6530 // Calculate the cost of the whole interleaved group. 6531 bool UseMaskForGaps = 6532 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6533 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6534 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6535 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6536 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6537 6538 if (Group->isReverse()) { 6539 // TODO: Add support for reversed masked interleaved access. 6540 assert(!Legal->isMaskRequired(I) && 6541 "Reverse masked interleaved access not supported."); 6542 Cost += 6543 Group->getNumMembers() * 6544 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6545 } 6546 return Cost; 6547 } 6548 6549 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6550 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6551 using namespace llvm::PatternMatch; 6552 // Early exit for no inloop reductions 6553 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6554 return None; 6555 auto *VectorTy = cast<VectorType>(Ty); 6556 6557 // We are looking for a pattern of, and finding the minimal acceptable cost: 6558 // reduce(mul(ext(A), ext(B))) or 6559 // reduce(mul(A, B)) or 6560 // reduce(ext(A)) or 6561 // reduce(A). 6562 // The basic idea is that we walk down the tree to do that, finding the root 6563 // reduction instruction in InLoopReductionImmediateChains. From there we find 6564 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6565 // of the components. If the reduction cost is lower then we return it for the 6566 // reduction instruction and 0 for the other instructions in the pattern. If 6567 // it is not we return an invalid cost specifying the orignal cost method 6568 // should be used. 6569 Instruction *RetI = I; 6570 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6571 if (!RetI->hasOneUser()) 6572 return None; 6573 RetI = RetI->user_back(); 6574 } 6575 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6576 RetI->user_back()->getOpcode() == Instruction::Add) { 6577 if (!RetI->hasOneUser()) 6578 return None; 6579 RetI = RetI->user_back(); 6580 } 6581 6582 // Test if the found instruction is a reduction, and if not return an invalid 6583 // cost specifying the parent to use the original cost modelling. 6584 if (!InLoopReductionImmediateChains.count(RetI)) 6585 return None; 6586 6587 // Find the reduction this chain is a part of and calculate the basic cost of 6588 // the reduction on its own. 6589 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6590 Instruction *ReductionPhi = LastChain; 6591 while (!isa<PHINode>(ReductionPhi)) 6592 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6593 6594 const RecurrenceDescriptor &RdxDesc = 6595 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6596 6597 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6598 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6599 6600 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6601 // normal fmul instruction to the cost of the fadd reduction. 6602 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6603 BaseCost += 6604 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6605 6606 // If we're using ordered reductions then we can just return the base cost 6607 // here, since getArithmeticReductionCost calculates the full ordered 6608 // reduction cost when FP reassociation is not allowed. 6609 if (useOrderedReductions(RdxDesc)) 6610 return BaseCost; 6611 6612 // Get the operand that was not the reduction chain and match it to one of the 6613 // patterns, returning the better cost if it is found. 6614 Instruction *RedOp = RetI->getOperand(1) == LastChain 6615 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6616 : dyn_cast<Instruction>(RetI->getOperand(1)); 6617 6618 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6619 6620 Instruction *Op0, *Op1; 6621 if (RedOp && 6622 match(RedOp, 6623 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6624 match(Op0, m_ZExtOrSExt(m_Value())) && 6625 Op0->getOpcode() == Op1->getOpcode() && 6626 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6627 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6628 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6629 6630 // Matched reduce(ext(mul(ext(A), ext(B))) 6631 // Note that the extend opcodes need to all match, or if A==B they will have 6632 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6633 // which is equally fine. 6634 bool IsUnsigned = isa<ZExtInst>(Op0); 6635 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6636 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6637 6638 InstructionCost ExtCost = 6639 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6640 TTI::CastContextHint::None, CostKind, Op0); 6641 InstructionCost MulCost = 6642 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6643 InstructionCost Ext2Cost = 6644 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6645 TTI::CastContextHint::None, CostKind, RedOp); 6646 6647 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6648 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6649 CostKind); 6650 6651 if (RedCost.isValid() && 6652 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6653 return I == RetI ? RedCost : 0; 6654 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6655 !TheLoop->isLoopInvariant(RedOp)) { 6656 // Matched reduce(ext(A)) 6657 bool IsUnsigned = isa<ZExtInst>(RedOp); 6658 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6659 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6660 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6661 CostKind); 6662 6663 InstructionCost ExtCost = 6664 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6665 TTI::CastContextHint::None, CostKind, RedOp); 6666 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6667 return I == RetI ? RedCost : 0; 6668 } else if (RedOp && 6669 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6670 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6671 Op0->getOpcode() == Op1->getOpcode() && 6672 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6673 bool IsUnsigned = isa<ZExtInst>(Op0); 6674 Type *Op0Ty = Op0->getOperand(0)->getType(); 6675 Type *Op1Ty = Op1->getOperand(0)->getType(); 6676 Type *LargestOpTy = 6677 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6678 : Op0Ty; 6679 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6680 6681 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6682 // different sizes. We take the largest type as the ext to reduce, and add 6683 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6684 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6685 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6686 TTI::CastContextHint::None, CostKind, Op0); 6687 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6688 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6689 TTI::CastContextHint::None, CostKind, Op1); 6690 InstructionCost MulCost = 6691 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6692 6693 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6694 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6695 CostKind); 6696 InstructionCost ExtraExtCost = 0; 6697 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6698 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6699 ExtraExtCost = TTI.getCastInstrCost( 6700 ExtraExtOp->getOpcode(), ExtType, 6701 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6702 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6703 } 6704 6705 if (RedCost.isValid() && 6706 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6707 return I == RetI ? RedCost : 0; 6708 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6709 // Matched reduce(mul()) 6710 InstructionCost MulCost = 6711 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6712 6713 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6714 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6715 CostKind); 6716 6717 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6718 return I == RetI ? RedCost : 0; 6719 } 6720 } 6721 6722 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 6723 } 6724 6725 InstructionCost 6726 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6727 ElementCount VF) { 6728 // Calculate scalar cost only. Vectorization cost should be ready at this 6729 // moment. 6730 if (VF.isScalar()) { 6731 Type *ValTy = getLoadStoreType(I); 6732 const Align Alignment = getLoadStoreAlignment(I); 6733 unsigned AS = getLoadStoreAddressSpace(I); 6734 6735 return TTI.getAddressComputationCost(ValTy) + 6736 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6737 TTI::TCK_RecipThroughput, I); 6738 } 6739 return getWideningCost(I, VF); 6740 } 6741 6742 LoopVectorizationCostModel::VectorizationCostTy 6743 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6744 ElementCount VF) { 6745 // If we know that this instruction will remain uniform, check the cost of 6746 // the scalar version. 6747 if (isUniformAfterVectorization(I, VF)) 6748 VF = ElementCount::getFixed(1); 6749 6750 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6751 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6752 6753 // Forced scalars do not have any scalarization overhead. 6754 auto ForcedScalar = ForcedScalars.find(VF); 6755 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6756 auto InstSet = ForcedScalar->second; 6757 if (InstSet.count(I)) 6758 return VectorizationCostTy( 6759 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6760 VF.getKnownMinValue()), 6761 false); 6762 } 6763 6764 Type *VectorTy; 6765 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6766 6767 bool TypeNotScalarized = false; 6768 if (VF.isVector() && VectorTy->isVectorTy()) { 6769 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 6770 if (NumParts) 6771 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 6772 else 6773 C = InstructionCost::getInvalid(); 6774 } 6775 return VectorizationCostTy(C, TypeNotScalarized); 6776 } 6777 6778 InstructionCost 6779 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6780 ElementCount VF) const { 6781 6782 // There is no mechanism yet to create a scalable scalarization loop, 6783 // so this is currently Invalid. 6784 if (VF.isScalable()) 6785 return InstructionCost::getInvalid(); 6786 6787 if (VF.isScalar()) 6788 return 0; 6789 6790 InstructionCost Cost = 0; 6791 Type *RetTy = ToVectorTy(I->getType(), VF); 6792 if (!RetTy->isVoidTy() && 6793 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6794 Cost += TTI.getScalarizationOverhead( 6795 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 6796 false); 6797 6798 // Some targets keep addresses scalar. 6799 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6800 return Cost; 6801 6802 // Some targets support efficient element stores. 6803 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6804 return Cost; 6805 6806 // Collect operands to consider. 6807 CallInst *CI = dyn_cast<CallInst>(I); 6808 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6809 6810 // Skip operands that do not require extraction/scalarization and do not incur 6811 // any overhead. 6812 SmallVector<Type *> Tys; 6813 for (auto *V : filterExtractingOperands(Ops, VF)) 6814 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 6815 return Cost + TTI.getOperandsScalarizationOverhead( 6816 filterExtractingOperands(Ops, VF), Tys); 6817 } 6818 6819 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6820 if (VF.isScalar()) 6821 return; 6822 NumPredStores = 0; 6823 for (BasicBlock *BB : TheLoop->blocks()) { 6824 // For each instruction in the old loop. 6825 for (Instruction &I : *BB) { 6826 Value *Ptr = getLoadStorePointerOperand(&I); 6827 if (!Ptr) 6828 continue; 6829 6830 // TODO: We should generate better code and update the cost model for 6831 // predicated uniform stores. Today they are treated as any other 6832 // predicated store (see added test cases in 6833 // invariant-store-vectorization.ll). 6834 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6835 NumPredStores++; 6836 6837 if (Legal->isUniformMemOp(I)) { 6838 // TODO: Avoid replicating loads and stores instead of 6839 // relying on instcombine to remove them. 6840 // Load: Scalar load + broadcast 6841 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6842 InstructionCost Cost; 6843 if (isa<StoreInst>(&I) && VF.isScalable() && 6844 isLegalGatherOrScatter(&I, VF)) { 6845 Cost = getGatherScatterCost(&I, VF); 6846 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 6847 } else { 6848 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 6849 "Cannot yet scalarize uniform stores"); 6850 Cost = getUniformMemOpCost(&I, VF); 6851 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6852 } 6853 continue; 6854 } 6855 6856 // We assume that widening is the best solution when possible. 6857 if (memoryInstructionCanBeWidened(&I, VF)) { 6858 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6859 int ConsecutiveStride = Legal->isConsecutivePtr( 6860 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6861 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6862 "Expected consecutive stride."); 6863 InstWidening Decision = 6864 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6865 setWideningDecision(&I, VF, Decision, Cost); 6866 continue; 6867 } 6868 6869 // Choose between Interleaving, Gather/Scatter or Scalarization. 6870 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6871 unsigned NumAccesses = 1; 6872 if (isAccessInterleaved(&I)) { 6873 auto Group = getInterleavedAccessGroup(&I); 6874 assert(Group && "Fail to get an interleaved access group."); 6875 6876 // Make one decision for the whole group. 6877 if (getWideningDecision(&I, VF) != CM_Unknown) 6878 continue; 6879 6880 NumAccesses = Group->getNumMembers(); 6881 if (interleavedAccessCanBeWidened(&I, VF)) 6882 InterleaveCost = getInterleaveGroupCost(&I, VF); 6883 } 6884 6885 InstructionCost GatherScatterCost = 6886 isLegalGatherOrScatter(&I, VF) 6887 ? getGatherScatterCost(&I, VF) * NumAccesses 6888 : InstructionCost::getInvalid(); 6889 6890 InstructionCost ScalarizationCost = 6891 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6892 6893 // Choose better solution for the current VF, 6894 // write down this decision and use it during vectorization. 6895 InstructionCost Cost; 6896 InstWidening Decision; 6897 if (InterleaveCost <= GatherScatterCost && 6898 InterleaveCost < ScalarizationCost) { 6899 Decision = CM_Interleave; 6900 Cost = InterleaveCost; 6901 } else if (GatherScatterCost < ScalarizationCost) { 6902 Decision = CM_GatherScatter; 6903 Cost = GatherScatterCost; 6904 } else { 6905 Decision = CM_Scalarize; 6906 Cost = ScalarizationCost; 6907 } 6908 // If the instructions belongs to an interleave group, the whole group 6909 // receives the same decision. The whole group receives the cost, but 6910 // the cost will actually be assigned to one instruction. 6911 if (auto Group = getInterleavedAccessGroup(&I)) 6912 setWideningDecision(Group, VF, Decision, Cost); 6913 else 6914 setWideningDecision(&I, VF, Decision, Cost); 6915 } 6916 } 6917 6918 // Make sure that any load of address and any other address computation 6919 // remains scalar unless there is gather/scatter support. This avoids 6920 // inevitable extracts into address registers, and also has the benefit of 6921 // activating LSR more, since that pass can't optimize vectorized 6922 // addresses. 6923 if (TTI.prefersVectorizedAddressing()) 6924 return; 6925 6926 // Start with all scalar pointer uses. 6927 SmallPtrSet<Instruction *, 8> AddrDefs; 6928 for (BasicBlock *BB : TheLoop->blocks()) 6929 for (Instruction &I : *BB) { 6930 Instruction *PtrDef = 6931 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6932 if (PtrDef && TheLoop->contains(PtrDef) && 6933 getWideningDecision(&I, VF) != CM_GatherScatter) 6934 AddrDefs.insert(PtrDef); 6935 } 6936 6937 // Add all instructions used to generate the addresses. 6938 SmallVector<Instruction *, 4> Worklist; 6939 append_range(Worklist, AddrDefs); 6940 while (!Worklist.empty()) { 6941 Instruction *I = Worklist.pop_back_val(); 6942 for (auto &Op : I->operands()) 6943 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6944 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6945 AddrDefs.insert(InstOp).second) 6946 Worklist.push_back(InstOp); 6947 } 6948 6949 for (auto *I : AddrDefs) { 6950 if (isa<LoadInst>(I)) { 6951 // Setting the desired widening decision should ideally be handled in 6952 // by cost functions, but since this involves the task of finding out 6953 // if the loaded register is involved in an address computation, it is 6954 // instead changed here when we know this is the case. 6955 InstWidening Decision = getWideningDecision(I, VF); 6956 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6957 // Scalarize a widened load of address. 6958 setWideningDecision( 6959 I, VF, CM_Scalarize, 6960 (VF.getKnownMinValue() * 6961 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6962 else if (auto Group = getInterleavedAccessGroup(I)) { 6963 // Scalarize an interleave group of address loads. 6964 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6965 if (Instruction *Member = Group->getMember(I)) 6966 setWideningDecision( 6967 Member, VF, CM_Scalarize, 6968 (VF.getKnownMinValue() * 6969 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6970 } 6971 } 6972 } else 6973 // Make sure I gets scalarized and a cost estimate without 6974 // scalarization overhead. 6975 ForcedScalars[VF].insert(I); 6976 } 6977 } 6978 6979 InstructionCost 6980 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 6981 Type *&VectorTy) { 6982 Type *RetTy = I->getType(); 6983 if (canTruncateToMinimalBitwidth(I, VF)) 6984 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6985 auto SE = PSE.getSE(); 6986 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6987 6988 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 6989 ElementCount VF) -> bool { 6990 if (VF.isScalar()) 6991 return true; 6992 6993 auto Scalarized = InstsToScalarize.find(VF); 6994 assert(Scalarized != InstsToScalarize.end() && 6995 "VF not yet analyzed for scalarization profitability"); 6996 return !Scalarized->second.count(I) && 6997 llvm::all_of(I->users(), [&](User *U) { 6998 auto *UI = cast<Instruction>(U); 6999 return !Scalarized->second.count(UI); 7000 }); 7001 }; 7002 (void) hasSingleCopyAfterVectorization; 7003 7004 if (isScalarAfterVectorization(I, VF)) { 7005 // With the exception of GEPs and PHIs, after scalarization there should 7006 // only be one copy of the instruction generated in the loop. This is 7007 // because the VF is either 1, or any instructions that need scalarizing 7008 // have already been dealt with by the the time we get here. As a result, 7009 // it means we don't have to multiply the instruction cost by VF. 7010 assert(I->getOpcode() == Instruction::GetElementPtr || 7011 I->getOpcode() == Instruction::PHI || 7012 (I->getOpcode() == Instruction::BitCast && 7013 I->getType()->isPointerTy()) || 7014 hasSingleCopyAfterVectorization(I, VF)); 7015 VectorTy = RetTy; 7016 } else 7017 VectorTy = ToVectorTy(RetTy, VF); 7018 7019 // TODO: We need to estimate the cost of intrinsic calls. 7020 switch (I->getOpcode()) { 7021 case Instruction::GetElementPtr: 7022 // We mark this instruction as zero-cost because the cost of GEPs in 7023 // vectorized code depends on whether the corresponding memory instruction 7024 // is scalarized or not. Therefore, we handle GEPs with the memory 7025 // instruction cost. 7026 return 0; 7027 case Instruction::Br: { 7028 // In cases of scalarized and predicated instructions, there will be VF 7029 // predicated blocks in the vectorized loop. Each branch around these 7030 // blocks requires also an extract of its vector compare i1 element. 7031 bool ScalarPredicatedBB = false; 7032 BranchInst *BI = cast<BranchInst>(I); 7033 if (VF.isVector() && BI->isConditional() && 7034 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7035 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7036 ScalarPredicatedBB = true; 7037 7038 if (ScalarPredicatedBB) { 7039 // Not possible to scalarize scalable vector with predicated instructions. 7040 if (VF.isScalable()) 7041 return InstructionCost::getInvalid(); 7042 // Return cost for branches around scalarized and predicated blocks. 7043 auto *Vec_i1Ty = 7044 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7045 return ( 7046 TTI.getScalarizationOverhead( 7047 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7048 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7049 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7050 // The back-edge branch will remain, as will all scalar branches. 7051 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7052 else 7053 // This branch will be eliminated by if-conversion. 7054 return 0; 7055 // Note: We currently assume zero cost for an unconditional branch inside 7056 // a predicated block since it will become a fall-through, although we 7057 // may decide in the future to call TTI for all branches. 7058 } 7059 case Instruction::PHI: { 7060 auto *Phi = cast<PHINode>(I); 7061 7062 // First-order recurrences are replaced by vector shuffles inside the loop. 7063 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7064 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7065 return TTI.getShuffleCost( 7066 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7067 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7068 7069 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7070 // converted into select instructions. We require N - 1 selects per phi 7071 // node, where N is the number of incoming values. 