1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 static cl::opt<bool> ForceOrderedReductions( 335 "force-ordered-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns true if the given type is irregular. The 379 /// type is irregular if its allocated size doesn't equal the store size of an 380 /// element of the corresponding vector type. 381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 382 // Determine if an array of N elements of type Ty is "bitcast compatible" 383 // with a <N x Ty> vector. 384 // This is only true if there is no padding between the array elements. 385 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 386 } 387 388 /// A helper function that returns the reciprocal of the block probability of 389 /// predicated blocks. If we return X, we are assuming the predicated block 390 /// will execute once for every X iterations of the loop header. 391 /// 392 /// TODO: We should use actual block probability here, if available. Currently, 393 /// we always assume predicated blocks have a 50% chance of executing. 394 static unsigned getReciprocalPredBlockProb() { return 2; } 395 396 /// A helper function that returns an integer or floating-point constant with 397 /// value C. 398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 399 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 400 : ConstantFP::get(Ty, C); 401 } 402 403 /// Returns "best known" trip count for the specified loop \p L as defined by 404 /// the following procedure: 405 /// 1) Returns exact trip count if it is known. 406 /// 2) Returns expected trip count according to profile data if any. 407 /// 3) Returns upper bound estimate if it is known. 408 /// 4) Returns None if all of the above failed. 409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 410 // Check if exact trip count is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 412 return ExpectedTC; 413 414 // Check if there is an expected trip count available from profile data. 415 if (LoopVectorizeWithBlockFrequency) 416 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 417 return EstimatedTC; 418 419 // Check if upper bound estimate is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 421 return ExpectedTC; 422 423 return None; 424 } 425 426 // Forward declare GeneratedRTChecks. 427 class GeneratedRTChecks; 428 429 namespace llvm { 430 431 /// InnerLoopVectorizer vectorizes loops which contain only one basic 432 /// block to a specified vectorization factor (VF). 433 /// This class performs the widening of scalars into vectors, or multiple 434 /// scalars. This class also implements the following features: 435 /// * It inserts an epilogue loop for handling loops that don't have iteration 436 /// counts that are known to be a multiple of the vectorization factor. 437 /// * It handles the code generation for reduction variables. 438 /// * Scalarization (implementation using scalars) of un-vectorizable 439 /// instructions. 440 /// InnerLoopVectorizer does not perform any vectorization-legality 441 /// checks, and relies on the caller to check for the different legality 442 /// aspects. The InnerLoopVectorizer relies on the 443 /// LoopVectorizationLegality class to provide information about the induction 444 /// and reduction variables that were found to a given vectorization factor. 445 class InnerLoopVectorizer { 446 public: 447 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 448 LoopInfo *LI, DominatorTree *DT, 449 const TargetLibraryInfo *TLI, 450 const TargetTransformInfo *TTI, AssumptionCache *AC, 451 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 452 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 453 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 454 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 455 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 456 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 457 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 458 PSI(PSI), RTChecks(RTChecks) { 459 // Query this against the original loop and save it here because the profile 460 // of the original loop header may change as the transformation happens. 461 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 462 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 463 } 464 465 virtual ~InnerLoopVectorizer() = default; 466 467 /// Create a new empty loop that will contain vectorized instructions later 468 /// on, while the old loop will be used as the scalar remainder. Control flow 469 /// is generated around the vectorized (and scalar epilogue) loops consisting 470 /// of various checks and bypasses. Return the pre-header block of the new 471 /// loop. 472 /// In the case of epilogue vectorization, this function is overriden to 473 /// handle the more complex control flow around the loops. 474 virtual BasicBlock *createVectorizedLoopSkeleton(); 475 476 /// Widen a single instruction within the innermost loop. 477 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 478 VPTransformState &State); 479 480 /// Widen a single call instruction within the innermost loop. 481 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 482 VPTransformState &State); 483 484 /// Widen a single select instruction within the innermost loop. 485 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 486 bool InvariantCond, VPTransformState &State); 487 488 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 489 void fixVectorizedLoop(VPTransformState &State); 490 491 // Return true if any runtime check is added. 492 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 493 494 /// A type for vectorized values in the new loop. Each value from the 495 /// original loop, when vectorized, is represented by UF vector values in the 496 /// new unrolled loop, where UF is the unroll factor. 497 using VectorParts = SmallVector<Value *, 2>; 498 499 /// Vectorize a single GetElementPtrInst based on information gathered and 500 /// decisions taken during planning. 501 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 502 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 503 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 504 505 /// Vectorize a single first-order recurrence or pointer induction PHINode in 506 /// a block. This method handles the induction variable canonicalization. It 507 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 508 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 509 VPTransformState &State); 510 511 /// A helper function to scalarize a single Instruction in the innermost loop. 512 /// Generates a sequence of scalar instances for each lane between \p MinLane 513 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 514 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 515 /// Instr's operands. 516 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 517 const VPIteration &Instance, bool IfPredicateInstr, 518 VPTransformState &State); 519 520 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 521 /// is provided, the integer induction variable will first be truncated to 522 /// the corresponding type. 523 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 524 VPValue *Def, VPValue *CastDef, 525 VPTransformState &State); 526 527 /// Construct the vector value of a scalarized value \p V one lane at a time. 528 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 529 VPTransformState &State); 530 531 /// Try to vectorize interleaved access group \p Group with the base address 532 /// given in \p Addr, optionally masking the vector operations if \p 533 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 534 /// values in the vectorized loop. 535 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 536 ArrayRef<VPValue *> VPDefs, 537 VPTransformState &State, VPValue *Addr, 538 ArrayRef<VPValue *> StoredValues, 539 VPValue *BlockInMask = nullptr); 540 541 /// Vectorize Load and Store instructions with the base address given in \p 542 /// Addr, optionally masking the vector operations if \p BlockInMask is 543 /// non-null. Use \p State to translate given VPValues to IR values in the 544 /// vectorized loop. 545 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 546 VPValue *Def, VPValue *Addr, 547 VPValue *StoredValue, VPValue *BlockInMask); 548 549 /// Set the debug location in the builder \p Ptr using the debug location in 550 /// \p V. If \p Ptr is None then it uses the class member's Builder. 551 void setDebugLocFromInst(const Value *V, 552 Optional<IRBuilder<> *> CustomBuilder = None); 553 554 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 555 void fixNonInductionPHIs(VPTransformState &State); 556 557 /// Returns true if the reordering of FP operations is not allowed, but we are 558 /// able to vectorize with strict in-order reductions for the given RdxDesc. 559 bool useOrderedReductions(RecurrenceDescriptor &RdxDesc); 560 561 /// Create a broadcast instruction. This method generates a broadcast 562 /// instruction (shuffle) for loop invariant values and for the induction 563 /// value. If this is the induction variable then we extend it to N, N+1, ... 564 /// this is needed because each iteration in the loop corresponds to a SIMD 565 /// element. 566 virtual Value *getBroadcastInstrs(Value *V); 567 568 protected: 569 friend class LoopVectorizationPlanner; 570 571 /// A small list of PHINodes. 572 using PhiVector = SmallVector<PHINode *, 4>; 573 574 /// A type for scalarized values in the new loop. Each value from the 575 /// original loop, when scalarized, is represented by UF x VF scalar values 576 /// in the new unrolled loop, where UF is the unroll factor and VF is the 577 /// vectorization factor. 578 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 579 580 /// Set up the values of the IVs correctly when exiting the vector loop. 581 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 582 Value *CountRoundDown, Value *EndValue, 583 BasicBlock *MiddleBlock); 584 585 /// Create a new induction variable inside L. 586 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 587 Value *Step, Instruction *DL); 588 589 /// Handle all cross-iteration phis in the header. 590 void fixCrossIterationPHIs(VPTransformState &State); 591 592 /// Create the exit value of first order recurrences in the middle block and 593 /// update their users. 594 void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State); 595 596 /// Create code for the loop exit value of the reduction. 597 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 598 599 /// Clear NSW/NUW flags from reduction instructions if necessary. 600 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 601 VPTransformState &State); 602 603 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 604 /// means we need to add the appropriate incoming value from the middle 605 /// block as exiting edges from the scalar epilogue loop (if present) are 606 /// already in place, and we exit the vector loop exclusively to the middle 607 /// block. 608 void fixLCSSAPHIs(VPTransformState &State); 609 610 /// Iteratively sink the scalarized operands of a predicated instruction into 611 /// the block that was created for it. 612 void sinkScalarOperands(Instruction *PredInst); 613 614 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 615 /// represented as. 616 void truncateToMinimalBitwidths(VPTransformState &State); 617 618 /// This function adds 619 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 620 /// to each vector element of Val. The sequence starts at StartIndex. 621 /// \p Opcode is relevant for FP induction variable. 622 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 623 Instruction::BinaryOps Opcode = 624 Instruction::BinaryOpsEnd); 625 626 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 627 /// variable on which to base the steps, \p Step is the size of the step, and 628 /// \p EntryVal is the value from the original loop that maps to the steps. 629 /// Note that \p EntryVal doesn't have to be an induction variable - it 630 /// can also be a truncate instruction. 631 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 632 const InductionDescriptor &ID, VPValue *Def, 633 VPValue *CastDef, VPTransformState &State); 634 635 /// Create a vector induction phi node based on an existing scalar one. \p 636 /// EntryVal is the value from the original loop that maps to the vector phi 637 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 638 /// truncate instruction, instead of widening the original IV, we widen a 639 /// version of the IV truncated to \p EntryVal's type. 640 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 641 Value *Step, Value *Start, 642 Instruction *EntryVal, VPValue *Def, 643 VPValue *CastDef, 644 VPTransformState &State); 645 646 /// Returns true if an instruction \p I should be scalarized instead of 647 /// vectorized for the chosen vectorization factor. 648 bool shouldScalarizeInstruction(Instruction *I) const; 649 650 /// Returns true if we should generate a scalar version of \p IV. 651 bool needsScalarInduction(Instruction *IV) const; 652 653 /// If there is a cast involved in the induction variable \p ID, which should 654 /// be ignored in the vectorized loop body, this function records the 655 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 656 /// cast. We had already proved that the casted Phi is equal to the uncasted 657 /// Phi in the vectorized loop (under a runtime guard), and therefore 658 /// there is no need to vectorize the cast - the same value can be used in the 659 /// vector loop for both the Phi and the cast. 660 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 661 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 662 /// 663 /// \p EntryVal is the value from the original loop that maps to the vector 664 /// phi node and is used to distinguish what is the IV currently being 665 /// processed - original one (if \p EntryVal is a phi corresponding to the 666 /// original IV) or the "newly-created" one based on the proof mentioned above 667 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 668 /// latter case \p EntryVal is a TruncInst and we must not record anything for 669 /// that IV, but it's error-prone to expect callers of this routine to care 670 /// about that, hence this explicit parameter. 671 void recordVectorLoopValueForInductionCast( 672 const InductionDescriptor &ID, const Instruction *EntryVal, 673 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 674 unsigned Part, unsigned Lane = UINT_MAX); 675 676 /// Generate a shuffle sequence that will reverse the vector Vec. 677 virtual Value *reverseVector(Value *Vec); 678 679 /// Returns (and creates if needed) the original loop trip count. 680 Value *getOrCreateTripCount(Loop *NewLoop); 681 682 /// Returns (and creates if needed) the trip count of the widened loop. 683 Value *getOrCreateVectorTripCount(Loop *NewLoop); 684 685 /// Returns a bitcasted value to the requested vector type. 686 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 687 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 688 const DataLayout &DL); 689 690 /// Emit a bypass check to see if the vector trip count is zero, including if 691 /// it overflows. 692 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 693 694 /// Emit a bypass check to see if all of the SCEV assumptions we've 695 /// had to make are correct. Returns the block containing the checks or 696 /// nullptr if no checks have been added. 697 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 698 699 /// Emit bypass checks to check any memory assumptions we may have made. 700 /// Returns the block containing the checks or nullptr if no checks have been 701 /// added. 702 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 703 704 /// Compute the transformed value of Index at offset StartValue using step 705 /// StepValue. 706 /// For integer induction, returns StartValue + Index * StepValue. 707 /// For pointer induction, returns StartValue[Index * StepValue]. 708 /// FIXME: The newly created binary instructions should contain nsw/nuw 709 /// flags, which can be found from the original scalar operations. 710 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 711 const DataLayout &DL, 712 const InductionDescriptor &ID) const; 713 714 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 715 /// vector loop preheader, middle block and scalar preheader. Also 716 /// allocate a loop object for the new vector loop and return it. 717 Loop *createVectorLoopSkeleton(StringRef Prefix); 718 719 /// Create new phi nodes for the induction variables to resume iteration count 720 /// in the scalar epilogue, from where the vectorized loop left off (given by 721 /// \p VectorTripCount). 722 /// In cases where the loop skeleton is more complicated (eg. epilogue 723 /// vectorization) and the resume values can come from an additional bypass 724 /// block, the \p AdditionalBypass pair provides information about the bypass 725 /// block and the end value on the edge from bypass to this loop. 726 void createInductionResumeValues( 727 Loop *L, Value *VectorTripCount, 728 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 729 730 /// Complete the loop skeleton by adding debug MDs, creating appropriate 731 /// conditional branches in the middle block, preparing the builder and 732 /// running the verifier. Take in the vector loop \p L as argument, and return 733 /// the preheader of the completed vector loop. 734 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 735 736 /// Add additional metadata to \p To that was not present on \p Orig. 737 /// 738 /// Currently this is used to add the noalias annotations based on the 739 /// inserted memchecks. Use this for instructions that are *cloned* into the 740 /// vector loop. 741 void addNewMetadata(Instruction *To, const Instruction *Orig); 742 743 /// Add metadata from one instruction to another. 744 /// 745 /// This includes both the original MDs from \p From and additional ones (\see 746 /// addNewMetadata). Use this for *newly created* instructions in the vector 747 /// loop. 748 void addMetadata(Instruction *To, Instruction *From); 749 750 /// Similar to the previous function but it adds the metadata to a 751 /// vector of instructions. 752 void addMetadata(ArrayRef<Value *> To, Instruction *From); 753 754 /// Allow subclasses to override and print debug traces before/after vplan 755 /// execution, when trace information is requested. 756 virtual void printDebugTracesAtStart(){}; 757 virtual void printDebugTracesAtEnd(){}; 758 759 /// The original loop. 760 Loop *OrigLoop; 761 762 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 763 /// dynamic knowledge to simplify SCEV expressions and converts them to a 764 /// more usable form. 765 PredicatedScalarEvolution &PSE; 766 767 /// Loop Info. 768 LoopInfo *LI; 769 770 /// Dominator Tree. 771 DominatorTree *DT; 772 773 /// Alias Analysis. 774 AAResults *AA; 775 776 /// Target Library Info. 777 const TargetLibraryInfo *TLI; 778 779 /// Target Transform Info. 780 const TargetTransformInfo *TTI; 781 782 /// Assumption Cache. 783 AssumptionCache *AC; 784 785 /// Interface to emit optimization remarks. 786 OptimizationRemarkEmitter *ORE; 787 788 /// LoopVersioning. It's only set up (non-null) if memchecks were 789 /// used. 790 /// 791 /// This is currently only used to add no-alias metadata based on the 792 /// memchecks. The actually versioning is performed manually. 793 std::unique_ptr<LoopVersioning> LVer; 794 795 /// The vectorization SIMD factor to use. Each vector will have this many 796 /// vector elements. 797 ElementCount VF; 798 799 /// The vectorization unroll factor to use. Each scalar is vectorized to this 800 /// many different vector instructions. 801 unsigned UF; 802 803 /// The builder that we use 804 IRBuilder<> Builder; 805 806 // --- Vectorization state --- 807 808 /// The vector-loop preheader. 809 BasicBlock *LoopVectorPreHeader; 810 811 /// The scalar-loop preheader. 812 BasicBlock *LoopScalarPreHeader; 813 814 /// Middle Block between the vector and the scalar. 815 BasicBlock *LoopMiddleBlock; 816 817 /// The unique ExitBlock of the scalar loop if one exists. Note that 818 /// there can be multiple exiting edges reaching this block. 819 BasicBlock *LoopExitBlock; 820 821 /// The vector loop body. 822 BasicBlock *LoopVectorBody; 823 824 /// The scalar loop body. 825 BasicBlock *LoopScalarBody; 826 827 /// A list of all bypass blocks. The first block is the entry of the loop. 828 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 829 830 /// The new Induction variable which was added to the new block. 831 PHINode *Induction = nullptr; 832 833 /// The induction variable of the old basic block. 834 PHINode *OldInduction = nullptr; 835 836 /// Store instructions that were predicated. 837 SmallVector<Instruction *, 4> PredicatedInstructions; 838 839 /// Trip count of the original loop. 840 Value *TripCount = nullptr; 841 842 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 843 Value *VectorTripCount = nullptr; 844 845 /// The legality analysis. 846 LoopVectorizationLegality *Legal; 847 848 /// The profitablity analysis. 849 LoopVectorizationCostModel *Cost; 850 851 // Record whether runtime checks are added. 852 bool AddedSafetyChecks = false; 853 854 // Holds the end values for each induction variable. We save the end values 855 // so we can later fix-up the external users of the induction variables. 856 DenseMap<PHINode *, Value *> IVEndValues; 857 858 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 859 // fixed up at the end of vector code generation. 860 SmallVector<PHINode *, 8> OrigPHIsToFix; 861 862 /// BFI and PSI are used to check for profile guided size optimizations. 863 BlockFrequencyInfo *BFI; 864 ProfileSummaryInfo *PSI; 865 866 // Whether this loop should be optimized for size based on profile guided size 867 // optimizatios. 868 bool OptForSizeBasedOnProfile; 869 870 /// Structure to hold information about generated runtime checks, responsible 871 /// for cleaning the checks, if vectorization turns out unprofitable. 872 GeneratedRTChecks &RTChecks; 873 }; 874 875 class InnerLoopUnroller : public InnerLoopVectorizer { 876 public: 877 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 878 LoopInfo *LI, DominatorTree *DT, 879 const TargetLibraryInfo *TLI, 880 const TargetTransformInfo *TTI, AssumptionCache *AC, 881 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 882 LoopVectorizationLegality *LVL, 883 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 884 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 885 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 886 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 887 BFI, PSI, Check) {} 888 889 private: 890 Value *getBroadcastInstrs(Value *V) override; 891 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 892 Instruction::BinaryOps Opcode = 893 Instruction::BinaryOpsEnd) override; 894 Value *reverseVector(Value *Vec) override; 895 }; 896 897 /// Encapsulate information regarding vectorization of a loop and its epilogue. 898 /// This information is meant to be updated and used across two stages of 899 /// epilogue vectorization. 900 struct EpilogueLoopVectorizationInfo { 901 ElementCount MainLoopVF = ElementCount::getFixed(0); 902 unsigned MainLoopUF = 0; 903 ElementCount EpilogueVF = ElementCount::getFixed(0); 904 unsigned EpilogueUF = 0; 905 BasicBlock *MainLoopIterationCountCheck = nullptr; 906 BasicBlock *EpilogueIterationCountCheck = nullptr; 907 BasicBlock *SCEVSafetyCheck = nullptr; 908 BasicBlock *MemSafetyCheck = nullptr; 909 Value *TripCount = nullptr; 910 Value *VectorTripCount = nullptr; 911 912 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 913 ElementCount EVF, unsigned EUF) 914 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 915 assert(EUF == 1 && 916 "A high UF for the epilogue loop is likely not beneficial."); 917 } 918 }; 919 920 /// An extension of the inner loop vectorizer that creates a skeleton for a 921 /// vectorized loop that has its epilogue (residual) also vectorized. 922 /// The idea is to run the vplan on a given loop twice, firstly to setup the 923 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 924 /// from the first step and vectorize the epilogue. This is achieved by 925 /// deriving two concrete strategy classes from this base class and invoking 926 /// them in succession from the loop vectorizer planner. 927 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 928 public: 929 InnerLoopAndEpilogueVectorizer( 930 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 931 DominatorTree *DT, const TargetLibraryInfo *TLI, 932 const TargetTransformInfo *TTI, AssumptionCache *AC, 933 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 934 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 935 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 936 GeneratedRTChecks &Checks) 937 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 938 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 939 Checks), 940 EPI(EPI) {} 941 942 // Override this function to handle the more complex control flow around the 943 // three loops. 944 BasicBlock *createVectorizedLoopSkeleton() final override { 945 return createEpilogueVectorizedLoopSkeleton(); 946 } 947 948 /// The interface for creating a vectorized skeleton using one of two 949 /// different strategies, each corresponding to one execution of the vplan 950 /// as described above. 951 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 952 953 /// Holds and updates state information required to vectorize the main loop 954 /// and its epilogue in two separate passes. This setup helps us avoid 955 /// regenerating and recomputing runtime safety checks. It also helps us to 956 /// shorten the iteration-count-check path length for the cases where the 957 /// iteration count of the loop is so small that the main vector loop is 958 /// completely skipped. 959 EpilogueLoopVectorizationInfo &EPI; 960 }; 961 962 /// A specialized derived class of inner loop vectorizer that performs 963 /// vectorization of *main* loops in the process of vectorizing loops and their 964 /// epilogues. 965 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 966 public: 967 EpilogueVectorizerMainLoop( 968 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 969 DominatorTree *DT, const TargetLibraryInfo *TLI, 970 const TargetTransformInfo *TTI, AssumptionCache *AC, 971 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 972 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 973 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 974 GeneratedRTChecks &Check) 975 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 976 EPI, LVL, CM, BFI, PSI, Check) {} 977 /// Implements the interface for creating a vectorized skeleton using the 978 /// *main loop* strategy (ie the first pass of vplan execution). 979 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 980 981 protected: 982 /// Emits an iteration count bypass check once for the main loop (when \p 983 /// ForEpilogue is false) and once for the epilogue loop (when \p 984 /// ForEpilogue is true). 985 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 986 bool ForEpilogue); 987 void printDebugTracesAtStart() override; 988 void printDebugTracesAtEnd() override; 989 }; 990 991 // A specialized derived class of inner loop vectorizer that performs 992 // vectorization of *epilogue* loops in the process of vectorizing loops and 993 // their epilogues. 994 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 995 public: 996 EpilogueVectorizerEpilogueLoop( 997 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 998 DominatorTree *DT, const TargetLibraryInfo *TLI, 999 const TargetTransformInfo *TTI, AssumptionCache *AC, 1000 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1001 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1002 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1003 GeneratedRTChecks &Checks) 1004 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1005 EPI, LVL, CM, BFI, PSI, Checks) {} 1006 /// Implements the interface for creating a vectorized skeleton using the 1007 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1008 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1009 1010 protected: 1011 /// Emits an iteration count bypass check after the main vector loop has 1012 /// finished to see if there are any iterations left to execute by either 1013 /// the vector epilogue or the scalar epilogue. 1014 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1015 BasicBlock *Bypass, 1016 BasicBlock *Insert); 1017 void printDebugTracesAtStart() override; 1018 void printDebugTracesAtEnd() override; 1019 }; 1020 } // end namespace llvm 1021 1022 /// Look for a meaningful debug location on the instruction or it's 1023 /// operands. 1024 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1025 if (!I) 1026 return I; 1027 1028 DebugLoc Empty; 1029 if (I->getDebugLoc() != Empty) 1030 return I; 1031 1032 for (Use &Op : I->operands()) { 1033 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1034 if (OpInst->getDebugLoc() != Empty) 1035 return OpInst; 1036 } 1037 1038 return I; 1039 } 1040 1041 void InnerLoopVectorizer::setDebugLocFromInst( 1042 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 1043 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 1044 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 1045 const DILocation *DIL = Inst->getDebugLoc(); 1046 1047 // When a FSDiscriminator is enabled, we don't need to add the multiply 1048 // factors to the discriminators. 1049 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1050 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1051 // FIXME: For scalable vectors, assume vscale=1. 1052 auto NewDIL = 1053 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1054 if (NewDIL) 1055 B->SetCurrentDebugLocation(NewDIL.getValue()); 1056 else 1057 LLVM_DEBUG(dbgs() 1058 << "Failed to create new discriminator: " 1059 << DIL->getFilename() << " Line: " << DIL->getLine()); 1060 } else 1061 B->SetCurrentDebugLocation(DIL); 1062 } else 1063 B->SetCurrentDebugLocation(DebugLoc()); 1064 } 1065 1066 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1067 /// is passed, the message relates to that particular instruction. 1068 #ifndef NDEBUG 1069 static void debugVectorizationMessage(const StringRef Prefix, 1070 const StringRef DebugMsg, 1071 Instruction *I) { 1072 dbgs() << "LV: " << Prefix << DebugMsg; 1073 if (I != nullptr) 1074 dbgs() << " " << *I; 1075 else 1076 dbgs() << '.'; 1077 dbgs() << '\n'; 1078 } 1079 #endif 1080 1081 /// Create an analysis remark that explains why vectorization failed 1082 /// 1083 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1084 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1085 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1086 /// the location of the remark. \return the remark object that can be 1087 /// streamed to. 1088 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1089 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1090 Value *CodeRegion = TheLoop->getHeader(); 1091 DebugLoc DL = TheLoop->getStartLoc(); 1092 1093 if (I) { 1094 CodeRegion = I->getParent(); 1095 // If there is no debug location attached to the instruction, revert back to 1096 // using the loop's. 1097 if (I->getDebugLoc()) 1098 DL = I->getDebugLoc(); 1099 } 1100 1101 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1102 } 1103 1104 /// Return a value for Step multiplied by VF. 1105 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1106 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1107 Constant *StepVal = ConstantInt::get( 1108 Step->getType(), 1109 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1110 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1111 } 1112 1113 namespace llvm { 1114 1115 /// Return the runtime value for VF. 1116 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1117 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1118 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1119 } 1120 1121 void reportVectorizationFailure(const StringRef DebugMsg, 1122 const StringRef OREMsg, const StringRef ORETag, 1123 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1124 Instruction *I) { 1125 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1126 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1127 ORE->emit( 1128 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1129 << "loop not vectorized: " << OREMsg); 1130 } 1131 1132 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1133 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1134 Instruction *I) { 1135 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1136 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1137 ORE->emit( 1138 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1139 << Msg); 1140 } 1141 1142 } // end namespace llvm 1143 1144 #ifndef NDEBUG 1145 /// \return string containing a file name and a line # for the given loop. 1146 static std::string getDebugLocString(const Loop *L) { 1147 std::string Result; 1148 if (L) { 1149 raw_string_ostream OS(Result); 1150 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1151 LoopDbgLoc.print(OS); 1152 else 1153 // Just print the module name. 1154 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1155 OS.flush(); 1156 } 1157 return Result; 1158 } 1159 #endif 1160 1161 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1162 const Instruction *Orig) { 1163 // If the loop was versioned with memchecks, add the corresponding no-alias 1164 // metadata. 1165 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1166 LVer->annotateInstWithNoAlias(To, Orig); 1167 } 1168 1169 void InnerLoopVectorizer::addMetadata(Instruction *To, 1170 Instruction *From) { 1171 propagateMetadata(To, From); 1172 addNewMetadata(To, From); 1173 } 1174 1175 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1176 Instruction *From) { 1177 for (Value *V : To) { 1178 if (Instruction *I = dyn_cast<Instruction>(V)) 1179 addMetadata(I, From); 1180 } 1181 } 1182 1183 namespace llvm { 1184 1185 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1186 // lowered. 1187 enum ScalarEpilogueLowering { 1188 1189 // The default: allowing scalar epilogues. 1190 CM_ScalarEpilogueAllowed, 1191 1192 // Vectorization with OptForSize: don't allow epilogues. 1193 CM_ScalarEpilogueNotAllowedOptSize, 1194 1195 // A special case of vectorisation with OptForSize: loops with a very small 1196 // trip count are considered for vectorization under OptForSize, thereby 1197 // making sure the cost of their loop body is dominant, free of runtime 1198 // guards and scalar iteration overheads. 1199 CM_ScalarEpilogueNotAllowedLowTripLoop, 1200 1201 // Loop hint predicate indicating an epilogue is undesired. 1202 CM_ScalarEpilogueNotNeededUsePredicate, 1203 1204 // Directive indicating we must either tail fold or not vectorize 1205 CM_ScalarEpilogueNotAllowedUsePredicate 1206 }; 1207 1208 /// ElementCountComparator creates a total ordering for ElementCount 1209 /// for the purposes of using it in a set structure. 1210 struct ElementCountComparator { 1211 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1212 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1213 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1214 } 1215 }; 1216 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1217 1218 /// LoopVectorizationCostModel - estimates the expected speedups due to 1219 /// vectorization. 1220 /// In many cases vectorization is not profitable. This can happen because of 1221 /// a number of reasons. In this class we mainly attempt to predict the 1222 /// expected speedup/slowdowns due to the supported instruction set. We use the 1223 /// TargetTransformInfo to query the different backends for the cost of 1224 /// different operations. 1225 class LoopVectorizationCostModel { 1226 public: 1227 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1228 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1229 LoopVectorizationLegality *Legal, 1230 const TargetTransformInfo &TTI, 1231 const TargetLibraryInfo *TLI, DemandedBits *DB, 1232 AssumptionCache *AC, 1233 OptimizationRemarkEmitter *ORE, const Function *F, 1234 const LoopVectorizeHints *Hints, 1235 InterleavedAccessInfo &IAI) 1236 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1237 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1238 Hints(Hints), InterleaveInfo(IAI) {} 1239 1240 /// \return An upper bound for the vectorization factors (both fixed and 1241 /// scalable). If the factors are 0, vectorization and interleaving should be 1242 /// avoided up front. 1243 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1244 1245 /// \return True if runtime checks are required for vectorization, and false 1246 /// otherwise. 1247 bool runtimeChecksRequired(); 1248 1249 /// \return The most profitable vectorization factor and the cost of that VF. 1250 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1251 /// then this vectorization factor will be selected if vectorization is 1252 /// possible. 1253 VectorizationFactor 1254 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1255 1256 VectorizationFactor 1257 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1258 const LoopVectorizationPlanner &LVP); 1259 1260 /// Setup cost-based decisions for user vectorization factor. 1261 /// \return true if the UserVF is a feasible VF to be chosen. 1262 bool selectUserVectorizationFactor(ElementCount UserVF) { 1263 collectUniformsAndScalars(UserVF); 1264 collectInstsToScalarize(UserVF); 1265 return expectedCost(UserVF).first.isValid(); 1266 } 1267 1268 /// \return The size (in bits) of the smallest and widest types in the code 1269 /// that needs to be vectorized. We ignore values that remain scalar such as 1270 /// 64 bit loop indices. 1271 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1272 1273 /// \return The desired interleave count. 1274 /// If interleave count has been specified by metadata it will be returned. 1275 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1276 /// are the selected vectorization factor and the cost of the selected VF. 1277 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1278 1279 /// Memory access instruction may be vectorized in more than one way. 1280 /// Form of instruction after vectorization depends on cost. 1281 /// This function takes cost-based decisions for Load/Store instructions 1282 /// and collects them in a map. This decisions map is used for building 1283 /// the lists of loop-uniform and loop-scalar instructions. 1284 /// The calculated cost is saved with widening decision in order to 1285 /// avoid redundant calculations. 1286 void setCostBasedWideningDecision(ElementCount VF); 1287 1288 /// A struct that represents some properties of the register usage 1289 /// of a loop. 1290 struct RegisterUsage { 1291 /// Holds the number of loop invariant values that are used in the loop. 1292 /// The key is ClassID of target-provided register class. 1293 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1294 /// Holds the maximum number of concurrent live intervals in the loop. 1295 /// The key is ClassID of target-provided register class. 1296 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1297 }; 1298 1299 /// \return Returns information about the register usages of the loop for the 1300 /// given vectorization factors. 1301 SmallVector<RegisterUsage, 8> 1302 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1303 1304 /// Collect values we want to ignore in the cost model. 1305 void collectValuesToIgnore(); 1306 1307 /// Collect all element types in the loop for which widening is needed. 1308 void collectElementTypesForWidening(); 1309 1310 /// Split reductions into those that happen in the loop, and those that happen 1311 /// outside. In loop reductions are collected into InLoopReductionChains. 1312 void collectInLoopReductions(); 1313 1314 /// Returns true if we should use strict in-order reductions for the given 1315 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1316 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1317 /// of FP operations. 1318 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1319 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1320 } 1321 1322 /// \returns The smallest bitwidth each instruction can be represented with. 1323 /// The vector equivalents of these instructions should be truncated to this 1324 /// type. 1325 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1326 return MinBWs; 1327 } 1328 1329 /// \returns True if it is more profitable to scalarize instruction \p I for 1330 /// vectorization factor \p VF. 1331 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1332 assert(VF.isVector() && 1333 "Profitable to scalarize relevant only for VF > 1."); 1334 1335 // Cost model is not run in the VPlan-native path - return conservative 1336 // result until this changes. 1337 if (EnableVPlanNativePath) 1338 return false; 1339 1340 auto Scalars = InstsToScalarize.find(VF); 1341 assert(Scalars != InstsToScalarize.end() && 1342 "VF not yet analyzed for scalarization profitability"); 1343 return Scalars->second.find(I) != Scalars->second.end(); 1344 } 1345 1346 /// Returns true if \p I is known to be uniform after vectorization. 1347 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1348 if (VF.isScalar()) 1349 return true; 1350 1351 // Cost model is not run in the VPlan-native path - return conservative 1352 // result until this changes. 1353 if (EnableVPlanNativePath) 1354 return false; 1355 1356 auto UniformsPerVF = Uniforms.find(VF); 1357 assert(UniformsPerVF != Uniforms.end() && 1358 "VF not yet analyzed for uniformity"); 1359 return UniformsPerVF->second.count(I); 1360 } 1361 1362 /// Returns true if \p I is known to be scalar after vectorization. 1363 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1364 if (VF.isScalar()) 1365 return true; 1366 1367 // Cost model is not run in the VPlan-native path - return conservative 1368 // result until this changes. 1369 if (EnableVPlanNativePath) 1370 return false; 1371 1372 auto ScalarsPerVF = Scalars.find(VF); 1373 assert(ScalarsPerVF != Scalars.end() && 1374 "Scalar values are not calculated for VF"); 1375 return ScalarsPerVF->second.count(I); 1376 } 1377 1378 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1379 /// for vectorization factor \p VF. 1380 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1381 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1382 !isProfitableToScalarize(I, VF) && 1383 !isScalarAfterVectorization(I, VF); 1384 } 1385 1386 /// Decision that was taken during cost calculation for memory instruction. 1387 enum InstWidening { 1388 CM_Unknown, 1389 CM_Widen, // For consecutive accesses with stride +1. 1390 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1391 CM_Interleave, 1392 CM_GatherScatter, 1393 CM_Scalarize 1394 }; 1395 1396 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1397 /// instruction \p I and vector width \p VF. 1398 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1399 InstructionCost Cost) { 1400 assert(VF.isVector() && "Expected VF >=2"); 1401 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1402 } 1403 1404 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1405 /// interleaving group \p Grp and vector width \p VF. 1406 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1407 ElementCount VF, InstWidening W, 1408 InstructionCost Cost) { 1409 assert(VF.isVector() && "Expected VF >=2"); 1410 /// Broadcast this decicion to all instructions inside the group. 1411 /// But the cost will be assigned to one instruction only. 1412 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1413 if (auto *I = Grp->getMember(i)) { 1414 if (Grp->getInsertPos() == I) 1415 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1416 else 1417 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1418 } 1419 } 1420 } 1421 1422 /// Return the cost model decision for the given instruction \p I and vector 1423 /// width \p VF. Return CM_Unknown if this instruction did not pass 1424 /// through the cost modeling. 1425 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1426 assert(VF.isVector() && "Expected VF to be a vector VF"); 1427 // Cost model is not run in the VPlan-native path - return conservative 1428 // result until this changes. 1429 if (EnableVPlanNativePath) 1430 return CM_GatherScatter; 1431 1432 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1433 auto Itr = WideningDecisions.find(InstOnVF); 1434 if (Itr == WideningDecisions.end()) 1435 return CM_Unknown; 1436 return Itr->second.first; 1437 } 1438 1439 /// Return the vectorization cost for the given instruction \p I and vector 1440 /// width \p VF. 1441 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1442 assert(VF.isVector() && "Expected VF >=2"); 1443 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1444 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1445 "The cost is not calculated"); 1446 return WideningDecisions[InstOnVF].second; 1447 } 1448 1449 /// Return True if instruction \p I is an optimizable truncate whose operand 1450 /// is an induction variable. Such a truncate will be removed by adding a new 1451 /// induction variable with the destination type. 1452 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1453 // If the instruction is not a truncate, return false. 1454 auto *Trunc = dyn_cast<TruncInst>(I); 1455 if (!Trunc) 1456 return false; 1457 1458 // Get the source and destination types of the truncate. 1459 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1460 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1461 1462 // If the truncate is free for the given types, return false. Replacing a 1463 // free truncate with an induction variable would add an induction variable 1464 // update instruction to each iteration of the loop. We exclude from this 1465 // check the primary induction variable since it will need an update 1466 // instruction regardless. 1467 Value *Op = Trunc->getOperand(0); 1468 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1469 return false; 1470 1471 // If the truncated value is not an induction variable, return false. 1472 return Legal->isInductionPhi(Op); 1473 } 1474 1475 /// Collects the instructions to scalarize for each predicated instruction in 1476 /// the loop. 1477 void collectInstsToScalarize(ElementCount VF); 1478 1479 /// Collect Uniform and Scalar values for the given \p VF. 1480 /// The sets depend on CM decision for Load/Store instructions 1481 /// that may be vectorized as interleave, gather-scatter or scalarized. 1482 void collectUniformsAndScalars(ElementCount VF) { 1483 // Do the analysis once. 1484 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1485 return; 1486 setCostBasedWideningDecision(VF); 1487 collectLoopUniforms(VF); 1488 collectLoopScalars(VF); 1489 } 1490 1491 /// Returns true if the target machine supports masked store operation 1492 /// for the given \p DataType and kind of access to \p Ptr. 1493 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1494 return Legal->isConsecutivePtr(DataType, Ptr) && 1495 TTI.isLegalMaskedStore(DataType, Alignment); 1496 } 1497 1498 /// Returns true if the target machine supports masked load operation 1499 /// for the given \p DataType and kind of access to \p Ptr. 1500 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1501 return Legal->isConsecutivePtr(DataType, Ptr) && 1502 TTI.isLegalMaskedLoad(DataType, Alignment); 1503 } 1504 1505 /// Returns true if the target machine can represent \p V as a masked gather 1506 /// or scatter operation. 1507 bool isLegalGatherOrScatter(Value *V) { 1508 bool LI = isa<LoadInst>(V); 1509 bool SI = isa<StoreInst>(V); 1510 if (!LI && !SI) 1511 return false; 1512 auto *Ty = getLoadStoreType(V); 1513 Align Align = getLoadStoreAlignment(V); 1514 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1515 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1516 } 1517 1518 /// Returns true if the target machine supports all of the reduction 1519 /// variables found for the given VF. 1520 bool canVectorizeReductions(ElementCount VF) const { 1521 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1522 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1523 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1524 })); 1525 } 1526 1527 /// Returns true if \p I is an instruction that will be scalarized with 1528 /// predication. Such instructions include conditional stores and 1529 /// instructions that may divide by zero. 1530 /// If a non-zero VF has been calculated, we check if I will be scalarized 1531 /// predication for that VF. 1532 bool isScalarWithPredication(Instruction *I) const; 1533 1534 // Returns true if \p I is an instruction that will be predicated either 1535 // through scalar predication or masked load/store or masked gather/scatter. 1536 // Superset of instructions that return true for isScalarWithPredication. 1537 bool isPredicatedInst(Instruction *I) { 1538 if (!blockNeedsPredication(I->getParent())) 1539 return false; 1540 // Loads and stores that need some form of masked operation are predicated 1541 // instructions. 1542 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1543 return Legal->isMaskRequired(I); 1544 return isScalarWithPredication(I); 1545 } 1546 1547 /// Returns true if \p I is a memory instruction with consecutive memory 1548 /// access that can be widened. 1549 bool 1550 memoryInstructionCanBeWidened(Instruction *I, 1551 ElementCount VF = ElementCount::getFixed(1)); 1552 1553 /// Returns true if \p I is a memory instruction in an interleaved-group 1554 /// of memory accesses that can be vectorized with wide vector loads/stores 1555 /// and shuffles. 1556 bool 1557 interleavedAccessCanBeWidened(Instruction *I, 1558 ElementCount VF = ElementCount::getFixed(1)); 1559 1560 /// Check if \p Instr belongs to any interleaved access group. 1561 bool isAccessInterleaved(Instruction *Instr) { 1562 return InterleaveInfo.isInterleaved(Instr); 1563 } 1564 1565 /// Get the interleaved access group that \p Instr belongs to. 1566 const InterleaveGroup<Instruction> * 1567 getInterleavedAccessGroup(Instruction *Instr) { 1568 return InterleaveInfo.getInterleaveGroup(Instr); 1569 } 1570 1571 /// Returns true if we're required to use a scalar epilogue for at least 1572 /// the final iteration of the original loop. 1573 bool requiresScalarEpilogue(ElementCount VF) const { 1574 if (!isScalarEpilogueAllowed()) 1575 return false; 1576 // If we might exit from anywhere but the latch, must run the exiting 1577 // iteration in scalar form. 1578 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1579 return true; 1580 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1581 } 1582 1583 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1584 /// loop hint annotation. 1585 bool isScalarEpilogueAllowed() const { 1586 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1587 } 1588 1589 /// Returns true if all loop blocks should be masked to fold tail loop. 1590 bool foldTailByMasking() const { return FoldTailByMasking; } 1591 1592 bool blockNeedsPredication(BasicBlock *BB) const { 1593 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1594 } 1595 1596 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1597 /// nodes to the chain of instructions representing the reductions. Uses a 1598 /// MapVector to ensure deterministic iteration order. 1599 using ReductionChainMap = 1600 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1601 1602 /// Return the chain of instructions representing an inloop reduction. 1603 const ReductionChainMap &getInLoopReductionChains() const { 1604 return InLoopReductionChains; 1605 } 1606 1607 /// Returns true if the Phi is part of an inloop reduction. 