1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanHCFGTransforms.h" 62 #include "VPlanPredicator.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpander.h" 95 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 96 #include "llvm/Analysis/TargetLibraryInfo.h" 97 #include "llvm/Analysis/TargetTransformInfo.h" 98 #include "llvm/Analysis/VectorUtils.h" 99 #include "llvm/IR/Attributes.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/CFG.h" 102 #include "llvm/IR/Constant.h" 103 #include "llvm/IR/Constants.h" 104 #include "llvm/IR/DataLayout.h" 105 #include "llvm/IR/DebugInfoMetadata.h" 106 #include "llvm/IR/DebugLoc.h" 107 #include "llvm/IR/DerivedTypes.h" 108 #include "llvm/IR/DiagnosticInfo.h" 109 #include "llvm/IR/Dominators.h" 110 #include "llvm/IR/Function.h" 111 #include "llvm/IR/IRBuilder.h" 112 #include "llvm/IR/InstrTypes.h" 113 #include "llvm/IR/Instruction.h" 114 #include "llvm/IR/Instructions.h" 115 #include "llvm/IR/IntrinsicInst.h" 116 #include "llvm/IR/Intrinsics.h" 117 #include "llvm/IR/LLVMContext.h" 118 #include "llvm/IR/Metadata.h" 119 #include "llvm/IR/Module.h" 120 #include "llvm/IR/Operator.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/LoopSimplify.h" 137 #include "llvm/Transforms/Utils/LoopUtils.h" 138 #include "llvm/Transforms/Utils/LoopVersioning.h" 139 #include "llvm/Transforms/Utils/SizeOpts.h" 140 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 141 #include <algorithm> 142 #include <cassert> 143 #include <cstdint> 144 #include <cstdlib> 145 #include <functional> 146 #include <iterator> 147 #include <limits> 148 #include <memory> 149 #include <string> 150 #include <tuple> 151 #include <utility> 152 #include <vector> 153 154 using namespace llvm; 155 156 #define LV_NAME "loop-vectorize" 157 #define DEBUG_TYPE LV_NAME 158 159 /// @{ 160 /// Metadata attribute names 161 static const char *const LLVMLoopVectorizeFollowupAll = 162 "llvm.loop.vectorize.followup_all"; 163 static const char *const LLVMLoopVectorizeFollowupVectorized = 164 "llvm.loop.vectorize.followup_vectorized"; 165 static const char *const LLVMLoopVectorizeFollowupEpilogue = 166 "llvm.loop.vectorize.followup_epilogue"; 167 /// @} 168 169 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 170 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 171 172 /// Loops with a known constant trip count below this number are vectorized only 173 /// if no scalar iteration overheads are incurred. 174 static cl::opt<unsigned> TinyTripCountVectorThreshold( 175 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 176 cl::desc("Loops with a constant trip count that is smaller than this " 177 "value are vectorized only if no scalar iteration overheads " 178 "are incurred.")); 179 180 static cl::opt<bool> MaximizeBandwidth( 181 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 182 cl::desc("Maximize bandwidth when selecting vectorization factor which " 183 "will be determined by the smallest type in loop.")); 184 185 static cl::opt<bool> EnableInterleavedMemAccesses( 186 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 187 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 188 189 /// An interleave-group may need masking if it resides in a block that needs 190 /// predication, or in order to mask away gaps. 191 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 192 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 193 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 194 195 /// We don't interleave loops with a known constant trip count below this 196 /// number. 197 static const unsigned TinyTripCountInterleaveThreshold = 128; 198 199 static cl::opt<unsigned> ForceTargetNumScalarRegs( 200 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 201 cl::desc("A flag that overrides the target's number of scalar registers.")); 202 203 static cl::opt<unsigned> ForceTargetNumVectorRegs( 204 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 205 cl::desc("A flag that overrides the target's number of vector registers.")); 206 207 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 208 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 209 cl::desc("A flag that overrides the target's max interleave factor for " 210 "scalar loops.")); 211 212 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 213 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 214 cl::desc("A flag that overrides the target's max interleave factor for " 215 "vectorized loops.")); 216 217 static cl::opt<unsigned> ForceTargetInstructionCost( 218 "force-target-instruction-cost", cl::init(0), cl::Hidden, 219 cl::desc("A flag that overrides the target's expected cost for " 220 "an instruction to a single constant value. Mostly " 221 "useful for getting consistent testing.")); 222 223 static cl::opt<unsigned> SmallLoopCost( 224 "small-loop-cost", cl::init(20), cl::Hidden, 225 cl::desc( 226 "The cost of a loop that is considered 'small' by the interleaver.")); 227 228 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 229 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 230 cl::desc("Enable the use of the block frequency analysis to access PGO " 231 "heuristics minimizing code growth in cold regions and being more " 232 "aggressive in hot regions.")); 233 234 // Runtime interleave loops for load/store throughput. 235 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 236 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 237 cl::desc( 238 "Enable runtime interleaving until load/store ports are saturated")); 239 240 /// The number of stores in a loop that are allowed to need predication. 241 static cl::opt<unsigned> NumberOfStoresToPredicate( 242 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 243 cl::desc("Max number of stores to be predicated behind an if.")); 244 245 static cl::opt<bool> EnableIndVarRegisterHeur( 246 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 247 cl::desc("Count the induction variable only once when interleaving")); 248 249 static cl::opt<bool> EnableCondStoresVectorization( 250 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 251 cl::desc("Enable if predication of stores during vectorization.")); 252 253 static cl::opt<unsigned> MaxNestedScalarReductionIC( 254 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 255 cl::desc("The maximum interleave count to use when interleaving a scalar " 256 "reduction in a nested loop.")); 257 258 cl::opt<bool> EnableVPlanNativePath( 259 "enable-vplan-native-path", cl::init(false), cl::Hidden, 260 cl::desc("Enable VPlan-native vectorization path with " 261 "support for outer loop vectorization.")); 262 263 // FIXME: Remove this switch once we have divergence analysis. Currently we 264 // assume divergent non-backedge branches when this switch is true. 265 cl::opt<bool> EnableVPlanPredication( 266 "enable-vplan-predication", cl::init(false), cl::Hidden, 267 cl::desc("Enable VPlan-native vectorization path predicator with " 268 "support for outer loop vectorization.")); 269 270 // This flag enables the stress testing of the VPlan H-CFG construction in the 271 // VPlan-native vectorization path. It must be used in conjuction with 272 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 273 // verification of the H-CFGs built. 274 static cl::opt<bool> VPlanBuildStressTest( 275 "vplan-build-stress-test", cl::init(false), cl::Hidden, 276 cl::desc( 277 "Build VPlan for every supported loop nest in the function and bail " 278 "out right after the build (stress test the VPlan H-CFG construction " 279 "in the VPlan-native vectorization path).")); 280 281 cl::opt<bool> llvm::EnableLoopInterleaving( 282 "interleave-loops", cl::init(true), cl::Hidden, 283 cl::desc("Enable loop interleaving in Loop vectorization passes")); 284 cl::opt<bool> llvm::EnableLoopVectorization( 285 "vectorize-loops", cl::init(true), cl::Hidden, 286 cl::desc("Run the Loop vectorization passes")); 287 288 /// A helper function for converting Scalar types to vector types. 289 /// If the incoming type is void, we return void. If the VF is 1, we return 290 /// the scalar type. 291 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 292 if (Scalar->isVoidTy() || VF == 1) 293 return Scalar; 294 return VectorType::get(Scalar, VF); 295 } 296 297 /// A helper function that returns the type of loaded or stored value. 298 static Type *getMemInstValueType(Value *I) { 299 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 300 "Expected Load or Store instruction"); 301 if (auto *LI = dyn_cast<LoadInst>(I)) 302 return LI->getType(); 303 return cast<StoreInst>(I)->getValueOperand()->getType(); 304 } 305 306 /// A helper function that returns true if the given type is irregular. The 307 /// type is irregular if its allocated size doesn't equal the store size of an 308 /// element of the corresponding vector type at the given vectorization factor. 309 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 310 // Determine if an array of VF elements of type Ty is "bitcast compatible" 311 // with a <VF x Ty> vector. 312 if (VF > 1) { 313 auto *VectorTy = VectorType::get(Ty, VF); 314 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 315 } 316 317 // If the vectorization factor is one, we just check if an array of type Ty 318 // requires padding between elements. 319 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 320 } 321 322 /// A helper function that returns the reciprocal of the block probability of 323 /// predicated blocks. If we return X, we are assuming the predicated block 324 /// will execute once for every X iterations of the loop header. 325 /// 326 /// TODO: We should use actual block probability here, if available. Currently, 327 /// we always assume predicated blocks have a 50% chance of executing. 328 static unsigned getReciprocalPredBlockProb() { return 2; } 329 330 /// A helper function that adds a 'fast' flag to floating-point operations. 331 static Value *addFastMathFlag(Value *V) { 332 if (isa<FPMathOperator>(V)) 333 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 334 return V; 335 } 336 337 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 338 if (isa<FPMathOperator>(V)) 339 cast<Instruction>(V)->setFastMathFlags(FMF); 340 return V; 341 } 342 343 /// A helper function that returns an integer or floating-point constant with 344 /// value C. 345 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 346 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 347 : ConstantFP::get(Ty, C); 348 } 349 350 namespace llvm { 351 352 /// InnerLoopVectorizer vectorizes loops which contain only one basic 353 /// block to a specified vectorization factor (VF). 354 /// This class performs the widening of scalars into vectors, or multiple 355 /// scalars. This class also implements the following features: 356 /// * It inserts an epilogue loop for handling loops that don't have iteration 357 /// counts that are known to be a multiple of the vectorization factor. 358 /// * It handles the code generation for reduction variables. 359 /// * Scalarization (implementation using scalars) of un-vectorizable 360 /// instructions. 361 /// InnerLoopVectorizer does not perform any vectorization-legality 362 /// checks, and relies on the caller to check for the different legality 363 /// aspects. The InnerLoopVectorizer relies on the 364 /// LoopVectorizationLegality class to provide information about the induction 365 /// and reduction variables that were found to a given vectorization factor. 366 class InnerLoopVectorizer { 367 public: 368 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 369 LoopInfo *LI, DominatorTree *DT, 370 const TargetLibraryInfo *TLI, 371 const TargetTransformInfo *TTI, AssumptionCache *AC, 372 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 373 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 374 LoopVectorizationCostModel *CM) 375 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 376 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 377 Builder(PSE.getSE()->getContext()), 378 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 379 virtual ~InnerLoopVectorizer() = default; 380 381 /// Create a new empty loop. Unlink the old loop and connect the new one. 382 /// Return the pre-header block of the new loop. 383 BasicBlock *createVectorizedLoopSkeleton(); 384 385 /// Widen a single instruction within the innermost loop. 386 void widenInstruction(Instruction &I); 387 388 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 389 void fixVectorizedLoop(); 390 391 // Return true if any runtime check is added. 392 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 393 394 /// A type for vectorized values in the new loop. Each value from the 395 /// original loop, when vectorized, is represented by UF vector values in the 396 /// new unrolled loop, where UF is the unroll factor. 397 using VectorParts = SmallVector<Value *, 2>; 398 399 /// Vectorize a single PHINode in a block. This method handles the induction 400 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 401 /// arbitrary length vectors. 402 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 403 404 /// A helper function to scalarize a single Instruction in the innermost loop. 405 /// Generates a sequence of scalar instances for each lane between \p MinLane 406 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 407 /// inclusive.. 408 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 409 bool IfPredicateInstr); 410 411 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 412 /// is provided, the integer induction variable will first be truncated to 413 /// the corresponding type. 414 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 415 416 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 417 /// vector or scalar value on-demand if one is not yet available. When 418 /// vectorizing a loop, we visit the definition of an instruction before its 419 /// uses. When visiting the definition, we either vectorize or scalarize the 420 /// instruction, creating an entry for it in the corresponding map. (In some 421 /// cases, such as induction variables, we will create both vector and scalar 422 /// entries.) Then, as we encounter uses of the definition, we derive values 423 /// for each scalar or vector use unless such a value is already available. 424 /// For example, if we scalarize a definition and one of its uses is vector, 425 /// we build the required vector on-demand with an insertelement sequence 426 /// when visiting the use. Otherwise, if the use is scalar, we can use the 427 /// existing scalar definition. 428 /// 429 /// Return a value in the new loop corresponding to \p V from the original 430 /// loop at unroll index \p Part. If the value has already been vectorized, 431 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 432 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 433 /// a new vector value on-demand by inserting the scalar values into a vector 434 /// with an insertelement sequence. If the value has been neither vectorized 435 /// nor scalarized, it must be loop invariant, so we simply broadcast the 436 /// value into a vector. 437 Value *getOrCreateVectorValue(Value *V, unsigned Part); 438 439 /// Return a value in the new loop corresponding to \p V from the original 440 /// loop at unroll and vector indices \p Instance. If the value has been 441 /// vectorized but not scalarized, the necessary extractelement instruction 442 /// will be generated. 443 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 444 445 /// Construct the vector value of a scalarized value \p V one lane at a time. 446 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 447 448 /// Try to vectorize the interleaved access group that \p Instr belongs to, 449 /// optionally masking the vector operations if \p BlockInMask is non-null. 450 void vectorizeInterleaveGroup(Instruction *Instr, 451 VectorParts *BlockInMask = nullptr); 452 453 /// Vectorize Load and Store instructions, optionally masking the vector 454 /// operations if \p BlockInMask is non-null. 455 void vectorizeMemoryInstruction(Instruction *Instr, 456 VectorParts *BlockInMask = nullptr); 457 458 /// Set the debug location in the builder using the debug location in 459 /// the instruction. 460 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 461 462 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 463 void fixNonInductionPHIs(void); 464 465 protected: 466 friend class LoopVectorizationPlanner; 467 468 /// A small list of PHINodes. 469 using PhiVector = SmallVector<PHINode *, 4>; 470 471 /// A type for scalarized values in the new loop. Each value from the 472 /// original loop, when scalarized, is represented by UF x VF scalar values 473 /// in the new unrolled loop, where UF is the unroll factor and VF is the 474 /// vectorization factor. 475 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 476 477 /// Set up the values of the IVs correctly when exiting the vector loop. 478 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 479 Value *CountRoundDown, Value *EndValue, 480 BasicBlock *MiddleBlock); 481 482 /// Create a new induction variable inside L. 483 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 484 Value *Step, Instruction *DL); 485 486 /// Handle all cross-iteration phis in the header. 487 void fixCrossIterationPHIs(); 488 489 /// Fix a first-order recurrence. This is the second phase of vectorizing 490 /// this phi node. 491 void fixFirstOrderRecurrence(PHINode *Phi); 492 493 /// Fix a reduction cross-iteration phi. This is the second phase of 494 /// vectorizing this phi node. 495 void fixReduction(PHINode *Phi); 496 497 /// The Loop exit block may have single value PHI nodes with some 498 /// incoming value. While vectorizing we only handled real values 499 /// that were defined inside the loop and we should have one value for 500 /// each predecessor of its parent basic block. See PR14725. 501 void fixLCSSAPHIs(); 502 503 /// Iteratively sink the scalarized operands of a predicated instruction into 504 /// the block that was created for it. 505 void sinkScalarOperands(Instruction *PredInst); 506 507 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 508 /// represented as. 509 void truncateToMinimalBitwidths(); 510 511 /// Insert the new loop to the loop hierarchy and pass manager 512 /// and update the analysis passes. 513 void updateAnalysis(); 514 515 /// Create a broadcast instruction. This method generates a broadcast 516 /// instruction (shuffle) for loop invariant values and for the induction 517 /// value. If this is the induction variable then we extend it to N, N+1, ... 518 /// this is needed because each iteration in the loop corresponds to a SIMD 519 /// element. 520 virtual Value *getBroadcastInstrs(Value *V); 521 522 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 523 /// to each vector element of Val. The sequence starts at StartIndex. 524 /// \p Opcode is relevant for FP induction variable. 525 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 526 Instruction::BinaryOps Opcode = 527 Instruction::BinaryOpsEnd); 528 529 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 530 /// variable on which to base the steps, \p Step is the size of the step, and 531 /// \p EntryVal is the value from the original loop that maps to the steps. 532 /// Note that \p EntryVal doesn't have to be an induction variable - it 533 /// can also be a truncate instruction. 534 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 535 const InductionDescriptor &ID); 536 537 /// Create a vector induction phi node based on an existing scalar one. \p 538 /// EntryVal is the value from the original loop that maps to the vector phi 539 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 540 /// truncate instruction, instead of widening the original IV, we widen a 541 /// version of the IV truncated to \p EntryVal's type. 542 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 543 Value *Step, Instruction *EntryVal); 544 545 /// Returns true if an instruction \p I should be scalarized instead of 546 /// vectorized for the chosen vectorization factor. 547 bool shouldScalarizeInstruction(Instruction *I) const; 548 549 /// Returns true if we should generate a scalar version of \p IV. 550 bool needsScalarInduction(Instruction *IV) const; 551 552 /// If there is a cast involved in the induction variable \p ID, which should 553 /// be ignored in the vectorized loop body, this function records the 554 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 555 /// cast. We had already proved that the casted Phi is equal to the uncasted 556 /// Phi in the vectorized loop (under a runtime guard), and therefore 557 /// there is no need to vectorize the cast - the same value can be used in the 558 /// vector loop for both the Phi and the cast. 559 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 560 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 561 /// 562 /// \p EntryVal is the value from the original loop that maps to the vector 563 /// phi node and is used to distinguish what is the IV currently being 564 /// processed - original one (if \p EntryVal is a phi corresponding to the 565 /// original IV) or the "newly-created" one based on the proof mentioned above 566 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 567 /// latter case \p EntryVal is a TruncInst and we must not record anything for 568 /// that IV, but it's error-prone to expect callers of this routine to care 569 /// about that, hence this explicit parameter. 570 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 571 const Instruction *EntryVal, 572 Value *VectorLoopValue, 573 unsigned Part, 574 unsigned Lane = UINT_MAX); 575 576 /// Generate a shuffle sequence that will reverse the vector Vec. 577 virtual Value *reverseVector(Value *Vec); 578 579 /// Returns (and creates if needed) the original loop trip count. 580 Value *getOrCreateTripCount(Loop *NewLoop); 581 582 /// Returns (and creates if needed) the trip count of the widened loop. 583 Value *getOrCreateVectorTripCount(Loop *NewLoop); 584 585 /// Returns a bitcasted value to the requested vector type. 586 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 587 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 588 const DataLayout &DL); 589 590 /// Emit a bypass check to see if the vector trip count is zero, including if 591 /// it overflows. 592 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 593 594 /// Emit a bypass check to see if all of the SCEV assumptions we've 595 /// had to make are correct. 596 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 597 598 /// Emit bypass checks to check any memory assumptions we may have made. 599 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 600 601 /// Compute the transformed value of Index at offset StartValue using step 602 /// StepValue. 603 /// For integer induction, returns StartValue + Index * StepValue. 604 /// For pointer induction, returns StartValue[Index * StepValue]. 605 /// FIXME: The newly created binary instructions should contain nsw/nuw 606 /// flags, which can be found from the original scalar operations. 607 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 608 const DataLayout &DL, 609 const InductionDescriptor &ID) const; 610 611 /// Add additional metadata to \p To that was not present on \p Orig. 612 /// 613 /// Currently this is used to add the noalias annotations based on the 614 /// inserted memchecks. Use this for instructions that are *cloned* into the 615 /// vector loop. 616 void addNewMetadata(Instruction *To, const Instruction *Orig); 617 618 /// Add metadata from one instruction to another. 619 /// 620 /// This includes both the original MDs from \p From and additional ones (\see 621 /// addNewMetadata). Use this for *newly created* instructions in the vector 622 /// loop. 623 void addMetadata(Instruction *To, Instruction *From); 624 625 /// Similar to the previous function but it adds the metadata to a 626 /// vector of instructions. 627 void addMetadata(ArrayRef<Value *> To, Instruction *From); 628 629 /// The original loop. 630 Loop *OrigLoop; 631 632 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 633 /// dynamic knowledge to simplify SCEV expressions and converts them to a 634 /// more usable form. 635 PredicatedScalarEvolution &PSE; 636 637 /// Loop Info. 638 LoopInfo *LI; 639 640 /// Dominator Tree. 641 DominatorTree *DT; 642 643 /// Alias Analysis. 644 AliasAnalysis *AA; 645 646 /// Target Library Info. 647 const TargetLibraryInfo *TLI; 648 649 /// Target Transform Info. 650 const TargetTransformInfo *TTI; 651 652 /// Assumption Cache. 653 AssumptionCache *AC; 654 655 /// Interface to emit optimization remarks. 656 OptimizationRemarkEmitter *ORE; 657 658 /// LoopVersioning. It's only set up (non-null) if memchecks were 659 /// used. 660 /// 661 /// This is currently only used to add no-alias metadata based on the 662 /// memchecks. The actually versioning is performed manually. 663 std::unique_ptr<LoopVersioning> LVer; 664 665 /// The vectorization SIMD factor to use. Each vector will have this many 666 /// vector elements. 667 unsigned VF; 668 669 /// The vectorization unroll factor to use. Each scalar is vectorized to this 670 /// many different vector instructions. 671 unsigned UF; 672 673 /// The builder that we use 674 IRBuilder<> Builder; 675 676 // --- Vectorization state --- 677 678 /// The vector-loop preheader. 679 BasicBlock *LoopVectorPreHeader; 680 681 /// The scalar-loop preheader. 682 BasicBlock *LoopScalarPreHeader; 683 684 /// Middle Block between the vector and the scalar. 685 BasicBlock *LoopMiddleBlock; 686 687 /// The ExitBlock of the scalar loop. 688 BasicBlock *LoopExitBlock; 689 690 /// The vector loop body. 691 BasicBlock *LoopVectorBody; 692 693 /// The scalar loop body. 694 BasicBlock *LoopScalarBody; 695 696 /// A list of all bypass blocks. The first block is the entry of the loop. 697 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 698 699 /// The new Induction variable which was added to the new block. 700 PHINode *Induction = nullptr; 701 702 /// The induction variable of the old basic block. 703 PHINode *OldInduction = nullptr; 704 705 /// Maps values from the original loop to their corresponding values in the 706 /// vectorized loop. A key value can map to either vector values, scalar 707 /// values or both kinds of values, depending on whether the key was 708 /// vectorized and scalarized. 709 VectorizerValueMap VectorLoopValueMap; 710 711 /// Store instructions that were predicated. 712 SmallVector<Instruction *, 4> PredicatedInstructions; 713 714 /// Trip count of the original loop. 715 Value *TripCount = nullptr; 716 717 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 718 Value *VectorTripCount = nullptr; 719 720 /// The legality analysis. 721 LoopVectorizationLegality *Legal; 722 723 /// The profitablity analysis. 724 LoopVectorizationCostModel *Cost; 725 726 // Record whether runtime checks are added. 727 bool AddedSafetyChecks = false; 728 729 // Holds the end values for each induction variable. We save the end values 730 // so we can later fix-up the external users of the induction variables. 731 DenseMap<PHINode *, Value *> IVEndValues; 732 733 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 734 // fixed up at the end of vector code generation. 735 SmallVector<PHINode *, 8> OrigPHIsToFix; 736 }; 737 738 class InnerLoopUnroller : public InnerLoopVectorizer { 739 public: 740 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 741 LoopInfo *LI, DominatorTree *DT, 742 const TargetLibraryInfo *TLI, 743 const TargetTransformInfo *TTI, AssumptionCache *AC, 744 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 745 LoopVectorizationLegality *LVL, 746 LoopVectorizationCostModel *CM) 747 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 748 UnrollFactor, LVL, CM) {} 749 750 private: 751 Value *getBroadcastInstrs(Value *V) override; 752 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 753 Instruction::BinaryOps Opcode = 754 Instruction::BinaryOpsEnd) override; 755 Value *reverseVector(Value *Vec) override; 756 }; 757 758 } // end namespace llvm 759 760 /// Look for a meaningful debug location on the instruction or it's 761 /// operands. 762 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 763 if (!I) 764 return I; 765 766 DebugLoc Empty; 767 if (I->getDebugLoc() != Empty) 768 return I; 769 770 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 771 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 772 if (OpInst->getDebugLoc() != Empty) 773 return OpInst; 774 } 775 776 return I; 777 } 778 779 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 780 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 781 const DILocation *DIL = Inst->getDebugLoc(); 782 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 783 !isa<DbgInfoIntrinsic>(Inst)) { 784 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 785 if (NewDIL) 786 B.SetCurrentDebugLocation(NewDIL.getValue()); 787 else 788 LLVM_DEBUG(dbgs() 789 << "Failed to create new discriminator: " 790 << DIL->getFilename() << " Line: " << DIL->getLine()); 791 } 792 else 793 B.SetCurrentDebugLocation(DIL); 794 } else 795 B.SetCurrentDebugLocation(DebugLoc()); 796 } 797 798 #ifndef NDEBUG 799 /// \return string containing a file name and a line # for the given loop. 800 static std::string getDebugLocString(const Loop *L) { 801 std::string Result; 802 if (L) { 803 raw_string_ostream OS(Result); 804 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 805 LoopDbgLoc.print(OS); 806 else 807 // Just print the module name. 808 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 809 OS.flush(); 810 } 811 return Result; 812 } 813 #endif 814 815 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 816 const Instruction *Orig) { 817 // If the loop was versioned with memchecks, add the corresponding no-alias 818 // metadata. 819 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 820 LVer->annotateInstWithNoAlias(To, Orig); 821 } 822 823 void InnerLoopVectorizer::addMetadata(Instruction *To, 824 Instruction *From) { 825 propagateMetadata(To, From); 826 addNewMetadata(To, From); 827 } 828 829 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 830 Instruction *From) { 831 for (Value *V : To) { 832 if (Instruction *I = dyn_cast<Instruction>(V)) 833 addMetadata(I, From); 834 } 835 } 836 837 namespace llvm { 838 839 /// LoopVectorizationCostModel - estimates the expected speedups due to 840 /// vectorization. 841 /// In many cases vectorization is not profitable. This can happen because of 842 /// a number of reasons. In this class we mainly attempt to predict the 843 /// expected speedup/slowdowns due to the supported instruction set. We use the 844 /// TargetTransformInfo to query the different backends for the cost of 845 /// different operations. 846 class LoopVectorizationCostModel { 847 public: 848 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 849 LoopInfo *LI, LoopVectorizationLegality *Legal, 850 const TargetTransformInfo &TTI, 851 const TargetLibraryInfo *TLI, DemandedBits *DB, 852 AssumptionCache *AC, 853 OptimizationRemarkEmitter *ORE, const Function *F, 854 const LoopVectorizeHints *Hints, 855 InterleavedAccessInfo &IAI) 856 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 857 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} 858 859 /// \return An upper bound for the vectorization factor, or None if 860 /// vectorization and interleaving should be avoided up front. 861 Optional<unsigned> computeMaxVF(bool OptForSize); 862 863 /// \return The most profitable vectorization factor and the cost of that VF. 864 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 865 /// then this vectorization factor will be selected if vectorization is 866 /// possible. 867 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 868 869 /// Setup cost-based decisions for user vectorization factor. 870 void selectUserVectorizationFactor(unsigned UserVF) { 871 collectUniformsAndScalars(UserVF); 872 collectInstsToScalarize(UserVF); 873 } 874 875 /// \return The size (in bits) of the smallest and widest types in the code 876 /// that needs to be vectorized. We ignore values that remain scalar such as 877 /// 64 bit loop indices. 878 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 879 880 /// \return The desired interleave count. 881 /// If interleave count has been specified by metadata it will be returned. 882 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 883 /// are the selected vectorization factor and the cost of the selected VF. 884 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 885 unsigned LoopCost); 886 887 /// Memory access instruction may be vectorized in more than one way. 888 /// Form of instruction after vectorization depends on cost. 889 /// This function takes cost-based decisions for Load/Store instructions 890 /// and collects them in a map. This decisions map is used for building 891 /// the lists of loop-uniform and loop-scalar instructions. 892 /// The calculated cost is saved with widening decision in order to 893 /// avoid redundant calculations. 894 void setCostBasedWideningDecision(unsigned VF); 895 896 /// A struct that represents some properties of the register usage 897 /// of a loop. 898 struct RegisterUsage { 899 /// Holds the number of loop invariant values that are used in the loop. 900 unsigned LoopInvariantRegs; 901 902 /// Holds the maximum number of concurrent live intervals in the loop. 903 unsigned MaxLocalUsers; 904 }; 905 906 /// \return Returns information about the register usages of the loop for the 907 /// given vectorization factors. 908 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 909 910 /// Collect values we want to ignore in the cost model. 911 void collectValuesToIgnore(); 912 913 /// \returns The smallest bitwidth each instruction can be represented with. 914 /// The vector equivalents of these instructions should be truncated to this 915 /// type. 916 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 917 return MinBWs; 918 } 919 920 /// \returns True if it is more profitable to scalarize instruction \p I for 921 /// vectorization factor \p VF. 922 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 923 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 924 925 // Cost model is not run in the VPlan-native path - return conservative 926 // result until this changes. 927 if (EnableVPlanNativePath) 928 return false; 929 930 auto Scalars = InstsToScalarize.find(VF); 931 assert(Scalars != InstsToScalarize.end() && 932 "VF not yet analyzed for scalarization profitability"); 933 return Scalars->second.find(I) != Scalars->second.end(); 934 } 935 936 /// Returns true if \p I is known to be uniform after vectorization. 937 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 938 if (VF == 1) 939 return true; 940 941 // Cost model is not run in the VPlan-native path - return conservative 942 // result until this changes. 943 if (EnableVPlanNativePath) 944 return false; 945 946 auto UniformsPerVF = Uniforms.find(VF); 947 assert(UniformsPerVF != Uniforms.end() && 948 "VF not yet analyzed for uniformity"); 949 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 950 } 951 952 /// Returns true if \p I is known to be scalar after vectorization. 953 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 954 if (VF == 1) 955 return true; 956 957 // Cost model is not run in the VPlan-native path - return conservative 958 // result until this changes. 959 if (EnableVPlanNativePath) 960 return false; 961 962 auto ScalarsPerVF = Scalars.find(VF); 963 assert(ScalarsPerVF != Scalars.end() && 964 "Scalar values are not calculated for VF"); 965 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 966 } 967 968 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 969 /// for vectorization factor \p VF. 970 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 971 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 972 !isProfitableToScalarize(I, VF) && 973 !isScalarAfterVectorization(I, VF); 974 } 975 976 /// Decision that was taken during cost calculation for memory instruction. 977 enum InstWidening { 978 CM_Unknown, 979 CM_Widen, // For consecutive accesses with stride +1. 980 CM_Widen_Reverse, // For consecutive accesses with stride -1. 981 CM_Interleave, 982 CM_GatherScatter, 983 CM_Scalarize 984 }; 985 986 /// Save vectorization decision \p W and \p Cost taken by the cost model for 987 /// instruction \p I and vector width \p VF. 988 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 989 unsigned Cost) { 990 assert(VF >= 2 && "Expected VF >=2"); 991 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 992 } 993 994 /// Save vectorization decision \p W and \p Cost taken by the cost model for 995 /// interleaving group \p Grp and vector width \p VF. 996 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 997 InstWidening W, unsigned Cost) { 998 assert(VF >= 2 && "Expected VF >=2"); 999 /// Broadcast this decicion to all instructions inside the group. 1000 /// But the cost will be assigned to one instruction only. 1001 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1002 if (auto *I = Grp->getMember(i)) { 1003 if (Grp->getInsertPos() == I) 1004 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1005 else 1006 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1007 } 1008 } 1009 } 1010 1011 /// Return the cost model decision for the given instruction \p I and vector 1012 /// width \p VF. Return CM_Unknown if this instruction did not pass 1013 /// through the cost modeling. 1014 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1015 assert(VF >= 2 && "Expected VF >=2"); 1016 1017 // Cost model is not run in the VPlan-native path - return conservative 1018 // result until this changes. 