7072 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7073 return (Phi->getNumIncomingValues() - 1) * 7074 TTI.getCmpSelInstrCost( 7075 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7076 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7077 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7078 7079 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7080 } 7081 case Instruction::UDiv: 7082 case Instruction::SDiv: 7083 case Instruction::URem: 7084 case Instruction::SRem: 7085 // If we have a predicated instruction, it may not be executed for each 7086 // vector lane. Get the scalarization cost and scale this amount by the 7087 // probability of executing the predicated block. If the instruction is not 7088 // predicated, we fall through to the next case. 7089 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7090 InstructionCost Cost = 0; 7091 7092 // These instructions have a non-void type, so account for the phi nodes 7093 // that we will create. This cost is likely to be zero. The phi node 7094 // cost, if any, should be scaled by the block probability because it 7095 // models a copy at the end of each predicated block. 7096 Cost += VF.getKnownMinValue() * 7097 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7098 7099 // The cost of the non-predicated instruction. 7100 Cost += VF.getKnownMinValue() * 7101 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7102 7103 // The cost of insertelement and extractelement instructions needed for 7104 // scalarization. 7105 Cost += getScalarizationOverhead(I, VF); 7106 7107 // Scale the cost by the probability of executing the predicated blocks. 7108 // This assumes the predicated block for each vector lane is equally 7109 // likely. 7110 return Cost / getReciprocalPredBlockProb(); 7111 } 7112 LLVM_FALLTHROUGH; 7113 case Instruction::Add: 7114 case Instruction::FAdd: 7115 case Instruction::Sub: 7116 case Instruction::FSub: 7117 case Instruction::Mul: 7118 case Instruction::FMul: 7119 case Instruction::FDiv: 7120 case Instruction::FRem: 7121 case Instruction::Shl: 7122 case Instruction::LShr: 7123 case Instruction::AShr: 7124 case Instruction::And: 7125 case Instruction::Or: 7126 case Instruction::Xor: { 7127 // Since we will replace the stride by 1 the multiplication should go away. 7128 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7129 return 0; 7130 7131 // Detect reduction patterns 7132 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7133 return *RedCost; 7134 7135 // Certain instructions can be cheaper to vectorize if they have a constant 7136 // second vector operand. One example of this are shifts on x86. 7137 Value *Op2 = I->getOperand(1); 7138 TargetTransformInfo::OperandValueProperties Op2VP; 7139 TargetTransformInfo::OperandValueKind Op2VK = 7140 TTI.getOperandInfo(Op2, Op2VP); 7141 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7142 Op2VK = TargetTransformInfo::OK_UniformValue; 7143 7144 SmallVector<const Value *, 4> Operands(I->operand_values()); 7145 return TTI.getArithmeticInstrCost( 7146 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7147 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7148 } 7149 case Instruction::FNeg: { 7150 return TTI.getArithmeticInstrCost( 7151 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7152 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7153 TargetTransformInfo::OP_None, I->getOperand(0), I); 7154 } 7155 case Instruction::Select: { 7156 SelectInst *SI = cast<SelectInst>(I); 7157 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7158 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7159 7160 const Value *Op0, *Op1; 7161 using namespace llvm::PatternMatch; 7162 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7163 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7164 // select x, y, false --> x & y 7165 // select x, true, y --> x | y 7166 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7167 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7168 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7169 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7170 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7171 Op1->getType()->getScalarSizeInBits() == 1); 7172 7173 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7174 return TTI.getArithmeticInstrCost( 7175 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7176 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7177 } 7178 7179 Type *CondTy = SI->getCondition()->getType(); 7180 if (!ScalarCond) 7181 CondTy = VectorType::get(CondTy, VF); 7182 7183 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7184 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7185 Pred = Cmp->getPredicate(); 7186 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7187 CostKind, I); 7188 } 7189 case Instruction::ICmp: 7190 case Instruction::FCmp: { 7191 Type *ValTy = I->getOperand(0)->getType(); 7192 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7193 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7194 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7195 VectorTy = ToVectorTy(ValTy, VF); 7196 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7197 cast<CmpInst>(I)->getPredicate(), CostKind, 7198 I); 7199 } 7200 case Instruction::Store: 7201 case Instruction::Load: { 7202 ElementCount Width = VF; 7203 if (Width.isVector()) { 7204 InstWidening Decision = getWideningDecision(I, Width); 7205 assert(Decision != CM_Unknown && 7206 "CM decision should be taken at this point"); 7207 if (Decision == CM_Scalarize) 7208 Width = ElementCount::getFixed(1); 7209 } 7210 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7211 return getMemoryInstructionCost(I, VF); 7212 } 7213 case Instruction::BitCast: 7214 if (I->getType()->isPointerTy()) 7215 return 0; 7216 LLVM_FALLTHROUGH; 7217 case Instruction::ZExt: 7218 case Instruction::SExt: 7219 case Instruction::FPToUI: 7220 case Instruction::FPToSI: 7221 case Instruction::FPExt: 7222 case Instruction::PtrToInt: 7223 case Instruction::IntToPtr: 7224 case Instruction::SIToFP: 7225 case Instruction::UIToFP: 7226 case Instruction::Trunc: 7227 case Instruction::FPTrunc: { 7228 // Computes the CastContextHint from a Load/Store instruction. 7229 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7230 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7231 "Expected a load or a store!"); 7232 7233 if (VF.isScalar() || !TheLoop->contains(I)) 7234 return TTI::CastContextHint::Normal; 7235 7236 switch (getWideningDecision(I, VF)) { 7237 case LoopVectorizationCostModel::CM_GatherScatter: 7238 return TTI::CastContextHint::GatherScatter; 7239 case LoopVectorizationCostModel::CM_Interleave: 7240 return TTI::CastContextHint::Interleave; 7241 case LoopVectorizationCostModel::CM_Scalarize: 7242 case LoopVectorizationCostModel::CM_Widen: 7243 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7244 : TTI::CastContextHint::Normal; 7245 case LoopVectorizationCostModel::CM_Widen_Reverse: 7246 return TTI::CastContextHint::Reversed; 7247 case LoopVectorizationCostModel::CM_Unknown: 7248 llvm_unreachable("Instr did not go through cost modelling?"); 7249 } 7250 7251 llvm_unreachable("Unhandled case!"); 7252 }; 7253 7254 unsigned Opcode = I->getOpcode(); 7255 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7256 // For Trunc, the context is the only user, which must be a StoreInst. 7257 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7258 if (I->hasOneUse()) 7259 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7260 CCH = ComputeCCH(Store); 7261 } 7262 // For Z/Sext, the context is the operand, which must be a LoadInst. 7263 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7264 Opcode == Instruction::FPExt) { 7265 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7266 CCH = ComputeCCH(Load); 7267 } 7268 7269 // We optimize the truncation of induction variables having constant 7270 // integer steps. The cost of these truncations is the same as the scalar 7271 // operation. 7272 if (isOptimizableIVTruncate(I, VF)) { 7273 auto *Trunc = cast<TruncInst>(I); 7274 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7275 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7276 } 7277 7278 // Detect reduction patterns 7279 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7280 return *RedCost; 7281 7282 Type *SrcScalarTy = I->getOperand(0)->getType(); 7283 Type *SrcVecTy = 7284 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7285 if (canTruncateToMinimalBitwidth(I, VF)) { 7286 // This cast is going to be shrunk. This may remove the cast or it might 7287 // turn it into slightly different cast. For example, if MinBW == 16, 7288 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7289 // 7290 // Calculate the modified src and dest types. 7291 Type *MinVecTy = VectorTy; 7292 if (Opcode == Instruction::Trunc) { 7293 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7294 VectorTy = 7295 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7296 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7297 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7298 VectorTy = 7299 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7300 } 7301 } 7302 7303 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7304 } 7305 case Instruction::Call: { 7306 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7307 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7308 return *RedCost; 7309 bool NeedToScalarize; 7310 CallInst *CI = cast<CallInst>(I); 7311 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7312 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7313 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7314 return std::min(CallCost, IntrinsicCost); 7315 } 7316 return CallCost; 7317 } 7318 case Instruction::ExtractValue: 7319 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7320 case Instruction::Alloca: 7321 // We cannot easily widen alloca to a scalable alloca, as 7322 // the result would need to be a vector of pointers. 7323 if (VF.isScalable()) 7324 return InstructionCost::getInvalid(); 7325 LLVM_FALLTHROUGH; 7326 default: 7327 // This opcode is unknown. Assume that it is the same as 'mul'. 7328 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7329 } // end of switch. 7330 } 7331 7332 char LoopVectorize::ID = 0; 7333 7334 static const char lv_name[] = "Loop Vectorization"; 7335 7336 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7337 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7338 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7339 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7340 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7341 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7342 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7343 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7344 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7345 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7346 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7347 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7348 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7349 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7350 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7351 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7352 7353 namespace llvm { 7354 7355 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7356 7357 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7358 bool VectorizeOnlyWhenForced) { 7359 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7360 } 7361 7362 } // end namespace llvm 7363 7364 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7365 // Check if the pointer operand of a load or store instruction is 7366 // consecutive. 7367 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7368 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7369 return false; 7370 } 7371 7372 void LoopVectorizationCostModel::collectValuesToIgnore() { 7373 // Ignore ephemeral values. 7374 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7375 7376 // Find all stores to invariant variables. Since they are going to sink 7377 // outside the loop we do not need calculate cost for them. 7378 for (BasicBlock *BB : TheLoop->blocks()) 7379 for (Instruction &I : *BB) { 7380 StoreInst *SI; 7381 if ((SI = dyn_cast<StoreInst>(&I)) && 7382 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 7383 ValuesToIgnore.insert(&I); 7384 } 7385 7386 // Ignore type-promoting instructions we identified during reduction 7387 // detection. 7388 for (auto &Reduction : Legal->getReductionVars()) { 7389 const RecurrenceDescriptor &RedDes = Reduction.second; 7390 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7391 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7392 } 7393 // Ignore type-casting instructions we identified during induction 7394 // detection. 7395 for (auto &Induction : Legal->getInductionVars()) { 7396 const InductionDescriptor &IndDes = Induction.second; 7397 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7398 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7399 } 7400 } 7401 7402 void LoopVectorizationCostModel::collectInLoopReductions() { 7403 for (auto &Reduction : Legal->getReductionVars()) { 7404 PHINode *Phi = Reduction.first; 7405 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7406 7407 // We don't collect reductions that are type promoted (yet). 7408 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7409 continue; 7410 7411 // If the target would prefer this reduction to happen "in-loop", then we 7412 // want to record it as such. 7413 unsigned Opcode = RdxDesc.getOpcode(); 7414 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7415 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7416 TargetTransformInfo::ReductionFlags())) 7417 continue; 7418 7419 // Check that we can correctly put the reductions into the loop, by 7420 // finding the chain of operations that leads from the phi to the loop 7421 // exit value. 7422 SmallVector<Instruction *, 4> ReductionOperations = 7423 RdxDesc.getReductionOpChain(Phi, TheLoop); 7424 bool InLoop = !ReductionOperations.empty(); 7425 if (InLoop) { 7426 InLoopReductionChains[Phi] = ReductionOperations; 7427 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7428 Instruction *LastChain = Phi; 7429 for (auto *I : ReductionOperations) { 7430 InLoopReductionImmediateChains[I] = LastChain; 7431 LastChain = I; 7432 } 7433 } 7434 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7435 << " reduction for phi: " << *Phi << "\n"); 7436 } 7437 } 7438 7439 // TODO: we could return a pair of values that specify the max VF and 7440 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7441 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7442 // doesn't have a cost model that can choose which plan to execute if 7443 // more than one is generated. 7444 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7445 LoopVectorizationCostModel &CM) { 7446 unsigned WidestType; 7447 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7448 return WidestVectorRegBits / WidestType; 7449 } 7450 7451 VectorizationFactor 7452 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7453 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7454 ElementCount VF = UserVF; 7455 // Outer loop handling: They may require CFG and instruction level 7456 // transformations before even evaluating whether vectorization is profitable. 7457 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7458 // the vectorization pipeline. 7459 if (!OrigLoop->isInnermost()) { 7460 // If the user doesn't provide a vectorization factor, determine a 7461 // reasonable one. 7462 if (UserVF.isZero()) { 7463 VF = ElementCount::getFixed(determineVPlanVF( 7464 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7465 .getFixedSize(), 7466 CM)); 7467 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7468 7469 // Make sure we have a VF > 1 for stress testing. 7470 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7471 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7472 << "overriding computed VF.\n"); 7473 VF = ElementCount::getFixed(4); 7474 } 7475 } 7476 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7477 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7478 "VF needs to be a power of two"); 7479 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7480 << "VF " << VF << " to build VPlans.\n"); 7481 buildVPlans(VF, VF); 7482 7483 // For VPlan build stress testing, we bail out after VPlan construction. 7484 if (VPlanBuildStressTest) 7485 return VectorizationFactor::Disabled(); 7486 7487 return {VF, 0 /*Cost*/}; 7488 } 7489 7490 LLVM_DEBUG( 7491 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7492 "VPlan-native path.\n"); 7493 return VectorizationFactor::Disabled(); 7494 } 7495 7496 bool LoopVectorizationPlanner::requiresTooManyRuntimeChecks() const { 7497 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7498 return (NumRuntimePointerChecks > 7499 VectorizerParams::RuntimeMemoryCheckThreshold && 7500 !Hints.allowReordering()) || 7501 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7502 } 7503 7504 Optional<VectorizationFactor> 7505 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7506 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7507 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7508 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7509 return None; 7510 7511 // Invalidate interleave groups if all blocks of loop will be predicated. 7512 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7513 !useMaskedInterleavedAccesses(*TTI)) { 7514 LLVM_DEBUG( 7515 dbgs() 7516 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7517 "which requires masked-interleaved support.\n"); 7518 if (CM.InterleaveInfo.invalidateGroups()) 7519 // Invalidating interleave groups also requires invalidating all decisions 7520 // based on them, which includes widening decisions and uniform and scalar 7521 // values. 7522 CM.invalidateCostModelingDecisions(); 7523 } 7524 7525 ElementCount MaxUserVF = 7526 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7527 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7528 if (!UserVF.isZero() && UserVFIsLegal) { 7529 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7530 "VF needs to be a power of two"); 7531 // Collect the instructions (and their associated costs) that will be more 7532 // profitable to scalarize. 7533 if (CM.selectUserVectorizationFactor(UserVF)) { 7534 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7535 CM.collectInLoopReductions(); 7536 buildVPlansWithVPRecipes(UserVF, UserVF); 7537 LLVM_DEBUG(printPlans(dbgs())); 7538 return {{UserVF, 0}}; 7539 } else 7540 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7541 "InvalidCost", ORE, OrigLoop); 7542 } 7543 7544 // Populate the set of Vectorization Factor Candidates. 7545 ElementCountSet VFCandidates; 7546 for (auto VF = ElementCount::getFixed(1); 7547 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7548 VFCandidates.insert(VF); 7549 for (auto VF = ElementCount::getScalable(1); 7550 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7551 VFCandidates.insert(VF); 7552 7553 for (const auto &VF : VFCandidates) { 7554 // Collect Uniform and Scalar instructions after vectorization with VF. 7555 CM.collectUniformsAndScalars(VF); 7556 7557 // Collect the instructions (and their associated costs) that will be more 7558 // profitable to scalarize. 7559 if (VF.isVector()) 7560 CM.collectInstsToScalarize(VF); 7561 } 7562 7563 CM.collectInLoopReductions(); 7564 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7565 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7566 7567 LLVM_DEBUG(printPlans(dbgs())); 7568 if (!MaxFactors.hasVector()) 7569 return VectorizationFactor::Disabled(); 7570 7571 // Select the optimal vectorization factor. 7572 return CM.selectVectorizationFactor(VFCandidates); 7573 } 7574 7575 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7576 assert(count_if(VPlans, 7577 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7578 1 && 7579 "Best VF has not a single VPlan."); 7580 7581 for (const VPlanPtr &Plan : VPlans) { 7582 if (Plan->hasVF(VF)) 7583 return *Plan.get(); 7584 } 7585 llvm_unreachable("No plan found!"); 7586 } 7587 7588 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7589 SmallVector<Metadata *, 4> MDs; 7590 // Reserve first location for self reference to the LoopID metadata node. 7591 MDs.push_back(nullptr); 7592 bool IsUnrollMetadata = false; 7593 MDNode *LoopID = L->getLoopID(); 7594 if (LoopID) { 7595 // First find existing loop unrolling disable metadata. 7596 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7597 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7598 if (MD) { 7599 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7600 IsUnrollMetadata = 7601 S && S->getString().startswith("llvm.loop.unroll.disable"); 7602 } 7603 MDs.push_back(LoopID->getOperand(i)); 7604 } 7605 } 7606 7607 if (!IsUnrollMetadata) { 7608 // Add runtime unroll disable metadata. 7609 LLVMContext &Context = L->getHeader()->getContext(); 7610 SmallVector<Metadata *, 1> DisableOperands; 7611 DisableOperands.push_back( 7612 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7613 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7614 MDs.push_back(DisableNode); 7615 MDNode *NewLoopID = MDNode::get(Context, MDs); 7616 // Set operand 0 to refer to the loop id itself. 7617 NewLoopID->replaceOperandWith(0, NewLoopID); 7618 L->setLoopID(NewLoopID); 7619 } 7620 } 7621 7622 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7623 VPlan &BestVPlan, 7624 InnerLoopVectorizer &ILV, 7625 DominatorTree *DT) { 7626 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7627 << '\n'); 7628 7629 // Perform the actual loop transformation. 