1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 /// InnerLoopVectorizer vectorizes loops which contain only one basic
432 /// block to a specified vectorization factor (VF).
433 /// This class performs the widening of scalars into vectors, or multiple
434 /// scalars. This class also implements the following features:
435 /// * It inserts an epilogue loop for handling loops that don't have iteration
436 ///   counts that are known to be a multiple of the vectorization factor.
437 /// * It handles the code generation for reduction variables.
438 /// * Scalarization (implementation using scalars) of un-vectorizable
439 ///   instructions.
440 /// InnerLoopVectorizer does not perform any vectorization-legality
441 /// checks, and relies on the caller to check for the different legality
442 /// aspects. The InnerLoopVectorizer relies on the
443 /// LoopVectorizationLegality class to provide information about the induction
444 /// and reduction variables that were found to a given vectorization factor.
445 class InnerLoopVectorizer {
446 public:
447   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
448                       LoopInfo *LI, DominatorTree *DT,
449                       const TargetLibraryInfo *TLI,
450                       const TargetTransformInfo *TTI, AssumptionCache *AC,
451                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
452                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
453                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
454                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
455       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
456         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
457         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
458         PSI(PSI), RTChecks(RTChecks) {
459     // Query this against the original loop and save it here because the profile
460     // of the original loop header may change as the transformation happens.
461     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
462         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
463   }
464 
465   virtual ~InnerLoopVectorizer() = default;
466 
467   /// Create a new empty loop that will contain vectorized instructions later
468   /// on, while the old loop will be used as the scalar remainder. Control flow
469   /// is generated around the vectorized (and scalar epilogue) loops consisting
470   /// of various checks and bypasses. Return the pre-header block of the new
471   /// loop.
472   /// In the case of epilogue vectorization, this function is overriden to
473   /// handle the more complex control flow around the loops.
474   virtual BasicBlock *createVectorizedLoopSkeleton();
475 
476   /// Widen a single instruction within the innermost loop.
477   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
478                         VPTransformState &State);
479 
480   /// Widen a single call instruction within the innermost loop.
481   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
482                             VPTransformState &State);
483 
484   /// Widen a single select instruction within the innermost loop.
485   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
486                               bool InvariantCond, VPTransformState &State);
487 
488   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
489   void fixVectorizedLoop(VPTransformState &State);
490 
491   // Return true if any runtime check is added.
492   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
493 
494   /// A type for vectorized values in the new loop. Each value from the
495   /// original loop, when vectorized, is represented by UF vector values in the
496   /// new unrolled loop, where UF is the unroll factor.
497   using VectorParts = SmallVector<Value *, 2>;
498 
499   /// Vectorize a single GetElementPtrInst based on information gathered and
500   /// decisions taken during planning.
501   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
502                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
503                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
504 
505   /// Vectorize a single first-order recurrence or pointer induction PHINode in
506   /// a block. This method handles the induction variable canonicalization. It
507   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
508   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
509                            VPTransformState &State);
510 
511   /// A helper function to scalarize a single Instruction in the innermost loop.
512   /// Generates a sequence of scalar instances for each lane between \p MinLane
513   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
514   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
515   /// Instr's operands.
516   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
517                             const VPIteration &Instance, bool IfPredicateInstr,
518                             VPTransformState &State);
519 
520   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
521   /// is provided, the integer induction variable will first be truncated to
522   /// the corresponding type.
523   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
524                              VPValue *Def, VPValue *CastDef,
525                              VPTransformState &State);
526 
527   /// Construct the vector value of a scalarized value \p V one lane at a time.
528   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
529                                  VPTransformState &State);
530 
531   /// Try to vectorize interleaved access group \p Group with the base address
532   /// given in \p Addr, optionally masking the vector operations if \p
533   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
534   /// values in the vectorized loop.
535   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
536                                 ArrayRef<VPValue *> VPDefs,
537                                 VPTransformState &State, VPValue *Addr,
538                                 ArrayRef<VPValue *> StoredValues,
539                                 VPValue *BlockInMask = nullptr);
540 
541   /// Vectorize Load and Store instructions with the base address given in \p
542   /// Addr, optionally masking the vector operations if \p BlockInMask is
543   /// non-null. Use \p State to translate given VPValues to IR values in the
544   /// vectorized loop.
545   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
546                                   VPValue *Def, VPValue *Addr,
547                                   VPValue *StoredValue, VPValue *BlockInMask);
548 
549   /// Set the debug location in the builder \p Ptr using the debug location in
550   /// \p V. If \p Ptr is None then it uses the class member's Builder.
551   void setDebugLocFromInst(const Value *V,
552                            Optional<IRBuilder<> *> CustomBuilder = None);
553 
554   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
555   void fixNonInductionPHIs(VPTransformState &State);
556 
557   /// Returns true if the reordering of FP operations is not allowed, but we are
558   /// able to vectorize with strict in-order reductions for the given RdxDesc.
559   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
560 
561   /// Create a broadcast instruction. This method generates a broadcast
562   /// instruction (shuffle) for loop invariant values and for the induction
563   /// value. If this is the induction variable then we extend it to N, N+1, ...
564   /// this is needed because each iteration in the loop corresponds to a SIMD
565   /// element.
566   virtual Value *getBroadcastInstrs(Value *V);
567 
568 protected:
569   friend class LoopVectorizationPlanner;
570 
571   /// A small list of PHINodes.
572   using PhiVector = SmallVector<PHINode *, 4>;
573 
574   /// A type for scalarized values in the new loop. Each value from the
575   /// original loop, when scalarized, is represented by UF x VF scalar values
576   /// in the new unrolled loop, where UF is the unroll factor and VF is the
577   /// vectorization factor.
578   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
579 
580   /// Set up the values of the IVs correctly when exiting the vector loop.
581   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
582                     Value *CountRoundDown, Value *EndValue,
583                     BasicBlock *MiddleBlock);
584 
585   /// Create a new induction variable inside L.
586   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
587                                    Value *Step, Instruction *DL);
588 
589   /// Handle all cross-iteration phis in the header.
590   void fixCrossIterationPHIs(VPTransformState &State);
591 
592   /// Create the exit value of first order recurrences in the middle block and
593   /// update their users.
594   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
595 
596   /// Create code for the loop exit value of the reduction.
597   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
598 
599   /// Clear NSW/NUW flags from reduction instructions if necessary.
600   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
601                                VPTransformState &State);
602 
603   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
604   /// means we need to add the appropriate incoming value from the middle
605   /// block as exiting edges from the scalar epilogue loop (if present) are
606   /// already in place, and we exit the vector loop exclusively to the middle
607   /// block.
608   void fixLCSSAPHIs(VPTransformState &State);
609 
610   /// Iteratively sink the scalarized operands of a predicated instruction into
611   /// the block that was created for it.
612   void sinkScalarOperands(Instruction *PredInst);
613 
614   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
615   /// represented as.
616   void truncateToMinimalBitwidths(VPTransformState &State);
617 
618   /// This function adds
619   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
620   /// to each vector element of Val. The sequence starts at StartIndex.
621   /// \p Opcode is relevant for FP induction variable.
622   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
623                                Instruction::BinaryOps Opcode =
624                                Instruction::BinaryOpsEnd);
625 
626   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
627   /// variable on which to base the steps, \p Step is the size of the step, and
628   /// \p EntryVal is the value from the original loop that maps to the steps.
629   /// Note that \p EntryVal doesn't have to be an induction variable - it
630   /// can also be a truncate instruction.
631   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
632                         const InductionDescriptor &ID, VPValue *Def,
633                         VPValue *CastDef, VPTransformState &State);
634 
635   /// Create a vector induction phi node based on an existing scalar one. \p
636   /// EntryVal is the value from the original loop that maps to the vector phi
637   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
638   /// truncate instruction, instead of widening the original IV, we widen a
639   /// version of the IV truncated to \p EntryVal's type.
640   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
641                                        Value *Step, Value *Start,
642                                        Instruction *EntryVal, VPValue *Def,
643                                        VPValue *CastDef,
644                                        VPTransformState &State);
645 
646   /// Returns true if an instruction \p I should be scalarized instead of
647   /// vectorized for the chosen vectorization factor.
648   bool shouldScalarizeInstruction(Instruction *I) const;
649 
650   /// Returns true if we should generate a scalar version of \p IV.
651   bool needsScalarInduction(Instruction *IV) const;
652 
653   /// If there is a cast involved in the induction variable \p ID, which should
654   /// be ignored in the vectorized loop body, this function records the
655   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
656   /// cast. We had already proved that the casted Phi is equal to the uncasted
657   /// Phi in the vectorized loop (under a runtime guard), and therefore
658   /// there is no need to vectorize the cast - the same value can be used in the
659   /// vector loop for both the Phi and the cast.
660   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
661   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
662   ///
663   /// \p EntryVal is the value from the original loop that maps to the vector
664   /// phi node and is used to distinguish what is the IV currently being
665   /// processed - original one (if \p EntryVal is a phi corresponding to the
666   /// original IV) or the "newly-created" one based on the proof mentioned above
667   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
668   /// latter case \p EntryVal is a TruncInst and we must not record anything for
669   /// that IV, but it's error-prone to expect callers of this routine to care
670   /// about that, hence this explicit parameter.
671   void recordVectorLoopValueForInductionCast(
672       const InductionDescriptor &ID, const Instruction *EntryVal,
673       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
674       unsigned Part, unsigned Lane = UINT_MAX);
675 
676   /// Generate a shuffle sequence that will reverse the vector Vec.
677   virtual Value *reverseVector(Value *Vec);
678 
679   /// Returns (and creates if needed) the original loop trip count.
680   Value *getOrCreateTripCount(Loop *NewLoop);
681 
682   /// Returns (and creates if needed) the trip count of the widened loop.
683   Value *getOrCreateVectorTripCount(Loop *NewLoop);
684 
685   /// Returns a bitcasted value to the requested vector type.
686   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
687   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
688                                 const DataLayout &DL);
689 
690   /// Emit a bypass check to see if the vector trip count is zero, including if
691   /// it overflows.
692   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
693 
694   /// Emit a bypass check to see if all of the SCEV assumptions we've
695   /// had to make are correct. Returns the block containing the checks or
696   /// nullptr if no checks have been added.
697   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
698 
699   /// Emit bypass checks to check any memory assumptions we may have made.
700   /// Returns the block containing the checks or nullptr if no checks have been
701   /// added.
702   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
703 
704   /// Compute the transformed value of Index at offset StartValue using step
705   /// StepValue.
706   /// For integer induction, returns StartValue + Index * StepValue.
707   /// For pointer induction, returns StartValue[Index * StepValue].
708   /// FIXME: The newly created binary instructions should contain nsw/nuw
709   /// flags, which can be found from the original scalar operations.
710   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
711                               const DataLayout &DL,
712                               const InductionDescriptor &ID) const;
713 
714   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
715   /// vector loop preheader, middle block and scalar preheader. Also
716   /// allocate a loop object for the new vector loop and return it.
717   Loop *createVectorLoopSkeleton(StringRef Prefix);
718 
719   /// Create new phi nodes for the induction variables to resume iteration count
720   /// in the scalar epilogue, from where the vectorized loop left off (given by
721   /// \p VectorTripCount).
722   /// In cases where the loop skeleton is more complicated (eg. epilogue
723   /// vectorization) and the resume values can come from an additional bypass
724   /// block, the \p AdditionalBypass pair provides information about the bypass
725   /// block and the end value on the edge from bypass to this loop.
726   void createInductionResumeValues(
727       Loop *L, Value *VectorTripCount,
728       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
729 
730   /// Complete the loop skeleton by adding debug MDs, creating appropriate
731   /// conditional branches in the middle block, preparing the builder and
732   /// running the verifier. Take in the vector loop \p L as argument, and return
733   /// the preheader of the completed vector loop.
734   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
735 
736   /// Add additional metadata to \p To that was not present on \p Orig.
737   ///
738   /// Currently this is used to add the noalias annotations based on the
739   /// inserted memchecks.  Use this for instructions that are *cloned* into the
740   /// vector loop.
741   void addNewMetadata(Instruction *To, const Instruction *Orig);
742 
743   /// Add metadata from one instruction to another.
744   ///
745   /// This includes both the original MDs from \p From and additional ones (\see
746   /// addNewMetadata).  Use this for *newly created* instructions in the vector
747   /// loop.
748   void addMetadata(Instruction *To, Instruction *From);
749 
750   /// Similar to the previous function but it adds the metadata to a
751   /// vector of instructions.
752   void addMetadata(ArrayRef<Value *> To, Instruction *From);
753 
754   /// Allow subclasses to override and print debug traces before/after vplan
755   /// execution, when trace information is requested.
756   virtual void printDebugTracesAtStart(){};
757   virtual void printDebugTracesAtEnd(){};
758 
759   /// The original loop.
760   Loop *OrigLoop;
761 
762   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
763   /// dynamic knowledge to simplify SCEV expressions and converts them to a
764   /// more usable form.
765   PredicatedScalarEvolution &PSE;
766 
767   /// Loop Info.
768   LoopInfo *LI;
769 
770   /// Dominator Tree.
771   DominatorTree *DT;
772 
773   /// Alias Analysis.
774   AAResults *AA;
775 
776   /// Target Library Info.
777   const TargetLibraryInfo *TLI;
778 
779   /// Target Transform Info.
780   const TargetTransformInfo *TTI;
781 
782   /// Assumption Cache.
783   AssumptionCache *AC;
784 
785   /// Interface to emit optimization remarks.
786   OptimizationRemarkEmitter *ORE;
787 
788   /// LoopVersioning.  It's only set up (non-null) if memchecks were
789   /// used.
790   ///
791   /// This is currently only used to add no-alias metadata based on the
792   /// memchecks.  The actually versioning is performed manually.
793   std::unique_ptr<LoopVersioning> LVer;
794 
795   /// The vectorization SIMD factor to use. Each vector will have this many
796   /// vector elements.
797   ElementCount VF;
798 
799   /// The vectorization unroll factor to use. Each scalar is vectorized to this
800   /// many different vector instructions.
801   unsigned UF;
802 
803   /// The builder that we use
804   IRBuilder<> Builder;
805 
806   // --- Vectorization state ---
807 
808   /// The vector-loop preheader.
809   BasicBlock *LoopVectorPreHeader;
810 
811   /// The scalar-loop preheader.
812   BasicBlock *LoopScalarPreHeader;
813 
814   /// Middle Block between the vector and the scalar.
815   BasicBlock *LoopMiddleBlock;
816 
817   /// The unique ExitBlock of the scalar loop if one exists.  Note that
818   /// there can be multiple exiting edges reaching this block.
819   BasicBlock *LoopExitBlock;
820 
821   /// The vector loop body.
822   BasicBlock *LoopVectorBody;
823 
824   /// The scalar loop body.
825   BasicBlock *LoopScalarBody;
826 
827   /// A list of all bypass blocks. The first block is the entry of the loop.
828   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
829 
830   /// The new Induction variable which was added to the new block.
831   PHINode *Induction = nullptr;
832 
833   /// The induction variable of the old basic block.
834   PHINode *OldInduction = nullptr;
835 
836   /// Store instructions that were predicated.
837   SmallVector<Instruction *, 4> PredicatedInstructions;
838 
839   /// Trip count of the original loop.
840   Value *TripCount = nullptr;
841 
842   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
843   Value *VectorTripCount = nullptr;
844 
845   /// The legality analysis.
846   LoopVectorizationLegality *Legal;
847 
848   /// The profitablity analysis.
849   LoopVectorizationCostModel *Cost;
850 
851   // Record whether runtime checks are added.
852   bool AddedSafetyChecks = false;
853 
854   // Holds the end values for each induction variable. We save the end values
855   // so we can later fix-up the external users of the induction variables.
856   DenseMap<PHINode *, Value *> IVEndValues;
857 
858   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
859   // fixed up at the end of vector code generation.
860   SmallVector<PHINode *, 8> OrigPHIsToFix;
861 
862   /// BFI and PSI are used to check for profile guided size optimizations.
863   BlockFrequencyInfo *BFI;
864   ProfileSummaryInfo *PSI;
865 
866   // Whether this loop should be optimized for size based on profile guided size
867   // optimizatios.
868   bool OptForSizeBasedOnProfile;
869 
870   /// Structure to hold information about generated runtime checks, responsible
871   /// for cleaning the checks, if vectorization turns out unprofitable.
872   GeneratedRTChecks &RTChecks;
873 };
874 
875 class InnerLoopUnroller : public InnerLoopVectorizer {
876 public:
877   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
878                     LoopInfo *LI, DominatorTree *DT,
879                     const TargetLibraryInfo *TLI,
880                     const TargetTransformInfo *TTI, AssumptionCache *AC,
881                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
882                     LoopVectorizationLegality *LVL,
883                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
884                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
885       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
886                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
887                             BFI, PSI, Check) {}
888 
889 private:
890   Value *getBroadcastInstrs(Value *V) override;
891   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
892                        Instruction::BinaryOps Opcode =
893                        Instruction::BinaryOpsEnd) override;
894   Value *reverseVector(Value *Vec) override;
895 };
896 
897 /// Encapsulate information regarding vectorization of a loop and its epilogue.
898 /// This information is meant to be updated and used across two stages of
899 /// epilogue vectorization.
900 struct EpilogueLoopVectorizationInfo {
901   ElementCount MainLoopVF = ElementCount::getFixed(0);
902   unsigned MainLoopUF = 0;
903   ElementCount EpilogueVF = ElementCount::getFixed(0);
904   unsigned EpilogueUF = 0;
905   BasicBlock *MainLoopIterationCountCheck = nullptr;
906   BasicBlock *EpilogueIterationCountCheck = nullptr;
907   BasicBlock *SCEVSafetyCheck = nullptr;
908   BasicBlock *MemSafetyCheck = nullptr;
909   Value *TripCount = nullptr;
910   Value *VectorTripCount = nullptr;
911 
912   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
913                                 ElementCount EVF, unsigned EUF)
914       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
915     assert(EUF == 1 &&
916            "A high UF for the epilogue loop is likely not beneficial.");
917   }
918 };
919 
920 /// An extension of the inner loop vectorizer that creates a skeleton for a
921 /// vectorized loop that has its epilogue (residual) also vectorized.
922 /// The idea is to run the vplan on a given loop twice, firstly to setup the
923 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
924 /// from the first step and vectorize the epilogue.  This is achieved by
925 /// deriving two concrete strategy classes from this base class and invoking
926 /// them in succession from the loop vectorizer planner.
927 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
928 public:
929   InnerLoopAndEpilogueVectorizer(
930       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
931       DominatorTree *DT, const TargetLibraryInfo *TLI,
932       const TargetTransformInfo *TTI, AssumptionCache *AC,
933       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
934       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
935       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
936       GeneratedRTChecks &Checks)
937       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
938                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
939                             Checks),
940         EPI(EPI) {}
941 
942   // Override this function to handle the more complex control flow around the
943   // three loops.
944   BasicBlock *createVectorizedLoopSkeleton() final override {
945     return createEpilogueVectorizedLoopSkeleton();
946   }
947 
948   /// The interface for creating a vectorized skeleton using one of two
949   /// different strategies, each corresponding to one execution of the vplan
950   /// as described above.
951   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
952 
953   /// Holds and updates state information required to vectorize the main loop
954   /// and its epilogue in two separate passes. This setup helps us avoid
955   /// regenerating and recomputing runtime safety checks. It also helps us to
956   /// shorten the iteration-count-check path length for the cases where the
957   /// iteration count of the loop is so small that the main vector loop is
958   /// completely skipped.
959   EpilogueLoopVectorizationInfo &EPI;
960 };
961 
962 /// A specialized derived class of inner loop vectorizer that performs
963 /// vectorization of *main* loops in the process of vectorizing loops and their
964 /// epilogues.
965 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
966 public:
967   EpilogueVectorizerMainLoop(
968       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
969       DominatorTree *DT, const TargetLibraryInfo *TLI,
970       const TargetTransformInfo *TTI, AssumptionCache *AC,
971       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
972       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
973       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
974       GeneratedRTChecks &Check)
975       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
976                                        EPI, LVL, CM, BFI, PSI, Check) {}
977   /// Implements the interface for creating a vectorized skeleton using the
978   /// *main loop* strategy (ie the first pass of vplan execution).
979   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
980 
981 protected:
982   /// Emits an iteration count bypass check once for the main loop (when \p
983   /// ForEpilogue is false) and once for the epilogue loop (when \p
984   /// ForEpilogue is true).
985   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
986                                              bool ForEpilogue);
987   void printDebugTracesAtStart() override;
988   void printDebugTracesAtEnd() override;
989 };
990 
991 // A specialized derived class of inner loop vectorizer that performs
992 // vectorization of *epilogue* loops in the process of vectorizing loops and
993 // their epilogues.
994 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
995 public:
996   EpilogueVectorizerEpilogueLoop(
997       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
998       DominatorTree *DT, const TargetLibraryInfo *TLI,
999       const TargetTransformInfo *TTI, AssumptionCache *AC,
1000       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1001       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1002       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1003       GeneratedRTChecks &Checks)
1004       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1005                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1006   /// Implements the interface for creating a vectorized skeleton using the
1007   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1008   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1009 
1010 protected:
1011   /// Emits an iteration count bypass check after the main vector loop has
1012   /// finished to see if there are any iterations left to execute by either
1013   /// the vector epilogue or the scalar epilogue.
1014   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1015                                                       BasicBlock *Bypass,
1016                                                       BasicBlock *Insert);
1017   void printDebugTracesAtStart() override;
1018   void printDebugTracesAtEnd() override;
1019 };
1020 } // end namespace llvm
1021 
1022 /// Look for a meaningful debug location on the instruction or it's
1023 /// operands.
1024 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1025   if (!I)
1026     return I;
1027 
1028   DebugLoc Empty;
1029   if (I->getDebugLoc() != Empty)
1030     return I;
1031 
1032   for (Use &Op : I->operands()) {
1033     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1034       if (OpInst->getDebugLoc() != Empty)
1035         return OpInst;
1036   }
1037 
1038   return I;
1039 }
1040 
1041 void InnerLoopVectorizer::setDebugLocFromInst(
1042     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1043   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1044   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1045     const DILocation *DIL = Inst->getDebugLoc();
1046 
1047     // When a FSDiscriminator is enabled, we don't need to add the multiply
1048     // factors to the discriminators.
1049     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1050         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1051       // FIXME: For scalable vectors, assume vscale=1.
1052       auto NewDIL =
1053           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1054       if (NewDIL)
1055         B->SetCurrentDebugLocation(NewDIL.getValue());
1056       else
1057         LLVM_DEBUG(dbgs()
1058                    << "Failed to create new discriminator: "
1059                    << DIL->getFilename() << " Line: " << DIL->getLine());
1060     } else
1061       B->SetCurrentDebugLocation(DIL);
1062   } else
1063     B->SetCurrentDebugLocation(DebugLoc());
1064 }
1065 
1066 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1067 /// is passed, the message relates to that particular instruction.
1068 #ifndef NDEBUG
1069 static void debugVectorizationMessage(const StringRef Prefix,
1070                                       const StringRef DebugMsg,
1071                                       Instruction *I) {
1072   dbgs() << "LV: " << Prefix << DebugMsg;
1073   if (I != nullptr)
1074     dbgs() << " " << *I;
1075   else
1076     dbgs() << '.';
1077   dbgs() << '\n';
1078 }
1079 #endif
1080 
1081 /// Create an analysis remark that explains why vectorization failed
1082 ///
1083 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1084 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1085 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1086 /// the location of the remark.  \return the remark object that can be
1087 /// streamed to.
1088 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1089     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1090   Value *CodeRegion = TheLoop->getHeader();
1091   DebugLoc DL = TheLoop->getStartLoc();
1092 
1093   if (I) {
1094     CodeRegion = I->getParent();
1095     // If there is no debug location attached to the instruction, revert back to
1096     // using the loop's.
1097     if (I->getDebugLoc())
1098       DL = I->getDebugLoc();
1099   }
1100 
1101   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1102 }
1103 
1104 /// Return a value for Step multiplied by VF.
1105 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1106   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1107   Constant *StepVal = ConstantInt::get(
1108       Step->getType(),
1109       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1110   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1111 }
1112 
1113 namespace llvm {
1114 
1115 /// Return the runtime value for VF.
1116 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1117   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1118   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1119 }
1120 
1121 void reportVectorizationFailure(const StringRef DebugMsg,
1122                                 const StringRef OREMsg, const StringRef ORETag,
1123                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1124                                 Instruction *I) {
1125   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1126   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1127   ORE->emit(
1128       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1129       << "loop not vectorized: " << OREMsg);
1130 }
1131 
1132 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1133                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1134                              Instruction *I) {
1135   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1136   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1137   ORE->emit(
1138       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1139       << Msg);
1140 }
1141 
1142 } // end namespace llvm
1143 
1144 #ifndef NDEBUG
1145 /// \return string containing a file name and a line # for the given loop.
1146 static std::string getDebugLocString(const Loop *L) {
1147   std::string Result;
1148   if (L) {
1149     raw_string_ostream OS(Result);
1150     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1151       LoopDbgLoc.print(OS);
1152     else
1153       // Just print the module name.
1154       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1155     OS.flush();
1156   }
1157   return Result;
1158 }
1159 #endif
1160 
1161 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1162                                          const Instruction *Orig) {
1163   // If the loop was versioned with memchecks, add the corresponding no-alias
1164   // metadata.
1165   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1166     LVer->annotateInstWithNoAlias(To, Orig);
1167 }
1168 
1169 void InnerLoopVectorizer::addMetadata(Instruction *To,
1170                                       Instruction *From) {
1171   propagateMetadata(To, From);
1172   addNewMetadata(To, From);
1173 }
1174 
1175 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1176                                       Instruction *From) {
1177   for (Value *V : To) {
1178     if (Instruction *I = dyn_cast<Instruction>(V))
1179       addMetadata(I, From);
1180   }
1181 }
1182 
1183 namespace llvm {
1184 
1185 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1186 // lowered.
1187 enum ScalarEpilogueLowering {
1188 
1189   // The default: allowing scalar epilogues.
1190   CM_ScalarEpilogueAllowed,
1191 
1192   // Vectorization with OptForSize: don't allow epilogues.
1193   CM_ScalarEpilogueNotAllowedOptSize,
1194 
1195   // A special case of vectorisation with OptForSize: loops with a very small
1196   // trip count are considered for vectorization under OptForSize, thereby
1197   // making sure the cost of their loop body is dominant, free of runtime
1198   // guards and scalar iteration overheads.
1199   CM_ScalarEpilogueNotAllowedLowTripLoop,
1200 
1201   // Loop hint predicate indicating an epilogue is undesired.
1202   CM_ScalarEpilogueNotNeededUsePredicate,
1203 
1204   // Directive indicating we must either tail fold or not vectorize
1205   CM_ScalarEpilogueNotAllowedUsePredicate
1206 };
1207 
1208 /// ElementCountComparator creates a total ordering for ElementCount
1209 /// for the purposes of using it in a set structure.
1210 struct ElementCountComparator {
1211   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1212     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1213            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1214   }
1215 };
1216 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1217 
1218 /// LoopVectorizationCostModel - estimates the expected speedups due to
1219 /// vectorization.
1220 /// In many cases vectorization is not profitable. This can happen because of
1221 /// a number of reasons. In this class we mainly attempt to predict the
1222 /// expected speedup/slowdowns due to the supported instruction set. We use the
1223 /// TargetTransformInfo to query the different backends for the cost of
1224 /// different operations.
1225 class LoopVectorizationCostModel {
1226 public:
1227   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1228                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1229                              LoopVectorizationLegality *Legal,
1230                              const TargetTransformInfo &TTI,
1231                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1232                              AssumptionCache *AC,
1233                              OptimizationRemarkEmitter *ORE, const Function *F,
1234                              const LoopVectorizeHints *Hints,
1235                              InterleavedAccessInfo &IAI)
1236       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1237         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1238         Hints(Hints), InterleaveInfo(IAI) {}
1239 
1240   /// \return An upper bound for the vectorization factors (both fixed and
1241   /// scalable). If the factors are 0, vectorization and interleaving should be
1242   /// avoided up front.
1243   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1244 
1245   /// \return True if runtime checks are required for vectorization, and false
1246   /// otherwise.
1247   bool runtimeChecksRequired();
1248 
1249   /// \return The most profitable vectorization factor and the cost of that VF.
1250   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1251   /// then this vectorization factor will be selected if vectorization is
1252   /// possible.
1253   VectorizationFactor
1254   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1255 
1256   VectorizationFactor
1257   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1258                                     const LoopVectorizationPlanner &LVP);
1259 
1260   /// Setup cost-based decisions for user vectorization factor.
1261   /// \return true if the UserVF is a feasible VF to be chosen.
1262   bool selectUserVectorizationFactor(ElementCount UserVF) {
1263     collectUniformsAndScalars(UserVF);
1264     collectInstsToScalarize(UserVF);
1265     return expectedCost(UserVF).first.isValid();
1266   }
1267 
1268   /// \return The size (in bits) of the smallest and widest types in the code
1269   /// that needs to be vectorized. We ignore values that remain scalar such as
1270   /// 64 bit loop indices.
1271   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1272 
1273   /// \return The desired interleave count.
1274   /// If interleave count has been specified by metadata it will be returned.
1275   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1276   /// are the selected vectorization factor and the cost of the selected VF.
1277   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1278 
1279   /// Memory access instruction may be vectorized in more than one way.
1280   /// Form of instruction after vectorization depends on cost.
1281   /// This function takes cost-based decisions for Load/Store instructions
1282   /// and collects them in a map. This decisions map is used for building
1283   /// the lists of loop-uniform and loop-scalar instructions.
1284   /// The calculated cost is saved with widening decision in order to
1285   /// avoid redundant calculations.
1286   void setCostBasedWideningDecision(ElementCount VF);
1287 
1288   /// A struct that represents some properties of the register usage
1289   /// of a loop.
1290   struct RegisterUsage {
1291     /// Holds the number of loop invariant values that are used in the loop.
1292     /// The key is ClassID of target-provided register class.
1293     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1294     /// Holds the maximum number of concurrent live intervals in the loop.
1295     /// The key is ClassID of target-provided register class.
1296     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1297   };
1298 
1299   /// \return Returns information about the register usages of the loop for the
1300   /// given vectorization factors.
1301   SmallVector<RegisterUsage, 8>
1302   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1303 
1304   /// Collect values we want to ignore in the cost model.
1305   void collectValuesToIgnore();
1306 
1307   /// Collect all element types in the loop for which widening is needed.
1308   void collectElementTypesForWidening();
1309 
1310   /// Split reductions into those that happen in the loop, and those that happen
1311   /// outside. In loop reductions are collected into InLoopReductionChains.
1312   void collectInLoopReductions();
1313 
1314   /// Returns true if we should use strict in-order reductions for the given
1315   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1316   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1317   /// of FP operations.
1318   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1319     return !Hints->allowReordering() && RdxDesc.isOrdered();
1320   }
1321 
1322   /// \returns The smallest bitwidth each instruction can be represented with.
1323   /// The vector equivalents of these instructions should be truncated to this
1324   /// type.
1325   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1326     return MinBWs;
1327   }
1328 
1329   /// \returns True if it is more profitable to scalarize instruction \p I for
1330   /// vectorization factor \p VF.
1331   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1332     assert(VF.isVector() &&
1333            "Profitable to scalarize relevant only for VF > 1.");
1334 
1335     // Cost model is not run in the VPlan-native path - return conservative
1336     // result until this changes.
1337     if (EnableVPlanNativePath)
1338       return false;
1339 
1340     auto Scalars = InstsToScalarize.find(VF);
1341     assert(Scalars != InstsToScalarize.end() &&
1342            "VF not yet analyzed for scalarization profitability");
1343     return Scalars->second.find(I) != Scalars->second.end();
1344   }
1345 
1346   /// Returns true if \p I is known to be uniform after vectorization.
1347   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1348     if (VF.isScalar())
1349       return true;
1350 
1351     // Cost model is not run in the VPlan-native path - return conservative
1352     // result until this changes.
1353     if (EnableVPlanNativePath)
1354       return false;
1355 
1356     auto UniformsPerVF = Uniforms.find(VF);
1357     assert(UniformsPerVF != Uniforms.end() &&
1358            "VF not yet analyzed for uniformity");
1359     return UniformsPerVF->second.count(I);
1360   }
1361 
1362   /// Returns true if \p I is known to be scalar after vectorization.
1363   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1364     if (VF.isScalar())
1365       return true;
1366 
1367     // Cost model is not run in the VPlan-native path - return conservative
1368     // result until this changes.
1369     if (EnableVPlanNativePath)
1370       return false;
1371 
1372     auto ScalarsPerVF = Scalars.find(VF);
1373     assert(ScalarsPerVF != Scalars.end() &&
1374            "Scalar values are not calculated for VF");
1375     return ScalarsPerVF->second.count(I);
1376   }
1377 
1378   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1379   /// for vectorization factor \p VF.
1380   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1381     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1382            !isProfitableToScalarize(I, VF) &&
1383            !isScalarAfterVectorization(I, VF);
1384   }
1385 
1386   /// Decision that was taken during cost calculation for memory instruction.
1387   enum InstWidening {
1388     CM_Unknown,
1389     CM_Widen,         // For consecutive accesses with stride +1.
1390     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1391     CM_Interleave,
1392     CM_GatherScatter,
1393     CM_Scalarize
1394   };
1395 
1396   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1397   /// instruction \p I and vector width \p VF.
1398   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1399                            InstructionCost Cost) {
1400     assert(VF.isVector() && "Expected VF >=2");
1401     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1402   }
1403 
1404   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1405   /// interleaving group \p Grp and vector width \p VF.
1406   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1407                            ElementCount VF, InstWidening W,
1408                            InstructionCost Cost) {
1409     assert(VF.isVector() && "Expected VF >=2");
1410     /// Broadcast this decicion to all instructions inside the group.
1411     /// But the cost will be assigned to one instruction only.
1412     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1413       if (auto *I = Grp->getMember(i)) {
1414         if (Grp->getInsertPos() == I)
1415           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1416         else
1417           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1418       }
1419     }
1420   }
1421 
1422   /// Return the cost model decision for the given instruction \p I and vector
1423   /// width \p VF. Return CM_Unknown if this instruction did not pass
1424   /// through the cost modeling.
1425   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1426     assert(VF.isVector() && "Expected VF to be a vector VF");
1427     // Cost model is not run in the VPlan-native path - return conservative
1428     // result until this changes.
1429     if (EnableVPlanNativePath)
1430       return CM_GatherScatter;
1431 
1432     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1433     auto Itr = WideningDecisions.find(InstOnVF);
1434     if (Itr == WideningDecisions.end())
1435       return CM_Unknown;
1436     return Itr->second.first;
1437   }
1438 
1439   /// Return the vectorization cost for the given instruction \p I and vector
1440   /// width \p VF.
1441   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1442     assert(VF.isVector() && "Expected VF >=2");
1443     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1444     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1445            "The cost is not calculated");
1446     return WideningDecisions[InstOnVF].second;
1447   }
1448 
1449   /// Return True if instruction \p I is an optimizable truncate whose operand
1450   /// is an induction variable. Such a truncate will be removed by adding a new
1451   /// induction variable with the destination type.
1452   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1453     // If the instruction is not a truncate, return false.
1454     auto *Trunc = dyn_cast<TruncInst>(I);
1455     if (!Trunc)
1456       return false;
1457 
1458     // Get the source and destination types of the truncate.
1459     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1460     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1461 
1462     // If the truncate is free for the given types, return false. Replacing a
1463     // free truncate with an induction variable would add an induction variable
1464     // update instruction to each iteration of the loop. We exclude from this
1465     // check the primary induction variable since it will need an update
1466     // instruction regardless.
1467     Value *Op = Trunc->getOperand(0);
1468     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1469       return false;
1470 
1471     // If the truncated value is not an induction variable, return false.
1472     return Legal->isInductionPhi(Op);
1473   }
1474 
1475   /// Collects the instructions to scalarize for each predicated instruction in
1476   /// the loop.
1477   void collectInstsToScalarize(ElementCount VF);
1478 
1479   /// Collect Uniform and Scalar values for the given \p VF.
1480   /// The sets depend on CM decision for Load/Store instructions
1481   /// that may be vectorized as interleave, gather-scatter or scalarized.
1482   void collectUniformsAndScalars(ElementCount VF) {
1483     // Do the analysis once.
1484     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1485       return;
1486     setCostBasedWideningDecision(VF);
1487     collectLoopUniforms(VF);
1488     collectLoopScalars(VF);
1489   }
1490 
1491   /// Returns true if the target machine supports masked store operation
1492   /// for the given \p DataType and kind of access to \p Ptr.
1493   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1494     return Legal->isConsecutivePtr(DataType, Ptr) &&
1495            TTI.isLegalMaskedStore(DataType, Alignment);
1496   }
1497 
1498   /// Returns true if the target machine supports masked load operation
1499   /// for the given \p DataType and kind of access to \p Ptr.
1500   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1501     return Legal->isConsecutivePtr(DataType, Ptr) &&
1502            TTI.isLegalMaskedLoad(DataType, Alignment);
1503   }
1504 
1505   /// Returns true if the target machine can represent \p V as a masked gather
1506   /// or scatter operation.
1507   bool isLegalGatherOrScatter(Value *V) {
1508     bool LI = isa<LoadInst>(V);
1509     bool SI = isa<StoreInst>(V);
1510     if (!LI && !SI)
1511       return false;
1512     auto *Ty = getLoadStoreType(V);
1513     Align Align = getLoadStoreAlignment(V);
1514     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1515            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1516   }
1517 
1518   /// Returns true if the target machine supports all of the reduction
1519   /// variables found for the given VF.
1520   bool canVectorizeReductions(ElementCount VF) const {
1521     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1522       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1523       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1524     }));
1525   }
1526 
1527   /// Returns true if \p I is an instruction that will be scalarized with
1528   /// predication. Such instructions include conditional stores and
1529   /// instructions that may divide by zero.
1530   /// If a non-zero VF has been calculated, we check if I will be scalarized
1531   /// predication for that VF.
1532   bool isScalarWithPredication(Instruction *I) const;
1533 
1534   // Returns true if \p I is an instruction that will be predicated either
1535   // through scalar predication or masked load/store or masked gather/scatter.
1536   // Superset of instructions that return true for isScalarWithPredication.
1537   bool isPredicatedInst(Instruction *I) {
1538     if (!blockNeedsPredication(I->getParent()))
1539       return false;
1540     // Loads and stores that need some form of masked operation are predicated
1541     // instructions.
1542     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1543       return Legal->isMaskRequired(I);
1544     return isScalarWithPredication(I);
1545   }
1546 
1547   /// Returns true if \p I is a memory instruction with consecutive memory
1548   /// access that can be widened.
1549   bool
1550   memoryInstructionCanBeWidened(Instruction *I,
1551                                 ElementCount VF = ElementCount::getFixed(1));
1552 
1553   /// Returns true if \p I is a memory instruction in an interleaved-group
1554   /// of memory accesses that can be vectorized with wide vector loads/stores
1555   /// and shuffles.
1556   bool
1557   interleavedAccessCanBeWidened(Instruction *I,
1558                                 ElementCount VF = ElementCount::getFixed(1));
1559 
1560   /// Check if \p Instr belongs to any interleaved access group.
1561   bool isAccessInterleaved(Instruction *Instr) {
1562     return InterleaveInfo.isInterleaved(Instr);
1563   }
1564 
1565   /// Get the interleaved access group that \p Instr belongs to.
1566   const InterleaveGroup<Instruction> *
1567   getInterleavedAccessGroup(Instruction *Instr) {
1568     return InterleaveInfo.getInterleaveGroup(Instr);
1569   }
1570 
1571   /// Returns true if we're required to use a scalar epilogue for at least
1572   /// the final iteration of the original loop.
1573   bool requiresScalarEpilogue(ElementCount VF) const {
1574     if (!isScalarEpilogueAllowed())
1575       return false;
1576     // If we might exit from anywhere but the latch, must run the exiting
1577     // iteration in scalar form.
1578     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1579       return true;
1580     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1581   }
1582 
1583   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1584   /// loop hint annotation.
1585   bool isScalarEpilogueAllowed() const {
1586     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1587   }
1588 
1589   /// Returns true if all loop blocks should be masked to fold tail loop.
1590   bool foldTailByMasking() const { return FoldTailByMasking; }
1591 
1592   bool blockNeedsPredication(BasicBlock *BB) const {
1593     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1594   }
1595 
1596   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1597   /// nodes to the chain of instructions representing the reductions. Uses a
1598   /// MapVector to ensure deterministic iteration order.
1599   using ReductionChainMap =
1600       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1601 
1602   /// Return the chain of instructions representing an inloop reduction.
1603   const ReductionChainMap &getInLoopReductionChains() const {
1604     return InLoopReductionChains;
1605   }
1606 
1607   /// Returns true if the Phi is part of an inloop reduction.
1608   bool isInLoopReduction(PHINode *Phi) const {
1609     return InLoopReductionChains.count(Phi);
1610   }
1611 
1612   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1613   /// with factor VF.  Return the cost of the instruction, including
1614   /// scalarization overhead if it's needed.
1615   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1616 
1617   /// Estimate cost of a call instruction CI if it were vectorized with factor
1618   /// VF. Return the cost of the instruction, including scalarization overhead
1619   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1620   /// scalarized -
1621   /// i.e. either vector version isn't available, or is too expensive.
1622   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1623                                     bool &NeedToScalarize) const;
1624 
1625   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1626   /// that of B.
1627   bool isMoreProfitable(const VectorizationFactor &A,
1628                         const VectorizationFactor &B) const;
1629 
1630   /// Invalidates decisions already taken by the cost model.
1631   void invalidateCostModelingDecisions() {
1632     WideningDecisions.clear();
1633     Uniforms.clear();
1634     Scalars.clear();
1635   }
1636 
1637 private:
1638   unsigned NumPredStores = 0;
1639 
1640   /// \return An upper bound for the vectorization factors for both
1641   /// fixed and scalable vectorization, where the minimum-known number of
1642   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1643   /// disabled or unsupported, then the scalable part will be equal to
1644   /// ElementCount::getScalable(0).
1645   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1646                                            ElementCount UserVF);
1647 
1648   /// \return the maximized element count based on the targets vector
1649   /// registers and the loop trip-count, but limited to a maximum safe VF.
1650   /// This is a helper function of computeFeasibleMaxVF.
1651   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1652   /// issue that occurred on one of the buildbots which cannot be reproduced
1653   /// without having access to the properietary compiler (see comments on
1654   /// D98509). The issue is currently under investigation and this workaround
1655   /// will be removed as soon as possible.