1608 bool isInLoopReduction(PHINode *Phi) const { 1609 return InLoopReductionChains.count(Phi); 1610 } 1611 1612 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1613 /// with factor VF. Return the cost of the instruction, including 1614 /// scalarization overhead if it's needed. 1615 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1616 1617 /// Estimate cost of a call instruction CI if it were vectorized with factor 1618 /// VF. Return the cost of the instruction, including scalarization overhead 1619 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1620 /// scalarized - 1621 /// i.e. either vector version isn't available, or is too expensive. 1622 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1623 bool &NeedToScalarize) const; 1624 1625 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1626 /// that of B. 1627 bool isMoreProfitable(const VectorizationFactor &A, 1628 const VectorizationFactor &B) const; 1629 1630 /// Invalidates decisions already taken by the cost model. 1631 void invalidateCostModelingDecisions() { 1632 WideningDecisions.clear(); 1633 Uniforms.clear(); 1634 Scalars.clear(); 1635 } 1636 1637 private: 1638 unsigned NumPredStores = 0; 1639 1640 /// \return An upper bound for the vectorization factors for both 1641 /// fixed and scalable vectorization, where the minimum-known number of 1642 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1643 /// disabled or unsupported, then the scalable part will be equal to 1644 /// ElementCount::getScalable(0). 1645 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1646 ElementCount UserVF); 1647 1648 /// \return the maximized element count based on the targets vector 1649 /// registers and the loop trip-count, but limited to a maximum safe VF. 1650 /// This is a helper function of computeFeasibleMaxVF. 1651 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1652 /// issue that occurred on one of the buildbots which cannot be reproduced 1653 /// without having access to the properietary compiler (see comments on 1654 /// D98509). The issue is currently under investigation and this workaround 1655 /// will be removed as soon as possible. 1656 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1657 unsigned SmallestType, 1658 unsigned WidestType, 1659 const ElementCount &MaxSafeVF); 1660 1661 /// \return the maximum legal scalable VF, based on the safe max number 1662 /// of elements. 1663 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1664 1665 /// The vectorization cost is a combination of the cost itself and a boolean 1666 /// indicating whether any of the contributing operations will actually 1667 /// operate on vector values after type legalization in the backend. If this 1668 /// latter value is false, then all operations will be scalarized (i.e. no 1669 /// vectorization has actually taken place). 1670 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1671 1672 /// Returns the expected execution cost. The unit of the cost does 1673 /// not matter because we use the 'cost' units to compare different 1674 /// vector widths. The cost that is returned is *not* normalized by 1675 /// the factor width. If \p Invalid is not nullptr, this function 1676 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1677 /// each instruction that has an Invalid cost for the given VF. 1678 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1679 VectorizationCostTy 1680 expectedCost(ElementCount VF, 1681 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1682 1683 /// Returns the execution time cost of an instruction for a given vector 1684 /// width. Vector width of one means scalar. 1685 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1686 1687 /// The cost-computation logic from getInstructionCost which provides 1688 /// the vector type as an output parameter. 1689 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1690 Type *&VectorTy); 1691 1692 /// Return the cost of instructions in an inloop reduction pattern, if I is 1693 /// part of that pattern. 1694 Optional<InstructionCost> 1695 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1696 TTI::TargetCostKind CostKind); 1697 1698 /// Calculate vectorization cost of memory instruction \p I. 1699 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1700 1701 /// The cost computation for scalarized memory instruction. 1702 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1703 1704 /// The cost computation for interleaving group of memory instructions. 1705 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1706 1707 /// The cost computation for Gather/Scatter instruction. 1708 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1709 1710 /// The cost computation for widening instruction \p I with consecutive 1711 /// memory access. 1712 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1713 1714 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1715 /// Load: scalar load + broadcast. 1716 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1717 /// element) 1718 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1719 1720 /// Estimate the overhead of scalarizing an instruction. This is a 1721 /// convenience wrapper for the type-based getScalarizationOverhead API. 1722 InstructionCost getScalarizationOverhead(Instruction *I, 1723 ElementCount VF) const; 1724 1725 /// Returns whether the instruction is a load or store and will be a emitted 1726 /// as a vector operation. 1727 bool isConsecutiveLoadOrStore(Instruction *I); 1728 1729 /// Returns true if an artificially high cost for emulated masked memrefs 1730 /// should be used. 1731 bool useEmulatedMaskMemRefHack(Instruction *I); 1732 1733 /// Map of scalar integer values to the smallest bitwidth they can be legally 1734 /// represented as. The vector equivalents of these values should be truncated 1735 /// to this type. 1736 MapVector<Instruction *, uint64_t> MinBWs; 1737 1738 /// A type representing the costs for instructions if they were to be 1739 /// scalarized rather than vectorized. The entries are Instruction-Cost 1740 /// pairs. 1741 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1742 1743 /// A set containing all BasicBlocks that are known to present after 1744 /// vectorization as a predicated block. 1745 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1746 1747 /// Records whether it is allowed to have the original scalar loop execute at 1748 /// least once. This may be needed as a fallback loop in case runtime 1749 /// aliasing/dependence checks fail, or to handle the tail/remainder 1750 /// iterations when the trip count is unknown or doesn't divide by the VF, 1751 /// or as a peel-loop to handle gaps in interleave-groups. 1752 /// Under optsize and when the trip count is very small we don't allow any 1753 /// iterations to execute in the scalar loop. 1754 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1755 1756 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1757 bool FoldTailByMasking = false; 1758 1759 /// A map holding scalar costs for different vectorization factors. The 1760 /// presence of a cost for an instruction in the mapping indicates that the 1761 /// instruction will be scalarized when vectorizing with the associated 1762 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1763 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1764 1765 /// Holds the instructions known to be uniform after vectorization. 1766 /// The data is collected per VF. 1767 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1768 1769 /// Holds the instructions known to be scalar after vectorization. 1770 /// The data is collected per VF. 1771 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1772 1773 /// Holds the instructions (address computations) that are forced to be 1774 /// scalarized. 1775 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1776 1777 /// PHINodes of the reductions that should be expanded in-loop along with 1778 /// their associated chains of reduction operations, in program order from top 1779 /// (PHI) to bottom 1780 ReductionChainMap InLoopReductionChains; 1781 1782 /// A Map of inloop reduction operations and their immediate chain operand. 1783 /// FIXME: This can be removed once reductions can be costed correctly in 1784 /// vplan. This was added to allow quick lookup to the inloop operations, 1785 /// without having to loop through InLoopReductionChains. 1786 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1787 1788 /// Returns the expected difference in cost from scalarizing the expression 1789 /// feeding a predicated instruction \p PredInst. The instructions to 1790 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1791 /// non-negative return value implies the expression will be scalarized. 1792 /// Currently, only single-use chains are considered for scalarization. 1793 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1794 ElementCount VF); 1795 1796 /// Collect the instructions that are uniform after vectorization. An 1797 /// instruction is uniform if we represent it with a single scalar value in 1798 /// the vectorized loop corresponding to each vector iteration. Examples of 1799 /// uniform instructions include pointer operands of consecutive or 1800 /// interleaved memory accesses. Note that although uniformity implies an 1801 /// instruction will be scalar, the reverse is not true. In general, a 1802 /// scalarized instruction will be represented by VF scalar values in the 1803 /// vectorized loop, each corresponding to an iteration of the original 1804 /// scalar loop. 1805 void collectLoopUniforms(ElementCount VF); 1806 1807 /// Collect the instructions that are scalar after vectorization. An 1808 /// instruction is scalar if it is known to be uniform or will be scalarized 1809 /// during vectorization. Non-uniform scalarized instructions will be 1810 /// represented by VF values in the vectorized loop, each corresponding to an 1811 /// iteration of the original scalar loop. 1812 void collectLoopScalars(ElementCount VF); 1813 1814 /// Keeps cost model vectorization decision and cost for instructions. 1815 /// Right now it is used for memory instructions only. 1816 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1817 std::pair<InstWidening, InstructionCost>>; 1818 1819 DecisionList WideningDecisions; 1820 1821 /// Returns true if \p V is expected to be vectorized and it needs to be 1822 /// extracted. 1823 bool needsExtract(Value *V, ElementCount VF) const { 1824 Instruction *I = dyn_cast<Instruction>(V); 1825 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1826 TheLoop->isLoopInvariant(I)) 1827 return false; 1828 1829 // Assume we can vectorize V (and hence we need extraction) if the 1830 // scalars are not computed yet. This can happen, because it is called 1831 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1832 // the scalars are collected. That should be a safe assumption in most 1833 // cases, because we check if the operands have vectorizable types 1834 // beforehand in LoopVectorizationLegality. 1835 return Scalars.find(VF) == Scalars.end() || 1836 !isScalarAfterVectorization(I, VF); 1837 }; 1838 1839 /// Returns a range containing only operands needing to be extracted. 1840 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1841 ElementCount VF) const { 1842 return SmallVector<Value *, 4>(make_filter_range( 1843 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1844 } 1845 1846 /// Determines if we have the infrastructure to vectorize loop \p L and its 1847 /// epilogue, assuming the main loop is vectorized by \p VF. 1848 bool isCandidateForEpilogueVectorization(const Loop &L, 1849 const ElementCount VF) const; 1850 1851 /// Returns true if epilogue vectorization is considered profitable, and 1852 /// false otherwise. 1853 /// \p VF is the vectorization factor chosen for the original loop. 1854 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1855 1856 public: 1857 /// The loop that we evaluate. 1858 Loop *TheLoop; 1859 1860 /// Predicated scalar evolution analysis. 1861 PredicatedScalarEvolution &PSE; 1862 1863 /// Loop Info analysis. 1864 LoopInfo *LI; 1865 1866 /// Vectorization legality. 1867 LoopVectorizationLegality *Legal; 1868 1869 /// Vector target information. 1870 const TargetTransformInfo &TTI; 1871 1872 /// Target Library Info. 1873 const TargetLibraryInfo *TLI; 1874 1875 /// Demanded bits analysis. 1876 DemandedBits *DB; 1877 1878 /// Assumption cache. 1879 AssumptionCache *AC; 1880 1881 /// Interface to emit optimization remarks. 1882 OptimizationRemarkEmitter *ORE; 1883 1884 const Function *TheFunction; 1885 1886 /// Loop Vectorize Hint. 1887 const LoopVectorizeHints *Hints; 1888 1889 /// The interleave access information contains groups of interleaved accesses 1890 /// with the same stride and close to each other. 1891 InterleavedAccessInfo &InterleaveInfo; 1892 1893 /// Values to ignore in the cost model. 1894 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1895 1896 /// Values to ignore in the cost model when VF > 1. 1897 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1898 1899 /// All element types found in the loop. 1900 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1901 1902 /// Profitable vector factors. 1903 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1904 }; 1905 } // end namespace llvm 1906 1907 /// Helper struct to manage generating runtime checks for vectorization. 1908 /// 1909 /// The runtime checks are created up-front in temporary blocks to allow better 1910 /// estimating the cost and un-linked from the existing IR. After deciding to 1911 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1912 /// temporary blocks are completely removed. 1913 class GeneratedRTChecks { 1914 /// Basic block which contains the generated SCEV checks, if any. 1915 BasicBlock *SCEVCheckBlock = nullptr; 1916 1917 /// The value representing the result of the generated SCEV checks. If it is 1918 /// nullptr, either no SCEV checks have been generated or they have been used. 1919 Value *SCEVCheckCond = nullptr; 1920 1921 /// Basic block which contains the generated memory runtime checks, if any. 1922 BasicBlock *MemCheckBlock = nullptr; 1923 1924 /// The value representing the result of the generated memory runtime checks. 1925 /// If it is nullptr, either no memory runtime checks have been generated or 1926 /// they have been used. 1927 Instruction *MemRuntimeCheckCond = nullptr; 1928 1929 DominatorTree *DT; 1930 LoopInfo *LI; 1931 1932 SCEVExpander SCEVExp; 1933 SCEVExpander MemCheckExp; 1934 1935 public: 1936 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1937 const DataLayout &DL) 1938 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1939 MemCheckExp(SE, DL, "scev.check") {} 1940 1941 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1942 /// accurately estimate the cost of the runtime checks. The blocks are 1943 /// un-linked from the IR and is added back during vector code generation. If 1944 /// there is no vector code generation, the check blocks are removed 1945 /// completely. 1946 void Create(Loop *L, const LoopAccessInfo &LAI, 1947 const SCEVUnionPredicate &UnionPred) { 1948 1949 BasicBlock *LoopHeader = L->getHeader(); 1950 BasicBlock *Preheader = L->getLoopPreheader(); 1951 1952 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1953 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1954 // may be used by SCEVExpander. The blocks will be un-linked from their 1955 // predecessors and removed from LI & DT at the end of the function. 1956 if (!UnionPred.isAlwaysTrue()) { 1957 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1958 nullptr, "vector.scevcheck"); 1959 1960 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1961 &UnionPred, SCEVCheckBlock->getTerminator()); 1962 } 1963 1964 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1965 if (RtPtrChecking.Need) { 1966 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1967 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1968 "vector.memcheck"); 1969 1970 std::tie(std::ignore, MemRuntimeCheckCond) = 1971 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1972 RtPtrChecking.getChecks(), MemCheckExp); 1973 assert(MemRuntimeCheckCond && 1974 "no RT checks generated although RtPtrChecking " 1975 "claimed checks are required"); 1976 } 1977 1978 if (!MemCheckBlock && !SCEVCheckBlock) 1979 return; 1980 1981 // Unhook the temporary block with the checks, update various places 1982 // accordingly. 1983 if (SCEVCheckBlock) 1984 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1985 if (MemCheckBlock) 1986 MemCheckBlock->replaceAllUsesWith(Preheader); 1987 1988 if (SCEVCheckBlock) { 1989 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1990 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1991 Preheader->getTerminator()->eraseFromParent(); 1992 } 1993 if (MemCheckBlock) { 1994 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1995 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1996 Preheader->getTerminator()->eraseFromParent(); 1997 } 1998 1999 DT->changeImmediateDominator(LoopHeader, Preheader); 2000 if (MemCheckBlock) { 2001 DT->eraseNode(MemCheckBlock); 2002 LI->removeBlock(MemCheckBlock); 2003 } 2004 if (SCEVCheckBlock) { 2005 DT->eraseNode(SCEVCheckBlock); 2006 LI->removeBlock(SCEVCheckBlock); 2007 } 2008 } 2009 2010 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2011 /// unused. 2012 ~GeneratedRTChecks() { 2013 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 2014 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 2015 if (!SCEVCheckCond) 2016 SCEVCleaner.markResultUsed(); 2017 2018 if (!MemRuntimeCheckCond) 2019 MemCheckCleaner.markResultUsed(); 2020 2021 if (MemRuntimeCheckCond) { 2022 auto &SE = *MemCheckExp.getSE(); 2023 // Memory runtime check generation creates compares that use expanded 2024 // values. Remove them before running the SCEVExpanderCleaners. 2025 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2026 if (MemCheckExp.isInsertedInstruction(&I)) 2027 continue; 2028 SE.forgetValue(&I); 2029 SE.eraseValueFromMap(&I); 2030 I.eraseFromParent(); 2031 } 2032 } 2033 MemCheckCleaner.cleanup(); 2034 SCEVCleaner.cleanup(); 2035 2036 if (SCEVCheckCond) 2037 SCEVCheckBlock->eraseFromParent(); 2038 if (MemRuntimeCheckCond) 2039 MemCheckBlock->eraseFromParent(); 2040 } 2041 2042 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2043 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2044 /// depending on the generated condition. 2045 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2046 BasicBlock *LoopVectorPreHeader, 2047 BasicBlock *LoopExitBlock) { 2048 if (!SCEVCheckCond) 2049 return nullptr; 2050 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2051 if (C->isZero()) 2052 return nullptr; 2053 2054 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2055 2056 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2057 // Create new preheader for vector loop. 2058 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2059 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2060 2061 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2062 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2063 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2064 SCEVCheckBlock); 2065 2066 DT->addNewBlock(SCEVCheckBlock, Pred); 2067 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2068 2069 ReplaceInstWithInst( 2070 SCEVCheckBlock->getTerminator(), 2071 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2072 // Mark the check as used, to prevent it from being removed during cleanup. 2073 SCEVCheckCond = nullptr; 2074 return SCEVCheckBlock; 2075 } 2076 2077 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2078 /// the branches to branch to the vector preheader or \p Bypass, depending on 2079 /// the generated condition. 2080 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2081 BasicBlock *LoopVectorPreHeader) { 2082 // Check if we generated code that checks in runtime if arrays overlap. 2083 if (!MemRuntimeCheckCond) 2084 return nullptr; 2085 2086 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2087 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2088 MemCheckBlock); 2089 2090 DT->addNewBlock(MemCheckBlock, Pred); 2091 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2092 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2093 2094 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2095 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2096 2097 ReplaceInstWithInst( 2098 MemCheckBlock->getTerminator(), 2099 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2100 MemCheckBlock->getTerminator()->setDebugLoc( 2101 Pred->getTerminator()->getDebugLoc()); 2102 2103 // Mark the check as used, to prevent it from being removed during cleanup. 2104 MemRuntimeCheckCond = nullptr; 2105 return MemCheckBlock; 2106 } 2107 }; 2108 2109 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2110 // vectorization. The loop needs to be annotated with #pragma omp simd 2111 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2112 // vector length information is not provided, vectorization is not considered 2113 // explicit. Interleave hints are not allowed either. These limitations will be 2114 // relaxed in the future. 2115 // Please, note that we are currently forced to abuse the pragma 'clang 2116 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2117 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2118 // provides *explicit vectorization hints* (LV can bypass legal checks and 2119 // assume that vectorization is legal). However, both hints are implemented 2120 // using the same metadata (llvm.loop.vectorize, processed by 2121 // LoopVectorizeHints). This will be fixed in the future when the native IR 2122 // representation for pragma 'omp simd' is introduced. 2123 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2124 OptimizationRemarkEmitter *ORE) { 2125 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2126 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2127 2128 // Only outer loops with an explicit vectorization hint are supported. 2129 // Unannotated outer loops are ignored. 2130 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2131 return false; 2132 2133 Function *Fn = OuterLp->getHeader()->getParent(); 2134 if (!Hints.allowVectorization(Fn, OuterLp, 2135 true /*VectorizeOnlyWhenForced*/)) { 2136 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2137 return false; 2138 } 2139 2140 if (Hints.getInterleave() > 1) { 2141 // TODO: Interleave support is future work. 2142 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2143 "outer loops.\n"); 2144 Hints.emitRemarkWithHints(); 2145 return false; 2146 } 2147 2148 return true; 2149 } 2150 2151 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2152 OptimizationRemarkEmitter *ORE, 2153 SmallVectorImpl<Loop *> &V) { 2154 // Collect inner loops and outer loops without irreducible control flow. For 2155 // now, only collect outer loops that have explicit vectorization hints. If we 2156 // are stress testing the VPlan H-CFG construction, we collect the outermost 2157 // loop of every loop nest. 2158 if (L.isInnermost() || VPlanBuildStressTest || 2159 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2160 LoopBlocksRPO RPOT(&L); 2161 RPOT.perform(LI); 2162 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2163 V.push_back(&L); 2164 // TODO: Collect inner loops inside marked outer loops in case 2165 // vectorization fails for the outer loop. Do not invoke 2166 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2167 // already known to be reducible. We can use an inherited attribute for 2168 // that. 2169 return; 2170 } 2171 } 2172 for (Loop *InnerL : L) 2173 collectSupportedLoops(*InnerL, LI, ORE, V); 2174 } 2175 2176 namespace { 2177 2178 /// The LoopVectorize Pass. 2179 struct LoopVectorize : public FunctionPass { 2180 /// Pass identification, replacement for typeid 2181 static char ID; 2182 2183 LoopVectorizePass Impl; 2184 2185 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2186 bool VectorizeOnlyWhenForced = false) 2187 : FunctionPass(ID), 2188 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2189 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2190 } 2191 2192 bool runOnFunction(Function &F) override { 2193 if (skipFunction(F)) 2194 return false; 2195 2196 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2197 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2198 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2199 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2200 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2201 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2202 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2203 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2204 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2205 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2206 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2207 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2208 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2209 2210 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2211 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2212 2213 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2214 GetLAA, *ORE, PSI).MadeAnyChange; 2215 } 2216 2217 void getAnalysisUsage(AnalysisUsage &AU) const override { 2218 AU.addRequired<AssumptionCacheTracker>(); 2219 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2220 AU.addRequired<DominatorTreeWrapperPass>(); 2221 AU.addRequired<LoopInfoWrapperPass>(); 2222 AU.addRequired<ScalarEvolutionWrapperPass>(); 2223 AU.addRequired<TargetTransformInfoWrapperPass>(); 2224 AU.addRequired<AAResultsWrapperPass>(); 2225 AU.addRequired<LoopAccessLegacyAnalysis>(); 2226 AU.addRequired<DemandedBitsWrapperPass>(); 2227 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2228 AU.addRequired<InjectTLIMappingsLegacy>(); 2229 2230 // We currently do not preserve loopinfo/dominator analyses with outer loop 2231 // vectorization. Until this is addressed, mark these analyses as preserved 2232 // only for non-VPlan-native path. 2233 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2234 if (!EnableVPlanNativePath) { 2235 AU.addPreserved<LoopInfoWrapperPass>(); 2236 AU.addPreserved<DominatorTreeWrapperPass>(); 2237 } 2238 2239 AU.addPreserved<BasicAAWrapperPass>(); 2240 AU.addPreserved<GlobalsAAWrapperPass>(); 2241 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2242 } 2243 }; 2244 2245 } // end anonymous namespace 2246 2247 //===----------------------------------------------------------------------===// 2248 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2249 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2250 //===----------------------------------------------------------------------===// 2251 2252 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2253 // We need to place the broadcast of invariant variables outside the loop, 2254 // but only if it's proven safe to do so. Else, broadcast will be inside 2255 // vector loop body. 2256 Instruction *Instr = dyn_cast<Instruction>(V); 2257 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2258 (!Instr || 2259 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2260 // Place the code for broadcasting invariant variables in the new preheader. 2261 IRBuilder<>::InsertPointGuard Guard(Builder); 2262 if (SafeToHoist) 2263 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2264 2265 // Broadcast the scalar into all locations in the vector. 2266 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2267 2268 return Shuf; 2269 } 2270 2271 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2272 const InductionDescriptor &II, Value *Step, Value *Start, 2273 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2274 VPTransformState &State) { 2275 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2276 "Expected either an induction phi-node or a truncate of it!"); 2277 2278 // Construct the initial value of the vector IV in the vector loop preheader 2279 auto CurrIP = Builder.saveIP(); 2280 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2281 if (isa<TruncInst>(EntryVal)) { 2282 assert(Start->getType()->isIntegerTy() && 2283 "Truncation requires an integer type"); 2284 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2285 Step = Builder.CreateTrunc(Step, TruncType); 2286 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2287 } 2288 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2289 Value *SteppedStart = 2290 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2291 2292 // We create vector phi nodes for both integer and floating-point induction 2293 // variables. Here, we determine the kind of arithmetic we will perform. 2294 Instruction::BinaryOps AddOp; 2295 Instruction::BinaryOps MulOp; 2296 if (Step->getType()->isIntegerTy()) { 2297 AddOp = Instruction::Add; 2298 MulOp = Instruction::Mul; 2299 } else { 2300 AddOp = II.getInductionOpcode(); 2301 MulOp = Instruction::FMul; 2302 } 2303 2304 // Multiply the vectorization factor by the step using integer or 2305 // floating-point arithmetic as appropriate. 2306 Type *StepType = Step->getType(); 2307 if (Step->getType()->isFloatingPointTy()) 2308 StepType = IntegerType::get(StepType->getContext(), 2309 StepType->getScalarSizeInBits()); 2310 Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2311 if (Step->getType()->isFloatingPointTy()) 2312 RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType()); 2313 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2314 2315 // Create a vector splat to use in the induction update. 2316 // 2317 // FIXME: If the step is non-constant, we create the vector splat with 2318 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2319 // handle a constant vector splat. 2320 Value *SplatVF = isa<Constant>(Mul) 2321 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2322 : Builder.CreateVectorSplat(VF, Mul); 2323 Builder.restoreIP(CurrIP); 2324 2325 // We may need to add the step a number of times, depending on the unroll 2326 // factor. The last of those goes into the PHI. 2327 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2328 &*LoopVectorBody->getFirstInsertionPt()); 2329 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2330 Instruction *LastInduction = VecInd; 2331 for (unsigned Part = 0; Part < UF; ++Part) { 2332 State.set(Def, LastInduction, Part); 2333 2334 if (isa<TruncInst>(EntryVal)) 2335 addMetadata(LastInduction, EntryVal); 2336 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2337 State, Part); 2338 2339 LastInduction = cast<Instruction>( 2340 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2341 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2342 } 2343 2344 // Move the last step to the end of the latch block. This ensures consistent 2345 // placement of all induction updates. 2346 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2347 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2348 auto *ICmp = cast<Instruction>(Br->getCondition()); 2349 LastInduction->moveBefore(ICmp); 2350 LastInduction->setName("vec.ind.next"); 2351 2352 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2353 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2354 } 2355 2356 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2357 return Cost->isScalarAfterVectorization(I, VF) || 2358 Cost->isProfitableToScalarize(I, VF); 2359 } 2360 2361 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2362 if (shouldScalarizeInstruction(IV)) 2363 return true; 2364 auto isScalarInst = [&](User *U) -> bool { 2365 auto *I = cast<Instruction>(U); 2366 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2367 }; 2368 return llvm::any_of(IV->users(), isScalarInst); 2369 } 2370 2371 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2372 const InductionDescriptor &ID, const Instruction *EntryVal, 2373 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2374 unsigned Part, unsigned Lane) { 2375 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2376 "Expected either an induction phi-node or a truncate of it!"); 2377 2378 // This induction variable is not the phi from the original loop but the 2379 // newly-created IV based on the proof that casted Phi is equal to the 2380 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2381 // re-uses the same InductionDescriptor that original IV uses but we don't 2382 // have to do any recording in this case - that is done when original IV is 2383 // processed. 2384 if (isa<TruncInst>(EntryVal)) 2385 return; 2386 2387 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2388 if (Casts.empty()) 2389 return; 2390 // Only the first Cast instruction in the Casts vector is of interest. 2391 // The rest of the Casts (if exist) have no uses outside the 2392 // induction update chain itself. 2393 if (Lane < UINT_MAX) 2394 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2395 else 2396 State.set(CastDef, VectorLoopVal, Part); 2397 } 2398 2399 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2400 TruncInst *Trunc, VPValue *Def, 2401 VPValue *CastDef, 2402 VPTransformState &State) { 2403 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2404 "Primary induction variable must have an integer type"); 2405 2406 auto II = Legal->getInductionVars().find(IV); 2407 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2408 2409 auto ID = II->second; 2410 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2411 2412 // The value from the original loop to which we are mapping the new induction 2413 // variable. 2414 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2415 2416 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2417 2418 // Generate code for the induction step. Note that induction steps are 2419 // required to be loop-invariant 2420 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2421 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2422 "Induction step should be loop invariant"); 2423 if (PSE.getSE()->isSCEVable(IV->getType())) { 2424 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2425 return Exp.expandCodeFor(Step, Step->getType(), 2426 LoopVectorPreHeader->getTerminator()); 2427 } 2428 return cast<SCEVUnknown>(Step)->getValue(); 2429 }; 2430 2431 // The scalar value to broadcast. This is derived from the canonical 2432 // induction variable. If a truncation type is given, truncate the canonical 2433 // induction variable and step. Otherwise, derive these values from the 2434 // induction descriptor. 2435 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2436 Value *ScalarIV = Induction; 2437 if (IV != OldInduction) { 2438 ScalarIV = IV->getType()->isIntegerTy() 2439 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2440 : Builder.CreateCast(Instruction::SIToFP, Induction, 2441 IV->getType()); 2442 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2443 ScalarIV->setName("offset.idx"); 2444 } 2445 if (Trunc) { 2446 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2447 assert(Step->getType()->isIntegerTy() && 2448 "Truncation requires an integer step"); 2449 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2450 Step = Builder.CreateTrunc(Step, TruncType); 2451 } 2452 return ScalarIV; 2453 }; 2454 2455 // Create the vector values from the scalar IV, in the absence of creating a 2456 // vector IV. 2457 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2458 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2459 for (unsigned Part = 0; Part < UF; ++Part) { 2460 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2461 Value *EntryPart = 2462 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2463 ID.getInductionOpcode()); 2464 State.set(Def, EntryPart, Part); 2465 if (Trunc) 2466 addMetadata(EntryPart, Trunc); 2467 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2468 State, Part); 2469 } 2470 }; 2471 2472 // Fast-math-flags propagate from the original induction instruction. 2473 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2474 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2475 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2476 2477 // Now do the actual transformations, and start with creating the step value. 2478 Value *Step = CreateStepValue(ID.getStep()); 2479 if (VF.isZero() || VF.isScalar()) { 2480 Value *ScalarIV = CreateScalarIV(Step); 2481 CreateSplatIV(ScalarIV, Step); 2482 return; 2483 } 2484 2485 // Determine if we want a scalar version of the induction variable. This is 2486 // true if the induction variable itself is not widened, or if it has at 2487 // least one user in the loop that is not widened. 2488 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2489 if (!NeedsScalarIV) { 2490 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2491 State); 2492 return; 2493 } 2494 2495 // Try to create a new independent vector induction variable. If we can't 2496 // create the phi node, we will splat the scalar induction variable in each 2497 // loop iteration. 2498 if (!shouldScalarizeInstruction(EntryVal)) { 2499 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2500 State); 2501 Value *ScalarIV = CreateScalarIV(Step); 2502 // Create scalar steps that can be used by instructions we will later 2503 // scalarize. Note that the addition of the scalar steps will not increase 2504 // the number of instructions in the loop in the common case prior to 2505 // InstCombine. We will be trading one vector extract for each scalar step. 2506 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2507 return; 2508 } 2509 2510 // All IV users are scalar instructions, so only emit a scalar IV, not a 2511 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2512 // predicate used by the masked loads/stores. 2513 Value *ScalarIV = CreateScalarIV(Step); 2514 if (!Cost->isScalarEpilogueAllowed()) 2515 CreateSplatIV(ScalarIV, Step); 2516 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2517 } 2518 2519 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2520 Instruction::BinaryOps BinOp) { 2521 // Create and check the types. 2522 auto *ValVTy = cast<VectorType>(Val->getType()); 2523 ElementCount VLen = ValVTy->getElementCount(); 2524 2525 Type *STy = Val->getType()->getScalarType(); 2526 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2527 "Induction Step must be an integer or FP"); 2528 assert(Step->getType() == STy && "Step has wrong type"); 2529 2530 SmallVector<Constant *, 8> Indices; 2531 2532 // Create a vector of consecutive numbers from zero to VF. 2533 VectorType *InitVecValVTy = ValVTy; 2534 Type *InitVecValSTy = STy; 2535 if (STy->isFloatingPointTy()) { 2536 InitVecValSTy = 2537 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2538 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2539 } 2540 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2541 2542 // Add on StartIdx 2543 Value *StartIdxSplat = Builder.CreateVectorSplat( 2544 VLen, ConstantInt::get(InitVecValSTy, StartIdx)); 2545 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2546 2547 if (STy->isIntegerTy()) { 2548 Step = Builder.CreateVectorSplat(VLen, Step); 2549 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2550 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2551 // which can be found from the original scalar operations. 2552 Step = Builder.CreateMul(InitVec, Step); 2553 return Builder.CreateAdd(Val, Step, "induction"); 2554 } 2555 2556 // Floating point induction. 2557 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2558 "Binary Opcode should be specified for FP induction"); 2559 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2560 Step = Builder.CreateVectorSplat(VLen, Step); 2561 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2562 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2563 } 2564 2565 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2566 Instruction *EntryVal, 2567 const InductionDescriptor &ID, 2568 VPValue *Def, VPValue *CastDef, 2569 VPTransformState &State) { 2570 // We shouldn't have to build scalar steps if we aren't vectorizing. 2571 assert(VF.isVector() && "VF should be greater than one"); 2572 // Get the value type and ensure it and the step have the same integer type. 2573 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2574 assert(ScalarIVTy == Step->getType() && 2575 "Val and Step should have the same type"); 2576 2577 // We build scalar steps for both integer and floating-point induction 2578 // variables. Here, we determine the kind of arithmetic we will perform. 2579 Instruction::BinaryOps AddOp; 2580 Instruction::BinaryOps MulOp; 2581 if (ScalarIVTy->isIntegerTy()) { 2582 AddOp = Instruction::Add; 2583 MulOp = Instruction::Mul; 2584 } else { 2585 AddOp = ID.getInductionOpcode(); 2586 MulOp = Instruction::FMul; 2587 } 2588 2589 // Determine the number of scalars we need to generate for each unroll 2590 // iteration. If EntryVal is uniform, we only need to generate the first 2591 // lane. Otherwise, we generate all VF values. 2592 bool IsUniform = 2593 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2594 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2595 // Compute the scalar steps and save the results in State. 2596 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2597 ScalarIVTy->getScalarSizeInBits()); 2598 Type *VecIVTy = nullptr; 2599 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2600 if (!IsUniform && VF.isScalable()) { 2601 VecIVTy = VectorType::get(ScalarIVTy, VF); 2602 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2603 SplatStep = Builder.CreateVectorSplat(VF, Step); 2604 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2605 } 2606 2607 for (unsigned Part = 0; Part < UF; ++Part) { 2608 Value *StartIdx0 = 2609 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2610 2611 if (!IsUniform && VF.isScalable()) { 2612 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2613 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2614 if (ScalarIVTy->isFloatingPointTy()) 2615 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2616 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2617 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2618 State.set(Def, Add, Part); 2619 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2620 Part); 2621 // It's useful to record the lane values too for the known minimum number 2622 // of elements so we do those below. This improves the code quality when 2623 // trying to extract the first element, for example. 2624 } 2625 2626 if (ScalarIVTy->isFloatingPointTy()) 2627 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2628 2629 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2630 Value *StartIdx = Builder.CreateBinOp( 2631 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2632 // The step returned by `createStepForVF` is a runtime-evaluated value 2633 // when VF is scalable. Otherwise, it should be folded into a Constant. 2634 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2635 "Expected StartIdx to be folded to a constant when VF is not " 2636 "scalable"); 2637 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2638 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2639 State.set(Def, Add, VPIteration(Part, Lane)); 2640 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2641 Part, Lane); 2642 } 2643 } 2644 } 2645 2646 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2647 const VPIteration &Instance, 2648 VPTransformState &State) { 2649 Value *ScalarInst = State.get(Def, Instance); 2650 Value *VectorValue = State.get(Def, Instance.Part); 2651 VectorValue = Builder.CreateInsertElement( 2652 VectorValue, ScalarInst, 2653 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2654 State.set(Def, VectorValue, Instance.Part); 2655 } 2656 2657 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2658 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2659 return Builder.CreateVectorReverse(Vec, "reverse"); 2660 } 2661 2662 // Return whether we allow using masked interleave-groups (for dealing with 2663 // strided loads/stores that reside in predicated blocks, or for dealing 2664 // with gaps). 2665 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2666 // If an override option has been passed in for interleaved accesses, use it. 2667 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2668 return EnableMaskedInterleavedMemAccesses; 2669 2670 return TTI.enableMaskedInterleavedAccessVectorization(); 2671 } 2672 2673 // Try to vectorize the interleave group that \p Instr belongs to. 2674 // 2675 // E.g. Translate following interleaved load group (factor = 3): 2676 // for (i = 0; i < N; i+=3) { 2677 // R = Pic[i]; // Member of index 0 2678 // G = Pic[i+1]; // Member of index 1 2679 // B = Pic[i+2]; // Member of index 2 2680 // ... // do something to R, G, B 2681 // } 2682 // To: 2683 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2684 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2685 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2686 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2687 // 2688 // Or translate following interleaved store group (factor = 3): 2689 // for (i = 0; i < N; i+=3) { 2690 // ... do something to R, G, B 2691 // Pic[i] = R; // Member of index 0 2692 // Pic[i+1] = G; // Member of index 1 2693 // Pic[i+2] = B; // Member of index 2 2694 // } 2695 // To: 2696 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2697 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2698 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2699 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2700 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2701 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2702 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2703 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2704 VPValue *BlockInMask) { 2705 Instruction *Instr = Group->getInsertPos(); 2706 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2707 2708 // Prepare for the vector type of the interleaved load/store. 2709 Type *ScalarTy = getLoadStoreType(Instr); 2710 unsigned InterleaveFactor = Group->getFactor(); 2711 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2712 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2713 2714 // Prepare for the new pointers. 2715 SmallVector<Value *, 2> AddrParts; 2716 unsigned Index = Group->getIndex(Instr); 2717 2718 // TODO: extend the masked interleaved-group support to reversed access. 2719 assert((!BlockInMask || !Group->isReverse()) && 2720 "Reversed masked interleave-group not supported."); 2721 2722 // If the group is reverse, adjust the index to refer to the last vector lane 2723 // instead of the first. We adjust the index from the first vector lane, 2724 // rather than directly getting the pointer for lane VF - 1, because the 2725 // pointer operand of the interleaved access is supposed to be uniform. For 2726 // uniform instructions, we're only required to generate a value for the 2727 // first vector lane in each unroll iteration. 2728 if (Group->isReverse()) 2729 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2730 2731 for (unsigned Part = 0; Part < UF; Part++) { 2732 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2733 setDebugLocFromInst(AddrPart); 2734 2735 // Notice current instruction could be any index. Need to adjust the address 2736 // to the member of index 0. 2737 // 2738 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2739 // b = A[i]; // Member of index 0 2740 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2741 // 2742 // E.g. A[i+1] = a; // Member of index 1 2743 // A[i] = b; // Member of index 0 2744 // A[i+2] = c; // Member of index 2 (Current instruction) 2745 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2746 2747 bool InBounds = false; 2748 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2749 InBounds = gep->isInBounds(); 2750 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2751 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2752 2753 // Cast to the vector pointer type. 2754 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2755 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2756 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2757 } 2758 2759 setDebugLocFromInst(Instr); 2760 Value *PoisonVec = PoisonValue::get(VecTy); 2761 2762 Value *MaskForGaps = nullptr; 2763 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2764 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2765 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2766 } 2767 2768 // Vectorize the interleaved load group. 2769 if (isa<LoadInst>(Instr)) { 2770 // For each unroll part, create a wide load for the group. 2771 SmallVector<Value *, 2> NewLoads; 2772 for (unsigned Part = 0; Part < UF; Part++) { 2773 Instruction *NewLoad; 2774 if (BlockInMask || MaskForGaps) { 2775 assert(useMaskedInterleavedAccesses(*TTI) && 2776 "masked interleaved groups are not allowed."); 2777 Value *GroupMask = MaskForGaps; 2778 if (BlockInMask) { 2779 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2780 Value *ShuffledMask = Builder.CreateShuffleVector( 2781 BlockInMaskPart, 2782 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2783 "interleaved.mask"); 2784 GroupMask = MaskForGaps 2785 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2786 MaskForGaps) 2787 : ShuffledMask; 2788 } 2789 NewLoad = 2790 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2791 GroupMask, PoisonVec, "wide.masked.vec"); 2792 } 2793 else 2794 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2795 Group->getAlign(), "wide.vec"); 2796 Group->addMetadata(NewLoad); 2797 NewLoads.push_back(NewLoad); 2798 } 2799 2800 // For each member in the group, shuffle out the appropriate data from the 2801 // wide loads. 2802 unsigned J = 0; 2803 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2804 Instruction *Member = Group->getMember(I); 2805 2806 // Skip the gaps in the group. 2807 if (!Member) 2808 continue; 2809 2810 auto StrideMask = 2811 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2812 for (unsigned Part = 0; Part < UF; Part++) { 2813 Value *StridedVec = Builder.CreateShuffleVector( 2814 NewLoads[Part], StrideMask, "strided.vec"); 2815 2816 // If this member has different type, cast the result type. 2817 if (Member->getType() != ScalarTy) { 2818 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2819 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2820 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2821 } 2822 2823 if (Group->isReverse()) 2824 StridedVec = reverseVector(StridedVec); 2825 2826 State.set(VPDefs[J], StridedVec, Part); 2827 } 2828 ++J; 2829 } 2830 return; 2831 } 2832 2833 // The sub vector type for current instruction. 2834 auto *SubVT = VectorType::get(ScalarTy, VF); 2835 2836 // Vectorize the interleaved store group. 2837 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2838 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2839 "masked interleaved groups are not allowed."); 2840 assert((!MaskForGaps || !VF.isScalable()) && 2841 "masking gaps for scalable vectors is not yet supported."); 2842 for (unsigned Part = 0; Part < UF; Part++) { 2843 // Collect the stored vector from each member. 2844 SmallVector<Value *, 4> StoredVecs; 2845 for (unsigned i = 0; i < InterleaveFactor; i++) { 2846 assert((Group->getMember(i) || MaskForGaps) && 2847 "Fail to get a member from an interleaved store group"); 2848 Instruction *Member = Group->getMember(i); 2849 2850 // Skip the gaps in the group. 2851 if (!Member) { 2852 Value *Undef = PoisonValue::get(SubVT); 2853 StoredVecs.push_back(Undef); 2854 continue; 2855 } 2856 2857 Value *StoredVec = State.get(StoredValues[i], Part); 2858 2859 if (Group->isReverse()) 2860 StoredVec = reverseVector(StoredVec); 2861 2862 // If this member has different type, cast it to a unified type. 2863 2864 if (StoredVec->getType() != SubVT) 2865 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2866 2867 StoredVecs.push_back(StoredVec); 2868 } 2869 2870 // Concatenate all vectors into a wide vector. 