1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "VPlan.h" 51 #include "VPlanBuilder.h" 52 #include "llvm/ADT/APInt.h" 53 #include "llvm/ADT/ArrayRef.h" 54 #include "llvm/ADT/DenseMap.h" 55 #include "llvm/ADT/DenseMapInfo.h" 56 #include "llvm/ADT/Hashing.h" 57 #include "llvm/ADT/MapVector.h" 58 #include "llvm/ADT/None.h" 59 #include "llvm/ADT/Optional.h" 60 #include "llvm/ADT/SCCIterator.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallPtrSet.h" 64 #include "llvm/ADT/SmallSet.h" 65 #include "llvm/ADT/SmallVector.h" 66 #include "llvm/ADT/Statistic.h" 67 #include "llvm/ADT/StringRef.h" 68 #include "llvm/ADT/Twine.h" 69 #include "llvm/ADT/iterator_range.h" 70 #include "llvm/Analysis/AssumptionCache.h" 71 #include "llvm/Analysis/BasicAliasAnalysis.h" 72 #include "llvm/Analysis/BlockFrequencyInfo.h" 73 #include "llvm/Analysis/CodeMetrics.h" 74 #include "llvm/Analysis/DemandedBits.h" 75 #include "llvm/Analysis/GlobalsModRef.h" 76 #include "llvm/Analysis/LoopAccessAnalysis.h" 77 #include "llvm/Analysis/LoopAnalysisManager.h" 78 #include "llvm/Analysis/LoopInfo.h" 79 #include "llvm/Analysis/LoopIterator.h" 80 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 81 #include "llvm/Analysis/ScalarEvolution.h" 82 #include "llvm/Analysis/ScalarEvolutionExpander.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/TargetTransformInfo.h" 86 #include "llvm/Analysis/VectorUtils.h" 87 #include "llvm/IR/Attributes.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/Constants.h" 92 #include "llvm/IR/DataLayout.h" 93 #include "llvm/IR/DebugInfoMetadata.h" 94 #include "llvm/IR/DebugLoc.h" 95 #include "llvm/IR/DerivedTypes.h" 96 #include "llvm/IR/DiagnosticInfo.h" 97 #include "llvm/IR/Dominators.h" 98 #include "llvm/IR/Function.h" 99 #include "llvm/IR/IRBuilder.h" 100 #include "llvm/IR/InstrTypes.h" 101 #include "llvm/IR/Instruction.h" 102 #include "llvm/IR/Instructions.h" 103 #include "llvm/IR/IntrinsicInst.h" 104 #include "llvm/IR/Intrinsics.h" 105 #include "llvm/IR/LLVMContext.h" 106 #include "llvm/IR/Metadata.h" 107 #include "llvm/IR/Module.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/Type.h" 110 #include "llvm/IR/Use.h" 111 #include "llvm/IR/User.h" 112 #include "llvm/IR/Value.h" 113 #include "llvm/IR/ValueHandle.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/Pass.h" 116 #include "llvm/Support/Casting.h" 117 #include "llvm/Support/CommandLine.h" 118 #include "llvm/Support/Compiler.h" 119 #include "llvm/Support/Debug.h" 120 #include "llvm/Support/ErrorHandling.h" 121 #include "llvm/Support/MathExtras.h" 122 #include "llvm/Support/raw_ostream.h" 123 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 124 #include "llvm/Transforms/Utils/LoopSimplify.h" 125 #include "llvm/Transforms/Utils/LoopUtils.h" 126 #include "llvm/Transforms/Utils/LoopVersioning.h" 127 #include <algorithm> 128 #include <cassert> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <functional> 132 #include <iterator> 133 #include <limits> 134 #include <memory> 135 #include <string> 136 #include <tuple> 137 #include <utility> 138 #include <vector> 139 140 using namespace llvm; 141 142 #define LV_NAME "loop-vectorize" 143 #define DEBUG_TYPE LV_NAME 144 145 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 146 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 147 148 static cl::opt<bool> 149 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 150 cl::desc("Enable if-conversion during vectorization.")); 151 152 /// Loops with a known constant trip count below this number are vectorized only 153 /// if no scalar iteration overheads are incurred. 154 static cl::opt<unsigned> TinyTripCountVectorThreshold( 155 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 156 cl::desc("Loops with a constant trip count that is smaller than this " 157 "value are vectorized only if no scalar iteration overheads " 158 "are incurred.")); 159 160 static cl::opt<bool> MaximizeBandwidth( 161 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 162 cl::desc("Maximize bandwidth when selecting vectorization factor which " 163 "will be determined by the smallest type in loop.")); 164 165 static cl::opt<bool> EnableInterleavedMemAccesses( 166 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 167 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 168 169 /// Maximum factor for an interleaved memory access. 170 static cl::opt<unsigned> MaxInterleaveGroupFactor( 171 "max-interleave-group-factor", cl::Hidden, 172 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 173 cl::init(8)); 174 175 /// We don't interleave loops with a known constant trip count below this 176 /// number. 177 static const unsigned TinyTripCountInterleaveThreshold = 128; 178 179 static cl::opt<unsigned> ForceTargetNumScalarRegs( 180 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 181 cl::desc("A flag that overrides the target's number of scalar registers.")); 182 183 static cl::opt<unsigned> ForceTargetNumVectorRegs( 184 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 185 cl::desc("A flag that overrides the target's number of vector registers.")); 186 187 /// Maximum vectorization interleave count. 