1019 if (EnableVPlanNativePath) 1020 return CM_GatherScatter; 1021 1022 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1023 auto Itr = WideningDecisions.find(InstOnVF); 1024 if (Itr == WideningDecisions.end()) 1025 return CM_Unknown; 1026 return Itr->second.first; 1027 } 1028 1029 /// Return the vectorization cost for the given instruction \p I and vector 1030 /// width \p VF. 1031 unsigned getWideningCost(Instruction *I, unsigned VF) { 1032 assert(VF >= 2 && "Expected VF >=2"); 1033 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1034 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1035 "The cost is not calculated"); 1036 return WideningDecisions[InstOnVF].second; 1037 } 1038 1039 /// Return True if instruction \p I is an optimizable truncate whose operand 1040 /// is an induction variable. Such a truncate will be removed by adding a new 1041 /// induction variable with the destination type. 1042 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1043 // If the instruction is not a truncate, return false. 1044 auto *Trunc = dyn_cast<TruncInst>(I); 1045 if (!Trunc) 1046 return false; 1047 1048 // Get the source and destination types of the truncate. 1049 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1050 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1051 1052 // If the truncate is free for the given types, return false. Replacing a 1053 // free truncate with an induction variable would add an induction variable 1054 // update instruction to each iteration of the loop. We exclude from this 1055 // check the primary induction variable since it will need an update 1056 // instruction regardless. 1057 Value *Op = Trunc->getOperand(0); 1058 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1059 return false; 1060 1061 // If the truncated value is not an induction variable, return false. 1062 return Legal->isInductionPhi(Op); 1063 } 1064 1065 /// Collects the instructions to scalarize for each predicated instruction in 1066 /// the loop. 1067 void collectInstsToScalarize(unsigned VF); 1068 1069 /// Collect Uniform and Scalar values for the given \p VF. 1070 /// The sets depend on CM decision for Load/Store instructions 1071 /// that may be vectorized as interleave, gather-scatter or scalarized. 1072 void collectUniformsAndScalars(unsigned VF) { 1073 // Do the analysis once. 1074 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1075 return; 1076 setCostBasedWideningDecision(VF); 1077 collectLoopUniforms(VF); 1078 collectLoopScalars(VF); 1079 } 1080 1081 /// Returns true if the target machine supports masked store operation 1082 /// for the given \p DataType and kind of access to \p Ptr. 1083 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1084 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1085 } 1086 1087 /// Returns true if the target machine supports masked load operation 1088 /// for the given \p DataType and kind of access to \p Ptr. 1089 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1090 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1091 } 1092 1093 /// Returns true if the target machine supports masked scatter operation 1094 /// for the given \p DataType. 1095 bool isLegalMaskedScatter(Type *DataType) { 1096 return TTI.isLegalMaskedScatter(DataType); 1097 } 1098 1099 /// Returns true if the target machine supports masked gather operation 1100 /// for the given \p DataType. 1101 bool isLegalMaskedGather(Type *DataType) { 1102 return TTI.isLegalMaskedGather(DataType); 1103 } 1104 1105 /// Returns true if the target machine can represent \p V as a masked gather 1106 /// or scatter operation. 1107 bool isLegalGatherOrScatter(Value *V) { 1108 bool LI = isa<LoadInst>(V); 1109 bool SI = isa<StoreInst>(V); 1110 if (!LI && !SI) 1111 return false; 1112 auto *Ty = getMemInstValueType(V); 1113 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1114 } 1115 1116 /// Returns true if \p I is an instruction that will be scalarized with 1117 /// predication. Such instructions include conditional stores and 1118 /// instructions that may divide by zero. 1119 /// If a non-zero VF has been calculated, we check if I will be scalarized 1120 /// predication for that VF. 1121 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1122 1123 // Returns true if \p I is an instruction that will be predicated either 1124 // through scalar predication or masked load/store or masked gather/scatter. 1125 // Superset of instructions that return true for isScalarWithPredication. 1126 bool isPredicatedInst(Instruction *I) { 1127 if (!blockNeedsPredication(I->getParent())) 1128 return false; 1129 // Loads and stores that need some form of masked operation are predicated 1130 // instructions. 1131 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1132 return Legal->isMaskRequired(I); 1133 return isScalarWithPredication(I); 1134 } 1135 1136 /// Returns true if \p I is a memory instruction with consecutive memory 1137 /// access that can be widened. 1138 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1139 1140 /// Returns true if \p I is a memory instruction in an interleaved-group 1141 /// of memory accesses that can be vectorized with wide vector loads/stores 1142 /// and shuffles. 1143 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1144 1145 /// Check if \p Instr belongs to any interleaved access group. 1146 bool isAccessInterleaved(Instruction *Instr) { 1147 return InterleaveInfo.isInterleaved(Instr); 1148 } 1149 1150 /// Get the interleaved access group that \p Instr belongs to. 1151 const InterleaveGroup<Instruction> * 1152 getInterleavedAccessGroup(Instruction *Instr) { 1153 return InterleaveInfo.getInterleaveGroup(Instr); 1154 } 1155 1156 /// Returns true if an interleaved group requires a scalar iteration 1157 /// to handle accesses with gaps, and there is nothing preventing us from 1158 /// creating a scalar epilogue. 1159 bool requiresScalarEpilogue() const { 1160 return IsScalarEpilogueAllowed && InterleaveInfo.requiresScalarEpilogue(); 1161 } 1162 1163 /// Returns true if a scalar epilogue is not allowed due to optsize. 1164 bool isScalarEpilogueAllowed() const { return IsScalarEpilogueAllowed; } 1165 1166 /// Returns true if all loop blocks should be masked to fold tail loop. 1167 bool foldTailByMasking() const { return FoldTailByMasking; } 1168 1169 bool blockNeedsPredication(BasicBlock *BB) { 1170 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1171 } 1172 1173 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1174 /// with factor VF. Return the cost of the instruction, including 1175 /// scalarization overhead if it's needed. 1176 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1177 1178 /// Estimate cost of a call instruction CI if it were vectorized with factor 1179 /// VF. Return the cost of the instruction, including scalarization overhead 1180 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1181 /// scalarized - 1182 // i.e. either vector version isn't available, or is too expensive. 1183 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1184 1185 private: 1186 unsigned NumPredStores = 0; 1187 1188 /// \return An upper bound for the vectorization factor, larger than zero. 1189 /// One is returned if vectorization should best be avoided due to cost. 1190 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 1191 1192 /// The vectorization cost is a combination of the cost itself and a boolean 1193 /// indicating whether any of the contributing operations will actually 1194 /// operate on 1195 /// vector values after type legalization in the backend. If this latter value 1196 /// is 1197 /// false, then all operations will be scalarized (i.e. no vectorization has 1198 /// actually taken place). 1199 using VectorizationCostTy = std::pair<unsigned, bool>; 1200 1201 /// Returns the expected execution cost. The unit of the cost does 1202 /// not matter because we use the 'cost' units to compare different 1203 /// vector widths. The cost that is returned is *not* normalized by 1204 /// the factor width. 1205 VectorizationCostTy expectedCost(unsigned VF); 1206 1207 /// Returns the execution time cost of an instruction for a given vector 1208 /// width. Vector width of one means scalar. 1209 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1210 1211 /// The cost-computation logic from getInstructionCost which provides 1212 /// the vector type as an output parameter. 1213 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1214 1215 /// Calculate vectorization cost of memory instruction \p I. 1216 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1217 1218 /// The cost computation for scalarized memory instruction. 1219 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1220 1221 /// The cost computation for interleaving group of memory instructions. 1222 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1223 1224 /// The cost computation for Gather/Scatter instruction. 1225 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1226 1227 /// The cost computation for widening instruction \p I with consecutive 1228 /// memory access. 1229 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1230 1231 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1232 /// Load: scalar load + broadcast. 1233 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1234 /// element) 1235 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1236 1237 /// Estimate the overhead of scalarizing an instruction. This is a 1238 /// convenience wrapper for the type-based getScalarizationOverhead API. 1239 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1240 1241 /// Returns whether the instruction is a load or store and will be a emitted 1242 /// as a vector operation. 1243 bool isConsecutiveLoadOrStore(Instruction *I); 1244 1245 /// Returns true if an artificially high cost for emulated masked memrefs 1246 /// should be used. 1247 bool useEmulatedMaskMemRefHack(Instruction *I); 1248 1249 /// Create an analysis remark that explains why vectorization failed 1250 /// 1251 /// \p RemarkName is the identifier for the remark. \return the remark object 1252 /// that can be streamed to. 1253 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1254 return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1255 RemarkName, TheLoop); 1256 } 1257 1258 /// Map of scalar integer values to the smallest bitwidth they can be legally 1259 /// represented as. The vector equivalents of these values should be truncated 1260 /// to this type. 1261 MapVector<Instruction *, uint64_t> MinBWs; 1262 1263 /// A type representing the costs for instructions if they were to be 1264 /// scalarized rather than vectorized. The entries are Instruction-Cost 1265 /// pairs. 1266 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1267 1268 /// A set containing all BasicBlocks that are known to present after 1269 /// vectorization as a predicated block. 1270 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1271 1272 /// Records whether it is allowed to have the original scalar loop execute at 1273 /// least once. This may be needed as a fallback loop in case runtime 1274 /// aliasing/dependence checks fail, or to handle the tail/remainder 1275 /// iterations when the trip count is unknown or doesn't divide by the VF, 1276 /// or as a peel-loop to handle gaps in interleave-groups. 1277 /// Under optsize and when the trip count is very small we don't allow any 1278 /// iterations to execute in the scalar loop. 1279 bool IsScalarEpilogueAllowed = true; 1280 1281 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1282 bool FoldTailByMasking = false; 1283 1284 /// A map holding scalar costs for different vectorization factors. The 1285 /// presence of a cost for an instruction in the mapping indicates that the 1286 /// instruction will be scalarized when vectorizing with the associated 1287 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1288 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1289 1290 /// Holds the instructions known to be uniform after vectorization. 1291 /// The data is collected per VF. 1292 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1293 1294 /// Holds the instructions known to be scalar after vectorization. 1295 /// The data is collected per VF. 1296 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1297 1298 /// Holds the instructions (address computations) that are forced to be 1299 /// scalarized. 1300 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1301 1302 /// Returns the expected difference in cost from scalarizing the expression 1303 /// feeding a predicated instruction \p PredInst. The instructions to 1304 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1305 /// non-negative return value implies the expression will be scalarized. 1306 /// Currently, only single-use chains are considered for scalarization. 1307 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1308 unsigned VF); 1309 1310 /// Collect the instructions that are uniform after vectorization. An 1311 /// instruction is uniform if we represent it with a single scalar value in 1312 /// the vectorized loop corresponding to each vector iteration. Examples of 1313 /// uniform instructions include pointer operands of consecutive or 1314 /// interleaved memory accesses. Note that although uniformity implies an 1315 /// instruction will be scalar, the reverse is not true. In general, a 1316 /// scalarized instruction will be represented by VF scalar values in the 1317 /// vectorized loop, each corresponding to an iteration of the original 1318 /// scalar loop. 1319 void collectLoopUniforms(unsigned VF); 1320 1321 /// Collect the instructions that are scalar after vectorization. An 1322 /// instruction is scalar if it is known to be uniform or will be scalarized 1323 /// during vectorization. Non-uniform scalarized instructions will be 1324 /// represented by VF values in the vectorized loop, each corresponding to an 1325 /// iteration of the original scalar loop. 1326 void collectLoopScalars(unsigned VF); 1327 1328 /// Keeps cost model vectorization decision and cost for instructions. 1329 /// Right now it is used for memory instructions only. 1330 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1331 std::pair<InstWidening, unsigned>>; 1332 1333 DecisionList WideningDecisions; 1334 1335 public: 1336 /// The loop that we evaluate. 1337 Loop *TheLoop; 1338 1339 /// Predicated scalar evolution analysis. 1340 PredicatedScalarEvolution &PSE; 1341 1342 /// Loop Info analysis. 1343 LoopInfo *LI; 1344 1345 /// Vectorization legality. 1346 LoopVectorizationLegality *Legal; 1347 1348 /// Vector target information. 1349 const TargetTransformInfo &TTI; 1350 1351 /// Target Library Info. 1352 const TargetLibraryInfo *TLI; 1353 1354 /// Demanded bits analysis. 1355 DemandedBits *DB; 1356 1357 /// Assumption cache. 1358 AssumptionCache *AC; 1359 1360 /// Interface to emit optimization remarks. 1361 OptimizationRemarkEmitter *ORE; 1362 1363 const Function *TheFunction; 1364 1365 /// Loop Vectorize Hint. 1366 const LoopVectorizeHints *Hints; 1367 1368 /// The interleave access information contains groups of interleaved accesses 1369 /// with the same stride and close to each other. 1370 InterleavedAccessInfo &InterleaveInfo; 1371 1372 /// Values to ignore in the cost model. 1373 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1374 1375 /// Values to ignore in the cost model when VF > 1. 1376 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1377 }; 1378 1379 } // end namespace llvm 1380 1381 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1382 // vectorization. The loop needs to be annotated with #pragma omp simd 1383 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1384 // vector length information is not provided, vectorization is not considered 1385 // explicit. Interleave hints are not allowed either. These limitations will be 1386 // relaxed in the future. 1387 // Please, note that we are currently forced to abuse the pragma 'clang 1388 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1389 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1390 // provides *explicit vectorization hints* (LV can bypass legal checks and 1391 // assume that vectorization is legal). However, both hints are implemented 1392 // using the same metadata (llvm.loop.vectorize, processed by 1393 // LoopVectorizeHints). This will be fixed in the future when the native IR 1394 // representation for pragma 'omp simd' is introduced. 1395 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1396 OptimizationRemarkEmitter *ORE) { 1397 assert(!OuterLp->empty() && "This is not an outer loop"); 1398 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1399 1400 // Only outer loops with an explicit vectorization hint are supported. 1401 // Unannotated outer loops are ignored. 1402 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1403 return false; 1404 1405 Function *Fn = OuterLp->getHeader()->getParent(); 1406 if (!Hints.allowVectorization(Fn, OuterLp, 1407 true /*VectorizeOnlyWhenForced*/)) { 1408 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1409 return false; 1410 } 1411 1412 if (Hints.getInterleave() > 1) { 1413 // TODO: Interleave support is future work. 1414 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1415 "outer loops.\n"); 1416 Hints.emitRemarkWithHints(); 1417 return false; 1418 } 1419 1420 return true; 1421 } 1422 1423 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1424 OptimizationRemarkEmitter *ORE, 1425 SmallVectorImpl<Loop *> &V) { 1426 // Collect inner loops and outer loops without irreducible control flow. For 1427 // now, only collect outer loops that have explicit vectorization hints. If we 1428 // are stress testing the VPlan H-CFG construction, we collect the outermost 1429 // loop of every loop nest. 1430 if (L.empty() || VPlanBuildStressTest || 1431 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1432 LoopBlocksRPO RPOT(&L); 1433 RPOT.perform(LI); 1434 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1435 V.push_back(&L); 1436 // TODO: Collect inner loops inside marked outer loops in case 1437 // vectorization fails for the outer loop. Do not invoke 1438 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1439 // already known to be reducible. We can use an inherited attribute for 1440 // that. 1441 return; 1442 } 1443 } 1444 for (Loop *InnerL : L) 1445 collectSupportedLoops(*InnerL, LI, ORE, V); 1446 } 1447 1448 namespace { 1449 1450 /// The LoopVectorize Pass. 1451 struct LoopVectorize : public FunctionPass { 1452 /// Pass identification, replacement for typeid 1453 static char ID; 1454 1455 LoopVectorizePass Impl; 1456 1457 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1458 bool VectorizeOnlyWhenForced = false) 1459 : FunctionPass(ID) { 1460 Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced; 1461 Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced; 1462 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1463 } 1464 1465 bool runOnFunction(Function &F) override { 1466 if (skipFunction(F)) 1467 return false; 1468 1469 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1470 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1471 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1472 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1473 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1474 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1475 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1476 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1477 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1478 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1479 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1480 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1481 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1482 1483 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1484 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1485 1486 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1487 GetLAA, *ORE, PSI); 1488 } 1489 1490 void getAnalysisUsage(AnalysisUsage &AU) const override { 1491 AU.addRequired<AssumptionCacheTracker>(); 1492 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1493 AU.addRequired<DominatorTreeWrapperPass>(); 1494 AU.addRequired<LoopInfoWrapperPass>(); 1495 AU.addRequired<ScalarEvolutionWrapperPass>(); 1496 AU.addRequired<TargetTransformInfoWrapperPass>(); 1497 AU.addRequired<AAResultsWrapperPass>(); 1498 AU.addRequired<LoopAccessLegacyAnalysis>(); 1499 AU.addRequired<DemandedBitsWrapperPass>(); 1500 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1501 1502 // We currently do not preserve loopinfo/dominator analyses with outer loop 1503 // vectorization. Until this is addressed, mark these analyses as preserved 1504 // only for non-VPlan-native path. 1505 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1506 if (!EnableVPlanNativePath) { 1507 AU.addPreserved<LoopInfoWrapperPass>(); 1508 AU.addPreserved<DominatorTreeWrapperPass>(); 1509 } 1510 1511 AU.addPreserved<BasicAAWrapperPass>(); 1512 AU.addPreserved<GlobalsAAWrapperPass>(); 1513 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1514 } 1515 }; 1516 1517 } // end anonymous namespace 1518 1519 //===----------------------------------------------------------------------===// 1520 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1521 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1522 //===----------------------------------------------------------------------===// 1523 1524 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1525 // We need to place the broadcast of invariant variables outside the loop, 1526 // but only if it's proven safe to do so. Else, broadcast will be inside 1527 // vector loop body. 1528 Instruction *Instr = dyn_cast<Instruction>(V); 1529 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1530 (!Instr || 1531 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1532 // Place the code for broadcasting invariant variables in the new preheader. 1533 IRBuilder<>::InsertPointGuard Guard(Builder); 1534 if (SafeToHoist) 1535 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1536 1537 // Broadcast the scalar into all locations in the vector. 1538 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1539 1540 return Shuf; 1541 } 1542 1543 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1544 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1545 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1546 "Expected either an induction phi-node or a truncate of it!"); 1547 Value *Start = II.getStartValue(); 1548 1549 // Construct the initial value of the vector IV in the vector loop preheader 1550 auto CurrIP = Builder.saveIP(); 1551 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1552 if (isa<TruncInst>(EntryVal)) { 1553 assert(Start->getType()->isIntegerTy() && 1554 "Truncation requires an integer type"); 1555 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1556 Step = Builder.CreateTrunc(Step, TruncType); 1557 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1558 } 1559 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1560 Value *SteppedStart = 1561 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1562 1563 // We create vector phi nodes for both integer and floating-point induction 1564 // variables. Here, we determine the kind of arithmetic we will perform. 1565 Instruction::BinaryOps AddOp; 1566 Instruction::BinaryOps MulOp; 1567 if (Step->getType()->isIntegerTy()) { 1568 AddOp = Instruction::Add; 1569 MulOp = Instruction::Mul; 1570 } else { 1571 AddOp = II.getInductionOpcode(); 1572 MulOp = Instruction::FMul; 1573 } 1574 1575 // Multiply the vectorization factor by the step using integer or 1576 // floating-point arithmetic as appropriate. 1577 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1578 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1579 1580 // Create a vector splat to use in the induction update. 1581 // 1582 // FIXME: If the step is non-constant, we create the vector splat with 1583 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1584 // handle a constant vector splat. 1585 Value *SplatVF = isa<Constant>(Mul) 1586 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1587 : Builder.CreateVectorSplat(VF, Mul); 1588 Builder.restoreIP(CurrIP); 1589 1590 // We may need to add the step a number of times, depending on the unroll 1591 // factor. The last of those goes into the PHI. 1592 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1593 &*LoopVectorBody->getFirstInsertionPt()); 1594 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1595 Instruction *LastInduction = VecInd; 1596 for (unsigned Part = 0; Part < UF; ++Part) { 1597 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1598 1599 if (isa<TruncInst>(EntryVal)) 1600 addMetadata(LastInduction, EntryVal); 1601 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1602 1603 LastInduction = cast<Instruction>(addFastMathFlag( 1604 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1605 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1606 } 1607 1608 // Move the last step to the end of the latch block. This ensures consistent 1609 // placement of all induction updates. 1610 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1611 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1612 auto *ICmp = cast<Instruction>(Br->getCondition()); 1613 LastInduction->moveBefore(ICmp); 1614 LastInduction->setName("vec.ind.next"); 1615 1616 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1617 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1618 } 1619 1620 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1621 return Cost->isScalarAfterVectorization(I, VF) || 1622 Cost->isProfitableToScalarize(I, VF); 1623 } 1624 1625 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1626 if (shouldScalarizeInstruction(IV)) 1627 return true; 1628 auto isScalarInst = [&](User *U) -> bool { 1629 auto *I = cast<Instruction>(U); 1630 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1631 }; 1632 return llvm::any_of(IV->users(), isScalarInst); 1633 } 1634 1635 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1636 const InductionDescriptor &ID, const Instruction *EntryVal, 1637 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1638 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1639 "Expected either an induction phi-node or a truncate of it!"); 1640 1641 // This induction variable is not the phi from the original loop but the 1642 // newly-created IV based on the proof that casted Phi is equal to the 1643 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1644 // re-uses the same InductionDescriptor that original IV uses but we don't 1645 // have to do any recording in this case - that is done when original IV is 1646 // processed. 1647 if (isa<TruncInst>(EntryVal)) 1648 return; 1649 1650 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1651 if (Casts.empty()) 1652 return; 1653 // Only the first Cast instruction in the Casts vector is of interest. 1654 // The rest of the Casts (if exist) have no uses outside the 1655 // induction update chain itself. 1656 Instruction *CastInst = *Casts.begin(); 1657 if (Lane < UINT_MAX) 1658 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1659 else 1660 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1661 } 1662 1663 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1664 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1665 "Primary induction variable must have an integer type"); 1666 1667 auto II = Legal->getInductionVars()->find(IV); 1668 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1669 1670 auto ID = II->second; 1671 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1672 1673 // The scalar value to broadcast. This will be derived from the canonical 1674 // induction variable. 1675 Value *ScalarIV = nullptr; 1676 1677 // The value from the original loop to which we are mapping the new induction 1678 // variable. 1679 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1680 1681 // True if we have vectorized the induction variable. 1682 auto VectorizedIV = false; 1683 1684 // Determine if we want a scalar version of the induction variable. This is 1685 // true if the induction variable itself is not widened, or if it has at 1686 // least one user in the loop that is not widened. 1687 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1688 1689 // Generate code for the induction step. Note that induction steps are 1690 // required to be loop-invariant 1691 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1692 "Induction step should be loop invariant"); 1693 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1694 Value *Step = nullptr; 1695 if (PSE.getSE()->isSCEVable(IV->getType())) { 1696 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1697 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1698 LoopVectorPreHeader->getTerminator()); 1699 } else { 1700 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1701 } 1702 1703 // Try to create a new independent vector induction variable. If we can't 1704 // create the phi node, we will splat the scalar induction variable in each 1705 // loop iteration. 1706 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1707 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1708 VectorizedIV = true; 1709 } 1710 1711 // If we haven't yet vectorized the induction variable, or if we will create 1712 // a scalar one, we need to define the scalar induction variable and step 1713 // values. If we were given a truncation type, truncate the canonical 1714 // induction variable and step. Otherwise, derive these values from the 1715 // induction descriptor. 1716 if (!VectorizedIV || NeedsScalarIV) { 1717 ScalarIV = Induction; 1718 if (IV != OldInduction) { 1719 ScalarIV = IV->getType()->isIntegerTy() 1720 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1721 : Builder.CreateCast(Instruction::SIToFP, Induction, 1722 IV->getType()); 1723 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1724 ScalarIV->setName("offset.idx"); 1725 } 1726 if (Trunc) { 1727 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1728 assert(Step->getType()->isIntegerTy() && 1729 "Truncation requires an integer step"); 1730 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1731 Step = Builder.CreateTrunc(Step, TruncType); 1732 } 1733 } 1734 1735 // If we haven't yet vectorized the induction variable, splat the scalar 1736 // induction variable, and build the necessary step vectors. 1737 // TODO: Don't do it unless the vectorized IV is really required. 1738 if (!VectorizedIV) { 1739 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1740 for (unsigned Part = 0; Part < UF; ++Part) { 1741 Value *EntryPart = 1742 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1743 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1744 if (Trunc) 1745 addMetadata(EntryPart, Trunc); 1746 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1747 } 1748 } 1749 1750 // If an induction variable is only used for counting loop iterations or 1751 // calculating addresses, it doesn't need to be widened. Create scalar steps 1752 // that can be used by instructions we will later scalarize. Note that the 1753 // addition of the scalar steps will not increase the number of instructions 1754 // in the loop in the common case prior to InstCombine. We will be trading 1755 // one vector extract for each scalar step. 1756 if (NeedsScalarIV) 1757 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1758 } 1759 1760 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1761 Instruction::BinaryOps BinOp) { 1762 // Create and check the types. 1763 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1764 int VLen = Val->getType()->getVectorNumElements(); 1765 1766 Type *STy = Val->getType()->getScalarType(); 1767 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1768 "Induction Step must be an integer or FP"); 1769 assert(Step->getType() == STy && "Step has wrong type"); 1770 1771 SmallVector<Constant *, 8> Indices; 1772 1773 if (STy->isIntegerTy()) { 1774 // Create a vector of consecutive numbers from zero to VF. 1775 for (int i = 0; i < VLen; ++i) 1776 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1777 1778 // Add the consecutive indices to the vector value. 1779 Constant *Cv = ConstantVector::get(Indices); 1780 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1781 Step = Builder.CreateVectorSplat(VLen, Step); 1782 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1783 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1784 // which can be found from the original scalar operations. 1785 Step = Builder.CreateMul(Cv, Step); 1786 return Builder.CreateAdd(Val, Step, "induction"); 1787 } 1788 1789 // Floating point induction. 1790 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1791 "Binary Opcode should be specified for FP induction"); 1792 // Create a vector of consecutive numbers from zero to VF. 1793 for (int i = 0; i < VLen; ++i) 1794 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1795 1796 // Add the consecutive indices to the vector value. 1797 Constant *Cv = ConstantVector::get(Indices); 1798 1799 Step = Builder.CreateVectorSplat(VLen, Step); 1800 1801 // Floating point operations had to be 'fast' to enable the induction. 1802 FastMathFlags Flags; 1803 Flags.setFast(); 1804 1805 Value *MulOp = Builder.CreateFMul(Cv, Step); 1806 if (isa<Instruction>(MulOp)) 1807 // Have to check, MulOp may be a constant 1808 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1809 1810 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1811 if (isa<Instruction>(BOp)) 1812 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1813 return BOp; 1814 } 1815 1816 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1817 Instruction *EntryVal, 1818 const InductionDescriptor &ID) { 1819 // We shouldn't have to build scalar steps if we aren't vectorizing. 1820 assert(VF > 1 && "VF should be greater than one"); 1821 1822 // Get the value type and ensure it and the step have the same integer type. 1823 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1824 assert(ScalarIVTy == Step->getType() && 1825 "Val and Step should have the same type"); 1826 1827 // We build scalar steps for both integer and floating-point induction 1828 // variables. Here, we determine the kind of arithmetic we will perform. 1829 Instruction::BinaryOps AddOp; 1830 Instruction::BinaryOps MulOp; 1831 if (ScalarIVTy->isIntegerTy()) { 1832 AddOp = Instruction::Add; 1833 MulOp = Instruction::Mul; 1834 } else { 1835 AddOp = ID.getInductionOpcode(); 1836 MulOp = Instruction::FMul; 1837 } 1838 1839 // Determine the number of scalars we need to generate for each unroll 1840 // iteration. If EntryVal is uniform, we only need to generate the first 1841 // lane. Otherwise, we generate all VF values. 1842 unsigned Lanes = 1843 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1844 : VF; 1845 // Compute the scalar steps and save the results in VectorLoopValueMap. 1846 for (unsigned Part = 0; Part < UF; ++Part) { 1847 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 1848 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 1849 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 1850 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 1851 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 1852 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 1853 } 1854 } 1855 } 1856 1857 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 1858 assert(V != Induction && "The new induction variable should not be used."); 1859 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1860 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1861 1862 // If we have a stride that is replaced by one, do it here. Defer this for 1863 // the VPlan-native path until we start running Legal checks in that path. 1864 if (!EnableVPlanNativePath && Legal->hasStride(V)) 1865 V = ConstantInt::get(V->getType(), 1); 1866 1867 // If we have a vector mapped to this value, return it. 1868 if (VectorLoopValueMap.hasVectorValue(V, Part)) 1869 return VectorLoopValueMap.getVectorValue(V, Part); 1870 1871 // If the value has not been vectorized, check if it has been scalarized 1872 // instead. If it has been scalarized, and we actually need the value in 1873 // vector form, we will construct the vector values on demand. 1874 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 1875 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 1876 1877 // If we've scalarized a value, that value should be an instruction. 1878 auto *I = cast<Instruction>(V); 1879 1880 // If we aren't vectorizing, we can just copy the scalar map values over to 1881 // the vector map. 1882 if (VF == 1) { 1883 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 1884 return ScalarValue; 1885 } 1886 1887 // Get the last scalar instruction we generated for V and Part. If the value 1888 // is known to be uniform after vectorization, this corresponds to lane zero 1889 // of the Part unroll iteration. Otherwise, the last instruction is the one 1890 // we created for the last vector lane of the Part unroll iteration. 1891 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 1892 auto *LastInst = cast<Instruction>( 1893 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 1894 1895 // Set the insert point after the last scalarized instruction. This ensures 1896 // the insertelement sequence will directly follow the scalar definitions. 1897 auto OldIP = Builder.saveIP(); 1898 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 1899 Builder.SetInsertPoint(&*NewIP); 1900 1901 // However, if we are vectorizing, we need to construct the vector values. 1902 // If the value is known to be uniform after vectorization, we can just 1903 // broadcast the scalar value corresponding to lane zero for each unroll 1904 // iteration. Otherwise, we construct the vector values using insertelement 1905 // instructions. Since the resulting vectors are stored in 1906 // VectorLoopValueMap, we will only generate the insertelements once. 1907 Value *VectorValue = nullptr; 1908 if (Cost->isUniformAfterVectorization(I, VF)) { 1909 VectorValue = getBroadcastInstrs(ScalarValue); 1910 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 1911 } else { 1912 // Initialize packing with insertelements to start from undef. 