7630 7631 // 1. Set up the skeleton for vectorization, including vector pre-header and 7632 // middle block. The vector loop is created during VPlan execution. 7633 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7634 Value *CanonicalIVStartValue; 7635 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7636 ILV.createVectorizedLoopSkeleton(); 7637 ILV.collectPoisonGeneratingRecipes(State); 7638 7639 ILV.printDebugTracesAtStart(); 7640 7641 //===------------------------------------------------===// 7642 // 7643 // Notice: any optimization or new instruction that go 7644 // into the code below should also be implemented in 7645 // the cost-model. 7646 // 7647 //===------------------------------------------------===// 7648 7649 // 2. Copy and widen instructions from the old loop into the new loop. 7650 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7651 ILV.getOrCreateVectorTripCount(nullptr), 7652 CanonicalIVStartValue, State); 7653 BestVPlan.execute(&State); 7654 7655 // Keep all loop hints from the original loop on the vector loop (we'll 7656 // replace the vectorizer-specific hints below). 7657 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7658 7659 Optional<MDNode *> VectorizedLoopID = 7660 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7661 LLVMLoopVectorizeFollowupVectorized}); 7662 7663 VPBasicBlock *HeaderVPBB = 7664 BestVPlan.getVectorLoopRegion()->getEntryBasicBlock(); 7665 Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]); 7666 if (VectorizedLoopID.hasValue()) 7667 L->setLoopID(VectorizedLoopID.getValue()); 7668 else { 7669 // Keep all loop hints from the original loop on the vector loop (we'll 7670 // replace the vectorizer-specific hints below). 7671 if (MDNode *LID = OrigLoop->getLoopID()) 7672 L->setLoopID(LID); 7673 7674 LoopVectorizeHints Hints(L, true, *ORE); 7675 Hints.setAlreadyVectorized(); 7676 } 7677 // Disable runtime unrolling when vectorizing the epilogue loop. 7678 if (CanonicalIVStartValue) 7679 AddRuntimeUnrollDisableMetaData(L); 7680 7681 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7682 // predication, updating analyses. 7683 ILV.fixVectorizedLoop(State, BestVPlan); 7684 7685 ILV.printDebugTracesAtEnd(); 7686 } 7687 7688 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7689 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7690 for (const auto &Plan : VPlans) 7691 if (PrintVPlansInDotFormat) 7692 Plan->printDOT(O); 7693 else 7694 Plan->print(O); 7695 } 7696 #endif 7697 7698 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7699 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7700 7701 // We create new control-flow for the vectorized loop, so the original exit 7702 // conditions will be dead after vectorization if it's only used by the 7703 // terminator 7704 SmallVector<BasicBlock*> ExitingBlocks; 7705 OrigLoop->getExitingBlocks(ExitingBlocks); 7706 for (auto *BB : ExitingBlocks) { 7707 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7708 if (!Cmp || !Cmp->hasOneUse()) 7709 continue; 7710 7711 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7712 if (!DeadInstructions.insert(Cmp).second) 7713 continue; 7714 7715 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7716 // TODO: can recurse through operands in general 7717 for (Value *Op : Cmp->operands()) { 7718 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7719 DeadInstructions.insert(cast<Instruction>(Op)); 7720 } 7721 } 7722 7723 // We create new "steps" for induction variable updates to which the original 7724 // induction variables map. An original update instruction will be dead if 7725 // all its users except the induction variable are dead. 7726 auto *Latch = OrigLoop->getLoopLatch(); 7727 for (auto &Induction : Legal->getInductionVars()) { 7728 PHINode *Ind = Induction.first; 7729 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7730 7731 // If the tail is to be folded by masking, the primary induction variable, 7732 // if exists, isn't dead: it will be used for masking. Don't kill it. 7733 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7734 continue; 7735 7736 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7737 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7738 })) 7739 DeadInstructions.insert(IndUpdate); 7740 } 7741 } 7742 7743 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7744 7745 //===--------------------------------------------------------------------===// 7746 // EpilogueVectorizerMainLoop 7747 //===--------------------------------------------------------------------===// 7748 7749 /// This function is partially responsible for generating the control flow 7750 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7751 std::pair<BasicBlock *, Value *> 7752 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7753 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7754 7755 // Workaround! Compute the trip count of the original loop and cache it 7756 // before we start modifying the CFG. This code has a systemic problem 7757 // wherein it tries to run analysis over partially constructed IR; this is 7758 // wrong, and not simply for SCEV. The trip count of the original loop 7759 // simply happens to be prone to hitting this in practice. In theory, we 7760 // can hit the same issue for any SCEV, or ValueTracking query done during 7761 // mutation. See PR49900. 7762 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 7763 createVectorLoopSkeleton(""); 7764 7765 // Generate the code to check the minimum iteration count of the vector 7766 // epilogue (see below). 7767 EPI.EpilogueIterationCountCheck = 7768 emitIterationCountCheck(LoopScalarPreHeader, true); 7769 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7770 7771 // Generate the code to check any assumptions that we've made for SCEV 7772 // expressions. 7773 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7774 7775 // Generate the code that checks at runtime if arrays overlap. We put the 7776 // checks into a separate block to make the more common case of few elements 7777 // faster. 7778 EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); 7779 7780 // Generate the iteration count check for the main loop, *after* the check 7781 // for the epilogue loop, so that the path-length is shorter for the case 7782 // that goes directly through the vector epilogue. The longer-path length for 7783 // the main loop is compensated for, by the gain from vectorizing the larger 7784 // trip count. Note: the branch will get updated later on when we vectorize 7785 // the epilogue. 7786 EPI.MainLoopIterationCountCheck = 7787 emitIterationCountCheck(LoopScalarPreHeader, false); 7788 7789 // Generate the induction variable. 7790 EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 7791 7792 // Skip induction resume value creation here because they will be created in 7793 // the second pass. If we created them here, they wouldn't be used anyway, 7794 // because the vplan in the second pass still contains the inductions from the 7795 // original loop. 7796 7797 return {completeLoopSkeleton(OrigLoopID), nullptr}; 7798 } 7799 7800 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7801 LLVM_DEBUG({ 7802 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7803 << "Main Loop VF:" << EPI.MainLoopVF 7804 << ", Main Loop UF:" << EPI.MainLoopUF 7805 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7806 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7807 }); 7808 } 7809 7810 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7811 DEBUG_WITH_TYPE(VerboseDebug, { 7812 dbgs() << "intermediate fn:\n" 7813 << *OrigLoop->getHeader()->getParent() << "\n"; 7814 }); 7815 } 7816 7817 BasicBlock * 7818 EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass, 7819 bool ForEpilogue) { 7820 assert(Bypass && "Expected valid bypass basic block."); 7821 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7822 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7823 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 7824 // Reuse existing vector loop preheader for TC checks. 7825 // Note that new preheader block is generated for vector loop. 7826 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7827 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7828 7829 // Generate code to check if the loop's trip count is less than VF * UF of the 7830 // main vector loop. 7831 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 7832 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7833 7834 Value *CheckMinIters = Builder.CreateICmp( 7835 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7836 "min.iters.check"); 7837 7838 if (!ForEpilogue) 7839 TCCheckBlock->setName("vector.main.loop.iter.check"); 7840 7841 // Create new preheader for vector loop. 7842 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7843 DT, LI, nullptr, "vector.ph"); 7844 7845 if (ForEpilogue) { 7846 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7847 DT->getNode(Bypass)->getIDom()) && 7848 "TC check is expected to dominate Bypass"); 7849 7850 // Update dominator for Bypass & LoopExit. 7851 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7852 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7853 // For loops with multiple exits, there's no edge from the middle block 7854 // to exit blocks (as the epilogue must run) and thus no need to update 7855 // the immediate dominator of the exit blocks. 7856 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7857 7858 LoopBypassBlocks.push_back(TCCheckBlock); 7859 7860 // Save the trip count so we don't have to regenerate it in the 7861 // vec.epilog.iter.check. This is safe to do because the trip count 7862 // generated here dominates the vector epilog iter check. 7863 EPI.TripCount = Count; 7864 } 7865 7866 ReplaceInstWithInst( 7867 TCCheckBlock->getTerminator(), 7868 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7869 7870 return TCCheckBlock; 7871 } 7872 7873 //===--------------------------------------------------------------------===// 7874 // EpilogueVectorizerEpilogueLoop 7875 //===--------------------------------------------------------------------===// 7876 7877 /// This function is partially responsible for generating the control flow 7878 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7879 std::pair<BasicBlock *, Value *> 7880 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7881 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7882 createVectorLoopSkeleton("vec.epilog."); 7883 7884 // Now, compare the remaining count and if there aren't enough iterations to 7885 // execute the vectorized epilogue skip to the scalar part. 7886 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7887 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7888 LoopVectorPreHeader = 7889 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7890 LI, nullptr, "vec.epilog.ph"); 7891 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 7892 VecEpilogueIterationCountCheck); 7893 7894 // Adjust the control flow taking the state info from the main loop 7895 // vectorization into account. 7896 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7897 "expected this to be saved from the previous pass."); 7898 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7899 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7900 7901 DT->changeImmediateDominator(LoopVectorPreHeader, 7902 EPI.MainLoopIterationCountCheck); 7903 7904 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7905 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7906 7907 if (EPI.SCEVSafetyCheck) 7908 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 7909 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7910 if (EPI.MemSafetyCheck) 7911 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 7912 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7913 7914 DT->changeImmediateDominator( 7915 VecEpilogueIterationCountCheck, 7916 VecEpilogueIterationCountCheck->getSinglePredecessor()); 7917 7918 DT->changeImmediateDominator(LoopScalarPreHeader, 7919 EPI.EpilogueIterationCountCheck); 7920 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7921 // If there is an epilogue which must run, there's no edge from the 7922 // middle block to exit blocks and thus no need to update the immediate 7923 // dominator of the exit blocks. 7924 DT->changeImmediateDominator(LoopExitBlock, 7925 EPI.EpilogueIterationCountCheck); 7926 7927 // Keep track of bypass blocks, as they feed start values to the induction 7928 // phis in the scalar loop preheader. 7929 if (EPI.SCEVSafetyCheck) 7930 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 7931 if (EPI.MemSafetyCheck) 7932 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 7933 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 7934 7935 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 7936 // merge control-flow from the latch block and the middle block. Update the 7937 // incoming values here and move the Phi into the preheader. 7938 SmallVector<PHINode *, 4> PhisInBlock; 7939 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 7940 PhisInBlock.push_back(&Phi); 7941 7942 for (PHINode *Phi : PhisInBlock) { 7943 Phi->replaceIncomingBlockWith( 7944 VecEpilogueIterationCountCheck->getSinglePredecessor(), 7945 VecEpilogueIterationCountCheck); 7946 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 7947 if (EPI.SCEVSafetyCheck) 7948 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 7949 if (EPI.MemSafetyCheck) 7950 Phi->removeIncomingValue(EPI.MemSafetyCheck); 7951 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 7952 } 7953 7954 // Generate a resume induction for the vector epilogue and put it in the 7955 // vector epilogue preheader 7956 Type *IdxTy = Legal->getWidestInductionType(); 7957 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 7958 LoopVectorPreHeader->getFirstNonPHI()); 7959 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 7960 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 7961 EPI.MainLoopIterationCountCheck); 7962 7963 // Generate induction resume values. These variables save the new starting 7964 // indexes for the scalar loop. They are used to test if there are any tail 7965 // iterations left once the vector loop has completed. 7966 // Note that when the vectorized epilogue is skipped due to iteration count 7967 // check, then the resume value for the induction variable comes from 7968 // the trip count of the main vector loop, hence passing the AdditionalBypass 7969 // argument. 7970 createInductionResumeValues({VecEpilogueIterationCountCheck, 7971 EPI.VectorTripCount} /* AdditionalBypass */); 7972 7973 return {completeLoopSkeleton(OrigLoopID), EPResumeVal}; 7974 } 7975 7976 BasicBlock * 7977 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 7978 BasicBlock *Bypass, BasicBlock *Insert) { 7979 7980 assert(EPI.TripCount && 7981 "Expected trip count to have been safed in the first pass."); 7982 assert( 7983 (!isa<Instruction>(EPI.TripCount) || 7984 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 7985 "saved trip count does not dominate insertion point."); 7986 Value *TC = EPI.TripCount; 7987 IRBuilder<> Builder(Insert->getTerminator()); 7988 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 7989 7990 // Generate code to check if the loop's trip count is less than VF * UF of the 7991 // vector epilogue loop. 7992 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 7993 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7994 7995 Value *CheckMinIters = 7996 Builder.CreateICmp(P, Count, 7997 createStepForVF(Builder, Count->getType(), 7998 EPI.EpilogueVF, EPI.EpilogueUF), 7999 "min.epilog.iters.check"); 8000 8001 ReplaceInstWithInst( 8002 Insert->getTerminator(), 8003 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8004 8005 LoopBypassBlocks.push_back(Insert); 8006 return Insert; 8007 } 8008 8009 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8010 LLVM_DEBUG({ 8011 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8012 << "Epilogue Loop VF:" << EPI.EpilogueVF 8013 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8014 }); 8015 } 8016 8017 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8018 DEBUG_WITH_TYPE(VerboseDebug, { 8019 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8020 }); 8021 } 8022 8023 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8024 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8025 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8026 bool PredicateAtRangeStart = Predicate(Range.Start); 8027 8028 for (ElementCount TmpVF = Range.Start * 2; 8029 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8030 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8031 Range.End = TmpVF; 8032 break; 8033 } 8034 8035 return PredicateAtRangeStart; 8036 } 8037 8038 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8039 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8040 /// of VF's starting at a given VF and extending it as much as possible. Each 8041 /// vectorization decision can potentially shorten this sub-range during 8042 /// buildVPlan(). 8043 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8044 ElementCount MaxVF) { 8045 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8046 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8047 VFRange SubRange = {VF, MaxVFPlusOne}; 8048 VPlans.push_back(buildVPlan(SubRange)); 8049 VF = SubRange.End; 8050 } 8051 } 8052 8053 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8054 VPlanPtr &Plan) { 8055 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8056 8057 // Look for cached value. 8058 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8059 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8060 if (ECEntryIt != EdgeMaskCache.end()) 8061 return ECEntryIt->second; 8062 8063 VPValue *SrcMask = createBlockInMask(Src, Plan); 8064 8065 // The terminator has to be a branch inst! 8066 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8067 assert(BI && "Unexpected terminator found"); 8068 8069 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8070 return EdgeMaskCache[Edge] = SrcMask; 8071 8072 // If source is an exiting block, we know the exit edge is dynamically dead 8073 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8074 // adding uses of an otherwise potentially dead instruction. 8075 if (OrigLoop->isLoopExiting(Src)) 8076 return EdgeMaskCache[Edge] = SrcMask; 8077 8078 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8079 assert(EdgeMask && "No Edge Mask found for condition"); 8080 8081 if (BI->getSuccessor(0) != Dst) 8082 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8083 8084 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8085 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8086 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8087 // The select version does not introduce new UB if SrcMask is false and 8088 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8089 VPValue *False = Plan->getOrAddVPValue( 8090 ConstantInt::getFalse(BI->getCondition()->getType())); 8091 EdgeMask = 8092 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8093 } 8094 8095 return EdgeMaskCache[Edge] = EdgeMask; 8096 } 8097 8098 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8099 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8100 8101 // Look for cached value. 8102 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8103 if (BCEntryIt != BlockMaskCache.end()) 8104 return BCEntryIt->second; 8105 8106 // All-one mask is modelled as no-mask following the convention for masked 8107 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8108 VPValue *BlockMask = nullptr; 8109 8110 if (OrigLoop->getHeader() == BB) { 8111 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8112 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8113 8114 // Introduce the early-exit compare IV <= BTC to form header block mask. 8115 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8116 // constructing the desired canonical IV in the header block as its first 8117 // non-phi instructions. 8118 assert(CM.foldTailByMasking() && "must fold the tail"); 8119 VPBasicBlock *HeaderVPBB = 8120 Plan->getVectorLoopRegion()->getEntryBasicBlock(); 8121 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8122 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8123 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8124 8125 VPBuilder::InsertPointGuard Guard(Builder); 8126 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8127 if (CM.TTI.emitGetActiveLaneMask()) { 8128 VPValue *TC = Plan->getOrCreateTripCount(); 8129 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8130 } else { 8131 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8132 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8133 } 8134 return BlockMaskCache[BB] = BlockMask; 8135 } 8136 8137 // This is the block mask. We OR all incoming edges. 