188 static const unsigned MaxInterleaveFactor = 16; 189 190 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 191 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 192 cl::desc("A flag that overrides the target's max interleave factor for " 193 "scalar loops.")); 194 195 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 196 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 197 cl::desc("A flag that overrides the target's max interleave factor for " 198 "vectorized loops.")); 199 200 static cl::opt<unsigned> ForceTargetInstructionCost( 201 "force-target-instruction-cost", cl::init(0), cl::Hidden, 202 cl::desc("A flag that overrides the target's expected cost for " 203 "an instruction to a single constant value. Mostly " 204 "useful for getting consistent testing.")); 205 206 static cl::opt<unsigned> SmallLoopCost( 207 "small-loop-cost", cl::init(20), cl::Hidden, 208 cl::desc( 209 "The cost of a loop that is considered 'small' by the interleaver.")); 210 211 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 212 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 213 cl::desc("Enable the use of the block frequency analysis to access PGO " 214 "heuristics minimizing code growth in cold regions and being more " 215 "aggressive in hot regions.")); 216 217 // Runtime interleave loops for load/store throughput. 218 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 219 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 220 cl::desc( 221 "Enable runtime interleaving until load/store ports are saturated")); 222 223 /// The number of stores in a loop that are allowed to need predication. 224 static cl::opt<unsigned> NumberOfStoresToPredicate( 225 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 226 cl::desc("Max number of stores to be predicated behind an if.")); 227 228 static cl::opt<bool> EnableIndVarRegisterHeur( 229 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 230 cl::desc("Count the induction variable only once when interleaving")); 231 232 static cl::opt<bool> EnableCondStoresVectorization( 233 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 234 cl::desc("Enable if predication of stores during vectorization.")); 235 236 static cl::opt<unsigned> MaxNestedScalarReductionIC( 237 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 238 cl::desc("The maximum interleave count to use when interleaving a scalar " 239 "reduction in a nested loop.")); 240 241 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 242 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 243 cl::desc("The maximum allowed number of runtime memory checks with a " 244 "vectorize(enable) pragma.")); 245 246 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 247 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 248 cl::desc("The maximum number of SCEV checks allowed.")); 249 250 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 251 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 252 cl::desc("The maximum number of SCEV checks allowed with a " 253 "vectorize(enable) pragma")); 254 255 /// Create an analysis remark that explains why vectorization failed 256 /// 257 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 258 /// RemarkName is the identifier for the remark. If \p I is passed it is an 259 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 260 /// the location of the remark. \return the remark object that can be 261 /// streamed to. 262 static OptimizationRemarkAnalysis 263 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 264 Instruction *I = nullptr) { 265 Value *CodeRegion = TheLoop->getHeader(); 266 DebugLoc DL = TheLoop->getStartLoc(); 267 268 if (I) { 269 CodeRegion = I->getParent(); 270 // If there is no debug location attached to the instruction, revert back to 271 // using the loop's. 272 if (I->getDebugLoc()) 273 DL = I->getDebugLoc(); 274 } 275 276 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 277 R << "loop not vectorized: "; 278 return R; 279 } 280 281 namespace { 282 283 class LoopVectorizationLegality; 284 class LoopVectorizationCostModel; 285 class LoopVectorizationRequirements; 286 class VPBlendRecipe; 287 class VPInterleaveRecipe; 288 class VPReplicateRecipe; 289 class VPWidenIntOrFpInductionRecipe; 290 class VPWidenRecipe; 291 class VPWidenMemoryInstructionRecipe; 292 293 } // end anonymous namespace 294 295 /// Returns true if the given loop body has a cycle, excluding the loop 296 /// itself. 297 static bool hasCyclesInLoopBody(const Loop &L) { 298 if (!L.empty()) 299 return true; 300 301 for (const auto &SCC : 302 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 303 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 304 if (SCC.size() > 1) { 305 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 306 DEBUG(L.dump()); 307 return true; 308 } 309 } 310 return false; 311 } 312 313 /// A helper function for converting Scalar types to vector types. 