1913 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 1914 VectorLoopValueMap.setVectorValue(V, Part, Undef); 1915 for (unsigned Lane = 0; Lane < VF; ++Lane) 1916 packScalarIntoVectorValue(V, {Part, Lane}); 1917 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 1918 } 1919 Builder.restoreIP(OldIP); 1920 return VectorValue; 1921 } 1922 1923 // If this scalar is unknown, assume that it is a constant or that it is 1924 // loop invariant. Broadcast V and save the value for future uses. 1925 Value *B = getBroadcastInstrs(V); 1926 VectorLoopValueMap.setVectorValue(V, Part, B); 1927 return B; 1928 } 1929 1930 Value * 1931 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 1932 const VPIteration &Instance) { 1933 // If the value is not an instruction contained in the loop, it should 1934 // already be scalar. 1935 if (OrigLoop->isLoopInvariant(V)) 1936 return V; 1937 1938 assert(Instance.Lane > 0 1939 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 1940 : true && "Uniform values only have lane zero"); 1941 1942 // If the value from the original loop has not been vectorized, it is 1943 // represented by UF x VF scalar values in the new loop. Return the requested 1944 // scalar value. 1945 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 1946 return VectorLoopValueMap.getScalarValue(V, Instance); 1947 1948 // If the value has not been scalarized, get its entry in VectorLoopValueMap 1949 // for the given unroll part. If this entry is not a vector type (i.e., the 1950 // vectorization factor is one), there is no need to generate an 1951 // extractelement instruction. 1952 auto *U = getOrCreateVectorValue(V, Instance.Part); 1953 if (!U->getType()->isVectorTy()) { 1954 assert(VF == 1 && "Value not scalarized has non-vector type"); 1955 return U; 1956 } 1957 1958 // Otherwise, the value from the original loop has been vectorized and is 1959 // represented by UF vector values. Extract and return the requested scalar 1960 // value from the appropriate vector lane. 1961 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 1962 } 1963 1964 void InnerLoopVectorizer::packScalarIntoVectorValue( 1965 Value *V, const VPIteration &Instance) { 1966 assert(V != Induction && "The new induction variable should not be used."); 1967 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 1968 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1969 1970 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 1971 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 1972 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 1973 Builder.getInt32(Instance.Lane)); 1974 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 1975 } 1976 1977 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1978 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1979 SmallVector<Constant *, 8> ShuffleMask; 1980 for (unsigned i = 0; i < VF; ++i) 1981 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1982 1983 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1984 ConstantVector::get(ShuffleMask), 1985 "reverse"); 1986 } 1987 1988 // Return whether we allow using masked interleave-groups (for dealing with 1989 // strided loads/stores that reside in predicated blocks, or for dealing 1990 // with gaps). 1991 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 1992 // If an override option has been passed in for interleaved accesses, use it. 1993 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 1994 return EnableMaskedInterleavedMemAccesses; 1995 1996 return TTI.enableMaskedInterleavedAccessVectorization(); 1997 } 1998 1999 // Try to vectorize the interleave group that \p Instr belongs to. 2000 // 2001 // E.g. Translate following interleaved load group (factor = 3): 2002 // for (i = 0; i < N; i+=3) { 2003 // R = Pic[i]; // Member of index 0 2004 // G = Pic[i+1]; // Member of index 1 2005 // B = Pic[i+2]; // Member of index 2 2006 // ... // do something to R, G, B 2007 // } 2008 // To: 2009 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2010 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2011 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2012 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2013 // 2014 // Or translate following interleaved store group (factor = 3): 2015 // for (i = 0; i < N; i+=3) { 2016 // ... do something to R, G, B 2017 // Pic[i] = R; // Member of index 0 2018 // Pic[i+1] = G; // Member of index 1 2019 // Pic[i+2] = B; // Member of index 2 2020 // } 2021 // To: 2022 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2023 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2024 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2025 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2026 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2027 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, 2028 VectorParts *BlockInMask) { 2029 const InterleaveGroup<Instruction> *Group = 2030 Cost->getInterleavedAccessGroup(Instr); 2031 assert(Group && "Fail to get an interleaved access group."); 2032 2033 // Skip if current instruction is not the insert position. 2034 if (Instr != Group->getInsertPos()) 2035 return; 2036 2037 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2038 Value *Ptr = getLoadStorePointerOperand(Instr); 2039 2040 // Prepare for the vector type of the interleaved load/store. 2041 Type *ScalarTy = getMemInstValueType(Instr); 2042 unsigned InterleaveFactor = Group->getFactor(); 2043 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2044 Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr)); 2045 2046 // Prepare for the new pointers. 2047 setDebugLocFromInst(Builder, Ptr); 2048 SmallVector<Value *, 2> NewPtrs; 2049 unsigned Index = Group->getIndex(Instr); 2050 2051 VectorParts Mask; 2052 bool IsMaskForCondRequired = BlockInMask; 2053 if (IsMaskForCondRequired) { 2054 Mask = *BlockInMask; 2055 // TODO: extend the masked interleaved-group support to reversed access. 2056 assert(!Group->isReverse() && "Reversed masked interleave-group " 2057 "not supported."); 2058 } 2059 2060 // If the group is reverse, adjust the index to refer to the last vector lane 2061 // instead of the first. We adjust the index from the first vector lane, 2062 // rather than directly getting the pointer for lane VF - 1, because the 2063 // pointer operand of the interleaved access is supposed to be uniform. For 2064 // uniform instructions, we're only required to generate a value for the 2065 // first vector lane in each unroll iteration. 2066 if (Group->isReverse()) 2067 Index += (VF - 1) * Group->getFactor(); 2068 2069 bool InBounds = false; 2070 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2071 InBounds = gep->isInBounds(); 2072 2073 for (unsigned Part = 0; Part < UF; Part++) { 2074 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2075 2076 // Notice current instruction could be any index. Need to adjust the address 2077 // to the member of index 0. 2078 // 2079 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2080 // b = A[i]; // Member of index 0 2081 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2082 // 2083 // E.g. A[i+1] = a; // Member of index 1 2084 // A[i] = b; // Member of index 0 2085 // A[i+2] = c; // Member of index 2 (Current instruction) 2086 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2087 NewPtr = Builder.CreateGEP(ScalarTy, NewPtr, Builder.getInt32(-Index)); 2088 if (InBounds) 2089 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2090 2091 // Cast to the vector pointer type. 2092 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2093 } 2094 2095 setDebugLocFromInst(Builder, Instr); 2096 Value *UndefVec = UndefValue::get(VecTy); 2097 2098 Value *MaskForGaps = nullptr; 2099 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2100 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2101 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2102 } 2103 2104 // Vectorize the interleaved load group. 2105 if (isa<LoadInst>(Instr)) { 2106 // For each unroll part, create a wide load for the group. 2107 SmallVector<Value *, 2> NewLoads; 2108 for (unsigned Part = 0; Part < UF; Part++) { 2109 Instruction *NewLoad; 2110 if (IsMaskForCondRequired || MaskForGaps) { 2111 assert(useMaskedInterleavedAccesses(*TTI) && 2112 "masked interleaved groups are not allowed."); 2113 Value *GroupMask = MaskForGaps; 2114 if (IsMaskForCondRequired) { 2115 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2116 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2117 Value *ShuffledMask = Builder.CreateShuffleVector( 2118 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2119 GroupMask = MaskForGaps 2120 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2121 MaskForGaps) 2122 : ShuffledMask; 2123 } 2124 NewLoad = 2125 Builder.CreateMaskedLoad(NewPtrs[Part], Group->getAlignment(), 2126 GroupMask, UndefVec, "wide.masked.vec"); 2127 } 2128 else 2129 NewLoad = Builder.CreateAlignedLoad(VecTy, NewPtrs[Part], 2130 Group->getAlignment(), "wide.vec"); 2131 Group->addMetadata(NewLoad); 2132 NewLoads.push_back(NewLoad); 2133 } 2134 2135 // For each member in the group, shuffle out the appropriate data from the 2136 // wide loads. 2137 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2138 Instruction *Member = Group->getMember(I); 2139 2140 // Skip the gaps in the group. 2141 if (!Member) 2142 continue; 2143 2144 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2145 for (unsigned Part = 0; Part < UF; Part++) { 2146 Value *StridedVec = Builder.CreateShuffleVector( 2147 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2148 2149 // If this member has different type, cast the result type. 2150 if (Member->getType() != ScalarTy) { 2151 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2152 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2153 } 2154 2155 if (Group->isReverse()) 2156 StridedVec = reverseVector(StridedVec); 2157 2158 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2159 } 2160 } 2161 return; 2162 } 2163 2164 // The sub vector type for current instruction. 2165 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2166 2167 // Vectorize the interleaved store group. 2168 for (unsigned Part = 0; Part < UF; Part++) { 2169 // Collect the stored vector from each member. 2170 SmallVector<Value *, 4> StoredVecs; 2171 for (unsigned i = 0; i < InterleaveFactor; i++) { 2172 // Interleaved store group doesn't allow a gap, so each index has a member 2173 Instruction *Member = Group->getMember(i); 2174 assert(Member && "Fail to get a member from an interleaved store group"); 2175 2176 Value *StoredVec = getOrCreateVectorValue( 2177 cast<StoreInst>(Member)->getValueOperand(), Part); 2178 if (Group->isReverse()) 2179 StoredVec = reverseVector(StoredVec); 2180 2181 // If this member has different type, cast it to a unified type. 2182 2183 if (StoredVec->getType() != SubVT) 2184 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2185 2186 StoredVecs.push_back(StoredVec); 2187 } 2188 2189 // Concatenate all vectors into a wide vector. 2190 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2191 2192 // Interleave the elements in the wide vector. 2193 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2194 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2195 "interleaved.vec"); 2196 2197 Instruction *NewStoreInstr; 2198 if (IsMaskForCondRequired) { 2199 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2200 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2201 Value *ShuffledMask = Builder.CreateShuffleVector( 2202 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2203 NewStoreInstr = Builder.CreateMaskedStore( 2204 IVec, NewPtrs[Part], Group->getAlignment(), ShuffledMask); 2205 } 2206 else 2207 NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part], 2208 Group->getAlignment()); 2209 2210 Group->addMetadata(NewStoreInstr); 2211 } 2212 } 2213 2214 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2215 VectorParts *BlockInMask) { 2216 // Attempt to issue a wide load. 2217 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2218 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2219 2220 assert((LI || SI) && "Invalid Load/Store instruction"); 2221 2222 LoopVectorizationCostModel::InstWidening Decision = 2223 Cost->getWideningDecision(Instr, VF); 2224 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2225 "CM decision should be taken at this point"); 2226 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2227 return vectorizeInterleaveGroup(Instr); 2228 2229 Type *ScalarDataTy = getMemInstValueType(Instr); 2230 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2231 Value *Ptr = getLoadStorePointerOperand(Instr); 2232 unsigned Alignment = getLoadStoreAlignment(Instr); 2233 // An alignment of 0 means target abi alignment. We need to use the scalar's 2234 // target abi alignment in such a case. 2235 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2236 if (!Alignment) 2237 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2238 unsigned AddressSpace = getLoadStoreAddressSpace(Instr); 2239 2240 // Determine if the pointer operand of the access is either consecutive or 2241 // reverse consecutive. 2242 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2243 bool ConsecutiveStride = 2244 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2245 bool CreateGatherScatter = 2246 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2247 2248 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2249 // gather/scatter. Otherwise Decision should have been to Scalarize. 2250 assert((ConsecutiveStride || CreateGatherScatter) && 2251 "The instruction should be scalarized"); 2252 2253 // Handle consecutive loads/stores. 2254 if (ConsecutiveStride) 2255 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2256 2257 VectorParts Mask; 2258 bool isMaskRequired = BlockInMask; 2259 if (isMaskRequired) 2260 Mask = *BlockInMask; 2261 2262 bool InBounds = false; 2263 if (auto *gep = dyn_cast<GetElementPtrInst>( 2264 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2265 InBounds = gep->isInBounds(); 2266 2267 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2268 // Calculate the pointer for the specific unroll-part. 2269 GetElementPtrInst *PartPtr = nullptr; 2270 2271 if (Reverse) { 2272 // If the address is consecutive but reversed, then the 2273 // wide store needs to start at the last vector element. 2274 PartPtr = cast<GetElementPtrInst>( 2275 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2276 PartPtr->setIsInBounds(InBounds); 2277 PartPtr = cast<GetElementPtrInst>( 2278 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2279 PartPtr->setIsInBounds(InBounds); 2280 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2281 Mask[Part] = reverseVector(Mask[Part]); 2282 } else { 2283 PartPtr = cast<GetElementPtrInst>( 2284 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2285 PartPtr->setIsInBounds(InBounds); 2286 } 2287 2288 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2289 }; 2290 2291 // Handle Stores: 2292 if (SI) { 2293 setDebugLocFromInst(Builder, SI); 2294 2295 for (unsigned Part = 0; Part < UF; ++Part) { 2296 Instruction *NewSI = nullptr; 2297 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2298 if (CreateGatherScatter) { 2299 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2300 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2301 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2302 MaskPart); 2303 } else { 2304 if (Reverse) { 2305 // If we store to reverse consecutive memory locations, then we need 2306 // to reverse the order of elements in the stored value. 2307 StoredVal = reverseVector(StoredVal); 2308 // We don't want to update the value in the map as it might be used in 2309 // another expression. So don't call resetVectorValue(StoredVal). 2310 } 2311 auto *VecPtr = CreateVecPtr(Part, Ptr); 2312 if (isMaskRequired) 2313 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2314 Mask[Part]); 2315 else 2316 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2317 } 2318 addMetadata(NewSI, SI); 2319 } 2320 return; 2321 } 2322 2323 // Handle loads. 2324 assert(LI && "Must have a load instruction"); 2325 setDebugLocFromInst(Builder, LI); 2326 for (unsigned Part = 0; Part < UF; ++Part) { 2327 Value *NewLI; 2328 if (CreateGatherScatter) { 2329 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2330 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2331 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2332 nullptr, "wide.masked.gather"); 2333 addMetadata(NewLI, LI); 2334 } else { 2335 auto *VecPtr = CreateVecPtr(Part, Ptr); 2336 if (isMaskRequired) 2337 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2338 UndefValue::get(DataTy), 2339 "wide.masked.load"); 2340 else 2341 NewLI = 2342 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2343 2344 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2345 addMetadata(NewLI, LI); 2346 if (Reverse) 2347 NewLI = reverseVector(NewLI); 2348 } 2349 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2350 } 2351 } 2352 2353 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2354 const VPIteration &Instance, 2355 bool IfPredicateInstr) { 2356 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2357 2358 setDebugLocFromInst(Builder, Instr); 2359 2360 // Does this instruction return a value ? 2361 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2362 2363 Instruction *Cloned = Instr->clone(); 2364 if (!IsVoidRetTy) 2365 Cloned->setName(Instr->getName() + ".cloned"); 2366 2367 // Replace the operands of the cloned instructions with their scalar 2368 // equivalents in the new loop. 2369 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2370 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2371 Cloned->setOperand(op, NewOp); 2372 } 2373 addNewMetadata(Cloned, Instr); 2374 2375 // Place the cloned scalar in the new loop. 2376 Builder.Insert(Cloned); 2377 2378 // Add the cloned scalar to the scalar map entry. 2379 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2380 2381 // If we just cloned a new assumption, add it the assumption cache. 2382 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2383 if (II->getIntrinsicID() == Intrinsic::assume) 2384 AC->registerAssumption(II); 2385 2386 // End if-block. 2387 if (IfPredicateInstr) 2388 PredicatedInstructions.push_back(Cloned); 2389 } 2390 2391 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2392 Value *End, Value *Step, 2393 Instruction *DL) { 2394 BasicBlock *Header = L->getHeader(); 2395 BasicBlock *Latch = L->getLoopLatch(); 2396 // As we're just creating this loop, it's possible no latch exists 2397 // yet. If so, use the header as this will be a single block loop. 2398 if (!Latch) 2399 Latch = Header; 2400 2401 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2402 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2403 setDebugLocFromInst(Builder, OldInst); 2404 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2405 2406 Builder.SetInsertPoint(Latch->getTerminator()); 2407 setDebugLocFromInst(Builder, OldInst); 2408 2409 // Create i+1 and fill the PHINode. 2410 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2411 Induction->addIncoming(Start, L->getLoopPreheader()); 2412 Induction->addIncoming(Next, Latch); 2413 // Create the compare. 2414 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2415 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2416 2417 // Now we have two terminators. Remove the old one from the block. 2418 Latch->getTerminator()->eraseFromParent(); 2419 2420 return Induction; 2421 } 2422 2423 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2424 if (TripCount) 2425 return TripCount; 2426 2427 assert(L && "Create Trip Count for null loop."); 2428 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2429 // Find the loop boundaries. 2430 ScalarEvolution *SE = PSE.getSE(); 2431 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2432 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2433 "Invalid loop count"); 2434 2435 Type *IdxTy = Legal->getWidestInductionType(); 2436 assert(IdxTy && "No type for induction"); 2437 2438 // The exit count might have the type of i64 while the phi is i32. This can 2439 // happen if we have an induction variable that is sign extended before the 2440 // compare. The only way that we get a backedge taken count is that the 2441 // induction variable was signed and as such will not overflow. In such a case 2442 // truncation is legal. 2443 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2444 IdxTy->getPrimitiveSizeInBits()) 2445 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2446 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2447 2448 // Get the total trip count from the count by adding 1. 2449 const SCEV *ExitCount = SE->getAddExpr( 2450 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2451 2452 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2453 2454 // Expand the trip count and place the new instructions in the preheader. 2455 // Notice that the pre-header does not change, only the loop body. 2456 SCEVExpander Exp(*SE, DL, "induction"); 2457 2458 // Count holds the overall loop count (N). 2459 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2460 L->getLoopPreheader()->getTerminator()); 2461 2462 if (TripCount->getType()->isPointerTy()) 2463 TripCount = 2464 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2465 L->getLoopPreheader()->getTerminator()); 2466 2467 return TripCount; 2468 } 2469 2470 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2471 if (VectorTripCount) 2472 return VectorTripCount; 2473 2474 Value *TC = getOrCreateTripCount(L); 2475 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2476 2477 Type *Ty = TC->getType(); 2478 Constant *Step = ConstantInt::get(Ty, VF * UF); 2479 2480 // If the tail is to be folded by masking, round the number of iterations N 2481 // up to a multiple of Step instead of rounding down. This is done by first 2482 // adding Step-1 and then rounding down. Note that it's ok if this addition 2483 // overflows: the vector induction variable will eventually wrap to zero given 2484 // that it starts at zero and its Step is a power of two; the loop will then 2485 // exit, with the last early-exit vector comparison also producing all-true. 2486 if (Cost->foldTailByMasking()) { 2487 assert(isPowerOf2_32(VF * UF) && 2488 "VF*UF must be a power of 2 when folding tail by masking"); 2489 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2490 } 2491 2492 // Now we need to generate the expression for the part of the loop that the 2493 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2494 // iterations are not required for correctness, or N - Step, otherwise. Step 2495 // is equal to the vectorization factor (number of SIMD elements) times the 2496 // unroll factor (number of SIMD instructions). 2497 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2498 2499 // If there is a non-reversed interleaved group that may speculatively access 2500 // memory out-of-bounds, we need to ensure that there will be at least one 2501 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2502 // the trip count, we set the remainder to be equal to the step. If the step 2503 // does not evenly divide the trip count, no adjustment is necessary since 2504 // there will already be scalar iterations. Note that the minimum iterations 2505 // check ensures that N >= Step. 2506 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2507 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2508 R = Builder.CreateSelect(IsZero, Step, R); 2509 } 2510 2511 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2512 2513 return VectorTripCount; 2514 } 2515 2516 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2517 const DataLayout &DL) { 2518 // Verify that V is a vector type with same number of elements as DstVTy. 2519 unsigned VF = DstVTy->getNumElements(); 2520 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2521 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2522 Type *SrcElemTy = SrcVecTy->getElementType(); 2523 Type *DstElemTy = DstVTy->getElementType(); 2524 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2525 "Vector elements must have same size"); 2526 2527 // Do a direct cast if element types are castable. 2528 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2529 return Builder.CreateBitOrPointerCast(V, DstVTy); 2530 } 2531 // V cannot be directly casted to desired vector type. 2532 // May happen when V is a floating point vector but DstVTy is a vector of 2533 // pointers or vice-versa. Handle this using a two-step bitcast using an 2534 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2535 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2536 "Only one type should be a pointer type"); 2537 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2538 "Only one type should be a floating point type"); 2539 Type *IntTy = 2540 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2541 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2542 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2543 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2544 } 2545 2546 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2547 BasicBlock *Bypass) { 2548 Value *Count = getOrCreateTripCount(L); 2549 BasicBlock *BB = L->getLoopPreheader(); 2550 IRBuilder<> Builder(BB->getTerminator()); 2551 2552 // Generate code to check if the loop's trip count is less than VF * UF, or 2553 // equal to it in case a scalar epilogue is required; this implies that the 2554 // vector trip count is zero. This check also covers the case where adding one 2555 // to the backedge-taken count overflowed leading to an incorrect trip count 2556 // of zero. In this case we will also jump to the scalar loop. 2557 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2558 : ICmpInst::ICMP_ULT; 2559 2560 // If tail is to be folded, vector loop takes care of all iterations. 2561 Value *CheckMinIters = Builder.getFalse(); 2562 if (!Cost->foldTailByMasking()) 2563 CheckMinIters = Builder.CreateICmp( 2564 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2565 "min.iters.check"); 2566 2567 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2568 // Update dominator tree immediately if the generated block is a 2569 // LoopBypassBlock because SCEV expansions to generate loop bypass 2570 // checks may query it before the current function is finished. 2571 DT->addNewBlock(NewBB, BB); 2572 if (L->getParentLoop()) 2573 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2574 ReplaceInstWithInst(BB->getTerminator(), 2575 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2576 LoopBypassBlocks.push_back(BB); 2577 } 2578 2579 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2580 BasicBlock *BB = L->getLoopPreheader(); 2581 2582 // Generate the code to check that the SCEV assumptions that we made. 2583 // We want the new basic block to start at the first instruction in a 2584 // sequence of instructions that form a check. 2585 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2586 "scev.check"); 2587 Value *SCEVCheck = 2588 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2589 2590 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2591 if (C->isZero()) 2592 return; 2593 2594 assert(!Cost->foldTailByMasking() && 2595 "Cannot SCEV check stride or overflow when folding tail"); 2596 // Create a new block containing the stride check. 2597 BB->setName("vector.scevcheck"); 2598 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2599 // Update dominator tree immediately if the generated block is a 2600 // LoopBypassBlock because SCEV expansions to generate loop bypass 2601 // checks may query it before the current function is finished. 2602 DT->addNewBlock(NewBB, BB); 2603 if (L->getParentLoop()) 2604 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2605 ReplaceInstWithInst(BB->getTerminator(), 2606 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2607 LoopBypassBlocks.push_back(BB); 2608 AddedSafetyChecks = true; 2609 } 2610 2611 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2612 // VPlan-native path does not do any analysis for runtime checks currently. 2613 if (EnableVPlanNativePath) 2614 return; 2615 2616 BasicBlock *BB = L->getLoopPreheader(); 2617 2618 // Generate the code that checks in runtime if arrays overlap. We put the 2619 // checks into a separate block to make the more common case of few elements 2620 // faster. 2621 Instruction *FirstCheckInst; 2622 Instruction *MemRuntimeCheck; 2623 std::tie(FirstCheckInst, MemRuntimeCheck) = 2624 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2625 if (!MemRuntimeCheck) 2626 return; 2627 2628 assert(!Cost->foldTailByMasking() && "Cannot check memory when folding tail"); 2629 // Create a new block containing the memory check. 2630 BB->setName("vector.memcheck"); 2631 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2632 // Update dominator tree immediately if the generated block is a 2633 // LoopBypassBlock because SCEV expansions to generate loop bypass 2634 // checks may query it before the current function is finished. 2635 DT->addNewBlock(NewBB, BB); 2636 if (L->getParentLoop()) 2637 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2638 ReplaceInstWithInst(BB->getTerminator(), 2639 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2640 LoopBypassBlocks.push_back(BB); 2641 AddedSafetyChecks = true; 2642 2643 // We currently don't use LoopVersioning for the actual loop cloning but we 2644 // still use it to add the noalias metadata. 2645 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2646 PSE.getSE()); 2647 LVer->prepareNoAliasMetadata(); 2648 } 2649 2650 Value *InnerLoopVectorizer::emitTransformedIndex( 2651 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2652 const InductionDescriptor &ID) const { 2653 2654 SCEVExpander Exp(*SE, DL, "induction"); 2655 auto Step = ID.getStep(); 2656 auto StartValue = ID.getStartValue(); 2657 assert(Index->getType() == Step->getType() && 2658 "Index type does not match StepValue type"); 2659 2660 // Note: the IR at this point is broken. We cannot use SE to create any new 2661 // SCEV and then expand it, hoping that SCEV's simplification will give us 2662 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2663 // lead to various SCEV crashes. So all we can do is to use builder and rely 2664 // on InstCombine for future simplifications. Here we handle some trivial 2665 // cases only. 2666 auto CreateAdd = [&B](Value *X, Value *Y) { 2667 assert(X->getType() == Y->getType() && "Types don't match!"); 2668 if (auto *CX = dyn_cast<ConstantInt>(X)) 2669 if (CX->isZero()) 2670 return Y; 2671 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2672 if (CY->isZero()) 2673 return X; 2674 return B.CreateAdd(X, Y); 2675 }; 2676 2677 auto CreateMul = [&B](Value *X, Value *Y) { 2678 assert(X->getType() == Y->getType() && "Types don't match!"); 2679 if (auto *CX = dyn_cast<ConstantInt>(X)) 2680 if (CX->isOne()) 2681 return Y; 2682 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2683 if (CY->isOne()) 2684 return X; 2685 return B.CreateMul(X, Y); 2686 }; 2687 2688 switch (ID.getKind()) { 2689 case InductionDescriptor::IK_IntInduction: { 2690 assert(Index->getType() == StartValue->getType() && 2691 "Index type does not match StartValue type"); 2692 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2693 return B.CreateSub(StartValue, Index); 2694 auto *Offset = CreateMul( 2695 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2696 return CreateAdd(StartValue, Offset); 2697 } 2698 case InductionDescriptor::IK_PtrInduction: { 2699 assert(isa<SCEVConstant>(Step) && 2700 "Expected constant step for pointer induction"); 2701 return B.CreateGEP( 2702 StartValue->getType()->getPointerElementType(), StartValue, 2703 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2704 &*B.GetInsertPoint()))); 2705 } 2706 case InductionDescriptor::IK_FpInduction: { 2707 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2708 auto InductionBinOp = ID.getInductionBinOp(); 2709 assert(InductionBinOp && 2710 (InductionBinOp->getOpcode() == Instruction::FAdd || 2711 InductionBinOp->getOpcode() == Instruction::FSub) && 2712 "Original bin op should be defined for FP induction"); 2713 2714 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2715 2716 // Floating point operations had to be 'fast' to enable the induction. 2717 FastMathFlags Flags; 2718 Flags.setFast(); 2719 2720 Value *MulExp = B.CreateFMul(StepValue, Index); 2721 if (isa<Instruction>(MulExp)) 2722 // We have to check, the MulExp may be a constant. 2723 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2724 2725 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2726 "induction"); 2727 if (isa<Instruction>(BOp)) 2728 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2729 2730 return BOp; 2731 } 2732 case InductionDescriptor::IK_NoInduction: 2733 return nullptr; 2734 } 2735 llvm_unreachable("invalid enum"); 2736 } 2737 2738 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2739 /* 2740 In this function we generate a new loop. The new loop will contain 2741 the vectorized instructions while the old loop will continue to run the 2742 scalar remainder. 2743 2744 [ ] <-- loop iteration number check. 2745 / | 2746 / v 2747 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2748 | / | 2749 | / v 2750 || [ ] <-- vector pre header. 2751 |/ | 2752 | v 2753 | [ ] \ 2754 | [ ]_| <-- vector loop. 2755 | | 2756 | v 2757 | -[ ] <--- middle-block. 2758 | / | 2759 | / v 2760 -|- >[ ] <--- new preheader. 2761 | | 2762 | v 2763 | [ ] \ 2764 | [ ]_| <-- old scalar loop to handle remainder. 2765 \ | 2766 \ v 2767 >[ ] <-- exit block. 2768 ... 2769 */ 2770 2771 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2772 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2773 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2774 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2775 assert(VectorPH && "Invalid loop structure"); 2776 assert(ExitBlock && "Must have an exit block"); 2777 2778 // Some loops have a single integer induction variable, while other loops 2779 // don't. One example is c++ iterators that often have multiple pointer 2780 // induction variables. In the code below we also support a case where we 2781 // don't have a single induction variable. 2782 // 2783 // We try to obtain an induction variable from the original loop as hard 2784 // as possible. However if we don't find one that: 2785 // - is an integer 2786 // - counts from zero, stepping by one 2787 // - is the size of the widest induction variable type 2788 // then we create a new one. 2789 OldInduction = Legal->getPrimaryInduction(); 2790 Type *IdxTy = Legal->getWidestInductionType(); 2791 2792 // Split the single block loop into the two loop structure described above. 2793 BasicBlock *VecBody = 2794 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2795 BasicBlock *MiddleBlock = 2796 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2797 BasicBlock *ScalarPH = 2798 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2799 2800 // Create and register the new vector loop. 2801 Loop *Lp = LI->AllocateLoop(); 2802 Loop *ParentLoop = OrigLoop->getParentLoop(); 2803 2804 // Insert the new loop into the loop nest and register the new basic blocks 2805 // before calling any utilities such as SCEV that require valid LoopInfo. 2806 if (ParentLoop) { 2807 ParentLoop->addChildLoop(Lp); 2808 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2809 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2810 } else { 2811 LI->addTopLevelLoop(Lp); 2812 } 2813 Lp->addBasicBlockToLoop(VecBody, *LI); 2814 2815 // Find the loop boundaries. 2816 Value *Count = getOrCreateTripCount(Lp); 2817 2818 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2819 2820 // Now, compare the new count to zero. If it is zero skip the vector loop and 2821 // jump to the scalar loop. This check also covers the case where the 2822 // backedge-taken count is uint##_max: adding one to it will overflow leading 2823 // to an incorrect trip count of zero. In this (rare) case we will also jump 2824 // to the scalar loop. 2825 emitMinimumIterationCountCheck(Lp, ScalarPH); 2826 2827 // Generate the code to check any assumptions that we've made for SCEV 2828 // expressions. 2829 emitSCEVChecks(Lp, ScalarPH); 2830 2831 // Generate the code that checks in runtime if arrays overlap. We put the 2832 // checks into a separate block to make the more common case of few elements 2833 // faster. 2834 emitMemRuntimeChecks(Lp, ScalarPH); 2835 2836 // Generate the induction variable. 2837 // The loop step is equal to the vectorization factor (num of SIMD elements) 2838 // times the unroll factor (num of SIMD instructions). 2839 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2840 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2841 Induction = 2842 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2843 getDebugLocFromInstOrOperands(OldInduction)); 2844 2845 // We are going to resume the execution of the scalar loop. 2846 // Go over all of the induction variables that we found and fix the 2847 // PHIs that are left in the scalar version of the loop. 2848 // The starting values of PHI nodes depend on the counter of the last 2849 // iteration in the vectorized loop. 2850 // If we come from a bypass edge then we need to start from the original 2851 // start value. 2852 2853 // This variable saves the new starting index for the scalar loop. It is used 2854 // to test if there are any tail iterations left once the vector loop has 2855 // completed. 2856 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2857 for (auto &InductionEntry : *List) { 2858 PHINode *OrigPhi = InductionEntry.first; 2859 InductionDescriptor II = InductionEntry.second; 2860 2861 // Create phi nodes to merge from the backedge-taken check block. 