2871 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2872 2873 // Interleave the elements in the wide vector. 2874 Value *IVec = Builder.CreateShuffleVector( 2875 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2876 "interleaved.vec"); 2877 2878 Instruction *NewStoreInstr; 2879 if (BlockInMask || MaskForGaps) { 2880 Value *GroupMask = MaskForGaps; 2881 if (BlockInMask) { 2882 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2883 Value *ShuffledMask = Builder.CreateShuffleVector( 2884 BlockInMaskPart, 2885 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2886 "interleaved.mask"); 2887 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2888 ShuffledMask, MaskForGaps) 2889 : ShuffledMask; 2890 } 2891 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2892 Group->getAlign(), GroupMask); 2893 } else 2894 NewStoreInstr = 2895 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2896 2897 Group->addMetadata(NewStoreInstr); 2898 } 2899 } 2900 2901 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2902 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2903 VPValue *StoredValue, VPValue *BlockInMask) { 2904 // Attempt to issue a wide load. 2905 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2906 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2907 2908 assert((LI || SI) && "Invalid Load/Store instruction"); 2909 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2910 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2911 2912 LoopVectorizationCostModel::InstWidening Decision = 2913 Cost->getWideningDecision(Instr, VF); 2914 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2915 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2916 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2917 "CM decision is not to widen the memory instruction"); 2918 2919 Type *ScalarDataTy = getLoadStoreType(Instr); 2920 2921 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2922 const Align Alignment = getLoadStoreAlignment(Instr); 2923 2924 // Determine if the pointer operand of the access is either consecutive or 2925 // reverse consecutive. 2926 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2927 bool ConsecutiveStride = 2928 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2929 bool CreateGatherScatter = 2930 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2931 2932 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2933 // gather/scatter. Otherwise Decision should have been to Scalarize. 2934 assert((ConsecutiveStride || CreateGatherScatter) && 2935 "The instruction should be scalarized"); 2936 (void)ConsecutiveStride; 2937 2938 VectorParts BlockInMaskParts(UF); 2939 bool isMaskRequired = BlockInMask; 2940 if (isMaskRequired) 2941 for (unsigned Part = 0; Part < UF; ++Part) 2942 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2943 2944 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2945 // Calculate the pointer for the specific unroll-part. 2946 GetElementPtrInst *PartPtr = nullptr; 2947 2948 bool InBounds = false; 2949 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2950 InBounds = gep->isInBounds(); 2951 if (Reverse) { 2952 // If the address is consecutive but reversed, then the 2953 // wide store needs to start at the last vector element. 2954 // RunTimeVF = VScale * VF.getKnownMinValue() 2955 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 2956 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF); 2957 // NumElt = -Part * RunTimeVF 2958 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 2959 // LastLane = 1 - RunTimeVF 2960 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 2961 PartPtr = 2962 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 2963 PartPtr->setIsInBounds(InBounds); 2964 PartPtr = cast<GetElementPtrInst>( 2965 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 2966 PartPtr->setIsInBounds(InBounds); 2967 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2968 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2969 } else { 2970 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2971 PartPtr = cast<GetElementPtrInst>( 2972 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2973 PartPtr->setIsInBounds(InBounds); 2974 } 2975 2976 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2977 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2978 }; 2979 2980 // Handle Stores: 2981 if (SI) { 2982 setDebugLocFromInst(SI); 2983 2984 for (unsigned Part = 0; Part < UF; ++Part) { 2985 Instruction *NewSI = nullptr; 2986 Value *StoredVal = State.get(StoredValue, Part); 2987 if (CreateGatherScatter) { 2988 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2989 Value *VectorGep = State.get(Addr, Part); 2990 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2991 MaskPart); 2992 } else { 2993 if (Reverse) { 2994 // If we store to reverse consecutive memory locations, then we need 2995 // to reverse the order of elements in the stored value. 2996 StoredVal = reverseVector(StoredVal); 2997 // We don't want to update the value in the map as it might be used in 2998 // another expression. So don't call resetVectorValue(StoredVal). 2999 } 3000 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 3001 if (isMaskRequired) 3002 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3003 BlockInMaskParts[Part]); 3004 else 3005 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3006 } 3007 addMetadata(NewSI, SI); 3008 } 3009 return; 3010 } 3011 3012 // Handle loads. 3013 assert(LI && "Must have a load instruction"); 3014 setDebugLocFromInst(LI); 3015 for (unsigned Part = 0; Part < UF; ++Part) { 3016 Value *NewLI; 3017 if (CreateGatherScatter) { 3018 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 3019 Value *VectorGep = State.get(Addr, Part); 3020 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 3021 nullptr, "wide.masked.gather"); 3022 addMetadata(NewLI, LI); 3023 } else { 3024 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 3025 if (isMaskRequired) 3026 NewLI = Builder.CreateMaskedLoad( 3027 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 3028 PoisonValue::get(DataTy), "wide.masked.load"); 3029 else 3030 NewLI = 3031 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 3032 3033 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3034 addMetadata(NewLI, LI); 3035 if (Reverse) 3036 NewLI = reverseVector(NewLI); 3037 } 3038 3039 State.set(Def, NewLI, Part); 3040 } 3041 } 3042 3043 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 3044 VPUser &User, 3045 const VPIteration &Instance, 3046 bool IfPredicateInstr, 3047 VPTransformState &State) { 3048 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3049 3050 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3051 // the first lane and part. 3052 if (isa<NoAliasScopeDeclInst>(Instr)) 3053 if (!Instance.isFirstIteration()) 3054 return; 3055 3056 setDebugLocFromInst(Instr); 3057 3058 // Does this instruction return a value ? 3059 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3060 3061 Instruction *Cloned = Instr->clone(); 3062 if (!IsVoidRetTy) 3063 Cloned->setName(Instr->getName() + ".cloned"); 3064 3065 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3066 Builder.GetInsertPoint()); 3067 // Replace the operands of the cloned instructions with their scalar 3068 // equivalents in the new loop. 3069 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 3070 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 3071 auto InputInstance = Instance; 3072 if (!Operand || !OrigLoop->contains(Operand) || 3073 (Cost->isUniformAfterVectorization(Operand, State.VF))) 3074 InputInstance.Lane = VPLane::getFirstLane(); 3075 auto *NewOp = State.get(User.getOperand(op), InputInstance); 3076 Cloned->setOperand(op, NewOp); 3077 } 3078 addNewMetadata(Cloned, Instr); 3079 3080 // Place the cloned scalar in the new loop. 3081 Builder.Insert(Cloned); 3082 3083 State.set(Def, Cloned, Instance); 3084 3085 // If we just cloned a new assumption, add it the assumption cache. 3086 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3087 AC->registerAssumption(II); 3088 3089 // End if-block. 3090 if (IfPredicateInstr) 3091 PredicatedInstructions.push_back(Cloned); 3092 } 3093 3094 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3095 Value *End, Value *Step, 3096 Instruction *DL) { 3097 BasicBlock *Header = L->getHeader(); 3098 BasicBlock *Latch = L->getLoopLatch(); 3099 // As we're just creating this loop, it's possible no latch exists 3100 // yet. If so, use the header as this will be a single block loop. 3101 if (!Latch) 3102 Latch = Header; 3103 3104 IRBuilder<> B(&*Header->getFirstInsertionPt()); 3105 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3106 setDebugLocFromInst(OldInst, &B); 3107 auto *Induction = B.CreatePHI(Start->getType(), 2, "index"); 3108 3109 B.SetInsertPoint(Latch->getTerminator()); 3110 setDebugLocFromInst(OldInst, &B); 3111 3112 // Create i+1 and fill the PHINode. 3113 // 3114 // If the tail is not folded, we know that End - Start >= Step (either 3115 // statically or through the minimum iteration checks). We also know that both 3116 // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV + 3117 // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned 3118 // overflows and we can mark the induction increment as NUW. 3119 Value *Next = B.CreateAdd(Induction, Step, "index.next", 3120 /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false); 3121 Induction->addIncoming(Start, L->getLoopPreheader()); 3122 Induction->addIncoming(Next, Latch); 3123 // Create the compare. 3124 Value *ICmp = B.CreateICmpEQ(Next, End); 3125 B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3126 3127 // Now we have two terminators. Remove the old one from the block. 3128 Latch->getTerminator()->eraseFromParent(); 3129 3130 return Induction; 3131 } 3132 3133 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3134 if (TripCount) 3135 return TripCount; 3136 3137 assert(L && "Create Trip Count for null loop."); 3138 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3139 // Find the loop boundaries. 3140 ScalarEvolution *SE = PSE.getSE(); 3141 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3142 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3143 "Invalid loop count"); 3144 3145 Type *IdxTy = Legal->getWidestInductionType(); 3146 assert(IdxTy && "No type for induction"); 3147 3148 // The exit count might have the type of i64 while the phi is i32. This can 3149 // happen if we have an induction variable that is sign extended before the 3150 // compare. The only way that we get a backedge taken count is that the 3151 // induction variable was signed and as such will not overflow. In such a case 3152 // truncation is legal. 3153 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3154 IdxTy->getPrimitiveSizeInBits()) 3155 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3156 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3157 3158 // Get the total trip count from the count by adding 1. 3159 const SCEV *ExitCount = SE->getAddExpr( 3160 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3161 3162 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3163 3164 // Expand the trip count and place the new instructions in the preheader. 3165 // Notice that the pre-header does not change, only the loop body. 3166 SCEVExpander Exp(*SE, DL, "induction"); 3167 3168 // Count holds the overall loop count (N). 3169 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3170 L->getLoopPreheader()->getTerminator()); 3171 3172 if (TripCount->getType()->isPointerTy()) 3173 TripCount = 3174 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3175 L->getLoopPreheader()->getTerminator()); 3176 3177 return TripCount; 3178 } 3179 3180 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3181 if (VectorTripCount) 3182 return VectorTripCount; 3183 3184 Value *TC = getOrCreateTripCount(L); 3185 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3186 3187 Type *Ty = TC->getType(); 3188 // This is where we can make the step a runtime constant. 3189 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3190 3191 // If the tail is to be folded by masking, round the number of iterations N 3192 // up to a multiple of Step instead of rounding down. This is done by first 3193 // adding Step-1 and then rounding down. Note that it's ok if this addition 3194 // overflows: the vector induction variable will eventually wrap to zero given 3195 // that it starts at zero and its Step is a power of two; the loop will then 3196 // exit, with the last early-exit vector comparison also producing all-true. 3197 if (Cost->foldTailByMasking()) { 3198 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3199 "VF*UF must be a power of 2 when folding tail by masking"); 3200 assert(!VF.isScalable() && 3201 "Tail folding not yet supported for scalable vectors"); 3202 TC = Builder.CreateAdd( 3203 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3204 } 3205 3206 // Now we need to generate the expression for the part of the loop that the 3207 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3208 // iterations are not required for correctness, or N - Step, otherwise. Step 3209 // is equal to the vectorization factor (number of SIMD elements) times the 3210 // unroll factor (number of SIMD instructions). 3211 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3212 3213 // There are cases where we *must* run at least one iteration in the remainder 3214 // loop. See the cost model for when this can happen. If the step evenly 3215 // divides the trip count, we set the remainder to be equal to the step. If 3216 // the step does not evenly divide the trip count, no adjustment is necessary 3217 // since there will already be scalar iterations. Note that the minimum 3218 // iterations check ensures that N >= Step. 3219 if (Cost->requiresScalarEpilogue(VF)) { 3220 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3221 R = Builder.CreateSelect(IsZero, Step, R); 3222 } 3223 3224 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3225 3226 return VectorTripCount; 3227 } 3228 3229 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3230 const DataLayout &DL) { 3231 // Verify that V is a vector type with same number of elements as DstVTy. 3232 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3233 unsigned VF = DstFVTy->getNumElements(); 3234 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3235 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3236 Type *SrcElemTy = SrcVecTy->getElementType(); 3237 Type *DstElemTy = DstFVTy->getElementType(); 3238 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3239 "Vector elements must have same size"); 3240 3241 // Do a direct cast if element types are castable. 3242 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3243 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3244 } 3245 // V cannot be directly casted to desired vector type. 3246 // May happen when V is a floating point vector but DstVTy is a vector of 3247 // pointers or vice-versa. Handle this using a two-step bitcast using an 3248 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3249 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3250 "Only one type should be a pointer type"); 3251 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3252 "Only one type should be a floating point type"); 3253 Type *IntTy = 3254 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3255 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3256 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3257 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3258 } 3259 3260 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3261 BasicBlock *Bypass) { 3262 Value *Count = getOrCreateTripCount(L); 3263 // Reuse existing vector loop preheader for TC checks. 3264 // Note that new preheader block is generated for vector loop. 3265 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3266 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3267 3268 // Generate code to check if the loop's trip count is less than VF * UF, or 3269 // equal to it in case a scalar epilogue is required; this implies that the 3270 // vector trip count is zero. This check also covers the case where adding one 3271 // to the backedge-taken count overflowed leading to an incorrect trip count 3272 // of zero. In this case we will also jump to the scalar loop. 3273 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3274 : ICmpInst::ICMP_ULT; 3275 3276 // If tail is to be folded, vector loop takes care of all iterations. 3277 Value *CheckMinIters = Builder.getFalse(); 3278 if (!Cost->foldTailByMasking()) { 3279 Value *Step = 3280 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3281 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3282 } 3283 // Create new preheader for vector loop. 3284 LoopVectorPreHeader = 3285 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3286 "vector.ph"); 3287 3288 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3289 DT->getNode(Bypass)->getIDom()) && 3290 "TC check is expected to dominate Bypass"); 3291 3292 // Update dominator for Bypass & LoopExit (if needed). 3293 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3294 if (!Cost->requiresScalarEpilogue(VF)) 3295 // If there is an epilogue which must run, there's no edge from the 3296 // middle block to exit blocks and thus no need to update the immediate 3297 // dominator of the exit blocks. 3298 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3299 3300 ReplaceInstWithInst( 3301 TCCheckBlock->getTerminator(), 3302 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3303 LoopBypassBlocks.push_back(TCCheckBlock); 3304 } 3305 3306 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3307 3308 BasicBlock *const SCEVCheckBlock = 3309 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3310 if (!SCEVCheckBlock) 3311 return nullptr; 3312 3313 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3314 (OptForSizeBasedOnProfile && 3315 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3316 "Cannot SCEV check stride or overflow when optimizing for size"); 3317 3318 3319 // Update dominator only if this is first RT check. 3320 if (LoopBypassBlocks.empty()) { 3321 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3322 if (!Cost->requiresScalarEpilogue(VF)) 3323 // If there is an epilogue which must run, there's no edge from the 3324 // middle block to exit blocks and thus no need to update the immediate 3325 // dominator of the exit blocks. 3326 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3327 } 3328 3329 LoopBypassBlocks.push_back(SCEVCheckBlock); 3330 AddedSafetyChecks = true; 3331 return SCEVCheckBlock; 3332 } 3333 3334 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3335 BasicBlock *Bypass) { 3336 // VPlan-native path does not do any analysis for runtime checks currently. 3337 if (EnableVPlanNativePath) 3338 return nullptr; 3339 3340 BasicBlock *const MemCheckBlock = 3341 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3342 3343 // Check if we generated code that checks in runtime if arrays overlap. We put 3344 // the checks into a separate block to make the more common case of few 3345 // elements faster. 3346 if (!MemCheckBlock) 3347 return nullptr; 3348 3349 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3350 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3351 "Cannot emit memory checks when optimizing for size, unless forced " 3352 "to vectorize."); 3353 ORE->emit([&]() { 3354 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3355 L->getStartLoc(), L->getHeader()) 3356 << "Code-size may be reduced by not forcing " 3357 "vectorization, or by source-code modifications " 3358 "eliminating the need for runtime checks " 3359 "(e.g., adding 'restrict')."; 3360 }); 3361 } 3362 3363 LoopBypassBlocks.push_back(MemCheckBlock); 3364 3365 AddedSafetyChecks = true; 3366 3367 // We currently don't use LoopVersioning for the actual loop cloning but we 3368 // still use it to add the noalias metadata. 3369 LVer = std::make_unique<LoopVersioning>( 3370 *Legal->getLAI(), 3371 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3372 DT, PSE.getSE()); 3373 LVer->prepareNoAliasMetadata(); 3374 return MemCheckBlock; 3375 } 3376 3377 Value *InnerLoopVectorizer::emitTransformedIndex( 3378 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3379 const InductionDescriptor &ID) const { 3380 3381 SCEVExpander Exp(*SE, DL, "induction"); 3382 auto Step = ID.getStep(); 3383 auto StartValue = ID.getStartValue(); 3384 assert(Index->getType()->getScalarType() == Step->getType() && 3385 "Index scalar type does not match StepValue type"); 3386 3387 // Note: the IR at this point is broken. We cannot use SE to create any new 3388 // SCEV and then expand it, hoping that SCEV's simplification will give us 3389 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3390 // lead to various SCEV crashes. So all we can do is to use builder and rely 3391 // on InstCombine for future simplifications. Here we handle some trivial 3392 // cases only. 3393 auto CreateAdd = [&B](Value *X, Value *Y) { 3394 assert(X->getType() == Y->getType() && "Types don't match!"); 3395 if (auto *CX = dyn_cast<ConstantInt>(X)) 3396 if (CX->isZero()) 3397 return Y; 3398 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3399 if (CY->isZero()) 3400 return X; 3401 return B.CreateAdd(X, Y); 3402 }; 3403 3404 // We allow X to be a vector type, in which case Y will potentially be 3405 // splatted into a vector with the same element count. 3406 auto CreateMul = [&B](Value *X, Value *Y) { 3407 assert(X->getType()->getScalarType() == Y->getType() && 3408 "Types don't match!"); 3409 if (auto *CX = dyn_cast<ConstantInt>(X)) 3410 if (CX->isOne()) 3411 return Y; 3412 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3413 if (CY->isOne()) 3414 return X; 3415 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3416 if (XVTy && !isa<VectorType>(Y->getType())) 3417 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3418 return B.CreateMul(X, Y); 3419 }; 3420 3421 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3422 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3423 // the DomTree is not kept up-to-date for additional blocks generated in the 3424 // vector loop. By using the header as insertion point, we guarantee that the 3425 // expanded instructions dominate all their uses. 3426 auto GetInsertPoint = [this, &B]() { 3427 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3428 if (InsertBB != LoopVectorBody && 3429 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3430 return LoopVectorBody->getTerminator(); 3431 return &*B.GetInsertPoint(); 3432 }; 3433 3434 switch (ID.getKind()) { 3435 case InductionDescriptor::IK_IntInduction: { 3436 assert(!isa<VectorType>(Index->getType()) && 3437 "Vector indices not supported for integer inductions yet"); 3438 assert(Index->getType() == StartValue->getType() && 3439 "Index type does not match StartValue type"); 3440 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3441 return B.CreateSub(StartValue, Index); 3442 auto *Offset = CreateMul( 3443 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3444 return CreateAdd(StartValue, Offset); 3445 } 3446 case InductionDescriptor::IK_PtrInduction: { 3447 assert(isa<SCEVConstant>(Step) && 3448 "Expected constant step for pointer induction"); 3449 return B.CreateGEP( 3450 ID.getElementType(), StartValue, 3451 CreateMul(Index, 3452 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3453 GetInsertPoint()))); 3454 } 3455 case InductionDescriptor::IK_FpInduction: { 3456 assert(!isa<VectorType>(Index->getType()) && 3457 "Vector indices not supported for FP inductions yet"); 3458 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3459 auto InductionBinOp = ID.getInductionBinOp(); 3460 assert(InductionBinOp && 3461 (InductionBinOp->getOpcode() == Instruction::FAdd || 3462 InductionBinOp->getOpcode() == Instruction::FSub) && 3463 "Original bin op should be defined for FP induction"); 3464 3465 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3466 Value *MulExp = B.CreateFMul(StepValue, Index); 3467 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3468 "induction"); 3469 } 3470 case InductionDescriptor::IK_NoInduction: 3471 return nullptr; 3472 } 3473 llvm_unreachable("invalid enum"); 3474 } 3475 3476 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3477 LoopScalarBody = OrigLoop->getHeader(); 3478 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3479 assert(LoopVectorPreHeader && "Invalid loop structure"); 3480 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3481 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3482 "multiple exit loop without required epilogue?"); 3483 3484 LoopMiddleBlock = 3485 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3486 LI, nullptr, Twine(Prefix) + "middle.block"); 3487 LoopScalarPreHeader = 3488 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3489 nullptr, Twine(Prefix) + "scalar.ph"); 3490 3491 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3492 3493 // Set up the middle block terminator. Two cases: 3494 // 1) If we know that we must execute the scalar epilogue, emit an 3495 // unconditional branch. 3496 // 2) Otherwise, we must have a single unique exit block (due to how we 3497 // implement the multiple exit case). In this case, set up a conditonal 3498 // branch from the middle block to the loop scalar preheader, and the 3499 // exit block. completeLoopSkeleton will update the condition to use an 3500 // iteration check, if required to decide whether to execute the remainder. 3501 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3502 BranchInst::Create(LoopScalarPreHeader) : 3503 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3504 Builder.getTrue()); 3505 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3506 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3507 3508 // We intentionally don't let SplitBlock to update LoopInfo since 3509 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3510 // LoopVectorBody is explicitly added to the correct place few lines later. 3511 LoopVectorBody = 3512 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3513 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3514 3515 // Update dominator for loop exit. 3516 if (!Cost->requiresScalarEpilogue(VF)) 3517 // If there is an epilogue which must run, there's no edge from the 3518 // middle block to exit blocks and thus no need to update the immediate 3519 // dominator of the exit blocks. 3520 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3521 3522 // Create and register the new vector loop. 3523 Loop *Lp = LI->AllocateLoop(); 3524 Loop *ParentLoop = OrigLoop->getParentLoop(); 3525 3526 // Insert the new loop into the loop nest and register the new basic blocks 3527 // before calling any utilities such as SCEV that require valid LoopInfo. 3528 if (ParentLoop) { 3529 ParentLoop->addChildLoop(Lp); 3530 } else { 3531 LI->addTopLevelLoop(Lp); 3532 } 3533 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3534 return Lp; 3535 } 3536 3537 void InnerLoopVectorizer::createInductionResumeValues( 3538 Loop *L, Value *VectorTripCount, 3539 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3540 assert(VectorTripCount && L && "Expected valid arguments"); 3541 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3542 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3543 "Inconsistent information about additional bypass."); 3544 // We are going to resume the execution of the scalar loop. 3545 // Go over all of the induction variables that we found and fix the 3546 // PHIs that are left in the scalar version of the loop. 3547 // The starting values of PHI nodes depend on the counter of the last 3548 // iteration in the vectorized loop. 3549 // If we come from a bypass edge then we need to start from the original 3550 // start value. 3551 for (auto &InductionEntry : Legal->getInductionVars()) { 3552 PHINode *OrigPhi = InductionEntry.first; 3553 InductionDescriptor II = InductionEntry.second; 3554 3555 // Create phi nodes to merge from the backedge-taken check block. 3556 PHINode *BCResumeVal = 3557 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3558 LoopScalarPreHeader->getTerminator()); 3559 // Copy original phi DL over to the new one. 3560 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3561 Value *&EndValue = IVEndValues[OrigPhi]; 3562 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3563 if (OrigPhi == OldInduction) { 3564 // We know what the end value is. 3565 EndValue = VectorTripCount; 3566 } else { 3567 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3568 3569 // Fast-math-flags propagate from the original induction instruction. 3570 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3571 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3572 3573 Type *StepType = II.getStep()->getType(); 3574 Instruction::CastOps CastOp = 3575 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3576 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3577 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3578 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3579 EndValue->setName("ind.end"); 3580 3581 // Compute the end value for the additional bypass (if applicable). 3582 if (AdditionalBypass.first) { 3583 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3584 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3585 StepType, true); 3586 CRD = 3587 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3588 EndValueFromAdditionalBypass = 3589 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3590 EndValueFromAdditionalBypass->setName("ind.end"); 3591 } 3592 } 3593 // The new PHI merges the original incoming value, in case of a bypass, 3594 // or the value at the end of the vectorized loop. 3595 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3596 3597 // Fix the scalar body counter (PHI node). 3598 // The old induction's phi node in the scalar body needs the truncated 3599 // value. 3600 for (BasicBlock *BB : LoopBypassBlocks) 3601 BCResumeVal->addIncoming(II.getStartValue(), BB); 3602 3603 if (AdditionalBypass.first) 3604 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3605 EndValueFromAdditionalBypass); 3606 3607 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3608 } 3609 } 3610 3611 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3612 MDNode *OrigLoopID) { 3613 assert(L && "Expected valid loop."); 3614 3615 // The trip counts should be cached by now. 3616 Value *Count = getOrCreateTripCount(L); 3617 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3618 3619 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3620 3621 // Add a check in the middle block to see if we have completed 3622 // all of the iterations in the first vector loop. Three cases: 3623 // 1) If we require a scalar epilogue, there is no conditional branch as 3624 // we unconditionally branch to the scalar preheader. Do nothing. 3625 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3626 // Thus if tail is to be folded, we know we don't need to run the 3627 // remainder and we can use the previous value for the condition (true). 3628 // 3) Otherwise, construct a runtime check. 3629 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3630 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3631 Count, VectorTripCount, "cmp.n", 3632 LoopMiddleBlock->getTerminator()); 3633 3634 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3635 // of the corresponding compare because they may have ended up with 3636 // different line numbers and we want to avoid awkward line stepping while 3637 // debugging. Eg. if the compare has got a line number inside the loop. 3638 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3639 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3640 } 3641 3642 // Get ready to start creating new instructions into the vectorized body. 3643 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3644 "Inconsistent vector loop preheader"); 3645 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3646 3647 Optional<MDNode *> VectorizedLoopID = 3648 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3649 LLVMLoopVectorizeFollowupVectorized}); 3650 if (VectorizedLoopID.hasValue()) { 3651 L->setLoopID(VectorizedLoopID.getValue()); 3652 3653 // Do not setAlreadyVectorized if loop attributes have been defined 3654 // explicitly. 3655 return LoopVectorPreHeader; 3656 } 3657 3658 // Keep all loop hints from the original loop on the vector loop (we'll 3659 // replace the vectorizer-specific hints below). 3660 if (MDNode *LID = OrigLoop->getLoopID()) 3661 L->setLoopID(LID); 3662 3663 LoopVectorizeHints Hints(L, true, *ORE); 3664 Hints.setAlreadyVectorized(); 3665 3666 #ifdef EXPENSIVE_CHECKS 3667 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3668 LI->verify(*DT); 3669 #endif 3670 3671 return LoopVectorPreHeader; 3672 } 3673 3674 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3675 /* 3676 In this function we generate a new loop. The new loop will contain 3677 the vectorized instructions while the old loop will continue to run the 3678 scalar remainder. 3679 3680 [ ] <-- loop iteration number check. 3681 / | 3682 / v 3683 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3684 | / | 3685 | / v 3686 || [ ] <-- vector pre header. 3687 |/ | 3688 | v 3689 | [ ] \ 3690 | [ ]_| <-- vector loop. 3691 | | 3692 | v 3693 \ -[ ] <--- middle-block. 3694 \/ | 3695 /\ v 3696 | ->[ ] <--- new preheader. 3697 | | 3698 (opt) v <-- edge from middle to exit iff epilogue is not required. 3699 | [ ] \ 3700 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3701 \ | 3702 \ v 3703 >[ ] <-- exit block(s). 3704 ... 3705 */ 3706 3707 // Get the metadata of the original loop before it gets modified. 3708 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3709 3710 // Workaround! Compute the trip count of the original loop and cache it 3711 // before we start modifying the CFG. This code has a systemic problem 3712 // wherein it tries to run analysis over partially constructed IR; this is 3713 // wrong, and not simply for SCEV. The trip count of the original loop 3714 // simply happens to be prone to hitting this in practice. In theory, we 3715 // can hit the same issue for any SCEV, or ValueTracking query done during 3716 // mutation. See PR49900. 3717 getOrCreateTripCount(OrigLoop); 3718 3719 // Create an empty vector loop, and prepare basic blocks for the runtime 3720 // checks. 3721 Loop *Lp = createVectorLoopSkeleton(""); 3722 3723 // Now, compare the new count to zero. If it is zero skip the vector loop and 3724 // jump to the scalar loop. This check also covers the case where the 3725 // backedge-taken count is uint##_max: adding one to it will overflow leading 3726 // to an incorrect trip count of zero. In this (rare) case we will also jump 3727 // to the scalar loop. 3728 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3729 3730 // Generate the code to check any assumptions that we've made for SCEV 3731 // expressions. 3732 emitSCEVChecks(Lp, LoopScalarPreHeader); 3733 3734 // Generate the code that checks in runtime if arrays overlap. We put the 3735 // checks into a separate block to make the more common case of few elements 3736 // faster. 3737 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3738 3739 // Some loops have a single integer induction variable, while other loops 3740 // don't. One example is c++ iterators that often have multiple pointer 3741 // induction variables. In the code below we also support a case where we 3742 // don't have a single induction variable. 3743 // 3744 // We try to obtain an induction variable from the original loop as hard 3745 // as possible. However if we don't find one that: 3746 // - is an integer 3747 // - counts from zero, stepping by one 3748 // - is the size of the widest induction variable type 3749 // then we create a new one. 3750 OldInduction = Legal->getPrimaryInduction(); 3751 Type *IdxTy = Legal->getWidestInductionType(); 3752 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3753 // The loop step is equal to the vectorization factor (num of SIMD elements) 3754 // times the unroll factor (num of SIMD instructions). 3755 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3756 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3757 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3758 Induction = 3759 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3760 getDebugLocFromInstOrOperands(OldInduction)); 3761 3762 // Emit phis for the new starting index of the scalar loop. 3763 createInductionResumeValues(Lp, CountRoundDown); 3764 3765 return completeLoopSkeleton(Lp, OrigLoopID); 3766 } 3767 3768 // Fix up external users of the induction variable. At this point, we are 3769 // in LCSSA form, with all external PHIs that use the IV having one input value, 3770 // coming from the remainder loop. We need those PHIs to also have a correct 3771 // value for the IV when arriving directly from the middle block. 3772 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3773 const InductionDescriptor &II, 3774 Value *CountRoundDown, Value *EndValue, 3775 BasicBlock *MiddleBlock) { 3776 // There are two kinds of external IV usages - those that use the value 3777 // computed in the last iteration (the PHI) and those that use the penultimate 3778 // value (the value that feeds into the phi from the loop latch). 3779 // We allow both, but they, obviously, have different values. 3780 3781 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3782 3783 DenseMap<Value *, Value *> MissingVals; 3784 3785 // An external user of the last iteration's value should see the value that 3786 // the remainder loop uses to initialize its own IV. 3787 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3788 for (User *U : PostInc->users()) { 3789 Instruction *UI = cast<Instruction>(U); 3790 if (!OrigLoop->contains(UI)) { 3791 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3792 MissingVals[UI] = EndValue; 3793 } 3794 } 3795 3796 // An external user of the penultimate value need to see EndValue - Step. 3797 // The simplest way to get this is to recompute it from the constituent SCEVs, 3798 // that is Start + (Step * (CRD - 1)). 3799 for (User *U : OrigPhi->users()) { 3800 auto *UI = cast<Instruction>(U); 3801 if (!OrigLoop->contains(UI)) { 3802 const DataLayout &DL = 3803 OrigLoop->getHeader()->getModule()->getDataLayout(); 3804 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3805 3806 IRBuilder<> B(MiddleBlock->getTerminator()); 3807 3808 // Fast-math-flags propagate from the original induction instruction. 3809 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3810 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3811 3812 Value *CountMinusOne = B.CreateSub( 3813 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3814 Value *CMO = 3815 !II.getStep()->getType()->isIntegerTy() 3816 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3817 II.getStep()->getType()) 3818 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3819 CMO->setName("cast.cmo"); 3820 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3821 Escape->setName("ind.escape"); 3822 MissingVals[UI] = Escape; 3823 } 3824 } 3825 3826 for (auto &I : MissingVals) { 3827 PHINode *PHI = cast<PHINode>(I.first); 3828 // One corner case we have to handle is two IVs "chasing" each-other, 3829 // that is %IV2 = phi [...], [ %IV1, %latch ] 3830 // In this case, if IV1 has an external use, we need to avoid adding both 3831 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3832 // don't already have an incoming value for the middle block. 3833 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3834 PHI->addIncoming(I.second, MiddleBlock); 3835 } 3836 } 3837 3838 namespace { 3839 3840 struct CSEDenseMapInfo { 3841 static bool canHandle(const Instruction *I) { 3842 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3843 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3844 } 3845 3846 static inline Instruction *getEmptyKey() { 3847 return DenseMapInfo<Instruction *>::getEmptyKey(); 3848 } 3849 3850 static inline Instruction *getTombstoneKey() { 3851 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3852 } 3853 3854 static unsigned getHashValue(const Instruction *I) { 3855 assert(canHandle(I) && "Unknown instruction!"); 3856 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3857 I->value_op_end())); 3858 } 3859 3860 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3861 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3862 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3863 return LHS == RHS; 3864 return LHS->isIdenticalTo(RHS); 3865 } 3866 }; 3867 3868 } // end anonymous namespace 3869 3870 ///Perform cse of induction variable instructions. 3871 static void cse(BasicBlock *BB) { 3872 // Perform simple cse. 3873 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3874 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3875 if (!CSEDenseMapInfo::canHandle(&In)) 3876 continue; 3877 3878 // Check if we can replace this instruction with any of the 3879 // visited instructions. 3880 if (Instruction *V = CSEMap.lookup(&In)) { 3881 In.replaceAllUsesWith(V); 3882 In.eraseFromParent(); 3883 continue; 3884 } 3885 3886 CSEMap[&In] = &In; 3887 } 3888 } 3889 3890 InstructionCost 3891 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3892 bool &NeedToScalarize) const { 3893 Function *F = CI->getCalledFunction(); 3894 Type *ScalarRetTy = CI->getType(); 3895 SmallVector<Type *, 4> Tys, ScalarTys; 3896 for (auto &ArgOp : CI->args()) 3897 ScalarTys.push_back(ArgOp->getType()); 3898 3899 // Estimate cost of scalarized vector call. The source operands are assumed 3900 // to be vectors, so we need to extract individual elements from there, 3901 // execute VF scalar calls, and then gather the result into the vector return 3902 // value. 3903 InstructionCost ScalarCallCost = 3904 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3905 if (VF.isScalar()) 3906 return ScalarCallCost; 3907 3908 // Compute corresponding vector type for return value and arguments. 3909 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3910 for (Type *ScalarTy : ScalarTys) 3911 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3912 3913 // Compute costs of unpacking argument values for the scalar calls and 3914 // packing the return values to a vector. 3915 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3916 3917 InstructionCost Cost = 3918 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3919 3920 // If we can't emit a vector call for this function, then the currently found 3921 // cost is the cost we need to return. 3922 NeedToScalarize = true; 3923 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3924 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3925 3926 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3927 return Cost; 3928 3929 // If the corresponding vector cost is cheaper, return its cost. 3930 InstructionCost VectorCallCost = 3931 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3932 if (VectorCallCost < Cost) { 3933 NeedToScalarize = false; 3934 Cost = VectorCallCost; 3935 } 3936 return Cost; 3937 } 3938 3939 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3940 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3941 return Elt; 3942 return VectorType::get(Elt, VF); 3943 } 3944 3945 InstructionCost 3946 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3947 ElementCount VF) const { 3948 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3949 assert(ID && "Expected intrinsic call!"); 3950 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3951 FastMathFlags FMF; 3952 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3953 FMF = FPMO->getFastMathFlags(); 3954 3955 SmallVector<const Value *> Arguments(CI->args()); 3956 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3957 SmallVector<Type *> ParamTys; 3958 std::transform(FTy->param_begin(), FTy->param_end(), 3959 std::back_inserter(ParamTys), 3960 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3961 3962 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3963 dyn_cast<IntrinsicInst>(CI)); 3964 return TTI.getIntrinsicInstrCost(CostAttrs, 3965 TargetTransformInfo::TCK_RecipThroughput); 3966 } 3967 3968 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3969 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3970 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3971 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3972 } 3973 3974 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3975 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3976 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3977 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3978 } 3979 3980 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3981 // For every instruction `I` in MinBWs, truncate the operands, create a 3982 // truncated version of `I` and reextend its result. InstCombine runs 3983 // later and will remove any ext/trunc pairs. 3984 SmallPtrSet<Value *, 4> Erased; 3985 for (const auto &KV : Cost->getMinimalBitwidths()) { 3986 // If the value wasn't vectorized, we must maintain the original scalar 3987 // type. The absence of the value from State indicates that it 3988 // wasn't vectorized. 3989 // FIXME: Should not rely on getVPValue at this point. 3990 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3991 if (!State.hasAnyVectorValue(Def)) 3992 continue; 3993 for (unsigned Part = 0; Part < UF; ++Part) { 3994 Value *I = State.get(Def, Part); 3995 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3996 continue; 3997 Type *OriginalTy = I->getType(); 3998 Type *ScalarTruncatedTy = 3999 IntegerType::get(OriginalTy->getContext(), KV.second); 4000 auto *TruncatedTy = VectorType::get( 4001 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 4002 if (TruncatedTy == OriginalTy) 4003 continue; 4004 4005 IRBuilder<> B(cast<Instruction>(I)); 4006 auto ShrinkOperand = [&](Value *V) -> Value * { 4007 if (auto *ZI = dyn_cast<ZExtInst>(V)) 4008 if (ZI->getSrcTy() == TruncatedTy) 4009 return ZI->getOperand(0); 4010 return B.CreateZExtOrTrunc(V, TruncatedTy); 4011 }; 4012 4013 // The actual instruction modification depends on the instruction type, 4014 // unfortunately. 4015 Value *NewI = nullptr; 4016 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4017 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 4018 ShrinkOperand(BO->getOperand(1))); 4019 4020 // Any wrapping introduced by shrinking this operation shouldn't be 4021 // considered undefined behavior. So, we can't unconditionally copy 4022 // arithmetic wrapping flags to NewI. 4023 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 4024 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 4025 NewI = 4026 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 4027 ShrinkOperand(CI->getOperand(1))); 4028 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 4029 NewI = B.CreateSelect(SI->getCondition(), 4030 ShrinkOperand(SI->getTrueValue()), 4031 ShrinkOperand(SI->getFalseValue())); 4032 } else if (auto *CI = dyn_cast<CastInst>(I)) { 4033 switch (CI->getOpcode()) { 4034 default: 4035 llvm_unreachable("Unhandled cast!"); 4036 case Instruction::Trunc: 4037 NewI = ShrinkOperand(CI->getOperand(0)); 4038 break; 4039 case Instruction::SExt: 4040 NewI = B.CreateSExtOrTrunc( 4041 CI->getOperand(0), 4042 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4043 break; 4044 case Instruction::ZExt: 4045 NewI = B.CreateZExtOrTrunc( 4046 CI->getOperand(0), 4047 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4048 break; 4049 } 4050 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 4051 auto Elements0 = 4052 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 4053 auto *O0 = B.CreateZExtOrTrunc( 4054 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 4055 auto Elements1 = 4056 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 4057 auto *O1 = B.CreateZExtOrTrunc( 4058 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 4059 4060 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 4061 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 4062 // Don't do anything with the operands, just extend the result. 4063 continue; 4064 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4065 auto Elements = 4066 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 4067 auto *O0 = B.CreateZExtOrTrunc( 4068 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4069 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4070 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4071 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4072 auto Elements = 4073 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 4074 auto *O0 = B.CreateZExtOrTrunc( 4075 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4076 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4077 } else { 4078 // If we don't know what to do, be conservative and don't do anything. 4079 continue; 4080 } 4081 4082 // Lastly, extend the result. 4083 NewI->takeName(cast<Instruction>(I)); 4084 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4085 I->replaceAllUsesWith(Res); 4086 cast<Instruction>(I)->eraseFromParent(); 4087 Erased.insert(I); 4088 State.reset(Def, Res, Part); 4089 } 4090 } 4091 4092 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4093 for (const auto &KV : Cost->getMinimalBitwidths()) { 4094 // If the value wasn't vectorized, we must maintain the original scalar 4095 // type. The absence of the value from State indicates that it 4096 // wasn't vectorized. 4097 // FIXME: Should not rely on getVPValue at this point. 4098 VPValue *Def = State.Plan->getVPValue(KV.first, true); 4099 if (!State.hasAnyVectorValue(Def)) 4100 continue; 4101 for (unsigned Part = 0; Part < UF; ++Part) { 4102 Value *I = State.get(Def, Part); 4103 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4104 if (Inst && Inst->use_empty()) { 4105 Value *NewI = Inst->getOperand(0); 4106 Inst->eraseFromParent(); 4107 State.reset(Def, NewI, Part); 4108 } 4109 } 4110 } 4111 } 4112 4113 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4114 // Insert truncates and extends for any truncated instructions as hints to 4115 // InstCombine. 4116 if (VF.isVector()) 4117 truncateToMinimalBitwidths(State); 4118 4119 // Fix widened non-induction PHIs by setting up the PHI operands. 4120 if (OrigPHIsToFix.size()) { 4121 assert(EnableVPlanNativePath && 4122 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4123 fixNonInductionPHIs(State); 4124 } 4125 4126 // At this point every instruction in the original loop is widened to a 4127 // vector form. Now we need to fix the recurrences in the loop. These PHI 4128 // nodes are currently empty because we did not want to introduce cycles. 4129 // This is the second stage of vectorizing recurrences. 4130 fixCrossIterationPHIs(State); 4131 4132 // Forget the original basic block. 4133 PSE.getSE()->forgetLoop(OrigLoop); 4134 4135 // If we inserted an edge from the middle block to the unique exit block, 4136 // update uses outside the loop (phis) to account for the newly inserted 4137 // edge. 4138 if (!Cost->requiresScalarEpilogue(VF)) { 4139 // Fix-up external users of the induction variables. 4140 for (auto &Entry : Legal->getInductionVars()) 4141 fixupIVUsers(Entry.first, Entry.second, 4142 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4143 IVEndValues[Entry.first], LoopMiddleBlock); 4144 4145 fixLCSSAPHIs(State); 4146 } 4147 4148 for (Instruction *PI : PredicatedInstructions) 4149 sinkScalarOperands(&*PI); 4150 4151 // Remove redundant induction instructions. 