8138 for (auto *Predecessor : predecessors(BB)) { 8139 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8140 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8141 return BlockMaskCache[BB] = EdgeMask; 8142 8143 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8144 BlockMask = EdgeMask; 8145 continue; 8146 } 8147 8148 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8149 } 8150 8151 return BlockMaskCache[BB] = BlockMask; 8152 } 8153 8154 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8155 ArrayRef<VPValue *> Operands, 8156 VFRange &Range, 8157 VPlanPtr &Plan) { 8158 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8159 "Must be called with either a load or store"); 8160 8161 auto willWiden = [&](ElementCount VF) -> bool { 8162 if (VF.isScalar()) 8163 return false; 8164 LoopVectorizationCostModel::InstWidening Decision = 8165 CM.getWideningDecision(I, VF); 8166 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8167 "CM decision should be taken at this point."); 8168 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8169 return true; 8170 if (CM.isScalarAfterVectorization(I, VF) || 8171 CM.isProfitableToScalarize(I, VF)) 8172 return false; 8173 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8174 }; 8175 8176 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8177 return nullptr; 8178 8179 VPValue *Mask = nullptr; 8180 if (Legal->isMaskRequired(I)) 8181 Mask = createBlockInMask(I->getParent(), Plan); 8182 8183 // Determine if the pointer operand of the access is either consecutive or 8184 // reverse consecutive. 8185 LoopVectorizationCostModel::InstWidening Decision = 8186 CM.getWideningDecision(I, Range.Start); 8187 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8188 bool Consecutive = 8189 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8190 8191 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8192 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8193 Consecutive, Reverse); 8194 8195 StoreInst *Store = cast<StoreInst>(I); 8196 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8197 Mask, Consecutive, Reverse); 8198 } 8199 8200 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also 8201 /// insert a recipe to expand the step for the induction recipe. 8202 static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes( 8203 PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, 8204 const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM, 8205 VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) { 8206 // Returns true if an instruction \p I should be scalarized instead of 8207 // vectorized for the chosen vectorization factor. 8208 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8209 return CM.isScalarAfterVectorization(I, VF) || 8210 CM.isProfitableToScalarize(I, VF); 8211 }; 8212 8213 bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange( 8214 [&](ElementCount VF) { 8215 // Returns true if we should generate a scalar version of \p IV. 8216 if (ShouldScalarizeInstruction(PhiOrTrunc, VF)) 8217 return true; 8218 auto isScalarInst = [&](User *U) -> bool { 8219 auto *I = cast<Instruction>(U); 8220 return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF); 8221 }; 8222 return any_of(PhiOrTrunc->users(), isScalarInst); 8223 }, 8224 Range); 8225 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8226 [&](ElementCount VF) { 8227 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8228 }, 8229 Range); 8230 assert(IndDesc.getStartValue() == 8231 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8232 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8233 "step must be loop invariant"); 8234 8235 VPValue *Step = 8236 vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE); 8237 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8238 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI, 8239 NeedsScalarIV, !NeedsScalarIVOnly); 8240 } 8241 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8242 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, 8243 NeedsScalarIV, !NeedsScalarIVOnly); 8244 } 8245 8246 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI( 8247 PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) { 8248 8249 // Check if this is an integer or fp induction. If so, build the recipe that 8250 // produces its scalar and vector values. 8251 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8252 return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan, 8253 *PSE.getSE(), *OrigLoop, Range); 8254 8255 // Check if this is pointer induction. If so, build the recipe for it. 8256 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) 8257 return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II, 8258 *PSE.getSE()); 8259 return nullptr; 8260 } 8261 8262 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8263 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) { 8264 // Optimize the special case where the source is a constant integer 8265 // induction variable. Notice that we can only optimize the 'trunc' case 8266 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8267 // (c) other casts depend on pointer size. 8268 8269 // Determine whether \p K is a truncation based on an induction variable that 8270 // can be optimized. 8271 auto isOptimizableIVTruncate = 8272 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8273 return [=](ElementCount VF) -> bool { 8274 return CM.isOptimizableIVTruncate(K, VF); 8275 }; 8276 }; 8277 8278 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8279 isOptimizableIVTruncate(I), Range)) { 8280 8281 auto *Phi = cast<PHINode>(I->getOperand(0)); 8282 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8283 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8284 return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan, 8285 *PSE.getSE(), *OrigLoop, Range); 8286 } 8287 return nullptr; 8288 } 8289 8290 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8291 ArrayRef<VPValue *> Operands, 8292 VPlanPtr &Plan) { 8293 // If all incoming values are equal, the incoming VPValue can be used directly 8294 // instead of creating a new VPBlendRecipe. 8295 VPValue *FirstIncoming = Operands[0]; 8296 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8297 return FirstIncoming == Inc; 8298 })) { 8299 return Operands[0]; 8300 } 8301 8302 unsigned NumIncoming = Phi->getNumIncomingValues(); 8303 // For in-loop reductions, we do not need to create an additional select. 8304 VPValue *InLoopVal = nullptr; 8305 for (unsigned In = 0; In < NumIncoming; In++) { 8306 PHINode *PhiOp = 8307 dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); 8308 if (PhiOp && CM.isInLoopReduction(PhiOp)) { 8309 assert(!InLoopVal && "Found more than one in-loop reduction!"); 8310 InLoopVal = Operands[In]; 8311 } 8312 } 8313 8314 assert((!InLoopVal || NumIncoming == 2) && 8315 "Found an in-loop reduction for PHI with unexpected number of " 8316 "incoming values"); 8317 if (InLoopVal) 8318 return Operands[Operands[0] == InLoopVal ? 1 : 0]; 8319 8320 // We know that all PHIs in non-header blocks are converted into selects, so 8321 // we don't have to worry about the insertion order and we can just use the 8322 // builder. At this point we generate the predication tree. There may be 8323 // duplications since this is a simple recursive scan, but future 8324 // optimizations will clean it up. 8325 SmallVector<VPValue *, 2> OperandsWithMask; 8326 8327 for (unsigned In = 0; In < NumIncoming; In++) { 8328 VPValue *EdgeMask = 8329 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8330 assert((EdgeMask || NumIncoming == 1) && 8331 "Multiple predecessors with one having a full mask"); 8332 OperandsWithMask.push_back(Operands[In]); 8333 if (EdgeMask) 8334 OperandsWithMask.push_back(EdgeMask); 8335 } 8336 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8337 } 8338 8339 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8340 ArrayRef<VPValue *> Operands, 8341 VFRange &Range) const { 8342 8343 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8344 [this, CI](ElementCount VF) { 8345 return CM.isScalarWithPredication(CI, VF); 8346 }, 8347 Range); 8348 8349 if (IsPredicated) 8350 return nullptr; 8351 8352 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8353 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8354 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8355 ID == Intrinsic::pseudoprobe || 8356 ID == Intrinsic::experimental_noalias_scope_decl)) 8357 return nullptr; 8358 8359 auto willWiden = [&](ElementCount VF) -> bool { 8360 if (VF.isScalar()) 8361 return false; 8362 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8363 // The following case may be scalarized depending on the VF. 8364 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8365 // version of the instruction. 8366 // Is it beneficial to perform intrinsic call compared to lib call? 8367 bool NeedToScalarize = false; 8368 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8369 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8370 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8371 return UseVectorIntrinsic || !NeedToScalarize; 8372 }; 8373 8374 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8375 return nullptr; 8376 8377 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8378 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8379 } 8380 8381 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8382 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8383 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8384 // Instruction should be widened, unless it is scalar after vectorization, 8385 // scalarization is profitable or it is predicated. 8386 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8387 return CM.isScalarAfterVectorization(I, VF) || 8388 CM.isProfitableToScalarize(I, VF) || 8389 CM.isScalarWithPredication(I, VF); 8390 }; 8391 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8392 Range); 8393 } 8394 8395 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8396 ArrayRef<VPValue *> Operands) const { 8397 auto IsVectorizableOpcode = [](unsigned Opcode) { 8398 switch (Opcode) { 8399 case Instruction::Add: 8400 case Instruction::And: 8401 case Instruction::AShr: 8402 case Instruction::BitCast: 8403 case Instruction::FAdd: 8404 case Instruction::FCmp: 8405 case Instruction::FDiv: 8406 case Instruction::FMul: 8407 case Instruction::FNeg: 8408 case Instruction::FPExt: 8409 case Instruction::FPToSI: 8410 case Instruction::FPToUI: 8411 case Instruction::FPTrunc: 8412 case Instruction::FRem: 8413 case Instruction::FSub: 8414 case Instruction::ICmp: 8415 case Instruction::IntToPtr: 8416 case Instruction::LShr: 8417 case Instruction::Mul: 8418 case Instruction::Or: 8419 case Instruction::PtrToInt: 8420 case Instruction::SDiv: 8421 case Instruction::Select: 8422 case Instruction::SExt: 8423 case Instruction::Shl: 8424 case Instruction::SIToFP: 8425 case Instruction::SRem: 8426 case Instruction::Sub: 8427 case Instruction::Trunc: 8428 case Instruction::UDiv: 8429 case Instruction::UIToFP: 8430 case Instruction::URem: 8431 case Instruction::Xor: 8432 case Instruction::ZExt: 8433 case Instruction::Freeze: 8434 return true; 8435 } 8436 return false; 8437 }; 8438 8439 if (!IsVectorizableOpcode(I->getOpcode())) 8440 return nullptr; 8441 8442 // Success: widen this instruction. 8443 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8444 } 8445 8446 void VPRecipeBuilder::fixHeaderPhis() { 8447 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8448 for (VPHeaderPHIRecipe *R : PhisToFix) { 8449 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8450 VPRecipeBase *IncR = 8451 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8452 R->addOperand(IncR->getVPSingleValue()); 8453 } 8454 } 8455 8456 VPBasicBlock *VPRecipeBuilder::handleReplication( 8457 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8458 VPlanPtr &Plan) { 8459 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8460 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8461 Range); 8462 8463 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8464 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8465 Range); 8466 8467 // Even if the instruction is not marked as uniform, there are certain 8468 // intrinsic calls that can be effectively treated as such, so we check for 8469 // them here. Conservatively, we only do this for scalable vectors, since 8470 // for fixed-width VFs we can always fall back on full scalarization. 8471 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8472 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8473 case Intrinsic::assume: 8474 case Intrinsic::lifetime_start: 8475 case Intrinsic::lifetime_end: 8476 // For scalable vectors if one of the operands is variant then we still 8477 // want to mark as uniform, which will generate one instruction for just 8478 // the first lane of the vector. We can't scalarize the call in the same 8479 // way as for fixed-width vectors because we don't know how many lanes 8480 // there are. 8481 // 8482 // The reasons for doing it this way for scalable vectors are: 8483 // 1. For the assume intrinsic generating the instruction for the first 8484 // lane is still be better than not generating any at all. For 8485 // example, the input may be a splat across all lanes. 8486 // 2. For the lifetime start/end intrinsics the pointer operand only 8487 // does anything useful when the input comes from a stack object, 8488 // which suggests it should always be uniform. For non-stack objects 8489 // the effect is to poison the object, which still allows us to 8490 // remove the call. 8491 IsUniform = true; 8492 break; 8493 default: 8494 break; 8495 } 8496 } 8497 8498 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8499 IsUniform, IsPredicated); 8500 setRecipe(I, Recipe); 8501 Plan->addVPValue(I, Recipe); 8502 8503 // Find if I uses a predicated instruction. If so, it will use its scalar 8504 // value. Avoid hoisting the insert-element which packs the scalar value into 8505 // a vector value, as that happens iff all users use the vector value. 8506 for (VPValue *Op : Recipe->operands()) { 8507 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8508 if (!PredR) 8509 continue; 8510 auto *RepR = 8511 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8512 assert(RepR->isPredicated() && 8513 "expected Replicate recipe to be predicated"); 8514 RepR->setAlsoPack(false); 8515 } 8516 8517 // Finalize the recipe for Instr, first if it is not predicated. 8518 if (!IsPredicated) { 8519 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8520 VPBB->appendRecipe(Recipe); 8521 return VPBB; 8522 } 8523 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8524 8525 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8526 assert(SingleSucc && "VPBB must have a single successor when handling " 8527 "predicated replication."); 8528 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8529 // Record predicated instructions for above packing optimizations. 8530 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8531 VPBlockUtils::insertBlockAfter(Region, VPBB); 8532 auto *RegSucc = new VPBasicBlock(); 8533 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8534 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8535 return RegSucc; 8536 } 8537 8538 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8539 VPRecipeBase *PredRecipe, 8540 VPlanPtr &Plan) { 8541 // Instructions marked for predication are replicated and placed under an 8542 // if-then construct to prevent side-effects. 8543 8544 // Generate recipes to compute the block mask for this region. 8545 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8546 8547 // Build the triangular if-then region. 8548 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8549 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8550 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8551 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8552 auto *PHIRecipe = Instr->getType()->isVoidTy() 8553 ? nullptr 8554 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8555 if (PHIRecipe) { 8556 Plan->removeVPValueFor(Instr); 8557 Plan->addVPValue(Instr, PHIRecipe); 8558 } 8559 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8560 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8561 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8562 8563 // Note: first set Entry as region entry and then connect successors starting 8564 // from it in order, to propagate the "parent" of each VPBasicBlock. 8565 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8566 VPBlockUtils::connectBlocks(Pred, Exit); 8567 8568 return Region; 8569 } 8570 8571 VPRecipeOrVPValueTy 8572 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8573 ArrayRef<VPValue *> Operands, 8574 VFRange &Range, VPlanPtr &Plan) { 8575 // First, check for specific widening recipes that deal with calls, memory 8576 // operations, inductions and Phi nodes. 8577 if (auto *CI = dyn_cast<CallInst>(Instr)) 8578 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8579 8580 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8581 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8582 8583 VPRecipeBase *Recipe; 8584 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8585 if (Phi->getParent() != OrigLoop->getHeader()) 8586 return tryToBlend(Phi, Operands, Plan); 8587 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range))) 8588 return toVPRecipeResult(Recipe); 8589 8590 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8591 assert((Legal->isReductionVariable(Phi) || 8592 Legal->isFirstOrderRecurrence(Phi)) && 8593 "can only widen reductions and first-order recurrences here"); 8594 VPValue *StartV = Operands[0]; 8595 if (Legal->isReductionVariable(Phi)) { 8596 const RecurrenceDescriptor &RdxDesc = 8597 Legal->getReductionVars().find(Phi)->second; 8598 assert(RdxDesc.getRecurrenceStartValue() == 8599 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8600 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8601 CM.isInLoopReduction(Phi), 8602 CM.useOrderedReductions(RdxDesc)); 8603 } else { 8604 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8605 } 8606 8607 // Record the incoming value from the backedge, so we can add the incoming 8608 // value from the backedge after all recipes have been created. 8609 recordRecipeOf(cast<Instruction>( 8610 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8611 PhisToFix.push_back(PhiRecipe); 8612 return toVPRecipeResult(PhiRecipe); 8613 } 8614 8615 if (isa<TruncInst>(Instr) && 8616 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8617 Range, *Plan))) 8618 return toVPRecipeResult(Recipe); 8619 8620 if (!shouldWiden(Instr, Range)) 8621 return nullptr; 8622 8623 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8624 return toVPRecipeResult(new VPWidenGEPRecipe( 8625 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8626 8627 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8628 bool InvariantCond = 8629 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8630 return toVPRecipeResult(new VPWidenSelectRecipe( 8631 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8632 } 8633 8634 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8635 } 8636 8637 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8638 ElementCount MaxVF) { 8639 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8640 8641 // Collect instructions from the original loop that will become trivially dead 8642 // in the vectorized loop. We don't need to vectorize these instructions. For 8643 // example, original induction update instructions can become dead because we 8644 // separately emit induction "steps" when generating code for the new loop. 8645 // Similarly, we create a new latch condition when setting up the structure 8646 // of the new loop, so the old one can become dead. 8647 SmallPtrSet<Instruction *, 4> DeadInstructions; 8648 collectTriviallyDeadInstructions(DeadInstructions); 8649 8650 // Add assume instructions we need to drop to DeadInstructions, to prevent 8651 // them from being added to the VPlan. 8652 // TODO: We only need to drop assumes in blocks that get flattend. If the 8653 // control flow is preserved, we should keep them. 8654 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8655 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8656 8657 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8658 // Dead instructions do not need sinking. Remove them from SinkAfter. 8659 for (Instruction *I : DeadInstructions) 8660 SinkAfter.erase(I); 8661 8662 // Cannot sink instructions after dead instructions (there won't be any 8663 // recipes for them). Instead, find the first non-dead previous instruction. 8664 for (auto &P : Legal->getSinkAfter()) { 8665 Instruction *SinkTarget = P.second; 8666 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8667 (void)FirstInst; 8668 while (DeadInstructions.contains(SinkTarget)) { 8669 assert( 8670 SinkTarget != FirstInst && 8671 "Must find a live instruction (at least the one feeding the " 8672 "first-order recurrence PHI) before reaching beginning of the block"); 8673 SinkTarget = SinkTarget->getPrevNode(); 8674 assert(SinkTarget != P.first && 8675 "sink source equals target, no sinking required"); 8676 } 8677 P.second = SinkTarget; 8678 } 8679 8680 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8681 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8682 VFRange SubRange = {VF, MaxVFPlusOne}; 8683 VPlans.push_back( 8684 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8685 VF = SubRange.End; 8686 } 8687 } 8688 8689 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8690 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8691 // BranchOnCount VPInstruction to the latch. 