1656   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1657                                        unsigned SmallestType,
1658                                        unsigned WidestType,
1659                                        const ElementCount &MaxSafeVF);
1660 
1661   /// \return the maximum legal scalable VF, based on the safe max number
1662   /// of elements.
1663   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1664 
1665   /// The vectorization cost is a combination of the cost itself and a boolean
1666   /// indicating whether any of the contributing operations will actually
1667   /// operate on vector values after type legalization in the backend. If this
1668   /// latter value is false, then all operations will be scalarized (i.e. no
1669   /// vectorization has actually taken place).
1670   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1671 
1672   /// Returns the expected execution cost. The unit of the cost does
1673   /// not matter because we use the 'cost' units to compare different
1674   /// vector widths. The cost that is returned is *not* normalized by
1675   /// the factor width. If \p Invalid is not nullptr, this function
1676   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1677   /// each instruction that has an Invalid cost for the given VF.
1678   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1679   VectorizationCostTy
1680   expectedCost(ElementCount VF,
1681                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1682 
1683   /// Returns the execution time cost of an instruction for a given vector
1684   /// width. Vector width of one means scalar.
1685   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1686 
1687   /// The cost-computation logic from getInstructionCost which provides
1688   /// the vector type as an output parameter.
1689   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1690                                      Type *&VectorTy);
1691 
1692   /// Return the cost of instructions in an inloop reduction pattern, if I is
1693   /// part of that pattern.
1694   Optional<InstructionCost>
1695   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1696                           TTI::TargetCostKind CostKind);
1697 
1698   /// Calculate vectorization cost of memory instruction \p I.
1699   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1700 
1701   /// The cost computation for scalarized memory instruction.
1702   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1703 
1704   /// The cost computation for interleaving group of memory instructions.
1705   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1706 
1707   /// The cost computation for Gather/Scatter instruction.
1708   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1709 
1710   /// The cost computation for widening instruction \p I with consecutive
1711   /// memory access.
1712   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1713 
1714   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1715   /// Load: scalar load + broadcast.
1716   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1717   /// element)
1718   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1719 
1720   /// Estimate the overhead of scalarizing an instruction. This is a
1721   /// convenience wrapper for the type-based getScalarizationOverhead API.
1722   InstructionCost getScalarizationOverhead(Instruction *I,
1723                                            ElementCount VF) const;
1724 
1725   /// Returns whether the instruction is a load or store and will be a emitted
1726   /// as a vector operation.
1727   bool isConsecutiveLoadOrStore(Instruction *I);
1728 
1729   /// Returns true if an artificially high cost for emulated masked memrefs
1730   /// should be used.
1731   bool useEmulatedMaskMemRefHack(Instruction *I);
1732 
1733   /// Map of scalar integer values to the smallest bitwidth they can be legally
1734   /// represented as. The vector equivalents of these values should be truncated
1735   /// to this type.
1736   MapVector<Instruction *, uint64_t> MinBWs;
1737 
1738   /// A type representing the costs for instructions if they were to be
1739   /// scalarized rather than vectorized. The entries are Instruction-Cost
1740   /// pairs.
1741   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1742 
1743   /// A set containing all BasicBlocks that are known to present after
1744   /// vectorization as a predicated block.
1745   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1746 
1747   /// Records whether it is allowed to have the original scalar loop execute at
1748   /// least once. This may be needed as a fallback loop in case runtime
1749   /// aliasing/dependence checks fail, or to handle the tail/remainder
1750   /// iterations when the trip count is unknown or doesn't divide by the VF,
1751   /// or as a peel-loop to handle gaps in interleave-groups.
1752   /// Under optsize and when the trip count is very small we don't allow any
1753   /// iterations to execute in the scalar loop.
1754   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1755 
1756   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1757   bool FoldTailByMasking = false;
1758 
1759   /// A map holding scalar costs for different vectorization factors. The
1760   /// presence of a cost for an instruction in the mapping indicates that the
1761   /// instruction will be scalarized when vectorizing with the associated
1762   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1763   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1764 
1765   /// Holds the instructions known to be uniform after vectorization.
1766   /// The data is collected per VF.
1767   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1768 
1769   /// Holds the instructions known to be scalar after vectorization.
1770   /// The data is collected per VF.
1771   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1772 
1773   /// Holds the instructions (address computations) that are forced to be
1774   /// scalarized.
1775   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1776 
1777   /// PHINodes of the reductions that should be expanded in-loop along with
1778   /// their associated chains of reduction operations, in program order from top
1779   /// (PHI) to bottom
1780   ReductionChainMap InLoopReductionChains;
1781 
1782   /// A Map of inloop reduction operations and their immediate chain operand.
1783   /// FIXME: This can be removed once reductions can be costed correctly in
1784   /// vplan. This was added to allow quick lookup to the inloop operations,
1785   /// without having to loop through InLoopReductionChains.
1786   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1787 
1788   /// Returns the expected difference in cost from scalarizing the expression
1789   /// feeding a predicated instruction \p PredInst. The instructions to
1790   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1791   /// non-negative return value implies the expression will be scalarized.
1792   /// Currently, only single-use chains are considered for scalarization.
1793   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1794                               ElementCount VF);
1795 
1796   /// Collect the instructions that are uniform after vectorization. An
1797   /// instruction is uniform if we represent it with a single scalar value in
1798   /// the vectorized loop corresponding to each vector iteration. Examples of
1799   /// uniform instructions include pointer operands of consecutive or
1800   /// interleaved memory accesses. Note that although uniformity implies an
1801   /// instruction will be scalar, the reverse is not true. In general, a
1802   /// scalarized instruction will be represented by VF scalar values in the
1803   /// vectorized loop, each corresponding to an iteration of the original
1804   /// scalar loop.
1805   void collectLoopUniforms(ElementCount VF);
1806 
1807   /// Collect the instructions that are scalar after vectorization. An
1808   /// instruction is scalar if it is known to be uniform or will be scalarized
1809   /// during vectorization. Non-uniform scalarized instructions will be
1810   /// represented by VF values in the vectorized loop, each corresponding to an
1811   /// iteration of the original scalar loop.
1812   void collectLoopScalars(ElementCount VF);
1813 
1814   /// Keeps cost model vectorization decision and cost for instructions.
1815   /// Right now it is used for memory instructions only.
1816   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1817                                 std::pair<InstWidening, InstructionCost>>;
1818 
1819   DecisionList WideningDecisions;
1820 
1821   /// Returns true if \p V is expected to be vectorized and it needs to be
1822   /// extracted.
1823   bool needsExtract(Value *V, ElementCount VF) const {
1824     Instruction *I = dyn_cast<Instruction>(V);
1825     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1826         TheLoop->isLoopInvariant(I))
1827       return false;
1828 
1829     // Assume we can vectorize V (and hence we need extraction) if the
1830     // scalars are not computed yet. This can happen, because it is called
1831     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1832     // the scalars are collected. That should be a safe assumption in most
1833     // cases, because we check if the operands have vectorizable types
1834     // beforehand in LoopVectorizationLegality.
1835     return Scalars.find(VF) == Scalars.end() ||
1836            !isScalarAfterVectorization(I, VF);
1837   };
1838 
1839   /// Returns a range containing only operands needing to be extracted.
1840   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1841                                                    ElementCount VF) const {
1842     return SmallVector<Value *, 4>(make_filter_range(
1843         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1844   }
1845 
1846   /// Determines if we have the infrastructure to vectorize loop \p L and its
1847   /// epilogue, assuming the main loop is vectorized by \p VF.
1848   bool isCandidateForEpilogueVectorization(const Loop &L,
1849                                            const ElementCount VF) const;
1850 
1851   /// Returns true if epilogue vectorization is considered profitable, and
1852   /// false otherwise.
1853   /// \p VF is the vectorization factor chosen for the original loop.
1854   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1855 
1856 public:
1857   /// The loop that we evaluate.
1858   Loop *TheLoop;
1859 
1860   /// Predicated scalar evolution analysis.
1861   PredicatedScalarEvolution &PSE;
1862 
1863   /// Loop Info analysis.
1864   LoopInfo *LI;
1865 
1866   /// Vectorization legality.
1867   LoopVectorizationLegality *Legal;
1868 
1869   /// Vector target information.
1870   const TargetTransformInfo &TTI;
1871 
1872   /// Target Library Info.
1873   const TargetLibraryInfo *TLI;
1874 
1875   /// Demanded bits analysis.
1876   DemandedBits *DB;
1877 
1878   /// Assumption cache.
1879   AssumptionCache *AC;
1880 
1881   /// Interface to emit optimization remarks.
1882   OptimizationRemarkEmitter *ORE;
1883 
1884   const Function *TheFunction;
1885 
1886   /// Loop Vectorize Hint.
1887   const LoopVectorizeHints *Hints;
1888 
1889   /// The interleave access information contains groups of interleaved accesses
1890   /// with the same stride and close to each other.
1891   InterleavedAccessInfo &InterleaveInfo;
1892 
1893   /// Values to ignore in the cost model.
1894   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1895 
1896   /// Values to ignore in the cost model when VF > 1.
1897   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1898 
1899   /// All element types found in the loop.
1900   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1901 
1902   /// Profitable vector factors.
1903   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1904 };
1905 } // end namespace llvm
1906 
1907 /// Helper struct to manage generating runtime checks for vectorization.
1908 ///
1909 /// The runtime checks are created up-front in temporary blocks to allow better
1910 /// estimating the cost and un-linked from the existing IR. After deciding to
1911 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1912 /// temporary blocks are completely removed.
1913 class GeneratedRTChecks {
1914   /// Basic block which contains the generated SCEV checks, if any.
1915   BasicBlock *SCEVCheckBlock = nullptr;
1916 
1917   /// The value representing the result of the generated SCEV checks. If it is
1918   /// nullptr, either no SCEV checks have been generated or they have been used.
1919   Value *SCEVCheckCond = nullptr;
1920 
1921   /// Basic block which contains the generated memory runtime checks, if any.
1922   BasicBlock *MemCheckBlock = nullptr;
1923 
1924   /// The value representing the result of the generated memory runtime checks.
1925   /// If it is nullptr, either no memory runtime checks have been generated or
1926   /// they have been used.
1927   Instruction *MemRuntimeCheckCond = nullptr;
1928 
1929   DominatorTree *DT;
1930   LoopInfo *LI;
1931 
1932   SCEVExpander SCEVExp;
1933   SCEVExpander MemCheckExp;
1934 
1935 public:
1936   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1937                     const DataLayout &DL)
1938       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1939         MemCheckExp(SE, DL, "scev.check") {}
1940 
1941   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1942   /// accurately estimate the cost of the runtime checks. The blocks are
1943   /// un-linked from the IR and is added back during vector code generation. If
1944   /// there is no vector code generation, the check blocks are removed
1945   /// completely.
1946   void Create(Loop *L, const LoopAccessInfo &LAI,
1947               const SCEVUnionPredicate &UnionPred) {
1948 
1949     BasicBlock *LoopHeader = L->getHeader();
1950     BasicBlock *Preheader = L->getLoopPreheader();
1951 
1952     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1953     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1954     // may be used by SCEVExpander. The blocks will be un-linked from their
1955     // predecessors and removed from LI & DT at the end of the function.
1956     if (!UnionPred.isAlwaysTrue()) {
1957       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1958                                   nullptr, "vector.scevcheck");
1959 
1960       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1961           &UnionPred, SCEVCheckBlock->getTerminator());
1962     }
1963 
1964     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1965     if (RtPtrChecking.Need) {
1966       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1967       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1968                                  "vector.memcheck");
1969 
1970       std::tie(std::ignore, MemRuntimeCheckCond) =
1971           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1972                            RtPtrChecking.getChecks(), MemCheckExp);
1973       assert(MemRuntimeCheckCond &&
1974              "no RT checks generated although RtPtrChecking "
1975              "claimed checks are required");
1976     }
1977 
1978     if (!MemCheckBlock && !SCEVCheckBlock)
1979       return;
1980 
1981     // Unhook the temporary block with the checks, update various places
1982     // accordingly.
1983     if (SCEVCheckBlock)
1984       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1985     if (MemCheckBlock)
1986       MemCheckBlock->replaceAllUsesWith(Preheader);
1987 
1988     if (SCEVCheckBlock) {
1989       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1990       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1991       Preheader->getTerminator()->eraseFromParent();
1992     }
1993     if (MemCheckBlock) {
1994       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1995       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1996       Preheader->getTerminator()->eraseFromParent();
1997     }
1998 
1999     DT->changeImmediateDominator(LoopHeader, Preheader);
2000     if (MemCheckBlock) {
2001       DT->eraseNode(MemCheckBlock);
2002       LI->removeBlock(MemCheckBlock);
2003     }
2004     if (SCEVCheckBlock) {
2005       DT->eraseNode(SCEVCheckBlock);
2006       LI->removeBlock(SCEVCheckBlock);
2007     }
2008   }
2009 
2010   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2011   /// unused.
2012   ~GeneratedRTChecks() {
2013     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2014     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2015     if (!SCEVCheckCond)
2016       SCEVCleaner.markResultUsed();
2017 
2018     if (!MemRuntimeCheckCond)
2019       MemCheckCleaner.markResultUsed();
2020 
2021     if (MemRuntimeCheckCond) {
2022       auto &SE = *MemCheckExp.getSE();
2023       // Memory runtime check generation creates compares that use expanded
2024       // values. Remove them before running the SCEVExpanderCleaners.
2025       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2026         if (MemCheckExp.isInsertedInstruction(&I))
2027           continue;
2028         SE.forgetValue(&I);
2029         SE.eraseValueFromMap(&I);
2030         I.eraseFromParent();
2031       }
2032     }
2033     MemCheckCleaner.cleanup();
2034     SCEVCleaner.cleanup();
2035 
2036     if (SCEVCheckCond)
2037       SCEVCheckBlock->eraseFromParent();
2038     if (MemRuntimeCheckCond)
2039       MemCheckBlock->eraseFromParent();
2040   }
2041 
2042   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2043   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2044   /// depending on the generated condition.
2045   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2046                              BasicBlock *LoopVectorPreHeader,
2047                              BasicBlock *LoopExitBlock) {
2048     if (!SCEVCheckCond)
2049       return nullptr;
2050     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2051       if (C->isZero())
2052         return nullptr;
2053 
2054     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2055 
2056     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2057     // Create new preheader for vector loop.
2058     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2059       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2060 
2061     SCEVCheckBlock->getTerminator()->eraseFromParent();
2062     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2063     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2064                                                 SCEVCheckBlock);
2065 
2066     DT->addNewBlock(SCEVCheckBlock, Pred);
2067     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2068 
2069     ReplaceInstWithInst(
2070         SCEVCheckBlock->getTerminator(),
2071         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2072     // Mark the check as used, to prevent it from being removed during cleanup.
2073     SCEVCheckCond = nullptr;
2074     return SCEVCheckBlock;
2075   }
2076 
2077   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2078   /// the branches to branch to the vector preheader or \p Bypass, depending on
2079   /// the generated condition.
2080   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2081                                    BasicBlock *LoopVectorPreHeader) {
2082     // Check if we generated code that checks in runtime if arrays overlap.
2083     if (!MemRuntimeCheckCond)
2084       return nullptr;
2085 
2086     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2087     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2088                                                 MemCheckBlock);
2089 
2090     DT->addNewBlock(MemCheckBlock, Pred);
2091     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2092     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2093 
2094     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2095       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2096 
2097     ReplaceInstWithInst(
2098         MemCheckBlock->getTerminator(),
2099         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2100     MemCheckBlock->getTerminator()->setDebugLoc(
2101         Pred->getTerminator()->getDebugLoc());
2102 
2103     // Mark the check as used, to prevent it from being removed during cleanup.
2104     MemRuntimeCheckCond = nullptr;
2105     return MemCheckBlock;
2106   }
2107 };
2108 
2109 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2110 // vectorization. The loop needs to be annotated with #pragma omp simd
2111 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2112 // vector length information is not provided, vectorization is not considered
2113 // explicit. Interleave hints are not allowed either. These limitations will be
2114 // relaxed in the future.
2115 // Please, note that we are currently forced to abuse the pragma 'clang
2116 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2117 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2118 // provides *explicit vectorization hints* (LV can bypass legal checks and
2119 // assume that vectorization is legal). However, both hints are implemented
2120 // using the same metadata (llvm.loop.vectorize, processed by
2121 // LoopVectorizeHints). This will be fixed in the future when the native IR
2122 // representation for pragma 'omp simd' is introduced.
2123 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2124                                    OptimizationRemarkEmitter *ORE) {
2125   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2126   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2127 
2128   // Only outer loops with an explicit vectorization hint are supported.
2129   // Unannotated outer loops are ignored.
2130   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2131     return false;
2132 
2133   Function *Fn = OuterLp->getHeader()->getParent();
2134   if (!Hints.allowVectorization(Fn, OuterLp,
2135                                 true /*VectorizeOnlyWhenForced*/)) {
2136     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2137     return false;
2138   }
2139 
2140   if (Hints.getInterleave() > 1) {
2141     // TODO: Interleave support is future work.
2142     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2143                          "outer loops.\n");
2144     Hints.emitRemarkWithHints();
2145     return false;
2146   }
2147 
2148   return true;
2149 }
2150 
2151 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2152                                   OptimizationRemarkEmitter *ORE,
2153                                   SmallVectorImpl<Loop *> &V) {
2154   // Collect inner loops and outer loops without irreducible control flow. For
2155   // now, only collect outer loops that have explicit vectorization hints. If we
2156   // are stress testing the VPlan H-CFG construction, we collect the outermost
2157   // loop of every loop nest.
2158   if (L.isInnermost() || VPlanBuildStressTest ||
2159       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2160     LoopBlocksRPO RPOT(&L);
2161     RPOT.perform(LI);
2162     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2163       V.push_back(&L);
2164       // TODO: Collect inner loops inside marked outer loops in case
2165       // vectorization fails for the outer loop. Do not invoke
2166       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2167       // already known to be reducible. We can use an inherited attribute for
2168       // that.
2169       return;
2170     }
2171   }
2172   for (Loop *InnerL : L)
2173     collectSupportedLoops(*InnerL, LI, ORE, V);
2174 }
2175 
2176 namespace {
2177 
2178 /// The LoopVectorize Pass.
2179 struct LoopVectorize : public FunctionPass {
2180   /// Pass identification, replacement for typeid
2181   static char ID;
2182 
2183   LoopVectorizePass Impl;
2184 
2185   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2186                          bool VectorizeOnlyWhenForced = false)
2187       : FunctionPass(ID),
2188         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2189     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2190   }
2191 
2192   bool runOnFunction(Function &F) override {
2193     if (skipFunction(F))
2194       return false;
2195 
2196     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2197     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2198     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2199     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2200     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2201     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2202     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2203     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2204     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2205     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2206     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2207     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2208     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2209 
2210     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2211         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2212 
2213     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2214                         GetLAA, *ORE, PSI).MadeAnyChange;
2215   }
2216 
2217   void getAnalysisUsage(AnalysisUsage &AU) const override {
2218     AU.addRequired<AssumptionCacheTracker>();
2219     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2220     AU.addRequired<DominatorTreeWrapperPass>();
2221     AU.addRequired<LoopInfoWrapperPass>();
2222     AU.addRequired<ScalarEvolutionWrapperPass>();
2223     AU.addRequired<TargetTransformInfoWrapperPass>();
2224     AU.addRequired<AAResultsWrapperPass>();
2225     AU.addRequired<LoopAccessLegacyAnalysis>();
2226     AU.addRequired<DemandedBitsWrapperPass>();
2227     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2228     AU.addRequired<InjectTLIMappingsLegacy>();
2229 
2230     // We currently do not preserve loopinfo/dominator analyses with outer loop
2231     // vectorization. Until this is addressed, mark these analyses as preserved
2232     // only for non-VPlan-native path.
2233     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2234     if (!EnableVPlanNativePath) {
2235       AU.addPreserved<LoopInfoWrapperPass>();
2236       AU.addPreserved<DominatorTreeWrapperPass>();
2237     }
2238 
2239     AU.addPreserved<BasicAAWrapperPass>();
2240     AU.addPreserved<GlobalsAAWrapperPass>();
2241     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2242   }
2243 };
2244 
2245 } // end anonymous namespace
2246 
2247 //===----------------------------------------------------------------------===//
2248 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2249 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2250 //===----------------------------------------------------------------------===//
2251 
2252 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2253   // We need to place the broadcast of invariant variables outside the loop,
2254   // but only if it's proven safe to do so. Else, broadcast will be inside
2255   // vector loop body.
2256   Instruction *Instr = dyn_cast<Instruction>(V);
2257   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2258                      (!Instr ||
2259                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2260   // Place the code for broadcasting invariant variables in the new preheader.
2261   IRBuilder<>::InsertPointGuard Guard(Builder);
2262   if (SafeToHoist)
2263     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2264 
2265   // Broadcast the scalar into all locations in the vector.
2266   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2267 
2268   return Shuf;
2269 }
2270 
2271 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2272     const InductionDescriptor &II, Value *Step, Value *Start,
2273     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2274     VPTransformState &State) {
2275   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2276          "Expected either an induction phi-node or a truncate of it!");
2277 
2278   // Construct the initial value of the vector IV in the vector loop preheader
2279   auto CurrIP = Builder.saveIP();
2280   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2281   if (isa<TruncInst>(EntryVal)) {
2282     assert(Start->getType()->isIntegerTy() &&
2283            "Truncation requires an integer type");
2284     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2285     Step = Builder.CreateTrunc(Step, TruncType);
2286     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2287   }
2288   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2289   Value *SteppedStart =
2290       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2291 
2292   // We create vector phi nodes for both integer and floating-point induction
2293   // variables. Here, we determine the kind of arithmetic we will perform.
2294   Instruction::BinaryOps AddOp;
2295   Instruction::BinaryOps MulOp;
2296   if (Step->getType()->isIntegerTy()) {
2297     AddOp = Instruction::Add;
2298     MulOp = Instruction::Mul;
2299   } else {
2300     AddOp = II.getInductionOpcode();
2301     MulOp = Instruction::FMul;
2302   }
2303 
2304   // Multiply the vectorization factor by the step using integer or
2305   // floating-point arithmetic as appropriate.
2306   Type *StepType = Step->getType();
2307   if (Step->getType()->isFloatingPointTy())
2308     StepType = IntegerType::get(StepType->getContext(),
2309                                 StepType->getScalarSizeInBits());
2310   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2311   if (Step->getType()->isFloatingPointTy())
2312     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2313   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2314 
2315   // Create a vector splat to use in the induction update.
2316   //
2317   // FIXME: If the step is non-constant, we create the vector splat with
2318   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2319   //        handle a constant vector splat.
2320   Value *SplatVF = isa<Constant>(Mul)
2321                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2322                        : Builder.CreateVectorSplat(VF, Mul);
2323   Builder.restoreIP(CurrIP);
2324 
2325   // We may need to add the step a number of times, depending on the unroll
2326   // factor. The last of those goes into the PHI.
2327   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2328                                     &*LoopVectorBody->getFirstInsertionPt());
2329   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2330   Instruction *LastInduction = VecInd;
2331   for (unsigned Part = 0; Part < UF; ++Part) {
2332     State.set(Def, LastInduction, Part);
2333 
2334     if (isa<TruncInst>(EntryVal))
2335       addMetadata(LastInduction, EntryVal);
2336     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2337                                           State, Part);
2338 
2339     LastInduction = cast<Instruction>(
2340         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2341     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2342   }
2343 
2344   // Move the last step to the end of the latch block. This ensures consistent
2345   // placement of all induction updates.
2346   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2347   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2348   auto *ICmp = cast<Instruction>(Br->getCondition());
2349   LastInduction->moveBefore(ICmp);
2350   LastInduction->setName("vec.ind.next");
2351 
2352   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2353   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2354 }
2355 
2356 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2357   return Cost->isScalarAfterVectorization(I, VF) ||
2358          Cost->isProfitableToScalarize(I, VF);
2359 }
2360 
2361 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2362   if (shouldScalarizeInstruction(IV))
2363     return true;
2364   auto isScalarInst = [&](User *U) -> bool {
2365     auto *I = cast<Instruction>(U);
2366     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2367   };
2368   return llvm::any_of(IV->users(), isScalarInst);
2369 }
2370 
2371 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2372     const InductionDescriptor &ID, const Instruction *EntryVal,
2373     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2374     unsigned Part, unsigned Lane) {
2375   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2376          "Expected either an induction phi-node or a truncate of it!");
2377 
2378   // This induction variable is not the phi from the original loop but the
2379   // newly-created IV based on the proof that casted Phi is equal to the
2380   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2381   // re-uses the same InductionDescriptor that original IV uses but we don't
2382   // have to do any recording in this case - that is done when original IV is
2383   // processed.
2384   if (isa<TruncInst>(EntryVal))
2385     return;
2386 
2387   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2388   if (Casts.empty())
2389     return;
2390   // Only the first Cast instruction in the Casts vector is of interest.
2391   // The rest of the Casts (if exist) have no uses outside the
2392   // induction update chain itself.
2393   if (Lane < UINT_MAX)
2394     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2395   else
2396     State.set(CastDef, VectorLoopVal, Part);
2397 }
2398 
2399 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2400                                                 TruncInst *Trunc, VPValue *Def,
2401                                                 VPValue *CastDef,
2402                                                 VPTransformState &State) {
2403   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2404          "Primary induction variable must have an integer type");
2405 
2406   auto II = Legal->getInductionVars().find(IV);
2407   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2408 
2409   auto ID = II->second;
2410   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2411 
2412   // The value from the original loop to which we are mapping the new induction
2413   // variable.
2414   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2415 
2416   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2417 
2418   // Generate code for the induction step. Note that induction steps are
2419   // required to be loop-invariant
2420   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2421     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2422            "Induction step should be loop invariant");
2423     if (PSE.getSE()->isSCEVable(IV->getType())) {
2424       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2425       return Exp.expandCodeFor(Step, Step->getType(),
2426                                LoopVectorPreHeader->getTerminator());
2427     }
2428     return cast<SCEVUnknown>(Step)->getValue();
2429   };
2430 
2431   // The scalar value to broadcast. This is derived from the canonical
2432   // induction variable. If a truncation type is given, truncate the canonical
2433   // induction variable and step. Otherwise, derive these values from the
2434   // induction descriptor.
2435   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2436     Value *ScalarIV = Induction;
2437     if (IV != OldInduction) {
2438       ScalarIV = IV->getType()->isIntegerTy()
2439                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2440                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2441                                           IV->getType());
2442       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2443       ScalarIV->setName("offset.idx");
2444     }
2445     if (Trunc) {
2446       auto *TruncType = cast<IntegerType>(Trunc->getType());
2447       assert(Step->getType()->isIntegerTy() &&
2448              "Truncation requires an integer step");
2449       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2450       Step = Builder.CreateTrunc(Step, TruncType);
2451     }
2452     return ScalarIV;
2453   };
2454 
2455   // Create the vector values from the scalar IV, in the absence of creating a
2456   // vector IV.
2457   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2458     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2459     for (unsigned Part = 0; Part < UF; ++Part) {
2460       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2461       Value *EntryPart =
2462           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2463                         ID.getInductionOpcode());
2464       State.set(Def, EntryPart, Part);
2465       if (Trunc)
2466         addMetadata(EntryPart, Trunc);
2467       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2468                                             State, Part);
2469     }
2470   };
2471 
2472   // Fast-math-flags propagate from the original induction instruction.
2473   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2474   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2475     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2476 
2477   // Now do the actual transformations, and start with creating the step value.
2478   Value *Step = CreateStepValue(ID.getStep());
2479   if (VF.isZero() || VF.isScalar()) {
2480     Value *ScalarIV = CreateScalarIV(Step);
2481     CreateSplatIV(ScalarIV, Step);
2482     return;
2483   }
2484 
2485   // Determine if we want a scalar version of the induction variable. This is
2486   // true if the induction variable itself is not widened, or if it has at
2487   // least one user in the loop that is not widened.
2488   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2489   if (!NeedsScalarIV) {
2490     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2491                                     State);
2492     return;
2493   }
2494 
2495   // Try to create a new independent vector induction variable. If we can't
2496   // create the phi node, we will splat the scalar induction variable in each
2497   // loop iteration.
2498   if (!shouldScalarizeInstruction(EntryVal)) {
2499     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2500                                     State);
2501     Value *ScalarIV = CreateScalarIV(Step);
2502     // Create scalar steps that can be used by instructions we will later
2503     // scalarize. Note that the addition of the scalar steps will not increase
2504     // the number of instructions in the loop in the common case prior to
2505     // InstCombine. We will be trading one vector extract for each scalar step.
2506     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2507     return;
2508   }
2509 
2510   // All IV users are scalar instructions, so only emit a scalar IV, not a
2511   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2512   // predicate used by the masked loads/stores.
2513   Value *ScalarIV = CreateScalarIV(Step);
2514   if (!Cost->isScalarEpilogueAllowed())
2515     CreateSplatIV(ScalarIV, Step);
2516   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2517 }
2518 
2519 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2520                                           Instruction::BinaryOps BinOp) {
2521   // Create and check the types.
2522   auto *ValVTy = cast<VectorType>(Val->getType());
2523   ElementCount VLen = ValVTy->getElementCount();
2524 
2525   Type *STy = Val->getType()->getScalarType();
2526   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2527          "Induction Step must be an integer or FP");
2528   assert(Step->getType() == STy && "Step has wrong type");
2529 
2530   SmallVector<Constant *, 8> Indices;
2531 
2532   // Create a vector of consecutive numbers from zero to VF.
2533   VectorType *InitVecValVTy = ValVTy;
2534   Type *InitVecValSTy = STy;
2535   if (STy->isFloatingPointTy()) {
2536     InitVecValSTy =
2537         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2538     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2539   }
2540   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2541 
2542   // Add on StartIdx
2543   Value *StartIdxSplat = Builder.CreateVectorSplat(
2544       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2545   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2546 
2547   if (STy->isIntegerTy()) {
2548     Step = Builder.CreateVectorSplat(VLen, Step);
2549     assert(Step->getType() == Val->getType() && "Invalid step vec");
2550     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2551     // which can be found from the original scalar operations.
2552     Step = Builder.CreateMul(InitVec, Step);
2553     return Builder.CreateAdd(Val, Step, "induction");
2554   }
2555 
2556   // Floating point induction.
2557   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2558          "Binary Opcode should be specified for FP induction");
2559   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2560   Step = Builder.CreateVectorSplat(VLen, Step);
2561   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2562   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2563 }
2564 
2565 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2566                                            Instruction *EntryVal,
2567                                            const InductionDescriptor &ID,
2568                                            VPValue *Def, VPValue *CastDef,
2569                                            VPTransformState &State) {
2570   // We shouldn't have to build scalar steps if we aren't vectorizing.
2571   assert(VF.isVector() && "VF should be greater than one");
2572   // Get the value type and ensure it and the step have the same integer type.
2573   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2574   assert(ScalarIVTy == Step->getType() &&
2575          "Val and Step should have the same type");
2576 
2577   // We build scalar steps for both integer and floating-point induction
2578   // variables. Here, we determine the kind of arithmetic we will perform.
2579   Instruction::BinaryOps AddOp;
2580   Instruction::BinaryOps MulOp;
2581   if (ScalarIVTy->isIntegerTy()) {
2582     AddOp = Instruction::Add;
2583     MulOp = Instruction::Mul;
2584   } else {
2585     AddOp = ID.getInductionOpcode();
2586     MulOp = Instruction::FMul;
2587   }
2588 
2589   // Determine the number of scalars we need to generate for each unroll
2590   // iteration. If EntryVal is uniform, we only need to generate the first
2591   // lane. Otherwise, we generate all VF values.
2592   bool IsUniform =
2593       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2594   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2595   // Compute the scalar steps and save the results in State.
2596   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2597                                      ScalarIVTy->getScalarSizeInBits());
2598   Type *VecIVTy = nullptr;
2599   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2600   if (!IsUniform && VF.isScalable()) {
2601     VecIVTy = VectorType::get(ScalarIVTy, VF);
2602     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2603     SplatStep = Builder.CreateVectorSplat(VF, Step);
2604     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2605   }
2606 
2607   for (unsigned Part = 0; Part < UF; ++Part) {
2608     Value *StartIdx0 =
2609         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2610 
2611     if (!IsUniform && VF.isScalable()) {
2612       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2613       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2614       if (ScalarIVTy->isFloatingPointTy())
2615         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2616       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2617       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2618       State.set(Def, Add, Part);
2619       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2620                                             Part);
2621       // It's useful to record the lane values too for the known minimum number
2622       // of elements so we do those below. This improves the code quality when
2623       // trying to extract the first element, for example.
2624     }
2625 
2626     if (ScalarIVTy->isFloatingPointTy())
2627       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2628 
2629     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2630       Value *StartIdx = Builder.CreateBinOp(
2631           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2632       // The step returned by `createStepForVF` is a runtime-evaluated value
2633       // when VF is scalable. Otherwise, it should be folded into a Constant.
2634       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2635              "Expected StartIdx to be folded to a constant when VF is not "
2636              "scalable");
2637       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2638       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2639       State.set(Def, Add, VPIteration(Part, Lane));
2640       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2641                                             Part, Lane);
2642     }
2643   }
2644 }
2645 
2646 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2647                                                     const VPIteration &Instance,
2648                                                     VPTransformState &State) {
2649   Value *ScalarInst = State.get(Def, Instance);
2650   Value *VectorValue = State.get(Def, Instance.Part);
2651   VectorValue = Builder.CreateInsertElement(
2652       VectorValue, ScalarInst,
2653       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2654   State.set(Def, VectorValue, Instance.Part);
2655 }
2656 
2657 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2658   assert(Vec->getType()->isVectorTy() && "Invalid type");
2659   return Builder.CreateVectorReverse(Vec, "reverse");
2660 }
2661 
2662 // Return whether we allow using masked interleave-groups (for dealing with
2663 // strided loads/stores that reside in predicated blocks, or for dealing
2664 // with gaps).
2665 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2666   // If an override option has been passed in for interleaved accesses, use it.
2667   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2668     return EnableMaskedInterleavedMemAccesses;
2669 
2670   return TTI.enableMaskedInterleavedAccessVectorization();
2671 }
2672 
2673 // Try to vectorize the interleave group that \p Instr belongs to.
2674 //
2675 // E.g. Translate following interleaved load group (factor = 3):
2676 //   for (i = 0; i < N; i+=3) {
2677 //     R = Pic[i];             // Member of index 0
2678 //     G = Pic[i+1];           // Member of index 1
2679 //     B = Pic[i+2];           // Member of index 2
2680 //     ... // do something to R, G, B
2681 //   }
2682 // To:
2683 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2684 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2685 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2686 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2687 //
2688 // Or translate following interleaved store group (factor = 3):
2689 //   for (i = 0; i < N; i+=3) {
2690 //     ... do something to R, G, B
2691 //     Pic[i]   = R;           // Member of index 0
2692 //     Pic[i+1] = G;           // Member of index 1
2693 //     Pic[i+2] = B;           // Member of index 2
2694 //   }
2695 // To:
2696 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2697 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2698 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2699 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2700 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2701 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2702     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2703     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2704     VPValue *BlockInMask) {
2705   Instruction *Instr = Group->getInsertPos();
2706   const DataLayout &DL = Instr->getModule()->getDataLayout();
2707 
2708   // Prepare for the vector type of the interleaved load/store.
2709   Type *ScalarTy = getLoadStoreType(Instr);
2710   unsigned InterleaveFactor = Group->getFactor();
2711   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2712   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2713 
2714   // Prepare for the new pointers.
2715   SmallVector<Value *, 2> AddrParts;
2716   unsigned Index = Group->getIndex(Instr);
2717 
2718   // TODO: extend the masked interleaved-group support to reversed access.
2719   assert((!BlockInMask || !Group->isReverse()) &&
2720          "Reversed masked interleave-group not supported.");
2721 
2722   // If the group is reverse, adjust the index to refer to the last vector lane
2723   // instead of the first. We adjust the index from the first vector lane,
2724   // rather than directly getting the pointer for lane VF - 1, because the
2725   // pointer operand of the interleaved access is supposed to be uniform. For
2726   // uniform instructions, we're only required to generate a value for the
2727   // first vector lane in each unroll iteration.
2728   if (Group->isReverse())
2729     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2730 
2731   for (unsigned Part = 0; Part < UF; Part++) {
2732     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2733     setDebugLocFromInst(AddrPart);
2734 
2735     // Notice current instruction could be any index. Need to adjust the address
2736     // to the member of index 0.
2737     //
2738     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2739     //       b = A[i];       // Member of index 0
2740     // Current pointer is pointed to A[i+1], adjust it to A[i].
2741     //
2742     // E.g.  A[i+1] = a;     // Member of index 1
2743     //       A[i]   = b;     // Member of index 0
2744     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2745     // Current pointer is pointed to A[i+2], adjust it to A[i].
2746 
2747     bool InBounds = false;
2748     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2749       InBounds = gep->isInBounds();
2750     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2751     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2752 
2753     // Cast to the vector pointer type.
2754     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2755     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2756     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2757   }
2758 
2759   setDebugLocFromInst(Instr);
2760   Value *PoisonVec = PoisonValue::get(VecTy);
2761 
2762   Value *MaskForGaps = nullptr;
2763   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2764     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2765     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2766   }
2767 
2768   // Vectorize the interleaved load group.
2769   if (isa<LoadInst>(Instr)) {
2770     // For each unroll part, create a wide load for the group.
2771     SmallVector<Value *, 2> NewLoads;
2772     for (unsigned Part = 0; Part < UF; Part++) {
2773       Instruction *NewLoad;
2774       if (BlockInMask || MaskForGaps) {
2775         assert(useMaskedInterleavedAccesses(*TTI) &&
2776                "masked interleaved groups are not allowed.");
2777         Value *GroupMask = MaskForGaps;
2778         if (BlockInMask) {
2779           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2780           Value *ShuffledMask = Builder.CreateShuffleVector(
2781               BlockInMaskPart,
2782               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2783               "interleaved.mask");
2784           GroupMask = MaskForGaps
2785                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2786                                                 MaskForGaps)
2787                           : ShuffledMask;
2788         }
2789         NewLoad =
2790             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2791                                      GroupMask, PoisonVec, "wide.masked.vec");
2792       }
2793       else
2794         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2795                                             Group->getAlign(), "wide.vec");
2796       Group->addMetadata(NewLoad);
2797       NewLoads.push_back(NewLoad);
2798     }
2799 
2800     // For each member in the group, shuffle out the appropriate data from the
2801     // wide loads.
2802     unsigned J = 0;
2803     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2804       Instruction *Member = Group->getMember(I);
2805 
2806       // Skip the gaps in the group.
2807       if (!Member)
2808         continue;
2809 
2810       auto StrideMask =
2811           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2812       for (unsigned Part = 0; Part < UF; Part++) {
2813         Value *StridedVec = Builder.CreateShuffleVector(
2814             NewLoads[Part], StrideMask, "strided.vec");
2815 
2816         // If this member has different type, cast the result type.
2817         if (Member->getType() != ScalarTy) {
2818           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2819           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2820           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2821         }
2822 
2823         if (Group->isReverse())
2824           StridedVec = reverseVector(StridedVec);
2825 
2826         State.set(VPDefs[J], StridedVec, Part);
2827       }
2828       ++J;
2829     }
2830     return;
2831   }
2832 
2833   // The sub vector type for current instruction.
2834   auto *SubVT = VectorType::get(ScalarTy, VF);
2835 
2836   // Vectorize the interleaved store group.
2837   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2838   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2839          "masked interleaved groups are not allowed.");
2840   assert((!MaskForGaps || !VF.isScalable()) &&
2841          "masking gaps for scalable vectors is not yet supported.");
2842   for (unsigned Part = 0; Part < UF; Part++) {
2843     // Collect the stored vector from each member.
2844     SmallVector<Value *, 4> StoredVecs;
2845     for (unsigned i = 0; i < InterleaveFactor; i++) {
2846       assert((Group->getMember(i) || MaskForGaps) &&
2847              "Fail to get a member from an interleaved store group");
2848       Instruction *Member = Group->getMember(i);
2849 
2850       // Skip the gaps in the group.
2851       if (!Member) {
2852         Value *Undef = PoisonValue::get(SubVT);
2853         StoredVecs.push_back(Undef);
2854         continue;
2855       }
2856 
2857       Value *StoredVec = State.get(StoredValues[i], Part);
2858 
2859       if (Group->isReverse())
2860         StoredVec = reverseVector(StoredVec);
2861 
2862       // If this member has different type, cast it to a unified type.
2863 
2864       if (StoredVec->getType() != SubVT)
2865         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2866 
2867       StoredVecs.push_back(StoredVec);
2868     }
2869 
2870     // Concatenate all vectors into a wide vector.
2871     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2872 
2873     // Interleave the elements in the wide vector.
2874     Value *IVec = Builder.CreateShuffleVector(
2875         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2876         "interleaved.vec");
2877 
2878     Instruction *NewStoreInstr;
2879     if (BlockInMask || MaskForGaps) {
2880       Value *GroupMask = MaskForGaps;
2881       if (BlockInMask) {
2882         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2883         Value *ShuffledMask = Builder.CreateShuffleVector(
2884             BlockInMaskPart,
2885             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2886             "interleaved.mask");
2887         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2888                                                       ShuffledMask, MaskForGaps)
2889                                 : ShuffledMask;
2890       }
2891       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2892                                                 Group->getAlign(), GroupMask);
2893     } else
2894       NewStoreInstr =
2895           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2896 
2897     Group->addMetadata(NewStoreInstr);
2898   }
2899 }
2900 
2901 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2902     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2903     VPValue *StoredValue, VPValue *BlockInMask) {
2904   // Attempt to issue a wide load.
2905   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2906   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2907 
2908   assert((LI || SI) && "Invalid Load/Store instruction");
2909   assert((!SI || StoredValue) && "No stored value provided for widened store");
2910   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2911 
2912   LoopVectorizationCostModel::InstWidening Decision =
2913       Cost->getWideningDecision(Instr, VF);
2914   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2915           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2916           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2917          "CM decision is not to widen the memory instruction");
2918 
2919   Type *ScalarDataTy = getLoadStoreType(Instr);
2920 
2921   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2922   const Align Alignment = getLoadStoreAlignment(Instr);
2923 
2924   // Determine if the pointer operand of the access is either consecutive or
2925   // reverse consecutive.
2926   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2927   bool ConsecutiveStride =
2928       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2929   bool CreateGatherScatter =
2930       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2931 
2932   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2933   // gather/scatter. Otherwise Decision should have been to Scalarize.