4152 cse(LoopVectorBody); 4153 4154 // Set/update profile weights for the vector and remainder loops as original 4155 // loop iterations are now distributed among them. Note that original loop 4156 // represented by LoopScalarBody becomes remainder loop after vectorization. 4157 // 4158 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4159 // end up getting slightly roughened result but that should be OK since 4160 // profile is not inherently precise anyway. Note also possible bypass of 4161 // vector code caused by legality checks is ignored, assigning all the weight 4162 // to the vector loop, optimistically. 4163 // 4164 // For scalable vectorization we can't know at compile time how many iterations 4165 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4166 // vscale of '1'. 4167 setProfileInfoAfterUnrolling( 4168 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4169 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4170 } 4171 4172 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4173 // In order to support recurrences we need to be able to vectorize Phi nodes. 4174 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4175 // stage #2: We now need to fix the recurrences by adding incoming edges to 4176 // the currently empty PHI nodes. At this point every instruction in the 4177 // original loop is widened to a vector form so we can use them to construct 4178 // the incoming edges. 4179 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4180 for (VPRecipeBase &R : Header->phis()) { 4181 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 4182 fixReduction(ReductionPhi, State); 4183 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 4184 fixFirstOrderRecurrence(FOR, State); 4185 } 4186 } 4187 4188 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, 4189 VPTransformState &State) { 4190 // This is the second phase of vectorizing first-order recurrences. An 4191 // overview of the transformation is described below. Suppose we have the 4192 // following loop. 4193 // 4194 // for (int i = 0; i < n; ++i) 4195 // b[i] = a[i] - a[i - 1]; 4196 // 4197 // There is a first-order recurrence on "a". For this loop, the shorthand 4198 // scalar IR looks like: 4199 // 4200 // scalar.ph: 4201 // s_init = a[-1] 4202 // br scalar.body 4203 // 4204 // scalar.body: 4205 // i = phi [0, scalar.ph], [i+1, scalar.body] 4206 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4207 // s2 = a[i] 4208 // b[i] = s2 - s1 4209 // br cond, scalar.body, ... 4210 // 4211 // In this example, s1 is a recurrence because it's value depends on the 4212 // previous iteration. In the first phase of vectorization, we created a 4213 // vector phi v1 for s1. We now complete the vectorization and produce the 4214 // shorthand vector IR shown below (for VF = 4, UF = 1). 4215 // 4216 // vector.ph: 4217 // v_init = vector(..., ..., ..., a[-1]) 4218 // br vector.body 4219 // 4220 // vector.body 4221 // i = phi [0, vector.ph], [i+4, vector.body] 4222 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4223 // v2 = a[i, i+1, i+2, i+3]; 4224 // v3 = vector(v1(3), v2(0, 1, 2)) 4225 // b[i, i+1, i+2, i+3] = v2 - v3 4226 // br cond, vector.body, middle.block 4227 // 4228 // middle.block: 4229 // x = v2(3) 4230 // br scalar.ph 4231 // 4232 // scalar.ph: 4233 // s_init = phi [x, middle.block], [a[-1], otherwise] 4234 // br scalar.body 4235 // 4236 // After execution completes the vector loop, we extract the next value of 4237 // the recurrence (x) to use as the initial value in the scalar loop. 4238 4239 // Extract the last vector element in the middle block. This will be the 4240 // initial value for the recurrence when jumping to the scalar loop. 4241 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4242 Value *Incoming = State.get(PreviousDef, UF - 1); 4243 auto *ExtractForScalar = Incoming; 4244 auto *IdxTy = Builder.getInt32Ty(); 4245 if (VF.isVector()) { 4246 auto *One = ConstantInt::get(IdxTy, 1); 4247 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4248 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4249 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4250 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4251 "vector.recur.extract"); 4252 } 4253 // Extract the second last element in the middle block if the 4254 // Phi is used outside the loop. We need to extract the phi itself 4255 // and not the last element (the phi update in the current iteration). This 4256 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4257 // when the scalar loop is not run at all. 4258 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4259 if (VF.isVector()) { 4260 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4261 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4262 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4263 Incoming, Idx, "vector.recur.extract.for.phi"); 4264 } else if (UF > 1) 4265 // When loop is unrolled without vectorizing, initialize 4266 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4267 // of `Incoming`. This is analogous to the vectorized case above: extracting 4268 // the second last element when VF > 1. 4269 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4270 4271 // Fix the initial value of the original recurrence in the scalar loop. 4272 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4273 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4274 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4275 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4276 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4277 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4278 Start->addIncoming(Incoming, BB); 4279 } 4280 4281 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4282 Phi->setName("scalar.recur"); 4283 4284 // Finally, fix users of the recurrence outside the loop. The users will need 4285 // either the last value of the scalar recurrence or the last value of the 4286 // vector recurrence we extracted in the middle block. Since the loop is in 4287 // LCSSA form, we just need to find all the phi nodes for the original scalar 4288 // recurrence in the exit block, and then add an edge for the middle block. 4289 // Note that LCSSA does not imply single entry when the original scalar loop 4290 // had multiple exiting edges (as we always run the last iteration in the 4291 // scalar epilogue); in that case, there is no edge from middle to exit and 4292 // and thus no phis which needed updated. 4293 if (!Cost->requiresScalarEpilogue(VF)) 4294 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4295 if (any_of(LCSSAPhi.incoming_values(), 4296 [Phi](Value *V) { return V == Phi; })) 4297 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4298 } 4299 4300 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4301 VPTransformState &State) { 4302 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4303 // Get it's reduction variable descriptor. 4304 assert(Legal->isReductionVariable(OrigPhi) && 4305 "Unable to find the reduction variable"); 4306 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4307 4308 RecurKind RK = RdxDesc.getRecurrenceKind(); 4309 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4310 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4311 setDebugLocFromInst(ReductionStartValue); 4312 4313 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 4314 // This is the vector-clone of the value that leaves the loop. 4315 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4316 4317 // Wrap flags are in general invalid after vectorization, clear them. 4318 clearReductionWrapFlags(RdxDesc, State); 4319 4320 // Before each round, move the insertion point right between 4321 // the PHIs and the values we are going to write. 4322 // This allows us to write both PHINodes and the extractelement 4323 // instructions. 4324 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4325 4326 setDebugLocFromInst(LoopExitInst); 4327 4328 Type *PhiTy = OrigPhi->getType(); 4329 // If tail is folded by masking, the vector value to leave the loop should be 4330 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4331 // instead of the former. For an inloop reduction the reduction will already 4332 // be predicated, and does not need to be handled here. 4333 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4334 for (unsigned Part = 0; Part < UF; ++Part) { 4335 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4336 Value *Sel = nullptr; 4337 for (User *U : VecLoopExitInst->users()) { 4338 if (isa<SelectInst>(U)) { 4339 assert(!Sel && "Reduction exit feeding two selects"); 4340 Sel = U; 4341 } else 4342 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4343 } 4344 assert(Sel && "Reduction exit feeds no select"); 4345 State.reset(LoopExitInstDef, Sel, Part); 4346 4347 // If the target can create a predicated operator for the reduction at no 4348 // extra cost in the loop (for example a predicated vadd), it can be 4349 // cheaper for the select to remain in the loop than be sunk out of it, 4350 // and so use the select value for the phi instead of the old 4351 // LoopExitValue. 4352 if (PreferPredicatedReductionSelect || 4353 TTI->preferPredicatedReductionSelect( 4354 RdxDesc.getOpcode(), PhiTy, 4355 TargetTransformInfo::ReductionFlags())) { 4356 auto *VecRdxPhi = 4357 cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part)); 4358 VecRdxPhi->setIncomingValueForBlock( 4359 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4360 } 4361 } 4362 } 4363 4364 // If the vector reduction can be performed in a smaller type, we truncate 4365 // then extend the loop exit value to enable InstCombine to evaluate the 4366 // entire expression in the smaller type. 4367 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4368 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4369 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4370 Builder.SetInsertPoint( 4371 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4372 VectorParts RdxParts(UF); 4373 for (unsigned Part = 0; Part < UF; ++Part) { 4374 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4375 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4376 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4377 : Builder.CreateZExt(Trunc, VecTy); 4378 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4379 UI != RdxParts[Part]->user_end();) 4380 if (*UI != Trunc) { 4381 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4382 RdxParts[Part] = Extnd; 4383 } else { 4384 ++UI; 4385 } 4386 } 4387 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4388 for (unsigned Part = 0; Part < UF; ++Part) { 4389 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4390 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4391 } 4392 } 4393 4394 // Reduce all of the unrolled parts into a single vector. 4395 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4396 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4397 4398 // The middle block terminator has already been assigned a DebugLoc here (the 4399 // OrigLoop's single latch terminator). We want the whole middle block to 4400 // appear to execute on this line because: (a) it is all compiler generated, 4401 // (b) these instructions are always executed after evaluating the latch 4402 // conditional branch, and (c) other passes may add new predecessors which 4403 // terminate on this line. This is the easiest way to ensure we don't 4404 // accidentally cause an extra step back into the loop while debugging. 4405 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4406 if (PhiR->isOrdered()) 4407 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4408 else { 4409 // Floating-point operations should have some FMF to enable the reduction. 4410 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4411 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4412 for (unsigned Part = 1; Part < UF; ++Part) { 4413 Value *RdxPart = State.get(LoopExitInstDef, Part); 4414 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4415 ReducedPartRdx = Builder.CreateBinOp( 4416 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4417 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 4418 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 4419 ReducedPartRdx, RdxPart); 4420 else 4421 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4422 } 4423 } 4424 4425 // Create the reduction after the loop. Note that inloop reductions create the 4426 // target reduction in the loop using a Reduction recipe. 4427 if (VF.isVector() && !PhiR->isInLoop()) { 4428 ReducedPartRdx = 4429 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4430 // If the reduction can be performed in a smaller type, we need to extend 4431 // the reduction to the wider type before we branch to the original loop. 4432 if (PhiTy != RdxDesc.getRecurrenceType()) 4433 ReducedPartRdx = RdxDesc.isSigned() 4434 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4435 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4436 } 4437 4438 // Create a phi node that merges control-flow from the backedge-taken check 4439 // block and the middle block. 4440 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4441 LoopScalarPreHeader->getTerminator()); 4442 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4443 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4444 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4445 4446 // Now, we need to fix the users of the reduction variable 4447 // inside and outside of the scalar remainder loop. 4448 4449 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4450 // in the exit blocks. See comment on analogous loop in 4451 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4452 if (!Cost->requiresScalarEpilogue(VF)) 4453 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4454 if (any_of(LCSSAPhi.incoming_values(), 4455 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4456 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4457 4458 // Fix the scalar loop reduction variable with the incoming reduction sum 4459 // from the vector body and from the backedge value. 4460 int IncomingEdgeBlockIdx = 4461 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4462 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4463 // Pick the other block. 4464 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4465 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4466 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4467 } 4468 4469 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4470 VPTransformState &State) { 4471 RecurKind RK = RdxDesc.getRecurrenceKind(); 4472 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4473 return; 4474 4475 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4476 assert(LoopExitInstr && "null loop exit instruction"); 4477 SmallVector<Instruction *, 8> Worklist; 4478 SmallPtrSet<Instruction *, 8> Visited; 4479 Worklist.push_back(LoopExitInstr); 4480 Visited.insert(LoopExitInstr); 4481 4482 while (!Worklist.empty()) { 4483 Instruction *Cur = Worklist.pop_back_val(); 4484 if (isa<OverflowingBinaryOperator>(Cur)) 4485 for (unsigned Part = 0; Part < UF; ++Part) { 4486 // FIXME: Should not rely on getVPValue at this point. 4487 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4488 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4489 } 4490 4491 for (User *U : Cur->users()) { 4492 Instruction *UI = cast<Instruction>(U); 4493 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4494 Visited.insert(UI).second) 4495 Worklist.push_back(UI); 4496 } 4497 } 4498 } 4499 4500 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4501 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4502 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4503 // Some phis were already hand updated by the reduction and recurrence 4504 // code above, leave them alone. 4505 continue; 4506 4507 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4508 // Non-instruction incoming values will have only one value. 4509 4510 VPLane Lane = VPLane::getFirstLane(); 4511 if (isa<Instruction>(IncomingValue) && 4512 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4513 VF)) 4514 Lane = VPLane::getLastLaneForVF(VF); 4515 4516 // Can be a loop invariant incoming value or the last scalar value to be 4517 // extracted from the vectorized loop. 4518 // FIXME: Should not rely on getVPValue at this point. 4519 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4520 Value *lastIncomingValue = 4521 OrigLoop->isLoopInvariant(IncomingValue) 4522 ? IncomingValue 4523 : State.get(State.Plan->getVPValue(IncomingValue, true), 4524 VPIteration(UF - 1, Lane)); 4525 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4526 } 4527 } 4528 4529 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4530 // The basic block and loop containing the predicated instruction. 4531 auto *PredBB = PredInst->getParent(); 4532 auto *VectorLoop = LI->getLoopFor(PredBB); 4533 4534 // Initialize a worklist with the operands of the predicated instruction. 4535 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4536 4537 // Holds instructions that we need to analyze again. An instruction may be 4538 // reanalyzed if we don't yet know if we can sink it or not. 4539 SmallVector<Instruction *, 8> InstsToReanalyze; 4540 4541 // Returns true if a given use occurs in the predicated block. Phi nodes use 4542 // their operands in their corresponding predecessor blocks. 4543 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4544 auto *I = cast<Instruction>(U.getUser()); 4545 BasicBlock *BB = I->getParent(); 4546 if (auto *Phi = dyn_cast<PHINode>(I)) 4547 BB = Phi->getIncomingBlock( 4548 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4549 return BB == PredBB; 4550 }; 4551 4552 // Iteratively sink the scalarized operands of the predicated instruction 4553 // into the block we created for it. When an instruction is sunk, it's 4554 // operands are then added to the worklist. The algorithm ends after one pass 4555 // through the worklist doesn't sink a single instruction. 4556 bool Changed; 4557 do { 4558 // Add the instructions that need to be reanalyzed to the worklist, and 4559 // reset the changed indicator. 4560 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4561 InstsToReanalyze.clear(); 4562 Changed = false; 4563 4564 while (!Worklist.empty()) { 4565 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4566 4567 // We can't sink an instruction if it is a phi node, is not in the loop, 4568 // or may have side effects. 4569 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4570 I->mayHaveSideEffects()) 4571 continue; 4572 4573 // If the instruction is already in PredBB, check if we can sink its 4574 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4575 // sinking the scalar instruction I, hence it appears in PredBB; but it 4576 // may have failed to sink I's operands (recursively), which we try 4577 // (again) here. 4578 if (I->getParent() == PredBB) { 4579 Worklist.insert(I->op_begin(), I->op_end()); 4580 continue; 4581 } 4582 4583 // It's legal to sink the instruction if all its uses occur in the 4584 // predicated block. Otherwise, there's nothing to do yet, and we may 4585 // need to reanalyze the instruction. 4586 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4587 InstsToReanalyze.push_back(I); 4588 continue; 4589 } 4590 4591 // Move the instruction to the beginning of the predicated block, and add 4592 // it's operands to the worklist. 4593 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4594 Worklist.insert(I->op_begin(), I->op_end()); 4595 4596 // The sinking may have enabled other instructions to be sunk, so we will 4597 // need to iterate. 4598 Changed = true; 4599 } 4600 } while (Changed); 4601 } 4602 4603 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4604 for (PHINode *OrigPhi : OrigPHIsToFix) { 4605 VPWidenPHIRecipe *VPPhi = 4606 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4607 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4608 // Make sure the builder has a valid insert point. 4609 Builder.SetInsertPoint(NewPhi); 4610 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4611 VPValue *Inc = VPPhi->getIncomingValue(i); 4612 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4613 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4614 } 4615 } 4616 } 4617 4618 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4619 return Cost->useOrderedReductions(RdxDesc); 4620 } 4621 4622 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4623 VPUser &Operands, unsigned UF, 4624 ElementCount VF, bool IsPtrLoopInvariant, 4625 SmallBitVector &IsIndexLoopInvariant, 4626 VPTransformState &State) { 4627 // Construct a vector GEP by widening the operands of the scalar GEP as 4628 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4629 // results in a vector of pointers when at least one operand of the GEP 4630 // is vector-typed. Thus, to keep the representation compact, we only use 4631 // vector-typed operands for loop-varying values. 4632 4633 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4634 // If we are vectorizing, but the GEP has only loop-invariant operands, 4635 // the GEP we build (by only using vector-typed operands for 4636 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4637 // produce a vector of pointers, we need to either arbitrarily pick an 4638 // operand to broadcast, or broadcast a clone of the original GEP. 4639 // Here, we broadcast a clone of the original. 4640 // 4641 // TODO: If at some point we decide to scalarize instructions having 4642 // loop-invariant operands, this special case will no longer be 4643 // required. We would add the scalarization decision to 4644 // collectLoopScalars() and teach getVectorValue() to broadcast 4645 // the lane-zero scalar value. 4646 auto *Clone = Builder.Insert(GEP->clone()); 4647 for (unsigned Part = 0; Part < UF; ++Part) { 4648 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4649 State.set(VPDef, EntryPart, Part); 4650 addMetadata(EntryPart, GEP); 4651 } 4652 } else { 4653 // If the GEP has at least one loop-varying operand, we are sure to 4654 // produce a vector of pointers. But if we are only unrolling, we want 4655 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4656 // produce with the code below will be scalar (if VF == 1) or vector 4657 // (otherwise). Note that for the unroll-only case, we still maintain 4658 // values in the vector mapping with initVector, as we do for other 4659 // instructions. 4660 for (unsigned Part = 0; Part < UF; ++Part) { 4661 // The pointer operand of the new GEP. If it's loop-invariant, we 4662 // won't broadcast it. 4663 auto *Ptr = IsPtrLoopInvariant 4664 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4665 : State.get(Operands.getOperand(0), Part); 4666 4667 // Collect all the indices for the new GEP. If any index is 4668 // loop-invariant, we won't broadcast it. 4669 SmallVector<Value *, 4> Indices; 4670 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4671 VPValue *Operand = Operands.getOperand(I); 4672 if (IsIndexLoopInvariant[I - 1]) 4673 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4674 else 4675 Indices.push_back(State.get(Operand, Part)); 4676 } 4677 4678 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4679 // but it should be a vector, otherwise. 4680 auto *NewGEP = 4681 GEP->isInBounds() 4682 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4683 Indices) 4684 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4685 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4686 "NewGEP is not a pointer vector"); 4687 State.set(VPDef, NewGEP, Part); 4688 addMetadata(NewGEP, GEP); 4689 } 4690 } 4691 } 4692 4693 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4694 VPWidenPHIRecipe *PhiR, 4695 VPTransformState &State) { 4696 PHINode *P = cast<PHINode>(PN); 4697 if (EnableVPlanNativePath) { 4698 // Currently we enter here in the VPlan-native path for non-induction 4699 // PHIs where all control flow is uniform. We simply widen these PHIs. 4700 // Create a vector phi with no operands - the vector phi operands will be 4701 // set at the end of vector code generation. 4702 Type *VecTy = (State.VF.isScalar()) 4703 ? PN->getType() 4704 : VectorType::get(PN->getType(), State.VF); 4705 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4706 State.set(PhiR, VecPhi, 0); 4707 OrigPHIsToFix.push_back(P); 4708 4709 return; 4710 } 4711 4712 assert(PN->getParent() == OrigLoop->getHeader() && 4713 "Non-header phis should have been handled elsewhere"); 4714 4715 // In order to support recurrences we need to be able to vectorize Phi nodes. 4716 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4717 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4718 // this value when we vectorize all of the instructions that use the PHI. 4719 4720 assert(!Legal->isReductionVariable(P) && 4721 "reductions should be handled elsewhere"); 4722 4723 setDebugLocFromInst(P); 4724 4725 // This PHINode must be an induction variable. 4726 // Make sure that we know about it. 4727 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4728 4729 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4730 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4731 4732 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4733 // which can be found from the original scalar operations. 4734 switch (II.getKind()) { 4735 case InductionDescriptor::IK_NoInduction: 4736 llvm_unreachable("Unknown induction"); 4737 case InductionDescriptor::IK_IntInduction: 4738 case InductionDescriptor::IK_FpInduction: 4739 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4740 case InductionDescriptor::IK_PtrInduction: { 4741 // Handle the pointer induction variable case. 4742 assert(P->getType()->isPointerTy() && "Unexpected type."); 4743 4744 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4745 // This is the normalized GEP that starts counting at zero. 4746 Value *PtrInd = 4747 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4748 // Determine the number of scalars we need to generate for each unroll 4749 // iteration. If the instruction is uniform, we only need to generate the 4750 // first lane. Otherwise, we generate all VF values. 4751 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4752 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 4753 4754 bool NeedsVectorIndex = !IsUniform && VF.isScalable(); 4755 Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr; 4756 if (NeedsVectorIndex) { 4757 Type *VecIVTy = VectorType::get(PtrInd->getType(), VF); 4758 UnitStepVec = Builder.CreateStepVector(VecIVTy); 4759 PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd); 4760 } 4761 4762 for (unsigned Part = 0; Part < UF; ++Part) { 4763 Value *PartStart = createStepForVF( 4764 Builder, ConstantInt::get(PtrInd->getType(), Part), VF); 4765 4766 if (NeedsVectorIndex) { 4767 // Here we cache the whole vector, which means we can support the 4768 // extraction of any lane. However, in some cases the extractelement 4769 // instruction that is generated for scalar uses of this vector (e.g. 4770 // a load instruction) is not folded away. Therefore we still 4771 // calculate values for the first n lanes to avoid redundant moves 4772 // (when extracting the 0th element) and to produce scalar code (i.e. 4773 // additional add/gep instructions instead of expensive extractelement 4774 // instructions) when extracting higher-order elements. 4775 Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart); 4776 Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec); 4777 Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices); 4778 Value *SclrGep = 4779 emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II); 4780 SclrGep->setName("next.gep"); 4781 State.set(PhiR, SclrGep, Part); 4782 } 4783 4784 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4785 Value *Idx = Builder.CreateAdd( 4786 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4787 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4788 Value *SclrGep = 4789 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4790 SclrGep->setName("next.gep"); 4791 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4792 } 4793 } 4794 return; 4795 } 4796 assert(isa<SCEVConstant>(II.getStep()) && 4797 "Induction step not a SCEV constant!"); 4798 Type *PhiType = II.getStep()->getType(); 4799 4800 // Build a pointer phi 4801 Value *ScalarStartValue = II.getStartValue(); 4802 Type *ScStValueType = ScalarStartValue->getType(); 4803 PHINode *NewPointerPhi = 4804 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4805 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4806 4807 // A pointer induction, performed by using a gep 4808 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4809 Instruction *InductionLoc = LoopLatch->getTerminator(); 4810 const SCEV *ScalarStep = II.getStep(); 4811 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4812 Value *ScalarStepValue = 4813 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4814 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4815 Value *NumUnrolledElems = 4816 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4817 Value *InductionGEP = GetElementPtrInst::Create( 4818 II.getElementType(), NewPointerPhi, 4819 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4820 InductionLoc); 4821 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4822 4823 // Create UF many actual address geps that use the pointer 4824 // phi as base and a vectorized version of the step value 4825 // (<step*0, ..., step*N>) as offset. 4826 for (unsigned Part = 0; Part < State.UF; ++Part) { 4827 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4828 Value *StartOffsetScalar = 4829 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4830 Value *StartOffset = 4831 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4832 // Create a vector of consecutive numbers from zero to VF. 4833 StartOffset = 4834 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4835 4836 Value *GEP = Builder.CreateGEP( 4837 II.getElementType(), NewPointerPhi, 4838 Builder.CreateMul( 4839 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4840 "vector.gep")); 4841 State.set(PhiR, GEP, Part); 4842 } 4843 } 4844 } 4845 } 4846 4847 /// A helper function for checking whether an integer division-related 4848 /// instruction may divide by zero (in which case it must be predicated if 4849 /// executed conditionally in the scalar code). 4850 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4851 /// Non-zero divisors that are non compile-time constants will not be 4852 /// converted into multiplication, so we will still end up scalarizing 4853 /// the division, but can do so w/o predication. 4854 static bool mayDivideByZero(Instruction &I) { 4855 assert((I.getOpcode() == Instruction::UDiv || 4856 I.getOpcode() == Instruction::SDiv || 4857 I.getOpcode() == Instruction::URem || 4858 I.getOpcode() == Instruction::SRem) && 4859 "Unexpected instruction"); 4860 Value *Divisor = I.getOperand(1); 4861 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4862 return !CInt || CInt->isZero(); 4863 } 4864 4865 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4866 VPUser &User, 4867 VPTransformState &State) { 4868 switch (I.getOpcode()) { 4869 case Instruction::Call: 4870 case Instruction::Br: 4871 case Instruction::PHI: 4872 case Instruction::GetElementPtr: 4873 case Instruction::Select: 4874 llvm_unreachable("This instruction is handled by a different recipe."); 4875 case Instruction::UDiv: 4876 case Instruction::SDiv: 4877 case Instruction::SRem: 4878 case Instruction::URem: 4879 case Instruction::Add: 4880 case Instruction::FAdd: 4881 case Instruction::Sub: 4882 case Instruction::FSub: 4883 case Instruction::FNeg: 4884 case Instruction::Mul: 4885 case Instruction::FMul: 4886 case Instruction::FDiv: 4887 case Instruction::FRem: 4888 case Instruction::Shl: 4889 case Instruction::LShr: 4890 case Instruction::AShr: 4891 case Instruction::And: 4892 case Instruction::Or: 4893 case Instruction::Xor: { 4894 // Just widen unops and binops. 4895 setDebugLocFromInst(&I); 4896 4897 for (unsigned Part = 0; Part < UF; ++Part) { 4898 SmallVector<Value *, 2> Ops; 4899 for (VPValue *VPOp : User.operands()) 4900 Ops.push_back(State.get(VPOp, Part)); 4901 4902 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4903 4904 if (auto *VecOp = dyn_cast<Instruction>(V)) 4905 VecOp->copyIRFlags(&I); 4906 4907 // Use this vector value for all users of the original instruction. 4908 State.set(Def, V, Part); 4909 addMetadata(V, &I); 4910 } 4911 4912 break; 4913 } 4914 case Instruction::ICmp: 4915 case Instruction::FCmp: { 4916 // Widen compares. Generate vector compares. 4917 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4918 auto *Cmp = cast<CmpInst>(&I); 4919 setDebugLocFromInst(Cmp); 4920 for (unsigned Part = 0; Part < UF; ++Part) { 4921 Value *A = State.get(User.getOperand(0), Part); 4922 Value *B = State.get(User.getOperand(1), Part); 4923 Value *C = nullptr; 4924 if (FCmp) { 4925 // Propagate fast math flags. 4926 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4927 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4928 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4929 } else { 4930 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4931 } 4932 State.set(Def, C, Part); 4933 addMetadata(C, &I); 4934 } 4935 4936 break; 4937 } 4938 4939 case Instruction::ZExt: 4940 case Instruction::SExt: 4941 case Instruction::FPToUI: 4942 case Instruction::FPToSI: 4943 case Instruction::FPExt: 4944 case Instruction::PtrToInt: 4945 case Instruction::IntToPtr: 4946 case Instruction::SIToFP: 4947 case Instruction::UIToFP: 4948 case Instruction::Trunc: 4949 case Instruction::FPTrunc: 4950 case Instruction::BitCast: { 4951 auto *CI = cast<CastInst>(&I); 4952 setDebugLocFromInst(CI); 4953 4954 /// Vectorize casts. 4955 Type *DestTy = 4956 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4957 4958 for (unsigned Part = 0; Part < UF; ++Part) { 4959 Value *A = State.get(User.getOperand(0), Part); 4960 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4961 State.set(Def, Cast, Part); 4962 addMetadata(Cast, &I); 4963 } 4964 break; 4965 } 4966 default: 4967 // This instruction is not vectorized by simple widening. 4968 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4969 llvm_unreachable("Unhandled instruction!"); 4970 } // end of switch. 4971 } 4972 4973 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4974 VPUser &ArgOperands, 4975 VPTransformState &State) { 4976 assert(!isa<DbgInfoIntrinsic>(I) && 4977 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4978 setDebugLocFromInst(&I); 4979 4980 Module *M = I.getParent()->getParent()->getParent(); 4981 auto *CI = cast<CallInst>(&I); 4982 4983 SmallVector<Type *, 4> Tys; 4984 for (Value *ArgOperand : CI->args()) 4985 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4986 4987 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4988 4989 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4990 // version of the instruction. 4991 // Is it beneficial to perform intrinsic call compared to lib call? 4992 bool NeedToScalarize = false; 4993 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4994 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4995 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4996 assert((UseVectorIntrinsic || !NeedToScalarize) && 4997 "Instruction should be scalarized elsewhere."); 4998 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4999 "Either the intrinsic cost or vector call cost must be valid"); 5000 5001 for (unsigned Part = 0; Part < UF; ++Part) { 5002 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 5003 SmallVector<Value *, 4> Args; 5004 for (auto &I : enumerate(ArgOperands.operands())) { 5005 // Some intrinsics have a scalar argument - don't replace it with a 5006 // vector. 5007 Value *Arg; 5008 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 5009 Arg = State.get(I.value(), Part); 5010 else { 5011 Arg = State.get(I.value(), VPIteration(0, 0)); 5012 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 5013 TysForDecl.push_back(Arg->getType()); 5014 } 5015 Args.push_back(Arg); 5016 } 5017 5018 Function *VectorF; 5019 if (UseVectorIntrinsic) { 5020 // Use vector version of the intrinsic. 5021 if (VF.isVector()) 5022 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5023 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5024 assert(VectorF && "Can't retrieve vector intrinsic."); 5025 } else { 5026 // Use vector version of the function call. 5027 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 5028 #ifndef NDEBUG 5029 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 5030 "Can't create vector function."); 5031 #endif 5032 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 5033 } 5034 SmallVector<OperandBundleDef, 1> OpBundles; 5035 CI->getOperandBundlesAsDefs(OpBundles); 5036 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5037 5038 if (isa<FPMathOperator>(V)) 5039 V->copyFastMathFlags(CI); 5040 5041 State.set(Def, V, Part); 5042 addMetadata(V, &I); 5043 } 5044 } 5045 5046 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5047 VPUser &Operands, 5048 bool InvariantCond, 5049 VPTransformState &State) { 5050 setDebugLocFromInst(&I); 5051 5052 // The condition can be loop invariant but still defined inside the 5053 // loop. This means that we can't just use the original 'cond' value. 5054 // We have to take the 'vectorized' value and pick the first lane. 5055 // Instcombine will make this a no-op. 5056 auto *InvarCond = InvariantCond 5057 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5058 : nullptr; 5059 5060 for (unsigned Part = 0; Part < UF; ++Part) { 5061 Value *Cond = 5062 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5063 Value *Op0 = State.get(Operands.getOperand(1), Part); 5064 Value *Op1 = State.get(Operands.getOperand(2), Part); 5065 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5066 State.set(VPDef, Sel, Part); 5067 addMetadata(Sel, &I); 5068 } 5069 } 5070 5071 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5072 // We should not collect Scalars more than once per VF. Right now, this 5073 // function is called from collectUniformsAndScalars(), which already does 5074 // this check. Collecting Scalars for VF=1 does not make any sense. 5075 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5076 "This function should not be visited twice for the same VF"); 5077 5078 SmallSetVector<Instruction *, 8> Worklist; 5079 5080 // These sets are used to seed the analysis with pointers used by memory 5081 // accesses that will remain scalar. 5082 SmallSetVector<Instruction *, 8> ScalarPtrs; 5083 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5084 auto *Latch = TheLoop->getLoopLatch(); 5085 5086 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5087 // The pointer operands of loads and stores will be scalar as long as the 5088 // memory access is not a gather or scatter operation. The value operand of a 5089 // store will remain scalar if the store is scalarized. 5090 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5091 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5092 assert(WideningDecision != CM_Unknown && 5093 "Widening decision should be ready at this moment"); 5094 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5095 if (Ptr == Store->getValueOperand()) 5096 return WideningDecision == CM_Scalarize; 5097 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5098 "Ptr is neither a value or pointer operand"); 5099 return WideningDecision != CM_GatherScatter; 5100 }; 5101 5102 // A helper that returns true if the given value is a bitcast or 5103 // getelementptr instruction contained in the loop. 5104 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5105 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5106 isa<GetElementPtrInst>(V)) && 5107 !TheLoop->isLoopInvariant(V); 5108 }; 5109 5110 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5111 if (!isa<PHINode>(Ptr) || 5112 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5113 return false; 5114 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5115 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5116 return false; 5117 return isScalarUse(MemAccess, Ptr); 5118 }; 5119 5120 // A helper that evaluates a memory access's use of a pointer. If the 5121 // pointer is actually the pointer induction of a loop, it is being 5122 // inserted into Worklist. If the use will be a scalar use, and the 5123 // pointer is only used by memory accesses, we place the pointer in 5124 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5125 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5126 if (isScalarPtrInduction(MemAccess, Ptr)) { 5127 Worklist.insert(cast<Instruction>(Ptr)); 5128 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5129 << "\n"); 5130 5131 Instruction *Update = cast<Instruction>( 5132 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5133 ScalarPtrs.insert(Update); 5134 return; 5135 } 5136 // We only care about bitcast and getelementptr instructions contained in 5137 // the loop. 5138 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5139 return; 5140 5141 // If the pointer has already been identified as scalar (e.g., if it was 5142 // also identified as uniform), there's nothing to do. 5143 auto *I = cast<Instruction>(Ptr); 5144 if (Worklist.count(I)) 5145 return; 5146 5147 // If the use of the pointer will be a scalar use, and all users of the 5148 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5149 // place the pointer in PossibleNonScalarPtrs. 5150 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5151 return isa<LoadInst>(U) || isa<StoreInst>(U); 5152 })) 5153 ScalarPtrs.insert(I); 5154 else 5155 PossibleNonScalarPtrs.insert(I); 5156 }; 5157 5158 // We seed the scalars analysis with three classes of instructions: (1) 5159 // instructions marked uniform-after-vectorization and (2) bitcast, 5160 // getelementptr and (pointer) phi instructions used by memory accesses 5161 // requiring a scalar use. 5162 // 5163 // (1) Add to the worklist all instructions that have been identified as 5164 // uniform-after-vectorization. 5165 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5166 5167 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5168 // memory accesses requiring a scalar use. The pointer operands of loads and 5169 // stores will be scalar as long as the memory accesses is not a gather or 5170 // scatter operation. The value operand of a store will remain scalar if the 5171 // store is scalarized. 5172 for (auto *BB : TheLoop->blocks()) 5173 for (auto &I : *BB) { 5174 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5175 evaluatePtrUse(Load, Load->getPointerOperand()); 5176 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5177 evaluatePtrUse(Store, Store->getPointerOperand()); 5178 evaluatePtrUse(Store, Store->getValueOperand()); 5179 } 5180 } 5181 for (auto *I : ScalarPtrs) 5182 if (!PossibleNonScalarPtrs.count(I)) { 5183 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5184 Worklist.insert(I); 5185 } 5186 5187 // Insert the forced scalars. 5188 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5189 // induction variable when the PHI user is scalarized. 5190 auto ForcedScalar = ForcedScalars.find(VF); 5191 if (ForcedScalar != ForcedScalars.end()) 5192 for (auto *I : ForcedScalar->second) 5193 Worklist.insert(I); 5194 5195 // Expand the worklist by looking through any bitcasts and getelementptr 5196 // instructions we've already identified as scalar. This is similar to the 5197 // expansion step in collectLoopUniforms(); however, here we're only 5198 // expanding to include additional bitcasts and getelementptr instructions. 5199 unsigned Idx = 0; 5200 while (Idx != Worklist.size()) { 5201 Instruction *Dst = Worklist[Idx++]; 5202 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5203 continue; 5204 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5205 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5206 auto *J = cast<Instruction>(U); 5207 return !TheLoop->contains(J) || Worklist.count(J) || 5208 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5209 isScalarUse(J, Src)); 5210 })) { 5211 Worklist.insert(Src); 5212 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5213 } 5214 } 5215 5216 // An induction variable will remain scalar if all users of the induction 5217 // variable and induction variable update remain scalar. 5218 for (auto &Induction : Legal->getInductionVars()) { 5219 auto *Ind = Induction.first; 5220 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5221 5222 // If tail-folding is applied, the primary induction variable will be used 5223 // to feed a vector compare. 5224 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5225 continue; 5226 5227 // Determine if all users of the induction variable are scalar after 5228 // vectorization. 5229 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5230 auto *I = cast<Instruction>(U); 5231 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5232 }); 5233 if (!ScalarInd) 5234 continue; 5235 5236 // Determine if all users of the induction variable update instruction are 5237 // scalar after vectorization. 5238 auto ScalarIndUpdate = 5239 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5240 auto *I = cast<Instruction>(U); 5241 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5242 }); 5243 if (!ScalarIndUpdate) 5244 continue; 5245 5246 // The induction variable and its update instruction will remain scalar. 5247 Worklist.insert(Ind); 5248 Worklist.insert(IndUpdate); 5249 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5250 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5251 << "\n"); 5252 } 5253 5254 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5255 } 5256 5257 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const { 5258 if (!blockNeedsPredication(I->getParent())) 5259 return false; 5260 switch(I->getOpcode()) { 5261 default: 5262 break; 5263 case Instruction::Load: 5264 case Instruction::Store: { 5265 if (!Legal->isMaskRequired(I)) 5266 return false; 5267 auto *Ptr = getLoadStorePointerOperand(I); 5268 auto *Ty = getLoadStoreType(I); 5269 const Align Alignment = getLoadStoreAlignment(I); 5270 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5271 TTI.isLegalMaskedGather(Ty, Alignment)) 5272 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5273 TTI.isLegalMaskedScatter(Ty, Alignment)); 5274 } 5275 case Instruction::UDiv: 5276 case Instruction::SDiv: 5277 case Instruction::SRem: 5278 case Instruction::URem: 5279 return mayDivideByZero(*I); 5280 } 5281 return false; 5282 } 5283 5284 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5285 Instruction *I, ElementCount VF) { 5286 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5287 assert(getWideningDecision(I, VF) == CM_Unknown && 5288 "Decision should not be set yet."); 5289 auto *Group = getInterleavedAccessGroup(I); 5290 assert(Group && "Must have a group."); 5291 5292 // If the instruction's allocated size doesn't equal it's type size, it 5293 // requires padding and will be scalarized. 5294 auto &DL = I->getModule()->getDataLayout(); 5295 auto *ScalarTy = getLoadStoreType(I); 5296 if (hasIrregularType(ScalarTy, DL)) 5297 return false; 5298 5299 // Check if masking is required. 5300 // A Group may need masking for one of two reasons: it resides in a block that 5301 // needs predication, or it was decided to use masking to deal with gaps 5302 // (either a gap at the end of a load-access that may result in a speculative 5303 // load, or any gaps in a store-access). 5304 bool PredicatedAccessRequiresMasking = 5305 blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5306 bool LoadAccessWithGapsRequiresEpilogMasking = 5307 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 5308 !isScalarEpilogueAllowed(); 5309 bool StoreAccessWithGapsRequiresMasking = 5310 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 5311 if (!PredicatedAccessRequiresMasking && 5312 !LoadAccessWithGapsRequiresEpilogMasking && 5313 !StoreAccessWithGapsRequiresMasking) 5314 return true; 5315 5316 // If masked interleaving is required, we expect that the user/target had 5317 // enabled it, because otherwise it either wouldn't have been created or 5318 // it should have been invalidated by the CostModel. 5319 assert(useMaskedInterleavedAccesses(TTI) && 5320 "Masked interleave-groups for predicated accesses are not enabled."); 5321 5322 auto *Ty = getLoadStoreType(I); 5323 const Align Alignment = getLoadStoreAlignment(I); 5324 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5325 : TTI.isLegalMaskedStore(Ty, Alignment); 5326 } 5327 5328 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5329 Instruction *I, ElementCount VF) { 5330 // Get and ensure we have a valid memory instruction. 5331 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 5332 5333 auto *Ptr = getLoadStorePointerOperand(I); 5334 auto *ScalarTy = getLoadStoreType(I); 5335 5336 // In order to be widened, the pointer should be consecutive, first of all. 5337 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 5338 return false; 5339 5340 // If the instruction is a store located in a predicated block, it will be 5341 // scalarized. 5342 if (isScalarWithPredication(I)) 5343 return false; 5344 5345 // If the instruction's allocated size doesn't equal it's type size, it 5346 // requires padding and will be scalarized. 5347 auto &DL = I->getModule()->getDataLayout(); 5348 if (hasIrregularType(ScalarTy, DL)) 5349 return false; 5350 5351 return true; 5352 } 5353 5354 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5355 // We should not collect Uniforms more than once per VF. Right now, 5356 // this function is called from collectUniformsAndScalars(), which 5357 // already does this check. Collecting Uniforms for VF=1 does not make any 5358 // sense. 5359 5360 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5361 "This function should not be visited twice for the same VF"); 5362 5363 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5364 // not analyze again. Uniforms.count(VF) will return 1. 5365 Uniforms[VF].clear(); 5366 5367 // We now know that the loop is vectorizable! 5368 // Collect instructions inside the loop that will remain uniform after 5369 // vectorization. 5370 5371 // Global values, params and instructions outside of current loop are out of 5372 // scope. 5373 auto isOutOfScope = [&](Value *V) -> bool { 5374 Instruction *I = dyn_cast<Instruction>(V); 5375 return (!I || !TheLoop->contains(I)); 5376 }; 5377 5378 SetVector<Instruction *> Worklist; 5379 BasicBlock *Latch = TheLoop->getLoopLatch(); 5380 5381 // Instructions that are scalar with predication must not be considered 5382 // uniform after vectorization, because that would create an erroneous 5383 // replicating region where only a single instance out of VF should be formed. 5384 // TODO: optimize such seldom cases if found important, see PR40816. 5385 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5386 if (isOutOfScope(I)) { 5387 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5388 << *I << "\n"); 5389 return; 5390 } 5391 if (isScalarWithPredication(I)) { 5392 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5393 << *I << "\n"); 5394 return; 5395 } 5396 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5397 Worklist.insert(I); 5398 }; 5399 5400 // Start with the conditional branch. If the branch condition is an 5401 // instruction contained in the loop that is only used by the branch, it is 5402 // uniform. 