8692 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8693 bool HasNUW, bool IsVPlanNative) { 8694 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8695 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8696 8697 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8698 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8699 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8700 Header->insert(CanonicalIVPHI, Header->begin()); 8701 8702 auto *CanonicalIVIncrement = 8703 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8704 : VPInstruction::CanonicalIVIncrement, 8705 {CanonicalIVPHI}, DL); 8706 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8707 8708 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8709 if (IsVPlanNative) 8710 EB->setCondBit(nullptr); 8711 EB->appendRecipe(CanonicalIVIncrement); 8712 8713 auto *BranchOnCount = 8714 new VPInstruction(VPInstruction::BranchOnCount, 8715 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8716 EB->appendRecipe(BranchOnCount); 8717 } 8718 8719 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8720 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8721 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8722 8723 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8724 8725 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8726 8727 // --------------------------------------------------------------------------- 8728 // Pre-construction: record ingredients whose recipes we'll need to further 8729 // process after constructing the initial VPlan. 8730 // --------------------------------------------------------------------------- 8731 8732 // Mark instructions we'll need to sink later and their targets as 8733 // ingredients whose recipe we'll need to record. 8734 for (auto &Entry : SinkAfter) { 8735 RecipeBuilder.recordRecipeOf(Entry.first); 8736 RecipeBuilder.recordRecipeOf(Entry.second); 8737 } 8738 for (auto &Reduction : CM.getInLoopReductionChains()) { 8739 PHINode *Phi = Reduction.first; 8740 RecurKind Kind = 8741 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8742 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8743 8744 RecipeBuilder.recordRecipeOf(Phi); 8745 for (auto &R : ReductionOperations) { 8746 RecipeBuilder.recordRecipeOf(R); 8747 // For min/max reductions, where we have a pair of icmp/select, we also 8748 // need to record the ICmp recipe, so it can be removed later. 8749 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8750 "Only min/max recurrences allowed for inloop reductions"); 8751 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8752 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8753 } 8754 } 8755 8756 // For each interleave group which is relevant for this (possibly trimmed) 8757 // Range, add it to the set of groups to be later applied to the VPlan and add 8758 // placeholders for its members' Recipes which we'll be replacing with a 8759 // single VPInterleaveRecipe. 8760 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8761 auto applyIG = [IG, this](ElementCount VF) -> bool { 8762 return (VF.isVector() && // Query is illegal for VF == 1 8763 CM.getWideningDecision(IG->getInsertPos(), VF) == 8764 LoopVectorizationCostModel::CM_Interleave); 8765 }; 8766 if (!getDecisionAndClampRange(applyIG, Range)) 8767 continue; 8768 InterleaveGroups.insert(IG); 8769 for (unsigned i = 0; i < IG->getFactor(); i++) 8770 if (Instruction *Member = IG->getMember(i)) 8771 RecipeBuilder.recordRecipeOf(Member); 8772 }; 8773 8774 // --------------------------------------------------------------------------- 8775 // Build initial VPlan: Scan the body of the loop in a topological order to 8776 // visit each basic block after having visited its predecessor basic blocks. 8777 // --------------------------------------------------------------------------- 8778 8779 // Create initial VPlan skeleton, starting with a block for the pre-header, 8780 // followed by a region for the vector loop, followed by the middle block. The 8781 // skeleton vector loop region contains a header and latch block. 8782 VPBasicBlock *Preheader = new VPBasicBlock("vector.ph"); 8783 auto Plan = std::make_unique<VPlan>(Preheader); 8784 8785 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 8786 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 8787 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 8788 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 8789 VPBlockUtils::insertBlockAfter(TopRegion, Preheader); 8790 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 8791 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 8792 8793 Instruction *DLInst = 8794 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 8795 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 8796 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 8797 !CM.foldTailByMasking(), false); 8798 8799 // Scan the body of the loop in a topological order to visit each basic block 8800 // after having visited its predecessor basic blocks. 8801 LoopBlocksDFS DFS(OrigLoop); 8802 DFS.perform(LI); 8803 8804 VPBasicBlock *VPBB = HeaderVPBB; 8805 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 8806 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8807 // Relevant instructions from basic block BB will be grouped into VPRecipe 8808 // ingredients and fill a new VPBasicBlock. 8809 unsigned VPBBsForBB = 0; 8810 if (VPBB != HeaderVPBB) 8811 VPBB->setName(BB->getName()); 8812 Builder.setInsertPoint(VPBB); 8813 8814 // Introduce each ingredient into VPlan. 8815 // TODO: Model and preserve debug intrinsics in VPlan. 8816 for (Instruction &I : BB->instructionsWithoutDebug()) { 8817 Instruction *Instr = &I; 8818 8819 // First filter out irrelevant instructions, to ensure no recipes are 8820 // built for them. 8821 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8822 continue; 8823 8824 SmallVector<VPValue *, 4> Operands; 8825 auto *Phi = dyn_cast<PHINode>(Instr); 8826 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 8827 Operands.push_back(Plan->getOrAddVPValue( 8828 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 8829 } else { 8830 auto OpRange = Plan->mapToVPValues(Instr->operands()); 8831 Operands = {OpRange.begin(), OpRange.end()}; 8832 } 8833 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 8834 Instr, Operands, Range, Plan)) { 8835 // If Instr can be simplified to an existing VPValue, use it. 8836 if (RecipeOrValue.is<VPValue *>()) { 8837 auto *VPV = RecipeOrValue.get<VPValue *>(); 8838 Plan->addVPValue(Instr, VPV); 8839 // If the re-used value is a recipe, register the recipe for the 8840 // instruction, in case the recipe for Instr needs to be recorded. 8841 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 8842 RecipeBuilder.setRecipe(Instr, R); 8843 continue; 8844 } 8845 // Otherwise, add the new recipe. 8846 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8847 for (auto *Def : Recipe->definedValues()) { 8848 auto *UV = Def->getUnderlyingValue(); 8849 Plan->addVPValue(UV, Def); 8850 } 8851 8852 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 8853 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 8854 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 8855 // of the header block. That can happen for truncates of induction 8856 // variables. Those recipes are moved to the phi section of the header 8857 // block after applying SinkAfter, which relies on the original 8858 // position of the trunc. 8859 assert(isa<TruncInst>(Instr)); 8860 InductionsToMove.push_back( 8861 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 8862 } 8863 RecipeBuilder.setRecipe(Instr, Recipe); 8864 VPBB->appendRecipe(Recipe); 8865 continue; 8866 } 8867 8868 // Invariant stores inside loop will be deleted and a single store 8869 // with the final reduction value will be added to the exit block 8870 StoreInst *SI; 8871 if ((SI = dyn_cast<StoreInst>(&I)) && 8872 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 8873 continue; 8874 8875 // Otherwise, if all widening options failed, Instruction is to be 8876 // replicated. This may create a successor for VPBB. 8877 VPBasicBlock *NextVPBB = 8878 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8879 if (NextVPBB != VPBB) { 8880 VPBB = NextVPBB; 8881 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8882 : ""); 8883 } 8884 } 8885 8886 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 8887 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 8888 } 8889 8890 HeaderVPBB->setName("vector.body"); 8891 8892 // Fold the last, empty block into its predecessor. 8893 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 8894 assert(VPBB && "expected to fold last (empty) block"); 8895 // After here, VPBB should not be used. 8896 VPBB = nullptr; 8897 8898 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && 8899 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && 8900 "entry block must be set to a VPRegionBlock having a non-empty entry " 8901 "VPBasicBlock"); 8902 RecipeBuilder.fixHeaderPhis(); 8903 8904 // --------------------------------------------------------------------------- 8905 // Transform initial VPlan: Apply previously taken decisions, in order, to 8906 // bring the VPlan to its final state. 8907 // --------------------------------------------------------------------------- 8908 8909 // Apply Sink-After legal constraints. 8910 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 8911 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 8912 if (Region && Region->isReplicator()) { 8913 assert(Region->getNumSuccessors() == 1 && 8914 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 8915 assert(R->getParent()->size() == 1 && 8916 "A recipe in an original replicator region must be the only " 8917 "recipe in its block"); 8918 return Region; 8919 } 8920 return nullptr; 8921 }; 8922 for (auto &Entry : SinkAfter) { 8923 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8924 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8925 8926 auto *TargetRegion = GetReplicateRegion(Target); 8927 auto *SinkRegion = GetReplicateRegion(Sink); 8928 if (!SinkRegion) { 8929 // If the sink source is not a replicate region, sink the recipe directly. 8930 if (TargetRegion) { 8931 // The target is in a replication region, make sure to move Sink to 8932 // the block after it, not into the replication region itself. 8933 VPBasicBlock *NextBlock = 8934 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 8935 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8936 } else 8937 Sink->moveAfter(Target); 8938 continue; 8939 } 8940 8941 // The sink source is in a replicate region. Unhook the region from the CFG. 8942 auto *SinkPred = SinkRegion->getSinglePredecessor(); 8943 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 8944 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 8945 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 8946 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 8947 8948 if (TargetRegion) { 8949 // The target recipe is also in a replicate region, move the sink region 8950 // after the target region. 8951 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 8952 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 8953 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 8954 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 8955 } else { 8956 // The sink source is in a replicate region, we need to move the whole 8957 // replicate region, which should only contain a single recipe in the 8958 // main block. 8959 auto *SplitBlock = 8960 Target->getParent()->splitAt(std::next(Target->getIterator())); 8961 8962 auto *SplitPred = SplitBlock->getSinglePredecessor(); 8963 8964 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 8965 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 8966 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 8967 } 8968 } 8969 8970 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 8971 VPlanTransforms::removeRedundantInductionCasts(*Plan); 8972 8973 // Now that sink-after is done, move induction recipes for optimized truncates 8974 // to the phi section of the header block. 8975 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 8976 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 8977 8978 // Adjust the recipes for any inloop reductions. 8979 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 8980 RecipeBuilder, Range.Start); 8981 8982 // Introduce a recipe to combine the incoming and previous values of a 8983 // first-order recurrence. 8984 for (VPRecipeBase &R : 8985 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 8986 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 8987 if (!RecurPhi) 8988 continue; 8989 8990 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 8991 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 8992 auto *Region = GetReplicateRegion(PrevRecipe); 8993 if (Region) 8994 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 8995 if (Region || PrevRecipe->isPhi()) 8996 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 8997 else 8998 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 8999 9000 auto *RecurSplice = cast<VPInstruction>( 9001 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9002 {RecurPhi, RecurPhi->getBackedgeValue()})); 9003 9004 RecurPhi->replaceAllUsesWith(RecurSplice); 9005 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9006 // all users. 9007 RecurSplice->setOperand(0, RecurPhi); 9008 } 9009 9010 // Interleave memory: for each Interleave Group we marked earlier as relevant 9011 // for this VPlan, replace the Recipes widening its memory instructions with a 9012 // single VPInterleaveRecipe at its insertion point. 9013 for (auto IG : InterleaveGroups) { 9014 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9015 RecipeBuilder.getRecipe(IG->getInsertPos())); 9016 SmallVector<VPValue *, 4> StoredValues; 9017 for (unsigned i = 0; i < IG->getFactor(); ++i) 9018 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9019 auto *StoreR = 9020 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9021 StoredValues.push_back(StoreR->getStoredValue()); 9022 } 9023 9024 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9025 Recipe->getMask()); 9026 VPIG->insertBefore(Recipe); 9027 unsigned J = 0; 9028 for (unsigned i = 0; i < IG->getFactor(); ++i) 9029 if (Instruction *Member = IG->getMember(i)) { 9030 if (!Member->getType()->isVoidTy()) { 9031 VPValue *OriginalV = Plan->getVPValue(Member); 9032 Plan->removeVPValueFor(Member); 9033 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9034 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9035 J++; 9036 } 9037 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9038 } 9039 } 9040 9041 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9042 // in ways that accessing values using original IR values is incorrect. 9043 Plan->disableValue2VPValue(); 9044 9045 VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); 9046 VPlanTransforms::sinkScalarOperands(*Plan); 9047 VPlanTransforms::mergeReplicateRegions(*Plan); 9048 VPlanTransforms::removeDeadRecipes(*Plan, *OrigLoop); 9049 VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan); 9050 9051 std::string PlanName; 9052 raw_string_ostream RSO(PlanName); 9053 ElementCount VF = Range.Start; 9054 Plan->addVF(VF); 9055 RSO << "Initial VPlan for VF={" << VF; 9056 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9057 Plan->addVF(VF); 9058 RSO << "," << VF; 9059 } 9060 RSO << "},UF>=1"; 9061 RSO.flush(); 9062 Plan->setName(PlanName); 9063 9064 // Fold Exit block into its predecessor if possible. 9065 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9066 // VPBasicBlock as exit. 9067 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9068 9069 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9070 return Plan; 9071 } 9072 9073 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9074 // Outer loop handling: They may require CFG and instruction level 9075 // transformations before even evaluating whether vectorization is profitable. 9076 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9077 // the vectorization pipeline. 9078 assert(!OrigLoop->isInnermost()); 9079 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9080 9081 // Create new empty VPlan 9082 auto Plan = std::make_unique<VPlan>(); 9083 9084 // Build hierarchical CFG 9085 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9086 HCFGBuilder.buildHierarchicalCFG(); 9087 9088 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9089 VF *= 2) 9090 Plan->addVF(VF); 9091 9092 if (EnableVPlanPredication) { 9093 VPlanPredicator VPP(*Plan); 9094 VPP.predicate(); 9095 9096 // Avoid running transformation to recipes until masked code generation in 9097 // VPlan-native path is in place. 9098 return Plan; 9099 } 9100 9101 SmallPtrSet<Instruction *, 1> DeadInstructions; 9102 VPlanTransforms::VPInstructionsToVPRecipes( 9103 OrigLoop, Plan, 9104 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9105 DeadInstructions, *PSE.getSE()); 9106 9107 // Update plan to be compatible with the inner loop vectorizer for 9108 // code-generation. 9109 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion(); 9110 VPBasicBlock *Preheader = LoopRegion->getEntryBasicBlock(); 9111 VPBasicBlock *Exit = LoopRegion->getExitBasicBlock(); 9112 VPBlockBase *Latch = Exit->getSinglePredecessor(); 9113 VPBlockBase *Header = Preheader->getSingleSuccessor(); 9114 9115 // 1. Move preheader block out of main vector loop. 9116 Preheader->setParent(LoopRegion->getParent()); 9117 VPBlockUtils::disconnectBlocks(Preheader, Header); 9118 VPBlockUtils::connectBlocks(Preheader, LoopRegion); 9119 Plan->setEntry(Preheader); 9120 9121 // 2. Disconnect backedge and exit block. 9122 VPBlockUtils::disconnectBlocks(Latch, Header); 9123 VPBlockUtils::disconnectBlocks(Latch, Exit); 9124 9125 // 3. Update entry and exit of main vector loop region. 9126 LoopRegion->setEntry(Header); 9127 LoopRegion->setExit(Latch); 9128 9129 // 4. Remove exit block. 9130 delete Exit; 9131 9132 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9133 true, true); 9134 return Plan; 9135 } 9136 9137 // Adjust the recipes for reductions. For in-loop reductions the chain of 9138 // instructions leading from the loop exit instr to the phi need to be converted 9139 // to reductions, with one operand being vector and the other being the scalar 9140 // reduction chain. For other reductions, a select is introduced between the phi 9141 // and live-out recipes when folding the tail. 9142 void LoopVectorizationPlanner::adjustRecipesForReductions( 9143 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9144 ElementCount MinVF) { 9145 for (auto &Reduction : CM.getInLoopReductionChains()) { 9146 PHINode *Phi = Reduction.first; 9147 const RecurrenceDescriptor &RdxDesc = 9148 Legal->getReductionVars().find(Phi)->second; 9149 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9150 9151 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9152 continue; 9153 9154 // ReductionOperations are orders top-down from the phi's use to the 9155 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9156 // which of the two operands will remain scalar and which will be reduced. 9157 // For minmax the chain will be the select instructions. 9158 Instruction *Chain = Phi; 9159 for (Instruction *R : ReductionOperations) { 9160 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9161 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9162 9163 VPValue *ChainOp = Plan->getVPValue(Chain); 9164 unsigned FirstOpId; 9165 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9166 "Only min/max recurrences allowed for inloop reductions"); 9167 // Recognize a call to the llvm.fmuladd intrinsic. 9168 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9169 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9170 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9171 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9172 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9173 "Expected to replace a VPWidenSelectSC"); 9174 FirstOpId = 1; 9175 } else { 9176 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9177 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9178 "Expected to replace a VPWidenSC"); 9179 FirstOpId = 0; 9180 } 9181 unsigned VecOpId = 9182 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9183 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9184 9185 auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent()) 9186 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9187 : nullptr; 9188 9189 if (IsFMulAdd) { 9190 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9191 // need to create an fmul recipe to use as the vector operand for the 9192 // fadd reduction. 9193 VPInstruction *FMulRecipe = new VPInstruction( 9194 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9195 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9196 WidenRecipe->getParent()->insert(FMulRecipe, 9197 WidenRecipe->getIterator()); 9198 VecOp = FMulRecipe; 9199 } 9200 VPReductionRecipe *RedRecipe = 9201 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9202 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9203 Plan->removeVPValueFor(R); 9204 Plan->addVPValue(R, RedRecipe); 9205 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9206 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9207 WidenRecipe->eraseFromParent(); 9208 9209 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9210 VPRecipeBase *CompareRecipe = 9211 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9212 assert(isa<VPWidenRecipe>(CompareRecipe) && 9213 "Expected to replace a VPWidenSC"); 9214 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9215 "Expected no remaining users"); 9216 CompareRecipe->eraseFromParent(); 9217 } 9218 Chain = R; 9219 } 9220 } 9221 9222 // If tail is folded by masking, introduce selects between the phi 9223 // and the live-out instruction of each reduction, at the beginning of the 9224 // dedicated latch block. 