2934   assert((ConsecutiveStride || CreateGatherScatter) &&
2935          "The instruction should be scalarized");
2936   (void)ConsecutiveStride;
2937 
2938   VectorParts BlockInMaskParts(UF);
2939   bool isMaskRequired = BlockInMask;
2940   if (isMaskRequired)
2941     for (unsigned Part = 0; Part < UF; ++Part)
2942       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2943 
2944   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2945     // Calculate the pointer for the specific unroll-part.
2946     GetElementPtrInst *PartPtr = nullptr;
2947 
2948     bool InBounds = false;
2949     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2950       InBounds = gep->isInBounds();
2951     if (Reverse) {
2952       // If the address is consecutive but reversed, then the
2953       // wide store needs to start at the last vector element.
2954       // RunTimeVF =  VScale * VF.getKnownMinValue()
2955       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2956       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2957       // NumElt = -Part * RunTimeVF
2958       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2959       // LastLane = 1 - RunTimeVF
2960       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2961       PartPtr =
2962           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2963       PartPtr->setIsInBounds(InBounds);
2964       PartPtr = cast<GetElementPtrInst>(
2965           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2966       PartPtr->setIsInBounds(InBounds);
2967       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2968         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2969     } else {
2970       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2971       PartPtr = cast<GetElementPtrInst>(
2972           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2973       PartPtr->setIsInBounds(InBounds);
2974     }
2975 
2976     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2977     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2978   };
2979 
2980   // Handle Stores:
2981   if (SI) {
2982     setDebugLocFromInst(SI);
2983 
2984     for (unsigned Part = 0; Part < UF; ++Part) {
2985       Instruction *NewSI = nullptr;
2986       Value *StoredVal = State.get(StoredValue, Part);
2987       if (CreateGatherScatter) {
2988         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2989         Value *VectorGep = State.get(Addr, Part);
2990         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2991                                             MaskPart);
2992       } else {
2993         if (Reverse) {
2994           // If we store to reverse consecutive memory locations, then we need
2995           // to reverse the order of elements in the stored value.
2996           StoredVal = reverseVector(StoredVal);
2997           // We don't want to update the value in the map as it might be used in
2998           // another expression. So don't call resetVectorValue(StoredVal).
2999         }
3000         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3001         if (isMaskRequired)
3002           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
3003                                             BlockInMaskParts[Part]);
3004         else
3005           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
3006       }
3007       addMetadata(NewSI, SI);
3008     }
3009     return;
3010   }
3011 
3012   // Handle loads.
3013   assert(LI && "Must have a load instruction");
3014   setDebugLocFromInst(LI);
3015   for (unsigned Part = 0; Part < UF; ++Part) {
3016     Value *NewLI;
3017     if (CreateGatherScatter) {
3018       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3019       Value *VectorGep = State.get(Addr, Part);
3020       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3021                                          nullptr, "wide.masked.gather");
3022       addMetadata(NewLI, LI);
3023     } else {
3024       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3025       if (isMaskRequired)
3026         NewLI = Builder.CreateMaskedLoad(
3027             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3028             PoisonValue::get(DataTy), "wide.masked.load");
3029       else
3030         NewLI =
3031             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3032 
3033       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3034       addMetadata(NewLI, LI);
3035       if (Reverse)
3036         NewLI = reverseVector(NewLI);
3037     }
3038 
3039     State.set(Def, NewLI, Part);
3040   }
3041 }
3042 
3043 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3044                                                VPUser &User,
3045                                                const VPIteration &Instance,
3046                                                bool IfPredicateInstr,
3047                                                VPTransformState &State) {
3048   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3049 
3050   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3051   // the first lane and part.
3052   if (isa<NoAliasScopeDeclInst>(Instr))
3053     if (!Instance.isFirstIteration())
3054       return;
3055 
3056   setDebugLocFromInst(Instr);
3057 
3058   // Does this instruction return a value ?
3059   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3060 
3061   Instruction *Cloned = Instr->clone();
3062   if (!IsVoidRetTy)
3063     Cloned->setName(Instr->getName() + ".cloned");
3064 
3065   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3066                                Builder.GetInsertPoint());
3067   // Replace the operands of the cloned instructions with their scalar
3068   // equivalents in the new loop.
3069   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3070     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3071     auto InputInstance = Instance;
3072     if (!Operand || !OrigLoop->contains(Operand) ||
3073         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3074       InputInstance.Lane = VPLane::getFirstLane();
3075     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3076     Cloned->setOperand(op, NewOp);
3077   }
3078   addNewMetadata(Cloned, Instr);
3079 
3080   // Place the cloned scalar in the new loop.
3081   Builder.Insert(Cloned);
3082 
3083   State.set(Def, Cloned, Instance);
3084 
3085   // If we just cloned a new assumption, add it the assumption cache.
3086   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3087     AC->registerAssumption(II);
3088 
3089   // End if-block.
3090   if (IfPredicateInstr)
3091     PredicatedInstructions.push_back(Cloned);
3092 }
3093 
3094 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3095                                                       Value *End, Value *Step,
3096                                                       Instruction *DL) {
3097   BasicBlock *Header = L->getHeader();
3098   BasicBlock *Latch = L->getLoopLatch();
3099   // As we're just creating this loop, it's possible no latch exists
3100   // yet. If so, use the header as this will be a single block loop.
3101   if (!Latch)
3102     Latch = Header;
3103 
3104   IRBuilder<> B(&*Header->getFirstInsertionPt());
3105   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3106   setDebugLocFromInst(OldInst, &B);
3107   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3108 
3109   B.SetInsertPoint(Latch->getTerminator());
3110   setDebugLocFromInst(OldInst, &B);
3111 
3112   // Create i+1 and fill the PHINode.
3113   //
3114   // If the tail is not folded, we know that End - Start >= Step (either
3115   // statically or through the minimum iteration checks). We also know that both
3116   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3117   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3118   // overflows and we can mark the induction increment as NUW.
3119   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3120                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3121   Induction->addIncoming(Start, L->getLoopPreheader());
3122   Induction->addIncoming(Next, Latch);
3123   // Create the compare.
3124   Value *ICmp = B.CreateICmpEQ(Next, End);
3125   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3126 
3127   // Now we have two terminators. Remove the old one from the block.
3128   Latch->getTerminator()->eraseFromParent();
3129 
3130   return Induction;
3131 }
3132 
3133 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3134   if (TripCount)
3135     return TripCount;
3136 
3137   assert(L && "Create Trip Count for null loop.");
3138   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3139   // Find the loop boundaries.
3140   ScalarEvolution *SE = PSE.getSE();
3141   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3142   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3143          "Invalid loop count");
3144 
3145   Type *IdxTy = Legal->getWidestInductionType();
3146   assert(IdxTy && "No type for induction");
3147 
3148   // The exit count might have the type of i64 while the phi is i32. This can
3149   // happen if we have an induction variable that is sign extended before the
3150   // compare. The only way that we get a backedge taken count is that the
3151   // induction variable was signed and as such will not overflow. In such a case
3152   // truncation is legal.
3153   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3154       IdxTy->getPrimitiveSizeInBits())
3155     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3156   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3157 
3158   // Get the total trip count from the count by adding 1.
3159   const SCEV *ExitCount = SE->getAddExpr(
3160       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3161 
3162   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3163 
3164   // Expand the trip count and place the new instructions in the preheader.
3165   // Notice that the pre-header does not change, only the loop body.
3166   SCEVExpander Exp(*SE, DL, "induction");
3167 
3168   // Count holds the overall loop count (N).
3169   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3170                                 L->getLoopPreheader()->getTerminator());
3171 
3172   if (TripCount->getType()->isPointerTy())
3173     TripCount =
3174         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3175                                     L->getLoopPreheader()->getTerminator());
3176 
3177   return TripCount;
3178 }
3179 
3180 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3181   if (VectorTripCount)
3182     return VectorTripCount;
3183 
3184   Value *TC = getOrCreateTripCount(L);
3185   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3186 
3187   Type *Ty = TC->getType();
3188   // This is where we can make the step a runtime constant.
3189   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3190 
3191   // If the tail is to be folded by masking, round the number of iterations N
3192   // up to a multiple of Step instead of rounding down. This is done by first
3193   // adding Step-1 and then rounding down. Note that it's ok if this addition
3194   // overflows: the vector induction variable will eventually wrap to zero given
3195   // that it starts at zero and its Step is a power of two; the loop will then
3196   // exit, with the last early-exit vector comparison also producing all-true.
3197   if (Cost->foldTailByMasking()) {
3198     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3199            "VF*UF must be a power of 2 when folding tail by masking");
3200     assert(!VF.isScalable() &&
3201            "Tail folding not yet supported for scalable vectors");
3202     TC = Builder.CreateAdd(
3203         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3204   }
3205 
3206   // Now we need to generate the expression for the part of the loop that the
3207   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3208   // iterations are not required for correctness, or N - Step, otherwise. Step
3209   // is equal to the vectorization factor (number of SIMD elements) times the
3210   // unroll factor (number of SIMD instructions).
3211   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3212 
3213   // There are cases where we *must* run at least one iteration in the remainder
3214   // loop.  See the cost model for when this can happen.  If the step evenly
3215   // divides the trip count, we set the remainder to be equal to the step. If
3216   // the step does not evenly divide the trip count, no adjustment is necessary
3217   // since there will already be scalar iterations. Note that the minimum
3218   // iterations check ensures that N >= Step.
3219   if (Cost->requiresScalarEpilogue(VF)) {
3220     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3221     R = Builder.CreateSelect(IsZero, Step, R);
3222   }
3223 
3224   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3225 
3226   return VectorTripCount;
3227 }
3228 
3229 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3230                                                    const DataLayout &DL) {
3231   // Verify that V is a vector type with same number of elements as DstVTy.
3232   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3233   unsigned VF = DstFVTy->getNumElements();
3234   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3235   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3236   Type *SrcElemTy = SrcVecTy->getElementType();
3237   Type *DstElemTy = DstFVTy->getElementType();
3238   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3239          "Vector elements must have same size");
3240 
3241   // Do a direct cast if element types are castable.
3242   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3243     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3244   }
3245   // V cannot be directly casted to desired vector type.
3246   // May happen when V is a floating point vector but DstVTy is a vector of
3247   // pointers or vice-versa. Handle this using a two-step bitcast using an
3248   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3249   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3250          "Only one type should be a pointer type");
3251   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3252          "Only one type should be a floating point type");
3253   Type *IntTy =
3254       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3255   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3256   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3257   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3258 }
3259 
3260 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3261                                                          BasicBlock *Bypass) {
3262   Value *Count = getOrCreateTripCount(L);
3263   // Reuse existing vector loop preheader for TC checks.
3264   // Note that new preheader block is generated for vector loop.
3265   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3266   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3267 
3268   // Generate code to check if the loop's trip count is less than VF * UF, or
3269   // equal to it in case a scalar epilogue is required; this implies that the
3270   // vector trip count is zero. This check also covers the case where adding one
3271   // to the backedge-taken count overflowed leading to an incorrect trip count
3272   // of zero. In this case we will also jump to the scalar loop.
3273   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3274                                             : ICmpInst::ICMP_ULT;
3275 
3276   // If tail is to be folded, vector loop takes care of all iterations.
3277   Value *CheckMinIters = Builder.getFalse();
3278   if (!Cost->foldTailByMasking()) {
3279     Value *Step =
3280         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3281     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3282   }
3283   // Create new preheader for vector loop.
3284   LoopVectorPreHeader =
3285       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3286                  "vector.ph");
3287 
3288   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3289                                DT->getNode(Bypass)->getIDom()) &&
3290          "TC check is expected to dominate Bypass");
3291 
3292   // Update dominator for Bypass & LoopExit (if needed).
3293   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3294   if (!Cost->requiresScalarEpilogue(VF))
3295     // If there is an epilogue which must run, there's no edge from the
3296     // middle block to exit blocks  and thus no need to update the immediate
3297     // dominator of the exit blocks.
3298     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3299 
3300   ReplaceInstWithInst(
3301       TCCheckBlock->getTerminator(),
3302       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3303   LoopBypassBlocks.push_back(TCCheckBlock);
3304 }
3305 
3306 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3307 
3308   BasicBlock *const SCEVCheckBlock =
3309       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3310   if (!SCEVCheckBlock)
3311     return nullptr;
3312 
3313   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3314            (OptForSizeBasedOnProfile &&
3315             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3316          "Cannot SCEV check stride or overflow when optimizing for size");
3317 
3318 
3319   // Update dominator only if this is first RT check.
3320   if (LoopBypassBlocks.empty()) {
3321     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3322     if (!Cost->requiresScalarEpilogue(VF))
3323       // If there is an epilogue which must run, there's no edge from the
3324       // middle block to exit blocks  and thus no need to update the immediate
3325       // dominator of the exit blocks.
3326       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3327   }
3328 
3329   LoopBypassBlocks.push_back(SCEVCheckBlock);
3330   AddedSafetyChecks = true;
3331   return SCEVCheckBlock;
3332 }
3333 
3334 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3335                                                       BasicBlock *Bypass) {
3336   // VPlan-native path does not do any analysis for runtime checks currently.
3337   if (EnableVPlanNativePath)
3338     return nullptr;
3339 
3340   BasicBlock *const MemCheckBlock =
3341       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3342 
3343   // Check if we generated code that checks in runtime if arrays overlap. We put
3344   // the checks into a separate block to make the more common case of few
3345   // elements faster.
3346   if (!MemCheckBlock)
3347     return nullptr;
3348 
3349   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3350     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3351            "Cannot emit memory checks when optimizing for size, unless forced "
3352            "to vectorize.");
3353     ORE->emit([&]() {
3354       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3355                                         L->getStartLoc(), L->getHeader())
3356              << "Code-size may be reduced by not forcing "
3357                 "vectorization, or by source-code modifications "
3358                 "eliminating the need for runtime checks "
3359                 "(e.g., adding 'restrict').";
3360     });
3361   }
3362 
3363   LoopBypassBlocks.push_back(MemCheckBlock);
3364 
3365   AddedSafetyChecks = true;
3366 
3367   // We currently don't use LoopVersioning for the actual loop cloning but we
3368   // still use it to add the noalias metadata.
3369   LVer = std::make_unique<LoopVersioning>(
3370       *Legal->getLAI(),
3371       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3372       DT, PSE.getSE());
3373   LVer->prepareNoAliasMetadata();
3374   return MemCheckBlock;
3375 }
3376 
3377 Value *InnerLoopVectorizer::emitTransformedIndex(
3378     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3379     const InductionDescriptor &ID) const {
3380 
3381   SCEVExpander Exp(*SE, DL, "induction");
3382   auto Step = ID.getStep();
3383   auto StartValue = ID.getStartValue();
3384   assert(Index->getType()->getScalarType() == Step->getType() &&
3385          "Index scalar type does not match StepValue type");
3386 
3387   // Note: the IR at this point is broken. We cannot use SE to create any new
3388   // SCEV and then expand it, hoping that SCEV's simplification will give us
3389   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3390   // lead to various SCEV crashes. So all we can do is to use builder and rely
3391   // on InstCombine for future simplifications. Here we handle some trivial
3392   // cases only.
3393   auto CreateAdd = [&B](Value *X, Value *Y) {
3394     assert(X->getType() == Y->getType() && "Types don't match!");
3395     if (auto *CX = dyn_cast<ConstantInt>(X))
3396       if (CX->isZero())
3397         return Y;
3398     if (auto *CY = dyn_cast<ConstantInt>(Y))
3399       if (CY->isZero())
3400         return X;
3401     return B.CreateAdd(X, Y);
3402   };
3403 
3404   // We allow X to be a vector type, in which case Y will potentially be
3405   // splatted into a vector with the same element count.
3406   auto CreateMul = [&B](Value *X, Value *Y) {
3407     assert(X->getType()->getScalarType() == Y->getType() &&
3408            "Types don't match!");
3409     if (auto *CX = dyn_cast<ConstantInt>(X))
3410       if (CX->isOne())
3411         return Y;
3412     if (auto *CY = dyn_cast<ConstantInt>(Y))
3413       if (CY->isOne())
3414         return X;
3415     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3416     if (XVTy && !isa<VectorType>(Y->getType()))
3417       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3418     return B.CreateMul(X, Y);
3419   };
3420 
3421   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3422   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3423   // the DomTree is not kept up-to-date for additional blocks generated in the
3424   // vector loop. By using the header as insertion point, we guarantee that the
3425   // expanded instructions dominate all their uses.
3426   auto GetInsertPoint = [this, &B]() {
3427     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3428     if (InsertBB != LoopVectorBody &&
3429         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3430       return LoopVectorBody->getTerminator();
3431     return &*B.GetInsertPoint();
3432   };
3433 
3434   switch (ID.getKind()) {
3435   case InductionDescriptor::IK_IntInduction: {
3436     assert(!isa<VectorType>(Index->getType()) &&
3437            "Vector indices not supported for integer inductions yet");
3438     assert(Index->getType() == StartValue->getType() &&
3439            "Index type does not match StartValue type");
3440     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3441       return B.CreateSub(StartValue, Index);
3442     auto *Offset = CreateMul(
3443         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3444     return CreateAdd(StartValue, Offset);
3445   }
3446   case InductionDescriptor::IK_PtrInduction: {
3447     assert(isa<SCEVConstant>(Step) &&
3448            "Expected constant step for pointer induction");
3449     return B.CreateGEP(
3450         ID.getElementType(), StartValue,
3451         CreateMul(Index,
3452                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3453                                     GetInsertPoint())));
3454   }
3455   case InductionDescriptor::IK_FpInduction: {
3456     assert(!isa<VectorType>(Index->getType()) &&
3457            "Vector indices not supported for FP inductions yet");
3458     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3459     auto InductionBinOp = ID.getInductionBinOp();
3460     assert(InductionBinOp &&
3461            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3462             InductionBinOp->getOpcode() == Instruction::FSub) &&
3463            "Original bin op should be defined for FP induction");
3464 
3465     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3466     Value *MulExp = B.CreateFMul(StepValue, Index);
3467     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3468                          "induction");
3469   }
3470   case InductionDescriptor::IK_NoInduction:
3471     return nullptr;
3472   }
3473   llvm_unreachable("invalid enum");
3474 }
3475 
3476 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3477   LoopScalarBody = OrigLoop->getHeader();
3478   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3479   assert(LoopVectorPreHeader && "Invalid loop structure");
3480   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3481   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3482          "multiple exit loop without required epilogue?");
3483 
3484   LoopMiddleBlock =
3485       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3486                  LI, nullptr, Twine(Prefix) + "middle.block");
3487   LoopScalarPreHeader =
3488       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3489                  nullptr, Twine(Prefix) + "scalar.ph");
3490 
3491   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3492 
3493   // Set up the middle block terminator.  Two cases:
3494   // 1) If we know that we must execute the scalar epilogue, emit an
3495   //    unconditional branch.
3496   // 2) Otherwise, we must have a single unique exit block (due to how we
3497   //    implement the multiple exit case).  In this case, set up a conditonal
3498   //    branch from the middle block to the loop scalar preheader, and the
3499   //    exit block.  completeLoopSkeleton will update the condition to use an
3500   //    iteration check, if required to decide whether to execute the remainder.
3501   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3502     BranchInst::Create(LoopScalarPreHeader) :
3503     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3504                        Builder.getTrue());
3505   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3506   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3507 
3508   // We intentionally don't let SplitBlock to update LoopInfo since
3509   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3510   // LoopVectorBody is explicitly added to the correct place few lines later.
3511   LoopVectorBody =
3512       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3513                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3514 
3515   // Update dominator for loop exit.
3516   if (!Cost->requiresScalarEpilogue(VF))
3517     // If there is an epilogue which must run, there's no edge from the
3518     // middle block to exit blocks  and thus no need to update the immediate
3519     // dominator of the exit blocks.
3520     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3521 
3522   // Create and register the new vector loop.
3523   Loop *Lp = LI->AllocateLoop();
3524   Loop *ParentLoop = OrigLoop->getParentLoop();
3525 
3526   // Insert the new loop into the loop nest and register the new basic blocks
3527   // before calling any utilities such as SCEV that require valid LoopInfo.
3528   if (ParentLoop) {
3529     ParentLoop->addChildLoop(Lp);
3530   } else {
3531     LI->addTopLevelLoop(Lp);
3532   }
3533   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3534   return Lp;
3535 }
3536 
3537 void InnerLoopVectorizer::createInductionResumeValues(
3538     Loop *L, Value *VectorTripCount,
3539     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3540   assert(VectorTripCount && L && "Expected valid arguments");
3541   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3542           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3543          "Inconsistent information about additional bypass.");
3544   // We are going to resume the execution of the scalar loop.
3545   // Go over all of the induction variables that we found and fix the
3546   // PHIs that are left in the scalar version of the loop.
3547   // The starting values of PHI nodes depend on the counter of the last
3548   // iteration in the vectorized loop.
3549   // If we come from a bypass edge then we need to start from the original
3550   // start value.
3551   for (auto &InductionEntry : Legal->getInductionVars()) {
3552     PHINode *OrigPhi = InductionEntry.first;
3553     InductionDescriptor II = InductionEntry.second;
3554 
3555     // Create phi nodes to merge from the  backedge-taken check block.
3556     PHINode *BCResumeVal =
3557         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3558                         LoopScalarPreHeader->getTerminator());
3559     // Copy original phi DL over to the new one.
3560     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3561     Value *&EndValue = IVEndValues[OrigPhi];
3562     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3563     if (OrigPhi == OldInduction) {
3564       // We know what the end value is.
3565       EndValue = VectorTripCount;
3566     } else {
3567       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3568 
3569       // Fast-math-flags propagate from the original induction instruction.
3570       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3571         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3572 
3573       Type *StepType = II.getStep()->getType();
3574       Instruction::CastOps CastOp =
3575           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3576       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3577       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3578       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3579       EndValue->setName("ind.end");
3580 
3581       // Compute the end value for the additional bypass (if applicable).
3582       if (AdditionalBypass.first) {
3583         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3584         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3585                                          StepType, true);
3586         CRD =
3587             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3588         EndValueFromAdditionalBypass =
3589             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3590         EndValueFromAdditionalBypass->setName("ind.end");
3591       }
3592     }
3593     // The new PHI merges the original incoming value, in case of a bypass,
3594     // or the value at the end of the vectorized loop.
3595     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3596 
3597     // Fix the scalar body counter (PHI node).
3598     // The old induction's phi node in the scalar body needs the truncated
3599     // value.
3600     for (BasicBlock *BB : LoopBypassBlocks)
3601       BCResumeVal->addIncoming(II.getStartValue(), BB);
3602 
3603     if (AdditionalBypass.first)
3604       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3605                                             EndValueFromAdditionalBypass);
3606 
3607     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3608   }
3609 }
3610 
3611 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3612                                                       MDNode *OrigLoopID) {
3613   assert(L && "Expected valid loop.");
3614 
3615   // The trip counts should be cached by now.
3616   Value *Count = getOrCreateTripCount(L);
3617   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3618 
3619   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3620 
3621   // Add a check in the middle block to see if we have completed
3622   // all of the iterations in the first vector loop.  Three cases:
3623   // 1) If we require a scalar epilogue, there is no conditional branch as
3624   //    we unconditionally branch to the scalar preheader.  Do nothing.
3625   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3626   //    Thus if tail is to be folded, we know we don't need to run the
3627   //    remainder and we can use the previous value for the condition (true).
3628   // 3) Otherwise, construct a runtime check.
3629   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3630     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3631                                         Count, VectorTripCount, "cmp.n",
3632                                         LoopMiddleBlock->getTerminator());
3633 
3634     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3635     // of the corresponding compare because they may have ended up with
3636     // different line numbers and we want to avoid awkward line stepping while
3637     // debugging. Eg. if the compare has got a line number inside the loop.
3638     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3639     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3640   }
3641 
3642   // Get ready to start creating new instructions into the vectorized body.
3643   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3644          "Inconsistent vector loop preheader");
3645   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3646 
3647   Optional<MDNode *> VectorizedLoopID =
3648       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3649                                       LLVMLoopVectorizeFollowupVectorized});
3650   if (VectorizedLoopID.hasValue()) {
3651     L->setLoopID(VectorizedLoopID.getValue());
3652 
3653     // Do not setAlreadyVectorized if loop attributes have been defined
3654     // explicitly.
3655     return LoopVectorPreHeader;
3656   }
3657 
3658   // Keep all loop hints from the original loop on the vector loop (we'll
3659   // replace the vectorizer-specific hints below).
3660   if (MDNode *LID = OrigLoop->getLoopID())
3661     L->setLoopID(LID);
3662 
3663   LoopVectorizeHints Hints(L, true, *ORE);
3664   Hints.setAlreadyVectorized();
3665 
3666 #ifdef EXPENSIVE_CHECKS
3667   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3668   LI->verify(*DT);
3669 #endif
3670 
3671   return LoopVectorPreHeader;
3672 }
3673 
3674 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3675   /*
3676    In this function we generate a new loop. The new loop will contain
3677    the vectorized instructions while the old loop will continue to run the
3678    scalar remainder.
3679 
3680        [ ] <-- loop iteration number check.
3681     /   |
3682    /    v
3683   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3684   |  /  |
3685   | /   v
3686   ||   [ ]     <-- vector pre header.
3687   |/    |
3688   |     v
3689   |    [  ] \
3690   |    [  ]_|   <-- vector loop.
3691   |     |
3692   |     v
3693   \   -[ ]   <--- middle-block.
3694    \/   |
3695    /\   v
3696    | ->[ ]     <--- new preheader.
3697    |    |
3698  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3699    |   [ ] \
3700    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3701     \   |
3702      \  v
3703       >[ ]     <-- exit block(s).
3704    ...
3705    */
3706 
3707   // Get the metadata of the original loop before it gets modified.
3708   MDNode *OrigLoopID = OrigLoop->getLoopID();
3709 
3710   // Workaround!  Compute the trip count of the original loop and cache it
3711   // before we start modifying the CFG.  This code has a systemic problem
3712   // wherein it tries to run analysis over partially constructed IR; this is
3713   // wrong, and not simply for SCEV.  The trip count of the original loop
3714   // simply happens to be prone to hitting this in practice.  In theory, we
3715   // can hit the same issue for any SCEV, or ValueTracking query done during
3716   // mutation.  See PR49900.
3717   getOrCreateTripCount(OrigLoop);
3718 
3719   // Create an empty vector loop, and prepare basic blocks for the runtime
3720   // checks.
3721   Loop *Lp = createVectorLoopSkeleton("");
3722 
3723   // Now, compare the new count to zero. If it is zero skip the vector loop and
3724   // jump to the scalar loop. This check also covers the case where the
3725   // backedge-taken count is uint##_max: adding one to it will overflow leading
3726   // to an incorrect trip count of zero. In this (rare) case we will also jump
3727   // to the scalar loop.
3728   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3729 
3730   // Generate the code to check any assumptions that we've made for SCEV
3731   // expressions.
3732   emitSCEVChecks(Lp, LoopScalarPreHeader);
3733 
3734   // Generate the code that checks in runtime if arrays overlap. We put the
3735   // checks into a separate block to make the more common case of few elements
3736   // faster.
3737   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3738 
3739   // Some loops have a single integer induction variable, while other loops
3740   // don't. One example is c++ iterators that often have multiple pointer
3741   // induction variables. In the code below we also support a case where we
3742   // don't have a single induction variable.
3743   //
3744   // We try to obtain an induction variable from the original loop as hard
3745   // as possible. However if we don't find one that:
3746   //   - is an integer
3747   //   - counts from zero, stepping by one
3748   //   - is the size of the widest induction variable type
3749   // then we create a new one.
3750   OldInduction = Legal->getPrimaryInduction();
3751   Type *IdxTy = Legal->getWidestInductionType();
3752   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3753   // The loop step is equal to the vectorization factor (num of SIMD elements)
3754   // times the unroll factor (num of SIMD instructions).
3755   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3756   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3757   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3758   Induction =
3759       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3760                               getDebugLocFromInstOrOperands(OldInduction));
3761 
3762   // Emit phis for the new starting index of the scalar loop.
3763   createInductionResumeValues(Lp, CountRoundDown);
3764 
3765   return completeLoopSkeleton(Lp, OrigLoopID);
3766 }
3767 
3768 // Fix up external users of the induction variable. At this point, we are
3769 // in LCSSA form, with all external PHIs that use the IV having one input value,
3770 // coming from the remainder loop. We need those PHIs to also have a correct
3771 // value for the IV when arriving directly from the middle block.
3772 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3773                                        const InductionDescriptor &II,
3774                                        Value *CountRoundDown, Value *EndValue,
3775                                        BasicBlock *MiddleBlock) {
3776   // There are two kinds of external IV usages - those that use the value
3777   // computed in the last iteration (the PHI) and those that use the penultimate
3778   // value (the value that feeds into the phi from the loop latch).
3779   // We allow both, but they, obviously, have different values.
3780 
3781   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3782 
3783   DenseMap<Value *, Value *> MissingVals;
3784 
3785   // An external user of the last iteration's value should see the value that
3786   // the remainder loop uses to initialize its own IV.
3787   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3788   for (User *U : PostInc->users()) {
3789     Instruction *UI = cast<Instruction>(U);
3790     if (!OrigLoop->contains(UI)) {
3791       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3792       MissingVals[UI] = EndValue;
3793     }
3794   }
3795 
3796   // An external user of the penultimate value need to see EndValue - Step.
3797   // The simplest way to get this is to recompute it from the constituent SCEVs,
3798   // that is Start + (Step * (CRD - 1)).
3799   for (User *U : OrigPhi->users()) {
3800     auto *UI = cast<Instruction>(U);
3801     if (!OrigLoop->contains(UI)) {
3802       const DataLayout &DL =
3803           OrigLoop->getHeader()->getModule()->getDataLayout();
3804       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3805 
3806       IRBuilder<> B(MiddleBlock->getTerminator());
3807 
3808       // Fast-math-flags propagate from the original induction instruction.
3809       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3810         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3811 
3812       Value *CountMinusOne = B.CreateSub(
3813           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3814       Value *CMO =
3815           !II.getStep()->getType()->isIntegerTy()
3816               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3817                              II.getStep()->getType())
3818               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3819       CMO->setName("cast.cmo");
3820       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3821       Escape->setName("ind.escape");
3822       MissingVals[UI] = Escape;
3823     }
3824   }
3825 
3826   for (auto &I : MissingVals) {
3827     PHINode *PHI = cast<PHINode>(I.first);
3828     // One corner case we have to handle is two IVs "chasing" each-other,
3829     // that is %IV2 = phi [...], [ %IV1, %latch ]
3830     // In this case, if IV1 has an external use, we need to avoid adding both
3831     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3832     // don't already have an incoming value for the middle block.
3833     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3834       PHI->addIncoming(I.second, MiddleBlock);
3835   }
3836 }
3837 
3838 namespace {
3839 
3840 struct CSEDenseMapInfo {
3841   static bool canHandle(const Instruction *I) {
3842     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3843            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3844   }
3845 
3846   static inline Instruction *getEmptyKey() {
3847     return DenseMapInfo<Instruction *>::getEmptyKey();
3848   }
3849 
3850   static inline Instruction *getTombstoneKey() {
3851     return DenseMapInfo<Instruction *>::getTombstoneKey();
3852   }
3853 
3854   static unsigned getHashValue(const Instruction *I) {
3855     assert(canHandle(I) && "Unknown instruction!");
3856     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3857                                                            I->value_op_end()));
3858   }
3859 
3860   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3861     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3862         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3863       return LHS == RHS;
3864     return LHS->isIdenticalTo(RHS);
3865   }
3866 };
3867 
3868 } // end anonymous namespace
3869 
3870 ///Perform cse of induction variable instructions.
3871 static void cse(BasicBlock *BB) {
3872   // Perform simple cse.
3873   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3874   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3875     if (!CSEDenseMapInfo::canHandle(&In))
3876       continue;
3877 
3878     // Check if we can replace this instruction with any of the
3879     // visited instructions.
3880     if (Instruction *V = CSEMap.lookup(&In)) {
3881       In.replaceAllUsesWith(V);
3882       In.eraseFromParent();
3883       continue;
3884     }
3885 
3886     CSEMap[&In] = &In;
3887   }
3888 }
3889 
3890 InstructionCost
3891 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3892                                               bool &NeedToScalarize) const {
3893   Function *F = CI->getCalledFunction();
3894   Type *ScalarRetTy = CI->getType();
3895   SmallVector<Type *, 4> Tys, ScalarTys;
3896   for (auto &ArgOp : CI->args())
3897     ScalarTys.push_back(ArgOp->getType());
3898 
3899   // Estimate cost of scalarized vector call. The source operands are assumed
3900   // to be vectors, so we need to extract individual elements from there,
3901   // execute VF scalar calls, and then gather the result into the vector return
3902   // value.
3903   InstructionCost ScalarCallCost =
3904       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3905   if (VF.isScalar())
3906     return ScalarCallCost;
3907 
3908   // Compute corresponding vector type for return value and arguments.
3909   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3910   for (Type *ScalarTy : ScalarTys)
3911     Tys.push_back(ToVectorTy(ScalarTy, VF));
3912 
3913   // Compute costs of unpacking argument values for the scalar calls and
3914   // packing the return values to a vector.
3915   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3916 
3917   InstructionCost Cost =
3918       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3919 
3920   // If we can't emit a vector call for this function, then the currently found
3921   // cost is the cost we need to return.
3922   NeedToScalarize = true;
3923   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3924   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3925 
3926   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3927     return Cost;
3928 
3929   // If the corresponding vector cost is cheaper, return its cost.
3930   InstructionCost VectorCallCost =
3931       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3932   if (VectorCallCost < Cost) {
3933     NeedToScalarize = false;
3934     Cost = VectorCallCost;
3935   }
3936   return Cost;
3937 }
3938 
3939 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3940   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3941     return Elt;
3942   return VectorType::get(Elt, VF);
3943 }
3944 
3945 InstructionCost
3946 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3947                                                    ElementCount VF) const {
3948   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3949   assert(ID && "Expected intrinsic call!");
3950   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3951   FastMathFlags FMF;
3952   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3953     FMF = FPMO->getFastMathFlags();
3954 
3955   SmallVector<const Value *> Arguments(CI->args());
3956   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3957   SmallVector<Type *> ParamTys;
3958   std::transform(FTy->param_begin(), FTy->param_end(),
3959                  std::back_inserter(ParamTys),
3960                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3961 
3962   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3963                                     dyn_cast<IntrinsicInst>(CI));
3964   return TTI.getIntrinsicInstrCost(CostAttrs,
3965                                    TargetTransformInfo::TCK_RecipThroughput);
3966 }
3967 
3968 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3969   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3970   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3971   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3972 }
3973 
3974 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3975   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3976   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3977   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3978 }
3979 
3980 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3981   // For every instruction `I` in MinBWs, truncate the operands, create a
3982   // truncated version of `I` and reextend its result. InstCombine runs
3983   // later and will remove any ext/trunc pairs.
3984   SmallPtrSet<Value *, 4> Erased;
3985   for (const auto &KV : Cost->getMinimalBitwidths()) {
3986     // If the value wasn't vectorized, we must maintain the original scalar
3987     // type. The absence of the value from State indicates that it
3988     // wasn't vectorized.
3989     // FIXME: Should not rely on getVPValue at this point.
3990     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3991     if (!State.hasAnyVectorValue(Def))
3992       continue;
3993     for (unsigned Part = 0; Part < UF; ++Part) {
3994       Value *I = State.get(Def, Part);
3995       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3996         continue;
3997       Type *OriginalTy = I->getType();
3998       Type *ScalarTruncatedTy =
3999           IntegerType::get(OriginalTy->getContext(), KV.second);
4000       auto *TruncatedTy = VectorType::get(
4001           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
4002       if (TruncatedTy == OriginalTy)
4003         continue;
4004 
4005       IRBuilder<> B(cast<Instruction>(I));
4006       auto ShrinkOperand = [&](Value *V) -> Value * {
4007         if (auto *ZI = dyn_cast<ZExtInst>(V))
4008           if (ZI->getSrcTy() == TruncatedTy)
4009             return ZI->getOperand(0);
4010         return B.CreateZExtOrTrunc(V, TruncatedTy);
4011       };
4012 
4013       // The actual instruction modification depends on the instruction type,
4014       // unfortunately.
4015       Value *NewI = nullptr;
4016       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4017         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4018                              ShrinkOperand(BO->getOperand(1)));
4019 
4020         // Any wrapping introduced by shrinking this operation shouldn't be
4021         // considered undefined behavior. So, we can't unconditionally copy
4022         // arithmetic wrapping flags to NewI.
4023         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4024       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4025         NewI =
4026             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4027                          ShrinkOperand(CI->getOperand(1)));
4028       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4029         NewI = B.CreateSelect(SI->getCondition(),
4030                               ShrinkOperand(SI->getTrueValue()),
4031                               ShrinkOperand(SI->getFalseValue()));
4032       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4033         switch (CI->getOpcode()) {
4034         default:
4035           llvm_unreachable("Unhandled cast!");
4036         case Instruction::Trunc:
4037           NewI = ShrinkOperand(CI->getOperand(0));
4038           break;
4039         case Instruction::SExt:
4040           NewI = B.CreateSExtOrTrunc(
4041               CI->getOperand(0),
4042               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4043           break;
4044         case Instruction::ZExt:
4045           NewI = B.CreateZExtOrTrunc(
4046               CI->getOperand(0),
4047               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4048           break;
4049         }
4050       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4051         auto Elements0 =
4052             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4053         auto *O0 = B.CreateZExtOrTrunc(
4054             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4055         auto Elements1 =
4056             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4057         auto *O1 = B.CreateZExtOrTrunc(
4058             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4059 
4060         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4061       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4062         // Don't do anything with the operands, just extend the result.
4063         continue;
4064       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4065         auto Elements =
4066             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
4067         auto *O0 = B.CreateZExtOrTrunc(
4068             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4069         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4070         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4071       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4072         auto Elements =
4073             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
4074         auto *O0 = B.CreateZExtOrTrunc(
4075             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4076         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4077       } else {
4078         // If we don't know what to do, be conservative and don't do anything.
4079         continue;
4080       }
4081 
4082       // Lastly, extend the result.
4083       NewI->takeName(cast<Instruction>(I));
4084       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4085       I->replaceAllUsesWith(Res);
4086       cast<Instruction>(I)->eraseFromParent();
4087       Erased.insert(I);
4088       State.reset(Def, Res, Part);
4089     }
4090   }
4091 
4092   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4093   for (const auto &KV : Cost->getMinimalBitwidths()) {
4094     // If the value wasn't vectorized, we must maintain the original scalar
4095     // type. The absence of the value from State indicates that it
4096     // wasn't vectorized.
4097     // FIXME: Should not rely on getVPValue at this point.
4098     VPValue *Def = State.Plan->getVPValue(KV.first, true);
4099     if (!State.hasAnyVectorValue(Def))
4100       continue;
4101     for (unsigned Part = 0; Part < UF; ++Part) {
4102       Value *I = State.get(Def, Part);
4103       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4104       if (Inst && Inst->use_empty()) {
4105         Value *NewI = Inst->getOperand(0);
4106         Inst->eraseFromParent();
4107         State.reset(Def, NewI, Part);
4108       }
4109     }
4110   }
4111 }
4112 
4113 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4114   // Insert truncates and extends for any truncated instructions as hints to
4115   // InstCombine.
4116   if (VF.isVector())
4117     truncateToMinimalBitwidths(State);
4118 
4119   // Fix widened non-induction PHIs by setting up the PHI operands.
4120   if (OrigPHIsToFix.size()) {
4121     assert(EnableVPlanNativePath &&
4122            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4123     fixNonInductionPHIs(State);
4124   }
4125 
4126   // At this point every instruction in the original loop is widened to a
4127   // vector form. Now we need to fix the recurrences in the loop. These PHI
4128   // nodes are currently empty because we did not want to introduce cycles.
4129   // This is the second stage of vectorizing recurrences.
4130   fixCrossIterationPHIs(State);
4131 
4132   // Forget the original basic block.
4133   PSE.getSE()->forgetLoop(OrigLoop);
4134 
4135   // If we inserted an edge from the middle block to the unique exit block,
4136   // update uses outside the loop (phis) to account for the newly inserted
4137   // edge.
4138   if (!Cost->requiresScalarEpilogue(VF)) {
4139     // Fix-up external users of the induction variables.
4140     for (auto &Entry : Legal->getInductionVars())
4141       fixupIVUsers(Entry.first, Entry.second,
4142                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4143                    IVEndValues[Entry.first], LoopMiddleBlock);
4144 
4145     fixLCSSAPHIs(State);
4146   }
4147 
4148   for (Instruction *PI : PredicatedInstructions)
4149     sinkScalarOperands(&*PI);
4150 
4151   // Remove redundant induction instructions.
4152   cse(LoopVectorBody);
4153 
4154   // Set/update profile weights for the vector and remainder loops as original
4155   // loop iterations are now distributed among them. Note that original loop
4156   // represented by LoopScalarBody becomes remainder loop after vectorization.
4157   //
4158   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4159   // end up getting slightly roughened result but that should be OK since
4160   // profile is not inherently precise anyway. Note also possible bypass of
4161   // vector code caused by legality checks is ignored, assigning all the weight
4162   // to the vector loop, optimistically.
4163   //
4164   // For scalable vectorization we can't know at compile time how many iterations
4165   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4166   // vscale of '1'.
4167   setProfileInfoAfterUnrolling(
4168       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4169       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4170 }
4171 
4172 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4173   // In order to support recurrences we need to be able to vectorize Phi nodes.
4174   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4175   // stage #2: We now need to fix the recurrences by adding incoming edges to
4176   // the currently empty PHI nodes. At this point every instruction in the
4177   // original loop is widened to a vector form so we can use them to construct
4178   // the incoming edges.
4179   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4180   for (VPRecipeBase &R : Header->phis()) {
4181     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4182       fixReduction(ReductionPhi, State);
4183     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4184       fixFirstOrderRecurrence(FOR, State);
4185   }
4186 }
4187 
4188 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4189                                                   VPTransformState &State) {
4190   // This is the second phase of vectorizing first-order recurrences. An
4191   // overview of the transformation is described below. Suppose we have the
4192   // following loop.
4193   //
4194   //   for (int i = 0; i < n; ++i)
4195   //     b[i] = a[i] - a[i - 1];
4196   //
4197   // There is a first-order recurrence on "a". For this loop, the shorthand
4198   // scalar IR looks like:
4199   //
4200   //   scalar.ph:
4201   //     s_init = a[-1]
4202   //     br scalar.body
4203   //
4204   //   scalar.body:
4205   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4206   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4207   //     s2 = a[i]
4208   //     b[i] = s2 - s1
4209   //     br cond, scalar.body, ...