5403 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5404 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5405 addToWorklistIfAllowed(Cmp); 5406 5407 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5408 InstWidening WideningDecision = getWideningDecision(I, VF); 5409 assert(WideningDecision != CM_Unknown && 5410 "Widening decision should be ready at this moment"); 5411 5412 // A uniform memory op is itself uniform. We exclude uniform stores 5413 // here as they demand the last lane, not the first one. 5414 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5415 assert(WideningDecision == CM_Scalarize); 5416 return true; 5417 } 5418 5419 return (WideningDecision == CM_Widen || 5420 WideningDecision == CM_Widen_Reverse || 5421 WideningDecision == CM_Interleave); 5422 }; 5423 5424 5425 // Returns true if Ptr is the pointer operand of a memory access instruction 5426 // I, and I is known to not require scalarization. 5427 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5428 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5429 }; 5430 5431 // Holds a list of values which are known to have at least one uniform use. 5432 // Note that there may be other uses which aren't uniform. A "uniform use" 5433 // here is something which only demands lane 0 of the unrolled iterations; 5434 // it does not imply that all lanes produce the same value (e.g. this is not 5435 // the usual meaning of uniform) 5436 SetVector<Value *> HasUniformUse; 5437 5438 // Scan the loop for instructions which are either a) known to have only 5439 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5440 for (auto *BB : TheLoop->blocks()) 5441 for (auto &I : *BB) { 5442 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 5443 switch (II->getIntrinsicID()) { 5444 case Intrinsic::sideeffect: 5445 case Intrinsic::experimental_noalias_scope_decl: 5446 case Intrinsic::assume: 5447 case Intrinsic::lifetime_start: 5448 case Intrinsic::lifetime_end: 5449 if (TheLoop->hasLoopInvariantOperands(&I)) 5450 addToWorklistIfAllowed(&I); 5451 break; 5452 default: 5453 break; 5454 } 5455 } 5456 5457 // ExtractValue instructions must be uniform, because the operands are 5458 // known to be loop-invariant. 5459 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 5460 assert(isOutOfScope(EVI->getAggregateOperand()) && 5461 "Expected aggregate value to be loop invariant"); 5462 addToWorklistIfAllowed(EVI); 5463 continue; 5464 } 5465 5466 // If there's no pointer operand, there's nothing to do. 5467 auto *Ptr = getLoadStorePointerOperand(&I); 5468 if (!Ptr) 5469 continue; 5470 5471 // A uniform memory op is itself uniform. We exclude uniform stores 5472 // here as they demand the last lane, not the first one. 5473 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5474 addToWorklistIfAllowed(&I); 5475 5476 if (isUniformDecision(&I, VF)) { 5477 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5478 HasUniformUse.insert(Ptr); 5479 } 5480 } 5481 5482 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5483 // demanding) users. Since loops are assumed to be in LCSSA form, this 5484 // disallows uses outside the loop as well. 5485 for (auto *V : HasUniformUse) { 5486 if (isOutOfScope(V)) 5487 continue; 5488 auto *I = cast<Instruction>(V); 5489 auto UsersAreMemAccesses = 5490 llvm::all_of(I->users(), [&](User *U) -> bool { 5491 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5492 }); 5493 if (UsersAreMemAccesses) 5494 addToWorklistIfAllowed(I); 5495 } 5496 5497 // Expand Worklist in topological order: whenever a new instruction 5498 // is added , its users should be already inside Worklist. It ensures 5499 // a uniform instruction will only be used by uniform instructions. 5500 unsigned idx = 0; 5501 while (idx != Worklist.size()) { 5502 Instruction *I = Worklist[idx++]; 5503 5504 for (auto OV : I->operand_values()) { 5505 // isOutOfScope operands cannot be uniform instructions. 5506 if (isOutOfScope(OV)) 5507 continue; 5508 // First order recurrence Phi's should typically be considered 5509 // non-uniform. 5510 auto *OP = dyn_cast<PHINode>(OV); 5511 if (OP && Legal->isFirstOrderRecurrence(OP)) 5512 continue; 5513 // If all the users of the operand are uniform, then add the 5514 // operand into the uniform worklist. 5515 auto *OI = cast<Instruction>(OV); 5516 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5517 auto *J = cast<Instruction>(U); 5518 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5519 })) 5520 addToWorklistIfAllowed(OI); 5521 } 5522 } 5523 5524 // For an instruction to be added into Worklist above, all its users inside 5525 // the loop should also be in Worklist. However, this condition cannot be 5526 // true for phi nodes that form a cyclic dependence. We must process phi 5527 // nodes separately. An induction variable will remain uniform if all users 5528 // of the induction variable and induction variable update remain uniform. 5529 // The code below handles both pointer and non-pointer induction variables. 5530 for (auto &Induction : Legal->getInductionVars()) { 5531 auto *Ind = Induction.first; 5532 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5533 5534 // Determine if all users of the induction variable are uniform after 5535 // vectorization. 5536 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5537 auto *I = cast<Instruction>(U); 5538 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5539 isVectorizedMemAccessUse(I, Ind); 5540 }); 5541 if (!UniformInd) 5542 continue; 5543 5544 // Determine if all users of the induction variable update instruction are 5545 // uniform after vectorization. 5546 auto UniformIndUpdate = 5547 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5548 auto *I = cast<Instruction>(U); 5549 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5550 isVectorizedMemAccessUse(I, IndUpdate); 5551 }); 5552 if (!UniformIndUpdate) 5553 continue; 5554 5555 // The induction variable and its update instruction will remain uniform. 5556 addToWorklistIfAllowed(Ind); 5557 addToWorklistIfAllowed(IndUpdate); 5558 } 5559 5560 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5561 } 5562 5563 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5564 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5565 5566 if (Legal->getRuntimePointerChecking()->Need) { 5567 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5568 "runtime pointer checks needed. Enable vectorization of this " 5569 "loop with '#pragma clang loop vectorize(enable)' when " 5570 "compiling with -Os/-Oz", 5571 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5572 return true; 5573 } 5574 5575 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5576 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5577 "runtime SCEV checks needed. Enable vectorization of this " 5578 "loop with '#pragma clang loop vectorize(enable)' when " 5579 "compiling with -Os/-Oz", 5580 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5581 return true; 5582 } 5583 5584 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5585 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5586 reportVectorizationFailure("Runtime stride check for small trip count", 5587 "runtime stride == 1 checks needed. Enable vectorization of " 5588 "this loop without such check by compiling with -Os/-Oz", 5589 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5590 return true; 5591 } 5592 5593 return false; 5594 } 5595 5596 ElementCount 5597 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5598 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 5599 return ElementCount::getScalable(0); 5600 5601 if (Hints->isScalableVectorizationDisabled()) { 5602 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5603 "ScalableVectorizationDisabled", ORE, TheLoop); 5604 return ElementCount::getScalable(0); 5605 } 5606 5607 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5608 5609 auto MaxScalableVF = ElementCount::getScalable( 5610 std::numeric_limits<ElementCount::ScalarTy>::max()); 5611 5612 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5613 // FIXME: While for scalable vectors this is currently sufficient, this should 5614 // be replaced by a more detailed mechanism that filters out specific VFs, 5615 // instead of invalidating vectorization for a whole set of VFs based on the 5616 // MaxVF. 5617 5618 // Disable scalable vectorization if the loop contains unsupported reductions. 5619 if (!canVectorizeReductions(MaxScalableVF)) { 5620 reportVectorizationInfo( 5621 "Scalable vectorization not supported for the reduction " 5622 "operations found in this loop.", 5623 "ScalableVFUnfeasible", ORE, TheLoop); 5624 return ElementCount::getScalable(0); 5625 } 5626 5627 // Disable scalable vectorization if the loop contains any instructions 5628 // with element types not supported for scalable vectors. 5629 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5630 return !Ty->isVoidTy() && 5631 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5632 })) { 5633 reportVectorizationInfo("Scalable vectorization is not supported " 5634 "for all element types found in this loop.", 5635 "ScalableVFUnfeasible", ORE, TheLoop); 5636 return ElementCount::getScalable(0); 5637 } 5638 5639 if (Legal->isSafeForAnyVectorWidth()) 5640 return MaxScalableVF; 5641 5642 // Limit MaxScalableVF by the maximum safe dependence distance. 5643 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5644 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5645 unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange) 5646 .getVScaleRangeArgs() 5647 .second; 5648 if (VScaleMax > 0) 5649 MaxVScale = VScaleMax; 5650 } 5651 MaxScalableVF = ElementCount::getScalable( 5652 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5653 if (!MaxScalableVF) 5654 reportVectorizationInfo( 5655 "Max legal vector width too small, scalable vectorization " 5656 "unfeasible.", 5657 "ScalableVFUnfeasible", ORE, TheLoop); 5658 5659 return MaxScalableVF; 5660 } 5661 5662 FixedScalableVFPair 5663 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5664 ElementCount UserVF) { 5665 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5666 unsigned SmallestType, WidestType; 5667 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5668 5669 // Get the maximum safe dependence distance in bits computed by LAA. 5670 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5671 // the memory accesses that is most restrictive (involved in the smallest 5672 // dependence distance). 5673 unsigned MaxSafeElements = 5674 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5675 5676 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5677 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5678 5679 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5680 << ".\n"); 5681 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5682 << ".\n"); 5683 5684 // First analyze the UserVF, fall back if the UserVF should be ignored. 5685 if (UserVF) { 5686 auto MaxSafeUserVF = 5687 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5688 5689 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5690 // If `VF=vscale x N` is safe, then so is `VF=N` 5691 if (UserVF.isScalable()) 5692 return FixedScalableVFPair( 5693 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5694 else 5695 return UserVF; 5696 } 5697 5698 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5699 5700 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5701 // is better to ignore the hint and let the compiler choose a suitable VF. 5702 if (!UserVF.isScalable()) { 5703 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5704 << " is unsafe, clamping to max safe VF=" 5705 << MaxSafeFixedVF << ".\n"); 5706 ORE->emit([&]() { 5707 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5708 TheLoop->getStartLoc(), 5709 TheLoop->getHeader()) 5710 << "User-specified vectorization factor " 5711 << ore::NV("UserVectorizationFactor", UserVF) 5712 << " is unsafe, clamping to maximum safe vectorization factor " 5713 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5714 }); 5715 return MaxSafeFixedVF; 5716 } 5717 5718 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5719 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5720 << " is ignored because scalable vectors are not " 5721 "available.\n"); 5722 ORE->emit([&]() { 5723 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5724 TheLoop->getStartLoc(), 5725 TheLoop->getHeader()) 5726 << "User-specified vectorization factor " 5727 << ore::NV("UserVectorizationFactor", UserVF) 5728 << " is ignored because the target does not support scalable " 5729 "vectors. The compiler will pick a more suitable value."; 5730 }); 5731 } else { 5732 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5733 << " is unsafe. Ignoring scalable UserVF.\n"); 5734 ORE->emit([&]() { 5735 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5736 TheLoop->getStartLoc(), 5737 TheLoop->getHeader()) 5738 << "User-specified vectorization factor " 5739 << ore::NV("UserVectorizationFactor", UserVF) 5740 << " is unsafe. Ignoring the hint to let the compiler pick a " 5741 "more suitable value."; 5742 }); 5743 } 5744 } 5745 5746 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5747 << " / " << WidestType << " bits.\n"); 5748 5749 FixedScalableVFPair Result(ElementCount::getFixed(1), 5750 ElementCount::getScalable(0)); 5751 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5752 WidestType, MaxSafeFixedVF)) 5753 Result.FixedVF = MaxVF; 5754 5755 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5756 WidestType, MaxSafeScalableVF)) 5757 if (MaxVF.isScalable()) { 5758 Result.ScalableVF = MaxVF; 5759 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5760 << "\n"); 5761 } 5762 5763 return Result; 5764 } 5765 5766 FixedScalableVFPair 5767 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5768 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5769 // TODO: It may by useful to do since it's still likely to be dynamically 5770 // uniform if the target can skip. 5771 reportVectorizationFailure( 5772 "Not inserting runtime ptr check for divergent target", 5773 "runtime pointer checks needed. Not enabled for divergent target", 5774 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5775 return FixedScalableVFPair::getNone(); 5776 } 5777 5778 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5779 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5780 if (TC == 1) { 5781 reportVectorizationFailure("Single iteration (non) loop", 5782 "loop trip count is one, irrelevant for vectorization", 5783 "SingleIterationLoop", ORE, TheLoop); 5784 return FixedScalableVFPair::getNone(); 5785 } 5786 5787 switch (ScalarEpilogueStatus) { 5788 case CM_ScalarEpilogueAllowed: 5789 return computeFeasibleMaxVF(TC, UserVF); 5790 case CM_ScalarEpilogueNotAllowedUsePredicate: 5791 LLVM_FALLTHROUGH; 5792 case CM_ScalarEpilogueNotNeededUsePredicate: 5793 LLVM_DEBUG( 5794 dbgs() << "LV: vector predicate hint/switch found.\n" 5795 << "LV: Not allowing scalar epilogue, creating predicated " 5796 << "vector loop.\n"); 5797 break; 5798 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5799 // fallthrough as a special case of OptForSize 5800 case CM_ScalarEpilogueNotAllowedOptSize: 5801 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5802 LLVM_DEBUG( 5803 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5804 else 5805 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5806 << "count.\n"); 5807 5808 // Bail if runtime checks are required, which are not good when optimising 5809 // for size. 5810 if (runtimeChecksRequired()) 5811 return FixedScalableVFPair::getNone(); 5812 5813 break; 5814 } 5815 5816 // The only loops we can vectorize without a scalar epilogue, are loops with 5817 // a bottom-test and a single exiting block. We'd have to handle the fact 5818 // that not every instruction executes on the last iteration. This will 5819 // require a lane mask which varies through the vector loop body. (TODO) 5820 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5821 // If there was a tail-folding hint/switch, but we can't fold the tail by 5822 // masking, fallback to a vectorization with a scalar epilogue. 5823 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5824 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5825 "scalar epilogue instead.\n"); 5826 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5827 return computeFeasibleMaxVF(TC, UserVF); 5828 } 5829 return FixedScalableVFPair::getNone(); 5830 } 5831 5832 // Now try the tail folding 5833 5834 // Invalidate interleave groups that require an epilogue if we can't mask 5835 // the interleave-group. 5836 if (!useMaskedInterleavedAccesses(TTI)) { 5837 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5838 "No decisions should have been taken at this point"); 5839 // Note: There is no need to invalidate any cost modeling decisions here, as 5840 // non where taken so far. 5841 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5842 } 5843 5844 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF); 5845 // Avoid tail folding if the trip count is known to be a multiple of any VF 5846 // we chose. 5847 // FIXME: The condition below pessimises the case for fixed-width vectors, 5848 // when scalable VFs are also candidates for vectorization. 5849 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5850 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5851 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5852 "MaxFixedVF must be a power of 2"); 5853 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5854 : MaxFixedVF.getFixedValue(); 5855 ScalarEvolution *SE = PSE.getSE(); 5856 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5857 const SCEV *ExitCount = SE->getAddExpr( 5858 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5859 const SCEV *Rem = SE->getURemExpr( 5860 SE->applyLoopGuards(ExitCount, TheLoop), 5861 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5862 if (Rem->isZero()) { 5863 // Accept MaxFixedVF if we do not have a tail. 5864 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5865 return MaxFactors; 5866 } 5867 } 5868 5869 // For scalable vectors, don't use tail folding as this is currently not yet 5870 // supported. The code is likely to have ended up here if the tripcount is 5871 // low, in which case it makes sense not to use scalable vectors. 5872 if (MaxFactors.ScalableVF.isVector()) 5873 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5874 5875 // If we don't know the precise trip count, or if the trip count that we 5876 // found modulo the vectorization factor is not zero, try to fold the tail 5877 // by masking. 5878 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5879 if (Legal->prepareToFoldTailByMasking()) { 5880 FoldTailByMasking = true; 5881 return MaxFactors; 5882 } 5883 5884 // If there was a tail-folding hint/switch, but we can't fold the tail by 5885 // masking, fallback to a vectorization with a scalar epilogue. 5886 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5887 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5888 "scalar epilogue instead.\n"); 5889 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5890 return MaxFactors; 5891 } 5892 5893 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5894 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5895 return FixedScalableVFPair::getNone(); 5896 } 5897 5898 if (TC == 0) { 5899 reportVectorizationFailure( 5900 "Unable to calculate the loop count due to complex control flow", 5901 "unable to calculate the loop count due to complex control flow", 5902 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5903 return FixedScalableVFPair::getNone(); 5904 } 5905 5906 reportVectorizationFailure( 5907 "Cannot optimize for size and vectorize at the same time.", 5908 "cannot optimize for size and vectorize at the same time. " 5909 "Enable vectorization of this loop with '#pragma clang loop " 5910 "vectorize(enable)' when compiling with -Os/-Oz", 5911 "NoTailLoopWithOptForSize", ORE, TheLoop); 5912 return FixedScalableVFPair::getNone(); 5913 } 5914 5915 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5916 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5917 const ElementCount &MaxSafeVF) { 5918 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5919 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5920 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5921 : TargetTransformInfo::RGK_FixedWidthVector); 5922 5923 // Convenience function to return the minimum of two ElementCounts. 5924 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5925 assert((LHS.isScalable() == RHS.isScalable()) && 5926 "Scalable flags must match"); 5927 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5928 }; 5929 5930 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5931 // Note that both WidestRegister and WidestType may not be a powers of 2. 5932 auto MaxVectorElementCount = ElementCount::get( 5933 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5934 ComputeScalableMaxVF); 5935 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5936 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5937 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5938 5939 if (!MaxVectorElementCount) { 5940 LLVM_DEBUG(dbgs() << "LV: The target has no " 5941 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5942 << " vector registers.\n"); 5943 return ElementCount::getFixed(1); 5944 } 5945 5946 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5947 if (ConstTripCount && 5948 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5949 isPowerOf2_32(ConstTripCount)) { 5950 // We need to clamp the VF to be the ConstTripCount. There is no point in 5951 // choosing a higher viable VF as done in the loop below. If 5952 // MaxVectorElementCount is scalable, we only fall back on a fixed VF when 5953 // the TC is less than or equal to the known number of lanes. 5954 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5955 << ConstTripCount << "\n"); 5956 return TripCountEC; 5957 } 5958 5959 ElementCount MaxVF = MaxVectorElementCount; 5960 if (TTI.shouldMaximizeVectorBandwidth() || 5961 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5962 auto MaxVectorElementCountMaxBW = ElementCount::get( 5963 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5964 ComputeScalableMaxVF); 5965 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5966 5967 // Collect all viable vectorization factors larger than the default MaxVF 5968 // (i.e. MaxVectorElementCount). 5969 SmallVector<ElementCount, 8> VFs; 5970 for (ElementCount VS = MaxVectorElementCount * 2; 5971 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5972 VFs.push_back(VS); 5973 5974 // For each VF calculate its register usage. 5975 auto RUs = calculateRegisterUsage(VFs); 5976 5977 // Select the largest VF which doesn't require more registers than existing 5978 // ones. 5979 for (int i = RUs.size() - 1; i >= 0; --i) { 5980 bool Selected = true; 5981 for (auto &pair : RUs[i].MaxLocalUsers) { 5982 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5983 if (pair.second > TargetNumRegisters) 5984 Selected = false; 5985 } 5986 if (Selected) { 5987 MaxVF = VFs[i]; 5988 break; 5989 } 5990 } 5991 if (ElementCount MinVF = 5992 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5993 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5994 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5995 << ") with target's minimum: " << MinVF << '\n'); 5996 MaxVF = MinVF; 5997 } 5998 } 5999 } 6000 return MaxVF; 6001 } 6002 6003 bool LoopVectorizationCostModel::isMoreProfitable( 6004 const VectorizationFactor &A, const VectorizationFactor &B) const { 6005 InstructionCost CostA = A.Cost; 6006 InstructionCost CostB = B.Cost; 6007 6008 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 6009 6010 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 6011 MaxTripCount) { 6012 // If we are folding the tail and the trip count is a known (possibly small) 6013 // constant, the trip count will be rounded up to an integer number of 6014 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 6015 // which we compare directly. When not folding the tail, the total cost will 6016 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 6017 // approximated with the per-lane cost below instead of using the tripcount 6018 // as here. 6019 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 6020 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 6021 return RTCostA < RTCostB; 6022 } 6023 6024 // When set to preferred, for now assume vscale may be larger than 1, so 6025 // that scalable vectorization is slightly favorable over fixed-width 6026 // vectorization. 6027 if (Hints->isScalableVectorizationPreferred()) 6028 if (A.Width.isScalable() && !B.Width.isScalable()) 6029 return (CostA * B.Width.getKnownMinValue()) <= 6030 (CostB * A.Width.getKnownMinValue()); 6031 6032 // To avoid the need for FP division: 6033 // (CostA / A.Width) < (CostB / B.Width) 6034 // <=> (CostA * B.Width) < (CostB * A.Width) 6035 return (CostA * B.Width.getKnownMinValue()) < 6036 (CostB * A.Width.getKnownMinValue()); 6037 } 6038 6039 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 6040 const ElementCountSet &VFCandidates) { 6041 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 6042 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 6043 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 6044 assert(VFCandidates.count(ElementCount::getFixed(1)) && 6045 "Expected Scalar VF to be a candidate"); 6046 6047 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 6048 VectorizationFactor ChosenFactor = ScalarCost; 6049 6050 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6051 if (ForceVectorization && VFCandidates.size() > 1) { 6052 // Ignore scalar width, because the user explicitly wants vectorization. 6053 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 6054 // evaluation. 6055 ChosenFactor.Cost = InstructionCost::getMax(); 6056 } 6057 6058 SmallVector<InstructionVFPair> InvalidCosts; 6059 for (const auto &i : VFCandidates) { 6060 // The cost for scalar VF=1 is already calculated, so ignore it. 6061 if (i.isScalar()) 6062 continue; 6063 6064 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 6065 VectorizationFactor Candidate(i, C.first); 6066 LLVM_DEBUG( 6067 dbgs() << "LV: Vector loop of width " << i << " costs: " 6068 << (Candidate.Cost / Candidate.Width.getKnownMinValue()) 6069 << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "") 6070 << ".\n"); 6071 6072 if (!C.second && !ForceVectorization) { 6073 LLVM_DEBUG( 6074 dbgs() << "LV: Not considering vector loop of width " << i 6075 << " because it will not generate any vector instructions.\n"); 6076 continue; 6077 } 6078 6079 // If profitable add it to ProfitableVF list. 6080 if (isMoreProfitable(Candidate, ScalarCost)) 6081 ProfitableVFs.push_back(Candidate); 6082 6083 if (isMoreProfitable(Candidate, ChosenFactor)) 6084 ChosenFactor = Candidate; 6085 } 6086 6087 // Emit a report of VFs with invalid costs in the loop. 6088 if (!InvalidCosts.empty()) { 6089 // Group the remarks per instruction, keeping the instruction order from 6090 // InvalidCosts. 6091 std::map<Instruction *, unsigned> Numbering; 6092 unsigned I = 0; 6093 for (auto &Pair : InvalidCosts) 6094 if (!Numbering.count(Pair.first)) 6095 Numbering[Pair.first] = I++; 6096 6097 // Sort the list, first on instruction(number) then on VF. 6098 llvm::sort(InvalidCosts, 6099 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 6100 if (Numbering[A.first] != Numbering[B.first]) 6101 return Numbering[A.first] < Numbering[B.first]; 6102 ElementCountComparator ECC; 6103 return ECC(A.second, B.second); 6104 }); 6105 6106 // For a list of ordered instruction-vf pairs: 6107 // [(load, vf1), (load, vf2), (store, vf1)] 6108 // Group the instructions together to emit separate remarks for: 6109 // load (vf1, vf2) 6110 // store (vf1) 6111 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 6112 auto Subset = ArrayRef<InstructionVFPair>(); 6113 do { 6114 if (Subset.empty()) 6115 Subset = Tail.take_front(1); 6116 6117 Instruction *I = Subset.front().first; 6118 6119 // If the next instruction is different, or if there are no other pairs, 6120 // emit a remark for the collated subset. e.g. 6121 // [(load, vf1), (load, vf2))] 6122 // to emit: 6123 // remark: invalid costs for 'load' at VF=(vf, vf2) 6124 if (Subset == Tail || Tail[Subset.size()].first != I) { 6125 std::string OutString; 6126 raw_string_ostream OS(OutString); 6127 assert(!Subset.empty() && "Unexpected empty range"); 6128 OS << "Instruction with invalid costs prevented vectorization at VF=("; 6129 for (auto &Pair : Subset) 6130 OS << (Pair.second == Subset.front().second ? "" : ", ") 6131 << Pair.second; 6132 OS << "):"; 6133 if (auto *CI = dyn_cast<CallInst>(I)) 6134 OS << " call to " << CI->getCalledFunction()->getName(); 6135 else 6136 OS << " " << I->getOpcodeName(); 6137 OS.flush(); 6138 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 6139 Tail = Tail.drop_front(Subset.size()); 6140 Subset = {}; 6141 } else 6142 // Grow the subset by one element 6143 Subset = Tail.take_front(Subset.size() + 1); 6144 } while (!Tail.empty()); 6145 } 6146 6147 if (!EnableCondStoresVectorization && NumPredStores) { 6148 reportVectorizationFailure("There are conditional stores.", 6149 "store that is conditionally executed prevents vectorization", 6150 "ConditionalStore", ORE, TheLoop); 6151 ChosenFactor = ScalarCost; 6152 } 6153 6154 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 6155 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 6156 << "LV: Vectorization seems to be not beneficial, " 6157 << "but was forced by a user.\n"); 6158 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 6159 return ChosenFactor; 6160 } 6161 6162 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 6163 const Loop &L, ElementCount VF) const { 6164 // Cross iteration phis such as reductions need special handling and are 6165 // currently unsupported. 6166 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 6167 return Legal->isFirstOrderRecurrence(&Phi) || 6168 Legal->isReductionVariable(&Phi); 6169 })) 6170 return false; 6171 6172 // Phis with uses outside of the loop require special handling and are 6173 // currently unsupported. 6174 for (auto &Entry : Legal->getInductionVars()) { 6175 // Look for uses of the value of the induction at the last iteration. 6176 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 6177 for (User *U : PostInc->users()) 6178 if (!L.contains(cast<Instruction>(U))) 6179 return false; 6180 // Look for uses of penultimate value of the induction. 6181 for (User *U : Entry.first->users()) 6182 if (!L.contains(cast<Instruction>(U))) 6183 return false; 6184 } 6185 6186 // Induction variables that are widened require special handling that is 6187 // currently not supported. 6188 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 6189 return !(this->isScalarAfterVectorization(Entry.first, VF) || 6190 this->isProfitableToScalarize(Entry.first, VF)); 6191 })) 6192 return false; 6193 6194 // Epilogue vectorization code has not been auditted to ensure it handles 6195 // non-latch exits properly. It may be fine, but it needs auditted and 6196 // tested. 6197 if (L.getExitingBlock() != L.getLoopLatch()) 6198 return false; 6199 6200 return true; 6201 } 6202 6203 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 6204 const ElementCount VF) const { 6205 // FIXME: We need a much better cost-model to take different parameters such 6206 // as register pressure, code size increase and cost of extra branches into 6207 // account. For now we apply a very crude heuristic and only consider loops 6208 // with vectorization factors larger than a certain value. 6209 // We also consider epilogue vectorization unprofitable for targets that don't 6210 // consider interleaving beneficial (eg. MVE). 6211 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 6212 return false; 6213 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 6214 return true; 6215 return false; 6216 } 6217 6218 VectorizationFactor 6219 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 6220 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 6221 VectorizationFactor Result = VectorizationFactor::Disabled(); 6222 if (!EnableEpilogueVectorization) { 6223 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 6224 return Result; 6225 } 6226 6227 if (!isScalarEpilogueAllowed()) { 6228 LLVM_DEBUG( 6229 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 6230 "allowed.\n";); 6231 return Result; 6232 } 6233 6234 // FIXME: This can be fixed for scalable vectors later, because at this stage 6235 // the LoopVectorizer will only consider vectorizing a loop with scalable 6236 // vectors when the loop has a hint to enable vectorization for a given VF. 6237 if (MainLoopVF.isScalable()) { 6238 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 6239 "yet supported.\n"); 6240 return Result; 6241 } 6242 6243 // Not really a cost consideration, but check for unsupported cases here to 6244 // simplify the logic. 6245 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 6246 LLVM_DEBUG( 6247 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 6248 "not a supported candidate.\n";); 6249 return Result; 6250 } 6251 6252 if (EpilogueVectorizationForceVF > 1) { 6253 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 6254 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 6255 if (LVP.hasPlanWithVFs({MainLoopVF, ForcedEC})) 6256 return {ForcedEC, 0}; 6257 else { 6258 LLVM_DEBUG( 6259 dbgs() 6260 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 6261 return Result; 6262 } 6263 } 6264 6265 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6266 TheLoop->getHeader()->getParent()->hasMinSize()) { 6267 LLVM_DEBUG( 6268 dbgs() 6269 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6270 return Result; 6271 } 6272 6273 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6274 return Result; 6275 6276 for (auto &NextVF : ProfitableVFs) 6277 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6278 (Result.Width.getFixedValue() == 1 || 6279 isMoreProfitable(NextVF, Result)) && 6280 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6281 Result = NextVF; 6282 6283 if (Result != VectorizationFactor::Disabled()) 6284 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6285 << Result.Width.getFixedValue() << "\n";); 6286 return Result; 6287 } 6288 6289 std::pair<unsigned, unsigned> 6290 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6291 unsigned MinWidth = -1U; 6292 unsigned MaxWidth = 8; 6293 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6294 for (Type *T : ElementTypesInLoop) { 6295 MinWidth = std::min<unsigned>( 6296 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6297 MaxWidth = std::max<unsigned>( 6298 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6299 } 6300 return {MinWidth, MaxWidth}; 6301 } 6302 6303 void LoopVectorizationCostModel::collectElementTypesForWidening() { 6304 ElementTypesInLoop.clear(); 6305 // For each block. 6306 for (BasicBlock *BB : TheLoop->blocks()) { 6307 // For each instruction in the loop. 6308 for (Instruction &I : BB->instructionsWithoutDebug()) { 6309 Type *T = I.getType(); 6310 6311 // Skip ignored values. 6312 if (ValuesToIgnore.count(&I)) 6313 continue; 6314 6315 // Only examine Loads, Stores and PHINodes. 6316 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6317 continue; 6318 6319 // Examine PHI nodes that are reduction variables. Update the type to 6320 // account for the recurrence type. 6321 if (auto *PN = dyn_cast<PHINode>(&I)) { 6322 if (!Legal->isReductionVariable(PN)) 6323 continue; 6324 const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN]; 6325 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6326 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6327 RdxDesc.getRecurrenceType(), 6328 TargetTransformInfo::ReductionFlags())) 6329 continue; 6330 T = RdxDesc.getRecurrenceType(); 6331 } 6332 6333 // Examine the stored values. 6334 if (auto *ST = dyn_cast<StoreInst>(&I)) 6335 T = ST->getValueOperand()->getType(); 6336 6337 // Ignore loaded pointer types and stored pointer types that are not 6338 // vectorizable. 6339 // 6340 // FIXME: The check here attempts to predict whether a load or store will 6341 // be vectorized. We only know this for certain after a VF has 6342 // been selected. Here, we assume that if an access can be 6343 // vectorized, it will be. We should also look at extending this 6344 // optimization to non-pointer types. 6345 // 6346 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6347 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6348 continue; 6349 6350 ElementTypesInLoop.insert(T); 6351 } 6352 } 6353 } 6354 6355 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6356 unsigned LoopCost) { 6357 // -- The interleave heuristics -- 6358 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6359 // There are many micro-architectural considerations that we can't predict 6360 // at this level. For example, frontend pressure (on decode or fetch) due to 6361 // code size, or the number and capabilities of the execution ports. 6362 // 6363 // We use the following heuristics to select the interleave count: 6364 // 1. If the code has reductions, then we interleave to break the cross 6365 // iteration dependency. 6366 // 2. If the loop is really small, then we interleave to reduce the loop 6367 // overhead. 6368 // 3. We don't interleave if we think that we will spill registers to memory 6369 // due to the increased register pressure. 6370 6371 if (!isScalarEpilogueAllowed()) 6372 return 1; 6373 6374 // We used the distance for the interleave count. 6375 if (Legal->getMaxSafeDepDistBytes() != -1U) 6376 return 1; 6377 6378 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6379 const bool HasReductions = !Legal->getReductionVars().empty(); 6380 // Do not interleave loops with a relatively small known or estimated trip 6381 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6382 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6383 // because with the above conditions interleaving can expose ILP and break 6384 // cross iteration dependences for reductions. 6385 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6386 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6387 return 1; 6388 6389 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6390 // We divide by these constants so assume that we have at least one 6391 // instruction that uses at least one register. 6392 for (auto& pair : R.MaxLocalUsers) { 6393 pair.second = std::max(pair.second, 1U); 6394 } 6395 6396 // We calculate the interleave count using the following formula. 6397 // Subtract the number of loop invariants from the number of available 6398 // registers. These registers are used by all of the interleaved instances. 6399 // Next, divide the remaining registers by the number of registers that is 6400 // required by the loop, in order to estimate how many parallel instances 6401 // fit without causing spills. All of this is rounded down if necessary to be 6402 // a power of two. We want power of two interleave count to simplify any 6403 // addressing operations or alignment considerations. 6404 // We also want power of two interleave counts to ensure that the induction 6405 // variable of the vector loop wraps to zero, when tail is folded by masking; 6406 // this currently happens when OptForSize, in which case IC is set to 1 above. 6407 unsigned IC = UINT_MAX; 6408 6409 for (auto& pair : R.MaxLocalUsers) { 6410 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6411 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6412 << " registers of " 6413 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6414 if (VF.isScalar()) { 6415 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6416 TargetNumRegisters = ForceTargetNumScalarRegs; 6417 } else { 6418 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6419 TargetNumRegisters = ForceTargetNumVectorRegs; 6420 } 6421 unsigned MaxLocalUsers = pair.second; 6422 unsigned LoopInvariantRegs = 0; 6423 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6424 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6425 6426 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6427 // Don't count the induction variable as interleaved. 6428 if (EnableIndVarRegisterHeur) { 6429 TmpIC = 6430 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6431 std::max(1U, (MaxLocalUsers - 1))); 6432 } 6433 6434 IC = std::min(IC, TmpIC); 6435 } 6436 6437 // Clamp the interleave ranges to reasonable counts. 6438 unsigned MaxInterleaveCount = 6439 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6440 6441 // Check if the user has overridden the max. 6442 if (VF.isScalar()) { 6443 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6444 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6445 } else { 6446 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6447 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6448 } 6449 6450 // If trip count is known or estimated compile time constant, limit the 6451 // interleave count to be less than the trip count divided by VF, provided it 6452 // is at least 1. 6453 // 6454 // For scalable vectors we can't know if interleaving is beneficial. It may 6455 // not be beneficial for small loops if none of the lanes in the second vector 6456 // iterations is enabled. However, for larger loops, there is likely to be a 6457 // similar benefit as for fixed-width vectors. For now, we choose to leave 6458 // the InterleaveCount as if vscale is '1', although if some information about 6459 // the vector is known (e.g. min vector size), we can make a better decision. 6460 if (BestKnownTC) { 6461 MaxInterleaveCount = 6462 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6463 // Make sure MaxInterleaveCount is greater than 0. 6464 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6465 } 6466 6467 assert(MaxInterleaveCount > 0 && 6468 "Maximum interleave count must be greater than 0"); 6469 6470 // Clamp the calculated IC to be between the 1 and the max interleave count 6471 // that the target and trip count allows. 6472 if (IC > MaxInterleaveCount) 6473 IC = MaxInterleaveCount; 6474 else 6475 // Make sure IC is greater than 0. 6476 IC = std::max(1u, IC); 6477 6478 assert(IC > 0 && "Interleave count must be greater than 0."); 6479 6480 // If we did not calculate the cost for VF (because the user selected the VF) 6481 // then we calculate the cost of VF here. 6482 if (LoopCost == 0) { 6483 InstructionCost C = expectedCost(VF).first; 6484 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6485 LoopCost = *C.getValue(); 6486 } 6487 6488 assert(LoopCost && "Non-zero loop cost expected"); 6489 6490 // Interleave if we vectorized this loop and there is a reduction that could 6491 // benefit from interleaving. 6492 if (VF.isVector() && HasReductions) { 6493 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6494 return IC; 6495 } 6496 6497 // Note that if we've already vectorized the loop we will have done the 6498 // runtime check and so interleaving won't require further checks. 6499 bool InterleavingRequiresRuntimePointerCheck = 6500 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6501 6502 // We want to interleave small loops in order to reduce the loop overhead and 6503 // potentially expose ILP opportunities. 6504 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6505 << "LV: IC is " << IC << '\n' 6506 << "LV: VF is " << VF << '\n'); 6507 const bool AggressivelyInterleaveReductions = 6508 TTI.enableAggressiveInterleaving(HasReductions); 6509 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6510 // We assume that the cost overhead is 1 and we use the cost model 6511 // to estimate the cost of the loop and interleave until the cost of the 6512 // loop overhead is about 5% of the cost of the loop. 6513 unsigned SmallIC = 6514 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6515 6516 // Interleave until store/load ports (estimated by max interleave count) are 6517 // saturated. 6518 unsigned NumStores = Legal->getNumStores(); 6519 unsigned NumLoads = Legal->getNumLoads(); 6520 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6521 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6522 6523 // There is little point in interleaving for reductions containing selects 6524 // and compares when VF=1 since it may just create more overhead than it's 6525 // worth for loops with small trip counts. This is because we still have to 6526 // do the final reduction after the loop. 6527 bool HasSelectCmpReductions = 6528 HasReductions && 6529 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6530 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6531 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 6532 RdxDesc.getRecurrenceKind()); 6533 }); 6534 if (HasSelectCmpReductions) { 6535 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 6536 return 1; 6537 } 6538 6539 // If we have a scalar reduction (vector reductions are already dealt with 6540 // by this point), we can increase the critical path length if the loop 6541 // we're interleaving is inside another loop. For tree-wise reductions 6542 // set the limit to 2, and for ordered reductions it's best to disable 6543 // interleaving entirely. 6544 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6545 bool HasOrderedReductions = 6546 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6547 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6548 return RdxDesc.isOrdered(); 6549 }); 6550 if (HasOrderedReductions) { 6551 LLVM_DEBUG( 6552 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6553 return 1; 6554 } 6555 6556 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6557 SmallIC = std::min(SmallIC, F); 6558 StoresIC = std::min(StoresIC, F); 6559 LoadsIC = std::min(LoadsIC, F); 6560 } 6561 6562 if (EnableLoadStoreRuntimeInterleave && 6563 std::max(StoresIC, LoadsIC) > SmallIC) { 6564 LLVM_DEBUG( 6565 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6566 return std::max(StoresIC, LoadsIC); 6567 } 6568 6569 // If there are scalar reductions and TTI has enabled aggressive 6570 // interleaving for reductions, we will interleave to expose ILP. 6571 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6572 AggressivelyInterleaveReductions) { 6573 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6574 // Interleave no less than SmallIC but not as aggressive as the normal IC 6575 // to satisfy the rare situation when resources are too limited. 6576 return std::max(IC / 2, SmallIC); 6577 } else { 6578 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6579 return SmallIC; 6580 } 6581 } 6582 6583 // Interleave if this is a large loop (small loops are already dealt with by 6584 // this point) that could benefit from interleaving. 6585 if (AggressivelyInterleaveReductions) { 6586 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6587 return IC; 6588 } 6589 6590 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6591 return 1; 6592 } 6593 6594 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6595 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6596 // This function calculates the register usage by measuring the highest number 6597 // of values that are alive at a single location. Obviously, this is a very 6598 // rough estimation. We scan the loop in a topological order in order and 6599 // assign a number to each instruction. We use RPO to ensure that defs are 6600 // met before their users. We assume that each instruction that has in-loop 6601 // users starts an interval. We record every time that an in-loop value is 6602 // used, so we have a list of the first and last occurrences of each 6603 // instruction. Next, we transpose this data structure into a multi map that 6604 // holds the list of intervals that *end* at a specific location. This multi 6605 // map allows us to perform a linear search. We scan the instructions linearly 6606 // and record each time that a new interval starts, by placing it in a set. 6607 // If we find this value in the multi-map then we remove it from the set. 6608 // The max register usage is the maximum size of the set. 6609 // We also search for instructions that are defined outside the loop, but are 6610 // used inside the loop. We need this number separately from the max-interval 6611 // usage number because when we unroll, loop-invariant values do not take 6612 // more register. 6613 LoopBlocksDFS DFS(TheLoop); 6614 DFS.perform(LI); 6615 6616 RegisterUsage RU; 6617 6618 // Each 'key' in the map opens a new interval. The values 6619 // of the map are the index of the 'last seen' usage of the 6620 // instruction that is the key. 6621 using IntervalMap = DenseMap<Instruction *, unsigned>; 6622 6623 // Maps instruction to its index. 6624 SmallVector<Instruction *, 64> IdxToInstr; 6625 // Marks the end of each interval. 6626 IntervalMap EndPoint; 6627 // Saves the list of instruction indices that are used in the loop. 6628 SmallPtrSet<Instruction *, 8> Ends; 6629 // Saves the list of values that are used in the loop but are 6630 // defined outside the loop, such as arguments and constants. 6631 SmallPtrSet<Value *, 8> LoopInvariants; 6632 6633 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6634 for (Instruction &I : BB->instructionsWithoutDebug()) { 6635 IdxToInstr.push_back(&I); 6636 6637 // Save the end location of each USE. 6638 for (Value *U : I.operands()) { 6639 auto *Instr = dyn_cast<Instruction>(U); 6640 6641 // Ignore non-instruction values such as arguments, constants, etc. 6642 if (!Instr) 6643 continue; 6644 6645 // If this instruction is outside the loop then record it and continue. 6646 if (!TheLoop->contains(Instr)) { 6647 LoopInvariants.insert(Instr); 6648 continue; 6649 } 6650 6651 // Overwrite previous end points. 6652 EndPoint[Instr] = IdxToInstr.size(); 6653 Ends.insert(Instr); 6654 } 6655 } 6656 } 6657 6658 // Saves the list of intervals that end with the index in 'key'. 6659 using InstrList = SmallVector<Instruction *, 2>; 6660 DenseMap<unsigned, InstrList> TransposeEnds; 6661 6662 // Transpose the EndPoints to a list of values that end at each index. 6663 for (auto &Interval : EndPoint) 6664 TransposeEnds[Interval.second].push_back(Interval.first); 6665 6666 SmallPtrSet<Instruction *, 8> OpenIntervals; 6667 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6668 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6669 6670 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6671 6672 // A lambda that gets the register usage for the given type and VF. 6673 const auto &TTICapture = TTI; 6674 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6675 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6676 return 0; 6677 InstructionCost::CostType RegUsage = 6678 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6679 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6680 "Nonsensical values for register usage."); 6681 return RegUsage; 6682 }; 6683 6684 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6685 Instruction *I = IdxToInstr[i]; 6686 6687 // Remove all of the instructions that end at this location. 6688 InstrList &List = TransposeEnds[i]; 6689 for (Instruction *ToRemove : List) 6690 OpenIntervals.erase(ToRemove); 6691 6692 // Ignore instructions that are never used within the loop. 6693 if (!Ends.count(I)) 6694 continue; 6695 6696 // Skip ignored values. 6697 if (ValuesToIgnore.count(I)) 6698 continue; 6699 6700 // For each VF find the maximum usage of registers. 6701 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6702 // Count the number of live intervals. 6703 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6704 6705 if (VFs[j].isScalar()) { 6706 for (auto Inst : OpenIntervals) { 6707 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6708 if (RegUsage.find(ClassID) == RegUsage.end()) 6709 RegUsage[ClassID] = 1; 6710 else 6711 RegUsage[ClassID] += 1; 6712 } 6713 } else { 6714 collectUniformsAndScalars(VFs[j]); 6715 for (auto Inst : OpenIntervals) { 6716 // Skip ignored values for VF > 1. 