9225 if (CM.foldTailByMasking()) { 9226 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9227 for (VPRecipeBase &R : 9228 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 9229 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9230 if (!PhiR || PhiR->isInLoop()) 9231 continue; 9232 VPValue *Cond = 9233 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9234 VPValue *Red = PhiR->getBackedgeValue(); 9235 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9236 "reduction recipe must be defined before latch"); 9237 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9238 } 9239 } 9240 } 9241 9242 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9243 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9244 VPSlotTracker &SlotTracker) const { 9245 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9246 IG->getInsertPos()->printAsOperand(O, false); 9247 O << ", "; 9248 getAddr()->printAsOperand(O, SlotTracker); 9249 VPValue *Mask = getMask(); 9250 if (Mask) { 9251 O << ", "; 9252 Mask->printAsOperand(O, SlotTracker); 9253 } 9254 9255 unsigned OpIdx = 0; 9256 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9257 if (!IG->getMember(i)) 9258 continue; 9259 if (getNumStoreOperands() > 0) { 9260 O << "\n" << Indent << " store "; 9261 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9262 O << " to index " << i; 9263 } else { 9264 O << "\n" << Indent << " "; 9265 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9266 O << " = load from index " << i; 9267 } 9268 ++OpIdx; 9269 } 9270 } 9271 #endif 9272 9273 void VPWidenCallRecipe::execute(VPTransformState &State) { 9274 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9275 *this, State); 9276 } 9277 9278 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9279 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9280 State.ILV->setDebugLocFromInst(&I); 9281 9282 // The condition can be loop invariant but still defined inside the 9283 // loop. This means that we can't just use the original 'cond' value. 9284 // We have to take the 'vectorized' value and pick the first lane. 9285 // Instcombine will make this a no-op. 9286 auto *InvarCond = 9287 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9288 9289 for (unsigned Part = 0; Part < State.UF; ++Part) { 9290 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9291 Value *Op0 = State.get(getOperand(1), Part); 9292 Value *Op1 = State.get(getOperand(2), Part); 9293 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9294 State.set(this, Sel, Part); 9295 State.ILV->addMetadata(Sel, &I); 9296 } 9297 } 9298 9299 void VPWidenRecipe::execute(VPTransformState &State) { 9300 auto &I = *cast<Instruction>(getUnderlyingValue()); 9301 auto &Builder = State.Builder; 9302 switch (I.getOpcode()) { 9303 case Instruction::Call: 9304 case Instruction::Br: 9305 case Instruction::PHI: 9306 case Instruction::GetElementPtr: 9307 case Instruction::Select: 9308 llvm_unreachable("This instruction is handled by a different recipe."); 9309 case Instruction::UDiv: 9310 case Instruction::SDiv: 9311 case Instruction::SRem: 9312 case Instruction::URem: 9313 case Instruction::Add: 9314 case Instruction::FAdd: 9315 case Instruction::Sub: 9316 case Instruction::FSub: 9317 case Instruction::FNeg: 9318 case Instruction::Mul: 9319 case Instruction::FMul: 9320 case Instruction::FDiv: 9321 case Instruction::FRem: 9322 case Instruction::Shl: 9323 case Instruction::LShr: 9324 case Instruction::AShr: 9325 case Instruction::And: 9326 case Instruction::Or: 9327 case Instruction::Xor: { 9328 // Just widen unops and binops. 9329 State.ILV->setDebugLocFromInst(&I); 9330 9331 for (unsigned Part = 0; Part < State.UF; ++Part) { 9332 SmallVector<Value *, 2> Ops; 9333 for (VPValue *VPOp : operands()) 9334 Ops.push_back(State.get(VPOp, Part)); 9335 9336 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9337 9338 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9339 VecOp->copyIRFlags(&I); 9340 9341 // If the instruction is vectorized and was in a basic block that needed 9342 // predication, we can't propagate poison-generating flags (nuw/nsw, 9343 // exact, etc.). The control flow has been linearized and the 9344 // instruction is no longer guarded by the predicate, which could make 9345 // the flag properties to no longer hold. 9346 if (State.MayGeneratePoisonRecipes.contains(this)) 9347 VecOp->dropPoisonGeneratingFlags(); 9348 } 9349 9350 // Use this vector value for all users of the original instruction. 9351 State.set(this, V, Part); 9352 State.ILV->addMetadata(V, &I); 9353 } 9354 9355 break; 9356 } 9357 case Instruction::Freeze: { 9358 State.ILV->setDebugLocFromInst(&I); 9359 9360 for (unsigned Part = 0; Part < State.UF; ++Part) { 9361 Value *Op = State.get(getOperand(0), Part); 9362 9363 Value *Freeze = Builder.CreateFreeze(Op); 9364 State.set(this, Freeze, Part); 9365 } 9366 break; 9367 } 9368 case Instruction::ICmp: 9369 case Instruction::FCmp: { 9370 // Widen compares. Generate vector compares. 9371 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9372 auto *Cmp = cast<CmpInst>(&I); 9373 State.ILV->setDebugLocFromInst(Cmp); 9374 for (unsigned Part = 0; Part < State.UF; ++Part) { 9375 Value *A = State.get(getOperand(0), Part); 9376 Value *B = State.get(getOperand(1), Part); 9377 Value *C = nullptr; 9378 if (FCmp) { 9379 // Propagate fast math flags. 9380 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9381 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9382 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9383 } else { 9384 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9385 } 9386 State.set(this, C, Part); 9387 State.ILV->addMetadata(C, &I); 9388 } 9389 9390 break; 9391 } 9392 9393 case Instruction::ZExt: 9394 case Instruction::SExt: 9395 case Instruction::FPToUI: 9396 case Instruction::FPToSI: 9397 case Instruction::FPExt: 9398 case Instruction::PtrToInt: 9399 case Instruction::IntToPtr: 9400 case Instruction::SIToFP: 9401 case Instruction::UIToFP: 9402 case Instruction::Trunc: 9403 case Instruction::FPTrunc: 9404 case Instruction::BitCast: { 9405 auto *CI = cast<CastInst>(&I); 9406 State.ILV->setDebugLocFromInst(CI); 9407 9408 /// Vectorize casts. 9409 Type *DestTy = (State.VF.isScalar()) 9410 ? CI->getType() 9411 : VectorType::get(CI->getType(), State.VF); 9412 9413 for (unsigned Part = 0; Part < State.UF; ++Part) { 9414 Value *A = State.get(getOperand(0), Part); 9415 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9416 State.set(this, Cast, Part); 9417 State.ILV->addMetadata(Cast, &I); 9418 } 9419 break; 9420 } 9421 default: 9422 // This instruction is not vectorized by simple widening. 9423 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9424 llvm_unreachable("Unhandled instruction!"); 9425 } // end of switch. 9426 } 9427 9428 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9429 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9430 // Construct a vector GEP by widening the operands of the scalar GEP as 9431 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9432 // results in a vector of pointers when at least one operand of the GEP 9433 // is vector-typed. Thus, to keep the representation compact, we only use 9434 // vector-typed operands for loop-varying values. 9435 9436 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9437 // If we are vectorizing, but the GEP has only loop-invariant operands, 9438 // the GEP we build (by only using vector-typed operands for 9439 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9440 // produce a vector of pointers, we need to either arbitrarily pick an 9441 // operand to broadcast, or broadcast a clone of the original GEP. 9442 // Here, we broadcast a clone of the original. 9443 // 9444 // TODO: If at some point we decide to scalarize instructions having 9445 // loop-invariant operands, this special case will no longer be 9446 // required. We would add the scalarization decision to 9447 // collectLoopScalars() and teach getVectorValue() to broadcast 9448 // the lane-zero scalar value. 9449 auto *Clone = State.Builder.Insert(GEP->clone()); 9450 for (unsigned Part = 0; Part < State.UF; ++Part) { 9451 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9452 State.set(this, EntryPart, Part); 9453 State.ILV->addMetadata(EntryPart, GEP); 9454 } 9455 } else { 9456 // If the GEP has at least one loop-varying operand, we are sure to 9457 // produce a vector of pointers. But if we are only unrolling, we want 9458 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9459 // produce with the code below will be scalar (if VF == 1) or vector 9460 // (otherwise). Note that for the unroll-only case, we still maintain 9461 // values in the vector mapping with initVector, as we do for other 9462 // instructions. 9463 for (unsigned Part = 0; Part < State.UF; ++Part) { 9464 // The pointer operand of the new GEP. If it's loop-invariant, we 9465 // won't broadcast it. 9466 auto *Ptr = IsPtrLoopInvariant 9467 ? State.get(getOperand(0), VPIteration(0, 0)) 9468 : State.get(getOperand(0), Part); 9469 9470 // Collect all the indices for the new GEP. If any index is 9471 // loop-invariant, we won't broadcast it. 9472 SmallVector<Value *, 4> Indices; 9473 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9474 VPValue *Operand = getOperand(I); 9475 if (IsIndexLoopInvariant[I - 1]) 9476 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9477 else 9478 Indices.push_back(State.get(Operand, Part)); 9479 } 9480 9481 // If the GEP instruction is vectorized and was in a basic block that 9482 // needed predication, we can't propagate the poison-generating 'inbounds' 9483 // flag. The control flow has been linearized and the GEP is no longer 9484 // guarded by the predicate, which could make the 'inbounds' properties to 9485 // no longer hold. 9486 bool IsInBounds = 9487 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9488 9489 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9490 // but it should be a vector, otherwise. 9491 auto *NewGEP = State.Builder.CreateGEP(GEP->getSourceElementType(), Ptr, 9492 Indices, "", IsInBounds); 9493 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9494 "NewGEP is not a pointer vector"); 9495 State.set(this, NewGEP, Part); 9496 State.ILV->addMetadata(NewGEP, GEP); 9497 } 9498 } 9499 } 9500 9501 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9502 assert(!State.Instance && "Int or FP induction being replicated."); 9503 9504 Value *Start = getStartValue()->getLiveInIRValue(); 9505 const InductionDescriptor &ID = getInductionDescriptor(); 9506 TruncInst *Trunc = getTruncInst(); 9507 IRBuilderBase &Builder = State.Builder; 9508 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 9509 assert(State.VF.isVector() && "must have vector VF"); 9510 9511 // The value from the original loop to which we are mapping the new induction 9512 // variable. 9513 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 9514 9515 // Fast-math-flags propagate from the original induction instruction. 9516 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9517 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 9518 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 9519 9520 // Now do the actual transformations, and start with fetching the step value. 9521 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9522 9523 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 9524 "Expected either an induction phi-node or a truncate of it!"); 9525 9526 // Construct the initial value of the vector IV in the vector loop preheader 9527 auto CurrIP = Builder.saveIP(); 9528 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9529 Builder.SetInsertPoint(VectorPH->getTerminator()); 9530 if (isa<TruncInst>(EntryVal)) { 9531 assert(Start->getType()->isIntegerTy() && 9532 "Truncation requires an integer type"); 9533 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 9534 Step = Builder.CreateTrunc(Step, TruncType); 9535 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 9536 } 9537 9538 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 9539 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 9540 Value *SteppedStart = getStepVector( 9541 SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); 9542 9543 // We create vector phi nodes for both integer and floating-point induction 9544 // variables. Here, we determine the kind of arithmetic we will perform. 9545 Instruction::BinaryOps AddOp; 9546 Instruction::BinaryOps MulOp; 9547 if (Step->getType()->isIntegerTy()) { 9548 AddOp = Instruction::Add; 9549 MulOp = Instruction::Mul; 9550 } else { 9551 AddOp = ID.getInductionOpcode(); 9552 MulOp = Instruction::FMul; 9553 } 9554 9555 // Multiply the vectorization factor by the step using integer or 9556 // floating-point arithmetic as appropriate. 9557 Type *StepType = Step->getType(); 9558 Value *RuntimeVF; 9559 if (Step->getType()->isFloatingPointTy()) 9560 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 9561 else 9562 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 9563 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 9564 9565 // Create a vector splat to use in the induction update. 9566 // 9567 // FIXME: If the step is non-constant, we create the vector splat with 9568 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 9569 // handle a constant vector splat. 9570 Value *SplatVF = isa<Constant>(Mul) 9571 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 9572 : Builder.CreateVectorSplat(State.VF, Mul); 9573 Builder.restoreIP(CurrIP); 9574 9575 // We may need to add the step a number of times, depending on the unroll 9576 // factor. The last of those goes into the PHI. 9577 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 9578 &*State.CFG.PrevBB->getFirstInsertionPt()); 9579 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 9580 Instruction *LastInduction = VecInd; 9581 for (unsigned Part = 0; Part < State.UF; ++Part) { 9582 State.set(this, LastInduction, Part); 9583 9584 if (isa<TruncInst>(EntryVal)) 9585 State.ILV->addMetadata(LastInduction, EntryVal); 9586 9587 LastInduction = cast<Instruction>( 9588 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 9589 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 9590 } 9591 9592 LastInduction->setName("vec.ind.next"); 9593 VecInd->addIncoming(SteppedStart, VectorPH); 9594 // Add induction update using an incorrect block temporarily. The phi node 9595 // will be fixed after VPlan execution. Note that at this point the latch 9596 // block cannot be used, as it does not exist yet. 9597 // TODO: Model increment value in VPlan, by turning the recipe into a 9598 // multi-def and a subclass of VPHeaderPHIRecipe. 9599 VecInd->addIncoming(LastInduction, VectorPH); 9600 } 9601 9602 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) { 9603 assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction && 9604 "Not a pointer induction according to InductionDescriptor!"); 9605 assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() && 9606 "Unexpected type."); 9607 9608 auto *IVR = getParent()->getPlan()->getCanonicalIV(); 9609 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 9610 9611 if (all_of(users(), 9612 [this](const VPUser *U) { return U->usesScalars(this); })) { 9613 // This is the normalized GEP that starts counting at zero. 9614 Value *PtrInd = State.Builder.CreateSExtOrTrunc( 9615 CanonicalIV, IndDesc.getStep()->getType()); 9616 // Determine the number of scalars we need to generate for each unroll 9617 // iteration. If the instruction is uniform, we only need to generate the 9618 // first lane. Otherwise, we generate all VF values. 9619 bool IsUniform = vputils::onlyFirstLaneUsed(this); 9620 assert((IsUniform || !State.VF.isScalable()) && 9621 "Cannot scalarize a scalable VF"); 9622 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 9623 9624 for (unsigned Part = 0; Part < State.UF; ++Part) { 9625 Value *PartStart = 9626 createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part); 9627 9628 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 9629 Value *Idx = State.Builder.CreateAdd( 9630 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 9631 Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx); 9632 9633 Value *Step = CreateStepValue(IndDesc.getStep(), SE, 9634 State.CFG.PrevBB->getTerminator()); 9635 Value *SclrGep = emitTransformedIndex( 9636 State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc); 9637 SclrGep->setName("next.gep"); 9638 State.set(this, SclrGep, VPIteration(Part, Lane)); 9639 } 9640 } 9641 return; 9642 } 9643 9644 assert(isa<SCEVConstant>(IndDesc.getStep()) && 9645 "Induction step not a SCEV constant!"); 9646 Type *PhiType = IndDesc.getStep()->getType(); 9647 9648 // Build a pointer phi 9649 Value *ScalarStartValue = getStartValue()->getLiveInIRValue(); 9650 Type *ScStValueType = ScalarStartValue->getType(); 9651 PHINode *NewPointerPhi = 9652 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 9653 9654 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9655 NewPointerPhi->addIncoming(ScalarStartValue, VectorPH); 9656 9657 // A pointer induction, performed by using a gep 9658 const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout(); 9659 Instruction *InductionLoc = &*State.Builder.GetInsertPoint(); 9660 9661 const SCEV *ScalarStep = IndDesc.getStep(); 9662 SCEVExpander Exp(SE, DL, "induction"); 9663 Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 9664 Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF); 9665 Value *NumUnrolledElems = 9666 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 9667 Value *InductionGEP = GetElementPtrInst::Create( 9668 IndDesc.getElementType(), NewPointerPhi, 9669 State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 9670 InductionLoc); 9671 // Add induction update using an incorrect block temporarily. The phi node 9672 // will be fixed after VPlan execution. Note that at this point the latch 9673 // block cannot be used, as it does not exist yet. 9674 // TODO: Model increment value in VPlan, by turning the recipe into a 9675 // multi-def and a subclass of VPHeaderPHIRecipe. 9676 NewPointerPhi->addIncoming(InductionGEP, VectorPH); 9677 9678 // Create UF many actual address geps that use the pointer 9679 // phi as base and a vectorized version of the step value 9680 // (<step*0, ..., step*N>) as offset. 9681 for (unsigned Part = 0; Part < State.UF; ++Part) { 9682 Type *VecPhiType = VectorType::get(PhiType, State.VF); 9683 Value *StartOffsetScalar = 9684 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 9685 Value *StartOffset = 9686 State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 9687 // Create a vector of consecutive numbers from zero to VF. 9688 StartOffset = State.Builder.CreateAdd( 9689 StartOffset, State.Builder.CreateStepVector(VecPhiType)); 9690 9691 Value *GEP = State.Builder.CreateGEP( 9692 IndDesc.getElementType(), NewPointerPhi, 9693 State.Builder.CreateMul( 9694 StartOffset, 9695 State.Builder.CreateVectorSplat(State.VF, ScalarStepValue), 9696 "vector.gep")); 9697 State.set(this, GEP, Part); 9698 } 9699 } 9700 9701 void VPScalarIVStepsRecipe::execute(VPTransformState &State) { 9702 assert(!State.Instance && "VPScalarIVStepsRecipe being replicated."); 9703 9704 // Fast-math-flags propagate from the original induction instruction. 9705 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9706 if (IndDesc.getInductionBinOp() && 9707 isa<FPMathOperator>(IndDesc.getInductionBinOp())) 9708 State.Builder.setFastMathFlags( 9709 IndDesc.getInductionBinOp()->getFastMathFlags()); 9710 9711 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9712 auto CreateScalarIV = [&](Value *&Step) -> Value * { 9713 Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0)); 9714 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9715 if (!isCanonical() || CanonicalIV->getType() != Ty) { 9716 ScalarIV = 9717 Ty->isIntegerTy() 9718 ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty) 9719 : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty); 9720 ScalarIV = emitTransformedIndex(State.Builder, ScalarIV, 9721 getStartValue()->getLiveInIRValue(), Step, 9722 IndDesc); 9723 ScalarIV->setName("offset.idx"); 9724 } 9725 if (TruncToTy) { 9726 assert(Step->getType()->isIntegerTy() && 9727 "Truncation requires an integer step"); 9728 ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy); 9729 Step = State.Builder.CreateTrunc(Step, TruncToTy); 9730 } 9731 return ScalarIV; 9732 }; 9733 9734 Value *ScalarIV = CreateScalarIV(Step); 9735 if (State.VF.isVector()) { 9736 buildScalarSteps(ScalarIV, Step, IndDesc, this, State); 9737 return; 9738 } 9739 9740 for (unsigned Part = 0; Part < State.UF; ++Part) { 9741 assert(!State.VF.isScalable() && "scalable vectors not yet supported."); 9742 Value *EntryPart; 9743 if (Step->getType()->isFloatingPointTy()) { 9744 Value *StartIdx = 9745 getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part); 9746 // Floating-point operations inherit FMF via the builder's flags. 9747 Value *MulOp = State.Builder.CreateFMul(StartIdx, Step); 9748 EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(), 9749 ScalarIV, MulOp); 9750 } else { 9751 Value *StartIdx = 9752 getRuntimeVF(State.Builder, Step->getType(), State.VF * Part); 9753 EntryPart = State.Builder.CreateAdd( 9754 ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction"); 9755 } 9756 State.set(this, EntryPart, Part); 9757 } 9758 } 9759 9760 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9761 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9762 State); 9763 } 9764 9765 void VPBlendRecipe::execute(VPTransformState &State) { 9766 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9767 // We know that all PHIs in non-header blocks are converted into 9768 // selects, so we don't have to worry about the insertion order and we 9769 // can just use the builder. 