4210   //
4211   // In this example, s1 is a recurrence because it's value depends on the
4212   // previous iteration. In the first phase of vectorization, we created a
4213   // vector phi v1 for s1. We now complete the vectorization and produce the
4214   // shorthand vector IR shown below (for VF = 4, UF = 1).
4215   //
4216   //   vector.ph:
4217   //     v_init = vector(..., ..., ..., a[-1])
4218   //     br vector.body
4219   //
4220   //   vector.body
4221   //     i = phi [0, vector.ph], [i+4, vector.body]
4222   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4223   //     v2 = a[i, i+1, i+2, i+3];
4224   //     v3 = vector(v1(3), v2(0, 1, 2))
4225   //     b[i, i+1, i+2, i+3] = v2 - v3
4226   //     br cond, vector.body, middle.block
4227   //
4228   //   middle.block:
4229   //     x = v2(3)
4230   //     br scalar.ph
4231   //
4232   //   scalar.ph:
4233   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4234   //     br scalar.body
4235   //
4236   // After execution completes the vector loop, we extract the next value of
4237   // the recurrence (x) to use as the initial value in the scalar loop.
4238 
4239   // Extract the last vector element in the middle block. This will be the
4240   // initial value for the recurrence when jumping to the scalar loop.
4241   VPValue *PreviousDef = PhiR->getBackedgeValue();
4242   Value *Incoming = State.get(PreviousDef, UF - 1);
4243   auto *ExtractForScalar = Incoming;
4244   auto *IdxTy = Builder.getInt32Ty();
4245   if (VF.isVector()) {
4246     auto *One = ConstantInt::get(IdxTy, 1);
4247     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4248     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4249     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4250     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4251                                                     "vector.recur.extract");
4252   }
4253   // Extract the second last element in the middle block if the
4254   // Phi is used outside the loop. We need to extract the phi itself
4255   // and not the last element (the phi update in the current iteration). This
4256   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4257   // when the scalar loop is not run at all.
4258   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4259   if (VF.isVector()) {
4260     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4261     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4262     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4263         Incoming, Idx, "vector.recur.extract.for.phi");
4264   } else if (UF > 1)
4265     // When loop is unrolled without vectorizing, initialize
4266     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4267     // of `Incoming`. This is analogous to the vectorized case above: extracting
4268     // the second last element when VF > 1.
4269     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4270 
4271   // Fix the initial value of the original recurrence in the scalar loop.
4272   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4273   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4274   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4275   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4276   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4277     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4278     Start->addIncoming(Incoming, BB);
4279   }
4280 
4281   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4282   Phi->setName("scalar.recur");
4283 
4284   // Finally, fix users of the recurrence outside the loop. The users will need
4285   // either the last value of the scalar recurrence or the last value of the
4286   // vector recurrence we extracted in the middle block. Since the loop is in
4287   // LCSSA form, we just need to find all the phi nodes for the original scalar
4288   // recurrence in the exit block, and then add an edge for the middle block.
4289   // Note that LCSSA does not imply single entry when the original scalar loop
4290   // had multiple exiting edges (as we always run the last iteration in the
4291   // scalar epilogue); in that case, there is no edge from middle to exit and
4292   // and thus no phis which needed updated.
4293   if (!Cost->requiresScalarEpilogue(VF))
4294     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4295       if (any_of(LCSSAPhi.incoming_values(),
4296                  [Phi](Value *V) { return V == Phi; }))
4297         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4298 }
4299 
4300 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4301                                        VPTransformState &State) {
4302   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4303   // Get it's reduction variable descriptor.
4304   assert(Legal->isReductionVariable(OrigPhi) &&
4305          "Unable to find the reduction variable");
4306   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4307 
4308   RecurKind RK = RdxDesc.getRecurrenceKind();
4309   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4310   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4311   setDebugLocFromInst(ReductionStartValue);
4312 
4313   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4314   // This is the vector-clone of the value that leaves the loop.
4315   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4316 
4317   // Wrap flags are in general invalid after vectorization, clear them.
4318   clearReductionWrapFlags(RdxDesc, State);
4319 
4320   // Before each round, move the insertion point right between
4321   // the PHIs and the values we are going to write.
4322   // This allows us to write both PHINodes and the extractelement
4323   // instructions.
4324   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4325 
4326   setDebugLocFromInst(LoopExitInst);
4327 
4328   Type *PhiTy = OrigPhi->getType();
4329   // If tail is folded by masking, the vector value to leave the loop should be
4330   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4331   // instead of the former. For an inloop reduction the reduction will already
4332   // be predicated, and does not need to be handled here.
4333   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4334     for (unsigned Part = 0; Part < UF; ++Part) {
4335       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4336       Value *Sel = nullptr;
4337       for (User *U : VecLoopExitInst->users()) {
4338         if (isa<SelectInst>(U)) {
4339           assert(!Sel && "Reduction exit feeding two selects");
4340           Sel = U;
4341         } else
4342           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4343       }
4344       assert(Sel && "Reduction exit feeds no select");
4345       State.reset(LoopExitInstDef, Sel, Part);
4346 
4347       // If the target can create a predicated operator for the reduction at no
4348       // extra cost in the loop (for example a predicated vadd), it can be
4349       // cheaper for the select to remain in the loop than be sunk out of it,
4350       // and so use the select value for the phi instead of the old
4351       // LoopExitValue.
4352       if (PreferPredicatedReductionSelect ||
4353           TTI->preferPredicatedReductionSelect(
4354               RdxDesc.getOpcode(), PhiTy,
4355               TargetTransformInfo::ReductionFlags())) {
4356         auto *VecRdxPhi =
4357             cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part));
4358         VecRdxPhi->setIncomingValueForBlock(
4359             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4360       }
4361     }
4362   }
4363 
4364   // If the vector reduction can be performed in a smaller type, we truncate
4365   // then extend the loop exit value to enable InstCombine to evaluate the
4366   // entire expression in the smaller type.
4367   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4368     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4369     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4370     Builder.SetInsertPoint(
4371         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4372     VectorParts RdxParts(UF);
4373     for (unsigned Part = 0; Part < UF; ++Part) {
4374       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4375       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4376       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4377                                         : Builder.CreateZExt(Trunc, VecTy);
4378       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4379            UI != RdxParts[Part]->user_end();)
4380         if (*UI != Trunc) {
4381           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4382           RdxParts[Part] = Extnd;
4383         } else {
4384           ++UI;
4385         }
4386     }
4387     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4388     for (unsigned Part = 0; Part < UF; ++Part) {
4389       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4390       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4391     }
4392   }
4393 
4394   // Reduce all of the unrolled parts into a single vector.
4395   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4396   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4397 
4398   // The middle block terminator has already been assigned a DebugLoc here (the
4399   // OrigLoop's single latch terminator). We want the whole middle block to
4400   // appear to execute on this line because: (a) it is all compiler generated,
4401   // (b) these instructions are always executed after evaluating the latch
4402   // conditional branch, and (c) other passes may add new predecessors which
4403   // terminate on this line. This is the easiest way to ensure we don't
4404   // accidentally cause an extra step back into the loop while debugging.
4405   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4406   if (PhiR->isOrdered())
4407     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4408   else {
4409     // Floating-point operations should have some FMF to enable the reduction.
4410     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4411     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4412     for (unsigned Part = 1; Part < UF; ++Part) {
4413       Value *RdxPart = State.get(LoopExitInstDef, Part);
4414       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4415         ReducedPartRdx = Builder.CreateBinOp(
4416             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4417       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
4418         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
4419                                            ReducedPartRdx, RdxPart);
4420       else
4421         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4422     }
4423   }
4424 
4425   // Create the reduction after the loop. Note that inloop reductions create the
4426   // target reduction in the loop using a Reduction recipe.
4427   if (VF.isVector() && !PhiR->isInLoop()) {
4428     ReducedPartRdx =
4429         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
4430     // If the reduction can be performed in a smaller type, we need to extend
4431     // the reduction to the wider type before we branch to the original loop.
4432     if (PhiTy != RdxDesc.getRecurrenceType())
4433       ReducedPartRdx = RdxDesc.isSigned()
4434                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4435                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4436   }
4437 
4438   // Create a phi node that merges control-flow from the backedge-taken check
4439   // block and the middle block.
4440   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4441                                         LoopScalarPreHeader->getTerminator());
4442   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4443     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4444   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4445 
4446   // Now, we need to fix the users of the reduction variable
4447   // inside and outside of the scalar remainder loop.
4448 
4449   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4450   // in the exit blocks.  See comment on analogous loop in
4451   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4452   if (!Cost->requiresScalarEpilogue(VF))
4453     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4454       if (any_of(LCSSAPhi.incoming_values(),
4455                  [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4456         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4457 
4458   // Fix the scalar loop reduction variable with the incoming reduction sum
4459   // from the vector body and from the backedge value.
4460   int IncomingEdgeBlockIdx =
4461       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4462   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4463   // Pick the other block.
4464   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4465   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4466   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4467 }
4468 
4469 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4470                                                   VPTransformState &State) {
4471   RecurKind RK = RdxDesc.getRecurrenceKind();
4472   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4473     return;
4474 
4475   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4476   assert(LoopExitInstr && "null loop exit instruction");
4477   SmallVector<Instruction *, 8> Worklist;
4478   SmallPtrSet<Instruction *, 8> Visited;
4479   Worklist.push_back(LoopExitInstr);
4480   Visited.insert(LoopExitInstr);
4481 
4482   while (!Worklist.empty()) {
4483     Instruction *Cur = Worklist.pop_back_val();
4484     if (isa<OverflowingBinaryOperator>(Cur))
4485       for (unsigned Part = 0; Part < UF; ++Part) {
4486         // FIXME: Should not rely on getVPValue at this point.
4487         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4488         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4489       }
4490 
4491     for (User *U : Cur->users()) {
4492       Instruction *UI = cast<Instruction>(U);
4493       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4494           Visited.insert(UI).second)
4495         Worklist.push_back(UI);
4496     }
4497   }
4498 }
4499 
4500 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4501   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4502     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4503       // Some phis were already hand updated by the reduction and recurrence
4504       // code above, leave them alone.
4505       continue;
4506 
4507     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4508     // Non-instruction incoming values will have only one value.
4509 
4510     VPLane Lane = VPLane::getFirstLane();
4511     if (isa<Instruction>(IncomingValue) &&
4512         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4513                                            VF))
4514       Lane = VPLane::getLastLaneForVF(VF);
4515 
4516     // Can be a loop invariant incoming value or the last scalar value to be
4517     // extracted from the vectorized loop.
4518     // FIXME: Should not rely on getVPValue at this point.
4519     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4520     Value *lastIncomingValue =
4521         OrigLoop->isLoopInvariant(IncomingValue)
4522             ? IncomingValue
4523             : State.get(State.Plan->getVPValue(IncomingValue, true),
4524                         VPIteration(UF - 1, Lane));
4525     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4526   }
4527 }
4528 
4529 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4530   // The basic block and loop containing the predicated instruction.
4531   auto *PredBB = PredInst->getParent();
4532   auto *VectorLoop = LI->getLoopFor(PredBB);
4533 
4534   // Initialize a worklist with the operands of the predicated instruction.
4535   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4536 
4537   // Holds instructions that we need to analyze again. An instruction may be
4538   // reanalyzed if we don't yet know if we can sink it or not.
4539   SmallVector<Instruction *, 8> InstsToReanalyze;
4540 
4541   // Returns true if a given use occurs in the predicated block. Phi nodes use
4542   // their operands in their corresponding predecessor blocks.
4543   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4544     auto *I = cast<Instruction>(U.getUser());
4545     BasicBlock *BB = I->getParent();
4546     if (auto *Phi = dyn_cast<PHINode>(I))
4547       BB = Phi->getIncomingBlock(
4548           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4549     return BB == PredBB;
4550   };
4551 
4552   // Iteratively sink the scalarized operands of the predicated instruction
4553   // into the block we created for it. When an instruction is sunk, it's
4554   // operands are then added to the worklist. The algorithm ends after one pass
4555   // through the worklist doesn't sink a single instruction.
4556   bool Changed;
4557   do {
4558     // Add the instructions that need to be reanalyzed to the worklist, and
4559     // reset the changed indicator.
4560     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4561     InstsToReanalyze.clear();
4562     Changed = false;
4563 
4564     while (!Worklist.empty()) {
4565       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4566 
4567       // We can't sink an instruction if it is a phi node, is not in the loop,
4568       // or may have side effects.
4569       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4570           I->mayHaveSideEffects())
4571         continue;
4572 
4573       // If the instruction is already in PredBB, check if we can sink its
4574       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4575       // sinking the scalar instruction I, hence it appears in PredBB; but it
4576       // may have failed to sink I's operands (recursively), which we try
4577       // (again) here.
4578       if (I->getParent() == PredBB) {
4579         Worklist.insert(I->op_begin(), I->op_end());
4580         continue;
4581       }
4582 
4583       // It's legal to sink the instruction if all its uses occur in the
4584       // predicated block. Otherwise, there's nothing to do yet, and we may
4585       // need to reanalyze the instruction.
4586       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4587         InstsToReanalyze.push_back(I);
4588         continue;
4589       }
4590 
4591       // Move the instruction to the beginning of the predicated block, and add
4592       // it's operands to the worklist.
4593       I->moveBefore(&*PredBB->getFirstInsertionPt());
4594       Worklist.insert(I->op_begin(), I->op_end());
4595 
4596       // The sinking may have enabled other instructions to be sunk, so we will
4597       // need to iterate.
4598       Changed = true;
4599     }
4600   } while (Changed);
4601 }
4602 
4603 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4604   for (PHINode *OrigPhi : OrigPHIsToFix) {
4605     VPWidenPHIRecipe *VPPhi =
4606         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4607     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4608     // Make sure the builder has a valid insert point.
4609     Builder.SetInsertPoint(NewPhi);
4610     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4611       VPValue *Inc = VPPhi->getIncomingValue(i);
4612       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4613       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4614     }
4615   }
4616 }
4617 
4618 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4619   return Cost->useOrderedReductions(RdxDesc);
4620 }
4621 
4622 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4623                                    VPUser &Operands, unsigned UF,
4624                                    ElementCount VF, bool IsPtrLoopInvariant,
4625                                    SmallBitVector &IsIndexLoopInvariant,
4626                                    VPTransformState &State) {
4627   // Construct a vector GEP by widening the operands of the scalar GEP as
4628   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4629   // results in a vector of pointers when at least one operand of the GEP
4630   // is vector-typed. Thus, to keep the representation compact, we only use
4631   // vector-typed operands for loop-varying values.
4632 
4633   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4634     // If we are vectorizing, but the GEP has only loop-invariant operands,
4635     // the GEP we build (by only using vector-typed operands for
4636     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4637     // produce a vector of pointers, we need to either arbitrarily pick an
4638     // operand to broadcast, or broadcast a clone of the original GEP.
4639     // Here, we broadcast a clone of the original.
4640     //
4641     // TODO: If at some point we decide to scalarize instructions having
4642     //       loop-invariant operands, this special case will no longer be
4643     //       required. We would add the scalarization decision to
4644     //       collectLoopScalars() and teach getVectorValue() to broadcast
4645     //       the lane-zero scalar value.
4646     auto *Clone = Builder.Insert(GEP->clone());
4647     for (unsigned Part = 0; Part < UF; ++Part) {
4648       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4649       State.set(VPDef, EntryPart, Part);
4650       addMetadata(EntryPart, GEP);
4651     }
4652   } else {
4653     // If the GEP has at least one loop-varying operand, we are sure to
4654     // produce a vector of pointers. But if we are only unrolling, we want
4655     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4656     // produce with the code below will be scalar (if VF == 1) or vector
4657     // (otherwise). Note that for the unroll-only case, we still maintain
4658     // values in the vector mapping with initVector, as we do for other
4659     // instructions.
4660     for (unsigned Part = 0; Part < UF; ++Part) {
4661       // The pointer operand of the new GEP. If it's loop-invariant, we
4662       // won't broadcast it.
4663       auto *Ptr = IsPtrLoopInvariant
4664                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4665                       : State.get(Operands.getOperand(0), Part);
4666 
4667       // Collect all the indices for the new GEP. If any index is
4668       // loop-invariant, we won't broadcast it.
4669       SmallVector<Value *, 4> Indices;
4670       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4671         VPValue *Operand = Operands.getOperand(I);
4672         if (IsIndexLoopInvariant[I - 1])
4673           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4674         else
4675           Indices.push_back(State.get(Operand, Part));
4676       }
4677 
4678       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4679       // but it should be a vector, otherwise.
4680       auto *NewGEP =
4681           GEP->isInBounds()
4682               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4683                                           Indices)
4684               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4685       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4686              "NewGEP is not a pointer vector");
4687       State.set(VPDef, NewGEP, Part);
4688       addMetadata(NewGEP, GEP);
4689     }
4690   }
4691 }
4692 
4693 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4694                                               VPWidenPHIRecipe *PhiR,
4695                                               VPTransformState &State) {
4696   PHINode *P = cast<PHINode>(PN);
4697   if (EnableVPlanNativePath) {
4698     // Currently we enter here in the VPlan-native path for non-induction
4699     // PHIs where all control flow is uniform. We simply widen these PHIs.
4700     // Create a vector phi with no operands - the vector phi operands will be
4701     // set at the end of vector code generation.
4702     Type *VecTy = (State.VF.isScalar())
4703                       ? PN->getType()
4704                       : VectorType::get(PN->getType(), State.VF);
4705     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4706     State.set(PhiR, VecPhi, 0);
4707     OrigPHIsToFix.push_back(P);
4708 
4709     return;
4710   }
4711 
4712   assert(PN->getParent() == OrigLoop->getHeader() &&
4713          "Non-header phis should have been handled elsewhere");
4714 
4715   // In order to support recurrences we need to be able to vectorize Phi nodes.
4716   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4717   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4718   // this value when we vectorize all of the instructions that use the PHI.
4719 
4720   assert(!Legal->isReductionVariable(P) &&
4721          "reductions should be handled elsewhere");
4722 
4723   setDebugLocFromInst(P);
4724 
4725   // This PHINode must be an induction variable.
4726   // Make sure that we know about it.
4727   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4728 
4729   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4730   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4731 
4732   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4733   // which can be found from the original scalar operations.
4734   switch (II.getKind()) {
4735   case InductionDescriptor::IK_NoInduction:
4736     llvm_unreachable("Unknown induction");
4737   case InductionDescriptor::IK_IntInduction:
4738   case InductionDescriptor::IK_FpInduction:
4739     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4740   case InductionDescriptor::IK_PtrInduction: {
4741     // Handle the pointer induction variable case.
4742     assert(P->getType()->isPointerTy() && "Unexpected type.");
4743 
4744     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4745       // This is the normalized GEP that starts counting at zero.
4746       Value *PtrInd =
4747           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4748       // Determine the number of scalars we need to generate for each unroll
4749       // iteration. If the instruction is uniform, we only need to generate the
4750       // first lane. Otherwise, we generate all VF values.
4751       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4752       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4753 
4754       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4755       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4756       if (NeedsVectorIndex) {
4757         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4758         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4759         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4760       }
4761 
4762       for (unsigned Part = 0; Part < UF; ++Part) {
4763         Value *PartStart = createStepForVF(
4764             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4765 
4766         if (NeedsVectorIndex) {
4767           // Here we cache the whole vector, which means we can support the
4768           // extraction of any lane. However, in some cases the extractelement
4769           // instruction that is generated for scalar uses of this vector (e.g.
4770           // a load instruction) is not folded away. Therefore we still
4771           // calculate values for the first n lanes to avoid redundant moves
4772           // (when extracting the 0th element) and to produce scalar code (i.e.
4773           // additional add/gep instructions instead of expensive extractelement
4774           // instructions) when extracting higher-order elements.
4775           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4776           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4777           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4778           Value *SclrGep =
4779               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4780           SclrGep->setName("next.gep");
4781           State.set(PhiR, SclrGep, Part);
4782         }
4783 
4784         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4785           Value *Idx = Builder.CreateAdd(
4786               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4787           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4788           Value *SclrGep =
4789               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4790           SclrGep->setName("next.gep");
4791           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4792         }
4793       }
4794       return;
4795     }
4796     assert(isa<SCEVConstant>(II.getStep()) &&
4797            "Induction step not a SCEV constant!");
4798     Type *PhiType = II.getStep()->getType();
4799 
4800     // Build a pointer phi
4801     Value *ScalarStartValue = II.getStartValue();
4802     Type *ScStValueType = ScalarStartValue->getType();
4803     PHINode *NewPointerPhi =
4804         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4805     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4806 
4807     // A pointer induction, performed by using a gep
4808     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4809     Instruction *InductionLoc = LoopLatch->getTerminator();
4810     const SCEV *ScalarStep = II.getStep();
4811     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4812     Value *ScalarStepValue =
4813         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4814     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4815     Value *NumUnrolledElems =
4816         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4817     Value *InductionGEP = GetElementPtrInst::Create(
4818         II.getElementType(), NewPointerPhi,
4819         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4820         InductionLoc);
4821     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4822 
4823     // Create UF many actual address geps that use the pointer
4824     // phi as base and a vectorized version of the step value
4825     // (<step*0, ..., step*N>) as offset.
4826     for (unsigned Part = 0; Part < State.UF; ++Part) {
4827       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4828       Value *StartOffsetScalar =
4829           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4830       Value *StartOffset =
4831           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4832       // Create a vector of consecutive numbers from zero to VF.
4833       StartOffset =
4834           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4835 
4836       Value *GEP = Builder.CreateGEP(
4837           II.getElementType(), NewPointerPhi,
4838           Builder.CreateMul(
4839               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4840               "vector.gep"));
4841       State.set(PhiR, GEP, Part);
4842     }
4843   }
4844   }
4845 }
4846 
4847 /// A helper function for checking whether an integer division-related
4848 /// instruction may divide by zero (in which case it must be predicated if
4849 /// executed conditionally in the scalar code).
4850 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4851 /// Non-zero divisors that are non compile-time constants will not be
4852 /// converted into multiplication, so we will still end up scalarizing
4853 /// the division, but can do so w/o predication.
4854 static bool mayDivideByZero(Instruction &I) {
4855   assert((I.getOpcode() == Instruction::UDiv ||
4856           I.getOpcode() == Instruction::SDiv ||
4857           I.getOpcode() == Instruction::URem ||
4858           I.getOpcode() == Instruction::SRem) &&
4859          "Unexpected instruction");
4860   Value *Divisor = I.getOperand(1);
4861   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4862   return !CInt || CInt->isZero();
4863 }
4864 
4865 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4866                                            VPUser &User,
4867                                            VPTransformState &State) {
4868   switch (I.getOpcode()) {
4869   case Instruction::Call:
4870   case Instruction::Br:
4871   case Instruction::PHI:
4872   case Instruction::GetElementPtr:
4873   case Instruction::Select:
4874     llvm_unreachable("This instruction is handled by a different recipe.");
4875   case Instruction::UDiv:
4876   case Instruction::SDiv:
4877   case Instruction::SRem:
4878   case Instruction::URem:
4879   case Instruction::Add:
4880   case Instruction::FAdd:
4881   case Instruction::Sub:
4882   case Instruction::FSub:
4883   case Instruction::FNeg:
4884   case Instruction::Mul:
4885   case Instruction::FMul:
4886   case Instruction::FDiv:
4887   case Instruction::FRem:
4888   case Instruction::Shl:
4889   case Instruction::LShr:
4890   case Instruction::AShr:
4891   case Instruction::And:
4892   case Instruction::Or:
4893   case Instruction::Xor: {
4894     // Just widen unops and binops.
4895     setDebugLocFromInst(&I);
4896 
4897     for (unsigned Part = 0; Part < UF; ++Part) {
4898       SmallVector<Value *, 2> Ops;
4899       for (VPValue *VPOp : User.operands())
4900         Ops.push_back(State.get(VPOp, Part));
4901 
4902       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4903 
4904       if (auto *VecOp = dyn_cast<Instruction>(V))
4905         VecOp->copyIRFlags(&I);
4906 
4907       // Use this vector value for all users of the original instruction.
4908       State.set(Def, V, Part);
4909       addMetadata(V, &I);
4910     }
4911 
4912     break;
4913   }
4914   case Instruction::ICmp:
4915   case Instruction::FCmp: {
4916     // Widen compares. Generate vector compares.
4917     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4918     auto *Cmp = cast<CmpInst>(&I);
4919     setDebugLocFromInst(Cmp);
4920     for (unsigned Part = 0; Part < UF; ++Part) {
4921       Value *A = State.get(User.getOperand(0), Part);
4922       Value *B = State.get(User.getOperand(1), Part);
4923       Value *C = nullptr;
4924       if (FCmp) {
4925         // Propagate fast math flags.
4926         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4927         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4928         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4929       } else {
4930         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4931       }
4932       State.set(Def, C, Part);
4933       addMetadata(C, &I);
4934     }
4935 
4936     break;
4937   }
4938 
4939   case Instruction::ZExt:
4940   case Instruction::SExt:
4941   case Instruction::FPToUI:
4942   case Instruction::FPToSI:
4943   case Instruction::FPExt:
4944   case Instruction::PtrToInt:
4945   case Instruction::IntToPtr:
4946   case Instruction::SIToFP:
4947   case Instruction::UIToFP:
4948   case Instruction::Trunc:
4949   case Instruction::FPTrunc:
4950   case Instruction::BitCast: {
4951     auto *CI = cast<CastInst>(&I);
4952     setDebugLocFromInst(CI);
4953 
4954     /// Vectorize casts.
4955     Type *DestTy =
4956         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4957 
4958     for (unsigned Part = 0; Part < UF; ++Part) {
4959       Value *A = State.get(User.getOperand(0), Part);
4960       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4961       State.set(Def, Cast, Part);
4962       addMetadata(Cast, &I);
4963     }
4964     break;
4965   }
4966   default:
4967     // This instruction is not vectorized by simple widening.
4968     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4969     llvm_unreachable("Unhandled instruction!");
4970   } // end of switch.
4971 }
4972 
4973 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4974                                                VPUser &ArgOperands,
4975                                                VPTransformState &State) {
4976   assert(!isa<DbgInfoIntrinsic>(I) &&
4977          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4978   setDebugLocFromInst(&I);
4979 
4980   Module *M = I.getParent()->getParent()->getParent();
4981   auto *CI = cast<CallInst>(&I);
4982 
4983   SmallVector<Type *, 4> Tys;
4984   for (Value *ArgOperand : CI->args())
4985     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4986 
4987   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4988 
4989   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4990   // version of the instruction.
4991   // Is it beneficial to perform intrinsic call compared to lib call?
4992   bool NeedToScalarize = false;
4993   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4994   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4995   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4996   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4997          "Instruction should be scalarized elsewhere.");
4998   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4999          "Either the intrinsic cost or vector call cost must be valid");
5000 
5001   for (unsigned Part = 0; Part < UF; ++Part) {
5002     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
5003     SmallVector<Value *, 4> Args;
5004     for (auto &I : enumerate(ArgOperands.operands())) {
5005       // Some intrinsics have a scalar argument - don't replace it with a
5006       // vector.
5007       Value *Arg;
5008       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5009         Arg = State.get(I.value(), Part);
5010       else {
5011         Arg = State.get(I.value(), VPIteration(0, 0));
5012         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5013           TysForDecl.push_back(Arg->getType());
5014       }
5015       Args.push_back(Arg);
5016     }
5017 
5018     Function *VectorF;
5019     if (UseVectorIntrinsic) {
5020       // Use vector version of the intrinsic.
5021       if (VF.isVector())
5022         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5023       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5024       assert(VectorF && "Can't retrieve vector intrinsic.");
5025     } else {
5026       // Use vector version of the function call.
5027       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5028 #ifndef NDEBUG
5029       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5030              "Can't create vector function.");
5031 #endif
5032         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5033     }
5034       SmallVector<OperandBundleDef, 1> OpBundles;
5035       CI->getOperandBundlesAsDefs(OpBundles);
5036       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5037 
5038       if (isa<FPMathOperator>(V))
5039         V->copyFastMathFlags(CI);
5040 
5041       State.set(Def, V, Part);
5042       addMetadata(V, &I);
5043   }
5044 }
5045 
5046 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5047                                                  VPUser &Operands,
5048                                                  bool InvariantCond,
5049                                                  VPTransformState &State) {
5050   setDebugLocFromInst(&I);
5051 
5052   // The condition can be loop invariant  but still defined inside the
5053   // loop. This means that we can't just use the original 'cond' value.
5054   // We have to take the 'vectorized' value and pick the first lane.
5055   // Instcombine will make this a no-op.
5056   auto *InvarCond = InvariantCond
5057                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5058                         : nullptr;
5059 
5060   for (unsigned Part = 0; Part < UF; ++Part) {
5061     Value *Cond =
5062         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5063     Value *Op0 = State.get(Operands.getOperand(1), Part);
5064     Value *Op1 = State.get(Operands.getOperand(2), Part);
5065     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5066     State.set(VPDef, Sel, Part);
5067     addMetadata(Sel, &I);
5068   }
5069 }
5070 
5071 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5072   // We should not collect Scalars more than once per VF. Right now, this
5073   // function is called from collectUniformsAndScalars(), which already does
5074   // this check. Collecting Scalars for VF=1 does not make any sense.
5075   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5076          "This function should not be visited twice for the same VF");
5077 
5078   SmallSetVector<Instruction *, 8> Worklist;
5079 
5080   // These sets are used to seed the analysis with pointers used by memory
5081   // accesses that will remain scalar.
5082   SmallSetVector<Instruction *, 8> ScalarPtrs;
5083   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5084   auto *Latch = TheLoop->getLoopLatch();
5085 
5086   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5087   // The pointer operands of loads and stores will be scalar as long as the
5088   // memory access is not a gather or scatter operation. The value operand of a
5089   // store will remain scalar if the store is scalarized.
5090   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5091     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5092     assert(WideningDecision != CM_Unknown &&
5093            "Widening decision should be ready at this moment");
5094     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5095       if (Ptr == Store->getValueOperand())
5096         return WideningDecision == CM_Scalarize;
5097     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5098            "Ptr is neither a value or pointer operand");
5099     return WideningDecision != CM_GatherScatter;
5100   };
5101 
5102   // A helper that returns true if the given value is a bitcast or
5103   // getelementptr instruction contained in the loop.
5104   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5105     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5106             isa<GetElementPtrInst>(V)) &&
5107            !TheLoop->isLoopInvariant(V);
5108   };
5109 
5110   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5111     if (!isa<PHINode>(Ptr) ||
5112         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5113       return false;
5114     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5115     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5116       return false;
5117     return isScalarUse(MemAccess, Ptr);
5118   };
5119 
5120   // A helper that evaluates a memory access's use of a pointer. If the
5121   // pointer is actually the pointer induction of a loop, it is being
5122   // inserted into Worklist. If the use will be a scalar use, and the
5123   // pointer is only used by memory accesses, we place the pointer in
5124   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5125   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5126     if (isScalarPtrInduction(MemAccess, Ptr)) {
5127       Worklist.insert(cast<Instruction>(Ptr));
5128       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5129                         << "\n");
5130 
5131       Instruction *Update = cast<Instruction>(
5132           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5133       ScalarPtrs.insert(Update);
5134       return;
5135     }
5136     // We only care about bitcast and getelementptr instructions contained in
5137     // the loop.
5138     if (!isLoopVaryingBitCastOrGEP(Ptr))
5139       return;
5140 
5141     // If the pointer has already been identified as scalar (e.g., if it was
5142     // also identified as uniform), there's nothing to do.
5143     auto *I = cast<Instruction>(Ptr);
5144     if (Worklist.count(I))
5145       return;
5146 
5147     // If the use of the pointer will be a scalar use, and all users of the
5148     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5149     // place the pointer in PossibleNonScalarPtrs.
5150     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5151           return isa<LoadInst>(U) || isa<StoreInst>(U);
5152         }))
5153       ScalarPtrs.insert(I);
5154     else
5155       PossibleNonScalarPtrs.insert(I);
5156   };
5157 
5158   // We seed the scalars analysis with three classes of instructions: (1)
5159   // instructions marked uniform-after-vectorization and (2) bitcast,
5160   // getelementptr and (pointer) phi instructions used by memory accesses
5161   // requiring a scalar use.
5162   //
5163   // (1) Add to the worklist all instructions that have been identified as
5164   // uniform-after-vectorization.
5165   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5166 
5167   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5168   // memory accesses requiring a scalar use. The pointer operands of loads and
5169   // stores will be scalar as long as the memory accesses is not a gather or
5170   // scatter operation. The value operand of a store will remain scalar if the
5171   // store is scalarized.
5172   for (auto *BB : TheLoop->blocks())
5173     for (auto &I : *BB) {
5174       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5175         evaluatePtrUse(Load, Load->getPointerOperand());
5176       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5177         evaluatePtrUse(Store, Store->getPointerOperand());
5178         evaluatePtrUse(Store, Store->getValueOperand());
5179       }
5180     }
5181   for (auto *I : ScalarPtrs)
5182     if (!PossibleNonScalarPtrs.count(I)) {
5183       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5184       Worklist.insert(I);
5185     }
5186 
5187   // Insert the forced scalars.
5188   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5189   // induction variable when the PHI user is scalarized.
5190   auto ForcedScalar = ForcedScalars.find(VF);
5191   if (ForcedScalar != ForcedScalars.end())
5192     for (auto *I : ForcedScalar->second)
5193       Worklist.insert(I);
5194 
5195   // Expand the worklist by looking through any bitcasts and getelementptr
5196   // instructions we've already identified as scalar. This is similar to the
5197   // expansion step in collectLoopUniforms(); however, here we're only
5198   // expanding to include additional bitcasts and getelementptr instructions.
5199   unsigned Idx = 0;
5200   while (Idx != Worklist.size()) {
5201     Instruction *Dst = Worklist[Idx++];
5202     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5203       continue;
5204     auto *Src = cast<Instruction>(Dst->getOperand(0));
5205     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5206           auto *J = cast<Instruction>(U);
5207           return !TheLoop->contains(J) || Worklist.count(J) ||
5208                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5209                   isScalarUse(J, Src));
5210         })) {
5211       Worklist.insert(Src);
5212       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5213     }
5214   }
5215 
5216   // An induction variable will remain scalar if all users of the induction
5217   // variable and induction variable update remain scalar.
5218   for (auto &Induction : Legal->getInductionVars()) {
5219     auto *Ind = Induction.first;
5220     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5221 
5222     // If tail-folding is applied, the primary induction variable will be used
5223     // to feed a vector compare.
5224     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5225       continue;
5226 
5227     // Determine if all users of the induction variable are scalar after
5228     // vectorization.
5229     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5230       auto *I = cast<Instruction>(U);
5231       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5232     });
5233     if (!ScalarInd)
5234       continue;
5235 
5236     // Determine if all users of the induction variable update instruction are
5237     // scalar after vectorization.
5238     auto ScalarIndUpdate =
5239         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5240           auto *I = cast<Instruction>(U);
5241           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5242         });
5243     if (!ScalarIndUpdate)
5244       continue;
5245 
5246     // The induction variable and its update instruction will remain scalar.
5247     Worklist.insert(Ind);
5248     Worklist.insert(IndUpdate);
5249     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5250     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5251                       << "\n");
5252   }
5253 
5254   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5255 }
5256 
5257 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5258   if (!blockNeedsPredication(I->getParent()))
5259     return false;
5260   switch(I->getOpcode()) {
5261   default:
5262     break;
5263   case Instruction::Load:
5264   case Instruction::Store: {
5265     if (!Legal->isMaskRequired(I))
5266       return false;
5267     auto *Ptr = getLoadStorePointerOperand(I);
5268     auto *Ty = getLoadStoreType(I);
5269     const Align Alignment = getLoadStoreAlignment(I);
5270     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5271                                 TTI.isLegalMaskedGather(Ty, Alignment))
5272                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5273                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5274   }
5275   case Instruction::UDiv:
5276   case Instruction::SDiv:
5277   case Instruction::SRem:
5278   case Instruction::URem:
5279     return mayDivideByZero(*I);
5280   }
5281   return false;
5282 }
5283 
5284 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5285     Instruction *I, ElementCount VF) {
5286   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5287   assert(getWideningDecision(I, VF) == CM_Unknown &&
5288          "Decision should not be set yet.");
5289   auto *Group = getInterleavedAccessGroup(I);
5290   assert(Group && "Must have a group.");
5291 
5292   // If the instruction's allocated size doesn't equal it's type size, it
5293   // requires padding and will be scalarized.
5294   auto &DL = I->getModule()->getDataLayout();
5295   auto *ScalarTy = getLoadStoreType(I);
5296   if (hasIrregularType(ScalarTy, DL))
5297     return false;
5298 
5299   // Check if masking is required.
5300   // A Group may need masking for one of two reasons: it resides in a block that
5301   // needs predication, or it was decided to use masking to deal with gaps
5302   // (either a gap at the end of a load-access that may result in a speculative
5303   // load, or any gaps in a store-access).
5304   bool PredicatedAccessRequiresMasking =
5305       blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5306   bool LoadAccessWithGapsRequiresEpilogMasking =
5307       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
5308       !isScalarEpilogueAllowed();
5309   bool StoreAccessWithGapsRequiresMasking =
5310       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
5311   if (!PredicatedAccessRequiresMasking &&
5312       !LoadAccessWithGapsRequiresEpilogMasking &&
5313       !StoreAccessWithGapsRequiresMasking)
5314     return true;
5315 
5316   // If masked interleaving is required, we expect that the user/target had
5317   // enabled it, because otherwise it either wouldn't have been created or
5318   // it should have been invalidated by the CostModel.
5319   assert(useMaskedInterleavedAccesses(TTI) &&
5320          "Masked interleave-groups for predicated accesses are not enabled.");
5321 
5322   auto *Ty = getLoadStoreType(I);
5323   const Align Alignment = getLoadStoreAlignment(I);
5324   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5325                           : TTI.isLegalMaskedStore(Ty, Alignment);
5326 }
5327 
5328 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5329     Instruction *I, ElementCount VF) {
5330   // Get and ensure we have a valid memory instruction.
5331   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
5332 
5333   auto *Ptr = getLoadStorePointerOperand(I);
5334   auto *ScalarTy = getLoadStoreType(I);
5335 
5336   // In order to be widened, the pointer should be consecutive, first of all.
5337   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
5338     return false;
5339 
5340   // If the instruction is a store located in a predicated block, it will be
5341   // scalarized.
5342   if (isScalarWithPredication(I))
5343     return false;
5344 
5345   // If the instruction's allocated size doesn't equal it's type size, it
5346   // requires padding and will be scalarized.
5347   auto &DL = I->getModule()->getDataLayout();
5348   if (hasIrregularType(ScalarTy, DL))
5349     return false;
5350 
5351   return true;
5352 }
5353 
5354 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5355   // We should not collect Uniforms more than once per VF. Right now,
5356   // this function is called from collectUniformsAndScalars(), which
5357   // already does this check. Collecting Uniforms for VF=1 does not make any
5358   // sense.
5359 
5360   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5361          "This function should not be visited twice for the same VF");
5362 
5363   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5364   // not analyze again.  Uniforms.count(VF) will return 1.
5365   Uniforms[VF].clear();
5366 
5367   // We now know that the loop is vectorizable!
5368   // Collect instructions inside the loop that will remain uniform after
5369   // vectorization.
5370 
5371   // Global values, params and instructions outside of current loop are out of
5372   // scope.
5373   auto isOutOfScope = [&](Value *V) -> bool {
5374     Instruction *I = dyn_cast<Instruction>(V);
5375     return (!I || !TheLoop->contains(I));
5376   };
5377 
5378   SetVector<Instruction *> Worklist;
5379   BasicBlock *Latch = TheLoop->getLoopLatch();
5380 
5381   // Instructions that are scalar with predication must not be considered
5382   // uniform after vectorization, because that would create an erroneous
5383   // replicating region where only a single instance out of VF should be formed.
5384   // TODO: optimize such seldom cases if found important, see PR40816.
5385   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5386     if (isOutOfScope(I)) {
5387       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5388                         << *I << "\n");
5389       return;
5390     }
5391     if (isScalarWithPredication(I)) {
5392       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5393                         << *I << "\n");
5394       return;
5395     }
5396     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5397     Worklist.insert(I);
5398   };
5399 
5400   // Start with the conditional branch. If the branch condition is an
5401   // instruction contained in the loop that is only used by the branch, it is
5402   // uniform.
5403   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5404   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5405     addToWorklistIfAllowed(Cmp);
5406 
5407   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5408     InstWidening WideningDecision = getWideningDecision(I, VF);
5409     assert(WideningDecision != CM_Unknown &&
5410            "Widening decision should be ready at this moment");
5411 
5412     // A uniform memory op is itself uniform.  We exclude uniform stores
5413     // here as they demand the last lane, not the first one.
5414     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5415       assert(WideningDecision == CM_Scalarize);
5416       return true;
5417     }
5418 
5419     return (WideningDecision == CM_Widen ||
5420             WideningDecision == CM_Widen_Reverse ||
5421             WideningDecision == CM_Interleave);
5422   };
5423 
5424 
5425   // Returns true if Ptr is the pointer operand of a memory access instruction
5426   // I, and I is known to not require scalarization.
5427   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5428     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5429   };
5430 
5431   // Holds a list of values which are known to have at least one uniform use.
5432   // Note that there may be other uses which aren't uniform.  A "uniform use"
5433   // here is something which only demands lane 0 of the unrolled iterations;
5434   // it does not imply that all lanes produce the same value (e.g. this is not
5435   // the usual meaning of uniform)
5436   SetVector<Value *> HasUniformUse;
5437 
5438   // Scan the loop for instructions which are either a) known to have only
5439   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5440   for (auto *BB : TheLoop->blocks())
5441     for (auto &I : *BB) {
5442       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5443         switch (II->getIntrinsicID()) {
5444         case Intrinsic::sideeffect:
5445         case Intrinsic::experimental_noalias_scope_decl:
5446         case Intrinsic::assume:
5447         case Intrinsic::lifetime_start:
5448         case Intrinsic::lifetime_end:
5449           if (TheLoop->hasLoopInvariantOperands(&I))
5450             addToWorklistIfAllowed(&I);
5451           break;
5452         default:
5453           break;
5454         }
5455       }
5456 
5457       // ExtractValue instructions must be uniform, because the operands are
5458       // known to be loop-invariant.
5459       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5460         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5461                "Expected aggregate value to be loop invariant");
5462         addToWorklistIfAllowed(EVI);
5463         continue;
5464       }
5465 
5466       // If there's no pointer operand, there's nothing to do.