6717 if (VecValuesToIgnore.count(Inst)) 6718 continue; 6719 if (isScalarAfterVectorization(Inst, VFs[j])) { 6720 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6721 if (RegUsage.find(ClassID) == RegUsage.end()) 6722 RegUsage[ClassID] = 1; 6723 else 6724 RegUsage[ClassID] += 1; 6725 } else { 6726 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6727 if (RegUsage.find(ClassID) == RegUsage.end()) 6728 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6729 else 6730 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6731 } 6732 } 6733 } 6734 6735 for (auto& pair : RegUsage) { 6736 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6737 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6738 else 6739 MaxUsages[j][pair.first] = pair.second; 6740 } 6741 } 6742 6743 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6744 << OpenIntervals.size() << '\n'); 6745 6746 // Add the current instruction to the list of open intervals. 6747 OpenIntervals.insert(I); 6748 } 6749 6750 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6751 SmallMapVector<unsigned, unsigned, 4> Invariant; 6752 6753 for (auto Inst : LoopInvariants) { 6754 unsigned Usage = 6755 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6756 unsigned ClassID = 6757 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6758 if (Invariant.find(ClassID) == Invariant.end()) 6759 Invariant[ClassID] = Usage; 6760 else 6761 Invariant[ClassID] += Usage; 6762 } 6763 6764 LLVM_DEBUG({ 6765 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6766 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6767 << " item\n"; 6768 for (const auto &pair : MaxUsages[i]) { 6769 dbgs() << "LV(REG): RegisterClass: " 6770 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6771 << " registers\n"; 6772 } 6773 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6774 << " item\n"; 6775 for (const auto &pair : Invariant) { 6776 dbgs() << "LV(REG): RegisterClass: " 6777 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6778 << " registers\n"; 6779 } 6780 }); 6781 6782 RU.LoopInvariantRegs = Invariant; 6783 RU.MaxLocalUsers = MaxUsages[i]; 6784 RUs[i] = RU; 6785 } 6786 6787 return RUs; 6788 } 6789 6790 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6791 // TODO: Cost model for emulated masked load/store is completely 6792 // broken. This hack guides the cost model to use an artificially 6793 // high enough value to practically disable vectorization with such 6794 // operations, except where previously deployed legality hack allowed 6795 // using very low cost values. This is to avoid regressions coming simply 6796 // from moving "masked load/store" check from legality to cost model. 6797 // Masked Load/Gather emulation was previously never allowed. 6798 // Limited number of Masked Store/Scatter emulation was allowed. 6799 assert(isPredicatedInst(I) && 6800 "Expecting a scalar emulated instruction"); 6801 return isa<LoadInst>(I) || 6802 (isa<StoreInst>(I) && 6803 NumPredStores > NumberOfStoresToPredicate); 6804 } 6805 6806 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6807 // If we aren't vectorizing the loop, or if we've already collected the 6808 // instructions to scalarize, there's nothing to do. Collection may already 6809 // have occurred if we have a user-selected VF and are now computing the 6810 // expected cost for interleaving. 6811 if (VF.isScalar() || VF.isZero() || 6812 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6813 return; 6814 6815 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6816 // not profitable to scalarize any instructions, the presence of VF in the 6817 // map will indicate that we've analyzed it already. 6818 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6819 6820 // Find all the instructions that are scalar with predication in the loop and 6821 // determine if it would be better to not if-convert the blocks they are in. 6822 // If so, we also record the instructions to scalarize. 6823 for (BasicBlock *BB : TheLoop->blocks()) { 6824 if (!blockNeedsPredication(BB)) 6825 continue; 6826 for (Instruction &I : *BB) 6827 if (isScalarWithPredication(&I)) { 6828 ScalarCostsTy ScalarCosts; 6829 // Do not apply discount if scalable, because that would lead to 6830 // invalid scalarization costs. 6831 // Do not apply discount logic if hacked cost is needed 6832 // for emulated masked memrefs. 6833 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) && 6834 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6835 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6836 // Remember that BB will remain after vectorization. 6837 PredicatedBBsAfterVectorization.insert(BB); 6838 } 6839 } 6840 } 6841 6842 int LoopVectorizationCostModel::computePredInstDiscount( 6843 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6844 assert(!isUniformAfterVectorization(PredInst, VF) && 6845 "Instruction marked uniform-after-vectorization will be predicated"); 6846 6847 // Initialize the discount to zero, meaning that the scalar version and the 6848 // vector version cost the same. 6849 InstructionCost Discount = 0; 6850 6851 // Holds instructions to analyze. The instructions we visit are mapped in 6852 // ScalarCosts. Those instructions are the ones that would be scalarized if 6853 // we find that the scalar version costs less. 6854 SmallVector<Instruction *, 8> Worklist; 6855 6856 // Returns true if the given instruction can be scalarized. 6857 auto canBeScalarized = [&](Instruction *I) -> bool { 6858 // We only attempt to scalarize instructions forming a single-use chain 6859 // from the original predicated block that would otherwise be vectorized. 6860 // Although not strictly necessary, we give up on instructions we know will 6861 // already be scalar to avoid traversing chains that are unlikely to be 6862 // beneficial. 6863 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6864 isScalarAfterVectorization(I, VF)) 6865 return false; 6866 6867 // If the instruction is scalar with predication, it will be analyzed 6868 // separately. We ignore it within the context of PredInst. 6869 if (isScalarWithPredication(I)) 6870 return false; 6871 6872 // If any of the instruction's operands are uniform after vectorization, 6873 // the instruction cannot be scalarized. This prevents, for example, a 6874 // masked load from being scalarized. 6875 // 6876 // We assume we will only emit a value for lane zero of an instruction 6877 // marked uniform after vectorization, rather than VF identical values. 6878 // Thus, if we scalarize an instruction that uses a uniform, we would 6879 // create uses of values corresponding to the lanes we aren't emitting code 6880 // for. This behavior can be changed by allowing getScalarValue to clone 6881 // the lane zero values for uniforms rather than asserting. 6882 for (Use &U : I->operands()) 6883 if (auto *J = dyn_cast<Instruction>(U.get())) 6884 if (isUniformAfterVectorization(J, VF)) 6885 return false; 6886 6887 // Otherwise, we can scalarize the instruction. 6888 return true; 6889 }; 6890 6891 // Compute the expected cost discount from scalarizing the entire expression 6892 // feeding the predicated instruction. We currently only consider expressions 6893 // that are single-use instruction chains. 6894 Worklist.push_back(PredInst); 6895 while (!Worklist.empty()) { 6896 Instruction *I = Worklist.pop_back_val(); 6897 6898 // If we've already analyzed the instruction, there's nothing to do. 6899 if (ScalarCosts.find(I) != ScalarCosts.end()) 6900 continue; 6901 6902 // Compute the cost of the vector instruction. Note that this cost already 6903 // includes the scalarization overhead of the predicated instruction. 6904 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6905 6906 // Compute the cost of the scalarized instruction. This cost is the cost of 6907 // the instruction as if it wasn't if-converted and instead remained in the 6908 // predicated block. We will scale this cost by block probability after 6909 // computing the scalarization overhead. 6910 InstructionCost ScalarCost = 6911 VF.getFixedValue() * 6912 getInstructionCost(I, ElementCount::getFixed(1)).first; 6913 6914 // Compute the scalarization overhead of needed insertelement instructions 6915 // and phi nodes. 6916 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6917 ScalarCost += TTI.getScalarizationOverhead( 6918 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6919 APInt::getAllOnes(VF.getFixedValue()), true, false); 6920 ScalarCost += 6921 VF.getFixedValue() * 6922 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6923 } 6924 6925 // Compute the scalarization overhead of needed extractelement 6926 // instructions. For each of the instruction's operands, if the operand can 6927 // be scalarized, add it to the worklist; otherwise, account for the 6928 // overhead. 6929 for (Use &U : I->operands()) 6930 if (auto *J = dyn_cast<Instruction>(U.get())) { 6931 assert(VectorType::isValidElementType(J->getType()) && 6932 "Instruction has non-scalar type"); 6933 if (canBeScalarized(J)) 6934 Worklist.push_back(J); 6935 else if (needsExtract(J, VF)) { 6936 ScalarCost += TTI.getScalarizationOverhead( 6937 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6938 APInt::getAllOnes(VF.getFixedValue()), false, true); 6939 } 6940 } 6941 6942 // Scale the total scalar cost by block probability. 6943 ScalarCost /= getReciprocalPredBlockProb(); 6944 6945 // Compute the discount. A non-negative discount means the vector version 6946 // of the instruction costs more, and scalarizing would be beneficial. 6947 Discount += VectorCost - ScalarCost; 6948 ScalarCosts[I] = ScalarCost; 6949 } 6950 6951 return *Discount.getValue(); 6952 } 6953 6954 LoopVectorizationCostModel::VectorizationCostTy 6955 LoopVectorizationCostModel::expectedCost( 6956 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6957 VectorizationCostTy Cost; 6958 6959 // For each block. 6960 for (BasicBlock *BB : TheLoop->blocks()) { 6961 VectorizationCostTy BlockCost; 6962 6963 // For each instruction in the old loop. 6964 for (Instruction &I : BB->instructionsWithoutDebug()) { 6965 // Skip ignored values. 6966 if (ValuesToIgnore.count(&I) || 6967 (VF.isVector() && VecValuesToIgnore.count(&I))) 6968 continue; 6969 6970 VectorizationCostTy C = getInstructionCost(&I, VF); 6971 6972 // Check if we should override the cost. 6973 if (C.first.isValid() && 6974 ForceTargetInstructionCost.getNumOccurrences() > 0) 6975 C.first = InstructionCost(ForceTargetInstructionCost); 6976 6977 // Keep a list of instructions with invalid costs. 6978 if (Invalid && !C.first.isValid()) 6979 Invalid->emplace_back(&I, VF); 6980 6981 BlockCost.first += C.first; 6982 BlockCost.second |= C.second; 6983 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6984 << " for VF " << VF << " For instruction: " << I 6985 << '\n'); 6986 } 6987 6988 // If we are vectorizing a predicated block, it will have been 6989 // if-converted. This means that the block's instructions (aside from 6990 // stores and instructions that may divide by zero) will now be 6991 // unconditionally executed. For the scalar case, we may not always execute 6992 // the predicated block, if it is an if-else block. Thus, scale the block's 6993 // cost by the probability of executing it. blockNeedsPredication from 6994 // Legal is used so as to not include all blocks in tail folded loops. 6995 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6996 BlockCost.first /= getReciprocalPredBlockProb(); 6997 6998 Cost.first += BlockCost.first; 6999 Cost.second |= BlockCost.second; 7000 } 7001 7002 return Cost; 7003 } 7004 7005 /// Gets Address Access SCEV after verifying that the access pattern 7006 /// is loop invariant except the induction variable dependence. 7007 /// 7008 /// This SCEV can be sent to the Target in order to estimate the address 7009 /// calculation cost. 7010 static const SCEV *getAddressAccessSCEV( 7011 Value *Ptr, 7012 LoopVectorizationLegality *Legal, 7013 PredicatedScalarEvolution &PSE, 7014 const Loop *TheLoop) { 7015 7016 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 7017 if (!Gep) 7018 return nullptr; 7019 7020 // We are looking for a gep with all loop invariant indices except for one 7021 // which should be an induction variable. 7022 auto SE = PSE.getSE(); 7023 unsigned NumOperands = Gep->getNumOperands(); 7024 for (unsigned i = 1; i < NumOperands; ++i) { 7025 Value *Opd = Gep->getOperand(i); 7026 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 7027 !Legal->isInductionVariable(Opd)) 7028 return nullptr; 7029 } 7030 7031 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 7032 return PSE.getSCEV(Ptr); 7033 } 7034 7035 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 7036 return Legal->hasStride(I->getOperand(0)) || 7037 Legal->hasStride(I->getOperand(1)); 7038 } 7039 7040 InstructionCost 7041 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7042 ElementCount VF) { 7043 assert(VF.isVector() && 7044 "Scalarization cost of instruction implies vectorization."); 7045 if (VF.isScalable()) 7046 return InstructionCost::getInvalid(); 7047 7048 Type *ValTy = getLoadStoreType(I); 7049 auto SE = PSE.getSE(); 7050 7051 unsigned AS = getLoadStoreAddressSpace(I); 7052 Value *Ptr = getLoadStorePointerOperand(I); 7053 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7054 7055 // Figure out whether the access is strided and get the stride value 7056 // if it's known in compile time 7057 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 7058 7059 // Get the cost of the scalar memory instruction and address computation. 7060 InstructionCost Cost = 7061 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7062 7063 // Don't pass *I here, since it is scalar but will actually be part of a 7064 // vectorized loop where the user of it is a vectorized instruction. 7065 const Align Alignment = getLoadStoreAlignment(I); 7066 Cost += VF.getKnownMinValue() * 7067 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7068 AS, TTI::TCK_RecipThroughput); 7069 7070 // Get the overhead of the extractelement and insertelement instructions 7071 // we might create due to scalarization. 7072 Cost += getScalarizationOverhead(I, VF); 7073 7074 // If we have a predicated load/store, it will need extra i1 extracts and 7075 // conditional branches, but may not be executed for each vector lane. Scale 7076 // the cost by the probability of executing the predicated block. 7077 if (isPredicatedInst(I)) { 7078 Cost /= getReciprocalPredBlockProb(); 7079 7080 // Add the cost of an i1 extract and a branch 7081 auto *Vec_i1Ty = 7082 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 7083 Cost += TTI.getScalarizationOverhead( 7084 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 7085 /*Insert=*/false, /*Extract=*/true); 7086 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 7087 7088 if (useEmulatedMaskMemRefHack(I)) 7089 // Artificially setting to a high enough value to practically disable 7090 // vectorization with such operations. 7091 Cost = 3000000; 7092 } 7093 7094 return Cost; 7095 } 7096 7097 InstructionCost 7098 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7099 ElementCount VF) { 7100 Type *ValTy = getLoadStoreType(I); 7101 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7102 Value *Ptr = getLoadStorePointerOperand(I); 7103 unsigned AS = getLoadStoreAddressSpace(I); 7104 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 7105 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7106 7107 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7108 "Stride should be 1 or -1 for consecutive memory access"); 7109 const Align Alignment = getLoadStoreAlignment(I); 7110 InstructionCost Cost = 0; 7111 if (Legal->isMaskRequired(I)) 7112 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7113 CostKind); 7114 else 7115 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7116 CostKind, I); 7117 7118 bool Reverse = ConsecutiveStride < 0; 7119 if (Reverse) 7120 Cost += 7121 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7122 return Cost; 7123 } 7124 7125 InstructionCost 7126 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7127 ElementCount VF) { 7128 assert(Legal->isUniformMemOp(*I)); 7129 7130 Type *ValTy = getLoadStoreType(I); 7131 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7132 const Align Alignment = getLoadStoreAlignment(I); 7133 unsigned AS = getLoadStoreAddressSpace(I); 7134 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7135 if (isa<LoadInst>(I)) { 7136 return TTI.getAddressComputationCost(ValTy) + 7137 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 7138 CostKind) + 7139 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7140 } 7141 StoreInst *SI = cast<StoreInst>(I); 7142 7143 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 7144 return TTI.getAddressComputationCost(ValTy) + 7145 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 7146 CostKind) + 7147 (isLoopInvariantStoreValue 7148 ? 0 7149 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 7150 VF.getKnownMinValue() - 1)); 7151 } 7152 7153 InstructionCost 7154 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7155 ElementCount VF) { 7156 Type *ValTy = getLoadStoreType(I); 7157 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7158 const Align Alignment = getLoadStoreAlignment(I); 7159 const Value *Ptr = getLoadStorePointerOperand(I); 7160 7161 return TTI.getAddressComputationCost(VectorTy) + 7162 TTI.getGatherScatterOpCost( 7163 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 7164 TargetTransformInfo::TCK_RecipThroughput, I); 7165 } 7166 7167 InstructionCost 7168 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7169 ElementCount VF) { 7170 // TODO: Once we have support for interleaving with scalable vectors 7171 // we can calculate the cost properly here. 7172 if (VF.isScalable()) 7173 return InstructionCost::getInvalid(); 7174 7175 Type *ValTy = getLoadStoreType(I); 7176 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7177 unsigned AS = getLoadStoreAddressSpace(I); 7178 7179 auto Group = getInterleavedAccessGroup(I); 7180 assert(Group && "Fail to get an interleaved access group."); 7181 7182 unsigned InterleaveFactor = Group->getFactor(); 7183 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7184 7185 // Holds the indices of existing members in the interleaved group. 7186 SmallVector<unsigned, 4> Indices; 7187 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 7188 if (Group->getMember(IF)) 7189 Indices.push_back(IF); 7190 7191 // Calculate the cost of the whole interleaved group. 7192 bool UseMaskForGaps = 7193 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 7194 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 7195 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 7196 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 7197 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 7198 7199 if (Group->isReverse()) { 7200 // TODO: Add support for reversed masked interleaved access. 7201 assert(!Legal->isMaskRequired(I) && 7202 "Reverse masked interleaved access not supported."); 7203 Cost += 7204 Group->getNumMembers() * 7205 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7206 } 7207 return Cost; 7208 } 7209 7210 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 7211 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 7212 using namespace llvm::PatternMatch; 7213 // Early exit for no inloop reductions 7214 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 7215 return None; 7216 auto *VectorTy = cast<VectorType>(Ty); 7217 7218 // We are looking for a pattern of, and finding the minimal acceptable cost: 7219 // reduce(mul(ext(A), ext(B))) or 7220 // reduce(mul(A, B)) or 7221 // reduce(ext(A)) or 7222 // reduce(A). 7223 // The basic idea is that we walk down the tree to do that, finding the root 7224 // reduction instruction in InLoopReductionImmediateChains. From there we find 7225 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 7226 // of the components. If the reduction cost is lower then we return it for the 7227 // reduction instruction and 0 for the other instructions in the pattern. If 7228 // it is not we return an invalid cost specifying the orignal cost method 7229 // should be used. 7230 Instruction *RetI = I; 7231 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 7232 if (!RetI->hasOneUser()) 7233 return None; 7234 RetI = RetI->user_back(); 7235 } 7236 if (match(RetI, m_Mul(m_Value(), m_Value())) && 7237 RetI->user_back()->getOpcode() == Instruction::Add) { 7238 if (!RetI->hasOneUser()) 7239 return None; 7240 RetI = RetI->user_back(); 7241 } 7242 7243 // Test if the found instruction is a reduction, and if not return an invalid 7244 // cost specifying the parent to use the original cost modelling. 7245 if (!InLoopReductionImmediateChains.count(RetI)) 7246 return None; 7247 7248 // Find the reduction this chain is a part of and calculate the basic cost of 7249 // the reduction on its own. 7250 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 7251 Instruction *ReductionPhi = LastChain; 7252 while (!isa<PHINode>(ReductionPhi)) 7253 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 7254 7255 const RecurrenceDescriptor &RdxDesc = 7256 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 7257 7258 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 7259 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 7260 7261 // If we're using ordered reductions then we can just return the base cost 7262 // here, since getArithmeticReductionCost calculates the full ordered 7263 // reduction cost when FP reassociation is not allowed. 7264 if (useOrderedReductions(RdxDesc)) 7265 return BaseCost; 7266 7267 // Get the operand that was not the reduction chain and match it to one of the 7268 // patterns, returning the better cost if it is found. 7269 Instruction *RedOp = RetI->getOperand(1) == LastChain 7270 ? dyn_cast<Instruction>(RetI->getOperand(0)) 7271 : dyn_cast<Instruction>(RetI->getOperand(1)); 7272 7273 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7274 7275 Instruction *Op0, *Op1; 7276 if (RedOp && 7277 match(RedOp, 7278 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 7279 match(Op0, m_ZExtOrSExt(m_Value())) && 7280 Op0->getOpcode() == Op1->getOpcode() && 7281 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7282 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 7283 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 7284 7285 // Matched reduce(ext(mul(ext(A), ext(B))) 7286 // Note that the extend opcodes need to all match, or if A==B they will have 7287 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 7288 // which is equally fine. 7289 bool IsUnsigned = isa<ZExtInst>(Op0); 7290 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7291 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 7292 7293 InstructionCost ExtCost = 7294 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 7295 TTI::CastContextHint::None, CostKind, Op0); 7296 InstructionCost MulCost = 7297 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 7298 InstructionCost Ext2Cost = 7299 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 7300 TTI::CastContextHint::None, CostKind, RedOp); 7301 7302 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7303 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7304 CostKind); 7305 7306 if (RedCost.isValid() && 7307 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 7308 return I == RetI ? RedCost : 0; 7309 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 7310 !TheLoop->isLoopInvariant(RedOp)) { 7311 // Matched reduce(ext(A)) 7312 bool IsUnsigned = isa<ZExtInst>(RedOp); 7313 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7314 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7315 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7316 CostKind); 7317 7318 InstructionCost ExtCost = 7319 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7320 TTI::CastContextHint::None, CostKind, RedOp); 7321 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7322 return I == RetI ? RedCost : 0; 7323 } else if (RedOp && 7324 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 7325 if (match(Op0, m_ZExtOrSExt(m_Value())) && 7326 Op0->getOpcode() == Op1->getOpcode() && 7327 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7328 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7329 bool IsUnsigned = isa<ZExtInst>(Op0); 7330 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7331 // Matched reduce(mul(ext, ext)) 7332 InstructionCost ExtCost = 7333 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7334 TTI::CastContextHint::None, CostKind, Op0); 7335 InstructionCost MulCost = 7336 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7337 7338 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7339 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7340 CostKind); 7341 7342 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7343 return I == RetI ? RedCost : 0; 7344 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 7345 // Matched reduce(mul()) 7346 InstructionCost MulCost = 7347 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7348 7349 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7350 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7351 CostKind); 7352 7353 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7354 return I == RetI ? RedCost : 0; 7355 } 7356 } 7357 7358 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7359 } 7360 7361 InstructionCost 7362 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7363 ElementCount VF) { 7364 // Calculate scalar cost only. Vectorization cost should be ready at this 7365 // moment. 7366 if (VF.isScalar()) { 7367 Type *ValTy = getLoadStoreType(I); 7368 const Align Alignment = getLoadStoreAlignment(I); 7369 unsigned AS = getLoadStoreAddressSpace(I); 7370 7371 return TTI.getAddressComputationCost(ValTy) + 7372 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7373 TTI::TCK_RecipThroughput, I); 7374 } 7375 return getWideningCost(I, VF); 7376 } 7377 7378 LoopVectorizationCostModel::VectorizationCostTy 7379 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7380 ElementCount VF) { 7381 // If we know that this instruction will remain uniform, check the cost of 7382 // the scalar version. 7383 if (isUniformAfterVectorization(I, VF)) 7384 VF = ElementCount::getFixed(1); 7385 7386 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7387 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7388 7389 // Forced scalars do not have any scalarization overhead. 7390 auto ForcedScalar = ForcedScalars.find(VF); 7391 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7392 auto InstSet = ForcedScalar->second; 7393 if (InstSet.count(I)) 7394 return VectorizationCostTy( 7395 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7396 VF.getKnownMinValue()), 7397 false); 7398 } 7399 7400 Type *VectorTy; 7401 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7402 7403 bool TypeNotScalarized = 7404 VF.isVector() && VectorTy->isVectorTy() && 7405 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7406 return VectorizationCostTy(C, TypeNotScalarized); 7407 } 7408 7409 InstructionCost 7410 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7411 ElementCount VF) const { 7412 7413 // There is no mechanism yet to create a scalable scalarization loop, 7414 // so this is currently Invalid. 7415 if (VF.isScalable()) 7416 return InstructionCost::getInvalid(); 7417 7418 if (VF.isScalar()) 7419 return 0; 7420 7421 InstructionCost Cost = 0; 7422 Type *RetTy = ToVectorTy(I->getType(), VF); 7423 if (!RetTy->isVoidTy() && 7424 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7425 Cost += TTI.getScalarizationOverhead( 7426 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 7427 false); 7428 7429 // Some targets keep addresses scalar. 7430 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7431 return Cost; 7432 7433 // Some targets support efficient element stores. 7434 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7435 return Cost; 7436 7437 // Collect operands to consider. 7438 CallInst *CI = dyn_cast<CallInst>(I); 7439 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 7440 7441 // Skip operands that do not require extraction/scalarization and do not incur 7442 // any overhead. 7443 SmallVector<Type *> Tys; 7444 for (auto *V : filterExtractingOperands(Ops, VF)) 7445 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7446 return Cost + TTI.getOperandsScalarizationOverhead( 7447 filterExtractingOperands(Ops, VF), Tys); 7448 } 7449 7450 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7451 if (VF.isScalar()) 7452 return; 7453 NumPredStores = 0; 7454 for (BasicBlock *BB : TheLoop->blocks()) { 7455 // For each instruction in the old loop. 7456 for (Instruction &I : *BB) { 7457 Value *Ptr = getLoadStorePointerOperand(&I); 7458 if (!Ptr) 7459 continue; 7460 7461 // TODO: We should generate better code and update the cost model for 7462 // predicated uniform stores. Today they are treated as any other 7463 // predicated store (see added test cases in 7464 // invariant-store-vectorization.ll). 7465 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7466 NumPredStores++; 7467 7468 if (Legal->isUniformMemOp(I)) { 7469 // TODO: Avoid replicating loads and stores instead of 7470 // relying on instcombine to remove them. 7471 // Load: Scalar load + broadcast 7472 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7473 InstructionCost Cost; 7474 if (isa<StoreInst>(&I) && VF.isScalable() && 7475 isLegalGatherOrScatter(&I)) { 7476 Cost = getGatherScatterCost(&I, VF); 7477 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7478 } else { 7479 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7480 "Cannot yet scalarize uniform stores"); 7481 Cost = getUniformMemOpCost(&I, VF); 7482 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7483 } 7484 continue; 7485 } 7486 7487 // We assume that widening is the best solution when possible. 7488 if (memoryInstructionCanBeWidened(&I, VF)) { 7489 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7490 int ConsecutiveStride = Legal->isConsecutivePtr( 7491 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 7492 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7493 "Expected consecutive stride."); 7494 InstWidening Decision = 7495 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7496 setWideningDecision(&I, VF, Decision, Cost); 7497 continue; 7498 } 7499 7500 // Choose between Interleaving, Gather/Scatter or Scalarization. 7501 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7502 unsigned NumAccesses = 1; 7503 if (isAccessInterleaved(&I)) { 7504 auto Group = getInterleavedAccessGroup(&I); 7505 assert(Group && "Fail to get an interleaved access group."); 7506 7507 // Make one decision for the whole group. 7508 if (getWideningDecision(&I, VF) != CM_Unknown) 7509 continue; 7510 7511 NumAccesses = Group->getNumMembers(); 7512 if (interleavedAccessCanBeWidened(&I, VF)) 7513 InterleaveCost = getInterleaveGroupCost(&I, VF); 7514 } 7515 7516 InstructionCost GatherScatterCost = 7517 isLegalGatherOrScatter(&I) 7518 ? getGatherScatterCost(&I, VF) * NumAccesses 7519 : InstructionCost::getInvalid(); 7520 7521 InstructionCost ScalarizationCost = 7522 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7523 7524 // Choose better solution for the current VF, 7525 // write down this decision and use it during vectorization. 7526 InstructionCost Cost; 7527 InstWidening Decision; 7528 if (InterleaveCost <= GatherScatterCost && 7529 InterleaveCost < ScalarizationCost) { 7530 Decision = CM_Interleave; 7531 Cost = InterleaveCost; 7532 } else if (GatherScatterCost < ScalarizationCost) { 7533 Decision = CM_GatherScatter; 7534 Cost = GatherScatterCost; 7535 } else { 7536 Decision = CM_Scalarize; 7537 Cost = ScalarizationCost; 7538 } 7539 // If the instructions belongs to an interleave group, the whole group 7540 // receives the same decision. The whole group receives the cost, but 7541 // the cost will actually be assigned to one instruction. 7542 if (auto Group = getInterleavedAccessGroup(&I)) 7543 setWideningDecision(Group, VF, Decision, Cost); 7544 else 7545 setWideningDecision(&I, VF, Decision, Cost); 7546 } 7547 } 7548 7549 // Make sure that any load of address and any other address computation 7550 // remains scalar unless there is gather/scatter support. This avoids 7551 // inevitable extracts into address registers, and also has the benefit of 7552 // activating LSR more, since that pass can't optimize vectorized 7553 // addresses. 7554 if (TTI.prefersVectorizedAddressing()) 7555 return; 7556 7557 // Start with all scalar pointer uses. 7558 SmallPtrSet<Instruction *, 8> AddrDefs; 7559 for (BasicBlock *BB : TheLoop->blocks()) 7560 for (Instruction &I : *BB) { 7561 Instruction *PtrDef = 7562 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7563 if (PtrDef && TheLoop->contains(PtrDef) && 7564 getWideningDecision(&I, VF) != CM_GatherScatter) 7565 AddrDefs.insert(PtrDef); 7566 } 7567 7568 // Add all instructions used to generate the addresses. 7569 SmallVector<Instruction *, 4> Worklist; 7570 append_range(Worklist, AddrDefs); 7571 while (!Worklist.empty()) { 7572 Instruction *I = Worklist.pop_back_val(); 7573 for (auto &Op : I->operands()) 7574 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7575 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7576 AddrDefs.insert(InstOp).second) 7577 Worklist.push_back(InstOp); 7578 } 7579 7580 for (auto *I : AddrDefs) { 7581 if (isa<LoadInst>(I)) { 7582 // Setting the desired widening decision should ideally be handled in 7583 // by cost functions, but since this involves the task of finding out 7584 // if the loaded register is involved in an address computation, it is 7585 // instead changed here when we know this is the case. 7586 InstWidening Decision = getWideningDecision(I, VF); 7587 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7588 // Scalarize a widened load of address. 7589 setWideningDecision( 7590 I, VF, CM_Scalarize, 7591 (VF.getKnownMinValue() * 7592 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7593 else if (auto Group = getInterleavedAccessGroup(I)) { 7594 // Scalarize an interleave group of address loads. 7595 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7596 if (Instruction *Member = Group->getMember(I)) 7597 setWideningDecision( 7598 Member, VF, CM_Scalarize, 7599 (VF.getKnownMinValue() * 7600 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7601 } 7602 } 7603 } else 7604 // Make sure I gets scalarized and a cost estimate without 7605 // scalarization overhead. 7606 ForcedScalars[VF].insert(I); 7607 } 7608 } 7609 7610 InstructionCost 7611 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7612 Type *&VectorTy) { 7613 Type *RetTy = I->getType(); 7614 if (canTruncateToMinimalBitwidth(I, VF)) 7615 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7616 auto SE = PSE.getSE(); 7617 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7618 7619 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7620 ElementCount VF) -> bool { 7621 if (VF.isScalar()) 7622 return true; 7623 7624 auto Scalarized = InstsToScalarize.find(VF); 7625 assert(Scalarized != InstsToScalarize.end() && 7626 "VF not yet analyzed for scalarization profitability"); 7627 return !Scalarized->second.count(I) && 7628 llvm::all_of(I->users(), [&](User *U) { 7629 auto *UI = cast<Instruction>(U); 7630 return !Scalarized->second.count(UI); 7631 }); 7632 }; 7633 (void) hasSingleCopyAfterVectorization; 7634 7635 if (isScalarAfterVectorization(I, VF)) { 7636 // With the exception of GEPs and PHIs, after scalarization there should 7637 // only be one copy of the instruction generated in the loop. This is 7638 // because the VF is either 1, or any instructions that need scalarizing 7639 // have already been dealt with by the the time we get here. As a result, 7640 // it means we don't have to multiply the instruction cost by VF. 7641 assert(I->getOpcode() == Instruction::GetElementPtr || 7642 I->getOpcode() == Instruction::PHI || 7643 (I->getOpcode() == Instruction::BitCast && 7644 I->getType()->isPointerTy()) || 7645 hasSingleCopyAfterVectorization(I, VF)); 7646 VectorTy = RetTy; 7647 } else 7648 VectorTy = ToVectorTy(RetTy, VF); 7649 7650 // TODO: We need to estimate the cost of intrinsic calls. 7651 switch (I->getOpcode()) { 7652 case Instruction::GetElementPtr: 7653 // We mark this instruction as zero-cost because the cost of GEPs in 7654 // vectorized code depends on whether the corresponding memory instruction 7655 // is scalarized or not. Therefore, we handle GEPs with the memory 7656 // instruction cost. 7657 return 0; 7658 case Instruction::Br: { 7659 // In cases of scalarized and predicated instructions, there will be VF 7660 // predicated blocks in the vectorized loop. Each branch around these 7661 // blocks requires also an extract of its vector compare i1 element. 7662 bool ScalarPredicatedBB = false; 7663 BranchInst *BI = cast<BranchInst>(I); 7664 if (VF.isVector() && BI->isConditional() && 7665 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7666 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7667 ScalarPredicatedBB = true; 7668 7669 if (ScalarPredicatedBB) { 7670 // Not possible to scalarize scalable vector with predicated instructions. 7671 if (VF.isScalable()) 7672 return InstructionCost::getInvalid(); 7673 // Return cost for branches around scalarized and predicated blocks. 7674 auto *Vec_i1Ty = 7675 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7676 return ( 7677 TTI.getScalarizationOverhead( 7678 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7679 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7680 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7681 // The back-edge branch will remain, as will all scalar branches. 7682 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7683 else 7684 // This branch will be eliminated by if-conversion. 7685 return 0; 7686 // Note: We currently assume zero cost for an unconditional branch inside 7687 // a predicated block since it will become a fall-through, although we 7688 // may decide in the future to call TTI for all branches. 7689 } 7690 case Instruction::PHI: { 7691 auto *Phi = cast<PHINode>(I); 7692 7693 // First-order recurrences are replaced by vector shuffles inside the loop. 7694 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7695 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7696 return TTI.getShuffleCost( 7697 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7698 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7699 7700 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7701 // converted into select instructions. We require N - 1 selects per phi 7702 // node, where N is the number of incoming values. 7703 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7704 return (Phi->getNumIncomingValues() - 1) * 7705 TTI.getCmpSelInstrCost( 7706 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7707 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7708 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7709 7710 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7711 } 7712 case Instruction::UDiv: 7713 case Instruction::SDiv: 7714 case Instruction::URem: 7715 case Instruction::SRem: 7716 // If we have a predicated instruction, it may not be executed for each 7717 // vector lane. Get the scalarization cost and scale this amount by the 7718 // probability of executing the predicated block. If the instruction is not 7719 // predicated, we fall through to the next case. 7720 if (VF.isVector() && isScalarWithPredication(I)) { 7721 InstructionCost Cost = 0; 7722 7723 // These instructions have a non-void type, so account for the phi nodes 7724 // that we will create. This cost is likely to be zero. The phi node 7725 // cost, if any, should be scaled by the block probability because it 7726 // models a copy at the end of each predicated block. 7727 Cost += VF.getKnownMinValue() * 7728 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7729 7730 // The cost of the non-predicated instruction. 7731 Cost += VF.getKnownMinValue() * 7732 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7733 7734 // The cost of insertelement and extractelement instructions needed for 7735 // scalarization. 7736 Cost += getScalarizationOverhead(I, VF); 7737 7738 // Scale the cost by the probability of executing the predicated blocks. 7739 // This assumes the predicated block for each vector lane is equally 7740 // likely. 7741 return Cost / getReciprocalPredBlockProb(); 7742 } 7743 LLVM_FALLTHROUGH; 7744 case Instruction::Add: 7745 case Instruction::FAdd: 7746 case Instruction::Sub: 7747 case Instruction::FSub: 7748 case Instruction::Mul: 7749 case Instruction::FMul: 7750 case Instruction::FDiv: 7751 case Instruction::FRem: 7752 case Instruction::Shl: 7753 case Instruction::LShr: 7754 case Instruction::AShr: 7755 case Instruction::And: 7756 case Instruction::Or: 7757 case Instruction::Xor: { 7758 // Since we will replace the stride by 1 the multiplication should go away. 7759 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7760 return 0; 7761 7762 // Detect reduction patterns 7763 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7764 return *RedCost; 7765 7766 // Certain instructions can be cheaper to vectorize if they have a constant 7767 // second vector operand. One example of this are shifts on x86. 7768 Value *Op2 = I->getOperand(1); 7769 TargetTransformInfo::OperandValueProperties Op2VP; 7770 TargetTransformInfo::OperandValueKind Op2VK = 7771 TTI.getOperandInfo(Op2, Op2VP); 7772 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7773 Op2VK = TargetTransformInfo::OK_UniformValue; 7774 7775 SmallVector<const Value *, 4> Operands(I->operand_values()); 7776 return TTI.getArithmeticInstrCost( 7777 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7778 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7779 } 7780 case Instruction::FNeg: { 7781 return TTI.getArithmeticInstrCost( 7782 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7783 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7784 TargetTransformInfo::OP_None, I->getOperand(0), I); 7785 } 7786 case Instruction::Select: { 7787 SelectInst *SI = cast<SelectInst>(I); 7788 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7789 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7790 7791 const Value *Op0, *Op1; 7792 using namespace llvm::PatternMatch; 7793 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7794 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7795 // select x, y, false --> x & y 7796 // select x, true, y --> x | y 7797 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7798 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7799 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7800 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7801 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7802 Op1->getType()->getScalarSizeInBits() == 1); 7803 7804 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7805 return TTI.getArithmeticInstrCost( 7806 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7807 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7808 } 7809 7810 Type *CondTy = SI->getCondition()->getType(); 7811 if (!ScalarCond) 7812 CondTy = VectorType::get(CondTy, VF); 7813 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7814 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7815 } 7816 case Instruction::ICmp: 7817 case Instruction::FCmp: { 7818 Type *ValTy = I->getOperand(0)->getType(); 7819 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7820 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7821 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7822 VectorTy = ToVectorTy(ValTy, VF); 7823 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7824 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7825 } 7826 case Instruction::Store: 7827 case Instruction::Load: { 7828 ElementCount Width = VF; 7829 if (Width.isVector()) { 7830 InstWidening Decision = getWideningDecision(I, Width); 7831 assert(Decision != CM_Unknown && 7832 "CM decision should be taken at this point"); 7833 if (Decision == CM_Scalarize) 7834 Width = ElementCount::getFixed(1); 7835 } 7836 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7837 return getMemoryInstructionCost(I, VF); 7838 } 7839 case Instruction::BitCast: 7840 if (I->getType()->isPointerTy()) 7841 return 0; 7842 LLVM_FALLTHROUGH; 7843 case Instruction::ZExt: 7844 case Instruction::SExt: 7845 case Instruction::FPToUI: 7846 case Instruction::FPToSI: 7847 case Instruction::FPExt: 7848 case Instruction::PtrToInt: 7849 case Instruction::IntToPtr: 7850 case Instruction::SIToFP: 7851 case Instruction::UIToFP: 7852 case Instruction::Trunc: 7853 case Instruction::FPTrunc: { 7854 // Computes the CastContextHint from a Load/Store instruction. 7855 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7856 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7857 "Expected a load or a store!"); 7858 7859 if (VF.isScalar() || !TheLoop->contains(I)) 7860 return TTI::CastContextHint::Normal; 7861 7862 switch (getWideningDecision(I, VF)) { 7863 case LoopVectorizationCostModel::CM_GatherScatter: 7864 return TTI::CastContextHint::GatherScatter; 7865 case LoopVectorizationCostModel::CM_Interleave: 7866 return TTI::CastContextHint::Interleave; 7867 case LoopVectorizationCostModel::CM_Scalarize: 7868 case LoopVectorizationCostModel::CM_Widen: 7869 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7870 : TTI::CastContextHint::Normal; 7871 case LoopVectorizationCostModel::CM_Widen_Reverse: 7872 return TTI::CastContextHint::Reversed; 7873 case LoopVectorizationCostModel::CM_Unknown: 7874 llvm_unreachable("Instr did not go through cost modelling?"); 7875 } 7876 7877 llvm_unreachable("Unhandled case!"); 7878 }; 7879 7880 unsigned Opcode = I->getOpcode(); 7881 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7882 // For Trunc, the context is the only user, which must be a StoreInst. 7883 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7884 if (I->hasOneUse()) 7885 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7886 CCH = ComputeCCH(Store); 7887 } 7888 // For Z/Sext, the context is the operand, which must be a LoadInst. 7889 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7890 Opcode == Instruction::FPExt) { 7891 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7892 CCH = ComputeCCH(Load); 7893 } 7894 7895 // We optimize the truncation of induction variables having constant 7896 // integer steps. The cost of these truncations is the same as the scalar 7897 // operation. 7898 if (isOptimizableIVTruncate(I, VF)) { 7899 auto *Trunc = cast<TruncInst>(I); 7900 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7901 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7902 } 7903 7904 // Detect reduction patterns 7905 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7906 return *RedCost; 7907 7908 Type *SrcScalarTy = I->getOperand(0)->getType(); 7909 Type *SrcVecTy = 7910 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7911 if (canTruncateToMinimalBitwidth(I, VF)) { 7912 // This cast is going to be shrunk. This may remove the cast or it might 7913 // turn it into slightly different cast. For example, if MinBW == 16, 7914 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7915 // 7916 // Calculate the modified src and dest types. 7917 Type *MinVecTy = VectorTy; 7918 if (Opcode == Instruction::Trunc) { 7919 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7920 VectorTy = 7921 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7922 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7923 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7924 VectorTy = 7925 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7926 } 7927 } 7928 7929 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7930 } 7931 case Instruction::Call: { 7932 bool NeedToScalarize; 7933 CallInst *CI = cast<CallInst>(I); 7934 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7935 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7936 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7937 return std::min(CallCost, IntrinsicCost); 7938 } 7939 return CallCost; 7940 } 7941 case Instruction::ExtractValue: 7942 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7943 case Instruction::Alloca: 7944 // We cannot easily widen alloca to a scalable alloca, as 7945 // the result would need to be a vector of pointers. 7946 if (VF.isScalable()) 7947 return InstructionCost::getInvalid(); 7948 LLVM_FALLTHROUGH; 7949 default: 7950 // This opcode is unknown. Assume that it is the same as 'mul'. 7951 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7952 } // end of switch. 7953 } 7954 7955 char LoopVectorize::ID = 0; 7956 7957 static const char lv_name[] = "Loop Vectorization"; 7958 7959 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7960 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7961 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7962 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7963 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7964 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7965 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7966 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7967 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7968 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7969 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7970 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7971 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7972 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7973 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7974 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7975 7976 namespace llvm { 7977 7978 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7979 7980 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7981 bool VectorizeOnlyWhenForced) { 7982 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7983 } 7984 7985 } // end namespace llvm 7986 7987 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7988 // Check if the pointer operand of a load or store instruction is 7989 // consecutive. 7990 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7991 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7992 return false; 7993 } 7994 7995 void LoopVectorizationCostModel::collectValuesToIgnore() { 7996 // Ignore ephemeral values. 7997 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7998 7999 // Ignore type-promoting instructions we identified during reduction 8000 // detection. 8001 for (auto &Reduction : Legal->getReductionVars()) { 8002 RecurrenceDescriptor &RedDes = Reduction.second; 8003 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 8004 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 8005 } 8006 // Ignore type-casting instructions we identified during induction 8007 // detection. 8008 for (auto &Induction : Legal->getInductionVars()) { 8009 InductionDescriptor &IndDes = Induction.second; 8010 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8011 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 8012 } 8013 } 8014 8015 void LoopVectorizationCostModel::collectInLoopReductions() { 8016 for (auto &Reduction : Legal->getReductionVars()) { 8017 PHINode *Phi = Reduction.first; 8018 RecurrenceDescriptor &RdxDesc = Reduction.second; 8019 8020 // We don't collect reductions that are type promoted (yet). 