2862 PHINode *BCResumeVal = PHINode::Create( 2863 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 2864 // Copy original phi DL over to the new one. 2865 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 2866 Value *&EndValue = IVEndValues[OrigPhi]; 2867 if (OrigPhi == OldInduction) { 2868 // We know what the end value is. 2869 EndValue = CountRoundDown; 2870 } else { 2871 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 2872 Type *StepType = II.getStep()->getType(); 2873 Instruction::CastOps CastOp = 2874 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 2875 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 2876 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2877 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 2878 EndValue->setName("ind.end"); 2879 } 2880 2881 // The new PHI merges the original incoming value, in case of a bypass, 2882 // or the value at the end of the vectorized loop. 2883 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2884 2885 // Fix the scalar body counter (PHI node). 2886 // The old induction's phi node in the scalar body needs the truncated 2887 // value. 2888 for (BasicBlock *BB : LoopBypassBlocks) 2889 BCResumeVal->addIncoming(II.getStartValue(), BB); 2890 OrigPhi->setIncomingValueForBlock(ScalarPH, BCResumeVal); 2891 } 2892 2893 // We need the OrigLoop (scalar loop part) latch terminator to help 2894 // produce correct debug info for the middle block BB instructions. 2895 // The legality check stage guarantees that the loop will have a single 2896 // latch. 2897 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 2898 "Scalar loop latch terminator isn't a branch"); 2899 BranchInst *ScalarLatchBr = 2900 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 2901 2902 // Add a check in the middle block to see if we have completed 2903 // all of the iterations in the first vector loop. 2904 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2905 // If tail is to be folded, we know we don't need to run the remainder. 2906 Value *CmpN = Builder.getTrue(); 2907 if (!Cost->foldTailByMasking()) { 2908 CmpN = 2909 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2910 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 2911 2912 // Here we use the same DebugLoc as the scalar loop latch branch instead 2913 // of the corresponding compare because they may have ended up with 2914 // different line numbers and we want to avoid awkward line stepping while 2915 // debugging. Eg. if the compare has got a line number inside the loop. 2916 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 2917 } 2918 2919 BranchInst *BrInst = BranchInst::Create(ExitBlock, ScalarPH, CmpN); 2920 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 2921 ReplaceInstWithInst(MiddleBlock->getTerminator(), BrInst); 2922 2923 // Get ready to start creating new instructions into the vectorized body. 2924 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2925 2926 // Save the state. 2927 LoopVectorPreHeader = Lp->getLoopPreheader(); 2928 LoopScalarPreHeader = ScalarPH; 2929 LoopMiddleBlock = MiddleBlock; 2930 LoopExitBlock = ExitBlock; 2931 LoopVectorBody = VecBody; 2932 LoopScalarBody = OldBasicBlock; 2933 2934 Optional<MDNode *> VectorizedLoopID = 2935 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 2936 LLVMLoopVectorizeFollowupVectorized}); 2937 if (VectorizedLoopID.hasValue()) { 2938 Lp->setLoopID(VectorizedLoopID.getValue()); 2939 2940 // Do not setAlreadyVectorized if loop attributes have been defined 2941 // explicitly. 2942 return LoopVectorPreHeader; 2943 } 2944 2945 // Keep all loop hints from the original loop on the vector loop (we'll 2946 // replace the vectorizer-specific hints below). 2947 if (MDNode *LID = OrigLoop->getLoopID()) 2948 Lp->setLoopID(LID); 2949 2950 LoopVectorizeHints Hints(Lp, true, *ORE); 2951 Hints.setAlreadyVectorized(); 2952 2953 return LoopVectorPreHeader; 2954 } 2955 2956 // Fix up external users of the induction variable. At this point, we are 2957 // in LCSSA form, with all external PHIs that use the IV having one input value, 2958 // coming from the remainder loop. We need those PHIs to also have a correct 2959 // value for the IV when arriving directly from the middle block. 2960 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 2961 const InductionDescriptor &II, 2962 Value *CountRoundDown, Value *EndValue, 2963 BasicBlock *MiddleBlock) { 2964 // There are two kinds of external IV usages - those that use the value 2965 // computed in the last iteration (the PHI) and those that use the penultimate 2966 // value (the value that feeds into the phi from the loop latch). 2967 // We allow both, but they, obviously, have different values. 2968 2969 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 2970 2971 DenseMap<Value *, Value *> MissingVals; 2972 2973 // An external user of the last iteration's value should see the value that 2974 // the remainder loop uses to initialize its own IV. 2975 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 2976 for (User *U : PostInc->users()) { 2977 Instruction *UI = cast<Instruction>(U); 2978 if (!OrigLoop->contains(UI)) { 2979 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2980 MissingVals[UI] = EndValue; 2981 } 2982 } 2983 2984 // An external user of the penultimate value need to see EndValue - Step. 2985 // The simplest way to get this is to recompute it from the constituent SCEVs, 2986 // that is Start + (Step * (CRD - 1)). 2987 for (User *U : OrigPhi->users()) { 2988 auto *UI = cast<Instruction>(U); 2989 if (!OrigLoop->contains(UI)) { 2990 const DataLayout &DL = 2991 OrigLoop->getHeader()->getModule()->getDataLayout(); 2992 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2993 2994 IRBuilder<> B(MiddleBlock->getTerminator()); 2995 Value *CountMinusOne = B.CreateSub( 2996 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 2997 Value *CMO = 2998 !II.getStep()->getType()->isIntegerTy() 2999 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3000 II.getStep()->getType()) 3001 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3002 CMO->setName("cast.cmo"); 3003 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3004 Escape->setName("ind.escape"); 3005 MissingVals[UI] = Escape; 3006 } 3007 } 3008 3009 for (auto &I : MissingVals) { 3010 PHINode *PHI = cast<PHINode>(I.first); 3011 // One corner case we have to handle is two IVs "chasing" each-other, 3012 // that is %IV2 = phi [...], [ %IV1, %latch ] 3013 // In this case, if IV1 has an external use, we need to avoid adding both 3014 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3015 // don't already have an incoming value for the middle block. 3016 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3017 PHI->addIncoming(I.second, MiddleBlock); 3018 } 3019 } 3020 3021 namespace { 3022 3023 struct CSEDenseMapInfo { 3024 static bool canHandle(const Instruction *I) { 3025 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3026 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3027 } 3028 3029 static inline Instruction *getEmptyKey() { 3030 return DenseMapInfo<Instruction *>::getEmptyKey(); 3031 } 3032 3033 static inline Instruction *getTombstoneKey() { 3034 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3035 } 3036 3037 static unsigned getHashValue(const Instruction *I) { 3038 assert(canHandle(I) && "Unknown instruction!"); 3039 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3040 I->value_op_end())); 3041 } 3042 3043 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3044 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3045 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3046 return LHS == RHS; 3047 return LHS->isIdenticalTo(RHS); 3048 } 3049 }; 3050 3051 } // end anonymous namespace 3052 3053 ///Perform cse of induction variable instructions. 3054 static void cse(BasicBlock *BB) { 3055 // Perform simple cse. 3056 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3057 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3058 Instruction *In = &*I++; 3059 3060 if (!CSEDenseMapInfo::canHandle(In)) 3061 continue; 3062 3063 // Check if we can replace this instruction with any of the 3064 // visited instructions. 3065 if (Instruction *V = CSEMap.lookup(In)) { 3066 In->replaceAllUsesWith(V); 3067 In->eraseFromParent(); 3068 continue; 3069 } 3070 3071 CSEMap[In] = In; 3072 } 3073 } 3074 3075 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3076 unsigned VF, 3077 bool &NeedToScalarize) { 3078 Function *F = CI->getCalledFunction(); 3079 StringRef FnName = CI->getCalledFunction()->getName(); 3080 Type *ScalarRetTy = CI->getType(); 3081 SmallVector<Type *, 4> Tys, ScalarTys; 3082 for (auto &ArgOp : CI->arg_operands()) 3083 ScalarTys.push_back(ArgOp->getType()); 3084 3085 // Estimate cost of scalarized vector call. The source operands are assumed 3086 // to be vectors, so we need to extract individual elements from there, 3087 // execute VF scalar calls, and then gather the result into the vector return 3088 // value. 3089 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3090 if (VF == 1) 3091 return ScalarCallCost; 3092 3093 // Compute corresponding vector type for return value and arguments. 3094 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3095 for (Type *ScalarTy : ScalarTys) 3096 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3097 3098 // Compute costs of unpacking argument values for the scalar calls and 3099 // packing the return values to a vector. 3100 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3101 3102 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3103 3104 // If we can't emit a vector call for this function, then the currently found 3105 // cost is the cost we need to return. 3106 NeedToScalarize = true; 3107 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3108 return Cost; 3109 3110 // If the corresponding vector cost is cheaper, return its cost. 3111 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3112 if (VectorCallCost < Cost) { 3113 NeedToScalarize = false; 3114 return VectorCallCost; 3115 } 3116 return Cost; 3117 } 3118 3119 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3120 unsigned VF) { 3121 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3122 assert(ID && "Expected intrinsic call!"); 3123 3124 FastMathFlags FMF; 3125 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3126 FMF = FPMO->getFastMathFlags(); 3127 3128 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3129 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3130 } 3131 3132 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3133 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3134 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3135 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3136 } 3137 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3138 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3139 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3140 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3141 } 3142 3143 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3144 // For every instruction `I` in MinBWs, truncate the operands, create a 3145 // truncated version of `I` and reextend its result. InstCombine runs 3146 // later and will remove any ext/trunc pairs. 3147 SmallPtrSet<Value *, 4> Erased; 3148 for (const auto &KV : Cost->getMinimalBitwidths()) { 3149 // If the value wasn't vectorized, we must maintain the original scalar 3150 // type. The absence of the value from VectorLoopValueMap indicates that it 3151 // wasn't vectorized. 3152 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3153 continue; 3154 for (unsigned Part = 0; Part < UF; ++Part) { 3155 Value *I = getOrCreateVectorValue(KV.first, Part); 3156 if (Erased.find(I) != Erased.end() || I->use_empty() || 3157 !isa<Instruction>(I)) 3158 continue; 3159 Type *OriginalTy = I->getType(); 3160 Type *ScalarTruncatedTy = 3161 IntegerType::get(OriginalTy->getContext(), KV.second); 3162 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3163 OriginalTy->getVectorNumElements()); 3164 if (TruncatedTy == OriginalTy) 3165 continue; 3166 3167 IRBuilder<> B(cast<Instruction>(I)); 3168 auto ShrinkOperand = [&](Value *V) -> Value * { 3169 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3170 if (ZI->getSrcTy() == TruncatedTy) 3171 return ZI->getOperand(0); 3172 return B.CreateZExtOrTrunc(V, TruncatedTy); 3173 }; 3174 3175 // The actual instruction modification depends on the instruction type, 3176 // unfortunately. 3177 Value *NewI = nullptr; 3178 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3179 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3180 ShrinkOperand(BO->getOperand(1))); 3181 3182 // Any wrapping introduced by shrinking this operation shouldn't be 3183 // considered undefined behavior. So, we can't unconditionally copy 3184 // arithmetic wrapping flags to NewI. 3185 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3186 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3187 NewI = 3188 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3189 ShrinkOperand(CI->getOperand(1))); 3190 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3191 NewI = B.CreateSelect(SI->getCondition(), 3192 ShrinkOperand(SI->getTrueValue()), 3193 ShrinkOperand(SI->getFalseValue())); 3194 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3195 switch (CI->getOpcode()) { 3196 default: 3197 llvm_unreachable("Unhandled cast!"); 3198 case Instruction::Trunc: 3199 NewI = ShrinkOperand(CI->getOperand(0)); 3200 break; 3201 case Instruction::SExt: 3202 NewI = B.CreateSExtOrTrunc( 3203 CI->getOperand(0), 3204 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3205 break; 3206 case Instruction::ZExt: 3207 NewI = B.CreateZExtOrTrunc( 3208 CI->getOperand(0), 3209 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3210 break; 3211 } 3212 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3213 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3214 auto *O0 = B.CreateZExtOrTrunc( 3215 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3216 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3217 auto *O1 = B.CreateZExtOrTrunc( 3218 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3219 3220 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3221 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3222 // Don't do anything with the operands, just extend the result. 3223 continue; 3224 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3225 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3226 auto *O0 = B.CreateZExtOrTrunc( 3227 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3228 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3229 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3230 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3231 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3232 auto *O0 = B.CreateZExtOrTrunc( 3233 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3234 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3235 } else { 3236 // If we don't know what to do, be conservative and don't do anything. 3237 continue; 3238 } 3239 3240 // Lastly, extend the result. 3241 NewI->takeName(cast<Instruction>(I)); 3242 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3243 I->replaceAllUsesWith(Res); 3244 cast<Instruction>(I)->eraseFromParent(); 3245 Erased.insert(I); 3246 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3247 } 3248 } 3249 3250 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3251 for (const auto &KV : Cost->getMinimalBitwidths()) { 3252 // If the value wasn't vectorized, we must maintain the original scalar 3253 // type. The absence of the value from VectorLoopValueMap indicates that it 3254 // wasn't vectorized. 3255 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3256 continue; 3257 for (unsigned Part = 0; Part < UF; ++Part) { 3258 Value *I = getOrCreateVectorValue(KV.first, Part); 3259 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3260 if (Inst && Inst->use_empty()) { 3261 Value *NewI = Inst->getOperand(0); 3262 Inst->eraseFromParent(); 3263 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3264 } 3265 } 3266 } 3267 } 3268 3269 void InnerLoopVectorizer::fixVectorizedLoop() { 3270 // Insert truncates and extends for any truncated instructions as hints to 3271 // InstCombine. 3272 if (VF > 1) 3273 truncateToMinimalBitwidths(); 3274 3275 // Fix widened non-induction PHIs by setting up the PHI operands. 3276 if (OrigPHIsToFix.size()) { 3277 assert(EnableVPlanNativePath && 3278 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3279 fixNonInductionPHIs(); 3280 } 3281 3282 // At this point every instruction in the original loop is widened to a 3283 // vector form. Now we need to fix the recurrences in the loop. These PHI 3284 // nodes are currently empty because we did not want to introduce cycles. 3285 // This is the second stage of vectorizing recurrences. 3286 fixCrossIterationPHIs(); 3287 3288 // Update the dominator tree. 3289 // 3290 // FIXME: After creating the structure of the new loop, the dominator tree is 3291 // no longer up-to-date, and it remains that way until we update it 3292 // here. An out-of-date dominator tree is problematic for SCEV, 3293 // because SCEVExpander uses it to guide code generation. The 3294 // vectorizer use SCEVExpanders in several places. Instead, we should 3295 // keep the dominator tree up-to-date as we go. 3296 updateAnalysis(); 3297 3298 // Fix-up external users of the induction variables. 3299 for (auto &Entry : *Legal->getInductionVars()) 3300 fixupIVUsers(Entry.first, Entry.second, 3301 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3302 IVEndValues[Entry.first], LoopMiddleBlock); 3303 3304 fixLCSSAPHIs(); 3305 for (Instruction *PI : PredicatedInstructions) 3306 sinkScalarOperands(&*PI); 3307 3308 // Remove redundant induction instructions. 3309 cse(LoopVectorBody); 3310 } 3311 3312 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3313 // In order to support recurrences we need to be able to vectorize Phi nodes. 3314 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3315 // stage #2: We now need to fix the recurrences by adding incoming edges to 3316 // the currently empty PHI nodes. At this point every instruction in the 3317 // original loop is widened to a vector form so we can use them to construct 3318 // the incoming edges. 3319 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3320 // Handle first-order recurrences and reductions that need to be fixed. 3321 if (Legal->isFirstOrderRecurrence(&Phi)) 3322 fixFirstOrderRecurrence(&Phi); 3323 else if (Legal->isReductionVariable(&Phi)) 3324 fixReduction(&Phi); 3325 } 3326 } 3327 3328 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3329 // This is the second phase of vectorizing first-order recurrences. An 3330 // overview of the transformation is described below. Suppose we have the 3331 // following loop. 3332 // 3333 // for (int i = 0; i < n; ++i) 3334 // b[i] = a[i] - a[i - 1]; 3335 // 3336 // There is a first-order recurrence on "a". For this loop, the shorthand 3337 // scalar IR looks like: 3338 // 3339 // scalar.ph: 3340 // s_init = a[-1] 3341 // br scalar.body 3342 // 3343 // scalar.body: 3344 // i = phi [0, scalar.ph], [i+1, scalar.body] 3345 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3346 // s2 = a[i] 3347 // b[i] = s2 - s1 3348 // br cond, scalar.body, ... 3349 // 3350 // In this example, s1 is a recurrence because it's value depends on the 3351 // previous iteration. In the first phase of vectorization, we created a 3352 // temporary value for s1. We now complete the vectorization and produce the 3353 // shorthand vector IR shown below (for VF = 4, UF = 1). 3354 // 3355 // vector.ph: 3356 // v_init = vector(..., ..., ..., a[-1]) 3357 // br vector.body 3358 // 3359 // vector.body 3360 // i = phi [0, vector.ph], [i+4, vector.body] 3361 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3362 // v2 = a[i, i+1, i+2, i+3]; 3363 // v3 = vector(v1(3), v2(0, 1, 2)) 3364 // b[i, i+1, i+2, i+3] = v2 - v3 3365 // br cond, vector.body, middle.block 3366 // 3367 // middle.block: 3368 // x = v2(3) 3369 // br scalar.ph 3370 // 3371 // scalar.ph: 3372 // s_init = phi [x, middle.block], [a[-1], otherwise] 3373 // br scalar.body 3374 // 3375 // After execution completes the vector loop, we extract the next value of 3376 // the recurrence (x) to use as the initial value in the scalar loop. 3377 3378 // Get the original loop preheader and single loop latch. 3379 auto *Preheader = OrigLoop->getLoopPreheader(); 3380 auto *Latch = OrigLoop->getLoopLatch(); 3381 3382 // Get the initial and previous values of the scalar recurrence. 3383 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3384 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3385 3386 // Create a vector from the initial value. 3387 auto *VectorInit = ScalarInit; 3388 if (VF > 1) { 3389 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3390 VectorInit = Builder.CreateInsertElement( 3391 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3392 Builder.getInt32(VF - 1), "vector.recur.init"); 3393 } 3394 3395 // We constructed a temporary phi node in the first phase of vectorization. 3396 // This phi node will eventually be deleted. 3397 Builder.SetInsertPoint( 3398 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3399 3400 // Create a phi node for the new recurrence. The current value will either be 3401 // the initial value inserted into a vector or loop-varying vector value. 3402 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3403 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3404 3405 // Get the vectorized previous value of the last part UF - 1. It appears last 3406 // among all unrolled iterations, due to the order of their construction. 3407 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3408 3409 // Set the insertion point after the previous value if it is an instruction. 3410 // Note that the previous value may have been constant-folded so it is not 3411 // guaranteed to be an instruction in the vector loop. Also, if the previous 3412 // value is a phi node, we should insert after all the phi nodes to avoid 3413 // breaking basic block verification. 3414 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 3415 isa<PHINode>(PreviousLastPart)) 3416 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3417 else 3418 Builder.SetInsertPoint( 3419 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 3420 3421 // We will construct a vector for the recurrence by combining the values for 3422 // the current and previous iterations. This is the required shuffle mask. 3423 SmallVector<Constant *, 8> ShuffleMask(VF); 3424 ShuffleMask[0] = Builder.getInt32(VF - 1); 3425 for (unsigned I = 1; I < VF; ++I) 3426 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3427 3428 // The vector from which to take the initial value for the current iteration 3429 // (actual or unrolled). Initially, this is the vector phi node. 3430 Value *Incoming = VecPhi; 3431 3432 // Shuffle the current and previous vector and update the vector parts. 3433 for (unsigned Part = 0; Part < UF; ++Part) { 3434 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3435 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3436 auto *Shuffle = 3437 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3438 ConstantVector::get(ShuffleMask)) 3439 : Incoming; 3440 PhiPart->replaceAllUsesWith(Shuffle); 3441 cast<Instruction>(PhiPart)->eraseFromParent(); 3442 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3443 Incoming = PreviousPart; 3444 } 3445 3446 // Fix the latch value of the new recurrence in the vector loop. 3447 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3448 3449 // Extract the last vector element in the middle block. This will be the 3450 // initial value for the recurrence when jumping to the scalar loop. 3451 auto *ExtractForScalar = Incoming; 3452 if (VF > 1) { 3453 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3454 ExtractForScalar = Builder.CreateExtractElement( 3455 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3456 } 3457 // Extract the second last element in the middle block if the 3458 // Phi is used outside the loop. We need to extract the phi itself 3459 // and not the last element (the phi update in the current iteration). This 3460 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3461 // when the scalar loop is not run at all. 3462 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3463 if (VF > 1) 3464 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3465 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3466 // When loop is unrolled without vectorizing, initialize 3467 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3468 // `Incoming`. This is analogous to the vectorized case above: extracting the 3469 // second last element when VF > 1. 3470 else if (UF > 1) 3471 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3472 3473 // Fix the initial value of the original recurrence in the scalar loop. 3474 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3475 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3476 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3477 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3478 Start->addIncoming(Incoming, BB); 3479 } 3480 3481 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3482 Phi->setName("scalar.recur"); 3483 3484 // Finally, fix users of the recurrence outside the loop. The users will need 3485 // either the last value of the scalar recurrence or the last value of the 3486 // vector recurrence we extracted in the middle block. Since the loop is in 3487 // LCSSA form, we just need to find all the phi nodes for the original scalar 3488 // recurrence in the exit block, and then add an edge for the middle block. 3489 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3490 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3491 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3492 } 3493 } 3494 } 3495 3496 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3497 Constant *Zero = Builder.getInt32(0); 3498 3499 // Get it's reduction variable descriptor. 3500 assert(Legal->isReductionVariable(Phi) && 3501 "Unable to find the reduction variable"); 3502 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3503 3504 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3505 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3506 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3507 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3508 RdxDesc.getMinMaxRecurrenceKind(); 3509 setDebugLocFromInst(Builder, ReductionStartValue); 3510 3511 // We need to generate a reduction vector from the incoming scalar. 3512 // To do so, we need to generate the 'identity' vector and override 3513 // one of the elements with the incoming scalar reduction. We need 3514 // to do it in the vector-loop preheader. 3515 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3516 3517 // This is the vector-clone of the value that leaves the loop. 3518 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3519 3520 // Find the reduction identity variable. Zero for addition, or, xor, 3521 // one for multiplication, -1 for And. 3522 Value *Identity; 3523 Value *VectorStart; 3524 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3525 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3526 // MinMax reduction have the start value as their identify. 3527 if (VF == 1) { 3528 VectorStart = Identity = ReductionStartValue; 3529 } else { 3530 VectorStart = Identity = 3531 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3532 } 3533 } else { 3534 // Handle other reduction kinds: 3535 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3536 RK, VecTy->getScalarType()); 3537 if (VF == 1) { 3538 Identity = Iden; 3539 // This vector is the Identity vector where the first element is the 3540 // incoming scalar reduction. 3541 VectorStart = ReductionStartValue; 3542 } else { 3543 Identity = ConstantVector::getSplat(VF, Iden); 3544 3545 // This vector is the Identity vector where the first element is the 3546 // incoming scalar reduction. 3547 VectorStart = 3548 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3549 } 3550 } 3551 3552 // Fix the vector-loop phi. 3553 3554 // Reductions do not have to start at zero. They can start with 3555 // any loop invariant values. 3556 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3557 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3558 for (unsigned Part = 0; Part < UF; ++Part) { 3559 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3560 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3561 // Make sure to add the reduction stat value only to the 3562 // first unroll part. 3563 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3564 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3565 cast<PHINode>(VecRdxPhi) 3566 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3567 } 3568 3569 // Before each round, move the insertion point right between 3570 // the PHIs and the values we are going to write. 3571 // This allows us to write both PHINodes and the extractelement 3572 // instructions. 3573 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3574 3575 setDebugLocFromInst(Builder, LoopExitInst); 3576 3577 // If the vector reduction can be performed in a smaller type, we truncate 3578 // then extend the loop exit value to enable InstCombine to evaluate the 3579 // entire expression in the smaller type. 3580 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3581 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3582 Builder.SetInsertPoint( 3583 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3584 VectorParts RdxParts(UF); 3585 for (unsigned Part = 0; Part < UF; ++Part) { 3586 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3587 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3588 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3589 : Builder.CreateZExt(Trunc, VecTy); 3590 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3591 UI != RdxParts[Part]->user_end();) 3592 if (*UI != Trunc) { 3593 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3594 RdxParts[Part] = Extnd; 3595 } else { 3596 ++UI; 3597 } 3598 } 3599 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3600 for (unsigned Part = 0; Part < UF; ++Part) { 3601 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3602 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3603 } 3604 } 3605 3606 // Reduce all of the unrolled parts into a single vector. 3607 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3608 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3609 3610 // The middle block terminator has already been assigned a DebugLoc here (the 3611 // OrigLoop's single latch terminator). We want the whole middle block to 3612 // appear to execute on this line because: (a) it is all compiler generated, 3613 // (b) these instructions are always executed after evaluating the latch 3614 // conditional branch, and (c) other passes may add new predecessors which 3615 // terminate on this line. This is the easiest way to ensure we don't 3616 // accidentally cause an extra step back into the loop while debugging. 3617 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 3618 for (unsigned Part = 1; Part < UF; ++Part) { 3619 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3620 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3621 // Floating point operations had to be 'fast' to enable the reduction. 3622 ReducedPartRdx = addFastMathFlag( 3623 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3624 ReducedPartRdx, "bin.rdx"), 3625 RdxDesc.getFastMathFlags()); 3626 else 3627 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3628 RdxPart); 3629 } 3630 3631 if (VF > 1) { 3632 bool NoNaN = Legal->hasFunNoNaNAttr(); 3633 ReducedPartRdx = 3634 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3635 // If the reduction can be performed in a smaller type, we need to extend 3636 // the reduction to the wider type before we branch to the original loop. 3637 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3638 ReducedPartRdx = 3639 RdxDesc.isSigned() 3640 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3641 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3642 } 3643 3644 // Create a phi node that merges control-flow from the backedge-taken check 3645 // block and the middle block. 3646 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3647 LoopScalarPreHeader->getTerminator()); 3648 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3649 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3650 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3651 3652 // Now, we need to fix the users of the reduction variable 3653 // inside and outside of the scalar remainder loop. 3654 // We know that the loop is in LCSSA form. We need to update the 3655 // PHI nodes in the exit blocks. 3656 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3657 // All PHINodes need to have a single entry edge, or two if 3658 // we already fixed them. 3659 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3660 3661 // We found a reduction value exit-PHI. Update it with the 3662 // incoming bypass edge. 3663 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3664 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3665 } // end of the LCSSA phi scan. 3666 3667 // Fix the scalar loop reduction variable with the incoming reduction sum 3668 // from the vector body and from the backedge value. 3669 int IncomingEdgeBlockIdx = 3670 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3671 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3672 // Pick the other block. 3673 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3674 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3675 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3676 } 3677 3678 void InnerLoopVectorizer::fixLCSSAPHIs() { 3679 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3680 if (LCSSAPhi.getNumIncomingValues() == 1) { 3681 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3682 // Non-instruction incoming values will have only one value. 3683 unsigned LastLane = 0; 3684 if (isa<Instruction>(IncomingValue)) 3685 LastLane = Cost->isUniformAfterVectorization( 3686 cast<Instruction>(IncomingValue), VF) 3687 ? 0 3688 : VF - 1; 3689 // Can be a loop invariant incoming value or the last scalar value to be 3690 // extracted from the vectorized loop. 3691 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3692 Value *lastIncomingValue = 3693 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3694 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3695 } 3696 } 3697 } 3698 3699 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3700 // The basic block and loop containing the predicated instruction. 3701 auto *PredBB = PredInst->getParent(); 3702 auto *VectorLoop = LI->getLoopFor(PredBB); 3703 3704 // Initialize a worklist with the operands of the predicated instruction. 3705 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3706 3707 // Holds instructions that we need to analyze again. An instruction may be 3708 // reanalyzed if we don't yet know if we can sink it or not. 3709 SmallVector<Instruction *, 8> InstsToReanalyze; 3710 3711 // Returns true if a given use occurs in the predicated block. Phi nodes use 3712 // their operands in their corresponding predecessor blocks. 3713 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3714 auto *I = cast<Instruction>(U.getUser()); 3715 BasicBlock *BB = I->getParent(); 3716 if (auto *Phi = dyn_cast<PHINode>(I)) 3717 BB = Phi->getIncomingBlock( 3718 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3719 return BB == PredBB; 3720 }; 3721 3722 // Iteratively sink the scalarized operands of the predicated instruction 3723 // into the block we created for it. When an instruction is sunk, it's 3724 // operands are then added to the worklist. The algorithm ends after one pass 3725 // through the worklist doesn't sink a single instruction. 3726 bool Changed; 3727 do { 3728 // Add the instructions that need to be reanalyzed to the worklist, and 3729 // reset the changed indicator. 3730 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3731 InstsToReanalyze.clear(); 3732 Changed = false; 3733 3734 while (!Worklist.empty()) { 3735 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3736 3737 // We can't sink an instruction if it is a phi node, is already in the 3738 // predicated block, is not in the loop, or may have side effects. 3739 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3740 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3741 continue; 3742 3743 // It's legal to sink the instruction if all its uses occur in the 3744 // predicated block. Otherwise, there's nothing to do yet, and we may 3745 // need to reanalyze the instruction. 3746 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3747 InstsToReanalyze.push_back(I); 3748 continue; 3749 } 3750 3751 // Move the instruction to the beginning of the predicated block, and add 3752 // it's operands to the worklist. 3753 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3754 Worklist.insert(I->op_begin(), I->op_end()); 3755 3756 // The sinking may have enabled other instructions to be sunk, so we will 3757 // need to iterate. 3758 Changed = true; 3759 } 3760 } while (Changed); 3761 } 3762 3763 void InnerLoopVectorizer::fixNonInductionPHIs() { 3764 for (PHINode *OrigPhi : OrigPHIsToFix) { 3765 PHINode *NewPhi = 3766 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 3767 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 3768 3769 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 3770 predecessors(OrigPhi->getParent())); 3771 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 3772 predecessors(NewPhi->getParent())); 3773 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 3774 "Scalar and Vector BB should have the same number of predecessors"); 3775 3776 // The insertion point in Builder may be invalidated by the time we get 3777 // here. Force the Builder insertion point to something valid so that we do 3778 // not run into issues during insertion point restore in 3779 // getOrCreateVectorValue calls below. 3780 Builder.SetInsertPoint(NewPhi); 3781 3782 // The predecessor order is preserved and we can rely on mapping between 3783 // scalar and vector block predecessors. 