314 /// If the incoming type is void, we return void. If the VF is 1, we return 315 /// the scalar type. 316 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 317 if (Scalar->isVoidTy() || VF == 1) 318 return Scalar; 319 return VectorType::get(Scalar, VF); 320 } 321 322 // FIXME: The following helper functions have multiple implementations 323 // in the project. They can be effectively organized in a common Load/Store 324 // utilities unit. 325 326 /// A helper function that returns the pointer operand of a load or store 327 /// instruction. 328 static Value *getPointerOperand(Value *I) { 329 if (auto *LI = dyn_cast<LoadInst>(I)) 330 return LI->getPointerOperand(); 331 if (auto *SI = dyn_cast<StoreInst>(I)) 332 return SI->getPointerOperand(); 333 return nullptr; 334 } 335 336 /// A helper function that returns the type of loaded or stored value. 337 static Type *getMemInstValueType(Value *I) { 338 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 339 "Expected Load or Store instruction"); 340 if (auto *LI = dyn_cast<LoadInst>(I)) 341 return LI->getType(); 342 return cast<StoreInst>(I)->getValueOperand()->getType(); 343 } 344 345 /// A helper function that returns the alignment of load or store instruction. 346 static unsigned getMemInstAlignment(Value *I) { 347 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 348 "Expected Load or Store instruction"); 349 if (auto *LI = dyn_cast<LoadInst>(I)) 350 return LI->getAlignment(); 351 return cast<StoreInst>(I)->getAlignment(); 352 } 353 354 /// A helper function that returns the address space of the pointer operand of 355 /// load or store instruction. 356 static unsigned getMemInstAddressSpace(Value *I) { 357 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 358 "Expected Load or Store instruction"); 359 if (auto *LI = dyn_cast<LoadInst>(I)) 360 return LI->getPointerAddressSpace(); 361 return cast<StoreInst>(I)->getPointerAddressSpace(); 362 } 363 364 /// A helper function that returns true if the given type is irregular. The 365 /// type is irregular if its allocated size doesn't equal the store size of an 366 /// element of the corresponding vector type at the given vectorization factor. 367 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 368 // Determine if an array of VF elements of type Ty is "bitcast compatible" 369 // with a <VF x Ty> vector. 370 if (VF > 1) { 371 auto *VectorTy = VectorType::get(Ty, VF); 372 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 373 } 374 375 // If the vectorization factor is one, we just check if an array of type Ty 376 // requires padding between elements. 377 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 378 } 379 380 /// A helper function that returns the reciprocal of the block probability of 381 /// predicated blocks. If we return X, we are assuming the predicated block 382 /// will execute once for for every X iterations of the loop header. 383 /// 384 /// TODO: We should use actual block probability here, if available. Currently, 385 /// we always assume predicated blocks have a 50% chance of executing. 386 static unsigned getReciprocalPredBlockProb() { return 2; } 387 388 /// A helper function that adds a 'fast' flag to floating-point operations. 389 static Value *addFastMathFlag(Value *V) { 390 if (isa<FPMathOperator>(V)) { 391 FastMathFlags Flags; 392 Flags.setFast(); 393 cast<Instruction>(V)->setFastMathFlags(Flags); 394 } 395 return V; 396 } 397 398 /// A helper function that returns an integer or floating-point constant with 399 /// value C. 400 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 401 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 402 : ConstantFP::get(Ty, C); 403 } 404 405 namespace llvm { 406 407 /// InnerLoopVectorizer vectorizes loops which contain only one basic 408 /// block to a specified vectorization factor (VF). 409 /// This class performs the widening of scalars into vectors, or multiple 410 /// scalars. This class also implements the following features: 411 /// * It inserts an epilogue loop for handling loops that don't have iteration 412 /// counts that are known to be a multiple of the vectorization factor. 413 /// * It handles the code generation for reduction variables. 414 /// * Scalarization (implementation using scalars) of un-vectorizable 415 /// instructions. 416 /// InnerLoopVectorizer does not perform any vectorization-legality 417 /// checks, and relies on the caller to check for the different legality 418 /// aspects. The InnerLoopVectorizer relies on the 419 /// LoopVectorizationLegality class to provide information about the induction 420 /// and reduction variables that were found to a given vectorization factor. 