9770 // At this point we generate the predication tree. There may be 9771 // duplications since this is a simple recursive scan, but future 9772 // optimizations will clean it up. 9773 9774 unsigned NumIncoming = getNumIncomingValues(); 9775 9776 // Generate a sequence of selects of the form: 9777 // SELECT(Mask3, In3, 9778 // SELECT(Mask2, In2, 9779 // SELECT(Mask1, In1, 9780 // In0))) 9781 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9782 // are essentially undef are taken from In0. 9783 InnerLoopVectorizer::VectorParts Entry(State.UF); 9784 for (unsigned In = 0; In < NumIncoming; ++In) { 9785 for (unsigned Part = 0; Part < State.UF; ++Part) { 9786 // We might have single edge PHIs (blocks) - use an identity 9787 // 'select' for the first PHI operand. 9788 Value *In0 = State.get(getIncomingValue(In), Part); 9789 if (In == 0) 9790 Entry[Part] = In0; // Initialize with the first incoming value. 9791 else { 9792 // Select between the current value and the previous incoming edge 9793 // based on the incoming mask. 9794 Value *Cond = State.get(getMask(In), Part); 9795 Entry[Part] = 9796 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9797 } 9798 } 9799 } 9800 for (unsigned Part = 0; Part < State.UF; ++Part) 9801 State.set(this, Entry[Part], Part); 9802 } 9803 9804 void VPInterleaveRecipe::execute(VPTransformState &State) { 9805 assert(!State.Instance && "Interleave group being replicated."); 9806 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9807 getStoredValues(), getMask()); 9808 } 9809 9810 void VPReductionRecipe::execute(VPTransformState &State) { 9811 assert(!State.Instance && "Reduction being replicated."); 9812 Value *PrevInChain = State.get(getChainOp(), 0); 9813 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9814 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9815 // Propagate the fast-math flags carried by the underlying instruction. 9816 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9817 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9818 for (unsigned Part = 0; Part < State.UF; ++Part) { 9819 Value *NewVecOp = State.get(getVecOp(), Part); 9820 if (VPValue *Cond = getCondOp()) { 9821 Value *NewCond = State.get(Cond, Part); 9822 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9823 Value *Iden = RdxDesc->getRecurrenceIdentity( 9824 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9825 Value *IdenVec = 9826 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9827 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9828 NewVecOp = Select; 9829 } 9830 Value *NewRed; 9831 Value *NextInChain; 9832 if (IsOrdered) { 9833 if (State.VF.isVector()) 9834 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9835 PrevInChain); 9836 else 9837 NewRed = State.Builder.CreateBinOp( 9838 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9839 NewVecOp); 9840 PrevInChain = NewRed; 9841 } else { 9842 PrevInChain = State.get(getChainOp(), Part); 9843 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9844 } 9845 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9846 NextInChain = 9847 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9848 NewRed, PrevInChain); 9849 } else if (IsOrdered) 9850 NextInChain = NewRed; 9851 else 9852 NextInChain = State.Builder.CreateBinOp( 9853 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9854 PrevInChain); 9855 State.set(this, NextInChain, Part); 9856 } 9857 } 9858 9859 void VPReplicateRecipe::execute(VPTransformState &State) { 9860 if (State.Instance) { // Generate a single instance. 9861 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9862 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9863 IsPredicated, State); 9864 // Insert scalar instance packing it into a vector. 9865 if (AlsoPack && State.VF.isVector()) { 9866 // If we're constructing lane 0, initialize to start from poison. 9867 if (State.Instance->Lane.isFirstLane()) { 9868 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9869 Value *Poison = PoisonValue::get( 9870 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9871 State.set(this, Poison, State.Instance->Part); 9872 } 9873 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9874 } 9875 return; 9876 } 9877 9878 // Generate scalar instances for all VF lanes of all UF parts, unless the 9879 // instruction is uniform inwhich case generate only the first lane for each 9880 // of the UF parts. 9881 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9882 assert((!State.VF.isScalable() || IsUniform) && 9883 "Can't scalarize a scalable vector"); 9884 for (unsigned Part = 0; Part < State.UF; ++Part) 9885 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9886 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9887 VPIteration(Part, Lane), IsPredicated, 9888 State); 9889 } 9890 9891 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9892 assert(State.Instance && "Branch on Mask works only on single instance."); 9893 9894 unsigned Part = State.Instance->Part; 9895 unsigned Lane = State.Instance->Lane.getKnownLane(); 9896 9897 Value *ConditionBit = nullptr; 9898 VPValue *BlockInMask = getMask(); 9899 if (BlockInMask) { 9900 ConditionBit = State.get(BlockInMask, Part); 9901 if (ConditionBit->getType()->isVectorTy()) 9902 ConditionBit = State.Builder.CreateExtractElement( 9903 ConditionBit, State.Builder.getInt32(Lane)); 9904 } else // Block in mask is all-one. 9905 ConditionBit = State.Builder.getTrue(); 9906 9907 // Replace the temporary unreachable terminator with a new conditional branch, 9908 // whose two destinations will be set later when they are created. 9909 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9910 assert(isa<UnreachableInst>(CurrentTerminator) && 9911 "Expected to replace unreachable terminator with conditional branch."); 9912 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9913 CondBr->setSuccessor(0, nullptr); 9914 ReplaceInstWithInst(CurrentTerminator, CondBr); 9915 } 9916 9917 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9918 assert(State.Instance && "Predicated instruction PHI works per instance."); 9919 Instruction *ScalarPredInst = 9920 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9921 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9922 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9923 assert(PredicatingBB && "Predicated block has no single predecessor."); 9924 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9925 "operand must be VPReplicateRecipe"); 9926 9927 // By current pack/unpack logic we need to generate only a single phi node: if 9928 // a vector value for the predicated instruction exists at this point it means 9929 // the instruction has vector users only, and a phi for the vector value is 9930 // needed. In this case the recipe of the predicated instruction is marked to 9931 // also do that packing, thereby "hoisting" the insert-element sequence. 9932 // Otherwise, a phi node for the scalar value is needed. 9933 unsigned Part = State.Instance->Part; 9934 if (State.hasVectorValue(getOperand(0), Part)) { 9935 Value *VectorValue = State.get(getOperand(0), Part); 9936 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9937 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9938 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9939 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9940 if (State.hasVectorValue(this, Part)) 9941 State.reset(this, VPhi, Part); 9942 else 9943 State.set(this, VPhi, Part); 9944 // NOTE: Currently we need to update the value of the operand, so the next 9945 // predicated iteration inserts its generated value in the correct vector. 9946 State.reset(getOperand(0), VPhi, Part); 9947 } else { 9948 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9949 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9950 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9951 PredicatingBB); 9952 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9953 if (State.hasScalarValue(this, *State.Instance)) 9954 State.reset(this, Phi, *State.Instance); 9955 else 9956 State.set(this, Phi, *State.Instance); 9957 // NOTE: Currently we need to update the value of the operand, so the next 9958 // predicated iteration inserts its generated value in the correct vector. 9959 State.reset(getOperand(0), Phi, *State.Instance); 9960 } 9961 } 9962 9963 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9964 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9965 9966 // Attempt to issue a wide load. 9967 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9968 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9969 9970 assert((LI || SI) && "Invalid Load/Store instruction"); 9971 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9972 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9973 9974 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9975 9976 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9977 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9978 bool CreateGatherScatter = !Consecutive; 9979 9980 auto &Builder = State.Builder; 9981 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9982 bool isMaskRequired = getMask(); 9983 if (isMaskRequired) 9984 for (unsigned Part = 0; Part < State.UF; ++Part) 9985 BlockInMaskParts[Part] = State.get(getMask(), Part); 9986 9987 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9988 // Calculate the pointer for the specific unroll-part. 9989 GetElementPtrInst *PartPtr = nullptr; 9990 9991 bool InBounds = false; 9992 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9993 InBounds = gep->isInBounds(); 9994 if (Reverse) { 9995 // If the address is consecutive but reversed, then the 9996 // wide store needs to start at the last vector element. 9997 // RunTimeVF = VScale * VF.getKnownMinValue() 9998 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9999 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 10000 // NumElt = -Part * RunTimeVF 10001 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 10002 // LastLane = 1 - RunTimeVF 10003 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 10004 PartPtr = 10005 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 10006 PartPtr->setIsInBounds(InBounds); 10007 PartPtr = cast<GetElementPtrInst>( 10008 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 10009 PartPtr->setIsInBounds(InBounds); 10010 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 10011 BlockInMaskParts[Part] = 10012 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 10013 } else { 10014 Value *Increment = 10015 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 10016 PartPtr = cast<GetElementPtrInst>( 10017 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 10018 PartPtr->setIsInBounds(InBounds); 10019 } 10020 10021 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 10022 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 10023 }; 10024 10025 // Handle Stores: 10026 if (SI) { 10027 State.ILV->setDebugLocFromInst(SI); 10028 10029 for (unsigned Part = 0; Part < State.UF; ++Part) { 10030 Instruction *NewSI = nullptr; 10031 Value *StoredVal = State.get(StoredValue, Part); 10032 if (CreateGatherScatter) { 10033 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10034 Value *VectorGep = State.get(getAddr(), Part); 10035 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 10036 MaskPart); 10037 } else { 10038 if (Reverse) { 10039 // If we store to reverse consecutive memory locations, then we need 10040 // to reverse the order of elements in the stored value. 10041 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 10042 // We don't want to update the value in the map as it might be used in 10043 // another expression. So don't call resetVectorValue(StoredVal). 10044 } 10045 auto *VecPtr = 10046 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10047 if (isMaskRequired) 10048 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 10049 BlockInMaskParts[Part]); 10050 else 10051 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 10052 } 10053 State.ILV->addMetadata(NewSI, SI); 10054 } 10055 return; 10056 } 10057 10058 // Handle loads. 10059 assert(LI && "Must have a load instruction"); 10060 State.ILV->setDebugLocFromInst(LI); 10061 for (unsigned Part = 0; Part < State.UF; ++Part) { 10062 Value *NewLI; 10063 if (CreateGatherScatter) { 10064 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10065 Value *VectorGep = State.get(getAddr(), Part); 10066 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10067 nullptr, "wide.masked.gather"); 10068 State.ILV->addMetadata(NewLI, LI); 10069 } else { 10070 auto *VecPtr = 10071 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10072 if (isMaskRequired) 10073 NewLI = Builder.CreateMaskedLoad( 10074 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10075 PoisonValue::get(DataTy), "wide.masked.load"); 10076 else 10077 NewLI = 10078 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10079 10080 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10081 State.ILV->addMetadata(NewLI, LI); 10082 if (Reverse) 10083 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10084 } 10085 10086 State.set(getVPSingleValue(), NewLI, Part); 10087 } 10088 } 10089 10090 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10091 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10092 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10093 // for predication. 10094 static ScalarEpilogueLowering getScalarEpilogueLowering( 10095 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10096 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10097 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10098 LoopVectorizationLegality &LVL) { 10099 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10100 // don't look at hints or options, and don't request a scalar epilogue. 10101 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10102 // LoopAccessInfo (due to code dependency and not being able to reliably get 10103 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10104 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10105 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10106 // back to the old way and vectorize with versioning when forced. See D81345.) 10107 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10108 PGSOQueryType::IRPass) && 10109 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10110 return CM_ScalarEpilogueNotAllowedOptSize; 10111 10112 // 2) If set, obey the directives 10113 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10114 switch (PreferPredicateOverEpilogue) { 10115 case PreferPredicateTy::ScalarEpilogue: 10116 return CM_ScalarEpilogueAllowed; 10117 case PreferPredicateTy::PredicateElseScalarEpilogue: 10118 return CM_ScalarEpilogueNotNeededUsePredicate; 10119 case PreferPredicateTy::PredicateOrDontVectorize: 10120 return CM_ScalarEpilogueNotAllowedUsePredicate; 10121 }; 10122 } 10123 10124 // 3) If set, obey the hints 10125 switch (Hints.getPredicate()) { 10126 case LoopVectorizeHints::FK_Enabled: 10127 return CM_ScalarEpilogueNotNeededUsePredicate; 10128 case LoopVectorizeHints::FK_Disabled: 10129 return CM_ScalarEpilogueAllowed; 10130 }; 10131 10132 // 4) if the TTI hook indicates this is profitable, request predication. 10133 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10134 LVL.getLAI())) 10135 return CM_ScalarEpilogueNotNeededUsePredicate; 10136 10137 return CM_ScalarEpilogueAllowed; 10138 } 10139 10140 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10141 // If Values have been set for this Def return the one relevant for \p Part. 10142 if (hasVectorValue(Def, Part)) 10143 return Data.PerPartOutput[Def][Part]; 10144 10145 if (!hasScalarValue(Def, {Part, 0})) { 10146 Value *IRV = Def->getLiveInIRValue(); 10147 Value *B = ILV->getBroadcastInstrs(IRV); 10148 set(Def, B, Part); 10149 return B; 10150 } 10151 10152 Value *ScalarValue = get(Def, {Part, 0}); 10153 // If we aren't vectorizing, we can just copy the scalar map values over 10154 // to the vector map. 10155 if (VF.isScalar()) { 10156 set(Def, ScalarValue, Part); 10157 return ScalarValue; 10158 } 10159 10160 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10161 bool IsUniform = RepR && RepR->isUniform(); 10162 10163 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10164 // Check if there is a scalar value for the selected lane. 10165 if (!hasScalarValue(Def, {Part, LastLane})) { 10166 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10167 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) || 10168 isa<VPScalarIVStepsRecipe>(Def->getDef())) && 10169 "unexpected recipe found to be invariant"); 10170 IsUniform = true; 10171 LastLane = 0; 10172 } 10173 10174 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10175 // Set the insert point after the last scalarized instruction or after the 10176 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10177 // will directly follow the scalar definitions. 10178 auto OldIP = Builder.saveIP(); 10179 auto NewIP = 10180 isa<PHINode>(LastInst) 10181 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10182 : std::next(BasicBlock::iterator(LastInst)); 10183 Builder.SetInsertPoint(&*NewIP); 10184 10185 // However, if we are vectorizing, we need to construct the vector values. 10186 // If the value is known to be uniform after vectorization, we can just 10187 // broadcast the scalar value corresponding to lane zero for each unroll 10188 // iteration. Otherwise, we construct the vector values using 10189 // insertelement instructions. Since the resulting vectors are stored in 10190 // State, we will only generate the insertelements once. 10191 Value *VectorValue = nullptr; 10192 if (IsUniform) { 10193 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10194 set(Def, VectorValue, Part); 10195 } else { 10196 // Initialize packing with insertelements to start from undef. 10197 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10198 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10199 set(Def, Undef, Part); 10200 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10201 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10202 VectorValue = get(Def, Part); 10203 } 10204 Builder.restoreIP(OldIP); 10205 return VectorValue; 10206 } 10207 10208 // Process the loop in the VPlan-native vectorization path. This path builds 10209 // VPlan upfront in the vectorization pipeline, which allows to apply 10210 // VPlan-to-VPlan transformations from the very beginning without modifying the 10211 // input LLVM IR. 10212 static bool processLoopInVPlanNativePath( 10213 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10214 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10215 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10216 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10217 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10218 LoopVectorizationRequirements &Requirements) { 10219 10220 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10221 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10222 return false; 10223 } 10224 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10225 Function *F = L->getHeader()->getParent(); 10226 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10227 10228 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10229 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10230 10231 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10232 &Hints, IAI); 10233 // Use the planner for outer loop vectorization. 10234 // TODO: CM is not used at this point inside the planner. Turn CM into an 10235 // optional argument if we don't need it in the future. 10236 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10237 Requirements, ORE); 10238 10239 // Get user vectorization factor. 10240 ElementCount UserVF = Hints.getWidth(); 10241 10242 CM.collectElementTypesForWidening(); 10243 10244 // Plan how to best vectorize, return the best VF and its cost. 10245 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10246 10247 // If we are stress testing VPlan builds, do not attempt to generate vector 10248 // code. Masked vector code generation support will follow soon. 10249 // Also, do not attempt to vectorize if no vector code will be produced. 10250 if (VPlanBuildStressTest || EnableVPlanPredication || 10251 VectorizationFactor::Disabled() == VF) 10252 return false; 10253 10254 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10255 10256 { 10257 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10258 F->getParent()->getDataLayout()); 10259 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10260 &CM, BFI, PSI, Checks); 10261 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10262 << L->getHeader()->getParent()->getName() << "\"\n"); 10263 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10264 } 10265 10266 // Mark the loop as already vectorized to avoid vectorizing again. 10267 Hints.setAlreadyVectorized(); 10268 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10269 return true; 10270 } 10271 10272 // Emit a remark if there are stores to floats that required a floating point 10273 // extension. If the vectorized loop was generated with floating point there 10274 // will be a performance penalty from the conversion overhead and the change in 10275 // the vector width. 10276 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10277 SmallVector<Instruction *, 4> Worklist; 10278 for (BasicBlock *BB : L->getBlocks()) { 10279 for (Instruction &Inst : *BB) { 10280 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10281 if (S->getValueOperand()->getType()->isFloatTy()) 10282 Worklist.push_back(S); 10283 } 10284 } 10285 } 10286 10287 // Traverse the floating point stores upwards searching, for floating point 10288 // conversions. 