3784 for (unsigned i = 0; i < NumIncomingValues; ++i) { 3785 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 3786 3787 // When looking up the new scalar/vector values to fix up, use incoming 3788 // values from original phi. 3789 Value *ScIncV = 3790 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 3791 3792 // Scalar incoming value may need a broadcast 3793 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 3794 NewPhi->addIncoming(NewIncV, NewPredBB); 3795 } 3796 } 3797 } 3798 3799 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 3800 unsigned VF) { 3801 PHINode *P = cast<PHINode>(PN); 3802 if (EnableVPlanNativePath) { 3803 // Currently we enter here in the VPlan-native path for non-induction 3804 // PHIs where all control flow is uniform. We simply widen these PHIs. 3805 // Create a vector phi with no operands - the vector phi operands will be 3806 // set at the end of vector code generation. 3807 Type *VecTy = 3808 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3809 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 3810 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 3811 OrigPHIsToFix.push_back(P); 3812 3813 return; 3814 } 3815 3816 assert(PN->getParent() == OrigLoop->getHeader() && 3817 "Non-header phis should have been handled elsewhere"); 3818 3819 // In order to support recurrences we need to be able to vectorize Phi nodes. 3820 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3821 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 3822 // this value when we vectorize all of the instructions that use the PHI. 3823 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3824 for (unsigned Part = 0; Part < UF; ++Part) { 3825 // This is phase one of vectorizing PHIs. 3826 Type *VecTy = 3827 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3828 Value *EntryPart = PHINode::Create( 3829 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3830 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 3831 } 3832 return; 3833 } 3834 3835 setDebugLocFromInst(Builder, P); 3836 3837 // This PHINode must be an induction variable. 3838 // Make sure that we know about it. 3839 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 3840 3841 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3842 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3843 3844 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3845 // which can be found from the original scalar operations. 3846 switch (II.getKind()) { 3847 case InductionDescriptor::IK_NoInduction: 3848 llvm_unreachable("Unknown induction"); 3849 case InductionDescriptor::IK_IntInduction: 3850 case InductionDescriptor::IK_FpInduction: 3851 llvm_unreachable("Integer/fp induction is handled elsewhere."); 3852 case InductionDescriptor::IK_PtrInduction: { 3853 // Handle the pointer induction variable case. 3854 assert(P->getType()->isPointerTy() && "Unexpected type."); 3855 // This is the normalized GEP that starts counting at zero. 3856 Value *PtrInd = Induction; 3857 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 3858 // Determine the number of scalars we need to generate for each unroll 3859 // iteration. If the instruction is uniform, we only need to generate the 3860 // first lane. Otherwise, we generate all VF values. 3861 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 3862 // These are the scalar results. Notice that we don't generate vector GEPs 3863 // because scalar GEPs result in better code. 3864 for (unsigned Part = 0; Part < UF; ++Part) { 3865 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3866 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 3867 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3868 Value *SclrGep = 3869 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 3870 SclrGep->setName("next.gep"); 3871 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 3872 } 3873 } 3874 return; 3875 } 3876 } 3877 } 3878 3879 /// A helper function for checking whether an integer division-related 3880 /// instruction may divide by zero (in which case it must be predicated if 3881 /// executed conditionally in the scalar code). 3882 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 3883 /// Non-zero divisors that are non compile-time constants will not be 3884 /// converted into multiplication, so we will still end up scalarizing 3885 /// the division, but can do so w/o predication. 3886 static bool mayDivideByZero(Instruction &I) { 3887 assert((I.getOpcode() == Instruction::UDiv || 3888 I.getOpcode() == Instruction::SDiv || 3889 I.getOpcode() == Instruction::URem || 3890 I.getOpcode() == Instruction::SRem) && 3891 "Unexpected instruction"); 3892 Value *Divisor = I.getOperand(1); 3893 auto *CInt = dyn_cast<ConstantInt>(Divisor); 3894 return !CInt || CInt->isZero(); 3895 } 3896 3897 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 3898 switch (I.getOpcode()) { 3899 case Instruction::Br: 3900 case Instruction::PHI: 3901 llvm_unreachable("This instruction is handled by a different recipe."); 3902 case Instruction::GetElementPtr: { 3903 // Construct a vector GEP by widening the operands of the scalar GEP as 3904 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 3905 // results in a vector of pointers when at least one operand of the GEP 3906 // is vector-typed. Thus, to keep the representation compact, we only use 3907 // vector-typed operands for loop-varying values. 3908 auto *GEP = cast<GetElementPtrInst>(&I); 3909 3910 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 3911 // If we are vectorizing, but the GEP has only loop-invariant operands, 3912 // the GEP we build (by only using vector-typed operands for 3913 // loop-varying values) would be a scalar pointer. Thus, to ensure we 3914 // produce a vector of pointers, we need to either arbitrarily pick an 3915 // operand to broadcast, or broadcast a clone of the original GEP. 3916 // Here, we broadcast a clone of the original. 3917 // 3918 // TODO: If at some point we decide to scalarize instructions having 3919 // loop-invariant operands, this special case will no longer be 3920 // required. We would add the scalarization decision to 3921 // collectLoopScalars() and teach getVectorValue() to broadcast 3922 // the lane-zero scalar value. 3923 auto *Clone = Builder.Insert(GEP->clone()); 3924 for (unsigned Part = 0; Part < UF; ++Part) { 3925 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 3926 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 3927 addMetadata(EntryPart, GEP); 3928 } 3929 } else { 3930 // If the GEP has at least one loop-varying operand, we are sure to 3931 // produce a vector of pointers. But if we are only unrolling, we want 3932 // to produce a scalar GEP for each unroll part. Thus, the GEP we 3933 // produce with the code below will be scalar (if VF == 1) or vector 3934 // (otherwise). Note that for the unroll-only case, we still maintain 3935 // values in the vector mapping with initVector, as we do for other 3936 // instructions. 3937 for (unsigned Part = 0; Part < UF; ++Part) { 3938 // The pointer operand of the new GEP. If it's loop-invariant, we 3939 // won't broadcast it. 3940 auto *Ptr = 3941 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 3942 ? GEP->getPointerOperand() 3943 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 3944 3945 // Collect all the indices for the new GEP. If any index is 3946 // loop-invariant, we won't broadcast it. 3947 SmallVector<Value *, 4> Indices; 3948 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 3949 if (OrigLoop->isLoopInvariant(U.get())) 3950 Indices.push_back(U.get()); 3951 else 3952 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 3953 } 3954 3955 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 3956 // but it should be a vector, otherwise. 3957 auto *NewGEP = 3958 GEP->isInBounds() 3959 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 3960 Indices) 3961 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 3962 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 3963 "NewGEP is not a pointer vector"); 3964 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 3965 addMetadata(NewGEP, GEP); 3966 } 3967 } 3968 3969 break; 3970 } 3971 case Instruction::UDiv: 3972 case Instruction::SDiv: 3973 case Instruction::SRem: 3974 case Instruction::URem: 3975 case Instruction::Add: 3976 case Instruction::FAdd: 3977 case Instruction::Sub: 3978 case Instruction::FSub: 3979 case Instruction::FNeg: 3980 case Instruction::Mul: 3981 case Instruction::FMul: 3982 case Instruction::FDiv: 3983 case Instruction::FRem: 3984 case Instruction::Shl: 3985 case Instruction::LShr: 3986 case Instruction::AShr: 3987 case Instruction::And: 3988 case Instruction::Or: 3989 case Instruction::Xor: { 3990 // Just widen unops and binops. 3991 setDebugLocFromInst(Builder, &I); 3992 3993 for (unsigned Part = 0; Part < UF; ++Part) { 3994 SmallVector<Value *, 2> Ops; 3995 for (Value *Op : I.operands()) 3996 Ops.push_back(getOrCreateVectorValue(Op, Part)); 3997 3998 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 3999 4000 if (auto *VecOp = dyn_cast<Instruction>(V)) 4001 VecOp->copyIRFlags(&I); 4002 4003 // Use this vector value for all users of the original instruction. 4004 VectorLoopValueMap.setVectorValue(&I, Part, V); 4005 addMetadata(V, &I); 4006 } 4007 4008 break; 4009 } 4010 case Instruction::Select: { 4011 // Widen selects. 4012 // If the selector is loop invariant we can create a select 4013 // instruction with a scalar condition. Otherwise, use vector-select. 4014 auto *SE = PSE.getSE(); 4015 bool InvariantCond = 4016 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4017 setDebugLocFromInst(Builder, &I); 4018 4019 // The condition can be loop invariant but still defined inside the 4020 // loop. This means that we can't just use the original 'cond' value. 4021 // We have to take the 'vectorized' value and pick the first lane. 4022 // Instcombine will make this a no-op. 4023 4024 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4025 4026 for (unsigned Part = 0; Part < UF; ++Part) { 4027 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4028 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4029 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4030 Value *Sel = 4031 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4032 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4033 addMetadata(Sel, &I); 4034 } 4035 4036 break; 4037 } 4038 4039 case Instruction::ICmp: 4040 case Instruction::FCmp: { 4041 // Widen compares. Generate vector compares. 4042 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4043 auto *Cmp = dyn_cast<CmpInst>(&I); 4044 setDebugLocFromInst(Builder, Cmp); 4045 for (unsigned Part = 0; Part < UF; ++Part) { 4046 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4047 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4048 Value *C = nullptr; 4049 if (FCmp) { 4050 // Propagate fast math flags. 4051 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4052 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4053 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4054 } else { 4055 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4056 } 4057 VectorLoopValueMap.setVectorValue(&I, Part, C); 4058 addMetadata(C, &I); 4059 } 4060 4061 break; 4062 } 4063 4064 case Instruction::ZExt: 4065 case Instruction::SExt: 4066 case Instruction::FPToUI: 4067 case Instruction::FPToSI: 4068 case Instruction::FPExt: 4069 case Instruction::PtrToInt: 4070 case Instruction::IntToPtr: 4071 case Instruction::SIToFP: 4072 case Instruction::UIToFP: 4073 case Instruction::Trunc: 4074 case Instruction::FPTrunc: 4075 case Instruction::BitCast: { 4076 auto *CI = dyn_cast<CastInst>(&I); 4077 setDebugLocFromInst(Builder, CI); 4078 4079 /// Vectorize casts. 4080 Type *DestTy = 4081 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4082 4083 for (unsigned Part = 0; Part < UF; ++Part) { 4084 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4085 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4086 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4087 addMetadata(Cast, &I); 4088 } 4089 break; 4090 } 4091 4092 case Instruction::Call: { 4093 // Ignore dbg intrinsics. 4094 if (isa<DbgInfoIntrinsic>(I)) 4095 break; 4096 setDebugLocFromInst(Builder, &I); 4097 4098 Module *M = I.getParent()->getParent()->getParent(); 4099 auto *CI = cast<CallInst>(&I); 4100 4101 StringRef FnName = CI->getCalledFunction()->getName(); 4102 Function *F = CI->getCalledFunction(); 4103 Type *RetTy = ToVectorTy(CI->getType(), VF); 4104 SmallVector<Type *, 4> Tys; 4105 for (Value *ArgOperand : CI->arg_operands()) 4106 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4107 4108 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4109 4110 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4111 // version of the instruction. 4112 // Is it beneficial to perform intrinsic call compared to lib call? 4113 bool NeedToScalarize; 4114 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4115 bool UseVectorIntrinsic = 4116 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4117 assert((UseVectorIntrinsic || !NeedToScalarize) && 4118 "Instruction should be scalarized elsewhere."); 4119 4120 for (unsigned Part = 0; Part < UF; ++Part) { 4121 SmallVector<Value *, 4> Args; 4122 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4123 Value *Arg = CI->getArgOperand(i); 4124 // Some intrinsics have a scalar argument - don't replace it with a 4125 // vector. 4126 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4127 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4128 Args.push_back(Arg); 4129 } 4130 4131 Function *VectorF; 4132 if (UseVectorIntrinsic) { 4133 // Use vector version of the intrinsic. 4134 Type *TysForDecl[] = {CI->getType()}; 4135 if (VF > 1) 4136 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4137 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4138 } else { 4139 // Use vector version of the library call. 4140 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4141 assert(!VFnName.empty() && "Vector function name is empty."); 4142 VectorF = M->getFunction(VFnName); 4143 if (!VectorF) { 4144 // Generate a declaration 4145 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4146 VectorF = 4147 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4148 VectorF->copyAttributesFrom(F); 4149 } 4150 } 4151 assert(VectorF && "Can't create vector function."); 4152 4153 SmallVector<OperandBundleDef, 1> OpBundles; 4154 CI->getOperandBundlesAsDefs(OpBundles); 4155 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4156 4157 if (isa<FPMathOperator>(V)) 4158 V->copyFastMathFlags(CI); 4159 4160 VectorLoopValueMap.setVectorValue(&I, Part, V); 4161 addMetadata(V, &I); 4162 } 4163 4164 break; 4165 } 4166 4167 default: 4168 // This instruction is not vectorized by simple widening. 4169 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4170 llvm_unreachable("Unhandled instruction!"); 4171 } // end of switch. 4172 } 4173 4174 void InnerLoopVectorizer::updateAnalysis() { 4175 // Forget the original basic block. 4176 PSE.getSE()->forgetLoop(OrigLoop); 4177 4178 // DT is not kept up-to-date for outer loop vectorization 4179 if (EnableVPlanNativePath) 4180 return; 4181 4182 // Update the dominator tree information. 4183 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4184 "Entry does not dominate exit."); 4185 4186 DT->addNewBlock(LoopMiddleBlock, 4187 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4188 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4189 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4190 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4191 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4192 } 4193 4194 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4195 // We should not collect Scalars more than once per VF. Right now, this 4196 // function is called from collectUniformsAndScalars(), which already does 4197 // this check. Collecting Scalars for VF=1 does not make any sense. 4198 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4199 "This function should not be visited twice for the same VF"); 4200 4201 SmallSetVector<Instruction *, 8> Worklist; 4202 4203 // These sets are used to seed the analysis with pointers used by memory 4204 // accesses that will remain scalar. 4205 SmallSetVector<Instruction *, 8> ScalarPtrs; 4206 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4207 4208 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4209 // The pointer operands of loads and stores will be scalar as long as the 4210 // memory access is not a gather or scatter operation. The value operand of a 4211 // store will remain scalar if the store is scalarized. 4212 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4213 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4214 assert(WideningDecision != CM_Unknown && 4215 "Widening decision should be ready at this moment"); 4216 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4217 if (Ptr == Store->getValueOperand()) 4218 return WideningDecision == CM_Scalarize; 4219 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4220 "Ptr is neither a value or pointer operand"); 4221 return WideningDecision != CM_GatherScatter; 4222 }; 4223 4224 // A helper that returns true if the given value is a bitcast or 4225 // getelementptr instruction contained in the loop. 4226 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4227 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4228 isa<GetElementPtrInst>(V)) && 4229 !TheLoop->isLoopInvariant(V); 4230 }; 4231 4232 // A helper that evaluates a memory access's use of a pointer. If the use 4233 // will be a scalar use, and the pointer is only used by memory accesses, we 4234 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4235 // PossibleNonScalarPtrs. 4236 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4237 // We only care about bitcast and getelementptr instructions contained in 4238 // the loop. 4239 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4240 return; 4241 4242 // If the pointer has already been identified as scalar (e.g., if it was 4243 // also identified as uniform), there's nothing to do. 4244 auto *I = cast<Instruction>(Ptr); 4245 if (Worklist.count(I)) 4246 return; 4247 4248 // If the use of the pointer will be a scalar use, and all users of the 4249 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4250 // place the pointer in PossibleNonScalarPtrs. 4251 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4252 return isa<LoadInst>(U) || isa<StoreInst>(U); 4253 })) 4254 ScalarPtrs.insert(I); 4255 else 4256 PossibleNonScalarPtrs.insert(I); 4257 }; 4258 4259 // We seed the scalars analysis with three classes of instructions: (1) 4260 // instructions marked uniform-after-vectorization, (2) bitcast and 4261 // getelementptr instructions used by memory accesses requiring a scalar use, 4262 // and (3) pointer induction variables and their update instructions (we 4263 // currently only scalarize these). 4264 // 4265 // (1) Add to the worklist all instructions that have been identified as 4266 // uniform-after-vectorization. 4267 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4268 4269 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4270 // memory accesses requiring a scalar use. The pointer operands of loads and 4271 // stores will be scalar as long as the memory accesses is not a gather or 4272 // scatter operation. The value operand of a store will remain scalar if the 4273 // store is scalarized. 4274 for (auto *BB : TheLoop->blocks()) 4275 for (auto &I : *BB) { 4276 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4277 evaluatePtrUse(Load, Load->getPointerOperand()); 4278 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4279 evaluatePtrUse(Store, Store->getPointerOperand()); 4280 evaluatePtrUse(Store, Store->getValueOperand()); 4281 } 4282 } 4283 for (auto *I : ScalarPtrs) 4284 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4285 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4286 Worklist.insert(I); 4287 } 4288 4289 // (3) Add to the worklist all pointer induction variables and their update 4290 // instructions. 4291 // 4292 // TODO: Once we are able to vectorize pointer induction variables we should 4293 // no longer insert them into the worklist here. 4294 auto *Latch = TheLoop->getLoopLatch(); 4295 for (auto &Induction : *Legal->getInductionVars()) { 4296 auto *Ind = Induction.first; 4297 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4298 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4299 continue; 4300 Worklist.insert(Ind); 4301 Worklist.insert(IndUpdate); 4302 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4303 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4304 << "\n"); 4305 } 4306 4307 // Insert the forced scalars. 4308 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4309 // induction variable when the PHI user is scalarized. 4310 auto ForcedScalar = ForcedScalars.find(VF); 4311 if (ForcedScalar != ForcedScalars.end()) 4312 for (auto *I : ForcedScalar->second) 4313 Worklist.insert(I); 4314 4315 // Expand the worklist by looking through any bitcasts and getelementptr 4316 // instructions we've already identified as scalar. This is similar to the 4317 // expansion step in collectLoopUniforms(); however, here we're only 4318 // expanding to include additional bitcasts and getelementptr instructions. 4319 unsigned Idx = 0; 4320 while (Idx != Worklist.size()) { 4321 Instruction *Dst = Worklist[Idx++]; 4322 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4323 continue; 4324 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4325 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4326 auto *J = cast<Instruction>(U); 4327 return !TheLoop->contains(J) || Worklist.count(J) || 4328 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4329 isScalarUse(J, Src)); 4330 })) { 4331 Worklist.insert(Src); 4332 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4333 } 4334 } 4335 4336 // An induction variable will remain scalar if all users of the induction 4337 // variable and induction variable update remain scalar. 4338 for (auto &Induction : *Legal->getInductionVars()) { 4339 auto *Ind = Induction.first; 4340 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4341 4342 // We already considered pointer induction variables, so there's no reason 4343 // to look at their users again. 4344 // 4345 // TODO: Once we are able to vectorize pointer induction variables we 4346 // should no longer skip over them here. 4347 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4348 continue; 4349 4350 // Determine if all users of the induction variable are scalar after 4351 // vectorization. 4352 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4353 auto *I = cast<Instruction>(U); 4354 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4355 }); 4356 if (!ScalarInd) 4357 continue; 4358 4359 // Determine if all users of the induction variable update instruction are 4360 // scalar after vectorization. 4361 auto ScalarIndUpdate = 4362 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4363 auto *I = cast<Instruction>(U); 4364 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4365 }); 4366 if (!ScalarIndUpdate) 4367 continue; 4368 4369 // The induction variable and its update instruction will remain scalar. 4370 Worklist.insert(Ind); 4371 Worklist.insert(IndUpdate); 4372 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4373 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4374 << "\n"); 4375 } 4376 4377 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4378 } 4379 4380 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4381 if (!blockNeedsPredication(I->getParent())) 4382 return false; 4383 switch(I->getOpcode()) { 4384 default: 4385 break; 4386 case Instruction::Load: 4387 case Instruction::Store: { 4388 if (!Legal->isMaskRequired(I)) 4389 return false; 4390 auto *Ptr = getLoadStorePointerOperand(I); 4391 auto *Ty = getMemInstValueType(I); 4392 // We have already decided how to vectorize this instruction, get that 4393 // result. 4394 if (VF > 1) { 4395 InstWidening WideningDecision = getWideningDecision(I, VF); 4396 assert(WideningDecision != CM_Unknown && 4397 "Widening decision should be ready at this moment"); 4398 return WideningDecision == CM_Scalarize; 4399 } 4400 return isa<LoadInst>(I) ? 4401 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 4402 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 4403 } 4404 case Instruction::UDiv: 4405 case Instruction::SDiv: 4406 case Instruction::SRem: 4407 case Instruction::URem: 4408 return mayDivideByZero(*I); 4409 } 4410 return false; 4411 } 4412 4413 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4414 unsigned VF) { 4415 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4416 assert(getWideningDecision(I, VF) == CM_Unknown && 4417 "Decision should not be set yet."); 4418 auto *Group = getInterleavedAccessGroup(I); 4419 assert(Group && "Must have a group."); 4420 4421 // If the instruction's allocated size doesn't equal it's type size, it 4422 // requires padding and will be scalarized. 4423 auto &DL = I->getModule()->getDataLayout(); 4424 auto *ScalarTy = getMemInstValueType(I); 4425 if (hasIrregularType(ScalarTy, DL, VF)) 4426 return false; 4427 4428 // Check if masking is required. 4429 // A Group may need masking for one of two reasons: it resides in a block that 4430 // needs predication, or it was decided to use masking to deal with gaps. 4431 bool PredicatedAccessRequiresMasking = 4432 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4433 bool AccessWithGapsRequiresMasking = 4434 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 4435 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4436 return true; 4437 4438 // If masked interleaving is required, we expect that the user/target had 4439 // enabled it, because otherwise it either wouldn't have been created or 4440 // it should have been invalidated by the CostModel. 4441 assert(useMaskedInterleavedAccesses(TTI) && 4442 "Masked interleave-groups for predicated accesses are not enabled."); 4443 4444 auto *Ty = getMemInstValueType(I); 4445 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty) 4446 : TTI.isLegalMaskedStore(Ty); 4447 } 4448 4449 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4450 unsigned VF) { 4451 // Get and ensure we have a valid memory instruction. 4452 LoadInst *LI = dyn_cast<LoadInst>(I); 4453 StoreInst *SI = dyn_cast<StoreInst>(I); 4454 assert((LI || SI) && "Invalid memory instruction"); 4455 4456 auto *Ptr = getLoadStorePointerOperand(I); 4457 4458 // In order to be widened, the pointer should be consecutive, first of all. 4459 if (!Legal->isConsecutivePtr(Ptr)) 4460 return false; 4461 4462 // If the instruction is a store located in a predicated block, it will be 4463 // scalarized. 4464 if (isScalarWithPredication(I)) 4465 return false; 4466 4467 // If the instruction's allocated size doesn't equal it's type size, it 4468 // requires padding and will be scalarized. 4469 auto &DL = I->getModule()->getDataLayout(); 4470 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4471 if (hasIrregularType(ScalarTy, DL, VF)) 4472 return false; 4473 4474 return true; 4475 } 4476 4477 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4478 // We should not collect Uniforms more than once per VF. Right now, 4479 // this function is called from collectUniformsAndScalars(), which 4480 // already does this check. Collecting Uniforms for VF=1 does not make any 4481 // sense. 4482 4483 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4484 "This function should not be visited twice for the same VF"); 4485 4486 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4487 // not analyze again. Uniforms.count(VF) will return 1. 4488 Uniforms[VF].clear(); 4489 4490 // We now know that the loop is vectorizable! 4491 // Collect instructions inside the loop that will remain uniform after 4492 // vectorization. 4493 4494 // Global values, params and instructions outside of current loop are out of 4495 // scope. 4496 auto isOutOfScope = [&](Value *V) -> bool { 4497 Instruction *I = dyn_cast<Instruction>(V); 4498 return (!I || !TheLoop->contains(I)); 4499 }; 4500 4501 SetVector<Instruction *> Worklist; 4502 BasicBlock *Latch = TheLoop->getLoopLatch(); 4503 4504 // Start with the conditional branch. If the branch condition is an 4505 // instruction contained in the loop that is only used by the branch, it is 4506 // uniform. 4507 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4508 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 4509 Worklist.insert(Cmp); 4510 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4511 } 4512 4513 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4514 // are pointers that are treated like consecutive pointers during 4515 // vectorization. The pointer operands of interleaved accesses are an 4516 // example. 4517 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4518 4519 // Holds pointer operands of instructions that are possibly non-uniform. 4520 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4521 4522 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4523 InstWidening WideningDecision = getWideningDecision(I, VF); 4524 assert(WideningDecision != CM_Unknown && 4525 "Widening decision should be ready at this moment"); 4526 4527 return (WideningDecision == CM_Widen || 4528 WideningDecision == CM_Widen_Reverse || 4529 WideningDecision == CM_Interleave); 4530 }; 4531 // Iterate over the instructions in the loop, and collect all 4532 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4533 // that a consecutive-like pointer operand will be scalarized, we collect it 4534 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4535 // getelementptr instruction can be used by both vectorized and scalarized 4536 // memory instructions. For example, if a loop loads and stores from the same 4537 // location, but the store is conditional, the store will be scalarized, and 4538 // the getelementptr won't remain uniform. 4539 for (auto *BB : TheLoop->blocks()) 4540 for (auto &I : *BB) { 4541 // If there's no pointer operand, there's nothing to do. 4542 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4543 if (!Ptr) 4544 continue; 4545 4546 // True if all users of Ptr are memory accesses that have Ptr as their 4547 // pointer operand. 4548 auto UsersAreMemAccesses = 4549 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4550 return getLoadStorePointerOperand(U) == Ptr; 4551 }); 4552 4553 // Ensure the memory instruction will not be scalarized or used by 4554 // gather/scatter, making its pointer operand non-uniform. If the pointer 4555 // operand is used by any instruction other than a memory access, we 4556 // conservatively assume the pointer operand may be non-uniform. 4557 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4558 PossibleNonUniformPtrs.insert(Ptr); 4559 4560 // If the memory instruction will be vectorized and its pointer operand 4561 // is consecutive-like, or interleaving - the pointer operand should 4562 // remain uniform. 4563 else 4564 ConsecutiveLikePtrs.insert(Ptr); 4565 } 4566 4567 // Add to the Worklist all consecutive and consecutive-like pointers that 4568 // aren't also identified as possibly non-uniform. 4569 for (auto *V : ConsecutiveLikePtrs) 4570 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) { 4571 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 4572 Worklist.insert(V); 4573 } 4574 4575 // Expand Worklist in topological order: whenever a new instruction 4576 // is added , its users should be already inside Worklist. It ensures 4577 // a uniform instruction will only be used by uniform instructions. 4578 unsigned idx = 0; 4579 while (idx != Worklist.size()) { 4580 Instruction *I = Worklist[idx++]; 4581 4582 for (auto OV : I->operand_values()) { 4583 // isOutOfScope operands cannot be uniform instructions. 4584 if (isOutOfScope(OV)) 4585 continue; 4586 // First order recurrence Phi's should typically be considered 4587 // non-uniform. 4588 auto *OP = dyn_cast<PHINode>(OV); 4589 if (OP && Legal->isFirstOrderRecurrence(OP)) 4590 continue; 4591 // If all the users of the operand are uniform, then add the 4592 // operand into the uniform worklist. 4593 auto *OI = cast<Instruction>(OV); 4594 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4595 auto *J = cast<Instruction>(U); 4596 return Worklist.count(J) || 4597 (OI == getLoadStorePointerOperand(J) && 4598 isUniformDecision(J, VF)); 4599 })) { 4600 Worklist.insert(OI); 4601 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4602 } 4603 } 4604 } 4605 4606 // Returns true if Ptr is the pointer operand of a memory access instruction 4607 // I, and I is known to not require scalarization. 4608 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4609 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4610 }; 4611 4612 // For an instruction to be added into Worklist above, all its users inside 4613 // the loop should also be in Worklist. However, this condition cannot be 4614 // true for phi nodes that form a cyclic dependence. We must process phi 4615 // nodes separately. An induction variable will remain uniform if all users 4616 // of the induction variable and induction variable update remain uniform. 4617 // The code below handles both pointer and non-pointer induction variables. 4618 for (auto &Induction : *Legal->getInductionVars()) { 4619 auto *Ind = Induction.first; 4620 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4621 4622 // Determine if all users of the induction variable are uniform after 4623 // vectorization. 4624 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4625 auto *I = cast<Instruction>(U); 4626 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4627 isVectorizedMemAccessUse(I, Ind); 4628 }); 4629 if (!UniformInd) 4630 continue; 4631 4632 // Determine if all users of the induction variable update instruction are 4633 // uniform after vectorization. 4634 auto UniformIndUpdate = 4635 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4636 auto *I = cast<Instruction>(U); 4637 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4638 isVectorizedMemAccessUse(I, IndUpdate); 4639 }); 4640 if (!UniformIndUpdate) 4641 continue; 4642 4643 // The induction variable and its update instruction will remain uniform. 4644 Worklist.insert(Ind); 4645 Worklist.insert(IndUpdate); 4646 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 4647 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate 4648 << "\n"); 4649 } 4650 4651 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4652 } 4653 4654 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 4655 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4656 // TODO: It may by useful to do since it's still likely to be dynamically 4657 // uniform if the target can skip. 4658 LLVM_DEBUG( 4659 dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 4660 4661 ORE->emit( 4662 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 4663 << "runtime pointer checks needed. Not enabled for divergent target"); 4664 4665 return None; 4666 } 4667 4668 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4669 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 4670 return computeFeasibleMaxVF(OptForSize, TC); 4671 4672 if (Legal->getRuntimePointerChecking()->Need) { 4673 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4674 << "runtime pointer checks needed. Enable vectorization of this " 4675 "loop with '#pragma clang loop vectorize(enable)' when " 4676 "compiling with -Os/-Oz"); 4677 LLVM_DEBUG( 4678 dbgs() 4679 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4680 return None; 4681 } 4682 4683 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4684 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4685 << "runtime SCEV checks needed. Enable vectorization of this " 4686 "loop with '#pragma clang loop vectorize(enable)' when " 4687 "compiling with -Os/-Oz"); 4688 LLVM_DEBUG( 4689 dbgs() 4690 << "LV: Aborting. Runtime SCEV check is required with -Os/-Oz.\n"); 4691 return None; 4692 } 4693 4694 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4695 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4696 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4697 << "runtime stride == 1 checks needed. Enable vectorization of " 4698 "this loop with '#pragma clang loop vectorize(enable)' when " 4699 "compiling with -Os/-Oz"); 4700 LLVM_DEBUG( 4701 dbgs() 4702 << "LV: Aborting. Runtime stride check is required with -Os/-Oz.\n"); 4703 return None; 4704 } 4705 4706 // If we optimize the program for size, avoid creating the tail loop. 4707 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4708 4709 if (TC == 1) { 4710 ORE->emit(createMissedAnalysis("SingleIterationLoop") 4711 << "loop trip count is one, irrelevant for vectorization"); 4712 LLVM_DEBUG(dbgs() << "LV: Aborting, single iteration (non) loop.\n"); 4713 return None; 4714 } 4715 4716 // Record that scalar epilogue is not allowed. 4717 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4718 4719 IsScalarEpilogueAllowed = !OptForSize; 4720 4721 // We don't create an epilogue when optimizing for size. 4722 // Invalidate interleave groups that require an epilogue if we can't mask 4723 // the interleave-group. 4724 if (!useMaskedInterleavedAccesses(TTI)) 4725 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4726 4727 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 4728 4729 if (TC > 0 && TC % MaxVF == 0) { 4730 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4731 return MaxVF; 4732 } 4733 4734 // If we don't know the precise trip count, or if the trip count that we 4735 // found modulo the vectorization factor is not zero, try to fold the tail 4736 // by masking. 