421 class InnerLoopVectorizer { 422 public: 423 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 424 LoopInfo *LI, DominatorTree *DT, 425 const TargetLibraryInfo *TLI, 426 const TargetTransformInfo *TTI, AssumptionCache *AC, 427 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 428 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 429 LoopVectorizationCostModel *CM) 430 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 431 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 432 Builder(PSE.getSE()->getContext()), 433 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 434 virtual ~InnerLoopVectorizer() = default; 435 436 /// Create a new empty loop. Unlink the old loop and connect the new one. 437 /// Return the pre-header block of the new loop. 438 BasicBlock *createVectorizedLoopSkeleton(); 439 440 /// Widen a single instruction within the innermost loop. 441 void widenInstruction(Instruction &I); 442 443 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 444 void fixVectorizedLoop(); 445 446 // Return true if any runtime check is added. 447 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 448 449 /// A type for vectorized values in the new loop. Each value from the 450 /// original loop, when vectorized, is represented by UF vector values in the 451 /// new unrolled loop, where UF is the unroll factor. 452 using VectorParts = SmallVector<Value *, 2>; 453 454 /// Vectorize a single PHINode in a block. This method handles the induction 455 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 456 /// arbitrary length vectors. 457 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 458 459 /// A helper function to scalarize a single Instruction in the innermost loop. 460 /// Generates a sequence of scalar instances for each lane between \p MinLane 461 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 462 /// inclusive.. 463 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 464 bool IfPredicateInstr); 465 466 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 467 /// is provided, the integer induction variable will first be truncated to 468 /// the corresponding type. 469 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 470 471 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 472 /// vector or scalar value on-demand if one is not yet available. When 473 /// vectorizing a loop, we visit the definition of an instruction before its 474 /// uses. When visiting the definition, we either vectorize or scalarize the 475 /// instruction, creating an entry for it in the corresponding map. (In some 476 /// cases, such as induction variables, we will create both vector and scalar 477 /// entries.) Then, as we encounter uses of the definition, we derive values 478 /// for each scalar or vector use unless such a value is already available. 479 /// For example, if we scalarize a definition and one of its uses is vector, 480 /// we build the required vector on-demand with an insertelement sequence 481 /// when visiting the use. Otherwise, if the use is scalar, we can use the 482 /// existing scalar definition. 483 /// 484 /// Return a value in the new loop corresponding to \p V from the original 485 /// loop at unroll index \p Part. If the value has already been vectorized, 486 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 487 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 488 /// a new vector value on-demand by inserting the scalar values into a vector 489 /// with an insertelement sequence. If the value has been neither vectorized 490 /// nor scalarized, it must be loop invariant, so we simply broadcast the 491 /// value into a vector. 492 Value *getOrCreateVectorValue(Value *V, unsigned Part); 493 494 /// Return a value in the new loop corresponding to \p V from the original 495 /// loop at unroll and vector indices \p Instance. If the value has been 496 /// vectorized but not scalarized, the necessary extractelement instruction 497 /// will be generated. 498 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 499 500 /// Construct the vector value of a scalarized value \p V one lane at a time. 501 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 502 503 /// Try to vectorize the interleaved access group that \p Instr belongs to. 504 void vectorizeInterleaveGroup(Instruction *Instr); 505 506 /// Vectorize Load and Store instructions, optionally masking the vector 507 /// operations if \p BlockInMask is non-null. 508 void vectorizeMemoryInstruction(Instruction *Instr, 509 VectorParts *BlockInMask = nullptr); 510 511 /// \brief Set the debug location in the builder using the debug location in 512 /// the instruction. 513 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 514 515 protected: 516 friend class LoopVectorizationPlanner; 517 518 /// A small list of PHINodes. 519 using PhiVector = SmallVector<PHINode *, 4>; 520 521 /// A type for scalarized values in the new loop. Each value from the 522 /// original loop, when scalarized, is represented by UF x VF scalar values 523 /// in the new unrolled loop, where UF is the unroll factor and VF is the 524 /// vectorization factor. 525 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 526 527 /// Set up the values of the IVs correctly when exiting the vector loop. 528 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 529 Value *CountRoundDown, Value *EndValue, 530 BasicBlock *MiddleBlock); 531 532 /// Create a new induction variable inside L. 533 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 534 Value *Step, Instruction *DL); 535 536 /// Handle all cross-iteration phis in the header. 