5467       auto *Ptr = getLoadStorePointerOperand(&I);
5468       if (!Ptr)
5469         continue;
5470 
5471       // A uniform memory op is itself uniform.  We exclude uniform stores
5472       // here as they demand the last lane, not the first one.
5473       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5474         addToWorklistIfAllowed(&I);
5475 
5476       if (isUniformDecision(&I, VF)) {
5477         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5478         HasUniformUse.insert(Ptr);
5479       }
5480     }
5481 
5482   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5483   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5484   // disallows uses outside the loop as well.
5485   for (auto *V : HasUniformUse) {
5486     if (isOutOfScope(V))
5487       continue;
5488     auto *I = cast<Instruction>(V);
5489     auto UsersAreMemAccesses =
5490       llvm::all_of(I->users(), [&](User *U) -> bool {
5491         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5492       });
5493     if (UsersAreMemAccesses)
5494       addToWorklistIfAllowed(I);
5495   }
5496 
5497   // Expand Worklist in topological order: whenever a new instruction
5498   // is added , its users should be already inside Worklist.  It ensures
5499   // a uniform instruction will only be used by uniform instructions.
5500   unsigned idx = 0;
5501   while (idx != Worklist.size()) {
5502     Instruction *I = Worklist[idx++];
5503 
5504     for (auto OV : I->operand_values()) {
5505       // isOutOfScope operands cannot be uniform instructions.
5506       if (isOutOfScope(OV))
5507         continue;
5508       // First order recurrence Phi's should typically be considered
5509       // non-uniform.
5510       auto *OP = dyn_cast<PHINode>(OV);
5511       if (OP && Legal->isFirstOrderRecurrence(OP))
5512         continue;
5513       // If all the users of the operand are uniform, then add the
5514       // operand into the uniform worklist.
5515       auto *OI = cast<Instruction>(OV);
5516       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5517             auto *J = cast<Instruction>(U);
5518             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5519           }))
5520         addToWorklistIfAllowed(OI);
5521     }
5522   }
5523 
5524   // For an instruction to be added into Worklist above, all its users inside
5525   // the loop should also be in Worklist. However, this condition cannot be
5526   // true for phi nodes that form a cyclic dependence. We must process phi
5527   // nodes separately. An induction variable will remain uniform if all users
5528   // of the induction variable and induction variable update remain uniform.
5529   // The code below handles both pointer and non-pointer induction variables.
5530   for (auto &Induction : Legal->getInductionVars()) {
5531     auto *Ind = Induction.first;
5532     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5533 
5534     // Determine if all users of the induction variable are uniform after
5535     // vectorization.
5536     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5537       auto *I = cast<Instruction>(U);
5538       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5539              isVectorizedMemAccessUse(I, Ind);
5540     });
5541     if (!UniformInd)
5542       continue;
5543 
5544     // Determine if all users of the induction variable update instruction are
5545     // uniform after vectorization.
5546     auto UniformIndUpdate =
5547         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5548           auto *I = cast<Instruction>(U);
5549           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5550                  isVectorizedMemAccessUse(I, IndUpdate);
5551         });
5552     if (!UniformIndUpdate)
5553       continue;
5554 
5555     // The induction variable and its update instruction will remain uniform.
5556     addToWorklistIfAllowed(Ind);
5557     addToWorklistIfAllowed(IndUpdate);
5558   }
5559 
5560   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5561 }
5562 
5563 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5564   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5565 
5566   if (Legal->getRuntimePointerChecking()->Need) {
5567     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5568         "runtime pointer checks needed. Enable vectorization of this "
5569         "loop with '#pragma clang loop vectorize(enable)' when "
5570         "compiling with -Os/-Oz",
5571         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5572     return true;
5573   }
5574 
5575   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5576     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5577         "runtime SCEV checks needed. Enable vectorization of this "
5578         "loop with '#pragma clang loop vectorize(enable)' when "
5579         "compiling with -Os/-Oz",
5580         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5581     return true;
5582   }
5583 
5584   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5585   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5586     reportVectorizationFailure("Runtime stride check for small trip count",
5587         "runtime stride == 1 checks needed. Enable vectorization of "
5588         "this loop without such check by compiling with -Os/-Oz",
5589         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5590     return true;
5591   }
5592 
5593   return false;
5594 }
5595 
5596 ElementCount
5597 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5598   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5599     return ElementCount::getScalable(0);
5600 
5601   if (Hints->isScalableVectorizationDisabled()) {
5602     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5603                             "ScalableVectorizationDisabled", ORE, TheLoop);
5604     return ElementCount::getScalable(0);
5605   }
5606 
5607   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5608 
5609   auto MaxScalableVF = ElementCount::getScalable(
5610       std::numeric_limits<ElementCount::ScalarTy>::max());
5611 
5612   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5613   // FIXME: While for scalable vectors this is currently sufficient, this should
5614   // be replaced by a more detailed mechanism that filters out specific VFs,
5615   // instead of invalidating vectorization for a whole set of VFs based on the
5616   // MaxVF.
5617 
5618   // Disable scalable vectorization if the loop contains unsupported reductions.
5619   if (!canVectorizeReductions(MaxScalableVF)) {
5620     reportVectorizationInfo(
5621         "Scalable vectorization not supported for the reduction "
5622         "operations found in this loop.",
5623         "ScalableVFUnfeasible", ORE, TheLoop);
5624     return ElementCount::getScalable(0);
5625   }
5626 
5627   // Disable scalable vectorization if the loop contains any instructions
5628   // with element types not supported for scalable vectors.
5629   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5630         return !Ty->isVoidTy() &&
5631                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5632       })) {
5633     reportVectorizationInfo("Scalable vectorization is not supported "
5634                             "for all element types found in this loop.",
5635                             "ScalableVFUnfeasible", ORE, TheLoop);
5636     return ElementCount::getScalable(0);
5637   }
5638 
5639   if (Legal->isSafeForAnyVectorWidth())
5640     return MaxScalableVF;
5641 
5642   // Limit MaxScalableVF by the maximum safe dependence distance.
5643   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5644   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5645     unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange)
5646                              .getVScaleRangeArgs()
5647                              .second;
5648     if (VScaleMax > 0)
5649       MaxVScale = VScaleMax;
5650   }
5651   MaxScalableVF = ElementCount::getScalable(
5652       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5653   if (!MaxScalableVF)
5654     reportVectorizationInfo(
5655         "Max legal vector width too small, scalable vectorization "
5656         "unfeasible.",
5657         "ScalableVFUnfeasible", ORE, TheLoop);
5658 
5659   return MaxScalableVF;
5660 }
5661 
5662 FixedScalableVFPair
5663 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5664                                                  ElementCount UserVF) {
5665   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5666   unsigned SmallestType, WidestType;
5667   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5668 
5669   // Get the maximum safe dependence distance in bits computed by LAA.
5670   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5671   // the memory accesses that is most restrictive (involved in the smallest
5672   // dependence distance).
5673   unsigned MaxSafeElements =
5674       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5675 
5676   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5677   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5678 
5679   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5680                     << ".\n");
5681   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5682                     << ".\n");
5683 
5684   // First analyze the UserVF, fall back if the UserVF should be ignored.
5685   if (UserVF) {
5686     auto MaxSafeUserVF =
5687         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5688 
5689     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5690       // If `VF=vscale x N` is safe, then so is `VF=N`
5691       if (UserVF.isScalable())
5692         return FixedScalableVFPair(
5693             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5694       else
5695         return UserVF;
5696     }
5697 
5698     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5699 
5700     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5701     // is better to ignore the hint and let the compiler choose a suitable VF.
5702     if (!UserVF.isScalable()) {
5703       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5704                         << " is unsafe, clamping to max safe VF="
5705                         << MaxSafeFixedVF << ".\n");
5706       ORE->emit([&]() {
5707         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5708                                           TheLoop->getStartLoc(),
5709                                           TheLoop->getHeader())
5710                << "User-specified vectorization factor "
5711                << ore::NV("UserVectorizationFactor", UserVF)
5712                << " is unsafe, clamping to maximum safe vectorization factor "
5713                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5714       });
5715       return MaxSafeFixedVF;
5716     }
5717 
5718     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5719       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5720                         << " is ignored because scalable vectors are not "
5721                            "available.\n");
5722       ORE->emit([&]() {
5723         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5724                                           TheLoop->getStartLoc(),
5725                                           TheLoop->getHeader())
5726                << "User-specified vectorization factor "
5727                << ore::NV("UserVectorizationFactor", UserVF)
5728                << " is ignored because the target does not support scalable "
5729                   "vectors. The compiler will pick a more suitable value.";
5730       });
5731     } else {
5732       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5733                         << " is unsafe. Ignoring scalable UserVF.\n");
5734       ORE->emit([&]() {
5735         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5736                                           TheLoop->getStartLoc(),
5737                                           TheLoop->getHeader())
5738                << "User-specified vectorization factor "
5739                << ore::NV("UserVectorizationFactor", UserVF)
5740                << " is unsafe. Ignoring the hint to let the compiler pick a "
5741                   "more suitable value.";
5742       });
5743     }
5744   }
5745 
5746   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5747                     << " / " << WidestType << " bits.\n");
5748 
5749   FixedScalableVFPair Result(ElementCount::getFixed(1),
5750                              ElementCount::getScalable(0));
5751   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5752                                            WidestType, MaxSafeFixedVF))
5753     Result.FixedVF = MaxVF;
5754 
5755   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5756                                            WidestType, MaxSafeScalableVF))
5757     if (MaxVF.isScalable()) {
5758       Result.ScalableVF = MaxVF;
5759       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5760                         << "\n");
5761     }
5762 
5763   return Result;
5764 }
5765 
5766 FixedScalableVFPair
5767 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5768   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5769     // TODO: It may by useful to do since it's still likely to be dynamically
5770     // uniform if the target can skip.
5771     reportVectorizationFailure(
5772         "Not inserting runtime ptr check for divergent target",
5773         "runtime pointer checks needed. Not enabled for divergent target",
5774         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5775     return FixedScalableVFPair::getNone();
5776   }
5777 
5778   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5779   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5780   if (TC == 1) {
5781     reportVectorizationFailure("Single iteration (non) loop",
5782         "loop trip count is one, irrelevant for vectorization",
5783         "SingleIterationLoop", ORE, TheLoop);
5784     return FixedScalableVFPair::getNone();
5785   }
5786 
5787   switch (ScalarEpilogueStatus) {
5788   case CM_ScalarEpilogueAllowed:
5789     return computeFeasibleMaxVF(TC, UserVF);
5790   case CM_ScalarEpilogueNotAllowedUsePredicate:
5791     LLVM_FALLTHROUGH;
5792   case CM_ScalarEpilogueNotNeededUsePredicate:
5793     LLVM_DEBUG(
5794         dbgs() << "LV: vector predicate hint/switch found.\n"
5795                << "LV: Not allowing scalar epilogue, creating predicated "
5796                << "vector loop.\n");
5797     break;
5798   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5799     // fallthrough as a special case of OptForSize
5800   case CM_ScalarEpilogueNotAllowedOptSize:
5801     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5802       LLVM_DEBUG(
5803           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5804     else
5805       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5806                         << "count.\n");
5807 
5808     // Bail if runtime checks are required, which are not good when optimising
5809     // for size.
5810     if (runtimeChecksRequired())
5811       return FixedScalableVFPair::getNone();
5812 
5813     break;
5814   }
5815 
5816   // The only loops we can vectorize without a scalar epilogue, are loops with
5817   // a bottom-test and a single exiting block. We'd have to handle the fact
5818   // that not every instruction executes on the last iteration.  This will
5819   // require a lane mask which varies through the vector loop body.  (TODO)
5820   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5821     // If there was a tail-folding hint/switch, but we can't fold the tail by
5822     // masking, fallback to a vectorization with a scalar epilogue.
5823     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5824       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5825                            "scalar epilogue instead.\n");
5826       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5827       return computeFeasibleMaxVF(TC, UserVF);
5828     }
5829     return FixedScalableVFPair::getNone();
5830   }
5831 
5832   // Now try the tail folding
5833 
5834   // Invalidate interleave groups that require an epilogue if we can't mask
5835   // the interleave-group.
5836   if (!useMaskedInterleavedAccesses(TTI)) {
5837     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5838            "No decisions should have been taken at this point");
5839     // Note: There is no need to invalidate any cost modeling decisions here, as
5840     // non where taken so far.
5841     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5842   }
5843 
5844   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5845   // Avoid tail folding if the trip count is known to be a multiple of any VF
5846   // we chose.
5847   // FIXME: The condition below pessimises the case for fixed-width vectors,
5848   // when scalable VFs are also candidates for vectorization.
5849   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5850     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5851     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5852            "MaxFixedVF must be a power of 2");
5853     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5854                                    : MaxFixedVF.getFixedValue();
5855     ScalarEvolution *SE = PSE.getSE();
5856     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5857     const SCEV *ExitCount = SE->getAddExpr(
5858         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5859     const SCEV *Rem = SE->getURemExpr(
5860         SE->applyLoopGuards(ExitCount, TheLoop),
5861         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5862     if (Rem->isZero()) {
5863       // Accept MaxFixedVF if we do not have a tail.
5864       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5865       return MaxFactors;
5866     }
5867   }
5868 
5869   // For scalable vectors, don't use tail folding as this is currently not yet
5870   // supported. The code is likely to have ended up here if the tripcount is
5871   // low, in which case it makes sense not to use scalable vectors.
5872   if (MaxFactors.ScalableVF.isVector())
5873     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5874 
5875   // If we don't know the precise trip count, or if the trip count that we
5876   // found modulo the vectorization factor is not zero, try to fold the tail
5877   // by masking.
5878   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5879   if (Legal->prepareToFoldTailByMasking()) {
5880     FoldTailByMasking = true;
5881     return MaxFactors;
5882   }
5883 
5884   // If there was a tail-folding hint/switch, but we can't fold the tail by
5885   // masking, fallback to a vectorization with a scalar epilogue.
5886   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5887     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5888                          "scalar epilogue instead.\n");
5889     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5890     return MaxFactors;
5891   }
5892 
5893   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5894     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5895     return FixedScalableVFPair::getNone();
5896   }
5897 
5898   if (TC == 0) {
5899     reportVectorizationFailure(
5900         "Unable to calculate the loop count due to complex control flow",
5901         "unable to calculate the loop count due to complex control flow",
5902         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5903     return FixedScalableVFPair::getNone();
5904   }
5905 
5906   reportVectorizationFailure(
5907       "Cannot optimize for size and vectorize at the same time.",
5908       "cannot optimize for size and vectorize at the same time. "
5909       "Enable vectorization of this loop with '#pragma clang loop "
5910       "vectorize(enable)' when compiling with -Os/-Oz",
5911       "NoTailLoopWithOptForSize", ORE, TheLoop);
5912   return FixedScalableVFPair::getNone();
5913 }
5914 
5915 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5916     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5917     const ElementCount &MaxSafeVF) {
5918   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5919   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5920       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5921                            : TargetTransformInfo::RGK_FixedWidthVector);
5922 
5923   // Convenience function to return the minimum of two ElementCounts.
5924   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5925     assert((LHS.isScalable() == RHS.isScalable()) &&
5926            "Scalable flags must match");
5927     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5928   };
5929 
5930   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5931   // Note that both WidestRegister and WidestType may not be a powers of 2.
5932   auto MaxVectorElementCount = ElementCount::get(
5933       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5934       ComputeScalableMaxVF);
5935   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5936   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5937                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5938 
5939   if (!MaxVectorElementCount) {
5940     LLVM_DEBUG(dbgs() << "LV: The target has no "
5941                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5942                       << " vector registers.\n");
5943     return ElementCount::getFixed(1);
5944   }
5945 
5946   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5947   if (ConstTripCount &&
5948       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5949       isPowerOf2_32(ConstTripCount)) {
5950     // We need to clamp the VF to be the ConstTripCount. There is no point in
5951     // choosing a higher viable VF as done in the loop below. If
5952     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5953     // the TC is less than or equal to the known number of lanes.
5954     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5955                       << ConstTripCount << "\n");
5956     return TripCountEC;
5957   }
5958 
5959   ElementCount MaxVF = MaxVectorElementCount;
5960   if (TTI.shouldMaximizeVectorBandwidth() ||
5961       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5962     auto MaxVectorElementCountMaxBW = ElementCount::get(
5963         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5964         ComputeScalableMaxVF);
5965     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5966 
5967     // Collect all viable vectorization factors larger than the default MaxVF
5968     // (i.e. MaxVectorElementCount).
5969     SmallVector<ElementCount, 8> VFs;
5970     for (ElementCount VS = MaxVectorElementCount * 2;
5971          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5972       VFs.push_back(VS);
5973 
5974     // For each VF calculate its register usage.
5975     auto RUs = calculateRegisterUsage(VFs);
5976 
5977     // Select the largest VF which doesn't require more registers than existing
5978     // ones.
5979     for (int i = RUs.size() - 1; i >= 0; --i) {
5980       bool Selected = true;
5981       for (auto &pair : RUs[i].MaxLocalUsers) {
5982         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5983         if (pair.second > TargetNumRegisters)
5984           Selected = false;
5985       }
5986       if (Selected) {
5987         MaxVF = VFs[i];
5988         break;
5989       }
5990     }
5991     if (ElementCount MinVF =
5992             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5993       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5994         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5995                           << ") with target's minimum: " << MinVF << '\n');
5996         MaxVF = MinVF;
5997       }
5998     }
5999   }
6000   return MaxVF;
6001 }
6002 
6003 bool LoopVectorizationCostModel::isMoreProfitable(
6004     const VectorizationFactor &A, const VectorizationFactor &B) const {
6005   InstructionCost CostA = A.Cost;
6006   InstructionCost CostB = B.Cost;
6007 
6008   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
6009 
6010   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
6011       MaxTripCount) {
6012     // If we are folding the tail and the trip count is a known (possibly small)
6013     // constant, the trip count will be rounded up to an integer number of
6014     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
6015     // which we compare directly. When not folding the tail, the total cost will
6016     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
6017     // approximated with the per-lane cost below instead of using the tripcount
6018     // as here.
6019     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
6020     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
6021     return RTCostA < RTCostB;
6022   }
6023 
6024   // When set to preferred, for now assume vscale may be larger than 1, so
6025   // that scalable vectorization is slightly favorable over fixed-width
6026   // vectorization.
6027   if (Hints->isScalableVectorizationPreferred())
6028     if (A.Width.isScalable() && !B.Width.isScalable())
6029       return (CostA * B.Width.getKnownMinValue()) <=
6030              (CostB * A.Width.getKnownMinValue());
6031 
6032   // To avoid the need for FP division:
6033   //      (CostA / A.Width) < (CostB / B.Width)
6034   // <=>  (CostA * B.Width) < (CostB * A.Width)
6035   return (CostA * B.Width.getKnownMinValue()) <
6036          (CostB * A.Width.getKnownMinValue());
6037 }
6038 
6039 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
6040     const ElementCountSet &VFCandidates) {
6041   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
6042   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
6043   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
6044   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
6045          "Expected Scalar VF to be a candidate");
6046 
6047   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
6048   VectorizationFactor ChosenFactor = ScalarCost;
6049 
6050   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6051   if (ForceVectorization && VFCandidates.size() > 1) {
6052     // Ignore scalar width, because the user explicitly wants vectorization.
6053     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6054     // evaluation.
6055     ChosenFactor.Cost = InstructionCost::getMax();
6056   }
6057 
6058   SmallVector<InstructionVFPair> InvalidCosts;
6059   for (const auto &i : VFCandidates) {
6060     // The cost for scalar VF=1 is already calculated, so ignore it.
6061     if (i.isScalar())
6062       continue;
6063 
6064     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6065     VectorizationFactor Candidate(i, C.first);
6066     LLVM_DEBUG(
6067         dbgs() << "LV: Vector loop of width " << i << " costs: "
6068                << (Candidate.Cost / Candidate.Width.getKnownMinValue())
6069                << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "")
6070                << ".\n");
6071 
6072     if (!C.second && !ForceVectorization) {
6073       LLVM_DEBUG(
6074           dbgs() << "LV: Not considering vector loop of width " << i
6075                  << " because it will not generate any vector instructions.\n");
6076       continue;
6077     }
6078 
6079     // If profitable add it to ProfitableVF list.
6080     if (isMoreProfitable(Candidate, ScalarCost))
6081       ProfitableVFs.push_back(Candidate);
6082 
6083     if (isMoreProfitable(Candidate, ChosenFactor))
6084       ChosenFactor = Candidate;
6085   }
6086 
6087   // Emit a report of VFs with invalid costs in the loop.
6088   if (!InvalidCosts.empty()) {
6089     // Group the remarks per instruction, keeping the instruction order from
6090     // InvalidCosts.
6091     std::map<Instruction *, unsigned> Numbering;
6092     unsigned I = 0;
6093     for (auto &Pair : InvalidCosts)
6094       if (!Numbering.count(Pair.first))
6095         Numbering[Pair.first] = I++;
6096 
6097     // Sort the list, first on instruction(number) then on VF.
6098     llvm::sort(InvalidCosts,
6099                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6100                  if (Numbering[A.first] != Numbering[B.first])
6101                    return Numbering[A.first] < Numbering[B.first];
6102                  ElementCountComparator ECC;
6103                  return ECC(A.second, B.second);
6104                });
6105 
6106     // For a list of ordered instruction-vf pairs:
6107     //   [(load, vf1), (load, vf2), (store, vf1)]
6108     // Group the instructions together to emit separate remarks for:
6109     //   load  (vf1, vf2)
6110     //   store (vf1)
6111     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6112     auto Subset = ArrayRef<InstructionVFPair>();
6113     do {
6114       if (Subset.empty())
6115         Subset = Tail.take_front(1);
6116 
6117       Instruction *I = Subset.front().first;
6118 
6119       // If the next instruction is different, or if there are no other pairs,
6120       // emit a remark for the collated subset. e.g.
6121       //   [(load, vf1), (load, vf2))]
6122       // to emit:
6123       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6124       if (Subset == Tail || Tail[Subset.size()].first != I) {
6125         std::string OutString;
6126         raw_string_ostream OS(OutString);
6127         assert(!Subset.empty() && "Unexpected empty range");
6128         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6129         for (auto &Pair : Subset)
6130           OS << (Pair.second == Subset.front().second ? "" : ", ")
6131              << Pair.second;
6132         OS << "):";
6133         if (auto *CI = dyn_cast<CallInst>(I))
6134           OS << " call to " << CI->getCalledFunction()->getName();
6135         else
6136           OS << " " << I->getOpcodeName();
6137         OS.flush();
6138         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6139         Tail = Tail.drop_front(Subset.size());
6140         Subset = {};
6141       } else
6142         // Grow the subset by one element
6143         Subset = Tail.take_front(Subset.size() + 1);
6144     } while (!Tail.empty());
6145   }
6146 
6147   if (!EnableCondStoresVectorization && NumPredStores) {
6148     reportVectorizationFailure("There are conditional stores.",
6149         "store that is conditionally executed prevents vectorization",
6150         "ConditionalStore", ORE, TheLoop);
6151     ChosenFactor = ScalarCost;
6152   }
6153 
6154   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6155                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6156              << "LV: Vectorization seems to be not beneficial, "
6157              << "but was forced by a user.\n");
6158   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6159   return ChosenFactor;
6160 }
6161 
6162 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6163     const Loop &L, ElementCount VF) const {
6164   // Cross iteration phis such as reductions need special handling and are
6165   // currently unsupported.
6166   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6167         return Legal->isFirstOrderRecurrence(&Phi) ||
6168                Legal->isReductionVariable(&Phi);
6169       }))
6170     return false;
6171 
6172   // Phis with uses outside of the loop require special handling and are
6173   // currently unsupported.
6174   for (auto &Entry : Legal->getInductionVars()) {
6175     // Look for uses of the value of the induction at the last iteration.
6176     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6177     for (User *U : PostInc->users())
6178       if (!L.contains(cast<Instruction>(U)))
6179         return false;
6180     // Look for uses of penultimate value of the induction.
6181     for (User *U : Entry.first->users())
6182       if (!L.contains(cast<Instruction>(U)))
6183         return false;
6184   }
6185 
6186   // Induction variables that are widened require special handling that is
6187   // currently not supported.
6188   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6189         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6190                  this->isProfitableToScalarize(Entry.first, VF));
6191       }))
6192     return false;
6193 
6194   // Epilogue vectorization code has not been auditted to ensure it handles
6195   // non-latch exits properly.  It may be fine, but it needs auditted and
6196   // tested.
6197   if (L.getExitingBlock() != L.getLoopLatch())
6198     return false;
6199 
6200   return true;
6201 }
6202 
6203 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6204     const ElementCount VF) const {
6205   // FIXME: We need a much better cost-model to take different parameters such
6206   // as register pressure, code size increase and cost of extra branches into
6207   // account. For now we apply a very crude heuristic and only consider loops
6208   // with vectorization factors larger than a certain value.
6209   // We also consider epilogue vectorization unprofitable for targets that don't
6210   // consider interleaving beneficial (eg. MVE).
6211   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6212     return false;
6213   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6214     return true;
6215   return false;
6216 }
6217 
6218 VectorizationFactor
6219 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6220     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6221   VectorizationFactor Result = VectorizationFactor::Disabled();
6222   if (!EnableEpilogueVectorization) {
6223     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6224     return Result;
6225   }
6226 
6227   if (!isScalarEpilogueAllowed()) {
6228     LLVM_DEBUG(
6229         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6230                   "allowed.\n";);
6231     return Result;
6232   }
6233 
6234   // FIXME: This can be fixed for scalable vectors later, because at this stage
6235   // the LoopVectorizer will only consider vectorizing a loop with scalable
6236   // vectors when the loop has a hint to enable vectorization for a given VF.
6237   if (MainLoopVF.isScalable()) {
6238     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6239                          "yet supported.\n");
6240     return Result;
6241   }
6242 
6243   // Not really a cost consideration, but check for unsupported cases here to
6244   // simplify the logic.
6245   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6246     LLVM_DEBUG(
6247         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6248                   "not a supported candidate.\n";);
6249     return Result;
6250   }
6251 
6252   if (EpilogueVectorizationForceVF > 1) {
6253     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6254     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
6255     if (LVP.hasPlanWithVFs({MainLoopVF, ForcedEC}))
6256       return {ForcedEC, 0};
6257     else {
6258       LLVM_DEBUG(
6259           dbgs()
6260               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6261       return Result;
6262     }
6263   }
6264 
6265   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6266       TheLoop->getHeader()->getParent()->hasMinSize()) {
6267     LLVM_DEBUG(
6268         dbgs()
6269             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6270     return Result;
6271   }
6272 
6273   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6274     return Result;
6275 
6276   for (auto &NextVF : ProfitableVFs)
6277     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6278         (Result.Width.getFixedValue() == 1 ||
6279          isMoreProfitable(NextVF, Result)) &&
6280         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6281       Result = NextVF;
6282 
6283   if (Result != VectorizationFactor::Disabled())
6284     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6285                       << Result.Width.getFixedValue() << "\n";);
6286   return Result;
6287 }
6288 
6289 std::pair<unsigned, unsigned>
6290 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6291   unsigned MinWidth = -1U;
6292   unsigned MaxWidth = 8;
6293   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6294   for (Type *T : ElementTypesInLoop) {
6295     MinWidth = std::min<unsigned>(
6296         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6297     MaxWidth = std::max<unsigned>(
6298         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6299   }
6300   return {MinWidth, MaxWidth};
6301 }
6302 
6303 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6304   ElementTypesInLoop.clear();
6305   // For each block.
6306   for (BasicBlock *BB : TheLoop->blocks()) {
6307     // For each instruction in the loop.
6308     for (Instruction &I : BB->instructionsWithoutDebug()) {
6309       Type *T = I.getType();
6310 
6311       // Skip ignored values.
6312       if (ValuesToIgnore.count(&I))
6313         continue;
6314 
6315       // Only examine Loads, Stores and PHINodes.
6316       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6317         continue;
6318 
6319       // Examine PHI nodes that are reduction variables. Update the type to
6320       // account for the recurrence type.
6321       if (auto *PN = dyn_cast<PHINode>(&I)) {
6322         if (!Legal->isReductionVariable(PN))
6323           continue;
6324         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6325         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6326             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6327                                       RdxDesc.getRecurrenceType(),
6328                                       TargetTransformInfo::ReductionFlags()))
6329           continue;
6330         T = RdxDesc.getRecurrenceType();
6331       }
6332 
6333       // Examine the stored values.
6334       if (auto *ST = dyn_cast<StoreInst>(&I))
6335         T = ST->getValueOperand()->getType();
6336 
6337       // Ignore loaded pointer types and stored pointer types that are not
6338       // vectorizable.
6339       //
6340       // FIXME: The check here attempts to predict whether a load or store will
6341       //        be vectorized. We only know this for certain after a VF has
6342       //        been selected. Here, we assume that if an access can be
6343       //        vectorized, it will be. We should also look at extending this
6344       //        optimization to non-pointer types.
6345       //
6346       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6347           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6348         continue;
6349 
6350       ElementTypesInLoop.insert(T);
6351     }
6352   }
6353 }
6354 
6355 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6356                                                            unsigned LoopCost) {
6357   // -- The interleave heuristics --
6358   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6359   // There are many micro-architectural considerations that we can't predict
6360   // at this level. For example, frontend pressure (on decode or fetch) due to
6361   // code size, or the number and capabilities of the execution ports.
6362   //
6363   // We use the following heuristics to select the interleave count:
6364   // 1. If the code has reductions, then we interleave to break the cross
6365   // iteration dependency.
6366   // 2. If the loop is really small, then we interleave to reduce the loop
6367   // overhead.
6368   // 3. We don't interleave if we think that we will spill registers to memory
6369   // due to the increased register pressure.
6370 
6371   if (!isScalarEpilogueAllowed())
6372     return 1;
6373 
6374   // We used the distance for the interleave count.
6375   if (Legal->getMaxSafeDepDistBytes() != -1U)
6376     return 1;
6377 
6378   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6379   const bool HasReductions = !Legal->getReductionVars().empty();
6380   // Do not interleave loops with a relatively small known or estimated trip
6381   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6382   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6383   // because with the above conditions interleaving can expose ILP and break
6384   // cross iteration dependences for reductions.
6385   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6386       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6387     return 1;
6388 
6389   RegisterUsage R = calculateRegisterUsage({VF})[0];
6390   // We divide by these constants so assume that we have at least one
6391   // instruction that uses at least one register.
6392   for (auto& pair : R.MaxLocalUsers) {
6393     pair.second = std::max(pair.second, 1U);
6394   }
6395 
6396   // We calculate the interleave count using the following formula.
6397   // Subtract the number of loop invariants from the number of available
6398   // registers. These registers are used by all of the interleaved instances.
6399   // Next, divide the remaining registers by the number of registers that is
6400   // required by the loop, in order to estimate how many parallel instances
6401   // fit without causing spills. All of this is rounded down if necessary to be
6402   // a power of two. We want power of two interleave count to simplify any
6403   // addressing operations or alignment considerations.
6404   // We also want power of two interleave counts to ensure that the induction
6405   // variable of the vector loop wraps to zero, when tail is folded by masking;
6406   // this currently happens when OptForSize, in which case IC is set to 1 above.
6407   unsigned IC = UINT_MAX;
6408 
6409   for (auto& pair : R.MaxLocalUsers) {
6410     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6411     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6412                       << " registers of "
6413                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6414     if (VF.isScalar()) {
6415       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6416         TargetNumRegisters = ForceTargetNumScalarRegs;
6417     } else {
6418       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6419         TargetNumRegisters = ForceTargetNumVectorRegs;
6420     }
6421     unsigned MaxLocalUsers = pair.second;
6422     unsigned LoopInvariantRegs = 0;
6423     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6424       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6425 
6426     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6427     // Don't count the induction variable as interleaved.
6428     if (EnableIndVarRegisterHeur) {
6429       TmpIC =
6430           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6431                         std::max(1U, (MaxLocalUsers - 1)));
6432     }
6433 
6434     IC = std::min(IC, TmpIC);
6435   }
6436 
6437   // Clamp the interleave ranges to reasonable counts.
6438   unsigned MaxInterleaveCount =
6439       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6440 
6441   // Check if the user has overridden the max.
6442   if (VF.isScalar()) {
6443     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6444       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6445   } else {
6446     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6447       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6448   }
6449 
6450   // If trip count is known or estimated compile time constant, limit the
6451   // interleave count to be less than the trip count divided by VF, provided it
6452   // is at least 1.
6453   //
6454   // For scalable vectors we can't know if interleaving is beneficial. It may
6455   // not be beneficial for small loops if none of the lanes in the second vector
6456   // iterations is enabled. However, for larger loops, there is likely to be a
6457   // similar benefit as for fixed-width vectors. For now, we choose to leave
6458   // the InterleaveCount as if vscale is '1', although if some information about
6459   // the vector is known (e.g. min vector size), we can make a better decision.
6460   if (BestKnownTC) {
6461     MaxInterleaveCount =
6462         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6463     // Make sure MaxInterleaveCount is greater than 0.
6464     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6465   }
6466 
6467   assert(MaxInterleaveCount > 0 &&
6468          "Maximum interleave count must be greater than 0");
6469 
6470   // Clamp the calculated IC to be between the 1 and the max interleave count
6471   // that the target and trip count allows.
6472   if (IC > MaxInterleaveCount)
6473     IC = MaxInterleaveCount;
6474   else
6475     // Make sure IC is greater than 0.
6476     IC = std::max(1u, IC);
6477 
6478   assert(IC > 0 && "Interleave count must be greater than 0.");
6479 
6480   // If we did not calculate the cost for VF (because the user selected the VF)
6481   // then we calculate the cost of VF here.
6482   if (LoopCost == 0) {
6483     InstructionCost C = expectedCost(VF).first;
6484     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6485     LoopCost = *C.getValue();
6486   }
6487 
6488   assert(LoopCost && "Non-zero loop cost expected");
6489 
6490   // Interleave if we vectorized this loop and there is a reduction that could
6491   // benefit from interleaving.
6492   if (VF.isVector() && HasReductions) {
6493     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6494     return IC;
6495   }
6496 
6497   // Note that if we've already vectorized the loop we will have done the
6498   // runtime check and so interleaving won't require further checks.
6499   bool InterleavingRequiresRuntimePointerCheck =
6500       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6501 
6502   // We want to interleave small loops in order to reduce the loop overhead and
6503   // potentially expose ILP opportunities.
6504   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6505                     << "LV: IC is " << IC << '\n'
6506                     << "LV: VF is " << VF << '\n');
6507   const bool AggressivelyInterleaveReductions =
6508       TTI.enableAggressiveInterleaving(HasReductions);
6509   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6510     // We assume that the cost overhead is 1 and we use the cost model
6511     // to estimate the cost of the loop and interleave until the cost of the
6512     // loop overhead is about 5% of the cost of the loop.
6513     unsigned SmallIC =
6514         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6515 
6516     // Interleave until store/load ports (estimated by max interleave count) are
6517     // saturated.
6518     unsigned NumStores = Legal->getNumStores();
6519     unsigned NumLoads = Legal->getNumLoads();
6520     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6521     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6522 
6523     // There is little point in interleaving for reductions containing selects
6524     // and compares when VF=1 since it may just create more overhead than it's
6525     // worth for loops with small trip counts. This is because we still have to
6526     // do the final reduction after the loop.
6527     bool HasSelectCmpReductions =
6528         HasReductions &&
6529         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6530           const RecurrenceDescriptor &RdxDesc = Reduction.second;
6531           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
6532               RdxDesc.getRecurrenceKind());
6533         });
6534     if (HasSelectCmpReductions) {
6535       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
6536       return 1;
6537     }
6538 
6539     // If we have a scalar reduction (vector reductions are already dealt with
6540     // by this point), we can increase the critical path length if the loop
6541     // we're interleaving is inside another loop. For tree-wise reductions
6542     // set the limit to 2, and for ordered reductions it's best to disable
6543     // interleaving entirely.
6544     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6545       bool HasOrderedReductions =
6546           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6547             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6548             return RdxDesc.isOrdered();
6549           });
6550       if (HasOrderedReductions) {
6551         LLVM_DEBUG(
6552             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6553         return 1;
6554       }
6555 
6556       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6557       SmallIC = std::min(SmallIC, F);
6558       StoresIC = std::min(StoresIC, F);
6559       LoadsIC = std::min(LoadsIC, F);
6560     }
6561 
6562     if (EnableLoadStoreRuntimeInterleave &&
6563         std::max(StoresIC, LoadsIC) > SmallIC) {
6564       LLVM_DEBUG(
6565           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6566       return std::max(StoresIC, LoadsIC);
6567     }
6568 
6569     // If there are scalar reductions and TTI has enabled aggressive
6570     // interleaving for reductions, we will interleave to expose ILP.
6571     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6572         AggressivelyInterleaveReductions) {
6573       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6574       // Interleave no less than SmallIC but not as aggressive as the normal IC
6575       // to satisfy the rare situation when resources are too limited.
6576       return std::max(IC / 2, SmallIC);
6577     } else {
6578       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6579       return SmallIC;
6580     }
6581   }
6582 
6583   // Interleave if this is a large loop (small loops are already dealt with by
6584   // this point) that could benefit from interleaving.
6585   if (AggressivelyInterleaveReductions) {
6586     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6587     return IC;
6588   }
6589 
6590   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6591   return 1;
6592 }
6593 
6594 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6595 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6596   // This function calculates the register usage by measuring the highest number
6597   // of values that are alive at a single location. Obviously, this is a very
6598   // rough estimation. We scan the loop in a topological order in order and
6599   // assign a number to each instruction. We use RPO to ensure that defs are
6600   // met before their users. We assume that each instruction that has in-loop
6601   // users starts an interval. We record every time that an in-loop value is
6602   // used, so we have a list of the first and last occurrences of each
6603   // instruction. Next, we transpose this data structure into a multi map that
6604   // holds the list of intervals that *end* at a specific location. This multi
6605   // map allows us to perform a linear search. We scan the instructions linearly
6606   // and record each time that a new interval starts, by placing it in a set.
6607   // If we find this value in the multi-map then we remove it from the set.
6608   // The max register usage is the maximum size of the set.
6609   // We also search for instructions that are defined outside the loop, but are
6610   // used inside the loop. We need this number separately from the max-interval
6611   // usage number because when we unroll, loop-invariant values do not take
6612   // more register.
6613   LoopBlocksDFS DFS(TheLoop);
6614   DFS.perform(LI);
6615 
6616   RegisterUsage RU;
6617 
6618   // Each 'key' in the map opens a new interval. The values
6619   // of the map are the index of the 'last seen' usage of the
6620   // instruction that is the key.
6621   using IntervalMap = DenseMap<Instruction *, unsigned>;
6622 
6623   // Maps instruction to its index.
6624   SmallVector<Instruction *, 64> IdxToInstr;
6625   // Marks the end of each interval.
6626   IntervalMap EndPoint;
6627   // Saves the list of instruction indices that are used in the loop.
6628   SmallPtrSet<Instruction *, 8> Ends;
6629   // Saves the list of values that are used in the loop but are
6630   // defined outside the loop, such as arguments and constants.
6631   SmallPtrSet<Value *, 8> LoopInvariants;
6632 
6633   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6634     for (Instruction &I : BB->instructionsWithoutDebug()) {
6635       IdxToInstr.push_back(&I);
6636 
6637       // Save the end location of each USE.
6638       for (Value *U : I.operands()) {
6639         auto *Instr = dyn_cast<Instruction>(U);
6640 
6641         // Ignore non-instruction values such as arguments, constants, etc.
6642         if (!Instr)
6643           continue;
6644 
6645         // If this instruction is outside the loop then record it and continue.
6646         if (!TheLoop->contains(Instr)) {
6647           LoopInvariants.insert(Instr);
6648           continue;
6649         }
6650 
6651         // Overwrite previous end points.
6652         EndPoint[Instr] = IdxToInstr.size();
6653         Ends.insert(Instr);
6654       }
6655     }
6656   }
6657 
6658   // Saves the list of intervals that end with the index in 'key'.
6659   using InstrList = SmallVector<Instruction *, 2>;
6660   DenseMap<unsigned, InstrList> TransposeEnds;
6661 
6662   // Transpose the EndPoints to a list of values that end at each index.
6663   for (auto &Interval : EndPoint)
6664     TransposeEnds[Interval.second].push_back(Interval.first);
6665 
6666   SmallPtrSet<Instruction *, 8> OpenIntervals;
6667   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6668   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6669 
6670   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6671 
6672   // A lambda that gets the register usage for the given type and VF.
6673   const auto &TTICapture = TTI;
6674   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6675     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6676       return 0;
6677     InstructionCost::CostType RegUsage =
6678         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6679     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6680            "Nonsensical values for register usage.");
6681     return RegUsage;
6682   };
6683 
6684   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6685     Instruction *I = IdxToInstr[i];
6686 
6687     // Remove all of the instructions that end at this location.
6688     InstrList &List = TransposeEnds[i];
6689     for (Instruction *ToRemove : List)
6690       OpenIntervals.erase(ToRemove);
6691 
6692     // Ignore instructions that are never used within the loop.
6693     if (!Ends.count(I))
6694       continue;
6695 
6696     // Skip ignored values.
6697     if (ValuesToIgnore.count(I))
6698       continue;
6699 
6700     // For each VF find the maximum usage of registers.
6701     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6702       // Count the number of live intervals.
6703       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6704 
6705       if (VFs[j].isScalar()) {
6706         for (auto Inst : OpenIntervals) {
6707           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6708           if (RegUsage.find(ClassID) == RegUsage.end())
6709             RegUsage[ClassID] = 1;
6710           else
6711             RegUsage[ClassID] += 1;
6712         }
6713       } else {
6714         collectUniformsAndScalars(VFs[j]);
6715         for (auto Inst : OpenIntervals) {
6716           // Skip ignored values for VF > 1.
6717           if (VecValuesToIgnore.count(Inst))
6718             continue;
6719           if (isScalarAfterVectorization(Inst, VFs[j])) {
6720             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6721             if (RegUsage.find(ClassID) == RegUsage.end())
6722               RegUsage[ClassID] = 1;
6723             else
6724               RegUsage[ClassID] += 1;
6725           } else {
6726             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6727             if (RegUsage.find(ClassID) == RegUsage.end())
6728               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6729             else
6730               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6731           }
6732         }
6733       }
6734 
6735       for (auto& pair : RegUsage) {
6736         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6737           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6738         else
6739           MaxUsages[j][pair.first] = pair.second;
6740       }
6741     }
6742 
6743     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6744                       << OpenIntervals.size() << '\n');
6745 
6746     // Add the current instruction to the list of open intervals.