4737 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4738 if (Legal->canFoldTailByMasking()) { 4739 FoldTailByMasking = true; 4740 return MaxVF; 4741 } 4742 4743 if (TC == 0) { 4744 ORE->emit( 4745 createMissedAnalysis("UnknownLoopCountComplexCFG") 4746 << "unable to calculate the loop count due to complex control flow"); 4747 return None; 4748 } 4749 4750 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 4751 << "cannot optimize for size and vectorize at the same time. " 4752 "Enable vectorization of this loop with '#pragma clang loop " 4753 "vectorize(enable)' when compiling with -Os/-Oz"); 4754 return None; 4755 } 4756 4757 unsigned 4758 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 4759 unsigned ConstTripCount) { 4760 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4761 unsigned SmallestType, WidestType; 4762 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4763 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4764 4765 // Get the maximum safe dependence distance in bits computed by LAA. 4766 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4767 // the memory accesses that is most restrictive (involved in the smallest 4768 // dependence distance). 4769 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4770 4771 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4772 4773 unsigned MaxVectorSize = WidestRegister / WidestType; 4774 4775 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4776 << " / " << WidestType << " bits.\n"); 4777 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4778 << WidestRegister << " bits.\n"); 4779 4780 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4781 " into one vector!"); 4782 if (MaxVectorSize == 0) { 4783 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4784 MaxVectorSize = 1; 4785 return MaxVectorSize; 4786 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4787 isPowerOf2_32(ConstTripCount)) { 4788 // We need to clamp the VF to be the ConstTripCount. There is no point in 4789 // choosing a higher viable VF as done in the loop below. 4790 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4791 << ConstTripCount << "\n"); 4792 MaxVectorSize = ConstTripCount; 4793 return MaxVectorSize; 4794 } 4795 4796 unsigned MaxVF = MaxVectorSize; 4797 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) || 4798 (MaximizeBandwidth && !OptForSize)) { 4799 // Collect all viable vectorization factors larger than the default MaxVF 4800 // (i.e. MaxVectorSize). 4801 SmallVector<unsigned, 8> VFs; 4802 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 4803 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 4804 VFs.push_back(VS); 4805 4806 // For each VF calculate its register usage. 4807 auto RUs = calculateRegisterUsage(VFs); 4808 4809 // Select the largest VF which doesn't require more registers than existing 4810 // ones. 4811 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 4812 for (int i = RUs.size() - 1; i >= 0; --i) { 4813 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 4814 MaxVF = VFs[i]; 4815 break; 4816 } 4817 } 4818 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 4819 if (MaxVF < MinVF) { 4820 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 4821 << ") with target's minimum: " << MinVF << '\n'); 4822 MaxVF = MinVF; 4823 } 4824 } 4825 } 4826 return MaxVF; 4827 } 4828 4829 VectorizationFactor 4830 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 4831 float Cost = expectedCost(1).first; 4832 const float ScalarCost = Cost; 4833 unsigned Width = 1; 4834 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4835 4836 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4837 if (ForceVectorization && MaxVF > 1) { 4838 // Ignore scalar width, because the user explicitly wants vectorization. 4839 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 4840 // evaluation. 4841 Cost = std::numeric_limits<float>::max(); 4842 } 4843 4844 for (unsigned i = 2; i <= MaxVF; i *= 2) { 4845 // Notice that the vector loop needs to be executed less times, so 4846 // we need to divide the cost of the vector loops by the width of 4847 // the vector elements. 4848 VectorizationCostTy C = expectedCost(i); 4849 float VectorCost = C.first / (float)i; 4850 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 4851 << " costs: " << (int)VectorCost << ".\n"); 4852 if (!C.second && !ForceVectorization) { 4853 LLVM_DEBUG( 4854 dbgs() << "LV: Not considering vector loop of width " << i 4855 << " because it will not generate any vector instructions.\n"); 4856 continue; 4857 } 4858 if (VectorCost < Cost) { 4859 Cost = VectorCost; 4860 Width = i; 4861 } 4862 } 4863 4864 if (!EnableCondStoresVectorization && NumPredStores) { 4865 ORE->emit(createMissedAnalysis("ConditionalStore") 4866 << "store that is conditionally executed prevents vectorization"); 4867 LLVM_DEBUG( 4868 dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4869 Width = 1; 4870 Cost = ScalarCost; 4871 } 4872 4873 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4874 << "LV: Vectorization seems to be not beneficial, " 4875 << "but was forced by a user.\n"); 4876 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 4877 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 4878 return Factor; 4879 } 4880 4881 std::pair<unsigned, unsigned> 4882 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 4883 unsigned MinWidth = -1U; 4884 unsigned MaxWidth = 8; 4885 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4886 4887 // For each block. 4888 for (BasicBlock *BB : TheLoop->blocks()) { 4889 // For each instruction in the loop. 4890 for (Instruction &I : BB->instructionsWithoutDebug()) { 4891 Type *T = I.getType(); 4892 4893 // Skip ignored values. 4894 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 4895 continue; 4896 4897 // Only examine Loads, Stores and PHINodes. 4898 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 4899 continue; 4900 4901 // Examine PHI nodes that are reduction variables. Update the type to 4902 // account for the recurrence type. 4903 if (auto *PN = dyn_cast<PHINode>(&I)) { 4904 if (!Legal->isReductionVariable(PN)) 4905 continue; 4906 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 4907 T = RdxDesc.getRecurrenceType(); 4908 } 4909 4910 // Examine the stored values. 4911 if (auto *ST = dyn_cast<StoreInst>(&I)) 4912 T = ST->getValueOperand()->getType(); 4913 4914 // Ignore loaded pointer types and stored pointer types that are not 4915 // vectorizable. 4916 // 4917 // FIXME: The check here attempts to predict whether a load or store will 4918 // be vectorized. We only know this for certain after a VF has 4919 // been selected. Here, we assume that if an access can be 4920 // vectorized, it will be. We should also look at extending this 4921 // optimization to non-pointer types. 4922 // 4923 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 4924 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 4925 continue; 4926 4927 MinWidth = std::min(MinWidth, 4928 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4929 MaxWidth = std::max(MaxWidth, 4930 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4931 } 4932 } 4933 4934 return {MinWidth, MaxWidth}; 4935 } 4936 4937 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 4938 unsigned VF, 4939 unsigned LoopCost) { 4940 // -- The interleave heuristics -- 4941 // We interleave the loop in order to expose ILP and reduce the loop overhead. 4942 // There are many micro-architectural considerations that we can't predict 4943 // at this level. For example, frontend pressure (on decode or fetch) due to 4944 // code size, or the number and capabilities of the execution ports. 4945 // 4946 // We use the following heuristics to select the interleave count: 4947 // 1. If the code has reductions, then we interleave to break the cross 4948 // iteration dependency. 4949 // 2. If the loop is really small, then we interleave to reduce the loop 4950 // overhead. 4951 // 3. We don't interleave if we think that we will spill registers to memory 4952 // due to the increased register pressure. 4953 4954 // When we optimize for size, we don't interleave. 4955 if (OptForSize) 4956 return 1; 4957 4958 // We used the distance for the interleave count. 4959 if (Legal->getMaxSafeDepDistBytes() != -1U) 4960 return 1; 4961 4962 // Do not interleave loops with a relatively small trip count. 4963 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4964 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 4965 return 1; 4966 4967 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4968 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 4969 << " registers\n"); 4970 4971 if (VF == 1) { 4972 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4973 TargetNumRegisters = ForceTargetNumScalarRegs; 4974 } else { 4975 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4976 TargetNumRegisters = ForceTargetNumVectorRegs; 4977 } 4978 4979 RegisterUsage R = calculateRegisterUsage({VF})[0]; 4980 // We divide by these constants so assume that we have at least one 4981 // instruction that uses at least one register. 4982 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4983 4984 // We calculate the interleave count using the following formula. 4985 // Subtract the number of loop invariants from the number of available 4986 // registers. These registers are used by all of the interleaved instances. 4987 // Next, divide the remaining registers by the number of registers that is 4988 // required by the loop, in order to estimate how many parallel instances 4989 // fit without causing spills. All of this is rounded down if necessary to be 4990 // a power of two. We want power of two interleave count to simplify any 4991 // addressing operations or alignment considerations. 4992 // We also want power of two interleave counts to ensure that the induction 4993 // variable of the vector loop wraps to zero, when tail is folded by masking; 4994 // this currently happens when OptForSize, in which case IC is set to 1 above. 4995 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4996 R.MaxLocalUsers); 4997 4998 // Don't count the induction variable as interleaved. 4999 if (EnableIndVarRegisterHeur) 5000 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5001 std::max(1U, (R.MaxLocalUsers - 1))); 5002 5003 // Clamp the interleave ranges to reasonable counts. 5004 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5005 5006 // Check if the user has overridden the max. 5007 if (VF == 1) { 5008 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5009 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5010 } else { 5011 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5012 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5013 } 5014 5015 // If we did not calculate the cost for VF (because the user selected the VF) 5016 // then we calculate the cost of VF here. 5017 if (LoopCost == 0) 5018 LoopCost = expectedCost(VF).first; 5019 5020 assert(LoopCost && "Non-zero loop cost expected"); 5021 5022 // Clamp the calculated IC to be between the 1 and the max interleave count 5023 // that the target allows. 5024 if (IC > MaxInterleaveCount) 5025 IC = MaxInterleaveCount; 5026 else if (IC < 1) 5027 IC = 1; 5028 5029 // Interleave if we vectorized this loop and there is a reduction that could 5030 // benefit from interleaving. 5031 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5032 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5033 return IC; 5034 } 5035 5036 // Note that if we've already vectorized the loop we will have done the 5037 // runtime check and so interleaving won't require further checks. 5038 bool InterleavingRequiresRuntimePointerCheck = 5039 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5040 5041 // We want to interleave small loops in order to reduce the loop overhead and 5042 // potentially expose ILP opportunities. 5043 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5044 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5045 // We assume that the cost overhead is 1 and we use the cost model 5046 // to estimate the cost of the loop and interleave until the cost of the 5047 // loop overhead is about 5% of the cost of the loop. 5048 unsigned SmallIC = 5049 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5050 5051 // Interleave until store/load ports (estimated by max interleave count) are 5052 // saturated. 5053 unsigned NumStores = Legal->getNumStores(); 5054 unsigned NumLoads = Legal->getNumLoads(); 5055 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5056 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5057 5058 // If we have a scalar reduction (vector reductions are already dealt with 5059 // by this point), we can increase the critical path length if the loop 5060 // we're interleaving is inside another loop. Limit, by default to 2, so the 5061 // critical path only gets increased by one reduction operation. 5062 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5063 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5064 SmallIC = std::min(SmallIC, F); 5065 StoresIC = std::min(StoresIC, F); 5066 LoadsIC = std::min(LoadsIC, F); 5067 } 5068 5069 if (EnableLoadStoreRuntimeInterleave && 5070 std::max(StoresIC, LoadsIC) > SmallIC) { 5071 LLVM_DEBUG( 5072 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5073 return std::max(StoresIC, LoadsIC); 5074 } 5075 5076 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5077 return SmallIC; 5078 } 5079 5080 // Interleave if this is a large loop (small loops are already dealt with by 5081 // this point) that could benefit from interleaving. 5082 bool HasReductions = !Legal->getReductionVars()->empty(); 5083 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5084 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5085 return IC; 5086 } 5087 5088 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5089 return 1; 5090 } 5091 5092 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5093 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5094 // This function calculates the register usage by measuring the highest number 5095 // of values that are alive at a single location. Obviously, this is a very 5096 // rough estimation. We scan the loop in a topological order in order and 5097 // assign a number to each instruction. We use RPO to ensure that defs are 5098 // met before their users. We assume that each instruction that has in-loop 5099 // users starts an interval. We record every time that an in-loop value is 5100 // used, so we have a list of the first and last occurrences of each 5101 // instruction. Next, we transpose this data structure into a multi map that 5102 // holds the list of intervals that *end* at a specific location. This multi 5103 // map allows us to perform a linear search. We scan the instructions linearly 5104 // and record each time that a new interval starts, by placing it in a set. 5105 // If we find this value in the multi-map then we remove it from the set. 5106 // The max register usage is the maximum size of the set. 5107 // We also search for instructions that are defined outside the loop, but are 5108 // used inside the loop. We need this number separately from the max-interval 5109 // usage number because when we unroll, loop-invariant values do not take 5110 // more register. 5111 LoopBlocksDFS DFS(TheLoop); 5112 DFS.perform(LI); 5113 5114 RegisterUsage RU; 5115 5116 // Each 'key' in the map opens a new interval. The values 5117 // of the map are the index of the 'last seen' usage of the 5118 // instruction that is the key. 5119 using IntervalMap = DenseMap<Instruction *, unsigned>; 5120 5121 // Maps instruction to its index. 5122 SmallVector<Instruction *, 64> IdxToInstr; 5123 // Marks the end of each interval. 5124 IntervalMap EndPoint; 5125 // Saves the list of instruction indices that are used in the loop. 5126 SmallPtrSet<Instruction *, 8> Ends; 5127 // Saves the list of values that are used in the loop but are 5128 // defined outside the loop, such as arguments and constants. 5129 SmallPtrSet<Value *, 8> LoopInvariants; 5130 5131 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5132 for (Instruction &I : BB->instructionsWithoutDebug()) { 5133 IdxToInstr.push_back(&I); 5134 5135 // Save the end location of each USE. 5136 for (Value *U : I.operands()) { 5137 auto *Instr = dyn_cast<Instruction>(U); 5138 5139 // Ignore non-instruction values such as arguments, constants, etc. 5140 if (!Instr) 5141 continue; 5142 5143 // If this instruction is outside the loop then record it and continue. 5144 if (!TheLoop->contains(Instr)) { 5145 LoopInvariants.insert(Instr); 5146 continue; 5147 } 5148 5149 // Overwrite previous end points. 5150 EndPoint[Instr] = IdxToInstr.size(); 5151 Ends.insert(Instr); 5152 } 5153 } 5154 } 5155 5156 // Saves the list of intervals that end with the index in 'key'. 5157 using InstrList = SmallVector<Instruction *, 2>; 5158 DenseMap<unsigned, InstrList> TransposeEnds; 5159 5160 // Transpose the EndPoints to a list of values that end at each index. 5161 for (auto &Interval : EndPoint) 5162 TransposeEnds[Interval.second].push_back(Interval.first); 5163 5164 SmallPtrSet<Instruction *, 8> OpenIntervals; 5165 5166 // Get the size of the widest register. 5167 unsigned MaxSafeDepDist = -1U; 5168 if (Legal->getMaxSafeDepDistBytes() != -1U) 5169 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5170 unsigned WidestRegister = 5171 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5172 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5173 5174 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5175 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5176 5177 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5178 5179 // A lambda that gets the register usage for the given type and VF. 5180 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5181 if (Ty->isTokenTy()) 5182 return 0U; 5183 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5184 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5185 }; 5186 5187 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5188 Instruction *I = IdxToInstr[i]; 5189 5190 // Remove all of the instructions that end at this location. 5191 InstrList &List = TransposeEnds[i]; 5192 for (Instruction *ToRemove : List) 5193 OpenIntervals.erase(ToRemove); 5194 5195 // Ignore instructions that are never used within the loop. 5196 if (Ends.find(I) == Ends.end()) 5197 continue; 5198 5199 // Skip ignored values. 5200 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5201 continue; 5202 5203 // For each VF find the maximum usage of registers. 5204 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5205 if (VFs[j] == 1) { 5206 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5207 continue; 5208 } 5209 collectUniformsAndScalars(VFs[j]); 5210 // Count the number of live intervals. 5211 unsigned RegUsage = 0; 5212 for (auto Inst : OpenIntervals) { 5213 // Skip ignored values for VF > 1. 5214 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end() || 5215 isScalarAfterVectorization(Inst, VFs[j])) 5216 continue; 5217 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5218 } 5219 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5220 } 5221 5222 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5223 << OpenIntervals.size() << '\n'); 5224 5225 // Add the current instruction to the list of open intervals. 5226 OpenIntervals.insert(I); 5227 } 5228 5229 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5230 unsigned Invariant = 0; 5231 if (VFs[i] == 1) 5232 Invariant = LoopInvariants.size(); 5233 else { 5234 for (auto Inst : LoopInvariants) 5235 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5236 } 5237 5238 LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5239 LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5240 LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant 5241 << '\n'); 5242 5243 RU.LoopInvariantRegs = Invariant; 5244 RU.MaxLocalUsers = MaxUsages[i]; 5245 RUs[i] = RU; 5246 } 5247 5248 return RUs; 5249 } 5250 5251 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5252 // TODO: Cost model for emulated masked load/store is completely 5253 // broken. This hack guides the cost model to use an artificially 5254 // high enough value to practically disable vectorization with such 5255 // operations, except where previously deployed legality hack allowed 5256 // using very low cost values. This is to avoid regressions coming simply 5257 // from moving "masked load/store" check from legality to cost model. 5258 // Masked Load/Gather emulation was previously never allowed. 5259 // Limited number of Masked Store/Scatter emulation was allowed. 5260 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5261 return isa<LoadInst>(I) || 5262 (isa<StoreInst>(I) && 5263 NumPredStores > NumberOfStoresToPredicate); 5264 } 5265 5266 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5267 // If we aren't vectorizing the loop, or if we've already collected the 5268 // instructions to scalarize, there's nothing to do. Collection may already 5269 // have occurred if we have a user-selected VF and are now computing the 5270 // expected cost for interleaving. 5271 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5272 return; 5273 5274 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5275 // not profitable to scalarize any instructions, the presence of VF in the 5276 // map will indicate that we've analyzed it already. 5277 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5278 5279 // Find all the instructions that are scalar with predication in the loop and 5280 // determine if it would be better to not if-convert the blocks they are in. 5281 // If so, we also record the instructions to scalarize. 5282 for (BasicBlock *BB : TheLoop->blocks()) { 5283 if (!blockNeedsPredication(BB)) 5284 continue; 5285 for (Instruction &I : *BB) 5286 if (isScalarWithPredication(&I)) { 5287 ScalarCostsTy ScalarCosts; 5288 // Do not apply discount logic if hacked cost is needed 5289 // for emulated masked memrefs. 5290 if (!useEmulatedMaskMemRefHack(&I) && 5291 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5292 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5293 // Remember that BB will remain after vectorization. 5294 PredicatedBBsAfterVectorization.insert(BB); 5295 } 5296 } 5297 } 5298 5299 int LoopVectorizationCostModel::computePredInstDiscount( 5300 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5301 unsigned VF) { 5302 assert(!isUniformAfterVectorization(PredInst, VF) && 5303 "Instruction marked uniform-after-vectorization will be predicated"); 5304 5305 // Initialize the discount to zero, meaning that the scalar version and the 5306 // vector version cost the same. 5307 int Discount = 0; 5308 5309 // Holds instructions to analyze. The instructions we visit are mapped in 5310 // ScalarCosts. Those instructions are the ones that would be scalarized if 5311 // we find that the scalar version costs less. 5312 SmallVector<Instruction *, 8> Worklist; 5313 5314 // Returns true if the given instruction can be scalarized. 5315 auto canBeScalarized = [&](Instruction *I) -> bool { 5316 // We only attempt to scalarize instructions forming a single-use chain 5317 // from the original predicated block that would otherwise be vectorized. 5318 // Although not strictly necessary, we give up on instructions we know will 5319 // already be scalar to avoid traversing chains that are unlikely to be 5320 // beneficial. 5321 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5322 isScalarAfterVectorization(I, VF)) 5323 return false; 5324 5325 // If the instruction is scalar with predication, it will be analyzed 5326 // separately. We ignore it within the context of PredInst. 5327 if (isScalarWithPredication(I)) 5328 return false; 5329 5330 // If any of the instruction's operands are uniform after vectorization, 5331 // the instruction cannot be scalarized. This prevents, for example, a 5332 // masked load from being scalarized. 5333 // 5334 // We assume we will only emit a value for lane zero of an instruction 5335 // marked uniform after vectorization, rather than VF identical values. 5336 // Thus, if we scalarize an instruction that uses a uniform, we would 5337 // create uses of values corresponding to the lanes we aren't emitting code 5338 // for. This behavior can be changed by allowing getScalarValue to clone 5339 // the lane zero values for uniforms rather than asserting. 5340 for (Use &U : I->operands()) 5341 if (auto *J = dyn_cast<Instruction>(U.get())) 5342 if (isUniformAfterVectorization(J, VF)) 5343 return false; 5344 5345 // Otherwise, we can scalarize the instruction. 5346 return true; 5347 }; 5348 5349 // Returns true if an operand that cannot be scalarized must be extracted 5350 // from a vector. We will account for this scalarization overhead below. Note 5351 // that the non-void predicated instructions are placed in their own blocks, 5352 // and their return values are inserted into vectors. Thus, an extract would 5353 // still be required. 5354 auto needsExtract = [&](Instruction *I) -> bool { 5355 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 5356 }; 5357 5358 // Compute the expected cost discount from scalarizing the entire expression 5359 // feeding the predicated instruction. We currently only consider expressions 5360 // that are single-use instruction chains. 5361 Worklist.push_back(PredInst); 5362 while (!Worklist.empty()) { 5363 Instruction *I = Worklist.pop_back_val(); 5364 5365 // If we've already analyzed the instruction, there's nothing to do. 5366 if (ScalarCosts.find(I) != ScalarCosts.end()) 5367 continue; 5368 5369 // Compute the cost of the vector instruction. Note that this cost already 5370 // includes the scalarization overhead of the predicated instruction. 5371 unsigned VectorCost = getInstructionCost(I, VF).first; 5372 5373 // Compute the cost of the scalarized instruction. This cost is the cost of 5374 // the instruction as if it wasn't if-converted and instead remained in the 5375 // predicated block. We will scale this cost by block probability after 5376 // computing the scalarization overhead. 5377 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5378 5379 // Compute the scalarization overhead of needed insertelement instructions 5380 // and phi nodes. 5381 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5382 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5383 true, false); 5384 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5385 } 5386 5387 // Compute the scalarization overhead of needed extractelement 5388 // instructions. For each of the instruction's operands, if the operand can 5389 // be scalarized, add it to the worklist; otherwise, account for the 5390 // overhead. 5391 for (Use &U : I->operands()) 5392 if (auto *J = dyn_cast<Instruction>(U.get())) { 5393 assert(VectorType::isValidElementType(J->getType()) && 5394 "Instruction has non-scalar type"); 5395 if (canBeScalarized(J)) 5396 Worklist.push_back(J); 5397 else if (needsExtract(J)) 5398 ScalarCost += TTI.getScalarizationOverhead( 5399 ToVectorTy(J->getType(),VF), false, true); 5400 } 5401 5402 // Scale the total scalar cost by block probability. 5403 ScalarCost /= getReciprocalPredBlockProb(); 5404 5405 // Compute the discount. A non-negative discount means the vector version 5406 // of the instruction costs more, and scalarizing would be beneficial. 5407 Discount += VectorCost - ScalarCost; 5408 ScalarCosts[I] = ScalarCost; 5409 } 5410 5411 return Discount; 5412 } 5413 5414 LoopVectorizationCostModel::VectorizationCostTy 5415 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5416 VectorizationCostTy Cost; 5417 5418 // For each block. 5419 for (BasicBlock *BB : TheLoop->blocks()) { 5420 VectorizationCostTy BlockCost; 5421 5422 // For each instruction in the old loop. 5423 for (Instruction &I : BB->instructionsWithoutDebug()) { 5424 // Skip ignored values. 5425 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5426 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5427 continue; 5428 5429 VectorizationCostTy C = getInstructionCost(&I, VF); 5430 5431 // Check if we should override the cost. 5432 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5433 C.first = ForceTargetInstructionCost; 5434 5435 BlockCost.first += C.first; 5436 BlockCost.second |= C.second; 5437 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5438 << " for VF " << VF << " For instruction: " << I 5439 << '\n'); 5440 } 5441 5442 // If we are vectorizing a predicated block, it will have been 5443 // if-converted. This means that the block's instructions (aside from 5444 // stores and instructions that may divide by zero) will now be 5445 // unconditionally executed. For the scalar case, we may not always execute 5446 // the predicated block. Thus, scale the block's cost by the probability of 5447 // executing it. 5448 if (VF == 1 && blockNeedsPredication(BB)) 5449 BlockCost.first /= getReciprocalPredBlockProb(); 5450 5451 Cost.first += BlockCost.first; 5452 Cost.second |= BlockCost.second; 5453 } 5454 5455 return Cost; 5456 } 5457 5458 /// Gets Address Access SCEV after verifying that the access pattern 5459 /// is loop invariant except the induction variable dependence. 5460 /// 5461 /// This SCEV can be sent to the Target in order to estimate the address 5462 /// calculation cost. 5463 static const SCEV *getAddressAccessSCEV( 5464 Value *Ptr, 5465 LoopVectorizationLegality *Legal, 5466 PredicatedScalarEvolution &PSE, 5467 const Loop *TheLoop) { 5468 5469 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5470 if (!Gep) 5471 return nullptr; 5472 5473 // We are looking for a gep with all loop invariant indices except for one 5474 // which should be an induction variable. 5475 auto SE = PSE.getSE(); 5476 unsigned NumOperands = Gep->getNumOperands(); 5477 for (unsigned i = 1; i < NumOperands; ++i) { 5478 Value *Opd = Gep->getOperand(i); 5479 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5480 !Legal->isInductionVariable(Opd)) 5481 return nullptr; 5482 } 5483 5484 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5485 return PSE.getSCEV(Ptr); 5486 } 5487 5488 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5489 return Legal->hasStride(I->getOperand(0)) || 5490 Legal->hasStride(I->getOperand(1)); 5491 } 5492 5493 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5494 unsigned VF) { 5495 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5496 Type *ValTy = getMemInstValueType(I); 5497 auto SE = PSE.getSE(); 5498 5499 unsigned Alignment = getLoadStoreAlignment(I); 5500 unsigned AS = getLoadStoreAddressSpace(I); 5501 Value *Ptr = getLoadStorePointerOperand(I); 5502 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5503 5504 // Figure out whether the access is strided and get the stride value 5505 // if it's known in compile time 5506 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5507 5508 // Get the cost of the scalar memory instruction and address computation. 5509 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5510 5511 // Don't pass *I here, since it is scalar but will actually be part of a 5512 // vectorized loop where the user of it is a vectorized instruction. 5513 Cost += VF * 5514 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 5515 AS); 5516 5517 // Get the overhead of the extractelement and insertelement instructions 5518 // we might create due to scalarization. 5519 Cost += getScalarizationOverhead(I, VF); 5520 5521 // If we have a predicated store, it may not be executed for each vector 5522 // lane. Scale the cost by the probability of executing the predicated 5523 // block. 5524 if (isPredicatedInst(I)) { 5525 Cost /= getReciprocalPredBlockProb(); 5526 5527 if (useEmulatedMaskMemRefHack(I)) 5528 // Artificially setting to a high enough value to practically disable 5529 // vectorization with such operations. 5530 Cost = 3000000; 5531 } 5532 5533 return Cost; 5534 } 5535 5536 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5537 unsigned VF) { 5538 Type *ValTy = getMemInstValueType(I); 5539 Type *VectorTy = ToVectorTy(ValTy, VF); 5540 unsigned Alignment = getLoadStoreAlignment(I); 5541 Value *Ptr = getLoadStorePointerOperand(I); 5542 unsigned AS = getLoadStoreAddressSpace(I); 5543 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5544 5545 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5546 "Stride should be 1 or -1 for consecutive memory access"); 5547 unsigned Cost = 0; 5548 if (Legal->isMaskRequired(I)) 5549 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5550 else 5551 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5552 5553 bool Reverse = ConsecutiveStride < 0; 5554 if (Reverse) 5555 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5556 return Cost; 5557 } 5558 5559 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5560 unsigned VF) { 5561 Type *ValTy = getMemInstValueType(I); 5562 Type *VectorTy = ToVectorTy(ValTy, VF); 5563 unsigned Alignment = getLoadStoreAlignment(I); 5564 unsigned AS = getLoadStoreAddressSpace(I); 5565 if (isa<LoadInst>(I)) { 5566 return TTI.getAddressComputationCost(ValTy) + 5567 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5568 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5569 } 5570 StoreInst *SI = cast<StoreInst>(I); 5571 5572 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5573 return TTI.getAddressComputationCost(ValTy) + 5574 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + 5575 (isLoopInvariantStoreValue ? 0 : TTI.getVectorInstrCost( 5576 Instruction::ExtractElement, 5577 VectorTy, VF - 1)); 5578 } 5579 5580 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5581 unsigned VF) { 5582 Type *ValTy = getMemInstValueType(I); 5583 Type *VectorTy = ToVectorTy(ValTy, VF); 5584 unsigned Alignment = getLoadStoreAlignment(I); 5585 Value *Ptr = getLoadStorePointerOperand(I); 5586 5587 return TTI.getAddressComputationCost(VectorTy) + 5588 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5589 Legal->isMaskRequired(I), Alignment); 5590 } 5591 5592 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5593 unsigned VF) { 5594 Type *ValTy = getMemInstValueType(I); 5595 Type *VectorTy = ToVectorTy(ValTy, VF); 5596 unsigned AS = getLoadStoreAddressSpace(I); 5597 5598 auto Group = getInterleavedAccessGroup(I); 5599 assert(Group && "Fail to get an interleaved access group."); 5600 5601 unsigned InterleaveFactor = Group->getFactor(); 5602 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5603 5604 // Holds the indices of existing members in an interleaved load group. 5605 // An interleaved store group doesn't need this as it doesn't allow gaps. 5606 SmallVector<unsigned, 4> Indices; 5607 if (isa<LoadInst>(I)) { 5608 for (unsigned i = 0; i < InterleaveFactor; i++) 5609 if (Group->getMember(i)) 5610 Indices.push_back(i); 5611 } 5612 5613 // Calculate the cost of the whole interleaved group. 5614 bool UseMaskForGaps = 5615 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 5616 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5617 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5618 Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps); 5619 5620 if (Group->isReverse()) { 5621 // TODO: Add support for reversed masked interleaved access. 5622 assert(!Legal->isMaskRequired(I) && 5623 "Reverse masked interleaved access not supported."); 5624 Cost += Group->getNumMembers() * 5625 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5626 } 5627 return Cost; 5628 } 5629 5630 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5631 unsigned VF) { 5632 // Calculate scalar cost only. Vectorization cost should be ready at this 5633 // moment. 5634 if (VF == 1) { 5635 Type *ValTy = getMemInstValueType(I); 5636 unsigned Alignment = getLoadStoreAlignment(I); 5637 unsigned AS = getLoadStoreAddressSpace(I); 5638 5639 return TTI.getAddressComputationCost(ValTy) + 5640 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5641 } 5642 return getWideningCost(I, VF); 5643 } 5644 5645 LoopVectorizationCostModel::VectorizationCostTy 5646 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5647 // If we know that this instruction will remain uniform, check the cost of 5648 // the scalar version. 5649 if (isUniformAfterVectorization(I, VF)) 5650 VF = 1; 5651 5652 if (VF > 1 && isProfitableToScalarize(I, VF)) 5653 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5654 5655 // Forced scalars do not have any scalarization overhead. 5656 auto ForcedScalar = ForcedScalars.find(VF); 5657 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5658 auto InstSet = ForcedScalar->second; 5659 if (InstSet.find(I) != InstSet.end()) 5660 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5661 } 5662 5663 Type *VectorTy; 5664 unsigned C = getInstructionCost(I, VF, VectorTy); 5665 5666 bool TypeNotScalarized = 5667 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5668 return VectorizationCostTy(C, TypeNotScalarized); 5669 } 5670 5671 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 5672 unsigned VF) { 5673 5674 if (VF == 1) 5675 return 0; 5676 5677 unsigned Cost = 0; 5678 Type *RetTy = ToVectorTy(I->getType(), VF); 5679 if (!RetTy->isVoidTy() && 5680 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 5681 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 5682 5683 // Some targets keep addresses scalar. 5684 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 5685 return Cost; 5686 5687 if (CallInst *CI = dyn_cast<CallInst>(I)) { 5688 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 5689 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 5690 } else if (!isa<StoreInst>(I) || 5691 !TTI.supportsEfficientVectorElementLoadStore()) { 5692 SmallVector<const Value *, 4> Operands(I->operand_values()); 5693 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 5694 } 5695 5696 return Cost; 5697 } 5698 5699 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5700 if (VF == 1) 5701 return; 5702 NumPredStores = 0; 5703 for (BasicBlock *BB : TheLoop->blocks()) { 5704 // For each instruction in the old loop. 5705 for (Instruction &I : *BB) { 5706 Value *Ptr = getLoadStorePointerOperand(&I); 5707 if (!Ptr) 5708 continue; 5709 5710 // TODO: We should generate better code and update the cost model for 5711 // predicated uniform stores. Today they are treated as any other 5712 // predicated store (see added test cases in 5713 // invariant-store-vectorization.ll). 