537 void fixCrossIterationPHIs(); 538 539 /// Fix a first-order recurrence. This is the second phase of vectorizing 540 /// this phi node. 541 void fixFirstOrderRecurrence(PHINode *Phi); 542 543 /// Fix a reduction cross-iteration phi. This is the second phase of 544 /// vectorizing this phi node. 545 void fixReduction(PHINode *Phi); 546 547 /// \brief The Loop exit block may have single value PHI nodes with some 548 /// incoming value. While vectorizing we only handled real values 549 /// that were defined inside the loop and we should have one value for 550 /// each predecessor of its parent basic block. See PR14725. 551 void fixLCSSAPHIs(); 552 553 /// Iteratively sink the scalarized operands of a predicated instruction into 554 /// the block that was created for it. 555 void sinkScalarOperands(Instruction *PredInst); 556 557 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 558 /// represented as. 559 void truncateToMinimalBitwidths(); 560 561 /// Insert the new loop to the loop hierarchy and pass manager 562 /// and update the analysis passes. 563 void updateAnalysis(); 564 565 /// Create a broadcast instruction. This method generates a broadcast 566 /// instruction (shuffle) for loop invariant values and for the induction 567 /// value. If this is the induction variable then we extend it to N, N+1, ... 568 /// this is needed because each iteration in the loop corresponds to a SIMD 569 /// element. 570 virtual Value *getBroadcastInstrs(Value *V); 571 572 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 573 /// to each vector element of Val. The sequence starts at StartIndex. 574 /// \p Opcode is relevant for FP induction variable. 575 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 576 Instruction::BinaryOps Opcode = 577 Instruction::BinaryOpsEnd); 578 579 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 580 /// variable on which to base the steps, \p Step is the size of the step, and 581 /// \p EntryVal is the value from the original loop that maps to the steps. 582 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 583 /// can be a truncate instruction). 584 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 585 const InductionDescriptor &ID); 586 587 /// Create a vector induction phi node based on an existing scalar one. \p 588 /// EntryVal is the value from the original loop that maps to the vector phi 589 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 590 /// truncate instruction, instead of widening the original IV, we widen a 591 /// version of the IV truncated to \p EntryVal's type. 592 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 593 Value *Step, Instruction *EntryVal); 594 595 /// Returns true if an instruction \p I should be scalarized instead of 596 /// vectorized for the chosen vectorization factor. 597 bool shouldScalarizeInstruction(Instruction *I) const; 598 599 /// Returns true if we should generate a scalar version of \p IV. 600 bool needsScalarInduction(Instruction *IV) const; 601 602 /// Generate a shuffle sequence that will reverse the vector Vec. 603 virtual Value *reverseVector(Value *Vec); 604 605 /// Returns (and creates if needed) the original loop trip count. 606 Value *getOrCreateTripCount(Loop *NewLoop); 607 608 /// Returns (and creates if needed) the trip count of the widened loop. 609 Value *getOrCreateVectorTripCount(Loop *NewLoop); 610 611 /// Returns a bitcasted value to the requested vector type. 612 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 613 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 614 const DataLayout &DL); 615 616 /// Emit a bypass check to see if the vector trip count is zero, including if 617 /// it overflows. 618 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 619 620 /// Emit a bypass check to see if all of the SCEV assumptions we've 621 /// had to make are correct. 622 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 623 624 /// Emit bypass checks to check any memory assumptions we may have made. 625 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 626 627 /// Add additional metadata to \p To that was not present on \p Orig. 628 /// 629 /// Currently this is used to add the noalias annotations based on the 630 /// inserted memchecks. Use this for instructions that are *cloned* into the 631 /// vector loop. 632 void addNewMetadata(Instruction *To, const Instruction *Orig); 633 634 /// Add metadata from one instruction to another. 635 /// 636 /// This includes both the original MDs from \p From and additional ones (\see 637 /// addNewMetadata). Use this for *newly created* instructions in the vector 638 /// loop. 639 void addMetadata(Instruction *To, Instruction *From); 640 641 /// \brief Similar to the previous function but it adds the metadata to a 642 /// vector of instructions. 643 void addMetadata(ArrayRef<Value *> To, Instruction *From); 644 645 /// The original loop. 646 Loop *OrigLoop; 647 648 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 649 /// dynamic knowledge to simplify SCEV expressions and converts them to a 650 /// more usable form. 651 PredicatedScalarEvolution &PSE; 652 653 /// Loop Info. 654 LoopInfo *LI; 655 656 /// Dominator Tree. 657 DominatorTree *DT; 658 659 /// Alias Analysis. 