6747     OpenIntervals.insert(I);
6748   }
6749 
6750   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6751     SmallMapVector<unsigned, unsigned, 4> Invariant;
6752 
6753     for (auto Inst : LoopInvariants) {
6754       unsigned Usage =
6755           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6756       unsigned ClassID =
6757           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6758       if (Invariant.find(ClassID) == Invariant.end())
6759         Invariant[ClassID] = Usage;
6760       else
6761         Invariant[ClassID] += Usage;
6762     }
6763 
6764     LLVM_DEBUG({
6765       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6766       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6767              << " item\n";
6768       for (const auto &pair : MaxUsages[i]) {
6769         dbgs() << "LV(REG): RegisterClass: "
6770                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6771                << " registers\n";
6772       }
6773       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6774              << " item\n";
6775       for (const auto &pair : Invariant) {
6776         dbgs() << "LV(REG): RegisterClass: "
6777                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6778                << " registers\n";
6779       }
6780     });
6781 
6782     RU.LoopInvariantRegs = Invariant;
6783     RU.MaxLocalUsers = MaxUsages[i];
6784     RUs[i] = RU;
6785   }
6786 
6787   return RUs;
6788 }
6789 
6790 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6791   // TODO: Cost model for emulated masked load/store is completely
6792   // broken. This hack guides the cost model to use an artificially
6793   // high enough value to practically disable vectorization with such
6794   // operations, except where previously deployed legality hack allowed
6795   // using very low cost values. This is to avoid regressions coming simply
6796   // from moving "masked load/store" check from legality to cost model.
6797   // Masked Load/Gather emulation was previously never allowed.
6798   // Limited number of Masked Store/Scatter emulation was allowed.
6799   assert(isPredicatedInst(I) &&
6800          "Expecting a scalar emulated instruction");
6801   return isa<LoadInst>(I) ||
6802          (isa<StoreInst>(I) &&
6803           NumPredStores > NumberOfStoresToPredicate);
6804 }
6805 
6806 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6807   // If we aren't vectorizing the loop, or if we've already collected the
6808   // instructions to scalarize, there's nothing to do. Collection may already
6809   // have occurred if we have a user-selected VF and are now computing the
6810   // expected cost for interleaving.
6811   if (VF.isScalar() || VF.isZero() ||
6812       InstsToScalarize.find(VF) != InstsToScalarize.end())
6813     return;
6814 
6815   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6816   // not profitable to scalarize any instructions, the presence of VF in the
6817   // map will indicate that we've analyzed it already.
6818   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6819 
6820   // Find all the instructions that are scalar with predication in the loop and
6821   // determine if it would be better to not if-convert the blocks they are in.
6822   // If so, we also record the instructions to scalarize.
6823   for (BasicBlock *BB : TheLoop->blocks()) {
6824     if (!blockNeedsPredication(BB))
6825       continue;
6826     for (Instruction &I : *BB)
6827       if (isScalarWithPredication(&I)) {
6828         ScalarCostsTy ScalarCosts;
6829         // Do not apply discount if scalable, because that would lead to
6830         // invalid scalarization costs.
6831         // Do not apply discount logic if hacked cost is needed
6832         // for emulated masked memrefs.
6833         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6834             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6835           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6836         // Remember that BB will remain after vectorization.
6837         PredicatedBBsAfterVectorization.insert(BB);
6838       }
6839   }
6840 }
6841 
6842 int LoopVectorizationCostModel::computePredInstDiscount(
6843     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6844   assert(!isUniformAfterVectorization(PredInst, VF) &&
6845          "Instruction marked uniform-after-vectorization will be predicated");
6846 
6847   // Initialize the discount to zero, meaning that the scalar version and the
6848   // vector version cost the same.
6849   InstructionCost Discount = 0;
6850 
6851   // Holds instructions to analyze. The instructions we visit are mapped in
6852   // ScalarCosts. Those instructions are the ones that would be scalarized if
6853   // we find that the scalar version costs less.
6854   SmallVector<Instruction *, 8> Worklist;
6855 
6856   // Returns true if the given instruction can be scalarized.
6857   auto canBeScalarized = [&](Instruction *I) -> bool {
6858     // We only attempt to scalarize instructions forming a single-use chain
6859     // from the original predicated block that would otherwise be vectorized.
6860     // Although not strictly necessary, we give up on instructions we know will
6861     // already be scalar to avoid traversing chains that are unlikely to be
6862     // beneficial.
6863     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6864         isScalarAfterVectorization(I, VF))
6865       return false;
6866 
6867     // If the instruction is scalar with predication, it will be analyzed
6868     // separately. We ignore it within the context of PredInst.
6869     if (isScalarWithPredication(I))
6870       return false;
6871 
6872     // If any of the instruction's operands are uniform after vectorization,
6873     // the instruction cannot be scalarized. This prevents, for example, a
6874     // masked load from being scalarized.
6875     //
6876     // We assume we will only emit a value for lane zero of an instruction
6877     // marked uniform after vectorization, rather than VF identical values.
6878     // Thus, if we scalarize an instruction that uses a uniform, we would
6879     // create uses of values corresponding to the lanes we aren't emitting code
6880     // for. This behavior can be changed by allowing getScalarValue to clone
6881     // the lane zero values for uniforms rather than asserting.
6882     for (Use &U : I->operands())
6883       if (auto *J = dyn_cast<Instruction>(U.get()))
6884         if (isUniformAfterVectorization(J, VF))
6885           return false;
6886 
6887     // Otherwise, we can scalarize the instruction.
6888     return true;
6889   };
6890 
6891   // Compute the expected cost discount from scalarizing the entire expression
6892   // feeding the predicated instruction. We currently only consider expressions
6893   // that are single-use instruction chains.
6894   Worklist.push_back(PredInst);
6895   while (!Worklist.empty()) {
6896     Instruction *I = Worklist.pop_back_val();
6897 
6898     // If we've already analyzed the instruction, there's nothing to do.
6899     if (ScalarCosts.find(I) != ScalarCosts.end())
6900       continue;
6901 
6902     // Compute the cost of the vector instruction. Note that this cost already
6903     // includes the scalarization overhead of the predicated instruction.
6904     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6905 
6906     // Compute the cost of the scalarized instruction. This cost is the cost of
6907     // the instruction as if it wasn't if-converted and instead remained in the
6908     // predicated block. We will scale this cost by block probability after
6909     // computing the scalarization overhead.
6910     InstructionCost ScalarCost =
6911         VF.getFixedValue() *
6912         getInstructionCost(I, ElementCount::getFixed(1)).first;
6913 
6914     // Compute the scalarization overhead of needed insertelement instructions
6915     // and phi nodes.
6916     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6917       ScalarCost += TTI.getScalarizationOverhead(
6918           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6919           APInt::getAllOnes(VF.getFixedValue()), true, false);
6920       ScalarCost +=
6921           VF.getFixedValue() *
6922           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6923     }
6924 
6925     // Compute the scalarization overhead of needed extractelement
6926     // instructions. For each of the instruction's operands, if the operand can
6927     // be scalarized, add it to the worklist; otherwise, account for the
6928     // overhead.
6929     for (Use &U : I->operands())
6930       if (auto *J = dyn_cast<Instruction>(U.get())) {
6931         assert(VectorType::isValidElementType(J->getType()) &&
6932                "Instruction has non-scalar type");
6933         if (canBeScalarized(J))
6934           Worklist.push_back(J);
6935         else if (needsExtract(J, VF)) {
6936           ScalarCost += TTI.getScalarizationOverhead(
6937               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6938               APInt::getAllOnes(VF.getFixedValue()), false, true);
6939         }
6940       }
6941 
6942     // Scale the total scalar cost by block probability.
6943     ScalarCost /= getReciprocalPredBlockProb();
6944 
6945     // Compute the discount. A non-negative discount means the vector version
6946     // of the instruction costs more, and scalarizing would be beneficial.
6947     Discount += VectorCost - ScalarCost;
6948     ScalarCosts[I] = ScalarCost;
6949   }
6950 
6951   return *Discount.getValue();
6952 }
6953 
6954 LoopVectorizationCostModel::VectorizationCostTy
6955 LoopVectorizationCostModel::expectedCost(
6956     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6957   VectorizationCostTy Cost;
6958 
6959   // For each block.
6960   for (BasicBlock *BB : TheLoop->blocks()) {
6961     VectorizationCostTy BlockCost;
6962 
6963     // For each instruction in the old loop.
6964     for (Instruction &I : BB->instructionsWithoutDebug()) {
6965       // Skip ignored values.
6966       if (ValuesToIgnore.count(&I) ||
6967           (VF.isVector() && VecValuesToIgnore.count(&I)))
6968         continue;
6969 
6970       VectorizationCostTy C = getInstructionCost(&I, VF);
6971 
6972       // Check if we should override the cost.
6973       if (C.first.isValid() &&
6974           ForceTargetInstructionCost.getNumOccurrences() > 0)
6975         C.first = InstructionCost(ForceTargetInstructionCost);
6976 
6977       // Keep a list of instructions with invalid costs.
6978       if (Invalid && !C.first.isValid())
6979         Invalid->emplace_back(&I, VF);
6980 
6981       BlockCost.first += C.first;
6982       BlockCost.second |= C.second;
6983       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6984                         << " for VF " << VF << " For instruction: " << I
6985                         << '\n');
6986     }
6987 
6988     // If we are vectorizing a predicated block, it will have been
6989     // if-converted. This means that the block's instructions (aside from
6990     // stores and instructions that may divide by zero) will now be
6991     // unconditionally executed. For the scalar case, we may not always execute
6992     // the predicated block, if it is an if-else block. Thus, scale the block's
6993     // cost by the probability of executing it. blockNeedsPredication from
6994     // Legal is used so as to not include all blocks in tail folded loops.
6995     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6996       BlockCost.first /= getReciprocalPredBlockProb();
6997 
6998     Cost.first += BlockCost.first;
6999     Cost.second |= BlockCost.second;
7000   }
7001 
7002   return Cost;
7003 }
7004 
7005 /// Gets Address Access SCEV after verifying that the access pattern
7006 /// is loop invariant except the induction variable dependence.
7007 ///
7008 /// This SCEV can be sent to the Target in order to estimate the address
7009 /// calculation cost.
7010 static const SCEV *getAddressAccessSCEV(
7011               Value *Ptr,
7012               LoopVectorizationLegality *Legal,
7013               PredicatedScalarEvolution &PSE,
7014               const Loop *TheLoop) {
7015 
7016   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
7017   if (!Gep)
7018     return nullptr;
7019 
7020   // We are looking for a gep with all loop invariant indices except for one
7021   // which should be an induction variable.
7022   auto SE = PSE.getSE();
7023   unsigned NumOperands = Gep->getNumOperands();
7024   for (unsigned i = 1; i < NumOperands; ++i) {
7025     Value *Opd = Gep->getOperand(i);
7026     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
7027         !Legal->isInductionVariable(Opd))
7028       return nullptr;
7029   }
7030 
7031   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
7032   return PSE.getSCEV(Ptr);
7033 }
7034 
7035 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
7036   return Legal->hasStride(I->getOperand(0)) ||
7037          Legal->hasStride(I->getOperand(1));
7038 }
7039 
7040 InstructionCost
7041 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
7042                                                         ElementCount VF) {
7043   assert(VF.isVector() &&
7044          "Scalarization cost of instruction implies vectorization.");
7045   if (VF.isScalable())
7046     return InstructionCost::getInvalid();
7047 
7048   Type *ValTy = getLoadStoreType(I);
7049   auto SE = PSE.getSE();
7050 
7051   unsigned AS = getLoadStoreAddressSpace(I);
7052   Value *Ptr = getLoadStorePointerOperand(I);
7053   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
7054 
7055   // Figure out whether the access is strided and get the stride value
7056   // if it's known in compile time
7057   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
7058 
7059   // Get the cost of the scalar memory instruction and address computation.
7060   InstructionCost Cost =
7061       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
7062 
7063   // Don't pass *I here, since it is scalar but will actually be part of a
7064   // vectorized loop where the user of it is a vectorized instruction.
7065   const Align Alignment = getLoadStoreAlignment(I);
7066   Cost += VF.getKnownMinValue() *
7067           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
7068                               AS, TTI::TCK_RecipThroughput);
7069 
7070   // Get the overhead of the extractelement and insertelement instructions
7071   // we might create due to scalarization.
7072   Cost += getScalarizationOverhead(I, VF);
7073 
7074   // If we have a predicated load/store, it will need extra i1 extracts and
7075   // conditional branches, but may not be executed for each vector lane. Scale
7076   // the cost by the probability of executing the predicated block.
7077   if (isPredicatedInst(I)) {
7078     Cost /= getReciprocalPredBlockProb();
7079 
7080     // Add the cost of an i1 extract and a branch
7081     auto *Vec_i1Ty =
7082         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
7083     Cost += TTI.getScalarizationOverhead(
7084         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
7085         /*Insert=*/false, /*Extract=*/true);
7086     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7087 
7088     if (useEmulatedMaskMemRefHack(I))
7089       // Artificially setting to a high enough value to practically disable
7090       // vectorization with such operations.
7091       Cost = 3000000;
7092   }
7093 
7094   return Cost;
7095 }
7096 
7097 InstructionCost
7098 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7099                                                     ElementCount VF) {
7100   Type *ValTy = getLoadStoreType(I);
7101   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7102   Value *Ptr = getLoadStorePointerOperand(I);
7103   unsigned AS = getLoadStoreAddressSpace(I);
7104   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
7105   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7106 
7107   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7108          "Stride should be 1 or -1 for consecutive memory access");
7109   const Align Alignment = getLoadStoreAlignment(I);
7110   InstructionCost Cost = 0;
7111   if (Legal->isMaskRequired(I))
7112     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7113                                       CostKind);
7114   else
7115     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7116                                 CostKind, I);
7117 
7118   bool Reverse = ConsecutiveStride < 0;
7119   if (Reverse)
7120     Cost +=
7121         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7122   return Cost;
7123 }
7124 
7125 InstructionCost
7126 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7127                                                 ElementCount VF) {
7128   assert(Legal->isUniformMemOp(*I));
7129 
7130   Type *ValTy = getLoadStoreType(I);
7131   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7132   const Align Alignment = getLoadStoreAlignment(I);
7133   unsigned AS = getLoadStoreAddressSpace(I);
7134   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7135   if (isa<LoadInst>(I)) {
7136     return TTI.getAddressComputationCost(ValTy) +
7137            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7138                                CostKind) +
7139            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7140   }
7141   StoreInst *SI = cast<StoreInst>(I);
7142 
7143   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7144   return TTI.getAddressComputationCost(ValTy) +
7145          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7146                              CostKind) +
7147          (isLoopInvariantStoreValue
7148               ? 0
7149               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7150                                        VF.getKnownMinValue() - 1));
7151 }
7152 
7153 InstructionCost
7154 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7155                                                  ElementCount VF) {
7156   Type *ValTy = getLoadStoreType(I);
7157   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7158   const Align Alignment = getLoadStoreAlignment(I);
7159   const Value *Ptr = getLoadStorePointerOperand(I);
7160 
7161   return TTI.getAddressComputationCost(VectorTy) +
7162          TTI.getGatherScatterOpCost(
7163              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7164              TargetTransformInfo::TCK_RecipThroughput, I);
7165 }
7166 
7167 InstructionCost
7168 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7169                                                    ElementCount VF) {
7170   // TODO: Once we have support for interleaving with scalable vectors
7171   // we can calculate the cost properly here.
7172   if (VF.isScalable())
7173     return InstructionCost::getInvalid();
7174 
7175   Type *ValTy = getLoadStoreType(I);
7176   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7177   unsigned AS = getLoadStoreAddressSpace(I);
7178 
7179   auto Group = getInterleavedAccessGroup(I);
7180   assert(Group && "Fail to get an interleaved access group.");
7181 
7182   unsigned InterleaveFactor = Group->getFactor();
7183   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7184 
7185   // Holds the indices of existing members in the interleaved group.
7186   SmallVector<unsigned, 4> Indices;
7187   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
7188     if (Group->getMember(IF))
7189       Indices.push_back(IF);
7190 
7191   // Calculate the cost of the whole interleaved group.
7192   bool UseMaskForGaps =
7193       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
7194       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
7195   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7196       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7197       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7198 
7199   if (Group->isReverse()) {
7200     // TODO: Add support for reversed masked interleaved access.
7201     assert(!Legal->isMaskRequired(I) &&
7202            "Reverse masked interleaved access not supported.");
7203     Cost +=
7204         Group->getNumMembers() *
7205         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7206   }
7207   return Cost;
7208 }
7209 
7210 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7211     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7212   using namespace llvm::PatternMatch;
7213   // Early exit for no inloop reductions
7214   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7215     return None;
7216   auto *VectorTy = cast<VectorType>(Ty);
7217 
7218   // We are looking for a pattern of, and finding the minimal acceptable cost:
7219   //  reduce(mul(ext(A), ext(B))) or
7220   //  reduce(mul(A, B)) or
7221   //  reduce(ext(A)) or
7222   //  reduce(A).
7223   // The basic idea is that we walk down the tree to do that, finding the root
7224   // reduction instruction in InLoopReductionImmediateChains. From there we find
7225   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7226   // of the components. If the reduction cost is lower then we return it for the
7227   // reduction instruction and 0 for the other instructions in the pattern. If
7228   // it is not we return an invalid cost specifying the orignal cost method
7229   // should be used.
7230   Instruction *RetI = I;
7231   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7232     if (!RetI->hasOneUser())
7233       return None;
7234     RetI = RetI->user_back();
7235   }
7236   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7237       RetI->user_back()->getOpcode() == Instruction::Add) {
7238     if (!RetI->hasOneUser())
7239       return None;
7240     RetI = RetI->user_back();
7241   }
7242 
7243   // Test if the found instruction is a reduction, and if not return an invalid
7244   // cost specifying the parent to use the original cost modelling.
7245   if (!InLoopReductionImmediateChains.count(RetI))
7246     return None;
7247 
7248   // Find the reduction this chain is a part of and calculate the basic cost of
7249   // the reduction on its own.
7250   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7251   Instruction *ReductionPhi = LastChain;
7252   while (!isa<PHINode>(ReductionPhi))
7253     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7254 
7255   const RecurrenceDescriptor &RdxDesc =
7256       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7257 
7258   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7259       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
7260 
7261   // If we're using ordered reductions then we can just return the base cost
7262   // here, since getArithmeticReductionCost calculates the full ordered
7263   // reduction cost when FP reassociation is not allowed.
7264   if (useOrderedReductions(RdxDesc))
7265     return BaseCost;
7266 
7267   // Get the operand that was not the reduction chain and match it to one of the
7268   // patterns, returning the better cost if it is found.
7269   Instruction *RedOp = RetI->getOperand(1) == LastChain
7270                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7271                            : dyn_cast<Instruction>(RetI->getOperand(1));
7272 
7273   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7274 
7275   Instruction *Op0, *Op1;
7276   if (RedOp &&
7277       match(RedOp,
7278             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
7279       match(Op0, m_ZExtOrSExt(m_Value())) &&
7280       Op0->getOpcode() == Op1->getOpcode() &&
7281       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7282       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
7283       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
7284 
7285     // Matched reduce(ext(mul(ext(A), ext(B)))
7286     // Note that the extend opcodes need to all match, or if A==B they will have
7287     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
7288     // which is equally fine.
7289     bool IsUnsigned = isa<ZExtInst>(Op0);
7290     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7291     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
7292 
7293     InstructionCost ExtCost =
7294         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
7295                              TTI::CastContextHint::None, CostKind, Op0);
7296     InstructionCost MulCost =
7297         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
7298     InstructionCost Ext2Cost =
7299         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
7300                              TTI::CastContextHint::None, CostKind, RedOp);
7301 
7302     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7303         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7304         CostKind);
7305 
7306     if (RedCost.isValid() &&
7307         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
7308       return I == RetI ? RedCost : 0;
7309   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7310              !TheLoop->isLoopInvariant(RedOp)) {
7311     // Matched reduce(ext(A))
7312     bool IsUnsigned = isa<ZExtInst>(RedOp);
7313     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7314     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7315         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7316         CostKind);
7317 
7318     InstructionCost ExtCost =
7319         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7320                              TTI::CastContextHint::None, CostKind, RedOp);
7321     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7322       return I == RetI ? RedCost : 0;
7323   } else if (RedOp &&
7324              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7325     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7326         Op0->getOpcode() == Op1->getOpcode() &&
7327         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7328         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7329       bool IsUnsigned = isa<ZExtInst>(Op0);
7330       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7331       // Matched reduce(mul(ext, ext))
7332       InstructionCost ExtCost =
7333           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7334                                TTI::CastContextHint::None, CostKind, Op0);
7335       InstructionCost MulCost =
7336           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7337 
7338       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7339           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7340           CostKind);
7341 
7342       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7343         return I == RetI ? RedCost : 0;
7344     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7345       // Matched reduce(mul())
7346       InstructionCost MulCost =
7347           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7348 
7349       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7350           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7351           CostKind);
7352 
7353       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7354         return I == RetI ? RedCost : 0;
7355     }
7356   }
7357 
7358   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7359 }
7360 
7361 InstructionCost
7362 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7363                                                      ElementCount VF) {
7364   // Calculate scalar cost only. Vectorization cost should be ready at this
7365   // moment.
7366   if (VF.isScalar()) {
7367     Type *ValTy = getLoadStoreType(I);
7368     const Align Alignment = getLoadStoreAlignment(I);
7369     unsigned AS = getLoadStoreAddressSpace(I);
7370 
7371     return TTI.getAddressComputationCost(ValTy) +
7372            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7373                                TTI::TCK_RecipThroughput, I);
7374   }
7375   return getWideningCost(I, VF);
7376 }
7377 
7378 LoopVectorizationCostModel::VectorizationCostTy
7379 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7380                                                ElementCount VF) {
7381   // If we know that this instruction will remain uniform, check the cost of
7382   // the scalar version.
7383   if (isUniformAfterVectorization(I, VF))
7384     VF = ElementCount::getFixed(1);
7385 
7386   if (VF.isVector() && isProfitableToScalarize(I, VF))
7387     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7388 
7389   // Forced scalars do not have any scalarization overhead.
7390   auto ForcedScalar = ForcedScalars.find(VF);
7391   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7392     auto InstSet = ForcedScalar->second;
7393     if (InstSet.count(I))
7394       return VectorizationCostTy(
7395           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7396            VF.getKnownMinValue()),
7397           false);
7398   }
7399 
7400   Type *VectorTy;
7401   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7402 
7403   bool TypeNotScalarized =
7404       VF.isVector() && VectorTy->isVectorTy() &&
7405       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7406   return VectorizationCostTy(C, TypeNotScalarized);
7407 }
7408 
7409 InstructionCost
7410 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7411                                                      ElementCount VF) const {
7412 
7413   // There is no mechanism yet to create a scalable scalarization loop,
7414   // so this is currently Invalid.
7415   if (VF.isScalable())
7416     return InstructionCost::getInvalid();
7417 
7418   if (VF.isScalar())
7419     return 0;
7420 
7421   InstructionCost Cost = 0;
7422   Type *RetTy = ToVectorTy(I->getType(), VF);
7423   if (!RetTy->isVoidTy() &&
7424       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7425     Cost += TTI.getScalarizationOverhead(
7426         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7427         false);
7428 
7429   // Some targets keep addresses scalar.
7430   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7431     return Cost;
7432 
7433   // Some targets support efficient element stores.
7434   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7435     return Cost;
7436 
7437   // Collect operands to consider.
7438   CallInst *CI = dyn_cast<CallInst>(I);
7439   Instruction::op_range Ops = CI ? CI->args() : I->operands();
7440 
7441   // Skip operands that do not require extraction/scalarization and do not incur
7442   // any overhead.
7443   SmallVector<Type *> Tys;
7444   for (auto *V : filterExtractingOperands(Ops, VF))
7445     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7446   return Cost + TTI.getOperandsScalarizationOverhead(
7447                     filterExtractingOperands(Ops, VF), Tys);
7448 }
7449 
7450 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7451   if (VF.isScalar())
7452     return;
7453   NumPredStores = 0;
7454   for (BasicBlock *BB : TheLoop->blocks()) {
7455     // For each instruction in the old loop.
7456     for (Instruction &I : *BB) {
7457       Value *Ptr =  getLoadStorePointerOperand(&I);
7458       if (!Ptr)
7459         continue;
7460 
7461       // TODO: We should generate better code and update the cost model for
7462       // predicated uniform stores. Today they are treated as any other
7463       // predicated store (see added test cases in
7464       // invariant-store-vectorization.ll).
7465       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7466         NumPredStores++;
7467 
7468       if (Legal->isUniformMemOp(I)) {
7469         // TODO: Avoid replicating loads and stores instead of
7470         // relying on instcombine to remove them.
7471         // Load: Scalar load + broadcast
7472         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7473         InstructionCost Cost;
7474         if (isa<StoreInst>(&I) && VF.isScalable() &&
7475             isLegalGatherOrScatter(&I)) {
7476           Cost = getGatherScatterCost(&I, VF);
7477           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7478         } else {
7479           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7480                  "Cannot yet scalarize uniform stores");
7481           Cost = getUniformMemOpCost(&I, VF);
7482           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7483         }
7484         continue;
7485       }
7486 
7487       // We assume that widening is the best solution when possible.
7488       if (memoryInstructionCanBeWidened(&I, VF)) {
7489         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7490         int ConsecutiveStride = Legal->isConsecutivePtr(
7491             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7492         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7493                "Expected consecutive stride.");
7494         InstWidening Decision =
7495             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7496         setWideningDecision(&I, VF, Decision, Cost);
7497         continue;
7498       }
7499 
7500       // Choose between Interleaving, Gather/Scatter or Scalarization.
7501       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7502       unsigned NumAccesses = 1;
7503       if (isAccessInterleaved(&I)) {
7504         auto Group = getInterleavedAccessGroup(&I);
7505         assert(Group && "Fail to get an interleaved access group.");
7506 
7507         // Make one decision for the whole group.
7508         if (getWideningDecision(&I, VF) != CM_Unknown)
7509           continue;
7510 
7511         NumAccesses = Group->getNumMembers();
7512         if (interleavedAccessCanBeWidened(&I, VF))
7513           InterleaveCost = getInterleaveGroupCost(&I, VF);
7514       }
7515 
7516       InstructionCost GatherScatterCost =
7517           isLegalGatherOrScatter(&I)
7518               ? getGatherScatterCost(&I, VF) * NumAccesses
7519               : InstructionCost::getInvalid();
7520 
7521       InstructionCost ScalarizationCost =
7522           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7523 
7524       // Choose better solution for the current VF,
7525       // write down this decision and use it during vectorization.
7526       InstructionCost Cost;
7527       InstWidening Decision;
7528       if (InterleaveCost <= GatherScatterCost &&
7529           InterleaveCost < ScalarizationCost) {
7530         Decision = CM_Interleave;
7531         Cost = InterleaveCost;
7532       } else if (GatherScatterCost < ScalarizationCost) {
7533         Decision = CM_GatherScatter;
7534         Cost = GatherScatterCost;
7535       } else {
7536         Decision = CM_Scalarize;
7537         Cost = ScalarizationCost;
7538       }
7539       // If the instructions belongs to an interleave group, the whole group
7540       // receives the same decision. The whole group receives the cost, but
7541       // the cost will actually be assigned to one instruction.
7542       if (auto Group = getInterleavedAccessGroup(&I))
7543         setWideningDecision(Group, VF, Decision, Cost);
7544       else
7545         setWideningDecision(&I, VF, Decision, Cost);
7546     }
7547   }
7548 
7549   // Make sure that any load of address and any other address computation
7550   // remains scalar unless there is gather/scatter support. This avoids
7551   // inevitable extracts into address registers, and also has the benefit of
7552   // activating LSR more, since that pass can't optimize vectorized
7553   // addresses.
7554   if (TTI.prefersVectorizedAddressing())
7555     return;
7556 
7557   // Start with all scalar pointer uses.
7558   SmallPtrSet<Instruction *, 8> AddrDefs;
7559   for (BasicBlock *BB : TheLoop->blocks())
7560     for (Instruction &I : *BB) {
7561       Instruction *PtrDef =
7562         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7563       if (PtrDef && TheLoop->contains(PtrDef) &&
7564           getWideningDecision(&I, VF) != CM_GatherScatter)
7565         AddrDefs.insert(PtrDef);
7566     }
7567 
7568   // Add all instructions used to generate the addresses.
7569   SmallVector<Instruction *, 4> Worklist;
7570   append_range(Worklist, AddrDefs);
7571   while (!Worklist.empty()) {
7572     Instruction *I = Worklist.pop_back_val();
7573     for (auto &Op : I->operands())
7574       if (auto *InstOp = dyn_cast<Instruction>(Op))
7575         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7576             AddrDefs.insert(InstOp).second)
7577           Worklist.push_back(InstOp);
7578   }
7579 
7580   for (auto *I : AddrDefs) {
7581     if (isa<LoadInst>(I)) {
7582       // Setting the desired widening decision should ideally be handled in
7583       // by cost functions, but since this involves the task of finding out
7584       // if the loaded register is involved in an address computation, it is
7585       // instead changed here when we know this is the case.
7586       InstWidening Decision = getWideningDecision(I, VF);
7587       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7588         // Scalarize a widened load of address.
7589         setWideningDecision(
7590             I, VF, CM_Scalarize,
7591             (VF.getKnownMinValue() *
7592              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7593       else if (auto Group = getInterleavedAccessGroup(I)) {
7594         // Scalarize an interleave group of address loads.
7595         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7596           if (Instruction *Member = Group->getMember(I))
7597             setWideningDecision(
7598                 Member, VF, CM_Scalarize,
7599                 (VF.getKnownMinValue() *
7600                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7601         }
7602       }
7603     } else
7604       // Make sure I gets scalarized and a cost estimate without
7605       // scalarization overhead.
7606       ForcedScalars[VF].insert(I);
7607   }
7608 }
7609 
7610 InstructionCost
7611 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7612                                                Type *&VectorTy) {
7613   Type *RetTy = I->getType();
7614   if (canTruncateToMinimalBitwidth(I, VF))
7615     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7616   auto SE = PSE.getSE();
7617   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7618 
7619   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7620                                                 ElementCount VF) -> bool {
7621     if (VF.isScalar())
7622       return true;
7623 
7624     auto Scalarized = InstsToScalarize.find(VF);
7625     assert(Scalarized != InstsToScalarize.end() &&
7626            "VF not yet analyzed for scalarization profitability");
7627     return !Scalarized->second.count(I) &&
7628            llvm::all_of(I->users(), [&](User *U) {
7629              auto *UI = cast<Instruction>(U);
7630              return !Scalarized->second.count(UI);
7631            });
7632   };
7633   (void) hasSingleCopyAfterVectorization;
7634 
7635   if (isScalarAfterVectorization(I, VF)) {
7636     // With the exception of GEPs and PHIs, after scalarization there should
7637     // only be one copy of the instruction generated in the loop. This is
7638     // because the VF is either 1, or any instructions that need scalarizing
7639     // have already been dealt with by the the time we get here. As a result,
7640     // it means we don't have to multiply the instruction cost by VF.
7641     assert(I->getOpcode() == Instruction::GetElementPtr ||
7642            I->getOpcode() == Instruction::PHI ||
7643            (I->getOpcode() == Instruction::BitCast &&
7644             I->getType()->isPointerTy()) ||
7645            hasSingleCopyAfterVectorization(I, VF));
7646     VectorTy = RetTy;
7647   } else
7648     VectorTy = ToVectorTy(RetTy, VF);
7649 
7650   // TODO: We need to estimate the cost of intrinsic calls.
7651   switch (I->getOpcode()) {
7652   case Instruction::GetElementPtr:
7653     // We mark this instruction as zero-cost because the cost of GEPs in
7654     // vectorized code depends on whether the corresponding memory instruction
7655     // is scalarized or not. Therefore, we handle GEPs with the memory
7656     // instruction cost.
7657     return 0;
7658   case Instruction::Br: {
7659     // In cases of scalarized and predicated instructions, there will be VF
7660     // predicated blocks in the vectorized loop. Each branch around these
7661     // blocks requires also an extract of its vector compare i1 element.
7662     bool ScalarPredicatedBB = false;
7663     BranchInst *BI = cast<BranchInst>(I);
7664     if (VF.isVector() && BI->isConditional() &&
7665         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7666          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7667       ScalarPredicatedBB = true;
7668 
7669     if (ScalarPredicatedBB) {
7670       // Not possible to scalarize scalable vector with predicated instructions.
7671       if (VF.isScalable())
7672         return InstructionCost::getInvalid();
7673       // Return cost for branches around scalarized and predicated blocks.
7674       auto *Vec_i1Ty =
7675           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7676       return (
7677           TTI.getScalarizationOverhead(
7678               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7679           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7680     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7681       // The back-edge branch will remain, as will all scalar branches.
7682       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7683     else
7684       // This branch will be eliminated by if-conversion.
7685       return 0;
7686     // Note: We currently assume zero cost for an unconditional branch inside
7687     // a predicated block since it will become a fall-through, although we
7688     // may decide in the future to call TTI for all branches.
7689   }
7690   case Instruction::PHI: {
7691     auto *Phi = cast<PHINode>(I);
7692 
7693     // First-order recurrences are replaced by vector shuffles inside the loop.
7694     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7695     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7696       return TTI.getShuffleCost(
7697           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7698           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7699 
7700     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7701     // converted into select instructions. We require N - 1 selects per phi
7702     // node, where N is the number of incoming values.
7703     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7704       return (Phi->getNumIncomingValues() - 1) *
7705              TTI.getCmpSelInstrCost(
7706                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7707                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7708                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7709 
7710     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7711   }
7712   case Instruction::UDiv:
7713   case Instruction::SDiv:
7714   case Instruction::URem:
7715   case Instruction::SRem:
7716     // If we have a predicated instruction, it may not be executed for each
7717     // vector lane. Get the scalarization cost and scale this amount by the
7718     // probability of executing the predicated block. If the instruction is not
7719     // predicated, we fall through to the next case.
7720     if (VF.isVector() && isScalarWithPredication(I)) {
7721       InstructionCost Cost = 0;
7722 
7723       // These instructions have a non-void type, so account for the phi nodes
7724       // that we will create. This cost is likely to be zero. The phi node
7725       // cost, if any, should be scaled by the block probability because it
7726       // models a copy at the end of each predicated block.
7727       Cost += VF.getKnownMinValue() *
7728               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7729 
7730       // The cost of the non-predicated instruction.
7731       Cost += VF.getKnownMinValue() *
7732               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7733 
7734       // The cost of insertelement and extractelement instructions needed for
7735       // scalarization.
7736       Cost += getScalarizationOverhead(I, VF);
7737 
7738       // Scale the cost by the probability of executing the predicated blocks.
7739       // This assumes the predicated block for each vector lane is equally
7740       // likely.
7741       return Cost / getReciprocalPredBlockProb();
7742     }
7743     LLVM_FALLTHROUGH;
7744   case Instruction::Add:
7745   case Instruction::FAdd:
7746   case Instruction::Sub:
7747   case Instruction::FSub:
7748   case Instruction::Mul:
7749   case Instruction::FMul:
7750   case Instruction::FDiv:
7751   case Instruction::FRem:
7752   case Instruction::Shl:
7753   case Instruction::LShr:
7754   case Instruction::AShr:
7755   case Instruction::And:
7756   case Instruction::Or:
7757   case Instruction::Xor: {
7758     // Since we will replace the stride by 1 the multiplication should go away.
7759     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7760       return 0;
7761 
7762     // Detect reduction patterns
7763     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7764       return *RedCost;
7765 
7766     // Certain instructions can be cheaper to vectorize if they have a constant
7767     // second vector operand. One example of this are shifts on x86.
7768     Value *Op2 = I->getOperand(1);
7769     TargetTransformInfo::OperandValueProperties Op2VP;
7770     TargetTransformInfo::OperandValueKind Op2VK =
7771         TTI.getOperandInfo(Op2, Op2VP);
7772     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7773       Op2VK = TargetTransformInfo::OK_UniformValue;
7774 
7775     SmallVector<const Value *, 4> Operands(I->operand_values());
7776     return TTI.getArithmeticInstrCost(
7777         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7778         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7779   }
7780   case Instruction::FNeg: {
7781     return TTI.getArithmeticInstrCost(
7782         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7783         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7784         TargetTransformInfo::OP_None, I->getOperand(0), I);
7785   }
7786   case Instruction::Select: {
7787     SelectInst *SI = cast<SelectInst>(I);
7788     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7789     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7790 
7791     const Value *Op0, *Op1;
7792     using namespace llvm::PatternMatch;
7793     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7794                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7795       // select x, y, false --> x & y
7796       // select x, true, y --> x | y
7797       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7798       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7799       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7800       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7801       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7802               Op1->getType()->getScalarSizeInBits() == 1);
7803 
7804       SmallVector<const Value *, 2> Operands{Op0, Op1};
7805       return TTI.getArithmeticInstrCost(
7806           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7807           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7808     }
7809 
7810     Type *CondTy = SI->getCondition()->getType();
7811     if (!ScalarCond)
7812       CondTy = VectorType::get(CondTy, VF);
7813     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7814                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7815   }
7816   case Instruction::ICmp:
7817   case Instruction::FCmp: {
7818     Type *ValTy = I->getOperand(0)->getType();
7819     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7820     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7821       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7822     VectorTy = ToVectorTy(ValTy, VF);
7823     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7824                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7825   }
7826   case Instruction::Store:
7827   case Instruction::Load: {
7828     ElementCount Width = VF;
7829     if (Width.isVector()) {
7830       InstWidening Decision = getWideningDecision(I, Width);
7831       assert(Decision != CM_Unknown &&
7832              "CM decision should be taken at this point");
7833       if (Decision == CM_Scalarize)
7834         Width = ElementCount::getFixed(1);
7835     }
7836     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7837     return getMemoryInstructionCost(I, VF);
7838   }
7839   case Instruction::BitCast:
7840     if (I->getType()->isPointerTy())
7841       return 0;
7842     LLVM_FALLTHROUGH;
7843   case Instruction::ZExt:
7844   case Instruction::SExt:
7845   case Instruction::FPToUI:
7846   case Instruction::FPToSI:
7847   case Instruction::FPExt:
7848   case Instruction::PtrToInt:
7849   case Instruction::IntToPtr:
7850   case Instruction::SIToFP:
7851   case Instruction::UIToFP:
7852   case Instruction::Trunc:
7853   case Instruction::FPTrunc: {
7854     // Computes the CastContextHint from a Load/Store instruction.
7855     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7856       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7857              "Expected a load or a store!");
7858 
7859       if (VF.isScalar() || !TheLoop->contains(I))
7860         return TTI::CastContextHint::Normal;
7861 
7862       switch (getWideningDecision(I, VF)) {
7863       case LoopVectorizationCostModel::CM_GatherScatter:
7864         return TTI::CastContextHint::GatherScatter;
7865       case LoopVectorizationCostModel::CM_Interleave:
7866         return TTI::CastContextHint::Interleave;
7867       case LoopVectorizationCostModel::CM_Scalarize:
7868       case LoopVectorizationCostModel::CM_Widen:
7869         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7870                                         : TTI::CastContextHint::Normal;
7871       case LoopVectorizationCostModel::CM_Widen_Reverse:
7872         return TTI::CastContextHint::Reversed;
7873       case LoopVectorizationCostModel::CM_Unknown:
7874         llvm_unreachable("Instr did not go through cost modelling?");
7875       }
7876 
7877       llvm_unreachable("Unhandled case!");
7878     };
7879 
7880     unsigned Opcode = I->getOpcode();
7881     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7882     // For Trunc, the context is the only user, which must be a StoreInst.
7883     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7884       if (I->hasOneUse())
7885         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7886           CCH = ComputeCCH(Store);
7887     }
7888     // For Z/Sext, the context is the operand, which must be a LoadInst.
7889     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7890              Opcode == Instruction::FPExt) {
7891       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7892         CCH = ComputeCCH(Load);
7893     }
7894 
7895     // We optimize the truncation of induction variables having constant
7896     // integer steps. The cost of these truncations is the same as the scalar
7897     // operation.
7898     if (isOptimizableIVTruncate(I, VF)) {
7899       auto *Trunc = cast<TruncInst>(I);
7900       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7901                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7902     }
7903 
7904     // Detect reduction patterns
7905     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7906       return *RedCost;
7907 
7908     Type *SrcScalarTy = I->getOperand(0)->getType();
7909     Type *SrcVecTy =
7910         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7911     if (canTruncateToMinimalBitwidth(I, VF)) {
7912       // This cast is going to be shrunk. This may remove the cast or it might
7913       // turn it into slightly different cast. For example, if MinBW == 16,
7914       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7915       //
7916       // Calculate the modified src and dest types.
7917       Type *MinVecTy = VectorTy;
7918       if (Opcode == Instruction::Trunc) {
7919         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7920         VectorTy =
7921             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7922       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7923         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7924         VectorTy =
7925             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7926       }
7927     }
7928 
7929     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7930   }
7931   case Instruction::Call: {
7932     bool NeedToScalarize;
7933     CallInst *CI = cast<CallInst>(I);
7934     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7935     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7936       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7937       return std::min(CallCost, IntrinsicCost);
7938     }
7939     return CallCost;
7940   }
7941   case Instruction::ExtractValue:
7942     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7943   case Instruction::Alloca:
7944     // We cannot easily widen alloca to a scalable alloca, as
7945     // the result would need to be a vector of pointers.
7946     if (VF.isScalable())
7947       return InstructionCost::getInvalid();
7948     LLVM_FALLTHROUGH;
7949   default:
7950     // This opcode is unknown. Assume that it is the same as 'mul'.
7951     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7952   } // end of switch.
7953 }
7954 
7955 char LoopVectorize::ID = 0;
7956 
7957 static const char lv_name[] = "Loop Vectorization";
7958 
7959 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7960 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7961 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7962 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7963 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7964 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7965 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7966 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7967 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7968 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7969 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7970 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7971 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7972 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7973 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7974 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7975 
7976 namespace llvm {
7977 
7978 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7979 
7980 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7981                               bool VectorizeOnlyWhenForced) {
7982   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7983 }
7984 
7985 } // end namespace llvm
7986 
7987 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7988   // Check if the pointer operand of a load or store instruction is
7989   // consecutive.
7990   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7991     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7992   return false;
7993 }
7994 
7995 void LoopVectorizationCostModel::collectValuesToIgnore() {
7996   // Ignore ephemeral values.
7997   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7998 
7999   // Ignore type-promoting instructions we identified during reduction
8000   // detection.