5714 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5715 NumPredStores++; 5716 5717 if (Legal->isUniform(Ptr) && 5718 // Conditional loads and stores should be scalarized and predicated. 5719 // isScalarWithPredication cannot be used here since masked 5720 // gather/scatters are not considered scalar with predication. 5721 !Legal->blockNeedsPredication(I.getParent())) { 5722 // TODO: Avoid replicating loads and stores instead of 5723 // relying on instcombine to remove them. 5724 // Load: Scalar load + broadcast 5725 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 5726 unsigned Cost = getUniformMemOpCost(&I, VF); 5727 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5728 continue; 5729 } 5730 5731 // We assume that widening is the best solution when possible. 5732 if (memoryInstructionCanBeWidened(&I, VF)) { 5733 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5734 int ConsecutiveStride = 5735 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5736 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5737 "Expected consecutive stride."); 5738 InstWidening Decision = 5739 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 5740 setWideningDecision(&I, VF, Decision, Cost); 5741 continue; 5742 } 5743 5744 // Choose between Interleaving, Gather/Scatter or Scalarization. 5745 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 5746 unsigned NumAccesses = 1; 5747 if (isAccessInterleaved(&I)) { 5748 auto Group = getInterleavedAccessGroup(&I); 5749 assert(Group && "Fail to get an interleaved access group."); 5750 5751 // Make one decision for the whole group. 5752 if (getWideningDecision(&I, VF) != CM_Unknown) 5753 continue; 5754 5755 NumAccesses = Group->getNumMembers(); 5756 if (interleavedAccessCanBeWidened(&I, VF)) 5757 InterleaveCost = getInterleaveGroupCost(&I, VF); 5758 } 5759 5760 unsigned GatherScatterCost = 5761 isLegalGatherOrScatter(&I) 5762 ? getGatherScatterCost(&I, VF) * NumAccesses 5763 : std::numeric_limits<unsigned>::max(); 5764 5765 unsigned ScalarizationCost = 5766 getMemInstScalarizationCost(&I, VF) * NumAccesses; 5767 5768 // Choose better solution for the current VF, 5769 // write down this decision and use it during vectorization. 5770 unsigned Cost; 5771 InstWidening Decision; 5772 if (InterleaveCost <= GatherScatterCost && 5773 InterleaveCost < ScalarizationCost) { 5774 Decision = CM_Interleave; 5775 Cost = InterleaveCost; 5776 } else if (GatherScatterCost < ScalarizationCost) { 5777 Decision = CM_GatherScatter; 5778 Cost = GatherScatterCost; 5779 } else { 5780 Decision = CM_Scalarize; 5781 Cost = ScalarizationCost; 5782 } 5783 // If the instructions belongs to an interleave group, the whole group 5784 // receives the same decision. The whole group receives the cost, but 5785 // the cost will actually be assigned to one instruction. 5786 if (auto Group = getInterleavedAccessGroup(&I)) 5787 setWideningDecision(Group, VF, Decision, Cost); 5788 else 5789 setWideningDecision(&I, VF, Decision, Cost); 5790 } 5791 } 5792 5793 // Make sure that any load of address and any other address computation 5794 // remains scalar unless there is gather/scatter support. This avoids 5795 // inevitable extracts into address registers, and also has the benefit of 5796 // activating LSR more, since that pass can't optimize vectorized 5797 // addresses. 5798 if (TTI.prefersVectorizedAddressing()) 5799 return; 5800 5801 // Start with all scalar pointer uses. 5802 SmallPtrSet<Instruction *, 8> AddrDefs; 5803 for (BasicBlock *BB : TheLoop->blocks()) 5804 for (Instruction &I : *BB) { 5805 Instruction *PtrDef = 5806 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5807 if (PtrDef && TheLoop->contains(PtrDef) && 5808 getWideningDecision(&I, VF) != CM_GatherScatter) 5809 AddrDefs.insert(PtrDef); 5810 } 5811 5812 // Add all instructions used to generate the addresses. 5813 SmallVector<Instruction *, 4> Worklist; 5814 for (auto *I : AddrDefs) 5815 Worklist.push_back(I); 5816 while (!Worklist.empty()) { 5817 Instruction *I = Worklist.pop_back_val(); 5818 for (auto &Op : I->operands()) 5819 if (auto *InstOp = dyn_cast<Instruction>(Op)) 5820 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 5821 AddrDefs.insert(InstOp).second) 5822 Worklist.push_back(InstOp); 5823 } 5824 5825 for (auto *I : AddrDefs) { 5826 if (isa<LoadInst>(I)) { 5827 // Setting the desired widening decision should ideally be handled in 5828 // by cost functions, but since this involves the task of finding out 5829 // if the loaded register is involved in an address computation, it is 5830 // instead changed here when we know this is the case. 5831 InstWidening Decision = getWideningDecision(I, VF); 5832 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 5833 // Scalarize a widened load of address. 5834 setWideningDecision(I, VF, CM_Scalarize, 5835 (VF * getMemoryInstructionCost(I, 1))); 5836 else if (auto Group = getInterleavedAccessGroup(I)) { 5837 // Scalarize an interleave group of address loads. 5838 for (unsigned I = 0; I < Group->getFactor(); ++I) { 5839 if (Instruction *Member = Group->getMember(I)) 5840 setWideningDecision(Member, VF, CM_Scalarize, 5841 (VF * getMemoryInstructionCost(Member, 1))); 5842 } 5843 } 5844 } else 5845 // Make sure I gets scalarized and a cost estimate without 5846 // scalarization overhead. 5847 ForcedScalars[VF].insert(I); 5848 } 5849 } 5850 5851 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5852 unsigned VF, 5853 Type *&VectorTy) { 5854 Type *RetTy = I->getType(); 5855 if (canTruncateToMinimalBitwidth(I, VF)) 5856 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5857 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 5858 auto SE = PSE.getSE(); 5859 5860 // TODO: We need to estimate the cost of intrinsic calls. 5861 switch (I->getOpcode()) { 5862 case Instruction::GetElementPtr: 5863 // We mark this instruction as zero-cost because the cost of GEPs in 5864 // vectorized code depends on whether the corresponding memory instruction 5865 // is scalarized or not. Therefore, we handle GEPs with the memory 5866 // instruction cost. 5867 return 0; 5868 case Instruction::Br: { 5869 // In cases of scalarized and predicated instructions, there will be VF 5870 // predicated blocks in the vectorized loop. Each branch around these 5871 // blocks requires also an extract of its vector compare i1 element. 5872 bool ScalarPredicatedBB = false; 5873 BranchInst *BI = cast<BranchInst>(I); 5874 if (VF > 1 && BI->isConditional() && 5875 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 5876 PredicatedBBsAfterVectorization.end() || 5877 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 5878 PredicatedBBsAfterVectorization.end())) 5879 ScalarPredicatedBB = true; 5880 5881 if (ScalarPredicatedBB) { 5882 // Return cost for branches around scalarized and predicated blocks. 5883 Type *Vec_i1Ty = 5884 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 5885 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 5886 (TTI.getCFInstrCost(Instruction::Br) * VF)); 5887 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 5888 // The back-edge branch will remain, as will all scalar branches. 5889 return TTI.getCFInstrCost(Instruction::Br); 5890 else 5891 // This branch will be eliminated by if-conversion. 5892 return 0; 5893 // Note: We currently assume zero cost for an unconditional branch inside 5894 // a predicated block since it will become a fall-through, although we 5895 // may decide in the future to call TTI for all branches. 5896 } 5897 case Instruction::PHI: { 5898 auto *Phi = cast<PHINode>(I); 5899 5900 // First-order recurrences are replaced by vector shuffles inside the loop. 5901 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 5902 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5903 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5904 VectorTy, VF - 1, VectorType::get(RetTy, 1)); 5905 5906 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 5907 // converted into select instructions. We require N - 1 selects per phi 5908 // node, where N is the number of incoming values. 5909 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 5910 return (Phi->getNumIncomingValues() - 1) * 5911 TTI.getCmpSelInstrCost( 5912 Instruction::Select, ToVectorTy(Phi->getType(), VF), 5913 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 5914 5915 return TTI.getCFInstrCost(Instruction::PHI); 5916 } 5917 case Instruction::UDiv: 5918 case Instruction::SDiv: 5919 case Instruction::URem: 5920 case Instruction::SRem: 5921 // If we have a predicated instruction, it may not be executed for each 5922 // vector lane. Get the scalarization cost and scale this amount by the 5923 // probability of executing the predicated block. If the instruction is not 5924 // predicated, we fall through to the next case. 5925 if (VF > 1 && isScalarWithPredication(I)) { 5926 unsigned Cost = 0; 5927 5928 // These instructions have a non-void type, so account for the phi nodes 5929 // that we will create. This cost is likely to be zero. The phi node 5930 // cost, if any, should be scaled by the block probability because it 5931 // models a copy at the end of each predicated block. 5932 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 5933 5934 // The cost of the non-predicated instruction. 5935 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 5936 5937 // The cost of insertelement and extractelement instructions needed for 5938 // scalarization. 5939 Cost += getScalarizationOverhead(I, VF); 5940 5941 // Scale the cost by the probability of executing the predicated blocks. 5942 // This assumes the predicated block for each vector lane is equally 5943 // likely. 5944 return Cost / getReciprocalPredBlockProb(); 5945 } 5946 LLVM_FALLTHROUGH; 5947 case Instruction::Add: 5948 case Instruction::FAdd: 5949 case Instruction::Sub: 5950 case Instruction::FSub: 5951 case Instruction::Mul: 5952 case Instruction::FMul: 5953 case Instruction::FDiv: 5954 case Instruction::FRem: 5955 case Instruction::Shl: 5956 case Instruction::LShr: 5957 case Instruction::AShr: 5958 case Instruction::And: 5959 case Instruction::Or: 5960 case Instruction::Xor: { 5961 // Since we will replace the stride by 1 the multiplication should go away. 5962 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5963 return 0; 5964 // Certain instructions can be cheaper to vectorize if they have a constant 5965 // second vector operand. One example of this are shifts on x86. 5966 Value *Op2 = I->getOperand(1); 5967 TargetTransformInfo::OperandValueProperties Op2VP; 5968 TargetTransformInfo::OperandValueKind Op2VK = 5969 TTI.getOperandInfo(Op2, Op2VP); 5970 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 5971 Op2VK = TargetTransformInfo::OK_UniformValue; 5972 5973 SmallVector<const Value *, 4> Operands(I->operand_values()); 5974 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 5975 return N * TTI.getArithmeticInstrCost( 5976 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 5977 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands); 5978 } 5979 case Instruction::FNeg: { 5980 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 5981 return N * TTI.getArithmeticInstrCost( 5982 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 5983 TargetTransformInfo::OK_AnyValue, 5984 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 5985 I->getOperand(0)); 5986 } 5987 case Instruction::Select: { 5988 SelectInst *SI = cast<SelectInst>(I); 5989 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5990 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5991 Type *CondTy = SI->getCondition()->getType(); 5992 if (!ScalarCond) 5993 CondTy = VectorType::get(CondTy, VF); 5994 5995 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 5996 } 5997 case Instruction::ICmp: 5998 case Instruction::FCmp: { 5999 Type *ValTy = I->getOperand(0)->getType(); 6000 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6001 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6002 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6003 VectorTy = ToVectorTy(ValTy, VF); 6004 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 6005 } 6006 case Instruction::Store: 6007 case Instruction::Load: { 6008 unsigned Width = VF; 6009 if (Width > 1) { 6010 InstWidening Decision = getWideningDecision(I, Width); 6011 assert(Decision != CM_Unknown && 6012 "CM decision should be taken at this point"); 6013 if (Decision == CM_Scalarize) 6014 Width = 1; 6015 } 6016 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6017 return getMemoryInstructionCost(I, VF); 6018 } 6019 case Instruction::ZExt: 6020 case Instruction::SExt: 6021 case Instruction::FPToUI: 6022 case Instruction::FPToSI: 6023 case Instruction::FPExt: 6024 case Instruction::PtrToInt: 6025 case Instruction::IntToPtr: 6026 case Instruction::SIToFP: 6027 case Instruction::UIToFP: 6028 case Instruction::Trunc: 6029 case Instruction::FPTrunc: 6030 case Instruction::BitCast: { 6031 // We optimize the truncation of induction variables having constant 6032 // integer steps. The cost of these truncations is the same as the scalar 6033 // operation. 6034 if (isOptimizableIVTruncate(I, VF)) { 6035 auto *Trunc = cast<TruncInst>(I); 6036 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6037 Trunc->getSrcTy(), Trunc); 6038 } 6039 6040 Type *SrcScalarTy = I->getOperand(0)->getType(); 6041 Type *SrcVecTy = 6042 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6043 if (canTruncateToMinimalBitwidth(I, VF)) { 6044 // This cast is going to be shrunk. This may remove the cast or it might 6045 // turn it into slightly different cast. For example, if MinBW == 16, 6046 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6047 // 6048 // Calculate the modified src and dest types. 6049 Type *MinVecTy = VectorTy; 6050 if (I->getOpcode() == Instruction::Trunc) { 6051 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6052 VectorTy = 6053 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6054 } else if (I->getOpcode() == Instruction::ZExt || 6055 I->getOpcode() == Instruction::SExt) { 6056 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6057 VectorTy = 6058 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6059 } 6060 } 6061 6062 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6063 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6064 } 6065 case Instruction::Call: { 6066 bool NeedToScalarize; 6067 CallInst *CI = cast<CallInst>(I); 6068 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6069 if (getVectorIntrinsicIDForCall(CI, TLI)) 6070 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6071 return CallCost; 6072 } 6073 default: 6074 // The cost of executing VF copies of the scalar instruction. This opcode 6075 // is unknown. Assume that it is the same as 'mul'. 6076 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6077 getScalarizationOverhead(I, VF); 6078 } // end of switch. 6079 } 6080 6081 char LoopVectorize::ID = 0; 6082 6083 static const char lv_name[] = "Loop Vectorization"; 6084 6085 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6086 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6087 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6088 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6089 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6090 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6091 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6092 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6093 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6094 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6095 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6096 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6097 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6098 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6099 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6100 6101 namespace llvm { 6102 6103 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6104 6105 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6106 bool VectorizeOnlyWhenForced) { 6107 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6108 } 6109 6110 } // end namespace llvm 6111 6112 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6113 // Check if the pointer operand of a load or store instruction is 6114 // consecutive. 6115 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6116 return Legal->isConsecutivePtr(Ptr); 6117 return false; 6118 } 6119 6120 void LoopVectorizationCostModel::collectValuesToIgnore() { 6121 // Ignore ephemeral values. 6122 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6123 6124 // Ignore type-promoting instructions we identified during reduction 6125 // detection. 6126 for (auto &Reduction : *Legal->getReductionVars()) { 6127 RecurrenceDescriptor &RedDes = Reduction.second; 6128 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6129 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6130 } 6131 // Ignore type-casting instructions we identified during induction 6132 // detection. 6133 for (auto &Induction : *Legal->getInductionVars()) { 6134 InductionDescriptor &IndDes = Induction.second; 6135 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6136 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6137 } 6138 } 6139 6140 // TODO: we could return a pair of values that specify the max VF and 6141 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6142 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6143 // doesn't have a cost model that can choose which plan to execute if 6144 // more than one is generated. 6145 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6146 LoopVectorizationCostModel &CM) { 6147 unsigned WidestType; 6148 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6149 return WidestVectorRegBits / WidestType; 6150 } 6151 6152 VectorizationFactor 6153 LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize, 6154 unsigned UserVF) { 6155 unsigned VF = UserVF; 6156 // Outer loop handling: They may require CFG and instruction level 6157 // transformations before even evaluating whether vectorization is profitable. 6158 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6159 // the vectorization pipeline. 6160 if (!OrigLoop->empty()) { 6161 // If the user doesn't provide a vectorization factor, determine a 6162 // reasonable one. 6163 if (!UserVF) { 6164 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6165 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6166 6167 // Make sure we have a VF > 1 for stress testing. 6168 if (VPlanBuildStressTest && VF < 2) { 6169 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6170 << "overriding computed VF.\n"); 6171 VF = 4; 6172 } 6173 } 6174 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6175 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6176 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6177 << " to build VPlans.\n"); 6178 buildVPlans(VF, VF); 6179 6180 // For VPlan build stress testing, we bail out after VPlan construction. 6181 if (VPlanBuildStressTest) 6182 return VectorizationFactor::Disabled(); 6183 6184 return {VF, 0}; 6185 } 6186 6187 LLVM_DEBUG( 6188 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6189 "VPlan-native path.\n"); 6190 return VectorizationFactor::Disabled(); 6191 } 6192 6193 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(bool OptForSize, 6194 unsigned UserVF) { 6195 assert(OrigLoop->empty() && "Inner loop expected."); 6196 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 6197 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6198 return None; 6199 6200 // Invalidate interleave groups if all blocks of loop will be predicated. 6201 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6202 !useMaskedInterleavedAccesses(*TTI)) { 6203 LLVM_DEBUG( 6204 dbgs() 6205 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6206 "which requires masked-interleaved support.\n"); 6207 CM.InterleaveInfo.reset(); 6208 } 6209 6210 if (UserVF) { 6211 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6212 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6213 // Collect the instructions (and their associated costs) that will be more 6214 // profitable to scalarize. 6215 CM.selectUserVectorizationFactor(UserVF); 6216 buildVPlansWithVPRecipes(UserVF, UserVF); 6217 LLVM_DEBUG(printPlans(dbgs())); 6218 return {{UserVF, 0}}; 6219 } 6220 6221 unsigned MaxVF = MaybeMaxVF.getValue(); 6222 assert(MaxVF != 0 && "MaxVF is zero."); 6223 6224 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6225 // Collect Uniform and Scalar instructions after vectorization with VF. 6226 CM.collectUniformsAndScalars(VF); 6227 6228 // Collect the instructions (and their associated costs) that will be more 6229 // profitable to scalarize. 6230 if (VF > 1) 6231 CM.collectInstsToScalarize(VF); 6232 } 6233 6234 buildVPlansWithVPRecipes(1, MaxVF); 6235 LLVM_DEBUG(printPlans(dbgs())); 6236 if (MaxVF == 1) 6237 return VectorizationFactor::Disabled(); 6238 6239 // Select the optimal vectorization factor. 6240 return CM.selectVectorizationFactor(MaxVF); 6241 } 6242 6243 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6244 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6245 << '\n'); 6246 BestVF = VF; 6247 BestUF = UF; 6248 6249 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6250 return !Plan->hasVF(VF); 6251 }); 6252 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6253 } 6254 6255 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6256 DominatorTree *DT) { 6257 // Perform the actual loop transformation. 6258 6259 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6260 VPCallbackILV CallbackILV(ILV); 6261 6262 VPTransformState State{BestVF, BestUF, LI, 6263 DT, ILV.Builder, ILV.VectorLoopValueMap, 6264 &ILV, CallbackILV}; 6265 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6266 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6267 6268 //===------------------------------------------------===// 6269 // 6270 // Notice: any optimization or new instruction that go 6271 // into the code below should also be implemented in 6272 // the cost-model. 6273 // 6274 //===------------------------------------------------===// 6275 6276 // 2. Copy and widen instructions from the old loop into the new loop. 6277 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6278 VPlans.front()->execute(&State); 6279 6280 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6281 // predication, updating analyses. 6282 ILV.fixVectorizedLoop(); 6283 } 6284 6285 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6286 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6287 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6288 6289 // We create new control-flow for the vectorized loop, so the original 6290 // condition will be dead after vectorization if it's only used by the 6291 // branch. 6292 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6293 if (Cmp && Cmp->hasOneUse()) 6294 DeadInstructions.insert(Cmp); 6295 6296 // We create new "steps" for induction variable updates to which the original 6297 // induction variables map. An original update instruction will be dead if 6298 // all its users except the induction variable are dead. 6299 for (auto &Induction : *Legal->getInductionVars()) { 6300 PHINode *Ind = Induction.first; 6301 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6302 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6303 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6304 DeadInstructions.end(); 6305 })) 6306 DeadInstructions.insert(IndUpdate); 6307 6308 // We record as "Dead" also the type-casting instructions we had identified 6309 // during induction analysis. We don't need any handling for them in the 6310 // vectorized loop because we have proven that, under a proper runtime 6311 // test guarding the vectorized loop, the value of the phi, and the casted 6312 // value of the phi, are the same. The last instruction in this casting chain 6313 // will get its scalar/vector/widened def from the scalar/vector/widened def 6314 // of the respective phi node. Any other casts in the induction def-use chain 6315 // have no other uses outside the phi update chain, and will be ignored. 6316 InductionDescriptor &IndDes = Induction.second; 6317 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6318 DeadInstructions.insert(Casts.begin(), Casts.end()); 6319 } 6320 } 6321 6322 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6323 6324 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6325 6326 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6327 Instruction::BinaryOps BinOp) { 6328 // When unrolling and the VF is 1, we only need to add a simple scalar. 6329 Type *Ty = Val->getType(); 6330 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6331 6332 if (Ty->isFloatingPointTy()) { 6333 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6334 6335 // Floating point operations had to be 'fast' to enable the unrolling. 6336 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6337 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6338 } 6339 Constant *C = ConstantInt::get(Ty, StartIdx); 6340 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6341 } 6342 6343 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6344 SmallVector<Metadata *, 4> MDs; 6345 // Reserve first location for self reference to the LoopID metadata node. 6346 MDs.push_back(nullptr); 6347 bool IsUnrollMetadata = false; 6348 MDNode *LoopID = L->getLoopID(); 6349 if (LoopID) { 6350 // First find existing loop unrolling disable metadata. 6351 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6352 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6353 if (MD) { 6354 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6355 IsUnrollMetadata = 6356 S && S->getString().startswith("llvm.loop.unroll.disable"); 6357 } 6358 MDs.push_back(LoopID->getOperand(i)); 6359 } 6360 } 6361 6362 if (!IsUnrollMetadata) { 6363 // Add runtime unroll disable metadata. 6364 LLVMContext &Context = L->getHeader()->getContext(); 6365 SmallVector<Metadata *, 1> DisableOperands; 6366 DisableOperands.push_back( 6367 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6368 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6369 MDs.push_back(DisableNode); 6370 MDNode *NewLoopID = MDNode::get(Context, MDs); 6371 // Set operand 0 to refer to the loop id itself. 6372 NewLoopID->replaceOperandWith(0, NewLoopID); 6373 L->setLoopID(NewLoopID); 6374 } 6375 } 6376 6377 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6378 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6379 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6380 bool PredicateAtRangeStart = Predicate(Range.Start); 6381 6382 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6383 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6384 Range.End = TmpVF; 6385 break; 6386 } 6387 6388 return PredicateAtRangeStart; 6389 } 6390 6391 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6392 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6393 /// of VF's starting at a given VF and extending it as much as possible. Each 6394 /// vectorization decision can potentially shorten this sub-range during 6395 /// buildVPlan(). 6396 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6397 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6398 VFRange SubRange = {VF, MaxVF + 1}; 6399 VPlans.push_back(buildVPlan(SubRange)); 6400 VF = SubRange.End; 6401 } 6402 } 6403 6404 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6405 VPlanPtr &Plan) { 6406 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6407 6408 // Look for cached value. 6409 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6410 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6411 if (ECEntryIt != EdgeMaskCache.end()) 6412 return ECEntryIt->second; 6413 6414 VPValue *SrcMask = createBlockInMask(Src, Plan); 6415 6416 // The terminator has to be a branch inst! 6417 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6418 assert(BI && "Unexpected terminator found"); 6419 6420 if (!BI->isConditional()) 6421 return EdgeMaskCache[Edge] = SrcMask; 6422 6423 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6424 assert(EdgeMask && "No Edge Mask found for condition"); 6425 6426 if (BI->getSuccessor(0) != Dst) 6427 EdgeMask = Builder.createNot(EdgeMask); 6428 6429 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6430 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6431 6432 return EdgeMaskCache[Edge] = EdgeMask; 6433 } 6434 6435 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6436 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6437 6438 // Look for cached value. 6439 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6440 if (BCEntryIt != BlockMaskCache.end()) 6441 return BCEntryIt->second; 6442 6443 // All-one mask is modelled as no-mask following the convention for masked 6444 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6445 VPValue *BlockMask = nullptr; 6446 6447 if (OrigLoop->getHeader() == BB) { 6448 if (!CM.blockNeedsPredication(BB)) 6449 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6450 6451 // Introduce the early-exit compare IV <= BTC to form header block mask. 6452 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6453 VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6454 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6455 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6456 return BlockMaskCache[BB] = BlockMask; 6457 } 6458 6459 // This is the block mask. We OR all incoming edges. 6460 for (auto *Predecessor : predecessors(BB)) { 6461 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6462 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6463 return BlockMaskCache[BB] = EdgeMask; 6464 6465 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6466 BlockMask = EdgeMask; 6467 continue; 6468 } 6469 6470 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6471 } 6472 6473 return BlockMaskCache[BB] = BlockMask; 6474 } 6475 6476 VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I, 6477 VFRange &Range, 6478 VPlanPtr &Plan) { 6479 const InterleaveGroup<Instruction> *IG = CM.getInterleavedAccessGroup(I); 6480 if (!IG) 6481 return nullptr; 6482 6483 // Now check if IG is relevant for VF's in the given range. 6484 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 6485 return [=](unsigned VF) -> bool { 6486 return (VF >= 2 && // Query is illegal for VF == 1 6487 CM.getWideningDecision(I, VF) == 6488 LoopVectorizationCostModel::CM_Interleave); 6489 }; 6490 }; 6491 if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range)) 6492 return nullptr; 6493 6494 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 6495 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 6496 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 6497 assert(I == IG->getInsertPos() && 6498 "Generating a recipe for an adjunct member of an interleave group"); 6499 6500 VPValue *Mask = nullptr; 6501 if (Legal->isMaskRequired(I)) 6502 Mask = createBlockInMask(I->getParent(), Plan); 6503 6504 return new VPInterleaveRecipe(IG, Mask); 6505 } 6506 6507 VPWidenMemoryInstructionRecipe * 6508 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6509 VPlanPtr &Plan) { 6510 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6511 return nullptr; 6512 6513 auto willWiden = [&](unsigned VF) -> bool { 6514 if (VF == 1) 6515 return false; 6516 if (CM.isScalarAfterVectorization(I, VF) || 6517 CM.isProfitableToScalarize(I, VF)) 6518 return false; 6519 LoopVectorizationCostModel::InstWidening Decision = 6520 CM.getWideningDecision(I, VF); 6521 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6522 "CM decision should be taken at this point."); 6523 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 6524 "Interleave memory opportunity should be caught earlier."); 6525 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6526 }; 6527 6528 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6529 return nullptr; 6530 6531 VPValue *Mask = nullptr; 6532 if (Legal->isMaskRequired(I)) 6533 Mask = createBlockInMask(I->getParent(), Plan); 6534 6535 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6536 } 6537 6538 VPWidenIntOrFpInductionRecipe * 6539 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6540 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6541 // Check if this is an integer or fp induction. If so, build the recipe that 6542 // produces its scalar and vector values. 6543 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6544 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6545 II.getKind() == InductionDescriptor::IK_FpInduction) 6546 return new VPWidenIntOrFpInductionRecipe(Phi); 6547 6548 return nullptr; 6549 } 6550 6551 // Optimize the special case where the source is a constant integer 6552 // induction variable. Notice that we can only optimize the 'trunc' case 6553 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6554 // (c) other casts depend on pointer size. 6555 6556 // Determine whether \p K is a truncation based on an induction variable that 6557 // can be optimized. 6558 auto isOptimizableIVTruncate = 6559 [&](Instruction *K) -> std::function<bool(unsigned)> { 6560 return 6561 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6562 }; 6563 6564 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6565 isOptimizableIVTruncate(I), Range)) 6566 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6567 cast<TruncInst>(I)); 6568 return nullptr; 6569 } 6570 6571 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6572 PHINode *Phi = dyn_cast<PHINode>(I); 6573 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6574 return nullptr; 6575 6576 // We know that all PHIs in non-header blocks are converted into selects, so 6577 // we don't have to worry about the insertion order and we can just use the 6578 // builder. At this point we generate the predication tree. There may be 6579 // duplications since this is a simple recursive scan, but future 6580 // optimizations will clean it up. 6581 6582 SmallVector<VPValue *, 2> Masks; 6583 unsigned NumIncoming = Phi->getNumIncomingValues(); 6584 for (unsigned In = 0; In < NumIncoming; In++) { 6585 VPValue *EdgeMask = 6586 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6587 assert((EdgeMask || NumIncoming == 1) && 6588 "Multiple predecessors with one having a full mask"); 6589 if (EdgeMask) 6590 Masks.push_back(EdgeMask); 6591 } 6592 return new VPBlendRecipe(Phi, Masks); 6593 } 6594 6595 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6596 VFRange &Range) { 6597 6598 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6599 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6600 6601 if (IsPredicated) 6602 return false; 6603 6604 auto IsVectorizableOpcode = [](unsigned Opcode) { 6605 switch (Opcode) { 6606 case Instruction::Add: 6607 case Instruction::And: 6608 case Instruction::AShr: 6609 case Instruction::BitCast: 6610 case Instruction::Br: 6611 case Instruction::Call: 6612 case Instruction::FAdd: 6613 case Instruction::FCmp: 6614 case Instruction::FDiv: 6615 case Instruction::FMul: 6616 case Instruction::FNeg: 6617 case Instruction::FPExt: 6618 case Instruction::FPToSI: 6619 case Instruction::FPToUI: 6620 case Instruction::FPTrunc: 6621 case Instruction::FRem: 6622 case Instruction::FSub: 6623 case Instruction::GetElementPtr: 6624 case Instruction::ICmp: 6625 case Instruction::IntToPtr: 6626 case Instruction::Load: 6627 case Instruction::LShr: 6628 case Instruction::Mul: 6629 case Instruction::Or: 6630 case Instruction::PHI: 6631 case Instruction::PtrToInt: 6632 case Instruction::SDiv: 6633 case Instruction::Select: 6634 case Instruction::SExt: 6635 case Instruction::Shl: 6636 case Instruction::SIToFP: 6637 case Instruction::SRem: 6638 case Instruction::Store: 6639 case Instruction::Sub: 6640 case Instruction::Trunc: 6641 case Instruction::UDiv: 6642 case Instruction::UIToFP: 6643 case Instruction::URem: 6644 case Instruction::Xor: 6645 case Instruction::ZExt: 6646 return true; 6647 } 6648 return false; 6649 }; 6650 6651 if (!IsVectorizableOpcode(I->getOpcode())) 6652 return false; 6653 6654 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6655 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6656 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6657 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6658 return false; 6659 } 6660 6661 auto willWiden = [&](unsigned VF) -> bool { 6662 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6663 CM.isProfitableToScalarize(I, VF))) 6664 return false; 6665 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6666 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6667 // The following case may be scalarized depending on the VF. 6668 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6669 // version of the instruction. 6670 // Is it beneficial to perform intrinsic call compared to lib call? 6671 bool NeedToScalarize; 6672 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 6673 bool UseVectorIntrinsic = 6674 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 6675 return UseVectorIntrinsic || !NeedToScalarize; 6676 } 6677 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6678 assert(CM.getWideningDecision(I, VF) == 6679 LoopVectorizationCostModel::CM_Scalarize && 6680 "Memory widening decisions should have been taken care by now"); 6681 return false; 6682 } 6683 return true; 6684 }; 6685 6686 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6687 return false; 6688 6689 // Success: widen this instruction. We optimize the common case where 6690 // consecutive instructions can be represented by a single recipe. 6691 if (!VPBB->empty()) { 6692 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 6693 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 6694 return true; 6695 } 6696 6697 VPBB->appendRecipe(new VPWidenRecipe(I)); 6698 return true; 6699 } 6700 6701 VPBasicBlock *VPRecipeBuilder::handleReplication( 6702 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6703 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6704 VPlanPtr &Plan) { 6705 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6706 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6707 Range); 6708 6709 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6710 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6711 6712 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6713 6714 // Find if I uses a predicated instruction. If so, it will use its scalar 6715 // value. Avoid hoisting the insert-element which packs the scalar value into 6716 // a vector value, as that happens iff all users use the vector value. 