660 AliasAnalysis *AA; 661 662 /// Target Library Info. 663 const TargetLibraryInfo *TLI; 664 665 /// Target Transform Info. 666 const TargetTransformInfo *TTI; 667 668 /// Assumption Cache. 669 AssumptionCache *AC; 670 671 /// Interface to emit optimization remarks. 672 OptimizationRemarkEmitter *ORE; 673 674 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 675 /// used. 676 /// 677 /// This is currently only used to add no-alias metadata based on the 678 /// memchecks. The actually versioning is performed manually. 679 std::unique_ptr<LoopVersioning> LVer; 680 681 /// The vectorization SIMD factor to use. Each vector will have this many 682 /// vector elements. 683 unsigned VF; 684 685 /// The vectorization unroll factor to use. Each scalar is vectorized to this 686 /// many different vector instructions. 687 unsigned UF; 688 689 /// The builder that we use 690 IRBuilder<> Builder; 691 692 // --- Vectorization state --- 693 694 /// The vector-loop preheader. 695 BasicBlock *LoopVectorPreHeader; 696 697 /// The scalar-loop preheader. 698 BasicBlock *LoopScalarPreHeader; 699 700 /// Middle Block between the vector and the scalar. 701 BasicBlock *LoopMiddleBlock; 702 703 /// The ExitBlock of the scalar loop. 704 BasicBlock *LoopExitBlock; 705 706 /// The vector loop body. 707 BasicBlock *LoopVectorBody; 708 709 /// The scalar loop body. 710 BasicBlock *LoopScalarBody; 711 712 /// A list of all bypass blocks. The first block is the entry of the loop. 713 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 714 715 /// The new Induction variable which was added to the new block. 716 PHINode *Induction = nullptr; 717 718 /// The induction variable of the old basic block. 719 PHINode *OldInduction = nullptr; 720 721 /// Maps values from the original loop to their corresponding values in the 722 /// vectorized loop. A key value can map to either vector values, scalar 723 /// values or both kinds of values, depending on whether the key was 724 /// vectorized and scalarized. 725 VectorizerValueMap VectorLoopValueMap; 726 727 /// Store instructions that were predicated. 728 SmallVector<Instruction *, 4> PredicatedInstructions; 729 730 /// Trip count of the original loop. 731 Value *TripCount = nullptr; 732 733 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 734 Value *VectorTripCount = nullptr; 735 736 /// The legality analysis. 737 LoopVectorizationLegality *Legal; 738 739 /// The profitablity analysis. 740 LoopVectorizationCostModel *Cost; 741 742 // Record whether runtime checks are added. 743 bool AddedSafetyChecks = false; 744 745 // Holds the end values for each induction variable. We save the end values 746 // so we can later fix-up the external users of the induction variables. 747 DenseMap<PHINode *, Value *> IVEndValues; 748 }; 749 750 class InnerLoopUnroller : public InnerLoopVectorizer { 751 public: 752 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 753 LoopInfo *LI, DominatorTree *DT, 754 const TargetLibraryInfo *TLI, 755 const TargetTransformInfo *TTI, AssumptionCache *AC, 756 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 757 LoopVectorizationLegality *LVL, 758 LoopVectorizationCostModel *CM) 759 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 760 UnrollFactor, LVL, CM) {} 761 762 private: 763 Value *getBroadcastInstrs(Value *V) override; 764 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 765 Instruction::BinaryOps Opcode = 766 Instruction::BinaryOpsEnd) override; 767 Value *reverseVector(Value *Vec) override; 768 }; 769 770 } // end namespace llvm 771 772 /// \brief Look for a meaningful debug location on the instruction or it's 773 /// operands. 774 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 775 if (!I) 776 return I; 777 778 DebugLoc Empty; 779 if (I->getDebugLoc() != Empty) 780 return I; 781 782 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 783 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 784 if (OpInst->getDebugLoc() != Empty) 785 return OpInst; 786 } 787 788 return I; 789 } 790 791 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 792 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 793 const DILocation *DIL = Inst->getDebugLoc(); 794 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 795 !isa<DbgInfoIntrinsic>(Inst)) 796 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 797 else 798 B.SetCurrentDebugLocation(DIL); 799 } else 800 B.SetCurrentDebugLocation(DebugLoc()); 801 } 802 803 #ifndef NDEBUG 804 /// \return string containing a file name and a line # for the given loop. 805 static std::string getDebugLocString(const Loop *L) { 806 std::string Result; 807 if (L) { 808 raw_string_ostream OS(Result); 809 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 810 LoopDbgLoc.print(OS); 811 else 812 // Just print the module name. 813 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 814 OS.flush(); 815 } 816 return Result; 817 } 818 #endif 819 820 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 821 const Instruction *Orig) { 822 // If the loop was versioned with memchecks, add the corresponding no-alias 823 // metadata. 