8001   for (auto &Reduction : Legal->getReductionVars()) {
8002     RecurrenceDescriptor &RedDes = Reduction.second;
8003     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
8004     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
8005   }
8006   // Ignore type-casting instructions we identified during induction
8007   // detection.
8008   for (auto &Induction : Legal->getInductionVars()) {
8009     InductionDescriptor &IndDes = Induction.second;
8010     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8011     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
8012   }
8013 }
8014 
8015 void LoopVectorizationCostModel::collectInLoopReductions() {
8016   for (auto &Reduction : Legal->getReductionVars()) {
8017     PHINode *Phi = Reduction.first;
8018     RecurrenceDescriptor &RdxDesc = Reduction.second;
8019 
8020     // We don't collect reductions that are type promoted (yet).
8021     if (RdxDesc.getRecurrenceType() != Phi->getType())
8022       continue;
8023 
8024     // If the target would prefer this reduction to happen "in-loop", then we
8025     // want to record it as such.
8026     unsigned Opcode = RdxDesc.getOpcode();
8027     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
8028         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
8029                                    TargetTransformInfo::ReductionFlags()))
8030       continue;
8031 
8032     // Check that we can correctly put the reductions into the loop, by
8033     // finding the chain of operations that leads from the phi to the loop
8034     // exit value.
8035     SmallVector<Instruction *, 4> ReductionOperations =
8036         RdxDesc.getReductionOpChain(Phi, TheLoop);
8037     bool InLoop = !ReductionOperations.empty();
8038     if (InLoop) {
8039       InLoopReductionChains[Phi] = ReductionOperations;
8040       // Add the elements to InLoopReductionImmediateChains for cost modelling.
8041       Instruction *LastChain = Phi;
8042       for (auto *I : ReductionOperations) {
8043         InLoopReductionImmediateChains[I] = LastChain;
8044         LastChain = I;
8045       }
8046     }
8047     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
8048                       << " reduction for phi: " << *Phi << "\n");
8049   }
8050 }
8051 
8052 // TODO: we could return a pair of values that specify the max VF and
8053 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
8054 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
8055 // doesn't have a cost model that can choose which plan to execute if
8056 // more than one is generated.
8057 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
8058                                  LoopVectorizationCostModel &CM) {
8059   unsigned WidestType;
8060   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
8061   return WidestVectorRegBits / WidestType;
8062 }
8063 
8064 VectorizationFactor
8065 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
8066   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
8067   ElementCount VF = UserVF;
8068   // Outer loop handling: They may require CFG and instruction level
8069   // transformations before even evaluating whether vectorization is profitable.
8070   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8071   // the vectorization pipeline.
8072   if (!OrigLoop->isInnermost()) {
8073     // If the user doesn't provide a vectorization factor, determine a
8074     // reasonable one.
8075     if (UserVF.isZero()) {
8076       VF = ElementCount::getFixed(determineVPlanVF(
8077           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
8078               .getFixedSize(),
8079           CM));
8080       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
8081 
8082       // Make sure we have a VF > 1 for stress testing.
8083       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
8084         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
8085                           << "overriding computed VF.\n");
8086         VF = ElementCount::getFixed(4);
8087       }
8088     }
8089     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8090     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
8091            "VF needs to be a power of two");
8092     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
8093                       << "VF " << VF << " to build VPlans.\n");
8094     buildVPlans(VF, VF);
8095 
8096     // For VPlan build stress testing, we bail out after VPlan construction.
8097     if (VPlanBuildStressTest)
8098       return VectorizationFactor::Disabled();
8099 
8100     return {VF, 0 /*Cost*/};
8101   }
8102 
8103   LLVM_DEBUG(
8104       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
8105                 "VPlan-native path.\n");
8106   return VectorizationFactor::Disabled();
8107 }
8108 
8109 Optional<VectorizationFactor>
8110 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
8111   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8112   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
8113   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
8114     return None;
8115 
8116   // Invalidate interleave groups if all blocks of loop will be predicated.
8117   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
8118       !useMaskedInterleavedAccesses(*TTI)) {
8119     LLVM_DEBUG(
8120         dbgs()
8121         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8122            "which requires masked-interleaved support.\n");
8123     if (CM.InterleaveInfo.invalidateGroups())
8124       // Invalidating interleave groups also requires invalidating all decisions
8125       // based on them, which includes widening decisions and uniform and scalar
8126       // values.
8127       CM.invalidateCostModelingDecisions();
8128   }
8129 
8130   ElementCount MaxUserVF =
8131       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8132   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8133   if (!UserVF.isZero() && UserVFIsLegal) {
8134     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8135            "VF needs to be a power of two");
8136     // Collect the instructions (and their associated costs) that will be more
8137     // profitable to scalarize.
8138     if (CM.selectUserVectorizationFactor(UserVF)) {
8139       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8140       CM.collectInLoopReductions();
8141       buildVPlansWithVPRecipes(UserVF, UserVF);
8142       LLVM_DEBUG(printPlans(dbgs()));
8143       return {{UserVF, 0}};
8144     } else
8145       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8146                               "InvalidCost", ORE, OrigLoop);
8147   }
8148 
8149   // Populate the set of Vectorization Factor Candidates.
8150   ElementCountSet VFCandidates;
8151   for (auto VF = ElementCount::getFixed(1);
8152        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8153     VFCandidates.insert(VF);
8154   for (auto VF = ElementCount::getScalable(1);
8155        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8156     VFCandidates.insert(VF);
8157 
8158   for (const auto &VF : VFCandidates) {
8159     // Collect Uniform and Scalar instructions after vectorization with VF.
8160     CM.collectUniformsAndScalars(VF);
8161 
8162     // Collect the instructions (and their associated costs) that will be more
8163     // profitable to scalarize.
8164     if (VF.isVector())
8165       CM.collectInstsToScalarize(VF);
8166   }
8167 
8168   CM.collectInLoopReductions();
8169   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8170   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8171 
8172   LLVM_DEBUG(printPlans(dbgs()));
8173   if (!MaxFactors.hasVector())
8174     return VectorizationFactor::Disabled();
8175 
8176   // Select the optimal vectorization factor.
8177   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8178 
8179   // Check if it is profitable to vectorize with runtime checks.
8180   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8181   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8182     bool PragmaThresholdReached =
8183         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8184     bool ThresholdReached =
8185         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8186     if ((ThresholdReached && !Hints.allowReordering()) ||
8187         PragmaThresholdReached) {
8188       ORE->emit([&]() {
8189         return OptimizationRemarkAnalysisAliasing(
8190                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8191                    OrigLoop->getHeader())
8192                << "loop not vectorized: cannot prove it is safe to reorder "
8193                   "memory operations";
8194       });
8195       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8196       Hints.emitRemarkWithHints();
8197       return VectorizationFactor::Disabled();
8198     }
8199   }
8200   return SelectedVF;
8201 }
8202 
8203 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
8204   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
8205                     << '\n');
8206   BestVF = VF;
8207   BestUF = UF;
8208 
8209   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
8210     return !Plan->hasVF(VF);
8211   });
8212   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
8213 }
8214 
8215 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
8216                                            DominatorTree *DT) {
8217   // Perform the actual loop transformation.
8218 
8219   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8220   assert(BestVF.hasValue() && "Vectorization Factor is missing");
8221   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
8222 
8223   VPTransformState State{
8224       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
8225   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8226   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8227   State.CanonicalIV = ILV.Induction;
8228 
8229   ILV.printDebugTracesAtStart();
8230 
8231   //===------------------------------------------------===//
8232   //
8233   // Notice: any optimization or new instruction that go
8234   // into the code below should also be implemented in
8235   // the cost-model.
8236   //
8237   //===------------------------------------------------===//
8238 
8239   // 2. Copy and widen instructions from the old loop into the new loop.
8240   VPlans.front()->execute(&State);
8241 
8242   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8243   //    predication, updating analyses.
8244   ILV.fixVectorizedLoop(State);
8245 
8246   ILV.printDebugTracesAtEnd();
8247 }
8248 
8249 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8250 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8251   for (const auto &Plan : VPlans)
8252     if (PrintVPlansInDotFormat)
8253       Plan->printDOT(O);
8254     else
8255       Plan->print(O);
8256 }
8257 #endif
8258 
8259 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8260     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8261 
8262   // We create new control-flow for the vectorized loop, so the original exit
8263   // conditions will be dead after vectorization if it's only used by the
8264   // terminator
8265   SmallVector<BasicBlock*> ExitingBlocks;
8266   OrigLoop->getExitingBlocks(ExitingBlocks);
8267   for (auto *BB : ExitingBlocks) {
8268     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8269     if (!Cmp || !Cmp->hasOneUse())
8270       continue;
8271 
8272     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8273     if (!DeadInstructions.insert(Cmp).second)
8274       continue;
8275 
8276     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8277     // TODO: can recurse through operands in general
8278     for (Value *Op : Cmp->operands()) {
8279       if (isa<TruncInst>(Op) && Op->hasOneUse())
8280           DeadInstructions.insert(cast<Instruction>(Op));
8281     }
8282   }
8283 
8284   // We create new "steps" for induction variable updates to which the original
8285   // induction variables map. An original update instruction will be dead if
8286   // all its users except the induction variable are dead.
8287   auto *Latch = OrigLoop->getLoopLatch();
8288   for (auto &Induction : Legal->getInductionVars()) {
8289     PHINode *Ind = Induction.first;
8290     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8291 
8292     // If the tail is to be folded by masking, the primary induction variable,
8293     // if exists, isn't dead: it will be used for masking. Don't kill it.
8294     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8295       continue;
8296 
8297     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8298           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8299         }))
8300       DeadInstructions.insert(IndUpdate);
8301 
8302     // We record as "Dead" also the type-casting instructions we had identified
8303     // during induction analysis. We don't need any handling for them in the
8304     // vectorized loop because we have proven that, under a proper runtime
8305     // test guarding the vectorized loop, the value of the phi, and the casted
8306     // value of the phi, are the same. The last instruction in this casting chain
8307     // will get its scalar/vector/widened def from the scalar/vector/widened def
8308     // of the respective phi node. Any other casts in the induction def-use chain
8309     // have no other uses outside the phi update chain, and will be ignored.
8310     InductionDescriptor &IndDes = Induction.second;
8311     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8312     DeadInstructions.insert(Casts.begin(), Casts.end());
8313   }
8314 }
8315 
8316 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8317 
8318 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8319 
8320 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
8321                                         Instruction::BinaryOps BinOp) {
8322   // When unrolling and the VF is 1, we only need to add a simple scalar.
8323   Type *Ty = Val->getType();
8324   assert(!Ty->isVectorTy() && "Val must be a scalar");
8325 
8326   if (Ty->isFloatingPointTy()) {
8327     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
8328 
8329     // Floating-point operations inherit FMF via the builder's flags.
8330     Value *MulOp = Builder.CreateFMul(C, Step);
8331     return Builder.CreateBinOp(BinOp, Val, MulOp);
8332   }
8333   Constant *C = ConstantInt::get(Ty, StartIdx);
8334   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
8335 }
8336 
8337 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8338   SmallVector<Metadata *, 4> MDs;
8339   // Reserve first location for self reference to the LoopID metadata node.
8340   MDs.push_back(nullptr);
8341   bool IsUnrollMetadata = false;
8342   MDNode *LoopID = L->getLoopID();
8343   if (LoopID) {
8344     // First find existing loop unrolling disable metadata.
8345     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8346       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8347       if (MD) {
8348         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8349         IsUnrollMetadata =
8350             S && S->getString().startswith("llvm.loop.unroll.disable");
8351       }
8352       MDs.push_back(LoopID->getOperand(i));
8353     }
8354   }
8355 
8356   if (!IsUnrollMetadata) {
8357     // Add runtime unroll disable metadata.
8358     LLVMContext &Context = L->getHeader()->getContext();
8359     SmallVector<Metadata *, 1> DisableOperands;
8360     DisableOperands.push_back(
8361         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8362     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8363     MDs.push_back(DisableNode);
8364     MDNode *NewLoopID = MDNode::get(Context, MDs);
8365     // Set operand 0 to refer to the loop id itself.
8366     NewLoopID->replaceOperandWith(0, NewLoopID);
8367     L->setLoopID(NewLoopID);
8368   }
8369 }
8370 
8371 //===--------------------------------------------------------------------===//
8372 // EpilogueVectorizerMainLoop
8373 //===--------------------------------------------------------------------===//
8374 
8375 /// This function is partially responsible for generating the control flow
8376 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8377 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8378   MDNode *OrigLoopID = OrigLoop->getLoopID();
8379   Loop *Lp = createVectorLoopSkeleton("");
8380 
8381   // Generate the code to check the minimum iteration count of the vector
8382   // epilogue (see below).
8383   EPI.EpilogueIterationCountCheck =
8384       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8385   EPI.EpilogueIterationCountCheck->setName("iter.check");
8386 
8387   // Generate the code to check any assumptions that we've made for SCEV
8388   // expressions.
8389   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8390 
8391   // Generate the code that checks at runtime if arrays overlap. We put the
8392   // checks into a separate block to make the more common case of few elements
8393   // faster.
8394   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8395 
8396   // Generate the iteration count check for the main loop, *after* the check
8397   // for the epilogue loop, so that the path-length is shorter for the case
8398   // that goes directly through the vector epilogue. The longer-path length for
8399   // the main loop is compensated for, by the gain from vectorizing the larger
8400   // trip count. Note: the branch will get updated later on when we vectorize
8401   // the epilogue.
8402   EPI.MainLoopIterationCountCheck =
8403       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8404 
8405   // Generate the induction variable.
8406   OldInduction = Legal->getPrimaryInduction();
8407   Type *IdxTy = Legal->getWidestInductionType();
8408   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8409   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8410   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8411   EPI.VectorTripCount = CountRoundDown;
8412   Induction =
8413       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8414                               getDebugLocFromInstOrOperands(OldInduction));
8415 
8416   // Skip induction resume value creation here because they will be created in
8417   // the second pass. If we created them here, they wouldn't be used anyway,
8418   // because the vplan in the second pass still contains the inductions from the
8419   // original loop.
8420 
8421   return completeLoopSkeleton(Lp, OrigLoopID);
8422 }
8423 
8424 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8425   LLVM_DEBUG({
8426     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8427            << "Main Loop VF:" << EPI.MainLoopVF
8428            << ", Main Loop UF:" << EPI.MainLoopUF
8429            << ", Epilogue Loop VF:" << EPI.EpilogueVF
8430            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8431   });
8432 }
8433 
8434 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8435   DEBUG_WITH_TYPE(VerboseDebug, {
8436     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8437   });
8438 }
8439 
8440 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8441     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8442   assert(L && "Expected valid Loop.");
8443   assert(Bypass && "Expected valid bypass basic block.");
8444   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
8445   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8446   Value *Count = getOrCreateTripCount(L);
8447   // Reuse existing vector loop preheader for TC checks.
8448   // Note that new preheader block is generated for vector loop.
8449   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8450   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8451 
8452   // Generate code to check if the loop's trip count is less than VF * UF of the
8453   // main vector loop.
8454   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8455       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8456 
8457   Value *CheckMinIters = Builder.CreateICmp(
8458       P, Count, getRuntimeVF(Builder, Count->getType(), VFactor * UFactor),
8459       "min.iters.check");
8460 
8461   if (!ForEpilogue)
8462     TCCheckBlock->setName("vector.main.loop.iter.check");
8463 
8464   // Create new preheader for vector loop.
8465   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8466                                    DT, LI, nullptr, "vector.ph");
8467 
8468   if (ForEpilogue) {
8469     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8470                                  DT->getNode(Bypass)->getIDom()) &&
8471            "TC check is expected to dominate Bypass");
8472 
8473     // Update dominator for Bypass & LoopExit.
8474     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8475     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8476       // For loops with multiple exits, there's no edge from the middle block
8477       // to exit blocks (as the epilogue must run) and thus no need to update
8478       // the immediate dominator of the exit blocks.
8479       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8480 
8481     LoopBypassBlocks.push_back(TCCheckBlock);
8482 
8483     // Save the trip count so we don't have to regenerate it in the
8484     // vec.epilog.iter.check. This is safe to do because the trip count
8485     // generated here dominates the vector epilog iter check.
8486     EPI.TripCount = Count;
8487   }
8488 
8489   ReplaceInstWithInst(
8490       TCCheckBlock->getTerminator(),
8491       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8492 
8493   return TCCheckBlock;
8494 }
8495 
8496 //===--------------------------------------------------------------------===//
8497 // EpilogueVectorizerEpilogueLoop
8498 //===--------------------------------------------------------------------===//
8499 
8500 /// This function is partially responsible for generating the control flow
8501 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8502 BasicBlock *
8503 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8504   MDNode *OrigLoopID = OrigLoop->getLoopID();
8505   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8506 
8507   // Now, compare the remaining count and if there aren't enough iterations to
8508   // execute the vectorized epilogue skip to the scalar part.
8509   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8510   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8511   LoopVectorPreHeader =
8512       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8513                  LI, nullptr, "vec.epilog.ph");
8514   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8515                                           VecEpilogueIterationCountCheck);
8516 
8517   // Adjust the control flow taking the state info from the main loop
8518   // vectorization into account.
8519   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8520          "expected this to be saved from the previous pass.");
8521   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8522       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8523 
8524   DT->changeImmediateDominator(LoopVectorPreHeader,
8525                                EPI.MainLoopIterationCountCheck);
8526 
8527   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8528       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8529 
8530   if (EPI.SCEVSafetyCheck)
8531     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8532         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8533   if (EPI.MemSafetyCheck)
8534     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8535         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8536 
8537   DT->changeImmediateDominator(
8538       VecEpilogueIterationCountCheck,
8539       VecEpilogueIterationCountCheck->getSinglePredecessor());
8540 
8541   DT->changeImmediateDominator(LoopScalarPreHeader,
8542                                EPI.EpilogueIterationCountCheck);
8543   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8544     // If there is an epilogue which must run, there's no edge from the
8545     // middle block to exit blocks  and thus no need to update the immediate
8546     // dominator of the exit blocks.
8547     DT->changeImmediateDominator(LoopExitBlock,
8548                                  EPI.EpilogueIterationCountCheck);
8549 
8550   // Keep track of bypass blocks, as they feed start values to the induction
8551   // phis in the scalar loop preheader.
8552   if (EPI.SCEVSafetyCheck)
8553     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8554   if (EPI.MemSafetyCheck)
8555     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8556   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8557 
8558   // Generate a resume induction for the vector epilogue and put it in the
8559   // vector epilogue preheader
8560   Type *IdxTy = Legal->getWidestInductionType();
8561   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8562                                          LoopVectorPreHeader->getFirstNonPHI());
8563   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8564   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8565                            EPI.MainLoopIterationCountCheck);
8566 
8567   // Generate the induction variable.
8568   OldInduction = Legal->getPrimaryInduction();
8569   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8570   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8571   Value *StartIdx = EPResumeVal;
8572   Induction =
8573       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8574                               getDebugLocFromInstOrOperands(OldInduction));
8575 
8576   // Generate induction resume values. These variables save the new starting
8577   // indexes for the scalar loop. They are used to test if there are any tail
8578   // iterations left once the vector loop has completed.
8579   // Note that when the vectorized epilogue is skipped due to iteration count
8580   // check, then the resume value for the induction variable comes from
8581   // the trip count of the main vector loop, hence passing the AdditionalBypass
8582   // argument.
8583   createInductionResumeValues(Lp, CountRoundDown,
8584                               {VecEpilogueIterationCountCheck,
8585                                EPI.VectorTripCount} /* AdditionalBypass */);
8586 
8587   AddRuntimeUnrollDisableMetaData(Lp);
8588   return completeLoopSkeleton(Lp, OrigLoopID);
8589 }
8590 
8591 BasicBlock *
8592 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8593     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8594 
8595   assert(EPI.TripCount &&
8596          "Expected trip count to have been safed in the first pass.");
8597   assert(
8598       (!isa<Instruction>(EPI.TripCount) ||
8599        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8600       "saved trip count does not dominate insertion point.");
8601   Value *TC = EPI.TripCount;
8602   IRBuilder<> Builder(Insert->getTerminator());
8603   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8604 
8605   // Generate code to check if the loop's trip count is less than VF * UF of the
8606   // vector epilogue loop.
8607   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8608       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8609 
8610   Value *CheckMinIters = Builder.CreateICmp(
8611       P, Count,
8612       getRuntimeVF(Builder, Count->getType(), EPI.EpilogueVF * EPI.EpilogueUF),
8613       "min.epilog.iters.check");
8614 
8615   ReplaceInstWithInst(
8616       Insert->getTerminator(),
8617       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8618 
8619   LoopBypassBlocks.push_back(Insert);
8620   return Insert;
8621 }
8622 
8623 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8624   LLVM_DEBUG({
8625     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8626            << "Epilogue Loop VF:" << EPI.EpilogueVF
8627            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8628   });
8629 }
8630 
8631 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8632   DEBUG_WITH_TYPE(VerboseDebug, {
8633     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8634   });
8635 }
8636 
8637 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8638     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8639   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8640   bool PredicateAtRangeStart = Predicate(Range.Start);
8641 
8642   for (ElementCount TmpVF = Range.Start * 2;
8643        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8644     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8645       Range.End = TmpVF;
8646       break;
8647     }
8648 
8649   return PredicateAtRangeStart;
8650 }
8651 
8652 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8653 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8654 /// of VF's starting at a given VF and extending it as much as possible. Each
8655 /// vectorization decision can potentially shorten this sub-range during
8656 /// buildVPlan().
8657 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8658                                            ElementCount MaxVF) {
8659   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8660   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8661     VFRange SubRange = {VF, MaxVFPlusOne};
8662     VPlans.push_back(buildVPlan(SubRange));
8663     VF = SubRange.End;
8664   }
8665 }
8666 
8667 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8668                                          VPlanPtr &Plan) {
8669   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8670 
8671   // Look for cached value.
8672   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8673   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8674   if (ECEntryIt != EdgeMaskCache.end())
8675     return ECEntryIt->second;
8676 
8677   VPValue *SrcMask = createBlockInMask(Src, Plan);
8678 
8679   // The terminator has to be a branch inst!
8680   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8681   assert(BI && "Unexpected terminator found");
8682 
8683   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8684     return EdgeMaskCache[Edge] = SrcMask;
8685 
8686   // If source is an exiting block, we know the exit edge is dynamically dead
8687   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8688   // adding uses of an otherwise potentially dead instruction.
8689   if (OrigLoop->isLoopExiting(Src))
8690     return EdgeMaskCache[Edge] = SrcMask;
8691 
8692   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8693   assert(EdgeMask && "No Edge Mask found for condition");
8694 
8695   if (BI->getSuccessor(0) != Dst)
8696     EdgeMask = Builder.createNot(EdgeMask);
8697 
8698   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8699     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8700     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8701     // The select version does not introduce new UB if SrcMask is false and
8702     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8703     VPValue *False = Plan->getOrAddVPValue(
8704         ConstantInt::getFalse(BI->getCondition()->getType()));
8705     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8706   }
8707 
8708   return EdgeMaskCache[Edge] = EdgeMask;
8709 }
8710 
8711 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8712   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8713 
8714   // Look for cached value.
8715   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8716   if (BCEntryIt != BlockMaskCache.end())
8717     return BCEntryIt->second;
8718 
8719   // All-one mask is modelled as no-mask following the convention for masked
8720   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8721   VPValue *BlockMask = nullptr;
8722 
8723   if (OrigLoop->getHeader() == BB) {
8724     if (!CM.blockNeedsPredication(BB))
8725       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8726 
8727     // Create the block in mask as the first non-phi instruction in the block.
8728     VPBuilder::InsertPointGuard Guard(Builder);
8729     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8730     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8731 
8732     // Introduce the early-exit compare IV <= BTC to form header block mask.
8733     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8734     // Start by constructing the desired canonical IV.
8735     VPValue *IV = nullptr;
8736     if (Legal->getPrimaryInduction())
8737       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8738     else {
8739       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8740       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8741       IV = IVRecipe->getVPSingleValue();
8742     }
8743     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8744     bool TailFolded = !CM.isScalarEpilogueAllowed();
8745 
8746     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8747       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8748       // as a second argument, we only pass the IV here and extract the
8749       // tripcount from the transform state where codegen of the VP instructions
8750       // happen.
8751       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8752     } else {
8753       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8754     }
8755     return BlockMaskCache[BB] = BlockMask;
8756   }
8757 
8758   // This is the block mask. We OR all incoming edges.
8759   for (auto *Predecessor : predecessors(BB)) {
8760     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8761     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8762       return BlockMaskCache[BB] = EdgeMask;
8763 
8764     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8765       BlockMask = EdgeMask;
8766       continue;
8767     }
8768 
8769     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8770   }
8771 
8772   return BlockMaskCache[BB] = BlockMask;
8773 }
8774 
8775 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8776                                                 ArrayRef<VPValue *> Operands,
8777                                                 VFRange &Range,
8778                                                 VPlanPtr &Plan) {
8779   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8780          "Must be called with either a load or store");
8781 
8782   auto willWiden = [&](ElementCount VF) -> bool {
8783     if (VF.isScalar())
8784       return false;
8785     LoopVectorizationCostModel::InstWidening Decision =
8786         CM.getWideningDecision(I, VF);
8787     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8788            "CM decision should be taken at this point.");
8789     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8790       return true;
8791     if (CM.isScalarAfterVectorization(I, VF) ||
8792         CM.isProfitableToScalarize(I, VF))
8793       return false;
8794     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8795   };
8796 
8797   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8798     return nullptr;
8799 
8800   VPValue *Mask = nullptr;
8801   if (Legal->isMaskRequired(I))
8802     Mask = createBlockInMask(I->getParent(), Plan);
8803 
8804   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8805     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8806 
8807   StoreInst *Store = cast<StoreInst>(I);
8808   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8809                                             Mask);
8810 }
8811 
8812 VPWidenIntOrFpInductionRecipe *
8813 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8814                                            ArrayRef<VPValue *> Operands) const {
8815   // Check if this is an integer or fp induction. If so, build the recipe that
8816   // produces its scalar and vector values.
8817   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8818   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8819       II.getKind() == InductionDescriptor::IK_FpInduction) {
8820     assert(II.getStartValue() ==
8821            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8822     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8823     return new VPWidenIntOrFpInductionRecipe(
8824         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8825   }
8826 
8827   return nullptr;
8828 }
8829 
8830 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8831     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8832     VPlan &Plan) const {
8833   // Optimize the special case where the source is a constant integer
8834   // induction variable. Notice that we can only optimize the 'trunc' case
8835   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8836   // (c) other casts depend on pointer size.
8837 
8838   // Determine whether \p K is a truncation based on an induction variable that
8839   // can be optimized.
8840   auto isOptimizableIVTruncate =
8841       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8842     return [=](ElementCount VF) -> bool {
8843       return CM.isOptimizableIVTruncate(K, VF);
8844     };
8845   };
8846 
8847   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8848           isOptimizableIVTruncate(I), Range)) {
8849 
8850     InductionDescriptor II =
8851         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8852     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8853     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8854                                              Start, nullptr, I);
8855   }
8856   return nullptr;
8857 }
8858 
8859 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8860                                                 ArrayRef<VPValue *> Operands,
8861                                                 VPlanPtr &Plan) {
8862   // If all incoming values are equal, the incoming VPValue can be used directly
8863   // instead of creating a new VPBlendRecipe.
8864   VPValue *FirstIncoming = Operands[0];
8865   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8866         return FirstIncoming == Inc;
8867       })) {
8868     return Operands[0];
8869   }
8870 
8871   // We know that all PHIs in non-header blocks are converted into selects, so
8872   // we don't have to worry about the insertion order and we can just use the
8873   // builder. At this point we generate the predication tree. There may be
8874   // duplications since this is a simple recursive scan, but future
8875   // optimizations will clean it up.
8876   SmallVector<VPValue *, 2> OperandsWithMask;
8877   unsigned NumIncoming = Phi->getNumIncomingValues();
8878 
8879   for (unsigned In = 0; In < NumIncoming; In++) {
8880     VPValue *EdgeMask =
8881       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8882     assert((EdgeMask || NumIncoming == 1) &&
8883            "Multiple predecessors with one having a full mask");
8884     OperandsWithMask.push_back(Operands[In]);
8885     if (EdgeMask)
8886       OperandsWithMask.push_back(EdgeMask);
8887   }
8888   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8889 }
8890 
8891 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8892                                                    ArrayRef<VPValue *> Operands,
8893                                                    VFRange &Range) const {
8894 
8895   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8896       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8897       Range);
8898 
8899   if (IsPredicated)
8900     return nullptr;
8901 
8902   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8903   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8904              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8905              ID == Intrinsic::pseudoprobe ||
8906              ID == Intrinsic::experimental_noalias_scope_decl))
8907     return nullptr;
8908 
8909   auto willWiden = [&](ElementCount VF) -> bool {
8910     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8911     // The following case may be scalarized depending on the VF.
8912     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8913     // version of the instruction.
8914     // Is it beneficial to perform intrinsic call compared to lib call?
8915     bool NeedToScalarize = false;
8916     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8917     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8918     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8919     return UseVectorIntrinsic || !NeedToScalarize;
8920   };
8921 
8922   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8923     return nullptr;
8924 
8925   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8926   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8927 }
8928 
8929 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8930   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8931          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8932   // Instruction should be widened, unless it is scalar after vectorization,
8933   // scalarization is profitable or it is predicated.
8934   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8935     return CM.isScalarAfterVectorization(I, VF) ||
8936            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8937   };
8938   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8939                                                              Range);
8940 }
8941 
8942 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8943                                            ArrayRef<VPValue *> Operands) const {
8944   auto IsVectorizableOpcode = [](unsigned Opcode) {
8945     switch (Opcode) {
8946     case Instruction::Add:
8947     case Instruction::And:
8948     case Instruction::AShr:
8949     case Instruction::BitCast:
8950     case Instruction::FAdd:
8951     case Instruction::FCmp:
8952     case Instruction::FDiv:
8953     case Instruction::FMul:
8954     case Instruction::FNeg:
8955     case Instruction::FPExt:
8956     case Instruction::FPToSI:
8957     case Instruction::FPToUI:
8958     case Instruction::FPTrunc:
8959     case Instruction::FRem:
8960     case Instruction::FSub:
8961     case Instruction::ICmp:
8962     case Instruction::IntToPtr:
8963     case Instruction::LShr:
8964     case Instruction::Mul:
8965     case Instruction::Or:
8966     case Instruction::PtrToInt:
8967     case Instruction::SDiv:
8968     case Instruction::Select:
8969     case Instruction::SExt:
8970     case Instruction::Shl:
8971     case Instruction::SIToFP:
8972     case Instruction::SRem:
8973     case Instruction::Sub:
8974     case Instruction::Trunc:
8975     case Instruction::UDiv:
8976     case Instruction::UIToFP:
8977     case Instruction::URem:
8978     case Instruction::Xor:
8979     case Instruction::ZExt:
8980       return true;
8981     }
8982     return false;
8983   };
8984 
8985   if (!IsVectorizableOpcode(I->getOpcode()))
8986     return nullptr;
8987 
8988   // Success: widen this instruction.
8989   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8990 }
8991 
8992 void VPRecipeBuilder::fixHeaderPhis() {
8993   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8994   for (VPWidenPHIRecipe *R : PhisToFix) {
8995     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8996     VPRecipeBase *IncR =
8997         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8998     R->addOperand(IncR->getVPSingleValue());
8999   }
9000 }
9001 
9002 VPBasicBlock *VPRecipeBuilder::handleReplication(
9003     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
9004     VPlanPtr &Plan) {
9005   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
9006       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
9007       Range);
9008 
9009   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
9010       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
9011 
9012   // Even if the instruction is not marked as uniform, there are certain
9013   // intrinsic calls that can be effectively treated as such, so we check for
9014   // them here. Conservatively, we only do this for scalable vectors, since
9015   // for fixed-width VFs we can always fall back on full scalarization.
9016   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
9017     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
9018     case Intrinsic::assume:
9019     case Intrinsic::lifetime_start:
9020     case Intrinsic::lifetime_end:
9021       // For scalable vectors if one of the operands is variant then we still
9022       // want to mark as uniform, which will generate one instruction for just
9023       // the first lane of the vector. We can't scalarize the call in the same
9024       // way as for fixed-width vectors because we don't know how many lanes
9025       // there are.
9026       //
9027       // The reasons for doing it this way for scalable vectors are:
9028       //   1. For the assume intrinsic generating the instruction for the first
9029       //      lane is still be better than not generating any at all. For
9030       //      example, the input may be a splat across all lanes.
9031       //   2. For the lifetime start/end intrinsics the pointer operand only
9032       //      does anything useful when the input comes from a stack object,
9033       //      which suggests it should always be uniform. For non-stack objects
9034       //      the effect is to poison the object, which still allows us to
9035       //      remove the call.
9036       IsUniform = true;
9037       break;
9038     default:
9039       break;
9040     }
9041   }
9042 
9043   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
9044                                        IsUniform, IsPredicated);
9045   setRecipe(I, Recipe);
9046   Plan->addVPValue(I, Recipe);
9047 
9048   // Find if I uses a predicated instruction. If so, it will use its scalar
9049   // value. Avoid hoisting the insert-element which packs the scalar value into
9050   // a vector value, as that happens iff all users use the vector value.
9051   for (VPValue *Op : Recipe->operands()) {
9052     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
9053     if (!PredR)
9054       continue;
9055     auto *RepR =
9056         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
9057     assert(RepR->isPredicated() &&
9058            "expected Replicate recipe to be predicated");
9059     RepR->setAlsoPack(false);
9060   }
9061 
9062   // Finalize the recipe for Instr, first if it is not predicated.
9063   if (!IsPredicated) {
9064     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
9065     VPBB->appendRecipe(Recipe);
9066     return VPBB;
9067   }
9068   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
9069   assert(VPBB->getSuccessors().empty() &&
9070          "VPBB has successors when handling predicated replication.");
9071   // Record predicated instructions for above packing optimizations.
9072   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
9073   VPBlockUtils::insertBlockAfter(Region, VPBB);
9074   auto *RegSucc = new VPBasicBlock();
9075   VPBlockUtils::insertBlockAfter(RegSucc, Region);
9076   return RegSucc;
9077 }
9078 
9079 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
9080                                                       VPRecipeBase *PredRecipe,
9081                                                       VPlanPtr &Plan) {
9082   // Instructions marked for predication are replicated and placed under an
9083   // if-then construct to prevent side-effects.
9084 
9085   // Generate recipes to compute the block mask for this region.
9086   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
9087 
9088   // Build the triangular if-then region.
9089   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
9090   assert(Instr->getParent() && "Predicated instruction not in any basic block");
9091   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
9092   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
9093   auto *PHIRecipe = Instr->getType()->isVoidTy()
9094                         ? nullptr
9095                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
9096   if (PHIRecipe) {
9097     Plan->removeVPValueFor(Instr);
9098     Plan->addVPValue(Instr, PHIRecipe);
9099   }
9100   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
9101   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
9102   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
9103 
9104   // Note: first set Entry as region entry and then connect successors starting
9105   // from it in order, to propagate the "parent" of each VPBasicBlock.
9106   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
9107   VPBlockUtils::connectBlocks(Pred, Exit);
9108 
9109   return Region;
9110 }
9111 
9112 VPRecipeOrVPValueTy
9113 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
9114                                         ArrayRef<VPValue *> Operands,
9115                                         VFRange &Range, VPlanPtr &Plan) {
9116   // First, check for specific widening recipes that deal with calls, memory
9117   // operations, inductions and Phi nodes.
9118   if (auto *CI = dyn_cast<CallInst>(Instr))
9119     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
9120 
9121   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
9122     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
9123 
9124   VPRecipeBase *Recipe;
9125   if (auto Phi = dyn_cast<PHINode>(Instr)) {
9126     if (Phi->getParent() != OrigLoop->getHeader())
9127       return tryToBlend(Phi, Operands, Plan);
9128     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
9129       return toVPRecipeResult(Recipe);
9130 
9131     VPWidenPHIRecipe *PhiRecipe = nullptr;
9132     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
9133       VPValue *StartV = Operands[0];
9134       if (Legal->isReductionVariable(Phi)) {
9135         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9136         assert(RdxDesc.getRecurrenceStartValue() ==
9137                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
9138         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
9139                                              CM.isInLoopReduction(Phi),
9140                                              CM.useOrderedReductions(RdxDesc));
9141       } else {
9142         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
9143       }
9144 
9145       // Record the incoming value from the backedge, so we can add the incoming
9146       // value from the backedge after all recipes have been created.
9147       recordRecipeOf(cast<Instruction>(
9148           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
9149       PhisToFix.push_back(PhiRecipe);
9150     } else {
9151       // TODO: record start and backedge value for remaining pointer induction
9152       // phis.
9153       assert(Phi->getType()->isPointerTy() &&
9154              "only pointer phis should be handled here");
9155       PhiRecipe = new VPWidenPHIRecipe(Phi);
9156     }
9157 
9158     return toVPRecipeResult(PhiRecipe);
9159   }
9160 
9161   if (isa<TruncInst>(Instr) &&
9162       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9163                                                Range, *Plan)))
9164     return toVPRecipeResult(Recipe);
9165 
9166   if (!shouldWiden(Instr, Range))
9167     return nullptr;
9168 
9169   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9170     return toVPRecipeResult(new VPWidenGEPRecipe(
9171         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9172 
9173   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9174     bool InvariantCond =
9175         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9176     return toVPRecipeResult(new VPWidenSelectRecipe(
9177         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9178   }
9179 
9180   return toVPRecipeResult(tryToWiden(Instr, Operands));
9181 }
9182 
9183 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9184                                                         ElementCount MaxVF) {
9185   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9186 
9187   // Collect instructions from the original loop that will become trivially dead
9188   // in the vectorized loop. We don't need to vectorize these instructions. For
9189   // example, original induction update instructions can become dead because we
9190   // separately emit induction "steps" when generating code for the new loop.
9191   // Similarly, we create a new latch condition when setting up the structure
9192   // of the new loop, so the old one can become dead.
9193   SmallPtrSet<Instruction *, 4> DeadInstructions;
9194   collectTriviallyDeadInstructions(DeadInstructions);
9195 
9196   // Add assume instructions we need to drop to DeadInstructions, to prevent
9197   // them from being added to the VPlan.
9198   // TODO: We only need to drop assumes in blocks that get flattend. If the
9199   // control flow is preserved, we should keep them.
9200   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9201   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9202 
9203   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9204   // Dead instructions do not need sinking. Remove them from SinkAfter.
9205   for (Instruction *I : DeadInstructions)
9206     SinkAfter.erase(I);
9207 
9208   // Cannot sink instructions after dead instructions (there won't be any
9209   // recipes for them). Instead, find the first non-dead previous instruction.
9210   for (auto &P : Legal->getSinkAfter()) {
9211     Instruction *SinkTarget = P.second;
9212     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9213     (void)FirstInst;
9214     while (DeadInstructions.contains(SinkTarget)) {
9215       assert(
9216           SinkTarget != FirstInst &&
9217           "Must find a live instruction (at least the one feeding the "
9218           "first-order recurrence PHI) before reaching beginning of the block");
9219       SinkTarget = SinkTarget->getPrevNode();
9220       assert(SinkTarget != P.first &&
9221              "sink source equals target, no sinking required");
9222     }
9223     P.second = SinkTarget;
9224   }
9225 
9226   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9227   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9228     VFRange SubRange = {VF, MaxVFPlusOne};
9229     VPlans.push_back(
9230         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9231     VF = SubRange.End;
9232   }
9233 }
9234 
9235 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9236     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9237     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9238 
9239   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9240 
9241   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9242 
9243   // ---------------------------------------------------------------------------
9244   // Pre-construction: record ingredients whose recipes we'll need to further
9245   // process after constructing the initial VPlan.
9246   // ---------------------------------------------------------------------------
9247 
9248   // Mark instructions we'll need to sink later and their targets as
9249   // ingredients whose recipe we'll need to record.
9250   for (auto &Entry : SinkAfter) {
9251     RecipeBuilder.recordRecipeOf(Entry.first);
9252     RecipeBuilder.recordRecipeOf(Entry.second);
9253   }
9254   for (auto &Reduction : CM.getInLoopReductionChains()) {
9255     PHINode *Phi = Reduction.first;
9256     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9257     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9258 
9259     RecipeBuilder.recordRecipeOf(Phi);
9260     for (auto &R : ReductionOperations) {
9261       RecipeBuilder.recordRecipeOf(R);
9262       // For min/max reducitons, where we have a pair of icmp/select, we also
9263       // need to record the ICmp recipe, so it can be removed later.
9264       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9265              "Only min/max recurrences allowed for inloop reductions");
9266       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9267         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9268     }
9269   }
9270 
9271   // For each interleave group which is relevant for this (possibly trimmed)
9272   // Range, add it to the set of groups to be later applied to the VPlan and add
9273   // placeholders for its members' Recipes which we'll be replacing with a
9274   // single VPInterleaveRecipe.
9275   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9276     auto applyIG = [IG, this](ElementCount VF) -> bool {
9277       return (VF.isVector() && // Query is illegal for VF == 1
9278               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9279                   LoopVectorizationCostModel::CM_Interleave);
9280     };
9281     if (!getDecisionAndClampRange(applyIG, Range))
9282       continue;
9283     InterleaveGroups.insert(IG);
9284     for (unsigned i = 0; i < IG->getFactor(); i++)
9285       if (Instruction *Member = IG->getMember(i))
9286         RecipeBuilder.recordRecipeOf(Member);
9287   };
9288 
9289   // ---------------------------------------------------------------------------
9290   // Build initial VPlan: Scan the body of the loop in a topological order to
9291   // visit each basic block after having visited its predecessor basic blocks.
9292   // ---------------------------------------------------------------------------
9293 
9294   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9295   auto Plan = std::make_unique<VPlan>();
9296   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
9297   Plan->setEntry(VPBB);
9298 
9299   // Scan the body of the loop in a topological order to visit each basic block
9300   // after having visited its predecessor basic blocks.
9301   LoopBlocksDFS DFS(OrigLoop);
9302   DFS.perform(LI);
9303 
9304   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9305     // Relevant instructions from basic block BB will be grouped into VPRecipe
9306     // ingredients and fill a new VPBasicBlock.
9307     unsigned VPBBsForBB = 0;
9308     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9309     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9310     VPBB = FirstVPBBForBB;
9311     Builder.setInsertPoint(VPBB);
9312 
9313     // Introduce each ingredient into VPlan.
9314     // TODO: Model and preserve debug instrinsics in VPlan.
9315     for (Instruction &I : BB->instructionsWithoutDebug()) {
9316       Instruction *Instr = &I;
9317 
9318       // First filter out irrelevant instructions, to ensure no recipes are
9319       // built for them.