6717 for (auto &Op : I->operands()) 6718 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6719 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6720 PredInst2Recipe[PredInst]->setAlsoPack(false); 6721 6722 // Finalize the recipe for Instr, first if it is not predicated. 6723 if (!IsPredicated) { 6724 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6725 VPBB->appendRecipe(Recipe); 6726 return VPBB; 6727 } 6728 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6729 assert(VPBB->getSuccessors().empty() && 6730 "VPBB has successors when handling predicated replication."); 6731 // Record predicated instructions for above packing optimizations. 6732 PredInst2Recipe[I] = Recipe; 6733 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6734 VPBlockUtils::insertBlockAfter(Region, VPBB); 6735 auto *RegSucc = new VPBasicBlock(); 6736 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6737 return RegSucc; 6738 } 6739 6740 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 6741 VPRecipeBase *PredRecipe, 6742 VPlanPtr &Plan) { 6743 // Instructions marked for predication are replicated and placed under an 6744 // if-then construct to prevent side-effects. 6745 6746 // Generate recipes to compute the block mask for this region. 6747 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6748 6749 // Build the triangular if-then region. 6750 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6751 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6752 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6753 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6754 auto *PHIRecipe = 6755 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6756 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6757 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6758 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6759 6760 // Note: first set Entry as region entry and then connect successors starting 6761 // from it in order, to propagate the "parent" of each VPBasicBlock. 6762 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 6763 VPBlockUtils::connectBlocks(Pred, Exit); 6764 6765 return Region; 6766 } 6767 6768 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 6769 VPlanPtr &Plan, VPBasicBlock *VPBB) { 6770 VPRecipeBase *Recipe = nullptr; 6771 // Check if Instr should belong to an interleave memory recipe, or already 6772 // does. In the latter case Instr is irrelevant. 6773 if ((Recipe = tryToInterleaveMemory(Instr, Range, Plan))) { 6774 VPBB->appendRecipe(Recipe); 6775 return true; 6776 } 6777 6778 // Check if Instr is a memory operation that should be widened. 6779 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 6780 VPBB->appendRecipe(Recipe); 6781 return true; 6782 } 6783 6784 // Check if Instr should form some PHI recipe. 6785 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 6786 VPBB->appendRecipe(Recipe); 6787 return true; 6788 } 6789 if ((Recipe = tryToBlend(Instr, Plan))) { 6790 VPBB->appendRecipe(Recipe); 6791 return true; 6792 } 6793 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 6794 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 6795 return true; 6796 } 6797 6798 // Check if Instr is to be widened by a general VPWidenRecipe, after 6799 // having first checked for specific widening recipes that deal with 6800 // Interleave Groups, Inductions and Phi nodes. 6801 if (tryToWiden(Instr, VPBB, Range)) 6802 return true; 6803 6804 return false; 6805 } 6806 6807 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 6808 unsigned MaxVF) { 6809 assert(OrigLoop->empty() && "Inner loop expected."); 6810 6811 // Collect conditions feeding internal conditional branches; they need to be 6812 // represented in VPlan for it to model masking. 6813 SmallPtrSet<Value *, 1> NeedDef; 6814 6815 auto *Latch = OrigLoop->getLoopLatch(); 6816 for (BasicBlock *BB : OrigLoop->blocks()) { 6817 if (BB == Latch) 6818 continue; 6819 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6820 if (Branch && Branch->isConditional()) 6821 NeedDef.insert(Branch->getCondition()); 6822 } 6823 6824 // If the tail is to be folded by masking, the primary induction variable 6825 // needs to be represented in VPlan for it to model early-exit masking. 6826 if (CM.foldTailByMasking()) 6827 NeedDef.insert(Legal->getPrimaryInduction()); 6828 6829 // Collect instructions from the original loop that will become trivially dead 6830 // in the vectorized loop. We don't need to vectorize these instructions. For 6831 // example, original induction update instructions can become dead because we 6832 // separately emit induction "steps" when generating code for the new loop. 6833 // Similarly, we create a new latch condition when setting up the structure 6834 // of the new loop, so the old one can become dead. 6835 SmallPtrSet<Instruction *, 4> DeadInstructions; 6836 collectTriviallyDeadInstructions(DeadInstructions); 6837 6838 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6839 VFRange SubRange = {VF, MaxVF + 1}; 6840 VPlans.push_back( 6841 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 6842 VF = SubRange.End; 6843 } 6844 } 6845 6846 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 6847 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 6848 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6849 // Hold a mapping from predicated instructions to their recipes, in order to 6850 // fix their AlsoPack behavior if a user is determined to replicate and use a 6851 // scalar instead of vector value. 6852 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 6853 6854 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 6855 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 6856 6857 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 6858 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 6859 auto Plan = llvm::make_unique<VPlan>(VPBB); 6860 6861 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, Builder); 6862 // Represent values that will have defs inside VPlan. 6863 for (Value *V : NeedDef) 6864 Plan->addVPValue(V); 6865 6866 // Scan the body of the loop in a topological order to visit each basic block 6867 // after having visited its predecessor basic blocks. 6868 LoopBlocksDFS DFS(OrigLoop); 6869 DFS.perform(LI); 6870 6871 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6872 // Relevant instructions from basic block BB will be grouped into VPRecipe 6873 // ingredients and fill a new VPBasicBlock. 6874 unsigned VPBBsForBB = 0; 6875 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 6876 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 6877 VPBB = FirstVPBBForBB; 6878 Builder.setInsertPoint(VPBB); 6879 6880 std::vector<Instruction *> Ingredients; 6881 6882 // Organize the ingredients to vectorize from current basic block in the 6883 // right order. 6884 for (Instruction &I : BB->instructionsWithoutDebug()) { 6885 Instruction *Instr = &I; 6886 6887 // First filter out irrelevant instructions, to ensure no recipes are 6888 // built for them. 6889 if (isa<BranchInst>(Instr) || 6890 DeadInstructions.find(Instr) != DeadInstructions.end()) 6891 continue; 6892 6893 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 6894 // member of the IG, do not construct any Recipe for it. 6895 const InterleaveGroup<Instruction> *IG = 6896 CM.getInterleavedAccessGroup(Instr); 6897 if (IG && Instr != IG->getInsertPos() && 6898 Range.Start >= 2 && // Query is illegal for VF == 1 6899 CM.getWideningDecision(Instr, Range.Start) == 6900 LoopVectorizationCostModel::CM_Interleave) { 6901 auto SinkCandidate = SinkAfterInverse.find(Instr); 6902 if (SinkCandidate != SinkAfterInverse.end()) 6903 Ingredients.push_back(SinkCandidate->second); 6904 continue; 6905 } 6906 6907 // Move instructions to handle first-order recurrences, step 1: avoid 6908 // handling this instruction until after we've handled the instruction it 6909 // should follow. 6910 auto SAIt = SinkAfter.find(Instr); 6911 if (SAIt != SinkAfter.end()) { 6912 LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" 6913 << *SAIt->second 6914 << " to vectorize a 1st order recurrence.\n"); 6915 SinkAfterInverse[SAIt->second] = Instr; 6916 continue; 6917 } 6918 6919 Ingredients.push_back(Instr); 6920 6921 // Move instructions to handle first-order recurrences, step 2: push the 6922 // instruction to be sunk at its insertion point. 6923 auto SAInvIt = SinkAfterInverse.find(Instr); 6924 if (SAInvIt != SinkAfterInverse.end()) 6925 Ingredients.push_back(SAInvIt->second); 6926 } 6927 6928 // Introduce each ingredient into VPlan. 6929 for (Instruction *Instr : Ingredients) { 6930 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 6931 continue; 6932 6933 // Otherwise, if all widening options failed, Instruction is to be 6934 // replicated. This may create a successor for VPBB. 6935 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 6936 Instr, Range, VPBB, PredInst2Recipe, Plan); 6937 if (NextVPBB != VPBB) { 6938 VPBB = NextVPBB; 6939 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 6940 : ""); 6941 } 6942 } 6943 } 6944 6945 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 6946 // may also be empty, such as the last one VPBB, reflecting original 6947 // basic-blocks with no recipes. 6948 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 6949 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 6950 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 6951 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 6952 delete PreEntry; 6953 6954 std::string PlanName; 6955 raw_string_ostream RSO(PlanName); 6956 unsigned VF = Range.Start; 6957 Plan->addVF(VF); 6958 RSO << "Initial VPlan for VF={" << VF; 6959 for (VF *= 2; VF < Range.End; VF *= 2) { 6960 Plan->addVF(VF); 6961 RSO << "," << VF; 6962 } 6963 RSO << "},UF>=1"; 6964 RSO.flush(); 6965 Plan->setName(PlanName); 6966 6967 return Plan; 6968 } 6969 6970 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 6971 // Outer loop handling: They may require CFG and instruction level 6972 // transformations before even evaluating whether vectorization is profitable. 6973 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6974 // the vectorization pipeline. 6975 assert(!OrigLoop->empty()); 6976 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6977 6978 // Create new empty VPlan 6979 auto Plan = llvm::make_unique<VPlan>(); 6980 6981 // Build hierarchical CFG 6982 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 6983 HCFGBuilder.buildHierarchicalCFG(); 6984 6985 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 6986 Plan->addVF(VF); 6987 6988 if (EnableVPlanPredication) { 6989 VPlanPredicator VPP(*Plan); 6990 VPP.predicate(); 6991 6992 // Avoid running transformation to recipes until masked code generation in 6993 // VPlan-native path is in place. 6994 return Plan; 6995 } 6996 6997 SmallPtrSet<Instruction *, 1> DeadInstructions; 6998 VPlanHCFGTransforms::VPInstructionsToVPRecipes( 6999 Plan, Legal->getInductionVars(), DeadInstructions); 7000 7001 return Plan; 7002 } 7003 7004 Value* LoopVectorizationPlanner::VPCallbackILV:: 7005 getOrCreateVectorValues(Value *V, unsigned Part) { 7006 return ILV.getOrCreateVectorValue(V, Part); 7007 } 7008 7009 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 7010 O << " +\n" 7011 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7012 IG->getInsertPos()->printAsOperand(O, false); 7013 if (User) { 7014 O << ", "; 7015 User->getOperand(0)->printAsOperand(O); 7016 } 7017 O << "\\l\""; 7018 for (unsigned i = 0; i < IG->getFactor(); ++i) 7019 if (Instruction *I = IG->getMember(i)) 7020 O << " +\n" 7021 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 7022 } 7023 7024 void VPWidenRecipe::execute(VPTransformState &State) { 7025 for (auto &Instr : make_range(Begin, End)) 7026 State.ILV->widenInstruction(Instr); 7027 } 7028 7029 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7030 assert(!State.Instance && "Int or FP induction being replicated."); 7031 State.ILV->widenIntOrFpInduction(IV, Trunc); 7032 } 7033 7034 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7035 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7036 } 7037 7038 void VPBlendRecipe::execute(VPTransformState &State) { 7039 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7040 // We know that all PHIs in non-header blocks are converted into 7041 // selects, so we don't have to worry about the insertion order and we 7042 // can just use the builder. 7043 // At this point we generate the predication tree. There may be 7044 // duplications since this is a simple recursive scan, but future 7045 // optimizations will clean it up. 7046 7047 unsigned NumIncoming = Phi->getNumIncomingValues(); 7048 7049 assert((User || NumIncoming == 1) && 7050 "Multiple predecessors with predecessors having a full mask"); 7051 // Generate a sequence of selects of the form: 7052 // SELECT(Mask3, In3, 7053 // SELECT(Mask2, In2, 7054 // ( ...))) 7055 InnerLoopVectorizer::VectorParts Entry(State.UF); 7056 for (unsigned In = 0; In < NumIncoming; ++In) { 7057 for (unsigned Part = 0; Part < State.UF; ++Part) { 7058 // We might have single edge PHIs (blocks) - use an identity 7059 // 'select' for the first PHI operand. 7060 Value *In0 = 7061 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 7062 if (In == 0) 7063 Entry[Part] = In0; // Initialize with the first incoming value. 7064 else { 7065 // Select between the current value and the previous incoming edge 7066 // based on the incoming mask. 7067 Value *Cond = State.get(User->getOperand(In), Part); 7068 Entry[Part] = 7069 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7070 } 7071 } 7072 } 7073 for (unsigned Part = 0; Part < State.UF; ++Part) 7074 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7075 } 7076 7077 void VPInterleaveRecipe::execute(VPTransformState &State) { 7078 assert(!State.Instance && "Interleave group being replicated."); 7079 if (!User) 7080 return State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7081 7082 // Last (and currently only) operand is a mask. 7083 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7084 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7085 for (unsigned Part = 0; Part < State.UF; ++Part) 7086 MaskValues[Part] = State.get(Mask, Part); 7087 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), &MaskValues); 7088 } 7089 7090 void VPReplicateRecipe::execute(VPTransformState &State) { 7091 if (State.Instance) { // Generate a single instance. 7092 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7093 // Insert scalar instance packing it into a vector. 7094 if (AlsoPack && State.VF > 1) { 7095 // If we're constructing lane 0, initialize to start from undef. 7096 if (State.Instance->Lane == 0) { 7097 Value *Undef = 7098 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7099 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7100 } 7101 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7102 } 7103 return; 7104 } 7105 7106 // Generate scalar instances for all VF lanes of all UF parts, unless the 7107 // instruction is uniform inwhich case generate only the first lane for each 7108 // of the UF parts. 7109 unsigned EndLane = IsUniform ? 1 : State.VF; 7110 for (unsigned Part = 0; Part < State.UF; ++Part) 7111 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7112 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7113 } 7114 7115 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7116 assert(State.Instance && "Branch on Mask works only on single instance."); 7117 7118 unsigned Part = State.Instance->Part; 7119 unsigned Lane = State.Instance->Lane; 7120 7121 Value *ConditionBit = nullptr; 7122 if (!User) // Block in mask is all-one. 7123 ConditionBit = State.Builder.getTrue(); 7124 else { 7125 VPValue *BlockInMask = User->getOperand(0); 7126 ConditionBit = State.get(BlockInMask, Part); 7127 if (ConditionBit->getType()->isVectorTy()) 7128 ConditionBit = State.Builder.CreateExtractElement( 7129 ConditionBit, State.Builder.getInt32(Lane)); 7130 } 7131 7132 // Replace the temporary unreachable terminator with a new conditional branch, 7133 // whose two destinations will be set later when they are created. 7134 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7135 assert(isa<UnreachableInst>(CurrentTerminator) && 7136 "Expected to replace unreachable terminator with conditional branch."); 7137 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7138 CondBr->setSuccessor(0, nullptr); 7139 ReplaceInstWithInst(CurrentTerminator, CondBr); 7140 } 7141 7142 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7143 assert(State.Instance && "Predicated instruction PHI works per instance."); 7144 Instruction *ScalarPredInst = cast<Instruction>( 7145 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7146 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7147 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7148 assert(PredicatingBB && "Predicated block has no single predecessor."); 7149 7150 // By current pack/unpack logic we need to generate only a single phi node: if 7151 // a vector value for the predicated instruction exists at this point it means 7152 // the instruction has vector users only, and a phi for the vector value is 7153 // needed. In this case the recipe of the predicated instruction is marked to 7154 // also do that packing, thereby "hoisting" the insert-element sequence. 7155 // Otherwise, a phi node for the scalar value is needed. 7156 unsigned Part = State.Instance->Part; 7157 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7158 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7159 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7160 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7161 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7162 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7163 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7164 } else { 7165 Type *PredInstType = PredInst->getType(); 7166 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7167 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7168 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7169 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7170 } 7171 } 7172 7173 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7174 if (!User) 7175 return State.ILV->vectorizeMemoryInstruction(&Instr); 7176 7177 // Last (and currently only) operand is a mask. 7178 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7179 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7180 for (unsigned Part = 0; Part < State.UF; ++Part) 7181 MaskValues[Part] = State.get(Mask, Part); 7182 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7183 } 7184 7185 // Process the loop in the VPlan-native vectorization path. This path builds 7186 // VPlan upfront in the vectorization pipeline, which allows to apply 7187 // VPlan-to-VPlan transformations from the very beginning without modifying the 7188 // input LLVM IR. 7189 static bool processLoopInVPlanNativePath( 7190 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7191 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7192 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7193 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7194 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7195 7196 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7197 Function *F = L->getHeader()->getParent(); 7198 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7199 LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7200 &Hints, IAI); 7201 // Use the planner for outer loop vectorization. 7202 // TODO: CM is not used at this point inside the planner. Turn CM into an 7203 // optional argument if we don't need it in the future. 7204 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); 7205 7206 // Get user vectorization factor. 7207 const unsigned UserVF = Hints.getWidth(); 7208 7209 // Check the function attributes and profiles to find out if this function 7210 // should be optimized for size. 7211 bool OptForSize = 7212 Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7213 (F->hasOptSize() || 7214 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI)); 7215 7216 // Plan how to best vectorize, return the best VF and its cost. 7217 const VectorizationFactor VF = LVP.planInVPlanNativePath(OptForSize, UserVF); 7218 7219 // If we are stress testing VPlan builds, do not attempt to generate vector 7220 // code. Masked vector code generation support will follow soon. 7221 // Also, do not attempt to vectorize if no vector code will be produced. 7222 if (VPlanBuildStressTest || EnableVPlanPredication || 7223 VectorizationFactor::Disabled() == VF) 7224 return false; 7225 7226 LVP.setBestPlan(VF.Width, 1); 7227 7228 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7229 &CM); 7230 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7231 << L->getHeader()->getParent()->getName() << "\"\n"); 7232 LVP.executePlan(LB, DT); 7233 7234 // Mark the loop as already vectorized to avoid vectorizing again. 7235 Hints.setAlreadyVectorized(); 7236 7237 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7238 return true; 7239 } 7240 7241 bool LoopVectorizePass::processLoop(Loop *L) { 7242 assert((EnableVPlanNativePath || L->empty()) && 7243 "VPlan-native path is not enabled. Only process inner loops."); 7244 7245 #ifndef NDEBUG 7246 const std::string DebugLocStr = getDebugLocString(L); 7247 #endif /* NDEBUG */ 7248 7249 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7250 << L->getHeader()->getParent()->getName() << "\" from " 7251 << DebugLocStr << "\n"); 7252 7253 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7254 7255 LLVM_DEBUG( 7256 dbgs() << "LV: Loop hints:" 7257 << " force=" 7258 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7259 ? "disabled" 7260 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7261 ? "enabled" 7262 : "?")) 7263 << " width=" << Hints.getWidth() 7264 << " unroll=" << Hints.getInterleave() << "\n"); 7265 7266 // Function containing loop 7267 Function *F = L->getHeader()->getParent(); 7268 7269 // Looking at the diagnostic output is the only way to determine if a loop 7270 // was vectorized (other than looking at the IR or machine code), so it 7271 // is important to generate an optimization remark for each loop. Most of 7272 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7273 // generated as OptimizationRemark and OptimizationRemarkMissed are 7274 // less verbose reporting vectorized loops and unvectorized loops that may 7275 // benefit from vectorization, respectively. 7276 7277 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7278 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7279 return false; 7280 } 7281 7282 PredicatedScalarEvolution PSE(*SE, *L); 7283 7284 // Check if it is legal to vectorize the loop. 7285 LoopVectorizationRequirements Requirements(*ORE); 7286 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 7287 &Requirements, &Hints, DB, AC); 7288 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7289 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7290 Hints.emitRemarkWithHints(); 7291 return false; 7292 } 7293 7294 // Check the function attributes and profiles to find out if this function 7295 // should be optimized for size. 7296 bool OptForSize = 7297 Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7298 (F->hasOptSize() || 7299 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI)); 7300 7301 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7302 // here. They may require CFG and instruction level transformations before 7303 // even evaluating whether vectorization is profitable. Since we cannot modify 7304 // the incoming IR, we need to build VPlan upfront in the vectorization 7305 // pipeline. 7306 if (!L->empty()) 7307 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7308 ORE, BFI, PSI, Hints); 7309 7310 assert(L->empty() && "Inner loop expected."); 7311 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7312 // count by optimizing for size, to minimize overheads. 7313 // Prefer constant trip counts over profile data, over upper bound estimate. 7314 unsigned ExpectedTC = 0; 7315 bool HasExpectedTC = false; 7316 if (const SCEVConstant *ConstExits = 7317 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 7318 const APInt &ExitsCount = ConstExits->getAPInt(); 7319 // We are interested in small values for ExpectedTC. Skip over those that 7320 // can't fit an unsigned. 7321 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 7322 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 7323 HasExpectedTC = true; 7324 } 7325 } 7326 // ExpectedTC may be large because it's bound by a variable. Check 7327 // profiling information to validate we should vectorize. 7328 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 7329 auto EstimatedTC = getLoopEstimatedTripCount(L); 7330 if (EstimatedTC) { 7331 ExpectedTC = *EstimatedTC; 7332 HasExpectedTC = true; 7333 } 7334 } 7335 if (!HasExpectedTC) { 7336 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 7337 HasExpectedTC = (ExpectedTC > 0); 7338 } 7339 7340 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 7341 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7342 << "This loop is worth vectorizing only if no scalar " 7343 << "iteration overheads are incurred."); 7344 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7345 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7346 else { 7347 LLVM_DEBUG(dbgs() << "\n"); 7348 // Loops with a very small trip count are considered for vectorization 7349 // under OptForSize, thereby making sure the cost of their loop body is 7350 // dominant, free of runtime guards and scalar iteration overheads. 7351 OptForSize = true; 7352 } 7353 } 7354 7355 // Check the function attributes to see if implicit floats are allowed. 7356 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7357 // an integer loop and the vector instructions selected are purely integer 7358 // vector instructions? 7359 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7360 LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7361 "attribute is used.\n"); 7362 ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7363 "NoImplicitFloat", L) 7364 << "loop not vectorized due to NoImplicitFloat attribute"); 7365 Hints.emitRemarkWithHints(); 7366 return false; 7367 } 7368 7369 // Check if the target supports potentially unsafe FP vectorization. 7370 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7371 // for the target we're vectorizing for, to make sure none of the 7372 // additional fp-math flags can help. 7373 if (Hints.isPotentiallyUnsafe() && 7374 TTI->isFPVectorizationPotentiallyUnsafe()) { 7375 LLVM_DEBUG( 7376 dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7377 ORE->emit( 7378 createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7379 << "loop not vectorized due to unsafe FP support."); 7380 Hints.emitRemarkWithHints(); 7381 return false; 7382 } 7383 7384 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7385 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7386 7387 // If an override option has been passed in for interleaved accesses, use it. 7388 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7389 UseInterleaved = EnableInterleavedMemAccesses; 7390 7391 // Analyze interleaved memory accesses. 7392 if (UseInterleaved) { 7393 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7394 } 7395 7396 // Use the cost model. 7397 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7398 &Hints, IAI); 7399 CM.collectValuesToIgnore(); 7400 7401 // Use the planner for vectorization. 7402 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 7403 7404 // Get user vectorization factor. 7405 unsigned UserVF = Hints.getWidth(); 7406 7407 // Plan how to best vectorize, return the best VF and its cost. 7408 Optional<VectorizationFactor> MaybeVF = LVP.plan(OptForSize, UserVF); 7409 7410 VectorizationFactor VF = VectorizationFactor::Disabled(); 7411 unsigned IC = 1; 7412 unsigned UserIC = Hints.getInterleave(); 7413 7414 if (MaybeVF) { 7415 VF = *MaybeVF; 7416 // Select the interleave count. 7417 IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7418 } 7419 7420 // Identify the diagnostic messages that should be produced. 7421 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7422 bool VectorizeLoop = true, InterleaveLoop = true; 7423 if (Requirements.doesNotMeet(F, L, Hints)) { 7424 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7425 "requirements.\n"); 7426 Hints.emitRemarkWithHints(); 7427 return false; 7428 } 7429 7430 if (VF.Width == 1) { 7431 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7432 VecDiagMsg = std::make_pair( 7433 "VectorizationNotBeneficial", 7434 "the cost-model indicates that vectorization is not beneficial"); 7435 VectorizeLoop = false; 7436 } 7437 7438 if (!MaybeVF && UserIC > 1) { 7439 // Tell the user interleaving was avoided up-front, despite being explicitly 7440 // requested. 7441 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7442 "interleaving should be avoided up front\n"); 7443 IntDiagMsg = std::make_pair( 7444 "InterleavingAvoided", 7445 "Ignoring UserIC, because interleaving was avoided up front"); 7446 InterleaveLoop = false; 7447 } else if (IC == 1 && UserIC <= 1) { 7448 // Tell the user interleaving is not beneficial. 7449 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7450 IntDiagMsg = std::make_pair( 7451 "InterleavingNotBeneficial", 7452 "the cost-model indicates that interleaving is not beneficial"); 7453 InterleaveLoop = false; 7454 if (UserIC == 1) { 7455 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7456 IntDiagMsg.second += 7457 " and is explicitly disabled or interleave count is set to 1"; 7458 } 7459 } else if (IC > 1 && UserIC == 1) { 7460 // Tell the user interleaving is beneficial, but it explicitly disabled. 7461 LLVM_DEBUG( 7462 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7463 IntDiagMsg = std::make_pair( 7464 "InterleavingBeneficialButDisabled", 7465 "the cost-model indicates that interleaving is beneficial " 7466 "but is explicitly disabled or interleave count is set to 1"); 7467 InterleaveLoop = false; 7468 } 7469 7470 // Override IC if user provided an interleave count. 7471 IC = UserIC > 0 ? UserIC : IC; 7472 7473 // Emit diagnostic messages, if any. 7474 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7475 if (!VectorizeLoop && !InterleaveLoop) { 7476 // Do not vectorize or interleaving the loop. 7477 ORE->emit([&]() { 7478 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7479 L->getStartLoc(), L->getHeader()) 7480 << VecDiagMsg.second; 7481 }); 7482 ORE->emit([&]() { 7483 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7484 L->getStartLoc(), L->getHeader()) 7485 << IntDiagMsg.second; 7486 }); 7487 return false; 7488 } else if (!VectorizeLoop && InterleaveLoop) { 7489 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7490 ORE->emit([&]() { 7491 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7492 L->getStartLoc(), L->getHeader()) 7493 << VecDiagMsg.second; 7494 }); 7495 } else if (VectorizeLoop && !InterleaveLoop) { 7496 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7497 << ") in " << DebugLocStr << '\n'); 7498 ORE->emit([&]() { 7499 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7500 L->getStartLoc(), L->getHeader()) 7501 << IntDiagMsg.second; 7502 }); 7503 } else if (VectorizeLoop && InterleaveLoop) { 7504 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7505 << ") in " << DebugLocStr << '\n'); 7506 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7507 } 7508 7509 LVP.setBestPlan(VF.Width, IC); 7510 7511 using namespace ore; 7512 bool DisableRuntimeUnroll = false; 7513 MDNode *OrigLoopID = L->getLoopID(); 7514 7515 if (!VectorizeLoop) { 7516 assert(IC > 1 && "interleave count should not be 1 or 0"); 7517 // If we decided that it is not legal to vectorize the loop, then 7518 // interleave it. 7519 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7520 &CM); 7521 LVP.executePlan(Unroller, DT); 7522 7523 ORE->emit([&]() { 7524 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7525 L->getHeader()) 7526 << "interleaved loop (interleaved count: " 7527 << NV("InterleaveCount", IC) << ")"; 7528 }); 7529 } else { 7530 // If we decided that it is *legal* to vectorize the loop, then do it. 7531 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7532 &LVL, &CM); 7533 LVP.executePlan(LB, DT); 7534 ++LoopsVectorized; 7535 7536 // Add metadata to disable runtime unrolling a scalar loop when there are 7537 // no runtime checks about strides and memory. A scalar loop that is 7538 // rarely used is not worth unrolling. 7539 if (!LB.areSafetyChecksAdded()) 7540 DisableRuntimeUnroll = true; 7541 7542 // Report the vectorization decision. 7543 ORE->emit([&]() { 7544 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7545 L->getHeader()) 7546 << "vectorized loop (vectorization width: " 7547 << NV("VectorizationFactor", VF.Width) 7548 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7549 }); 7550 } 7551 7552 Optional<MDNode *> RemainderLoopID = 7553 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7554 LLVMLoopVectorizeFollowupEpilogue}); 7555 if (RemainderLoopID.hasValue()) { 7556 L->setLoopID(RemainderLoopID.getValue()); 7557 } else { 7558 if (DisableRuntimeUnroll) 7559 AddRuntimeUnrollDisableMetaData(L); 7560 7561 // Mark the loop as already vectorized to avoid vectorizing again. 7562 Hints.setAlreadyVectorized(); 7563 } 7564 7565 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7566 return true; 7567 } 7568 7569 bool LoopVectorizePass::runImpl( 7570 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7571 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7572 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7573 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7574 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 7575 SE = &SE_; 7576 LI = &LI_; 7577 TTI = &TTI_; 7578 DT = &DT_; 7579 BFI = &BFI_; 7580 TLI = TLI_; 7581 AA = &AA_; 7582 AC = &AC_; 7583 GetLAA = &GetLAA_; 7584 DB = &DB_; 7585 ORE = &ORE_; 7586 PSI = PSI_; 7587 7588 // Don't attempt if 7589 // 1. the target claims to have no vector registers, and 7590 // 2. interleaving won't help ILP. 7591 // 7592 // The second condition is necessary because, even if the target has no 7593 // vector registers, loop vectorization may still enable scalar 7594 // interleaving. 7595 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7596 return false; 7597 7598 bool Changed = false; 7599 7600 // The vectorizer requires loops to be in simplified form. 7601 // Since simplification may add new inner loops, it has to run before the 7602 // legality and profitability checks. This means running the loop vectorizer 7603 // will simplify all loops, regardless of whether anything end up being 7604 // vectorized. 7605 for (auto &L : *LI) 7606 Changed |= 7607 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 7608 7609 // Build up a worklist of inner-loops to vectorize. This is necessary as 7610 // the act of vectorizing or partially unrolling a loop creates new loops 7611 // and can invalidate iterators across the loops. 7612 SmallVector<Loop *, 8> Worklist; 7613 7614 for (Loop *L : *LI) 7615 collectSupportedLoops(*L, LI, ORE, Worklist); 7616 7617 LoopsAnalyzed += Worklist.size(); 7618 7619 // Now walk the identified inner loops. 7620 while (!Worklist.empty()) { 7621 Loop *L = Worklist.pop_back_val(); 7622 7623 // For the inner loops we actually process, form LCSSA to simplify the 7624 // transform. 7625 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7626 7627 Changed |= processLoop(L); 7628 } 7629 7630 // Process each loop nest in the function. 7631 return Changed; 7632 } 7633 7634 PreservedAnalyses LoopVectorizePass::run(Function &F, 7635 FunctionAnalysisManager &AM) { 7636 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7637 auto &LI = AM.getResult<LoopAnalysis>(F); 7638 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7639 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7640 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7641 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7642 auto &AA = AM.getResult<AAManager>(F); 7643 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7644 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7645 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7646 MemorySSA *MSSA = EnableMSSALoopDependency 7647 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 7648 : nullptr; 7649 7650 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7651 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7652 [&](Loop &L) -> const LoopAccessInfo & { 7653 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 7654 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7655 }; 7656 const ModuleAnalysisManager &MAM = 7657 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 7658 ProfileSummaryInfo *PSI = 7659 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 7660 bool Changed = 7661 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 7662 if (!Changed) 7663 return PreservedAnalyses::all(); 7664 PreservedAnalyses PA; 7665 7666 // We currently do not preserve loopinfo/dominator analyses with outer loop 7667 // vectorization. Until this is addressed, mark these analyses as preserved 7668 // only for non-VPlan-native path. 7669 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 7670 if (!EnableVPlanNativePath) { 7671 PA.preserve<LoopAnalysis>(); 7672 PA.preserve<DominatorTreeAnalysis>(); 7673 } 7674 PA.preserve<BasicAA>(); 7675 PA.preserve<GlobalsAA>(); 7676 return PA; 7677 } 7678