824 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 825 LVer->annotateInstWithNoAlias(To, Orig); 826 } 827 828 void InnerLoopVectorizer::addMetadata(Instruction *To, 829 Instruction *From) { 830 propagateMetadata(To, From); 831 addNewMetadata(To, From); 832 } 833 834 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 835 Instruction *From) { 836 for (Value *V : To) { 837 if (Instruction *I = dyn_cast<Instruction>(V)) 838 addMetadata(I, From); 839 } 840 } 841 842 namespace { 843 844 /// \brief The group of interleaved loads/stores sharing the same stride and 845 /// close to each other. 846 /// 847 /// Each member in this group has an index starting from 0, and the largest 848 /// index should be less than interleaved factor, which is equal to the absolute 849 /// value of the access's stride. 850 /// 851 /// E.g. An interleaved load group of factor 4: 852 /// for (unsigned i = 0; i < 1024; i+=4) { 853 /// a = A[i]; // Member of index 0 854 /// b = A[i+1]; // Member of index 1 855 /// d = A[i+3]; // Member of index 3 856 /// ... 857 /// } 858 /// 859 /// An interleaved store group of factor 4: 860 /// for (unsigned i = 0; i < 1024; i+=4) { 861 /// ... 862 /// A[i] = a; // Member of index 0 863 /// A[i+1] = b; // Member of index 1 864 /// A[i+2] = c; // Member of index 2 865 /// A[i+3] = d; // Member of index 3 866 /// } 867 /// 868 /// Note: the interleaved load group could have gaps (missing members), but 869 /// the interleaved store group doesn't allow gaps. 870 class InterleaveGroup { 871 public: 872 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 873 : Align(Align), InsertPos(Instr) { 874 assert(Align && "The alignment should be non-zero"); 875 876 Factor = std::abs(Stride); 877 assert(Factor > 1 && "Invalid interleave factor"); 878 879 Reverse = Stride < 0; 880 Members[0] = Instr; 881 } 882 883 bool isReverse() const { return Reverse; } 884 unsigned getFactor() const { return Factor; } 885 unsigned getAlignment() const { return Align; } 886 unsigned getNumMembers() const { return Members.size(); } 887 888 /// \brief Try to insert a new member \p Instr with index \p Index and 889 /// alignment \p NewAlign. The index is related to the leader and it could be 890 /// negative if it is the new leader. 891 /// 892 /// \returns false if the instruction doesn't belong to the group. 893 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 894 assert(NewAlign && "The new member's alignment should be non-zero"); 895 896 int Key = Index + SmallestKey; 897 898 // Skip if there is already a member with the same index. 899 if (Members.count(Key)) 900 return false; 901 902 if (Key > LargestKey) { 903 // The largest index is always less than the interleave factor. 904 if (Index >= static_cast<int>(Factor)) 905 return false; 906 907 LargestKey = Key; 908 } else if (Key < SmallestKey) { 909 // The largest index is always less than the interleave factor. 910 if (LargestKey - Key >= static_cast<int>(Factor)) 911 return false; 912 913 SmallestKey = Key; 914 } 915 916 // It's always safe to select the minimum alignment. 917 Align = std::min(Align, NewAlign); 918 Members[Key] = Instr; 919 return true; 920 } 921 922 /// \brief Get the member with the given index \p Index 923 /// 924 /// \returns nullptr if contains no such member. 925 Instruction *getMember(unsigned Index) const { 926 int Key = SmallestKey + Index; 927 if (!Members.count(Key)) 928 return nullptr; 929 930 return Members.find(Key)->second; 931 } 932 933 /// \brief Get the index for the given member. Unlike the key in the member 934 /// map, the index starts from 0. 935 unsigned getIndex(Instruction *Instr) const { 936 for (auto I : Members) 937 if (I.second == Instr) 938 return I.first - SmallestKey; 939 940 llvm_unreachable("InterleaveGroup contains no such member"); 941 } 942 943 Instruction *getInsertPos() const { return InsertPos; } 944 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 945 946 private: 947 unsigned Factor; // Interleave Factor. 948 bool Reverse; 949 unsigned Align; 950 DenseMap<int, Instruction *> Members; 951 int SmallestKey = 0; 952 int LargestKey = 0; 953 954 // To avoid breaking dependences, vectorized instructions of an interleave 955 // group should be inserted at either the first load or the last store in 956 // program order. 957 // 958 // E.g. %even = load i32 // Insert Position 959 // %add = add i32 %even // Use of %even 960 // %odd = load i32 961 // 962 // store i32 %even 963 // %odd = add i32 // Def of %odd 964 // store i32 %odd // Insert Position 965 Instruction *InsertPos; 966 }; 967 968 /// \brief Drive the analysis of interleaved memory accesses in the loop. 969 /// 970 /// Use this class to analyze interleaved accesses only when we can vectorize 971 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 972 /// on interleaved accesses is unsafe. 