8021 if (RdxDesc.getRecurrenceType() != Phi->getType()) 8022 continue; 8023 8024 // If the target would prefer this reduction to happen "in-loop", then we 8025 // want to record it as such. 8026 unsigned Opcode = RdxDesc.getOpcode(); 8027 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 8028 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 8029 TargetTransformInfo::ReductionFlags())) 8030 continue; 8031 8032 // Check that we can correctly put the reductions into the loop, by 8033 // finding the chain of operations that leads from the phi to the loop 8034 // exit value. 8035 SmallVector<Instruction *, 4> ReductionOperations = 8036 RdxDesc.getReductionOpChain(Phi, TheLoop); 8037 bool InLoop = !ReductionOperations.empty(); 8038 if (InLoop) { 8039 InLoopReductionChains[Phi] = ReductionOperations; 8040 // Add the elements to InLoopReductionImmediateChains for cost modelling. 8041 Instruction *LastChain = Phi; 8042 for (auto *I : ReductionOperations) { 8043 InLoopReductionImmediateChains[I] = LastChain; 8044 LastChain = I; 8045 } 8046 } 8047 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 8048 << " reduction for phi: " << *Phi << "\n"); 8049 } 8050 } 8051 8052 // TODO: we could return a pair of values that specify the max VF and 8053 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 8054 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 8055 // doesn't have a cost model that can choose which plan to execute if 8056 // more than one is generated. 8057 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 8058 LoopVectorizationCostModel &CM) { 8059 unsigned WidestType; 8060 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 8061 return WidestVectorRegBits / WidestType; 8062 } 8063 8064 VectorizationFactor 8065 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 8066 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 8067 ElementCount VF = UserVF; 8068 // Outer loop handling: They may require CFG and instruction level 8069 // transformations before even evaluating whether vectorization is profitable. 8070 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 8071 // the vectorization pipeline. 8072 if (!OrigLoop->isInnermost()) { 8073 // If the user doesn't provide a vectorization factor, determine a 8074 // reasonable one. 8075 if (UserVF.isZero()) { 8076 VF = ElementCount::getFixed(determineVPlanVF( 8077 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 8078 .getFixedSize(), 8079 CM)); 8080 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 8081 8082 // Make sure we have a VF > 1 for stress testing. 8083 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 8084 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 8085 << "overriding computed VF.\n"); 8086 VF = ElementCount::getFixed(4); 8087 } 8088 } 8089 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 8090 assert(isPowerOf2_32(VF.getKnownMinValue()) && 8091 "VF needs to be a power of two"); 8092 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 8093 << "VF " << VF << " to build VPlans.\n"); 8094 buildVPlans(VF, VF); 8095 8096 // For VPlan build stress testing, we bail out after VPlan construction. 8097 if (VPlanBuildStressTest) 8098 return VectorizationFactor::Disabled(); 8099 8100 return {VF, 0 /*Cost*/}; 8101 } 8102 8103 LLVM_DEBUG( 8104 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 8105 "VPlan-native path.\n"); 8106 return VectorizationFactor::Disabled(); 8107 } 8108 8109 Optional<VectorizationFactor> 8110 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 8111 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8112 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 8113 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 8114 return None; 8115 8116 // Invalidate interleave groups if all blocks of loop will be predicated. 8117 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 8118 !useMaskedInterleavedAccesses(*TTI)) { 8119 LLVM_DEBUG( 8120 dbgs() 8121 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 8122 "which requires masked-interleaved support.\n"); 8123 if (CM.InterleaveInfo.invalidateGroups()) 8124 // Invalidating interleave groups also requires invalidating all decisions 8125 // based on them, which includes widening decisions and uniform and scalar 8126 // values. 8127 CM.invalidateCostModelingDecisions(); 8128 } 8129 8130 ElementCount MaxUserVF = 8131 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 8132 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 8133 if (!UserVF.isZero() && UserVFIsLegal) { 8134 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 8135 "VF needs to be a power of two"); 8136 // Collect the instructions (and their associated costs) that will be more 8137 // profitable to scalarize. 8138 if (CM.selectUserVectorizationFactor(UserVF)) { 8139 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 8140 CM.collectInLoopReductions(); 8141 buildVPlansWithVPRecipes(UserVF, UserVF); 8142 LLVM_DEBUG(printPlans(dbgs())); 8143 return {{UserVF, 0}}; 8144 } else 8145 reportVectorizationInfo("UserVF ignored because of invalid costs.", 8146 "InvalidCost", ORE, OrigLoop); 8147 } 8148 8149 // Populate the set of Vectorization Factor Candidates. 8150 ElementCountSet VFCandidates; 8151 for (auto VF = ElementCount::getFixed(1); 8152 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 8153 VFCandidates.insert(VF); 8154 for (auto VF = ElementCount::getScalable(1); 8155 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 8156 VFCandidates.insert(VF); 8157 8158 for (const auto &VF : VFCandidates) { 8159 // Collect Uniform and Scalar instructions after vectorization with VF. 8160 CM.collectUniformsAndScalars(VF); 8161 8162 // Collect the instructions (and their associated costs) that will be more 8163 // profitable to scalarize. 8164 if (VF.isVector()) 8165 CM.collectInstsToScalarize(VF); 8166 } 8167 8168 CM.collectInLoopReductions(); 8169 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 8170 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 8171 8172 LLVM_DEBUG(printPlans(dbgs())); 8173 if (!MaxFactors.hasVector()) 8174 return VectorizationFactor::Disabled(); 8175 8176 // Select the optimal vectorization factor. 8177 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 8178 8179 // Check if it is profitable to vectorize with runtime checks. 8180 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 8181 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 8182 bool PragmaThresholdReached = 8183 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 8184 bool ThresholdReached = 8185 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 8186 if ((ThresholdReached && !Hints.allowReordering()) || 8187 PragmaThresholdReached) { 8188 ORE->emit([&]() { 8189 return OptimizationRemarkAnalysisAliasing( 8190 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 8191 OrigLoop->getHeader()) 8192 << "loop not vectorized: cannot prove it is safe to reorder " 8193 "memory operations"; 8194 }); 8195 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 8196 Hints.emitRemarkWithHints(); 8197 return VectorizationFactor::Disabled(); 8198 } 8199 } 8200 return SelectedVF; 8201 } 8202 8203 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 8204 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 8205 << '\n'); 8206 BestVF = VF; 8207 BestUF = UF; 8208 8209 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 8210 return !Plan->hasVF(VF); 8211 }); 8212 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 8213 } 8214 8215 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 8216 DominatorTree *DT) { 8217 // Perform the actual loop transformation. 8218 8219 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 8220 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 8221 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 8222 8223 VPTransformState State{ 8224 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 8225 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 8226 State.TripCount = ILV.getOrCreateTripCount(nullptr); 8227 State.CanonicalIV = ILV.Induction; 8228 8229 ILV.printDebugTracesAtStart(); 8230 8231 //===------------------------------------------------===// 8232 // 8233 // Notice: any optimization or new instruction that go 8234 // into the code below should also be implemented in 8235 // the cost-model. 8236 // 8237 //===------------------------------------------------===// 8238 8239 // 2. Copy and widen instructions from the old loop into the new loop. 8240 VPlans.front()->execute(&State); 8241 8242 // 3. Fix the vectorized code: take care of header phi's, live-outs, 8243 // predication, updating analyses. 8244 ILV.fixVectorizedLoop(State); 8245 8246 ILV.printDebugTracesAtEnd(); 8247 } 8248 8249 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8250 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8251 for (const auto &Plan : VPlans) 8252 if (PrintVPlansInDotFormat) 8253 Plan->printDOT(O); 8254 else 8255 Plan->print(O); 8256 } 8257 #endif 8258 8259 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8260 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8261 8262 // We create new control-flow for the vectorized loop, so the original exit 8263 // conditions will be dead after vectorization if it's only used by the 8264 // terminator 8265 SmallVector<BasicBlock*> ExitingBlocks; 8266 OrigLoop->getExitingBlocks(ExitingBlocks); 8267 for (auto *BB : ExitingBlocks) { 8268 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8269 if (!Cmp || !Cmp->hasOneUse()) 8270 continue; 8271 8272 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8273 if (!DeadInstructions.insert(Cmp).second) 8274 continue; 8275 8276 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8277 // TODO: can recurse through operands in general 8278 for (Value *Op : Cmp->operands()) { 8279 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8280 DeadInstructions.insert(cast<Instruction>(Op)); 8281 } 8282 } 8283 8284 // We create new "steps" for induction variable updates to which the original 8285 // induction variables map. An original update instruction will be dead if 8286 // all its users except the induction variable are dead. 8287 auto *Latch = OrigLoop->getLoopLatch(); 8288 for (auto &Induction : Legal->getInductionVars()) { 8289 PHINode *Ind = Induction.first; 8290 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8291 8292 // If the tail is to be folded by masking, the primary induction variable, 8293 // if exists, isn't dead: it will be used for masking. Don't kill it. 8294 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8295 continue; 8296 8297 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8298 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8299 })) 8300 DeadInstructions.insert(IndUpdate); 8301 8302 // We record as "Dead" also the type-casting instructions we had identified 8303 // during induction analysis. We don't need any handling for them in the 8304 // vectorized loop because we have proven that, under a proper runtime 8305 // test guarding the vectorized loop, the value of the phi, and the casted 8306 // value of the phi, are the same. The last instruction in this casting chain 8307 // will get its scalar/vector/widened def from the scalar/vector/widened def 8308 // of the respective phi node. Any other casts in the induction def-use chain 8309 // have no other uses outside the phi update chain, and will be ignored. 8310 InductionDescriptor &IndDes = Induction.second; 8311 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8312 DeadInstructions.insert(Casts.begin(), Casts.end()); 8313 } 8314 } 8315 8316 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 8317 8318 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8319 8320 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 8321 Instruction::BinaryOps BinOp) { 8322 // When unrolling and the VF is 1, we only need to add a simple scalar. 8323 Type *Ty = Val->getType(); 8324 assert(!Ty->isVectorTy() && "Val must be a scalar"); 8325 8326 if (Ty->isFloatingPointTy()) { 8327 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 8328 8329 // Floating-point operations inherit FMF via the builder's flags. 8330 Value *MulOp = Builder.CreateFMul(C, Step); 8331 return Builder.CreateBinOp(BinOp, Val, MulOp); 8332 } 8333 Constant *C = ConstantInt::get(Ty, StartIdx); 8334 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 8335 } 8336 8337 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8338 SmallVector<Metadata *, 4> MDs; 8339 // Reserve first location for self reference to the LoopID metadata node. 8340 MDs.push_back(nullptr); 8341 bool IsUnrollMetadata = false; 8342 MDNode *LoopID = L->getLoopID(); 8343 if (LoopID) { 8344 // First find existing loop unrolling disable metadata. 8345 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8346 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8347 if (MD) { 8348 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8349 IsUnrollMetadata = 8350 S && S->getString().startswith("llvm.loop.unroll.disable"); 8351 } 8352 MDs.push_back(LoopID->getOperand(i)); 8353 } 8354 } 8355 8356 if (!IsUnrollMetadata) { 8357 // Add runtime unroll disable metadata. 8358 LLVMContext &Context = L->getHeader()->getContext(); 8359 SmallVector<Metadata *, 1> DisableOperands; 8360 DisableOperands.push_back( 8361 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8362 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8363 MDs.push_back(DisableNode); 8364 MDNode *NewLoopID = MDNode::get(Context, MDs); 8365 // Set operand 0 to refer to the loop id itself. 8366 NewLoopID->replaceOperandWith(0, NewLoopID); 8367 L->setLoopID(NewLoopID); 8368 } 8369 } 8370 8371 //===--------------------------------------------------------------------===// 8372 // EpilogueVectorizerMainLoop 8373 //===--------------------------------------------------------------------===// 8374 8375 /// This function is partially responsible for generating the control flow 8376 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8377 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8378 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8379 Loop *Lp = createVectorLoopSkeleton(""); 8380 8381 // Generate the code to check the minimum iteration count of the vector 8382 // epilogue (see below). 8383 EPI.EpilogueIterationCountCheck = 8384 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8385 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8386 8387 // Generate the code to check any assumptions that we've made for SCEV 8388 // expressions. 8389 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8390 8391 // Generate the code that checks at runtime if arrays overlap. We put the 8392 // checks into a separate block to make the more common case of few elements 8393 // faster. 8394 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8395 8396 // Generate the iteration count check for the main loop, *after* the check 8397 // for the epilogue loop, so that the path-length is shorter for the case 8398 // that goes directly through the vector epilogue. The longer-path length for 8399 // the main loop is compensated for, by the gain from vectorizing the larger 8400 // trip count. Note: the branch will get updated later on when we vectorize 8401 // the epilogue. 8402 EPI.MainLoopIterationCountCheck = 8403 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8404 8405 // Generate the induction variable. 8406 OldInduction = Legal->getPrimaryInduction(); 8407 Type *IdxTy = Legal->getWidestInductionType(); 8408 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8409 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8410 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8411 EPI.VectorTripCount = CountRoundDown; 8412 Induction = 8413 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8414 getDebugLocFromInstOrOperands(OldInduction)); 8415 8416 // Skip induction resume value creation here because they will be created in 8417 // the second pass. If we created them here, they wouldn't be used anyway, 8418 // because the vplan in the second pass still contains the inductions from the 8419 // original loop. 8420 8421 return completeLoopSkeleton(Lp, OrigLoopID); 8422 } 8423 8424 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8425 LLVM_DEBUG({ 8426 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8427 << "Main Loop VF:" << EPI.MainLoopVF 8428 << ", Main Loop UF:" << EPI.MainLoopUF 8429 << ", Epilogue Loop VF:" << EPI.EpilogueVF 8430 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8431 }); 8432 } 8433 8434 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8435 DEBUG_WITH_TYPE(VerboseDebug, { 8436 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8437 }); 8438 } 8439 8440 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8441 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8442 assert(L && "Expected valid Loop."); 8443 assert(Bypass && "Expected valid bypass basic block."); 8444 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 8445 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8446 Value *Count = getOrCreateTripCount(L); 8447 // Reuse existing vector loop preheader for TC checks. 8448 // Note that new preheader block is generated for vector loop. 8449 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8450 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8451 8452 // Generate code to check if the loop's trip count is less than VF * UF of the 8453 // main vector loop. 8454 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8455 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8456 8457 Value *CheckMinIters = Builder.CreateICmp( 8458 P, Count, getRuntimeVF(Builder, Count->getType(), VFactor * UFactor), 8459 "min.iters.check"); 8460 8461 if (!ForEpilogue) 8462 TCCheckBlock->setName("vector.main.loop.iter.check"); 8463 8464 // Create new preheader for vector loop. 8465 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8466 DT, LI, nullptr, "vector.ph"); 8467 8468 if (ForEpilogue) { 8469 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8470 DT->getNode(Bypass)->getIDom()) && 8471 "TC check is expected to dominate Bypass"); 8472 8473 // Update dominator for Bypass & LoopExit. 8474 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8475 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8476 // For loops with multiple exits, there's no edge from the middle block 8477 // to exit blocks (as the epilogue must run) and thus no need to update 8478 // the immediate dominator of the exit blocks. 8479 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8480 8481 LoopBypassBlocks.push_back(TCCheckBlock); 8482 8483 // Save the trip count so we don't have to regenerate it in the 8484 // vec.epilog.iter.check. This is safe to do because the trip count 8485 // generated here dominates the vector epilog iter check. 8486 EPI.TripCount = Count; 8487 } 8488 8489 ReplaceInstWithInst( 8490 TCCheckBlock->getTerminator(), 8491 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8492 8493 return TCCheckBlock; 8494 } 8495 8496 //===--------------------------------------------------------------------===// 8497 // EpilogueVectorizerEpilogueLoop 8498 //===--------------------------------------------------------------------===// 8499 8500 /// This function is partially responsible for generating the control flow 8501 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8502 BasicBlock * 8503 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8504 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8505 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8506 8507 // Now, compare the remaining count and if there aren't enough iterations to 8508 // execute the vectorized epilogue skip to the scalar part. 8509 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8510 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8511 LoopVectorPreHeader = 8512 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8513 LI, nullptr, "vec.epilog.ph"); 8514 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8515 VecEpilogueIterationCountCheck); 8516 8517 // Adjust the control flow taking the state info from the main loop 8518 // vectorization into account. 8519 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8520 "expected this to be saved from the previous pass."); 8521 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8522 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8523 8524 DT->changeImmediateDominator(LoopVectorPreHeader, 8525 EPI.MainLoopIterationCountCheck); 8526 8527 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8528 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8529 8530 if (EPI.SCEVSafetyCheck) 8531 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8532 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8533 if (EPI.MemSafetyCheck) 8534 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8535 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8536 8537 DT->changeImmediateDominator( 8538 VecEpilogueIterationCountCheck, 8539 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8540 8541 DT->changeImmediateDominator(LoopScalarPreHeader, 8542 EPI.EpilogueIterationCountCheck); 8543 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8544 // If there is an epilogue which must run, there's no edge from the 8545 // middle block to exit blocks and thus no need to update the immediate 8546 // dominator of the exit blocks. 8547 DT->changeImmediateDominator(LoopExitBlock, 8548 EPI.EpilogueIterationCountCheck); 8549 8550 // Keep track of bypass blocks, as they feed start values to the induction 8551 // phis in the scalar loop preheader. 8552 if (EPI.SCEVSafetyCheck) 8553 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8554 if (EPI.MemSafetyCheck) 8555 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8556 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8557 8558 // Generate a resume induction for the vector epilogue and put it in the 8559 // vector epilogue preheader 8560 Type *IdxTy = Legal->getWidestInductionType(); 8561 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8562 LoopVectorPreHeader->getFirstNonPHI()); 8563 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8564 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8565 EPI.MainLoopIterationCountCheck); 8566 8567 // Generate the induction variable. 8568 OldInduction = Legal->getPrimaryInduction(); 8569 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8570 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8571 Value *StartIdx = EPResumeVal; 8572 Induction = 8573 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8574 getDebugLocFromInstOrOperands(OldInduction)); 8575 8576 // Generate induction resume values. These variables save the new starting 8577 // indexes for the scalar loop. They are used to test if there are any tail 8578 // iterations left once the vector loop has completed. 8579 // Note that when the vectorized epilogue is skipped due to iteration count 8580 // check, then the resume value for the induction variable comes from 8581 // the trip count of the main vector loop, hence passing the AdditionalBypass 8582 // argument. 8583 createInductionResumeValues(Lp, CountRoundDown, 8584 {VecEpilogueIterationCountCheck, 8585 EPI.VectorTripCount} /* AdditionalBypass */); 8586 8587 AddRuntimeUnrollDisableMetaData(Lp); 8588 return completeLoopSkeleton(Lp, OrigLoopID); 8589 } 8590 8591 BasicBlock * 8592 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8593 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8594 8595 assert(EPI.TripCount && 8596 "Expected trip count to have been safed in the first pass."); 8597 assert( 8598 (!isa<Instruction>(EPI.TripCount) || 8599 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8600 "saved trip count does not dominate insertion point."); 8601 Value *TC = EPI.TripCount; 8602 IRBuilder<> Builder(Insert->getTerminator()); 8603 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8604 8605 // Generate code to check if the loop's trip count is less than VF * UF of the 8606 // vector epilogue loop. 8607 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8608 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8609 8610 Value *CheckMinIters = Builder.CreateICmp( 8611 P, Count, 8612 getRuntimeVF(Builder, Count->getType(), EPI.EpilogueVF * EPI.EpilogueUF), 8613 "min.epilog.iters.check"); 8614 8615 ReplaceInstWithInst( 8616 Insert->getTerminator(), 8617 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8618 8619 LoopBypassBlocks.push_back(Insert); 8620 return Insert; 8621 } 8622 8623 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8624 LLVM_DEBUG({ 8625 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8626 << "Epilogue Loop VF:" << EPI.EpilogueVF 8627 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8628 }); 8629 } 8630 8631 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8632 DEBUG_WITH_TYPE(VerboseDebug, { 8633 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8634 }); 8635 } 8636 8637 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8638 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8639 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8640 bool PredicateAtRangeStart = Predicate(Range.Start); 8641 8642 for (ElementCount TmpVF = Range.Start * 2; 8643 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8644 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8645 Range.End = TmpVF; 8646 break; 8647 } 8648 8649 return PredicateAtRangeStart; 8650 } 8651 8652 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8653 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8654 /// of VF's starting at a given VF and extending it as much as possible. Each 8655 /// vectorization decision can potentially shorten this sub-range during 8656 /// buildVPlan(). 8657 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8658 ElementCount MaxVF) { 8659 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8660 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8661 VFRange SubRange = {VF, MaxVFPlusOne}; 8662 VPlans.push_back(buildVPlan(SubRange)); 8663 VF = SubRange.End; 8664 } 8665 } 8666 8667 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8668 VPlanPtr &Plan) { 8669 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8670 8671 // Look for cached value. 8672 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8673 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8674 if (ECEntryIt != EdgeMaskCache.end()) 8675 return ECEntryIt->second; 8676 8677 VPValue *SrcMask = createBlockInMask(Src, Plan); 8678 8679 // The terminator has to be a branch inst! 8680 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8681 assert(BI && "Unexpected terminator found"); 8682 8683 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8684 return EdgeMaskCache[Edge] = SrcMask; 8685 8686 // If source is an exiting block, we know the exit edge is dynamically dead 8687 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8688 // adding uses of an otherwise potentially dead instruction. 8689 if (OrigLoop->isLoopExiting(Src)) 8690 return EdgeMaskCache[Edge] = SrcMask; 8691 8692 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8693 assert(EdgeMask && "No Edge Mask found for condition"); 8694 8695 if (BI->getSuccessor(0) != Dst) 8696 EdgeMask = Builder.createNot(EdgeMask); 8697 8698 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8699 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8700 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8701 // The select version does not introduce new UB if SrcMask is false and 8702 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8703 VPValue *False = Plan->getOrAddVPValue( 8704 ConstantInt::getFalse(BI->getCondition()->getType())); 8705 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8706 } 8707 8708 return EdgeMaskCache[Edge] = EdgeMask; 8709 } 8710 8711 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8712 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8713 8714 // Look for cached value. 8715 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8716 if (BCEntryIt != BlockMaskCache.end()) 8717 return BCEntryIt->second; 8718 8719 // All-one mask is modelled as no-mask following the convention for masked 8720 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8721 VPValue *BlockMask = nullptr; 8722 8723 if (OrigLoop->getHeader() == BB) { 8724 if (!CM.blockNeedsPredication(BB)) 8725 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8726 8727 // Create the block in mask as the first non-phi instruction in the block. 8728 VPBuilder::InsertPointGuard Guard(Builder); 8729 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8730 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8731 8732 // Introduce the early-exit compare IV <= BTC to form header block mask. 8733 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8734 // Start by constructing the desired canonical IV. 8735 VPValue *IV = nullptr; 8736 if (Legal->getPrimaryInduction()) 8737 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8738 else { 8739 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8740 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8741 IV = IVRecipe->getVPSingleValue(); 8742 } 8743 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8744 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8745 8746 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8747 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8748 // as a second argument, we only pass the IV here and extract the 8749 // tripcount from the transform state where codegen of the VP instructions 8750 // happen. 8751 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8752 } else { 8753 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8754 } 8755 return BlockMaskCache[BB] = BlockMask; 8756 } 8757 8758 // This is the block mask. We OR all incoming edges. 8759 for (auto *Predecessor : predecessors(BB)) { 8760 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8761 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8762 return BlockMaskCache[BB] = EdgeMask; 8763 8764 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8765 BlockMask = EdgeMask; 8766 continue; 8767 } 8768 8769 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8770 } 8771 8772 return BlockMaskCache[BB] = BlockMask; 8773 } 8774 8775 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8776 ArrayRef<VPValue *> Operands, 8777 VFRange &Range, 8778 VPlanPtr &Plan) { 8779 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8780 "Must be called with either a load or store"); 8781 8782 auto willWiden = [&](ElementCount VF) -> bool { 8783 if (VF.isScalar()) 8784 return false; 8785 LoopVectorizationCostModel::InstWidening Decision = 8786 CM.getWideningDecision(I, VF); 8787 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8788 "CM decision should be taken at this point."); 8789 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8790 return true; 8791 if (CM.isScalarAfterVectorization(I, VF) || 8792 CM.isProfitableToScalarize(I, VF)) 8793 return false; 8794 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8795 }; 8796 8797 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8798 return nullptr; 8799 8800 VPValue *Mask = nullptr; 8801 if (Legal->isMaskRequired(I)) 8802 Mask = createBlockInMask(I->getParent(), Plan); 8803 8804 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8805 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask); 8806 8807 StoreInst *Store = cast<StoreInst>(I); 8808 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8809 Mask); 8810 } 8811 8812 VPWidenIntOrFpInductionRecipe * 8813 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8814 ArrayRef<VPValue *> Operands) const { 8815 // Check if this is an integer or fp induction. If so, build the recipe that 8816 // produces its scalar and vector values. 8817 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8818 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8819 II.getKind() == InductionDescriptor::IK_FpInduction) { 8820 assert(II.getStartValue() == 8821 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8822 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8823 return new VPWidenIntOrFpInductionRecipe( 8824 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8825 } 8826 8827 return nullptr; 8828 } 8829 8830 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8831 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8832 VPlan &Plan) const { 8833 // Optimize the special case where the source is a constant integer 8834 // induction variable. Notice that we can only optimize the 'trunc' case 8835 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8836 // (c) other casts depend on pointer size. 8837 8838 // Determine whether \p K is a truncation based on an induction variable that 8839 // can be optimized. 8840 auto isOptimizableIVTruncate = 8841 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8842 return [=](ElementCount VF) -> bool { 8843 return CM.isOptimizableIVTruncate(K, VF); 8844 }; 8845 }; 8846 8847 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8848 isOptimizableIVTruncate(I), Range)) { 8849 8850 InductionDescriptor II = 8851 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8852 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8853 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8854 Start, nullptr, I); 8855 } 8856 return nullptr; 8857 } 8858 8859 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8860 ArrayRef<VPValue *> Operands, 8861 VPlanPtr &Plan) { 8862 // If all incoming values are equal, the incoming VPValue can be used directly 8863 // instead of creating a new VPBlendRecipe. 8864 VPValue *FirstIncoming = Operands[0]; 8865 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8866 return FirstIncoming == Inc; 8867 })) { 8868 return Operands[0]; 8869 } 8870 8871 // We know that all PHIs in non-header blocks are converted into selects, so 8872 // we don't have to worry about the insertion order and we can just use the 8873 // builder. At this point we generate the predication tree. There may be 8874 // duplications since this is a simple recursive scan, but future 8875 // optimizations will clean it up. 8876 SmallVector<VPValue *, 2> OperandsWithMask; 8877 unsigned NumIncoming = Phi->getNumIncomingValues(); 8878 8879 for (unsigned In = 0; In < NumIncoming; In++) { 8880 VPValue *EdgeMask = 8881 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8882 assert((EdgeMask || NumIncoming == 1) && 8883 "Multiple predecessors with one having a full mask"); 8884 OperandsWithMask.push_back(Operands[In]); 8885 if (EdgeMask) 8886 OperandsWithMask.push_back(EdgeMask); 8887 } 8888 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8889 } 8890 8891 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8892 ArrayRef<VPValue *> Operands, 8893 VFRange &Range) const { 8894 8895 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8896 [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); }, 8897 Range); 8898 8899 if (IsPredicated) 8900 return nullptr; 8901 8902 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8903 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8904 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8905 ID == Intrinsic::pseudoprobe || 8906 ID == Intrinsic::experimental_noalias_scope_decl)) 8907 return nullptr; 8908 8909 auto willWiden = [&](ElementCount VF) -> bool { 8910 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8911 // The following case may be scalarized depending on the VF. 8912 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8913 // version of the instruction. 8914 // Is it beneficial to perform intrinsic call compared to lib call? 8915 bool NeedToScalarize = false; 8916 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8917 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8918 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8919 return UseVectorIntrinsic || !NeedToScalarize; 8920 }; 8921 8922 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8923 return nullptr; 8924 8925 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8926 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8927 } 8928 8929 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8930 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8931 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8932 // Instruction should be widened, unless it is scalar after vectorization, 8933 // scalarization is profitable or it is predicated. 8934 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8935 return CM.isScalarAfterVectorization(I, VF) || 8936 CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I); 8937 }; 8938 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8939 Range); 8940 } 8941 8942 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8943 ArrayRef<VPValue *> Operands) const { 8944 auto IsVectorizableOpcode = [](unsigned Opcode) { 8945 switch (Opcode) { 8946 case Instruction::Add: 8947 case Instruction::And: 8948 case Instruction::AShr: 8949 case Instruction::BitCast: 8950 case Instruction::FAdd: 8951 case Instruction::FCmp: 8952 case Instruction::FDiv: 8953 case Instruction::FMul: 8954 case Instruction::FNeg: 8955 case Instruction::FPExt: 8956 case Instruction::FPToSI: 8957 case Instruction::FPToUI: 8958 case Instruction::FPTrunc: 8959 case Instruction::FRem: 8960 case Instruction::FSub: 8961 case Instruction::ICmp: 8962 case Instruction::IntToPtr: 8963 case Instruction::LShr: 8964 case Instruction::Mul: 8965 case Instruction::Or: 8966 case Instruction::PtrToInt: 8967 case Instruction::SDiv: 8968 case Instruction::Select: 8969 case Instruction::SExt: 8970 case Instruction::Shl: 8971 case Instruction::SIToFP: 8972 case Instruction::SRem: 8973 case Instruction::Sub: 8974 case Instruction::Trunc: 8975 case Instruction::UDiv: 8976 case Instruction::UIToFP: 8977 case Instruction::URem: 8978 case Instruction::Xor: 8979 case Instruction::ZExt: 8980 return true; 8981 } 8982 return false; 8983 }; 8984 8985 if (!IsVectorizableOpcode(I->getOpcode())) 8986 return nullptr; 8987 8988 // Success: widen this instruction. 8989 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8990 } 8991 8992 void VPRecipeBuilder::fixHeaderPhis() { 8993 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8994 for (VPWidenPHIRecipe *R : PhisToFix) { 8995 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8996 VPRecipeBase *IncR = 8997 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8998 R->addOperand(IncR->getVPSingleValue()); 8999 } 9000 } 9001 9002 VPBasicBlock *VPRecipeBuilder::handleReplication( 9003 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 9004 VPlanPtr &Plan) { 9005 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 9006 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 9007 Range); 9008 9009 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 9010 [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range); 9011 9012 // Even if the instruction is not marked as uniform, there are certain 9013 // intrinsic calls that can be effectively treated as such, so we check for 9014 // them here. Conservatively, we only do this for scalable vectors, since 9015 // for fixed-width VFs we can always fall back on full scalarization. 9016 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 9017 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 9018 case Intrinsic::assume: 9019 case Intrinsic::lifetime_start: 9020 case Intrinsic::lifetime_end: 9021 // For scalable vectors if one of the operands is variant then we still 9022 // want to mark as uniform, which will generate one instruction for just 9023 // the first lane of the vector. We can't scalarize the call in the same 9024 // way as for fixed-width vectors because we don't know how many lanes 9025 // there are. 9026 // 9027 // The reasons for doing it this way for scalable vectors are: 9028 // 1. For the assume intrinsic generating the instruction for the first 9029 // lane is still be better than not generating any at all. For 9030 // example, the input may be a splat across all lanes. 9031 // 2. For the lifetime start/end intrinsics the pointer operand only 9032 // does anything useful when the input comes from a stack object, 9033 // which suggests it should always be uniform. For non-stack objects 9034 // the effect is to poison the object, which still allows us to 9035 // remove the call. 9036 IsUniform = true; 9037 break; 9038 default: 9039 break; 9040 } 9041 } 9042 9043 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 9044 IsUniform, IsPredicated); 9045 setRecipe(I, Recipe); 9046 Plan->addVPValue(I, Recipe); 9047 9048 // Find if I uses a predicated instruction. If so, it will use its scalar 9049 // value. Avoid hoisting the insert-element which packs the scalar value into 9050 // a vector value, as that happens iff all users use the vector value. 9051 for (VPValue *Op : Recipe->operands()) { 9052 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 9053 if (!PredR) 9054 continue; 9055 auto *RepR = 9056 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 9057 assert(RepR->isPredicated() && 9058 "expected Replicate recipe to be predicated"); 9059 RepR->setAlsoPack(false); 9060 } 9061 9062 // Finalize the recipe for Instr, first if it is not predicated. 9063 if (!IsPredicated) { 9064 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 9065 VPBB->appendRecipe(Recipe); 9066 return VPBB; 9067 } 9068 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 9069 assert(VPBB->getSuccessors().empty() && 9070 "VPBB has successors when handling predicated replication."); 9071 // Record predicated instructions for above packing optimizations. 9072 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 9073 VPBlockUtils::insertBlockAfter(Region, VPBB); 9074 auto *RegSucc = new VPBasicBlock(); 9075 VPBlockUtils::insertBlockAfter(RegSucc, Region); 9076 return RegSucc; 9077 } 9078 9079 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 9080 VPRecipeBase *PredRecipe, 9081 VPlanPtr &Plan) { 9082 // Instructions marked for predication are replicated and placed under an 9083 // if-then construct to prevent side-effects. 9084 9085 // Generate recipes to compute the block mask for this region. 9086 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 9087 9088 // Build the triangular if-then region. 9089 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 9090 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 9091 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 9092 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 9093 auto *PHIRecipe = Instr->getType()->isVoidTy() 9094 ? nullptr 9095 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 9096 if (PHIRecipe) { 9097 Plan->removeVPValueFor(Instr); 9098 Plan->addVPValue(Instr, PHIRecipe); 9099 } 9100 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 9101 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 9102 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 9103 9104 // Note: first set Entry as region entry and then connect successors starting 9105 // from it in order, to propagate the "parent" of each VPBasicBlock. 9106 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 9107 VPBlockUtils::connectBlocks(Pred, Exit); 9108 9109 return Region; 9110 } 9111 9112 VPRecipeOrVPValueTy 9113 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 9114 ArrayRef<VPValue *> Operands, 9115 VFRange &Range, VPlanPtr &Plan) { 9116 // First, check for specific widening recipes that deal with calls, memory 9117 // operations, inductions and Phi nodes. 9118 if (auto *CI = dyn_cast<CallInst>(Instr)) 9119 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 9120 9121 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 9122 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 9123 9124 VPRecipeBase *Recipe; 9125 if (auto Phi = dyn_cast<PHINode>(Instr)) { 9126 if (Phi->getParent() != OrigLoop->getHeader()) 9127 return tryToBlend(Phi, Operands, Plan); 9128 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 9129 return toVPRecipeResult(Recipe); 9130 9131 VPWidenPHIRecipe *PhiRecipe = nullptr; 9132 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 9133 VPValue *StartV = Operands[0]; 9134 if (Legal->isReductionVariable(Phi)) { 9135 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9136 assert(RdxDesc.getRecurrenceStartValue() == 9137 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 9138 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 9139 CM.isInLoopReduction(Phi), 9140 CM.useOrderedReductions(RdxDesc)); 9141 } else { 9142 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 9143 } 9144 9145 // Record the incoming value from the backedge, so we can add the incoming 9146 // value from the backedge after all recipes have been created. 9147 recordRecipeOf(cast<Instruction>( 9148 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 9149 PhisToFix.push_back(PhiRecipe); 9150 } else { 9151 // TODO: record start and backedge value for remaining pointer induction 9152 // phis. 9153 assert(Phi->getType()->isPointerTy() && 9154 "only pointer phis should be handled here"); 9155 PhiRecipe = new VPWidenPHIRecipe(Phi); 9156 } 9157 9158 return toVPRecipeResult(PhiRecipe); 9159 } 9160 9161 if (isa<TruncInst>(Instr) && 9162 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 9163 Range, *Plan))) 9164 return toVPRecipeResult(Recipe); 9165 9166 if (!shouldWiden(Instr, Range)) 9167 return nullptr; 9168 9169 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 9170 return toVPRecipeResult(new VPWidenGEPRecipe( 9171 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 9172 9173 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 9174 bool InvariantCond = 9175 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 9176 return toVPRecipeResult(new VPWidenSelectRecipe( 9177 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 9178 } 9179 9180 return toVPRecipeResult(tryToWiden(Instr, Operands)); 9181 } 9182 9183 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 9184 ElementCount MaxVF) { 9185 assert(OrigLoop->isInnermost() && "Inner loop expected."); 9186 9187 // Collect instructions from the original loop that will become trivially dead 9188 // in the vectorized loop. We don't need to vectorize these instructions. For 9189 // example, original induction update instructions can become dead because we 9190 // separately emit induction "steps" when generating code for the new loop. 9191 // Similarly, we create a new latch condition when setting up the structure 9192 // of the new loop, so the old one can become dead. 9193 SmallPtrSet<Instruction *, 4> DeadInstructions; 9194 collectTriviallyDeadInstructions(DeadInstructions); 9195 9196 // Add assume instructions we need to drop to DeadInstructions, to prevent 9197 // them from being added to the VPlan. 9198 // TODO: We only need to drop assumes in blocks that get flattend. If the 9199 // control flow is preserved, we should keep them. 9200 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 9201 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 9202 9203 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 9204 // Dead instructions do not need sinking. Remove them from SinkAfter. 9205 for (Instruction *I : DeadInstructions) 9206 SinkAfter.erase(I); 9207 9208 // Cannot sink instructions after dead instructions (there won't be any 9209 // recipes for them). Instead, find the first non-dead previous instruction. 9210 for (auto &P : Legal->getSinkAfter()) { 9211 Instruction *SinkTarget = P.second; 9212 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 9213 (void)FirstInst; 9214 while (DeadInstructions.contains(SinkTarget)) { 9215 assert( 9216 SinkTarget != FirstInst && 9217 "Must find a live instruction (at least the one feeding the " 9218 "first-order recurrence PHI) before reaching beginning of the block"); 9219 SinkTarget = SinkTarget->getPrevNode(); 9220 assert(SinkTarget != P.first && 9221 "sink source equals target, no sinking required"); 9222 } 9223 P.second = SinkTarget; 9224 } 9225 9226 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 9227 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 9228 VFRange SubRange = {VF, MaxVFPlusOne}; 9229 VPlans.push_back( 9230 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 9231 VF = SubRange.End; 9232 } 9233 } 9234 9235 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9236 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9237 const MapVector<Instruction *, Instruction *> &SinkAfter) { 9238 9239 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9240 9241 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9242 9243 // --------------------------------------------------------------------------- 9244 // Pre-construction: record ingredients whose recipes we'll need to further 9245 // process after constructing the initial VPlan. 9246 // --------------------------------------------------------------------------- 9247 9248 // Mark instructions we'll need to sink later and their targets as 9249 // ingredients whose recipe we'll need to record. 9250 for (auto &Entry : SinkAfter) { 9251 RecipeBuilder.recordRecipeOf(Entry.first); 9252 RecipeBuilder.recordRecipeOf(Entry.second); 9253 } 9254 for (auto &Reduction : CM.getInLoopReductionChains()) { 9255 PHINode *Phi = Reduction.first; 9256 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 9257 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9258 9259 RecipeBuilder.recordRecipeOf(Phi); 9260 for (auto &R : ReductionOperations) { 9261 RecipeBuilder.recordRecipeOf(R); 9262 // For min/max reducitons, where we have a pair of icmp/select, we also 9263 // need to record the ICmp recipe, so it can be removed later. 9264 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9265 "Only min/max recurrences allowed for inloop reductions"); 9266 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9267 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9268 } 9269 } 9270 9271 // For each interleave group which is relevant for this (possibly trimmed) 9272 // Range, add it to the set of groups to be later applied to the VPlan and add 9273 // placeholders for its members' Recipes which we'll be replacing with a 9274 // single VPInterleaveRecipe. 9275 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9276 auto applyIG = [IG, this](ElementCount VF) -> bool { 9277 return (VF.isVector() && // Query is illegal for VF == 1 9278 CM.getWideningDecision(IG->getInsertPos(), VF) == 9279 LoopVectorizationCostModel::CM_Interleave); 9280 }; 9281 if (!getDecisionAndClampRange(applyIG, Range)) 9282 continue; 9283 InterleaveGroups.insert(IG); 9284 for (unsigned i = 0; i < IG->getFactor(); i++) 9285 if (Instruction *Member = IG->getMember(i)) 9286 RecipeBuilder.recordRecipeOf(Member); 9287 }; 9288 9289 // --------------------------------------------------------------------------- 9290 // Build initial VPlan: Scan the body of the loop in a topological order to 9291 // visit each basic block after having visited its predecessor basic blocks. 9292 // --------------------------------------------------------------------------- 9293 9294 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 9295 auto Plan = std::make_unique<VPlan>(); 9296 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 9297 Plan->setEntry(VPBB); 9298 9299 // Scan the body of the loop in a topological order to visit each basic block 9300 // after having visited its predecessor basic blocks. 9301 LoopBlocksDFS DFS(OrigLoop); 9302 DFS.perform(LI); 9303 9304 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9305 // Relevant instructions from basic block BB will be grouped into VPRecipe 9306 // ingredients and fill a new VPBasicBlock. 9307 unsigned VPBBsForBB = 0; 9308 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 9309 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 9310 VPBB = FirstVPBBForBB; 9311 Builder.setInsertPoint(VPBB); 9312 9313 // Introduce each ingredient into VPlan. 9314 // TODO: Model and preserve debug instrinsics in VPlan. 