10289 SmallPtrSet<const Instruction *, 4> Visited; 10290 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10291 while (!Worklist.empty()) { 10292 auto *I = Worklist.pop_back_val(); 10293 if (!L->contains(I)) 10294 continue; 10295 if (!Visited.insert(I).second) 10296 continue; 10297 10298 // Emit a remark if the floating point store required a floating 10299 // point conversion. 10300 // TODO: More work could be done to identify the root cause such as a 10301 // constant or a function return type and point the user to it. 10302 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10303 ORE->emit([&]() { 10304 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10305 I->getDebugLoc(), L->getHeader()) 10306 << "floating point conversion changes vector width. " 10307 << "Mixed floating point precision requires an up/down " 10308 << "cast that will negatively impact performance."; 10309 }); 10310 10311 for (Use &Op : I->operands()) 10312 if (auto *OpI = dyn_cast<Instruction>(Op)) 10313 Worklist.push_back(OpI); 10314 } 10315 } 10316 10317 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10318 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10319 !EnableLoopInterleaving), 10320 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10321 !EnableLoopVectorization) {} 10322 10323 bool LoopVectorizePass::processLoop(Loop *L) { 10324 assert((EnableVPlanNativePath || L->isInnermost()) && 10325 "VPlan-native path is not enabled. Only process inner loops."); 10326 10327 #ifndef NDEBUG 10328 const std::string DebugLocStr = getDebugLocString(L); 10329 #endif /* NDEBUG */ 10330 10331 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10332 << L->getHeader()->getParent()->getName() << "' from " 10333 << DebugLocStr << "\n"); 10334 10335 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10336 10337 LLVM_DEBUG( 10338 dbgs() << "LV: Loop hints:" 10339 << " force=" 10340 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10341 ? "disabled" 10342 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10343 ? "enabled" 10344 : "?")) 10345 << " width=" << Hints.getWidth() 10346 << " interleave=" << Hints.getInterleave() << "\n"); 10347 10348 // Function containing loop 10349 Function *F = L->getHeader()->getParent(); 10350 10351 // Looking at the diagnostic output is the only way to determine if a loop 10352 // was vectorized (other than looking at the IR or machine code), so it 10353 // is important to generate an optimization remark for each loop. Most of 10354 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10355 // generated as OptimizationRemark and OptimizationRemarkMissed are 10356 // less verbose reporting vectorized loops and unvectorized loops that may 10357 // benefit from vectorization, respectively. 10358 10359 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10360 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10361 return false; 10362 } 10363 10364 PredicatedScalarEvolution PSE(*SE, *L); 10365 10366 // Check if it is legal to vectorize the loop. 10367 LoopVectorizationRequirements Requirements; 10368 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10369 &Requirements, &Hints, DB, AC, BFI, PSI); 10370 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10371 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10372 Hints.emitRemarkWithHints(); 10373 return false; 10374 } 10375 10376 // Check the function attributes and profiles to find out if this function 10377 // should be optimized for size. 10378 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10379 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10380 10381 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10382 // here. They may require CFG and instruction level transformations before 10383 // even evaluating whether vectorization is profitable. Since we cannot modify 10384 // the incoming IR, we need to build VPlan upfront in the vectorization 10385 // pipeline. 10386 if (!L->isInnermost()) 10387 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10388 ORE, BFI, PSI, Hints, Requirements); 10389 10390 assert(L->isInnermost() && "Inner loop expected."); 10391 10392 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10393 // count by optimizing for size, to minimize overheads. 10394 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10395 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10396 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10397 << "This loop is worth vectorizing only if no scalar " 10398 << "iteration overheads are incurred."); 10399 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10400 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10401 else { 10402 LLVM_DEBUG(dbgs() << "\n"); 10403 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10404 } 10405 } 10406 10407 // Check the function attributes to see if implicit floats are allowed. 10408 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10409 // an integer loop and the vector instructions selected are purely integer 10410 // vector instructions? 10411 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10412 reportVectorizationFailure( 10413 "Can't vectorize when the NoImplicitFloat attribute is used", 10414 "loop not vectorized due to NoImplicitFloat attribute", 10415 "NoImplicitFloat", ORE, L); 10416 Hints.emitRemarkWithHints(); 10417 return false; 10418 } 10419 10420 // Check if the target supports potentially unsafe FP vectorization. 10421 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10422 // for the target we're vectorizing for, to make sure none of the 10423 // additional fp-math flags can help. 10424 if (Hints.isPotentiallyUnsafe() && 10425 TTI->isFPVectorizationPotentiallyUnsafe()) { 10426 reportVectorizationFailure( 10427 "Potentially unsafe FP op prevents vectorization", 10428 "loop not vectorized due to unsafe FP support.", 10429 "UnsafeFP", ORE, L); 10430 Hints.emitRemarkWithHints(); 10431 return false; 10432 } 10433 10434 bool AllowOrderedReductions; 10435 // If the flag is set, use that instead and override the TTI behaviour. 10436 if (ForceOrderedReductions.getNumOccurrences() > 0) 10437 AllowOrderedReductions = ForceOrderedReductions; 10438 else 10439 AllowOrderedReductions = TTI->enableOrderedReductions(); 10440 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10441 ORE->emit([&]() { 10442 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10443 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10444 ExactFPMathInst->getDebugLoc(), 10445 ExactFPMathInst->getParent()) 10446 << "loop not vectorized: cannot prove it is safe to reorder " 10447 "floating-point operations"; 10448 }); 10449 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10450 "reorder floating-point operations\n"); 10451 Hints.emitRemarkWithHints(); 10452 return false; 10453 } 10454 10455 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10456 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10457 10458 // If an override option has been passed in for interleaved accesses, use it. 10459 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10460 UseInterleaved = EnableInterleavedMemAccesses; 10461 10462 // Analyze interleaved memory accesses. 10463 if (UseInterleaved) { 10464 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10465 } 10466 10467 // Use the cost model. 10468 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10469 F, &Hints, IAI); 10470 CM.collectValuesToIgnore(); 10471 CM.collectElementTypesForWidening(); 10472 10473 // Use the planner for vectorization. 10474 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10475 Requirements, ORE); 10476 10477 // Get user vectorization factor and interleave count. 10478 ElementCount UserVF = Hints.getWidth(); 10479 unsigned UserIC = Hints.getInterleave(); 10480 10481 // Plan how to best vectorize, return the best VF and its cost. 10482 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10483 10484 VectorizationFactor VF = VectorizationFactor::Disabled(); 10485 unsigned IC = 1; 10486 10487 if (MaybeVF) { 10488 if (LVP.requiresTooManyRuntimeChecks()) { 10489 ORE->emit([&]() { 10490 return OptimizationRemarkAnalysisAliasing( 10491 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(), 10492 L->getHeader()) 10493 << "loop not vectorized: cannot prove it is safe to reorder " 10494 "memory operations"; 10495 }); 10496 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 10497 Hints.emitRemarkWithHints(); 10498 return false; 10499 } 10500 VF = *MaybeVF; 10501 // Select the interleave count. 10502 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10503 } 10504 10505 // Identify the diagnostic messages that should be produced. 10506 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10507 bool VectorizeLoop = true, InterleaveLoop = true; 10508 if (VF.Width.isScalar()) { 10509 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10510 VecDiagMsg = std::make_pair( 10511 "VectorizationNotBeneficial", 10512 "the cost-model indicates that vectorization is not beneficial"); 10513 VectorizeLoop = false; 10514 } 10515 10516 if (!MaybeVF && UserIC > 1) { 10517 // Tell the user interleaving was avoided up-front, despite being explicitly 10518 // requested. 10519 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10520 "interleaving should be avoided up front\n"); 10521 IntDiagMsg = std::make_pair( 10522 "InterleavingAvoided", 10523 "Ignoring UserIC, because interleaving was avoided up front"); 10524 InterleaveLoop = false; 10525 } else if (IC == 1 && UserIC <= 1) { 10526 // Tell the user interleaving is not beneficial. 10527 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10528 IntDiagMsg = std::make_pair( 10529 "InterleavingNotBeneficial", 10530 "the cost-model indicates that interleaving is not beneficial"); 10531 InterleaveLoop = false; 10532 if (UserIC == 1) { 10533 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10534 IntDiagMsg.second += 10535 " and is explicitly disabled or interleave count is set to 1"; 10536 } 10537 } else if (IC > 1 && UserIC == 1) { 10538 // Tell the user interleaving is beneficial, but it explicitly disabled. 10539 LLVM_DEBUG( 10540 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10541 IntDiagMsg = std::make_pair( 10542 "InterleavingBeneficialButDisabled", 10543 "the cost-model indicates that interleaving is beneficial " 10544 "but is explicitly disabled or interleave count is set to 1"); 10545 InterleaveLoop = false; 10546 } 10547 10548 // Override IC if user provided an interleave count. 10549 IC = UserIC > 0 ? UserIC : IC; 10550 10551 // Emit diagnostic messages, if any. 10552 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10553 if (!VectorizeLoop && !InterleaveLoop) { 10554 // Do not vectorize or interleaving the loop. 10555 ORE->emit([&]() { 10556 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10557 L->getStartLoc(), L->getHeader()) 10558 << VecDiagMsg.second; 10559 }); 10560 ORE->emit([&]() { 10561 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10562 L->getStartLoc(), L->getHeader()) 10563 << IntDiagMsg.second; 10564 }); 10565 return false; 10566 } else if (!VectorizeLoop && InterleaveLoop) { 10567 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10568 ORE->emit([&]() { 10569 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10570 L->getStartLoc(), L->getHeader()) 10571 << VecDiagMsg.second; 10572 }); 10573 } else if (VectorizeLoop && !InterleaveLoop) { 10574 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10575 << ") in " << DebugLocStr << '\n'); 10576 ORE->emit([&]() { 10577 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10578 L->getStartLoc(), L->getHeader()) 10579 << IntDiagMsg.second; 10580 }); 10581 } else if (VectorizeLoop && InterleaveLoop) { 10582 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10583 << ") in " << DebugLocStr << '\n'); 10584 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10585 } 10586 10587 bool DisableRuntimeUnroll = false; 10588 MDNode *OrigLoopID = L->getLoopID(); 10589 { 10590 // Optimistically generate runtime checks. Drop them if they turn out to not 10591 // be profitable. Limit the scope of Checks, so the cleanup happens 10592 // immediately after vector codegeneration is done. 10593 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10594 F->getParent()->getDataLayout()); 10595 if (!VF.Width.isScalar() || IC > 1) 10596 Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, IC); 10597 10598 using namespace ore; 10599 if (!VectorizeLoop) { 10600 assert(IC > 1 && "interleave count should not be 1 or 0"); 10601 // If we decided that it is not legal to vectorize the loop, then 10602 // interleave it. 10603 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10604 &CM, BFI, PSI, Checks); 10605 10606 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10607 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10608 10609 ORE->emit([&]() { 10610 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10611 L->getHeader()) 10612 << "interleaved loop (interleaved count: " 10613 << NV("InterleaveCount", IC) << ")"; 10614 }); 10615 } else { 10616 // If we decided that it is *legal* to vectorize the loop, then do it. 10617 10618 // Consider vectorizing the epilogue too if it's profitable. 10619 VectorizationFactor EpilogueVF = 10620 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10621 if (EpilogueVF.Width.isVector()) { 10622 10623 // The first pass vectorizes the main loop and creates a scalar epilogue 10624 // to be vectorized by executing the plan (potentially with a different 10625 // factor) again shortly afterwards. 10626 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10627 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10628 EPI, &LVL, &CM, BFI, PSI, Checks); 10629 10630 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10631 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10632 DT); 10633 ++LoopsVectorized; 10634 10635 // Second pass vectorizes the epilogue and adjusts the control flow 10636 // edges from the first pass. 10637 EPI.MainLoopVF = EPI.EpilogueVF; 10638 EPI.MainLoopUF = EPI.EpilogueUF; 10639 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10640 ORE, EPI, &LVL, &CM, BFI, PSI, 10641 Checks); 10642 10643 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10644 VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion(); 10645 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock(); 10646 Header->setName("vec.epilog.vector.body"); 10647 10648 // Ensure that the start values for any VPReductionPHIRecipes are 10649 // updated before vectorising the epilogue loop. 10650 for (VPRecipeBase &R : Header->phis()) { 10651 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10652 if (auto *Resume = MainILV.getReductionResumeValue( 10653 ReductionPhi->getRecurrenceDescriptor())) { 10654 VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(Resume); 10655 ReductionPhi->setOperand(0, StartVal); 10656 } 10657 } 10658 } 10659 10660 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10661 DT); 10662 ++LoopsEpilogueVectorized; 10663 10664 if (!MainILV.areSafetyChecksAdded()) 10665 DisableRuntimeUnroll = true; 10666 } else { 10667 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10668 &LVL, &CM, BFI, PSI, Checks); 10669 10670 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10671 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10672 ++LoopsVectorized; 10673 10674 // Add metadata to disable runtime unrolling a scalar loop when there 10675 // are no runtime checks about strides and memory. A scalar loop that is 10676 // rarely used is not worth unrolling. 10677 if (!LB.areSafetyChecksAdded()) 10678 DisableRuntimeUnroll = true; 10679 } 10680 // Report the vectorization decision. 10681 ORE->emit([&]() { 10682 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10683 L->getHeader()) 10684 << "vectorized loop (vectorization width: " 10685 << NV("VectorizationFactor", VF.Width) 10686 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10687 }); 10688 } 10689 10690 if (ORE->allowExtraAnalysis(LV_NAME)) 10691 checkMixedPrecision(L, ORE); 10692 } 10693 10694 Optional<MDNode *> RemainderLoopID = 10695 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10696 LLVMLoopVectorizeFollowupEpilogue}); 10697 if (RemainderLoopID.hasValue()) { 10698 L->setLoopID(RemainderLoopID.getValue()); 10699 } else { 10700 if (DisableRuntimeUnroll) 10701 AddRuntimeUnrollDisableMetaData(L); 10702 10703 // Mark the loop as already vectorized to avoid vectorizing again. 10704 Hints.setAlreadyVectorized(); 10705 } 10706 10707 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10708 return true; 10709 } 10710 10711 LoopVectorizeResult LoopVectorizePass::runImpl( 10712 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10713 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10714 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10715 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10716 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10717 SE = &SE_; 10718 LI = &LI_; 10719 TTI = &TTI_; 10720 DT = &DT_; 10721 BFI = &BFI_; 10722 TLI = TLI_; 10723 AA = &AA_; 10724 AC = &AC_; 10725 GetLAA = &GetLAA_; 10726 DB = &DB_; 10727 ORE = &ORE_; 10728 PSI = PSI_; 10729 10730 // Don't attempt if 10731 // 1. the target claims to have no vector registers, and 10732 // 2. interleaving won't help ILP. 10733 // 10734 // The second condition is necessary because, even if the target has no 10735 // vector registers, loop vectorization may still enable scalar 10736 // interleaving. 10737 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10738 TTI->getMaxInterleaveFactor(1) < 2) 10739 return LoopVectorizeResult(false, false); 10740 10741 bool Changed = false, CFGChanged = false; 10742 10743 // The vectorizer requires loops to be in simplified form. 10744 // Since simplification may add new inner loops, it has to run before the 10745 // legality and profitability checks. This means running the loop vectorizer 10746 // will simplify all loops, regardless of whether anything end up being 10747 // vectorized. 10748 for (auto &L : *LI) 10749 Changed |= CFGChanged |= 10750 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10751 10752 // Build up a worklist of inner-loops to vectorize. This is necessary as 10753 // the act of vectorizing or partially unrolling a loop creates new loops 10754 // and can invalidate iterators across the loops. 10755 SmallVector<Loop *, 8> Worklist; 10756 10757 for (Loop *L : *LI) 10758 collectSupportedLoops(*L, LI, ORE, Worklist); 10759 10760 LoopsAnalyzed += Worklist.size(); 10761 10762 // Now walk the identified inner loops. 10763 while (!Worklist.empty()) { 10764 Loop *L = Worklist.pop_back_val(); 10765 10766 // For the inner loops we actually process, form LCSSA to simplify the 10767 // transform. 10768 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10769 10770 Changed |= CFGChanged |= processLoop(L); 10771 } 10772 10773 // Process each loop nest in the function. 10774 return LoopVectorizeResult(Changed, CFGChanged); 10775 } 10776 10777 PreservedAnalyses LoopVectorizePass::run(Function &F, 10778 FunctionAnalysisManager &AM) { 10779 auto &LI = AM.getResult<LoopAnalysis>(F); 10780 // There are no loops in the function. Return before computing other expensive 10781 // analyses. 10782 if (LI.empty()) 10783 return PreservedAnalyses::all(); 10784 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10785 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10786 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10787 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10788 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10789 auto &AA = AM.getResult<AAManager>(F); 10790 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10791 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10792 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10793 10794 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10795 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10796 [&](Loop &L) -> const LoopAccessInfo & { 10797 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10798 TLI, TTI, nullptr, nullptr, nullptr}; 10799 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10800 }; 10801 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10802 ProfileSummaryInfo *PSI = 10803 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10804 LoopVectorizeResult Result = 10805 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10806 if (!Result.MadeAnyChange) 10807 return PreservedAnalyses::all(); 10808 PreservedAnalyses PA; 10809 10810 // We currently do not preserve loopinfo/dominator analyses with outer loop 10811 // vectorization. Until this is addressed, mark these analyses as preserved 10812 // only for non-VPlan-native path. 10813 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10814 if (!EnableVPlanNativePath) { 10815 PA.preserve<LoopAnalysis>(); 10816 PA.preserve<DominatorTreeAnalysis>(); 10817 } 10818 10819 if (Result.MadeCFGChange) { 10820 // Making CFG changes likely means a loop got vectorized. Indicate that 10821 // extra simplification passes should be run. 10822 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10823 // be run if runtime checks have been added. 10824 AM.getResult<ShouldRunExtraVectorPasses>(F); 10825 PA.preserve<ShouldRunExtraVectorPasses>(); 10826 } else { 10827 PA.preserveSet<CFGAnalyses>(); 10828 } 10829 return PA; 10830 } 10831 10832 void LoopVectorizePass::printPipeline( 10833 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10834 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10835 OS, MapClassName2PassName); 10836 10837 OS << "<"; 10838 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10839 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10840 OS << ">"; 10841 } 10842