9320       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9321         continue;
9322 
9323       SmallVector<VPValue *, 4> Operands;
9324       auto *Phi = dyn_cast<PHINode>(Instr);
9325       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9326         Operands.push_back(Plan->getOrAddVPValue(
9327             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9328       } else {
9329         auto OpRange = Plan->mapToVPValues(Instr->operands());
9330         Operands = {OpRange.begin(), OpRange.end()};
9331       }
9332       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9333               Instr, Operands, Range, Plan)) {
9334         // If Instr can be simplified to an existing VPValue, use it.
9335         if (RecipeOrValue.is<VPValue *>()) {
9336           auto *VPV = RecipeOrValue.get<VPValue *>();
9337           Plan->addVPValue(Instr, VPV);
9338           // If the re-used value is a recipe, register the recipe for the
9339           // instruction, in case the recipe for Instr needs to be recorded.
9340           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9341             RecipeBuilder.setRecipe(Instr, R);
9342           continue;
9343         }
9344         // Otherwise, add the new recipe.
9345         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9346         for (auto *Def : Recipe->definedValues()) {
9347           auto *UV = Def->getUnderlyingValue();
9348           Plan->addVPValue(UV, Def);
9349         }
9350 
9351         RecipeBuilder.setRecipe(Instr, Recipe);
9352         VPBB->appendRecipe(Recipe);
9353         continue;
9354       }
9355 
9356       // Otherwise, if all widening options failed, Instruction is to be
9357       // replicated. This may create a successor for VPBB.
9358       VPBasicBlock *NextVPBB =
9359           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9360       if (NextVPBB != VPBB) {
9361         VPBB = NextVPBB;
9362         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9363                                     : "");
9364       }
9365     }
9366   }
9367 
9368   RecipeBuilder.fixHeaderPhis();
9369 
9370   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
9371   // may also be empty, such as the last one VPBB, reflecting original
9372   // basic-blocks with no recipes.
9373   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
9374   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
9375   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
9376   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
9377   delete PreEntry;
9378 
9379   // ---------------------------------------------------------------------------
9380   // Transform initial VPlan: Apply previously taken decisions, in order, to
9381   // bring the VPlan to its final state.
9382   // ---------------------------------------------------------------------------
9383 
9384   // Apply Sink-After legal constraints.
9385   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9386     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9387     if (Region && Region->isReplicator()) {
9388       assert(Region->getNumSuccessors() == 1 &&
9389              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9390       assert(R->getParent()->size() == 1 &&
9391              "A recipe in an original replicator region must be the only "
9392              "recipe in its block");
9393       return Region;
9394     }
9395     return nullptr;
9396   };
9397   for (auto &Entry : SinkAfter) {
9398     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9399     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9400 
9401     auto *TargetRegion = GetReplicateRegion(Target);
9402     auto *SinkRegion = GetReplicateRegion(Sink);
9403     if (!SinkRegion) {
9404       // If the sink source is not a replicate region, sink the recipe directly.
9405       if (TargetRegion) {
9406         // The target is in a replication region, make sure to move Sink to
9407         // the block after it, not into the replication region itself.
9408         VPBasicBlock *NextBlock =
9409             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9410         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9411       } else
9412         Sink->moveAfter(Target);
9413       continue;
9414     }
9415 
9416     // The sink source is in a replicate region. Unhook the region from the CFG.
9417     auto *SinkPred = SinkRegion->getSinglePredecessor();
9418     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9419     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9420     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9421     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9422 
9423     if (TargetRegion) {
9424       // The target recipe is also in a replicate region, move the sink region
9425       // after the target region.
9426       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9427       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9428       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9429       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9430     } else {
9431       // The sink source is in a replicate region, we need to move the whole
9432       // replicate region, which should only contain a single recipe in the
9433       // main block.
9434       auto *SplitBlock =
9435           Target->getParent()->splitAt(std::next(Target->getIterator()));
9436 
9437       auto *SplitPred = SplitBlock->getSinglePredecessor();
9438 
9439       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9440       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9441       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9442       if (VPBB == SplitPred)
9443         VPBB = SplitBlock;
9444     }
9445   }
9446 
9447   // Adjust the recipes for any inloop reductions.
9448   adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start);
9449 
9450   // Introduce a recipe to combine the incoming and previous values of a
9451   // first-order recurrence.
9452   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9453     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9454     if (!RecurPhi)
9455       continue;
9456 
9457     auto *RecurSplice = cast<VPInstruction>(
9458         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9459                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9460 
9461     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9462     if (auto *Region = GetReplicateRegion(PrevRecipe)) {
9463       VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor());
9464       RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi());
9465     } else
9466       RecurSplice->moveAfter(PrevRecipe);
9467     RecurPhi->replaceAllUsesWith(RecurSplice);
9468     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9469     // all users.
9470     RecurSplice->setOperand(0, RecurPhi);
9471   }
9472 
9473   // Interleave memory: for each Interleave Group we marked earlier as relevant
9474   // for this VPlan, replace the Recipes widening its memory instructions with a
9475   // single VPInterleaveRecipe at its insertion point.
9476   for (auto IG : InterleaveGroups) {
9477     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9478         RecipeBuilder.getRecipe(IG->getInsertPos()));
9479     SmallVector<VPValue *, 4> StoredValues;
9480     for (unsigned i = 0; i < IG->getFactor(); ++i)
9481       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9482         auto *StoreR =
9483             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9484         StoredValues.push_back(StoreR->getStoredValue());
9485       }
9486 
9487     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9488                                         Recipe->getMask());
9489     VPIG->insertBefore(Recipe);
9490     unsigned J = 0;
9491     for (unsigned i = 0; i < IG->getFactor(); ++i)
9492       if (Instruction *Member = IG->getMember(i)) {
9493         if (!Member->getType()->isVoidTy()) {
9494           VPValue *OriginalV = Plan->getVPValue(Member);
9495           Plan->removeVPValueFor(Member);
9496           Plan->addVPValue(Member, VPIG->getVPValue(J));
9497           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9498           J++;
9499         }
9500         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9501       }
9502   }
9503 
9504   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9505   // in ways that accessing values using original IR values is incorrect.
9506   Plan->disableValue2VPValue();
9507 
9508   VPlanTransforms::sinkScalarOperands(*Plan);
9509   VPlanTransforms::mergeReplicateRegions(*Plan);
9510 
9511   std::string PlanName;
9512   raw_string_ostream RSO(PlanName);
9513   ElementCount VF = Range.Start;
9514   Plan->addVF(VF);
9515   RSO << "Initial VPlan for VF={" << VF;
9516   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9517     Plan->addVF(VF);
9518     RSO << "," << VF;
9519   }
9520   RSO << "},UF>=1";
9521   RSO.flush();
9522   Plan->setName(PlanName);
9523 
9524   return Plan;
9525 }
9526 
9527 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9528   // Outer loop handling: They may require CFG and instruction level
9529   // transformations before even evaluating whether vectorization is profitable.
9530   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9531   // the vectorization pipeline.
9532   assert(!OrigLoop->isInnermost());
9533   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9534 
9535   // Create new empty VPlan
9536   auto Plan = std::make_unique<VPlan>();
9537 
9538   // Build hierarchical CFG
9539   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9540   HCFGBuilder.buildHierarchicalCFG();
9541 
9542   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9543        VF *= 2)
9544     Plan->addVF(VF);
9545 
9546   if (EnableVPlanPredication) {
9547     VPlanPredicator VPP(*Plan);
9548     VPP.predicate();
9549 
9550     // Avoid running transformation to recipes until masked code generation in
9551     // VPlan-native path is in place.
9552     return Plan;
9553   }
9554 
9555   SmallPtrSet<Instruction *, 1> DeadInstructions;
9556   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9557                                              Legal->getInductionVars(),
9558                                              DeadInstructions, *PSE.getSE());
9559   return Plan;
9560 }
9561 
9562 // Adjust the recipes for reductions. For in-loop reductions the chain of
9563 // instructions leading from the loop exit instr to the phi need to be converted
9564 // to reductions, with one operand being vector and the other being the scalar
9565 // reduction chain. For other reductions, a select is introduced between the phi
9566 // and live-out recipes when folding the tail.
9567 void LoopVectorizationPlanner::adjustRecipesForReductions(
9568     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9569     ElementCount MinVF) {
9570   for (auto &Reduction : CM.getInLoopReductionChains()) {
9571     PHINode *Phi = Reduction.first;
9572     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9573     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9574 
9575     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9576       continue;
9577 
9578     // ReductionOperations are orders top-down from the phi's use to the
9579     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9580     // which of the two operands will remain scalar and which will be reduced.
9581     // For minmax the chain will be the select instructions.
9582     Instruction *Chain = Phi;
9583     for (Instruction *R : ReductionOperations) {
9584       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9585       RecurKind Kind = RdxDesc.getRecurrenceKind();
9586 
9587       VPValue *ChainOp = Plan->getVPValue(Chain);
9588       unsigned FirstOpId;
9589       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9590              "Only min/max recurrences allowed for inloop reductions");
9591       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9592         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9593                "Expected to replace a VPWidenSelectSC");
9594         FirstOpId = 1;
9595       } else {
9596         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9597                "Expected to replace a VPWidenSC");
9598         FirstOpId = 0;
9599       }
9600       unsigned VecOpId =
9601           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9602       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9603 
9604       auto *CondOp = CM.foldTailByMasking()
9605                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9606                          : nullptr;
9607       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9608           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9609       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9610       Plan->removeVPValueFor(R);
9611       Plan->addVPValue(R, RedRecipe);
9612       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9613       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9614       WidenRecipe->eraseFromParent();
9615 
9616       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9617         VPRecipeBase *CompareRecipe =
9618             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9619         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9620                "Expected to replace a VPWidenSC");
9621         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9622                "Expected no remaining users");
9623         CompareRecipe->eraseFromParent();
9624       }
9625       Chain = R;
9626     }
9627   }
9628 
9629   // If tail is folded by masking, introduce selects between the phi
9630   // and the live-out instruction of each reduction, at the end of the latch.
9631   if (CM.foldTailByMasking()) {
9632     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9633       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9634       if (!PhiR || PhiR->isInLoop())
9635         continue;
9636       Builder.setInsertPoint(LatchVPBB);
9637       VPValue *Cond =
9638           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9639       VPValue *Red = PhiR->getBackedgeValue();
9640       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9641     }
9642   }
9643 }
9644 
9645 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9646 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9647                                VPSlotTracker &SlotTracker) const {
9648   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9649   IG->getInsertPos()->printAsOperand(O, false);
9650   O << ", ";
9651   getAddr()->printAsOperand(O, SlotTracker);
9652   VPValue *Mask = getMask();
9653   if (Mask) {
9654     O << ", ";
9655     Mask->printAsOperand(O, SlotTracker);
9656   }
9657 
9658   unsigned OpIdx = 0;
9659   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9660     if (!IG->getMember(i))
9661       continue;
9662     if (getNumStoreOperands() > 0) {
9663       O << "\n" << Indent << "  store ";
9664       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9665       O << " to index " << i;
9666     } else {
9667       O << "\n" << Indent << "  ";
9668       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9669       O << " = load from index " << i;
9670     }
9671     ++OpIdx;
9672   }
9673 }
9674 #endif
9675 
9676 void VPWidenCallRecipe::execute(VPTransformState &State) {
9677   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9678                                   *this, State);
9679 }
9680 
9681 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9682   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9683                                     this, *this, InvariantCond, State);
9684 }
9685 
9686 void VPWidenRecipe::execute(VPTransformState &State) {
9687   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9688 }
9689 
9690 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9691   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9692                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9693                       IsIndexLoopInvariant, State);
9694 }
9695 
9696 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9697   assert(!State.Instance && "Int or FP induction being replicated.");
9698   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9699                                    getTruncInst(), getVPValue(0),
9700                                    getCastValue(), State);
9701 }
9702 
9703 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9704   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9705                                  State);
9706 }
9707 
9708 void VPBlendRecipe::execute(VPTransformState &State) {
9709   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9710   // We know that all PHIs in non-header blocks are converted into
9711   // selects, so we don't have to worry about the insertion order and we
9712   // can just use the builder.
9713   // At this point we generate the predication tree. There may be
9714   // duplications since this is a simple recursive scan, but future
9715   // optimizations will clean it up.
9716 
9717   unsigned NumIncoming = getNumIncomingValues();
9718 
9719   // Generate a sequence of selects of the form:
9720   // SELECT(Mask3, In3,
9721   //        SELECT(Mask2, In2,
9722   //               SELECT(Mask1, In1,
9723   //                      In0)))
9724   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9725   // are essentially undef are taken from In0.
9726   InnerLoopVectorizer::VectorParts Entry(State.UF);
9727   for (unsigned In = 0; In < NumIncoming; ++In) {
9728     for (unsigned Part = 0; Part < State.UF; ++Part) {
9729       // We might have single edge PHIs (blocks) - use an identity
9730       // 'select' for the first PHI operand.
9731       Value *In0 = State.get(getIncomingValue(In), Part);
9732       if (In == 0)
9733         Entry[Part] = In0; // Initialize with the first incoming value.
9734       else {
9735         // Select between the current value and the previous incoming edge
9736         // based on the incoming mask.
9737         Value *Cond = State.get(getMask(In), Part);
9738         Entry[Part] =
9739             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9740       }
9741     }
9742   }
9743   for (unsigned Part = 0; Part < State.UF; ++Part)
9744     State.set(this, Entry[Part], Part);
9745 }
9746 
9747 void VPInterleaveRecipe::execute(VPTransformState &State) {
9748   assert(!State.Instance && "Interleave group being replicated.");
9749   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9750                                       getStoredValues(), getMask());
9751 }
9752 
9753 void VPReductionRecipe::execute(VPTransformState &State) {
9754   assert(!State.Instance && "Reduction being replicated.");
9755   Value *PrevInChain = State.get(getChainOp(), 0);
9756   for (unsigned Part = 0; Part < State.UF; ++Part) {
9757     RecurKind Kind = RdxDesc->getRecurrenceKind();
9758     bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9759     Value *NewVecOp = State.get(getVecOp(), Part);
9760     if (VPValue *Cond = getCondOp()) {
9761       Value *NewCond = State.get(Cond, Part);
9762       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9763       Value *Iden = RdxDesc->getRecurrenceIdentity(
9764           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9765       Value *IdenVec =
9766           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9767       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9768       NewVecOp = Select;
9769     }
9770     Value *NewRed;
9771     Value *NextInChain;
9772     if (IsOrdered) {
9773       if (State.VF.isVector())
9774         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9775                                         PrevInChain);
9776       else
9777         NewRed = State.Builder.CreateBinOp(
9778             (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(),
9779             PrevInChain, NewVecOp);
9780       PrevInChain = NewRed;
9781     } else {
9782       PrevInChain = State.get(getChainOp(), Part);
9783       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9784     }
9785     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9786       NextInChain =
9787           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9788                          NewRed, PrevInChain);
9789     } else if (IsOrdered)
9790       NextInChain = NewRed;
9791     else {
9792       NextInChain = State.Builder.CreateBinOp(
9793           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9794           PrevInChain);
9795     }
9796     State.set(this, NextInChain, Part);
9797   }
9798 }
9799 
9800 void VPReplicateRecipe::execute(VPTransformState &State) {
9801   if (State.Instance) { // Generate a single instance.
9802     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9803     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9804                                     *State.Instance, IsPredicated, State);
9805     // Insert scalar instance packing it into a vector.
9806     if (AlsoPack && State.VF.isVector()) {
9807       // If we're constructing lane 0, initialize to start from poison.
9808       if (State.Instance->Lane.isFirstLane()) {
9809         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9810         Value *Poison = PoisonValue::get(
9811             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9812         State.set(this, Poison, State.Instance->Part);
9813       }
9814       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9815     }
9816     return;
9817   }
9818 
9819   // Generate scalar instances for all VF lanes of all UF parts, unless the
9820   // instruction is uniform inwhich case generate only the first lane for each
9821   // of the UF parts.
9822   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9823   assert((!State.VF.isScalable() || IsUniform) &&
9824          "Can't scalarize a scalable vector");
9825   for (unsigned Part = 0; Part < State.UF; ++Part)
9826     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9827       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9828                                       VPIteration(Part, Lane), IsPredicated,
9829                                       State);
9830 }
9831 
9832 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9833   assert(State.Instance && "Branch on Mask works only on single instance.");
9834 
9835   unsigned Part = State.Instance->Part;
9836   unsigned Lane = State.Instance->Lane.getKnownLane();
9837 
9838   Value *ConditionBit = nullptr;
9839   VPValue *BlockInMask = getMask();
9840   if (BlockInMask) {
9841     ConditionBit = State.get(BlockInMask, Part);
9842     if (ConditionBit->getType()->isVectorTy())
9843       ConditionBit = State.Builder.CreateExtractElement(
9844           ConditionBit, State.Builder.getInt32(Lane));
9845   } else // Block in mask is all-one.
9846     ConditionBit = State.Builder.getTrue();
9847 
9848   // Replace the temporary unreachable terminator with a new conditional branch,
9849   // whose two destinations will be set later when they are created.
9850   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9851   assert(isa<UnreachableInst>(CurrentTerminator) &&
9852          "Expected to replace unreachable terminator with conditional branch.");
9853   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9854   CondBr->setSuccessor(0, nullptr);
9855   ReplaceInstWithInst(CurrentTerminator, CondBr);
9856 }
9857 
9858 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9859   assert(State.Instance && "Predicated instruction PHI works per instance.");
9860   Instruction *ScalarPredInst =
9861       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9862   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9863   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9864   assert(PredicatingBB && "Predicated block has no single predecessor.");
9865   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9866          "operand must be VPReplicateRecipe");
9867 
9868   // By current pack/unpack logic we need to generate only a single phi node: if
9869   // a vector value for the predicated instruction exists at this point it means
9870   // the instruction has vector users only, and a phi for the vector value is
9871   // needed. In this case the recipe of the predicated instruction is marked to
9872   // also do that packing, thereby "hoisting" the insert-element sequence.
9873   // Otherwise, a phi node for the scalar value is needed.
9874   unsigned Part = State.Instance->Part;
9875   if (State.hasVectorValue(getOperand(0), Part)) {
9876     Value *VectorValue = State.get(getOperand(0), Part);
9877     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9878     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9879     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9880     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9881     if (State.hasVectorValue(this, Part))
9882       State.reset(this, VPhi, Part);
9883     else
9884       State.set(this, VPhi, Part);
9885     // NOTE: Currently we need to update the value of the operand, so the next
9886     // predicated iteration inserts its generated value in the correct vector.
9887     State.reset(getOperand(0), VPhi, Part);
9888   } else {
9889     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9890     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9891     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9892                      PredicatingBB);
9893     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9894     if (State.hasScalarValue(this, *State.Instance))
9895       State.reset(this, Phi, *State.Instance);
9896     else
9897       State.set(this, Phi, *State.Instance);
9898     // NOTE: Currently we need to update the value of the operand, so the next
9899     // predicated iteration inserts its generated value in the correct vector.
9900     State.reset(getOperand(0), Phi, *State.Instance);
9901   }
9902 }
9903 
9904 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9905   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9906   State.ILV->vectorizeMemoryInstruction(
9907       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9908       StoredValue, getMask());
9909 }
9910 
9911 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9912 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9913 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9914 // for predication.
9915 static ScalarEpilogueLowering getScalarEpilogueLowering(
9916     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9917     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9918     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9919     LoopVectorizationLegality &LVL) {
9920   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9921   // don't look at hints or options, and don't request a scalar epilogue.
9922   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9923   // LoopAccessInfo (due to code dependency and not being able to reliably get
9924   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9925   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9926   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9927   // back to the old way and vectorize with versioning when forced. See D81345.)
9928   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9929                                                       PGSOQueryType::IRPass) &&
9930                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9931     return CM_ScalarEpilogueNotAllowedOptSize;
9932 
9933   // 2) If set, obey the directives
9934   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9935     switch (PreferPredicateOverEpilogue) {
9936     case PreferPredicateTy::ScalarEpilogue:
9937       return CM_ScalarEpilogueAllowed;
9938     case PreferPredicateTy::PredicateElseScalarEpilogue:
9939       return CM_ScalarEpilogueNotNeededUsePredicate;
9940     case PreferPredicateTy::PredicateOrDontVectorize:
9941       return CM_ScalarEpilogueNotAllowedUsePredicate;
9942     };
9943   }
9944 
9945   // 3) If set, obey the hints
9946   switch (Hints.getPredicate()) {
9947   case LoopVectorizeHints::FK_Enabled:
9948     return CM_ScalarEpilogueNotNeededUsePredicate;
9949   case LoopVectorizeHints::FK_Disabled:
9950     return CM_ScalarEpilogueAllowed;
9951   };
9952 
9953   // 4) if the TTI hook indicates this is profitable, request predication.
9954   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9955                                        LVL.getLAI()))
9956     return CM_ScalarEpilogueNotNeededUsePredicate;
9957 
9958   return CM_ScalarEpilogueAllowed;
9959 }
9960 
9961 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9962   // If Values have been set for this Def return the one relevant for \p Part.
9963   if (hasVectorValue(Def, Part))
9964     return Data.PerPartOutput[Def][Part];
9965 
9966   if (!hasScalarValue(Def, {Part, 0})) {
9967     Value *IRV = Def->getLiveInIRValue();
9968     Value *B = ILV->getBroadcastInstrs(IRV);
9969     set(Def, B, Part);
9970     return B;
9971   }
9972 
9973   Value *ScalarValue = get(Def, {Part, 0});
9974   // If we aren't vectorizing, we can just copy the scalar map values over
9975   // to the vector map.
9976   if (VF.isScalar()) {
9977     set(Def, ScalarValue, Part);
9978     return ScalarValue;
9979   }
9980 
9981   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9982   bool IsUniform = RepR && RepR->isUniform();
9983 
9984   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9985   // Check if there is a scalar value for the selected lane.
9986   if (!hasScalarValue(Def, {Part, LastLane})) {
9987     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9988     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9989            "unexpected recipe found to be invariant");
9990     IsUniform = true;
9991     LastLane = 0;
9992   }
9993 
9994   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9995   // Set the insert point after the last scalarized instruction or after the
9996   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
9997   // will directly follow the scalar definitions.
9998   auto OldIP = Builder.saveIP();
9999   auto NewIP =
10000       isa<PHINode>(LastInst)
10001           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10002           : std::next(BasicBlock::iterator(LastInst));
10003   Builder.SetInsertPoint(&*NewIP);
10004 
10005   // However, if we are vectorizing, we need to construct the vector values.
10006   // If the value is known to be uniform after vectorization, we can just
10007   // broadcast the scalar value corresponding to lane zero for each unroll
10008   // iteration. Otherwise, we construct the vector values using
10009   // insertelement instructions. Since the resulting vectors are stored in
10010   // State, we will only generate the insertelements once.
10011   Value *VectorValue = nullptr;
10012   if (IsUniform) {
10013     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10014     set(Def, VectorValue, Part);
10015   } else {
10016     // Initialize packing with insertelements to start from undef.
10017     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10018     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10019     set(Def, Undef, Part);
10020     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10021       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10022     VectorValue = get(Def, Part);
10023   }
10024   Builder.restoreIP(OldIP);
10025   return VectorValue;
10026 }
10027 
10028 // Process the loop in the VPlan-native vectorization path. This path builds
10029 // VPlan upfront in the vectorization pipeline, which allows to apply
10030 // VPlan-to-VPlan transformations from the very beginning without modifying the
10031 // input LLVM IR.
10032 static bool processLoopInVPlanNativePath(
10033     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10034     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10035     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10036     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10037     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10038     LoopVectorizationRequirements &Requirements) {
10039 
10040   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10041     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10042     return false;
10043   }
10044   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10045   Function *F = L->getHeader()->getParent();
10046   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10047 
10048   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10049       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10050 
10051   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10052                                 &Hints, IAI);
10053   // Use the planner for outer loop vectorization.
10054   // TODO: CM is not used at this point inside the planner. Turn CM into an
10055   // optional argument if we don't need it in the future.
10056   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10057                                Requirements, ORE);
10058 
10059   // Get user vectorization factor.
10060   ElementCount UserVF = Hints.getWidth();
10061 
10062   CM.collectElementTypesForWidening();
10063 
10064   // Plan how to best vectorize, return the best VF and its cost.
10065   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10066 
10067   // If we are stress testing VPlan builds, do not attempt to generate vector
10068   // code. Masked vector code generation support will follow soon.
10069   // Also, do not attempt to vectorize if no vector code will be produced.
10070   if (VPlanBuildStressTest || EnableVPlanPredication ||
10071       VectorizationFactor::Disabled() == VF)
10072     return false;
10073 
10074   LVP.setBestPlan(VF.Width, 1);
10075 
10076   {
10077     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10078                              F->getParent()->getDataLayout());
10079     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10080                            &CM, BFI, PSI, Checks);
10081     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10082                       << L->getHeader()->getParent()->getName() << "\"\n");
10083     LVP.executePlan(LB, DT);
10084   }
10085 
10086   // Mark the loop as already vectorized to avoid vectorizing again.
10087   Hints.setAlreadyVectorized();
10088   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10089   return true;
10090 }
10091 
10092 // Emit a remark if there are stores to floats that required a floating point
10093 // extension. If the vectorized loop was generated with floating point there
10094 // will be a performance penalty from the conversion overhead and the change in
10095 // the vector width.
10096 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10097   SmallVector<Instruction *, 4> Worklist;
10098   for (BasicBlock *BB : L->getBlocks()) {
10099     for (Instruction &Inst : *BB) {
10100       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10101         if (S->getValueOperand()->getType()->isFloatTy())
10102           Worklist.push_back(S);
10103       }
10104     }
10105   }
10106 
10107   // Traverse the floating point stores upwards searching, for floating point
10108   // conversions.
10109   SmallPtrSet<const Instruction *, 4> Visited;
10110   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10111   while (!Worklist.empty()) {
10112     auto *I = Worklist.pop_back_val();
10113     if (!L->contains(I))
10114       continue;
10115     if (!Visited.insert(I).second)
10116       continue;
10117 
10118     // Emit a remark if the floating point store required a floating
10119     // point conversion.
10120     // TODO: More work could be done to identify the root cause such as a
10121     // constant or a function return type and point the user to it.
10122     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10123       ORE->emit([&]() {
10124         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10125                                           I->getDebugLoc(), L->getHeader())
10126                << "floating point conversion changes vector width. "
10127                << "Mixed floating point precision requires an up/down "
10128                << "cast that will negatively impact performance.";
10129       });
10130 
10131     for (Use &Op : I->operands())
10132       if (auto *OpI = dyn_cast<Instruction>(Op))
10133         Worklist.push_back(OpI);
10134   }
10135 }
10136 
10137 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10138     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10139                                !EnableLoopInterleaving),
10140       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10141                               !EnableLoopVectorization) {}
10142 
10143 bool LoopVectorizePass::processLoop(Loop *L) {
10144   assert((EnableVPlanNativePath || L->isInnermost()) &&
10145          "VPlan-native path is not enabled. Only process inner loops.");
10146 
10147 #ifndef NDEBUG
10148   const std::string DebugLocStr = getDebugLocString(L);
10149 #endif /* NDEBUG */
10150 
10151   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10152                     << L->getHeader()->getParent()->getName() << "\" from "
10153                     << DebugLocStr << "\n");
10154 
10155   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
10156 
10157   LLVM_DEBUG(
10158       dbgs() << "LV: Loop hints:"
10159              << " force="
10160              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10161                      ? "disabled"
10162                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10163                             ? "enabled"
10164                             : "?"))
10165              << " width=" << Hints.getWidth()
10166              << " interleave=" << Hints.getInterleave() << "\n");
10167 
10168   // Function containing loop
10169   Function *F = L->getHeader()->getParent();
10170 
10171   // Looking at the diagnostic output is the only way to determine if a loop
10172   // was vectorized (other than looking at the IR or machine code), so it
10173   // is important to generate an optimization remark for each loop. Most of
10174   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10175   // generated as OptimizationRemark and OptimizationRemarkMissed are
10176   // less verbose reporting vectorized loops and unvectorized loops that may
10177   // benefit from vectorization, respectively.
10178 
10179   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10180     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10181     return false;
10182   }
10183 
10184   PredicatedScalarEvolution PSE(*SE, *L);
10185 
10186   // Check if it is legal to vectorize the loop.
10187   LoopVectorizationRequirements Requirements;
10188   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10189                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10190   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10191     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10192     Hints.emitRemarkWithHints();
10193     return false;
10194   }
10195 
10196   // Check the function attributes and profiles to find out if this function
10197   // should be optimized for size.
10198   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10199       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10200 
10201   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10202   // here. They may require CFG and instruction level transformations before
10203   // even evaluating whether vectorization is profitable. Since we cannot modify
10204   // the incoming IR, we need to build VPlan upfront in the vectorization
10205   // pipeline.
10206   if (!L->isInnermost())
10207     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10208                                         ORE, BFI, PSI, Hints, Requirements);
10209 
10210   assert(L->isInnermost() && "Inner loop expected.");
10211 
10212   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10213   // count by optimizing for size, to minimize overheads.
10214   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10215   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10216     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10217                       << "This loop is worth vectorizing only if no scalar "
10218                       << "iteration overheads are incurred.");
10219     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10220       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10221     else {
10222       LLVM_DEBUG(dbgs() << "\n");
10223       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10224     }
10225   }
10226 
10227   // Check the function attributes to see if implicit floats are allowed.
10228   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10229   // an integer loop and the vector instructions selected are purely integer
10230   // vector instructions?
10231   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10232     reportVectorizationFailure(
10233         "Can't vectorize when the NoImplicitFloat attribute is used",
10234         "loop not vectorized due to NoImplicitFloat attribute",
10235         "NoImplicitFloat", ORE, L);
10236     Hints.emitRemarkWithHints();
10237     return false;
10238   }
10239 
10240   // Check if the target supports potentially unsafe FP vectorization.
10241   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10242   // for the target we're vectorizing for, to make sure none of the
10243   // additional fp-math flags can help.
10244   if (Hints.isPotentiallyUnsafe() &&
10245       TTI->isFPVectorizationPotentiallyUnsafe()) {
10246     reportVectorizationFailure(
10247         "Potentially unsafe FP op prevents vectorization",
10248         "loop not vectorized due to unsafe FP support.",
10249         "UnsafeFP", ORE, L);
10250     Hints.emitRemarkWithHints();
10251     return false;
10252   }
10253 
10254   bool AllowOrderedReductions;
10255   // If the flag is set, use that instead and override the TTI behaviour.
10256   if (ForceOrderedReductions.getNumOccurrences() > 0)
10257     AllowOrderedReductions = ForceOrderedReductions;
10258   else
10259     AllowOrderedReductions = TTI->enableOrderedReductions();
10260   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10261     ORE->emit([&]() {
10262       auto *ExactFPMathInst = Requirements.getExactFPInst();
10263       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10264                                                  ExactFPMathInst->getDebugLoc(),
10265                                                  ExactFPMathInst->getParent())
10266              << "loop not vectorized: cannot prove it is safe to reorder "
10267                 "floating-point operations";
10268     });
10269     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10270                          "reorder floating-point operations\n");
10271     Hints.emitRemarkWithHints();
10272     return false;
10273   }
10274 
10275   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10276   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10277 
10278   // If an override option has been passed in for interleaved accesses, use it.
10279   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10280     UseInterleaved = EnableInterleavedMemAccesses;
10281 
10282   // Analyze interleaved memory accesses.
10283   if (UseInterleaved) {
10284     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10285   }
10286 
10287   // Use the cost model.
10288   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10289                                 F, &Hints, IAI);
10290   CM.collectValuesToIgnore();
10291   CM.collectElementTypesForWidening();
10292 
10293   // Use the planner for vectorization.
10294   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10295                                Requirements, ORE);
10296 
10297   // Get user vectorization factor and interleave count.
10298   ElementCount UserVF = Hints.getWidth();
10299   unsigned UserIC = Hints.getInterleave();
10300 
10301   // Plan how to best vectorize, return the best VF and its cost.
10302   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10303 
10304   VectorizationFactor VF = VectorizationFactor::Disabled();
10305   unsigned IC = 1;
10306 
10307   if (MaybeVF) {
10308     VF = *MaybeVF;
10309     // Select the interleave count.
10310     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10311   }
10312 
10313   // Identify the diagnostic messages that should be produced.
10314   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10315   bool VectorizeLoop = true, InterleaveLoop = true;
10316   if (VF.Width.isScalar()) {
10317     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10318     VecDiagMsg = std::make_pair(
10319         "VectorizationNotBeneficial",
10320         "the cost-model indicates that vectorization is not beneficial");
10321     VectorizeLoop = false;
10322   }
10323 
10324   if (!MaybeVF && UserIC > 1) {
10325     // Tell the user interleaving was avoided up-front, despite being explicitly
10326     // requested.
10327     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10328                          "interleaving should be avoided up front\n");
10329     IntDiagMsg = std::make_pair(
10330         "InterleavingAvoided",
10331         "Ignoring UserIC, because interleaving was avoided up front");
10332     InterleaveLoop = false;
10333   } else if (IC == 1 && UserIC <= 1) {
10334     // Tell the user interleaving is not beneficial.
10335     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10336     IntDiagMsg = std::make_pair(
10337         "InterleavingNotBeneficial",
10338         "the cost-model indicates that interleaving is not beneficial");
10339     InterleaveLoop = false;
10340     if (UserIC == 1) {
10341       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10342       IntDiagMsg.second +=
10343           " and is explicitly disabled or interleave count is set to 1";
10344     }
10345   } else if (IC > 1 && UserIC == 1) {
10346     // Tell the user interleaving is beneficial, but it explicitly disabled.
10347     LLVM_DEBUG(
10348         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10349     IntDiagMsg = std::make_pair(
10350         "InterleavingBeneficialButDisabled",
10351         "the cost-model indicates that interleaving is beneficial "
10352         "but is explicitly disabled or interleave count is set to 1");
10353     InterleaveLoop = false;
10354   }
10355 
10356   // Override IC if user provided an interleave count.
10357   IC = UserIC > 0 ? UserIC : IC;
10358 
10359   // Emit diagnostic messages, if any.
10360   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10361   if (!VectorizeLoop && !InterleaveLoop) {
10362     // Do not vectorize or interleaving the loop.
10363     ORE->emit([&]() {
10364       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10365                                       L->getStartLoc(), L->getHeader())
10366              << VecDiagMsg.second;
10367     });
10368     ORE->emit([&]() {
10369       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10370                                       L->getStartLoc(), L->getHeader())
10371              << IntDiagMsg.second;
10372     });
10373     return false;
10374   } else if (!VectorizeLoop && InterleaveLoop) {
10375     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10376     ORE->emit([&]() {
10377       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10378                                         L->getStartLoc(), L->getHeader())
10379              << VecDiagMsg.second;
10380     });
10381   } else if (VectorizeLoop && !InterleaveLoop) {
10382     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10383                       << ") in " << DebugLocStr << '\n');
10384     ORE->emit([&]() {
10385       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10386                                         L->getStartLoc(), L->getHeader())
10387              << IntDiagMsg.second;
10388     });
10389   } else if (VectorizeLoop && InterleaveLoop) {
10390     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10391                       << ") in " << DebugLocStr << '\n');
10392     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10393   }
10394 
10395   bool DisableRuntimeUnroll = false;
10396   MDNode *OrigLoopID = L->getLoopID();
10397   {
10398     // Optimistically generate runtime checks. Drop them if they turn out to not
10399     // be profitable. Limit the scope of Checks, so the cleanup happens
10400     // immediately after vector codegeneration is done.
10401     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10402                              F->getParent()->getDataLayout());
10403     if (!VF.Width.isScalar() || IC > 1)
10404       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10405     LVP.setBestPlan(VF.Width, IC);
10406 
10407     using namespace ore;
10408     if (!VectorizeLoop) {
10409       assert(IC > 1 && "interleave count should not be 1 or 0");
10410       // If we decided that it is not legal to vectorize the loop, then
10411       // interleave it.
10412       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10413                                  &CM, BFI, PSI, Checks);
10414       LVP.executePlan(Unroller, DT);
10415 
10416       ORE->emit([&]() {
10417         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10418                                   L->getHeader())
10419                << "interleaved loop (interleaved count: "
10420                << NV("InterleaveCount", IC) << ")";
10421       });
10422     } else {
10423       // If we decided that it is *legal* to vectorize the loop, then do it.
10424 
10425       // Consider vectorizing the epilogue too if it's profitable.
10426       VectorizationFactor EpilogueVF =
10427           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10428       if (EpilogueVF.Width.isVector()) {
10429 
10430         // The first pass vectorizes the main loop and creates a scalar epilogue
10431         // to be vectorized by executing the plan (potentially with a different
10432         // factor) again shortly afterwards.
10433         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10434         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10435                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10436 
10437         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
10438         LVP.executePlan(MainILV, DT);
10439         ++LoopsVectorized;
10440 
10441         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10442         formLCSSARecursively(*L, *DT, LI, SE);
10443 
10444         // Second pass vectorizes the epilogue and adjusts the control flow
10445         // edges from the first pass.
10446         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
10447         EPI.MainLoopVF = EPI.EpilogueVF;
10448         EPI.MainLoopUF = EPI.EpilogueUF;
10449         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10450                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10451                                                  Checks);
10452         LVP.executePlan(EpilogILV, DT);
10453         ++LoopsEpilogueVectorized;
10454 
10455         if (!MainILV.areSafetyChecksAdded())
10456           DisableRuntimeUnroll = true;
10457       } else {
10458         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10459                                &LVL, &CM, BFI, PSI, Checks);
10460         LVP.executePlan(LB, DT);
10461         ++LoopsVectorized;
10462 
10463         // Add metadata to disable runtime unrolling a scalar loop when there
10464         // are no runtime checks about strides and memory. A scalar loop that is
10465         // rarely used is not worth unrolling.
10466         if (!LB.areSafetyChecksAdded())
10467           DisableRuntimeUnroll = true;
10468       }
10469       // Report the vectorization decision.
10470       ORE->emit([&]() {
10471         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10472                                   L->getHeader())
10473                << "vectorized loop (vectorization width: "
10474                << NV("VectorizationFactor", VF.Width)
10475                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10476       });
10477     }
10478 
10479     if (ORE->allowExtraAnalysis(LV_NAME))
10480       checkMixedPrecision(L, ORE);
10481   }
10482 
10483   Optional<MDNode *> RemainderLoopID =
10484       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10485                                       LLVMLoopVectorizeFollowupEpilogue});
10486   if (RemainderLoopID.hasValue()) {
10487     L->setLoopID(RemainderLoopID.getValue());
10488   } else {
10489     if (DisableRuntimeUnroll)
10490       AddRuntimeUnrollDisableMetaData(L);
10491 
10492     // Mark the loop as already vectorized to avoid vectorizing again.
10493     Hints.setAlreadyVectorized();
10494   }
10495 
10496   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10497   return true;
10498 }
10499 
10500 LoopVectorizeResult LoopVectorizePass::runImpl(
10501     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10502     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10503     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10504     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10505     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10506   SE = &SE_;
10507   LI = &LI_;
10508   TTI = &TTI_;
10509   DT = &DT_;
10510   BFI = &BFI_;
10511   TLI = TLI_;
10512   AA = &AA_;
10513   AC = &AC_;
10514   GetLAA = &GetLAA_;
10515   DB = &DB_;
10516   ORE = &ORE_;
10517   PSI = PSI_;
10518 
10519   // Don't attempt if
10520   // 1. the target claims to have no vector registers, and
10521   // 2. interleaving won't help ILP.
10522   //
10523   // The second condition is necessary because, even if the target has no
10524   // vector registers, loop vectorization may still enable scalar
10525   // interleaving.
10526   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10527       TTI->getMaxInterleaveFactor(1) < 2)
10528     return LoopVectorizeResult(false, false);
10529 
10530   bool Changed = false, CFGChanged = false;
10531 
10532   // The vectorizer requires loops to be in simplified form.
10533   // Since simplification may add new inner loops, it has to run before the
10534   // legality and profitability checks. This means running the loop vectorizer
10535   // will simplify all loops, regardless of whether anything end up being
10536   // vectorized.
10537   for (auto &L : *LI)
10538     Changed |= CFGChanged |=
10539         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10540 
10541   // Build up a worklist of inner-loops to vectorize. This is necessary as
10542   // the act of vectorizing or partially unrolling a loop creates new loops
10543   // and can invalidate iterators across the loops.
10544   SmallVector<Loop *, 8> Worklist;
10545 
10546   for (Loop *L : *LI)
10547     collectSupportedLoops(*L, LI, ORE, Worklist);
10548 
10549   LoopsAnalyzed += Worklist.size();
10550 
10551   // Now walk the identified inner loops.
10552   while (!Worklist.empty()) {
10553     Loop *L = Worklist.pop_back_val();
10554 
10555     // For the inner loops we actually process, form LCSSA to simplify the
10556     // transform.
10557     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10558 
10559     Changed |= CFGChanged |= processLoop(L);
10560   }
10561 
10562   // Process each loop nest in the function.
10563   return LoopVectorizeResult(Changed, CFGChanged);
10564 }
10565 
10566 PreservedAnalyses LoopVectorizePass::run(Function &F,
10567                                          FunctionAnalysisManager &AM) {
10568     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10569     auto &LI = AM.getResult<LoopAnalysis>(F);
10570     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10571     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10572     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10573     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10574     auto &AA = AM.getResult<AAManager>(F);
10575     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10576     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10577     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10578 
10579     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10580     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10581         [&](Loop &L) -> const LoopAccessInfo & {
10582       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10583                                         TLI, TTI, nullptr, nullptr, nullptr};
10584       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10585     };
10586     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10587     ProfileSummaryInfo *PSI =
10588         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10589     LoopVectorizeResult Result =
10590         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10591     if (!Result.MadeAnyChange)
10592       return PreservedAnalyses::all();
10593     PreservedAnalyses PA;
10594 
10595     // We currently do not preserve loopinfo/dominator analyses with outer loop
10596     // vectorization. Until this is addressed, mark these analyses as preserved
10597     // only for non-VPlan-native path.
10598     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10599     if (!EnableVPlanNativePath) {
10600       PA.preserve<LoopAnalysis>();
10601       PA.preserve<DominatorTreeAnalysis>();
10602     }
10603     if (!Result.MadeCFGChange)
10604       PA.preserveSet<CFGAnalyses>();
10605     return PA;
10606 }
10607 
10608 void LoopVectorizePass::printPipeline(
10609     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10610   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10611       OS, MapClassName2PassName);
10612 
10613   OS << "<";
10614   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10615   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10616   OS << ">";
10617 }
10618