9315 for (Instruction &I : BB->instructionsWithoutDebug()) { 9316 Instruction *Instr = &I; 9317 9318 // First filter out irrelevant instructions, to ensure no recipes are 9319 // built for them. 9320 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9321 continue; 9322 9323 SmallVector<VPValue *, 4> Operands; 9324 auto *Phi = dyn_cast<PHINode>(Instr); 9325 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9326 Operands.push_back(Plan->getOrAddVPValue( 9327 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9328 } else { 9329 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9330 Operands = {OpRange.begin(), OpRange.end()}; 9331 } 9332 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9333 Instr, Operands, Range, Plan)) { 9334 // If Instr can be simplified to an existing VPValue, use it. 9335 if (RecipeOrValue.is<VPValue *>()) { 9336 auto *VPV = RecipeOrValue.get<VPValue *>(); 9337 Plan->addVPValue(Instr, VPV); 9338 // If the re-used value is a recipe, register the recipe for the 9339 // instruction, in case the recipe for Instr needs to be recorded. 9340 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9341 RecipeBuilder.setRecipe(Instr, R); 9342 continue; 9343 } 9344 // Otherwise, add the new recipe. 9345 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9346 for (auto *Def : Recipe->definedValues()) { 9347 auto *UV = Def->getUnderlyingValue(); 9348 Plan->addVPValue(UV, Def); 9349 } 9350 9351 RecipeBuilder.setRecipe(Instr, Recipe); 9352 VPBB->appendRecipe(Recipe); 9353 continue; 9354 } 9355 9356 // Otherwise, if all widening options failed, Instruction is to be 9357 // replicated. This may create a successor for VPBB. 9358 VPBasicBlock *NextVPBB = 9359 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9360 if (NextVPBB != VPBB) { 9361 VPBB = NextVPBB; 9362 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9363 : ""); 9364 } 9365 } 9366 } 9367 9368 RecipeBuilder.fixHeaderPhis(); 9369 9370 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 9371 // may also be empty, such as the last one VPBB, reflecting original 9372 // basic-blocks with no recipes. 9373 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 9374 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 9375 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 9376 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 9377 delete PreEntry; 9378 9379 // --------------------------------------------------------------------------- 9380 // Transform initial VPlan: Apply previously taken decisions, in order, to 9381 // bring the VPlan to its final state. 9382 // --------------------------------------------------------------------------- 9383 9384 // Apply Sink-After legal constraints. 9385 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9386 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9387 if (Region && Region->isReplicator()) { 9388 assert(Region->getNumSuccessors() == 1 && 9389 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9390 assert(R->getParent()->size() == 1 && 9391 "A recipe in an original replicator region must be the only " 9392 "recipe in its block"); 9393 return Region; 9394 } 9395 return nullptr; 9396 }; 9397 for (auto &Entry : SinkAfter) { 9398 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9399 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9400 9401 auto *TargetRegion = GetReplicateRegion(Target); 9402 auto *SinkRegion = GetReplicateRegion(Sink); 9403 if (!SinkRegion) { 9404 // If the sink source is not a replicate region, sink the recipe directly. 9405 if (TargetRegion) { 9406 // The target is in a replication region, make sure to move Sink to 9407 // the block after it, not into the replication region itself. 9408 VPBasicBlock *NextBlock = 9409 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9410 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9411 } else 9412 Sink->moveAfter(Target); 9413 continue; 9414 } 9415 9416 // The sink source is in a replicate region. Unhook the region from the CFG. 9417 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9418 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9419 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9420 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9421 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9422 9423 if (TargetRegion) { 9424 // The target recipe is also in a replicate region, move the sink region 9425 // after the target region. 9426 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9427 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9428 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9429 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9430 } else { 9431 // The sink source is in a replicate region, we need to move the whole 9432 // replicate region, which should only contain a single recipe in the 9433 // main block. 9434 auto *SplitBlock = 9435 Target->getParent()->splitAt(std::next(Target->getIterator())); 9436 9437 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9438 9439 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9440 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9441 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9442 if (VPBB == SplitPred) 9443 VPBB = SplitBlock; 9444 } 9445 } 9446 9447 // Adjust the recipes for any inloop reductions. 9448 adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start); 9449 9450 // Introduce a recipe to combine the incoming and previous values of a 9451 // first-order recurrence. 9452 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9453 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9454 if (!RecurPhi) 9455 continue; 9456 9457 auto *RecurSplice = cast<VPInstruction>( 9458 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9459 {RecurPhi, RecurPhi->getBackedgeValue()})); 9460 9461 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9462 if (auto *Region = GetReplicateRegion(PrevRecipe)) { 9463 VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9464 RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi()); 9465 } else 9466 RecurSplice->moveAfter(PrevRecipe); 9467 RecurPhi->replaceAllUsesWith(RecurSplice); 9468 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9469 // all users. 9470 RecurSplice->setOperand(0, RecurPhi); 9471 } 9472 9473 // Interleave memory: for each Interleave Group we marked earlier as relevant 9474 // for this VPlan, replace the Recipes widening its memory instructions with a 9475 // single VPInterleaveRecipe at its insertion point. 9476 for (auto IG : InterleaveGroups) { 9477 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9478 RecipeBuilder.getRecipe(IG->getInsertPos())); 9479 SmallVector<VPValue *, 4> StoredValues; 9480 for (unsigned i = 0; i < IG->getFactor(); ++i) 9481 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9482 auto *StoreR = 9483 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9484 StoredValues.push_back(StoreR->getStoredValue()); 9485 } 9486 9487 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9488 Recipe->getMask()); 9489 VPIG->insertBefore(Recipe); 9490 unsigned J = 0; 9491 for (unsigned i = 0; i < IG->getFactor(); ++i) 9492 if (Instruction *Member = IG->getMember(i)) { 9493 if (!Member->getType()->isVoidTy()) { 9494 VPValue *OriginalV = Plan->getVPValue(Member); 9495 Plan->removeVPValueFor(Member); 9496 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9497 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9498 J++; 9499 } 9500 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9501 } 9502 } 9503 9504 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9505 // in ways that accessing values using original IR values is incorrect. 9506 Plan->disableValue2VPValue(); 9507 9508 VPlanTransforms::sinkScalarOperands(*Plan); 9509 VPlanTransforms::mergeReplicateRegions(*Plan); 9510 9511 std::string PlanName; 9512 raw_string_ostream RSO(PlanName); 9513 ElementCount VF = Range.Start; 9514 Plan->addVF(VF); 9515 RSO << "Initial VPlan for VF={" << VF; 9516 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9517 Plan->addVF(VF); 9518 RSO << "," << VF; 9519 } 9520 RSO << "},UF>=1"; 9521 RSO.flush(); 9522 Plan->setName(PlanName); 9523 9524 return Plan; 9525 } 9526 9527 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9528 // Outer loop handling: They may require CFG and instruction level 9529 // transformations before even evaluating whether vectorization is profitable. 9530 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9531 // the vectorization pipeline. 9532 assert(!OrigLoop->isInnermost()); 9533 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9534 9535 // Create new empty VPlan 9536 auto Plan = std::make_unique<VPlan>(); 9537 9538 // Build hierarchical CFG 9539 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9540 HCFGBuilder.buildHierarchicalCFG(); 9541 9542 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9543 VF *= 2) 9544 Plan->addVF(VF); 9545 9546 if (EnableVPlanPredication) { 9547 VPlanPredicator VPP(*Plan); 9548 VPP.predicate(); 9549 9550 // Avoid running transformation to recipes until masked code generation in 9551 // VPlan-native path is in place. 9552 return Plan; 9553 } 9554 9555 SmallPtrSet<Instruction *, 1> DeadInstructions; 9556 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9557 Legal->getInductionVars(), 9558 DeadInstructions, *PSE.getSE()); 9559 return Plan; 9560 } 9561 9562 // Adjust the recipes for reductions. For in-loop reductions the chain of 9563 // instructions leading from the loop exit instr to the phi need to be converted 9564 // to reductions, with one operand being vector and the other being the scalar 9565 // reduction chain. For other reductions, a select is introduced between the phi 9566 // and live-out recipes when folding the tail. 9567 void LoopVectorizationPlanner::adjustRecipesForReductions( 9568 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9569 ElementCount MinVF) { 9570 for (auto &Reduction : CM.getInLoopReductionChains()) { 9571 PHINode *Phi = Reduction.first; 9572 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9573 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9574 9575 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9576 continue; 9577 9578 // ReductionOperations are orders top-down from the phi's use to the 9579 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9580 // which of the two operands will remain scalar and which will be reduced. 9581 // For minmax the chain will be the select instructions. 9582 Instruction *Chain = Phi; 9583 for (Instruction *R : ReductionOperations) { 9584 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9585 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9586 9587 VPValue *ChainOp = Plan->getVPValue(Chain); 9588 unsigned FirstOpId; 9589 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9590 "Only min/max recurrences allowed for inloop reductions"); 9591 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9592 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9593 "Expected to replace a VPWidenSelectSC"); 9594 FirstOpId = 1; 9595 } else { 9596 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) && 9597 "Expected to replace a VPWidenSC"); 9598 FirstOpId = 0; 9599 } 9600 unsigned VecOpId = 9601 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9602 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9603 9604 auto *CondOp = CM.foldTailByMasking() 9605 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9606 : nullptr; 9607 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 9608 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9609 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9610 Plan->removeVPValueFor(R); 9611 Plan->addVPValue(R, RedRecipe); 9612 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9613 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9614 WidenRecipe->eraseFromParent(); 9615 9616 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9617 VPRecipeBase *CompareRecipe = 9618 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9619 assert(isa<VPWidenRecipe>(CompareRecipe) && 9620 "Expected to replace a VPWidenSC"); 9621 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9622 "Expected no remaining users"); 9623 CompareRecipe->eraseFromParent(); 9624 } 9625 Chain = R; 9626 } 9627 } 9628 9629 // If tail is folded by masking, introduce selects between the phi 9630 // and the live-out instruction of each reduction, at the end of the latch. 9631 if (CM.foldTailByMasking()) { 9632 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9633 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9634 if (!PhiR || PhiR->isInLoop()) 9635 continue; 9636 Builder.setInsertPoint(LatchVPBB); 9637 VPValue *Cond = 9638 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9639 VPValue *Red = PhiR->getBackedgeValue(); 9640 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9641 } 9642 } 9643 } 9644 9645 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9646 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9647 VPSlotTracker &SlotTracker) const { 9648 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9649 IG->getInsertPos()->printAsOperand(O, false); 9650 O << ", "; 9651 getAddr()->printAsOperand(O, SlotTracker); 9652 VPValue *Mask = getMask(); 9653 if (Mask) { 9654 O << ", "; 9655 Mask->printAsOperand(O, SlotTracker); 9656 } 9657 9658 unsigned OpIdx = 0; 9659 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9660 if (!IG->getMember(i)) 9661 continue; 9662 if (getNumStoreOperands() > 0) { 9663 O << "\n" << Indent << " store "; 9664 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9665 O << " to index " << i; 9666 } else { 9667 O << "\n" << Indent << " "; 9668 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9669 O << " = load from index " << i; 9670 } 9671 ++OpIdx; 9672 } 9673 } 9674 #endif 9675 9676 void VPWidenCallRecipe::execute(VPTransformState &State) { 9677 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9678 *this, State); 9679 } 9680 9681 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9682 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9683 this, *this, InvariantCond, State); 9684 } 9685 9686 void VPWidenRecipe::execute(VPTransformState &State) { 9687 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9688 } 9689 9690 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9691 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9692 *this, State.UF, State.VF, IsPtrLoopInvariant, 9693 IsIndexLoopInvariant, State); 9694 } 9695 9696 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9697 assert(!State.Instance && "Int or FP induction being replicated."); 9698 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9699 getTruncInst(), getVPValue(0), 9700 getCastValue(), State); 9701 } 9702 9703 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9704 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9705 State); 9706 } 9707 9708 void VPBlendRecipe::execute(VPTransformState &State) { 9709 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9710 // We know that all PHIs in non-header blocks are converted into 9711 // selects, so we don't have to worry about the insertion order and we 9712 // can just use the builder. 9713 // At this point we generate the predication tree. There may be 9714 // duplications since this is a simple recursive scan, but future 9715 // optimizations will clean it up. 9716 9717 unsigned NumIncoming = getNumIncomingValues(); 9718 9719 // Generate a sequence of selects of the form: 9720 // SELECT(Mask3, In3, 9721 // SELECT(Mask2, In2, 9722 // SELECT(Mask1, In1, 9723 // In0))) 9724 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9725 // are essentially undef are taken from In0. 9726 InnerLoopVectorizer::VectorParts Entry(State.UF); 9727 for (unsigned In = 0; In < NumIncoming; ++In) { 9728 for (unsigned Part = 0; Part < State.UF; ++Part) { 9729 // We might have single edge PHIs (blocks) - use an identity 9730 // 'select' for the first PHI operand. 9731 Value *In0 = State.get(getIncomingValue(In), Part); 9732 if (In == 0) 9733 Entry[Part] = In0; // Initialize with the first incoming value. 9734 else { 9735 // Select between the current value and the previous incoming edge 9736 // based on the incoming mask. 9737 Value *Cond = State.get(getMask(In), Part); 9738 Entry[Part] = 9739 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9740 } 9741 } 9742 } 9743 for (unsigned Part = 0; Part < State.UF; ++Part) 9744 State.set(this, Entry[Part], Part); 9745 } 9746 9747 void VPInterleaveRecipe::execute(VPTransformState &State) { 9748 assert(!State.Instance && "Interleave group being replicated."); 9749 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9750 getStoredValues(), getMask()); 9751 } 9752 9753 void VPReductionRecipe::execute(VPTransformState &State) { 9754 assert(!State.Instance && "Reduction being replicated."); 9755 Value *PrevInChain = State.get(getChainOp(), 0); 9756 for (unsigned Part = 0; Part < State.UF; ++Part) { 9757 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9758 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9759 Value *NewVecOp = State.get(getVecOp(), Part); 9760 if (VPValue *Cond = getCondOp()) { 9761 Value *NewCond = State.get(Cond, Part); 9762 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9763 Value *Iden = RdxDesc->getRecurrenceIdentity( 9764 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9765 Value *IdenVec = 9766 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9767 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9768 NewVecOp = Select; 9769 } 9770 Value *NewRed; 9771 Value *NextInChain; 9772 if (IsOrdered) { 9773 if (State.VF.isVector()) 9774 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9775 PrevInChain); 9776 else 9777 NewRed = State.Builder.CreateBinOp( 9778 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), 9779 PrevInChain, NewVecOp); 9780 PrevInChain = NewRed; 9781 } else { 9782 PrevInChain = State.get(getChainOp(), Part); 9783 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9784 } 9785 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9786 NextInChain = 9787 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9788 NewRed, PrevInChain); 9789 } else if (IsOrdered) 9790 NextInChain = NewRed; 9791 else { 9792 NextInChain = State.Builder.CreateBinOp( 9793 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9794 PrevInChain); 9795 } 9796 State.set(this, NextInChain, Part); 9797 } 9798 } 9799 9800 void VPReplicateRecipe::execute(VPTransformState &State) { 9801 if (State.Instance) { // Generate a single instance. 9802 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9803 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9804 *State.Instance, IsPredicated, State); 9805 // Insert scalar instance packing it into a vector. 9806 if (AlsoPack && State.VF.isVector()) { 9807 // If we're constructing lane 0, initialize to start from poison. 9808 if (State.Instance->Lane.isFirstLane()) { 9809 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9810 Value *Poison = PoisonValue::get( 9811 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9812 State.set(this, Poison, State.Instance->Part); 9813 } 9814 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9815 } 9816 return; 9817 } 9818 9819 // Generate scalar instances for all VF lanes of all UF parts, unless the 9820 // instruction is uniform inwhich case generate only the first lane for each 9821 // of the UF parts. 9822 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9823 assert((!State.VF.isScalable() || IsUniform) && 9824 "Can't scalarize a scalable vector"); 9825 for (unsigned Part = 0; Part < State.UF; ++Part) 9826 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9827 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9828 VPIteration(Part, Lane), IsPredicated, 9829 State); 9830 } 9831 9832 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9833 assert(State.Instance && "Branch on Mask works only on single instance."); 9834 9835 unsigned Part = State.Instance->Part; 9836 unsigned Lane = State.Instance->Lane.getKnownLane(); 9837 9838 Value *ConditionBit = nullptr; 9839 VPValue *BlockInMask = getMask(); 9840 if (BlockInMask) { 9841 ConditionBit = State.get(BlockInMask, Part); 9842 if (ConditionBit->getType()->isVectorTy()) 9843 ConditionBit = State.Builder.CreateExtractElement( 9844 ConditionBit, State.Builder.getInt32(Lane)); 9845 } else // Block in mask is all-one. 9846 ConditionBit = State.Builder.getTrue(); 9847 9848 // Replace the temporary unreachable terminator with a new conditional branch, 9849 // whose two destinations will be set later when they are created. 9850 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9851 assert(isa<UnreachableInst>(CurrentTerminator) && 9852 "Expected to replace unreachable terminator with conditional branch."); 9853 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9854 CondBr->setSuccessor(0, nullptr); 9855 ReplaceInstWithInst(CurrentTerminator, CondBr); 9856 } 9857 9858 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9859 assert(State.Instance && "Predicated instruction PHI works per instance."); 9860 Instruction *ScalarPredInst = 9861 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9862 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9863 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9864 assert(PredicatingBB && "Predicated block has no single predecessor."); 9865 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9866 "operand must be VPReplicateRecipe"); 9867 9868 // By current pack/unpack logic we need to generate only a single phi node: if 9869 // a vector value for the predicated instruction exists at this point it means 9870 // the instruction has vector users only, and a phi for the vector value is 9871 // needed. In this case the recipe of the predicated instruction is marked to 9872 // also do that packing, thereby "hoisting" the insert-element sequence. 9873 // Otherwise, a phi node for the scalar value is needed. 9874 unsigned Part = State.Instance->Part; 9875 if (State.hasVectorValue(getOperand(0), Part)) { 9876 Value *VectorValue = State.get(getOperand(0), Part); 9877 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9878 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9879 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9880 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9881 if (State.hasVectorValue(this, Part)) 9882 State.reset(this, VPhi, Part); 9883 else 9884 State.set(this, VPhi, Part); 9885 // NOTE: Currently we need to update the value of the operand, so the next 9886 // predicated iteration inserts its generated value in the correct vector. 9887 State.reset(getOperand(0), VPhi, Part); 9888 } else { 9889 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9890 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9891 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9892 PredicatingBB); 9893 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9894 if (State.hasScalarValue(this, *State.Instance)) 9895 State.reset(this, Phi, *State.Instance); 9896 else 9897 State.set(this, Phi, *State.Instance); 9898 // NOTE: Currently we need to update the value of the operand, so the next 9899 // predicated iteration inserts its generated value in the correct vector. 9900 State.reset(getOperand(0), Phi, *State.Instance); 9901 } 9902 } 9903 9904 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9905 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9906 State.ILV->vectorizeMemoryInstruction( 9907 &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(), 9908 StoredValue, getMask()); 9909 } 9910 9911 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9912 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9913 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9914 // for predication. 9915 static ScalarEpilogueLowering getScalarEpilogueLowering( 9916 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9917 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9918 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9919 LoopVectorizationLegality &LVL) { 9920 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9921 // don't look at hints or options, and don't request a scalar epilogue. 9922 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9923 // LoopAccessInfo (due to code dependency and not being able to reliably get 9924 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9925 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9926 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9927 // back to the old way and vectorize with versioning when forced. See D81345.) 9928 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9929 PGSOQueryType::IRPass) && 9930 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9931 return CM_ScalarEpilogueNotAllowedOptSize; 9932 9933 // 2) If set, obey the directives 9934 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9935 switch (PreferPredicateOverEpilogue) { 9936 case PreferPredicateTy::ScalarEpilogue: 9937 return CM_ScalarEpilogueAllowed; 9938 case PreferPredicateTy::PredicateElseScalarEpilogue: 9939 return CM_ScalarEpilogueNotNeededUsePredicate; 9940 case PreferPredicateTy::PredicateOrDontVectorize: 9941 return CM_ScalarEpilogueNotAllowedUsePredicate; 9942 }; 9943 } 9944 9945 // 3) If set, obey the hints 9946 switch (Hints.getPredicate()) { 9947 case LoopVectorizeHints::FK_Enabled: 9948 return CM_ScalarEpilogueNotNeededUsePredicate; 9949 case LoopVectorizeHints::FK_Disabled: 9950 return CM_ScalarEpilogueAllowed; 9951 }; 9952 9953 // 4) if the TTI hook indicates this is profitable, request predication. 9954 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9955 LVL.getLAI())) 9956 return CM_ScalarEpilogueNotNeededUsePredicate; 9957 9958 return CM_ScalarEpilogueAllowed; 9959 } 9960 9961 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9962 // If Values have been set for this Def return the one relevant for \p Part. 9963 if (hasVectorValue(Def, Part)) 9964 return Data.PerPartOutput[Def][Part]; 9965 9966 if (!hasScalarValue(Def, {Part, 0})) { 9967 Value *IRV = Def->getLiveInIRValue(); 9968 Value *B = ILV->getBroadcastInstrs(IRV); 9969 set(Def, B, Part); 9970 return B; 9971 } 9972 9973 Value *ScalarValue = get(Def, {Part, 0}); 9974 // If we aren't vectorizing, we can just copy the scalar map values over 9975 // to the vector map. 9976 if (VF.isScalar()) { 9977 set(Def, ScalarValue, Part); 9978 return ScalarValue; 9979 } 9980 9981 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9982 bool IsUniform = RepR && RepR->isUniform(); 9983 9984 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9985 // Check if there is a scalar value for the selected lane. 9986 if (!hasScalarValue(Def, {Part, LastLane})) { 9987 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9988 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 9989 "unexpected recipe found to be invariant"); 9990 IsUniform = true; 9991 LastLane = 0; 9992 } 9993 9994 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9995 // Set the insert point after the last scalarized instruction or after the 9996 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 9997 // will directly follow the scalar definitions. 9998 auto OldIP = Builder.saveIP(); 9999 auto NewIP = 10000 isa<PHINode>(LastInst) 10001 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10002 : std::next(BasicBlock::iterator(LastInst)); 10003 Builder.SetInsertPoint(&*NewIP); 10004 10005 // However, if we are vectorizing, we need to construct the vector values. 10006 // If the value is known to be uniform after vectorization, we can just 10007 // broadcast the scalar value corresponding to lane zero for each unroll 10008 // iteration. Otherwise, we construct the vector values using 10009 // insertelement instructions. Since the resulting vectors are stored in 10010 // State, we will only generate the insertelements once. 10011 Value *VectorValue = nullptr; 10012 if (IsUniform) { 10013 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10014 set(Def, VectorValue, Part); 10015 } else { 10016 // Initialize packing with insertelements to start from undef. 10017 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10018 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10019 set(Def, Undef, Part); 10020 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10021 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10022 VectorValue = get(Def, Part); 10023 } 10024 Builder.restoreIP(OldIP); 10025 return VectorValue; 10026 } 10027 10028 // Process the loop in the VPlan-native vectorization path. This path builds 10029 // VPlan upfront in the vectorization pipeline, which allows to apply 10030 // VPlan-to-VPlan transformations from the very beginning without modifying the 10031 // input LLVM IR. 10032 static bool processLoopInVPlanNativePath( 10033 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10034 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10035 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10036 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10037 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10038 LoopVectorizationRequirements &Requirements) { 10039 10040 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10041 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10042 return false; 10043 } 10044 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10045 Function *F = L->getHeader()->getParent(); 10046 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10047 10048 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10049 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10050 10051 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10052 &Hints, IAI); 10053 // Use the planner for outer loop vectorization. 10054 // TODO: CM is not used at this point inside the planner. Turn CM into an 10055 // optional argument if we don't need it in the future. 10056 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10057 Requirements, ORE); 10058 10059 // Get user vectorization factor. 10060 ElementCount UserVF = Hints.getWidth(); 10061 10062 CM.collectElementTypesForWidening(); 10063 10064 // Plan how to best vectorize, return the best VF and its cost. 10065 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10066 10067 // If we are stress testing VPlan builds, do not attempt to generate vector 10068 // code. Masked vector code generation support will follow soon. 10069 // Also, do not attempt to vectorize if no vector code will be produced. 10070 if (VPlanBuildStressTest || EnableVPlanPredication || 10071 VectorizationFactor::Disabled() == VF) 10072 return false; 10073 10074 LVP.setBestPlan(VF.Width, 1); 10075 10076 { 10077 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10078 F->getParent()->getDataLayout()); 10079 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10080 &CM, BFI, PSI, Checks); 10081 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10082 << L->getHeader()->getParent()->getName() << "\"\n"); 10083 LVP.executePlan(LB, DT); 10084 } 10085 10086 // Mark the loop as already vectorized to avoid vectorizing again. 10087 Hints.setAlreadyVectorized(); 10088 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10089 return true; 10090 } 10091 10092 // Emit a remark if there are stores to floats that required a floating point 10093 // extension. If the vectorized loop was generated with floating point there 10094 // will be a performance penalty from the conversion overhead and the change in 10095 // the vector width. 10096 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10097 SmallVector<Instruction *, 4> Worklist; 10098 for (BasicBlock *BB : L->getBlocks()) { 10099 for (Instruction &Inst : *BB) { 10100 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10101 if (S->getValueOperand()->getType()->isFloatTy()) 10102 Worklist.push_back(S); 10103 } 10104 } 10105 } 10106 10107 // Traverse the floating point stores upwards searching, for floating point 10108 // conversions. 10109 SmallPtrSet<const Instruction *, 4> Visited; 10110 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10111 while (!Worklist.empty()) { 10112 auto *I = Worklist.pop_back_val(); 10113 if (!L->contains(I)) 10114 continue; 10115 if (!Visited.insert(I).second) 10116 continue; 10117 10118 // Emit a remark if the floating point store required a floating 10119 // point conversion. 10120 // TODO: More work could be done to identify the root cause such as a 10121 // constant or a function return type and point the user to it. 10122 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10123 ORE->emit([&]() { 10124 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10125 I->getDebugLoc(), L->getHeader()) 10126 << "floating point conversion changes vector width. " 10127 << "Mixed floating point precision requires an up/down " 10128 << "cast that will negatively impact performance."; 10129 }); 10130 10131 for (Use &Op : I->operands()) 10132 if (auto *OpI = dyn_cast<Instruction>(Op)) 10133 Worklist.push_back(OpI); 10134 } 10135 } 10136 10137 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10138 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10139 !EnableLoopInterleaving), 10140 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10141 !EnableLoopVectorization) {} 10142 10143 bool LoopVectorizePass::processLoop(Loop *L) { 10144 assert((EnableVPlanNativePath || L->isInnermost()) && 10145 "VPlan-native path is not enabled. Only process inner loops."); 10146 10147 #ifndef NDEBUG 10148 const std::string DebugLocStr = getDebugLocString(L); 10149 #endif /* NDEBUG */ 10150 10151 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10152 << L->getHeader()->getParent()->getName() << "\" from " 10153 << DebugLocStr << "\n"); 10154 10155 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 10156 10157 LLVM_DEBUG( 10158 dbgs() << "LV: Loop hints:" 10159 << " force=" 10160 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10161 ? "disabled" 10162 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10163 ? "enabled" 10164 : "?")) 10165 << " width=" << Hints.getWidth() 10166 << " interleave=" << Hints.getInterleave() << "\n"); 10167 10168 // Function containing loop 10169 Function *F = L->getHeader()->getParent(); 10170 10171 // Looking at the diagnostic output is the only way to determine if a loop 10172 // was vectorized (other than looking at the IR or machine code), so it 10173 // is important to generate an optimization remark for each loop. Most of 10174 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10175 // generated as OptimizationRemark and OptimizationRemarkMissed are 10176 // less verbose reporting vectorized loops and unvectorized loops that may 10177 // benefit from vectorization, respectively. 10178 10179 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10180 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10181 return false; 10182 } 10183 10184 PredicatedScalarEvolution PSE(*SE, *L); 10185 10186 // Check if it is legal to vectorize the loop. 10187 LoopVectorizationRequirements Requirements; 10188 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10189 &Requirements, &Hints, DB, AC, BFI, PSI); 10190 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10191 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10192 Hints.emitRemarkWithHints(); 10193 return false; 10194 } 10195 10196 // Check the function attributes and profiles to find out if this function 10197 // should be optimized for size. 10198 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10199 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10200 10201 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10202 // here. They may require CFG and instruction level transformations before 10203 // even evaluating whether vectorization is profitable. Since we cannot modify 10204 // the incoming IR, we need to build VPlan upfront in the vectorization 10205 // pipeline. 10206 if (!L->isInnermost()) 10207 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10208 ORE, BFI, PSI, Hints, Requirements); 10209 10210 assert(L->isInnermost() && "Inner loop expected."); 10211 10212 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10213 // count by optimizing for size, to minimize overheads. 10214 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10215 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10216 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10217 << "This loop is worth vectorizing only if no scalar " 10218 << "iteration overheads are incurred."); 10219 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10220 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10221 else { 10222 LLVM_DEBUG(dbgs() << "\n"); 10223 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10224 } 10225 } 10226 10227 // Check the function attributes to see if implicit floats are allowed. 10228 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10229 // an integer loop and the vector instructions selected are purely integer 10230 // vector instructions? 10231 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10232 reportVectorizationFailure( 10233 "Can't vectorize when the NoImplicitFloat attribute is used", 10234 "loop not vectorized due to NoImplicitFloat attribute", 10235 "NoImplicitFloat", ORE, L); 10236 Hints.emitRemarkWithHints(); 10237 return false; 10238 } 10239 10240 // Check if the target supports potentially unsafe FP vectorization. 10241 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10242 // for the target we're vectorizing for, to make sure none of the 10243 // additional fp-math flags can help. 10244 if (Hints.isPotentiallyUnsafe() && 10245 TTI->isFPVectorizationPotentiallyUnsafe()) { 10246 reportVectorizationFailure( 10247 "Potentially unsafe FP op prevents vectorization", 10248 "loop not vectorized due to unsafe FP support.", 10249 "UnsafeFP", ORE, L); 10250 Hints.emitRemarkWithHints(); 10251 return false; 10252 } 10253 10254 bool AllowOrderedReductions; 10255 // If the flag is set, use that instead and override the TTI behaviour. 10256 if (ForceOrderedReductions.getNumOccurrences() > 0) 10257 AllowOrderedReductions = ForceOrderedReductions; 10258 else 10259 AllowOrderedReductions = TTI->enableOrderedReductions(); 10260 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10261 ORE->emit([&]() { 10262 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10263 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10264 ExactFPMathInst->getDebugLoc(), 10265 ExactFPMathInst->getParent()) 10266 << "loop not vectorized: cannot prove it is safe to reorder " 10267 "floating-point operations"; 10268 }); 10269 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10270 "reorder floating-point operations\n"); 10271 Hints.emitRemarkWithHints(); 10272 return false; 10273 } 10274 10275 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10276 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10277 10278 // If an override option has been passed in for interleaved accesses, use it. 10279 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10280 UseInterleaved = EnableInterleavedMemAccesses; 10281 10282 // Analyze interleaved memory accesses. 10283 if (UseInterleaved) { 10284 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10285 } 10286 10287 // Use the cost model. 10288 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10289 F, &Hints, IAI); 10290 CM.collectValuesToIgnore(); 10291 CM.collectElementTypesForWidening(); 10292 10293 // Use the planner for vectorization. 10294 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10295 Requirements, ORE); 10296 10297 // Get user vectorization factor and interleave count. 10298 ElementCount UserVF = Hints.getWidth(); 10299 unsigned UserIC = Hints.getInterleave(); 10300 10301 // Plan how to best vectorize, return the best VF and its cost. 10302 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10303 10304 VectorizationFactor VF = VectorizationFactor::Disabled(); 10305 unsigned IC = 1; 10306 10307 if (MaybeVF) { 10308 VF = *MaybeVF; 10309 // Select the interleave count. 10310 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10311 } 10312 10313 // Identify the diagnostic messages that should be produced. 10314 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10315 bool VectorizeLoop = true, InterleaveLoop = true; 10316 if (VF.Width.isScalar()) { 10317 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10318 VecDiagMsg = std::make_pair( 10319 "VectorizationNotBeneficial", 10320 "the cost-model indicates that vectorization is not beneficial"); 10321 VectorizeLoop = false; 10322 } 10323 10324 if (!MaybeVF && UserIC > 1) { 10325 // Tell the user interleaving was avoided up-front, despite being explicitly 10326 // requested. 10327 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10328 "interleaving should be avoided up front\n"); 10329 IntDiagMsg = std::make_pair( 10330 "InterleavingAvoided", 10331 "Ignoring UserIC, because interleaving was avoided up front"); 10332 InterleaveLoop = false; 10333 } else if (IC == 1 && UserIC <= 1) { 10334 // Tell the user interleaving is not beneficial. 10335 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10336 IntDiagMsg = std::make_pair( 10337 "InterleavingNotBeneficial", 10338 "the cost-model indicates that interleaving is not beneficial"); 10339 InterleaveLoop = false; 10340 if (UserIC == 1) { 10341 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10342 IntDiagMsg.second += 10343 " and is explicitly disabled or interleave count is set to 1"; 10344 } 10345 } else if (IC > 1 && UserIC == 1) { 10346 // Tell the user interleaving is beneficial, but it explicitly disabled. 10347 LLVM_DEBUG( 10348 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10349 IntDiagMsg = std::make_pair( 10350 "InterleavingBeneficialButDisabled", 10351 "the cost-model indicates that interleaving is beneficial " 10352 "but is explicitly disabled or interleave count is set to 1"); 10353 InterleaveLoop = false; 10354 } 10355 10356 // Override IC if user provided an interleave count. 10357 IC = UserIC > 0 ? UserIC : IC; 10358 10359 // Emit diagnostic messages, if any. 10360 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10361 if (!VectorizeLoop && !InterleaveLoop) { 10362 // Do not vectorize or interleaving the loop. 10363 ORE->emit([&]() { 10364 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10365 L->getStartLoc(), L->getHeader()) 10366 << VecDiagMsg.second; 10367 }); 10368 ORE->emit([&]() { 10369 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10370 L->getStartLoc(), L->getHeader()) 10371 << IntDiagMsg.second; 10372 }); 10373 return false; 10374 } else if (!VectorizeLoop && InterleaveLoop) { 10375 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10376 ORE->emit([&]() { 10377 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10378 L->getStartLoc(), L->getHeader()) 10379 << VecDiagMsg.second; 10380 }); 10381 } else if (VectorizeLoop && !InterleaveLoop) { 10382 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10383 << ") in " << DebugLocStr << '\n'); 10384 ORE->emit([&]() { 10385 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10386 L->getStartLoc(), L->getHeader()) 10387 << IntDiagMsg.second; 10388 }); 10389 } else if (VectorizeLoop && InterleaveLoop) { 10390 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10391 << ") in " << DebugLocStr << '\n'); 10392 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10393 } 10394 10395 bool DisableRuntimeUnroll = false; 10396 MDNode *OrigLoopID = L->getLoopID(); 10397 { 10398 // Optimistically generate runtime checks. Drop them if they turn out to not 10399 // be profitable. Limit the scope of Checks, so the cleanup happens 10400 // immediately after vector codegeneration is done. 10401 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10402 F->getParent()->getDataLayout()); 10403 if (!VF.Width.isScalar() || IC > 1) 10404 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10405 LVP.setBestPlan(VF.Width, IC); 10406 10407 using namespace ore; 10408 if (!VectorizeLoop) { 10409 assert(IC > 1 && "interleave count should not be 1 or 0"); 10410 // If we decided that it is not legal to vectorize the loop, then 10411 // interleave it. 10412 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10413 &CM, BFI, PSI, Checks); 10414 LVP.executePlan(Unroller, DT); 10415 10416 ORE->emit([&]() { 10417 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10418 L->getHeader()) 10419 << "interleaved loop (interleaved count: " 10420 << NV("InterleaveCount", IC) << ")"; 10421 }); 10422 } else { 10423 // If we decided that it is *legal* to vectorize the loop, then do it. 10424 10425 // Consider vectorizing the epilogue too if it's profitable. 10426 VectorizationFactor EpilogueVF = 10427 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10428 if (EpilogueVF.Width.isVector()) { 10429 10430 // The first pass vectorizes the main loop and creates a scalar epilogue 10431 // to be vectorized by executing the plan (potentially with a different 10432 // factor) again shortly afterwards. 10433 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10434 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10435 EPI, &LVL, &CM, BFI, PSI, Checks); 10436 10437 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 10438 LVP.executePlan(MainILV, DT); 10439 ++LoopsVectorized; 10440 10441 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10442 formLCSSARecursively(*L, *DT, LI, SE); 10443 10444 // Second pass vectorizes the epilogue and adjusts the control flow 10445 // edges from the first pass. 10446 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 10447 EPI.MainLoopVF = EPI.EpilogueVF; 10448 EPI.MainLoopUF = EPI.EpilogueUF; 10449 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10450 ORE, EPI, &LVL, &CM, BFI, PSI, 10451 Checks); 10452 LVP.executePlan(EpilogILV, DT); 10453 ++LoopsEpilogueVectorized; 10454 10455 if (!MainILV.areSafetyChecksAdded()) 10456 DisableRuntimeUnroll = true; 10457 } else { 10458 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10459 &LVL, &CM, BFI, PSI, Checks); 10460 LVP.executePlan(LB, DT); 10461 ++LoopsVectorized; 10462 10463 // Add metadata to disable runtime unrolling a scalar loop when there 10464 // are no runtime checks about strides and memory. A scalar loop that is 10465 // rarely used is not worth unrolling. 10466 if (!LB.areSafetyChecksAdded()) 10467 DisableRuntimeUnroll = true; 10468 } 10469 // Report the vectorization decision. 10470 ORE->emit([&]() { 10471 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10472 L->getHeader()) 10473 << "vectorized loop (vectorization width: " 10474 << NV("VectorizationFactor", VF.Width) 10475 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10476 }); 10477 } 10478 10479 if (ORE->allowExtraAnalysis(LV_NAME)) 10480 checkMixedPrecision(L, ORE); 10481 } 10482 10483 Optional<MDNode *> RemainderLoopID = 10484 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10485 LLVMLoopVectorizeFollowupEpilogue}); 10486 if (RemainderLoopID.hasValue()) { 10487 L->setLoopID(RemainderLoopID.getValue()); 10488 } else { 10489 if (DisableRuntimeUnroll) 10490 AddRuntimeUnrollDisableMetaData(L); 10491 10492 // Mark the loop as already vectorized to avoid vectorizing again. 10493 Hints.setAlreadyVectorized(); 10494 } 10495 10496 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10497 return true; 10498 } 10499 10500 LoopVectorizeResult LoopVectorizePass::runImpl( 10501 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10502 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10503 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10504 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10505 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10506 SE = &SE_; 10507 LI = &LI_; 10508 TTI = &TTI_; 10509 DT = &DT_; 10510 BFI = &BFI_; 10511 TLI = TLI_; 10512 AA = &AA_; 10513 AC = &AC_; 10514 GetLAA = &GetLAA_; 10515 DB = &DB_; 10516 ORE = &ORE_; 10517 PSI = PSI_; 10518 10519 // Don't attempt if 10520 // 1. the target claims to have no vector registers, and 10521 // 2. interleaving won't help ILP. 10522 // 10523 // The second condition is necessary because, even if the target has no 10524 // vector registers, loop vectorization may still enable scalar 10525 // interleaving. 10526 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10527 TTI->getMaxInterleaveFactor(1) < 2) 10528 return LoopVectorizeResult(false, false); 10529 10530 bool Changed = false, CFGChanged = false; 10531 10532 // The vectorizer requires loops to be in simplified form. 10533 // Since simplification may add new inner loops, it has to run before the 10534 // legality and profitability checks. This means running the loop vectorizer 10535 // will simplify all loops, regardless of whether anything end up being 10536 // vectorized. 10537 for (auto &L : *LI) 10538 Changed |= CFGChanged |= 10539 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10540 10541 // Build up a worklist of inner-loops to vectorize. This is necessary as 10542 // the act of vectorizing or partially unrolling a loop creates new loops 10543 // and can invalidate iterators across the loops. 10544 SmallVector<Loop *, 8> Worklist; 10545 10546 for (Loop *L : *LI) 10547 collectSupportedLoops(*L, LI, ORE, Worklist); 10548 10549 LoopsAnalyzed += Worklist.size(); 10550 10551 // Now walk the identified inner loops. 10552 while (!Worklist.empty()) { 10553 Loop *L = Worklist.pop_back_val(); 10554 10555 // For the inner loops we actually process, form LCSSA to simplify the 10556 // transform. 10557 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10558 10559 Changed |= CFGChanged |= processLoop(L); 10560 } 10561 10562 // Process each loop nest in the function. 10563 return LoopVectorizeResult(Changed, CFGChanged); 10564 } 10565 10566 PreservedAnalyses LoopVectorizePass::run(Function &F, 10567 FunctionAnalysisManager &AM) { 10568 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10569 auto &LI = AM.getResult<LoopAnalysis>(F); 10570 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10571 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10572 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10573 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10574 auto &AA = AM.getResult<AAManager>(F); 10575 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10576 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10577 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10578 10579 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10580 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10581 [&](Loop &L) -> const LoopAccessInfo & { 10582 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10583 TLI, TTI, nullptr, nullptr, nullptr}; 10584 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10585 }; 10586 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10587 ProfileSummaryInfo *PSI = 10588 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10589 LoopVectorizeResult Result = 10590 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10591 if (!Result.MadeAnyChange) 10592 return PreservedAnalyses::all(); 10593 PreservedAnalyses PA; 10594 10595 // We currently do not preserve loopinfo/dominator analyses with outer loop 10596 // vectorization. Until this is addressed, mark these analyses as preserved 10597 // only for non-VPlan-native path. 10598 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10599 if (!EnableVPlanNativePath) { 10600 PA.preserve<LoopAnalysis>(); 10601 PA.preserve<DominatorTreeAnalysis>(); 10602 } 10603 if (!Result.MadeCFGChange) 10604 PA.preserveSet<CFGAnalyses>(); 10605 return PA; 10606 } 10607 10608 void LoopVectorizePass::printPipeline( 10609 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10610 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10611 OS, MapClassName2PassName); 10612 10613 OS << "<"; 10614 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10615 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10616 OS << ">"; 10617 } 10618