973 /// 974 /// The analysis collects interleave groups and records the relationships 975 /// between the member and the group in a map. 976 class InterleavedAccessInfo { 977 public: 978 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 979 DominatorTree *DT, LoopInfo *LI) 980 : PSE(PSE), TheLoop(L), DT(DT), LI(LI) {} 981 982 ~InterleavedAccessInfo() { 983 SmallSet<InterleaveGroup *, 4> DelSet; 984 // Avoid releasing a pointer twice. 985 for (auto &I : InterleaveGroupMap) 986 DelSet.insert(I.second); 987 for (auto *Ptr : DelSet) 988 delete Ptr; 989 } 990 991 /// \brief Analyze the interleaved accesses and collect them in interleave 992 /// groups. Substitute symbolic strides using \p Strides. 993 void analyzeInterleaving(const ValueToValueMap &Strides); 994 995 /// \brief Check if \p Instr belongs to any interleave group. 996 bool isInterleaved(Instruction *Instr) const { 997 return InterleaveGroupMap.count(Instr); 998 } 999 1000 /// \brief Get the interleave group that \p Instr belongs to. 1001 /// 1002 /// \returns nullptr if doesn't have such group. 1003 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1004 if (InterleaveGroupMap.count(Instr)) 1005 return InterleaveGroupMap.find(Instr)->second; 1006 return nullptr; 1007 } 1008 1009 /// \brief Returns true if an interleaved group that may access memory 1010 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1011 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1012 1013 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1014 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1015 1016 private: 1017 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1018 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1019 /// The interleaved access analysis can also add new predicates (for example 1020 /// by versioning strides of pointers). 1021 PredicatedScalarEvolution &PSE; 1022 1023 Loop *TheLoop; 1024 DominatorTree *DT; 1025 LoopInfo *LI; 1026 const LoopAccessInfo *LAI = nullptr; 1027 1028 /// True if the loop may contain non-reversed interleaved groups with 1029 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1030 /// out-of-bounds by executing at least one scalar epilogue iteration. 1031 bool RequiresScalarEpilogue = false; 1032 1033 /// Holds the relationships between the members and the interleave group. 1034 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1035 1036 /// Holds dependences among the memory accesses in the loop. It maps a source 1037 /// access to a set of dependent sink accesses. 1038 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1039 1040 /// \brief The descriptor for a strided memory access. 1041 struct StrideDescriptor { 1042 StrideDescriptor() = default; 1043 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1044 unsigned Align) 1045 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1046 1047 // The access's stride. It is negative for a reverse access. 1048 int64_t Stride = 0; 1049 1050 // The scalar expression of this access. 1051 const SCEV *Scev = nullptr; 1052 1053 // The size of the memory object. 1054 uint64_t Size = 0; 1055 1056 // The alignment of this access. 1057 unsigned Align = 0; 1058 }; 1059 1060 /// \brief A type for holding instructions and their stride descriptors. 1061 using StrideEntry = std::pair<Instruction *, StrideDescriptor>; 1062 1063 /// \brief Create a new interleave group with the given instruction \p Instr, 1064 /// stride \p Stride and alignment \p Align. 1065 /// 1066 /// \returns the newly created interleave group. 1067 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1068 unsigned Align) { 1069 assert(!InterleaveGroupMap.count(Instr) && 1070 "Already in an interleaved access group"); 1071 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1072 return InterleaveGroupMap[Instr]; 1073 } 1074 1075 /// \brief Release the group and remove all the relationships. 1076 void releaseGroup(InterleaveGroup *Group) { 1077 for (unsigned i = 0; i < Group->getFactor(); i++) 1078 if (Instruction *Member = Group->getMember(i)) 1079 InterleaveGroupMap.erase(Member); 1080 1081 delete Group; 1082 } 1083 1084 /// \brief Collect all the accesses with a constant stride in program order. 1085 void collectConstStrideAccesses( 1086 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1087 const ValueToValueMap &Strides); 1088 1089 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1090 static bool isStrided(int Stride) { 1091 unsigned Factor = std::abs(Stride); 1092 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1093 } 1094 1095 /// \brief Returns true if \p BB is a predicated block. 1096 bool isPredicated(BasicBlock *BB) const { 1097 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1098 } 1099 1100 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1101 bool areDependencesValid() const { 1102 return LAI && LAI->getDepChecker().getDependences(); 1103 } 1104 1105 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1106 /// necessary, when constructing interleaved groups. 1107 /// 1108 /// \p A must precede \p B in program order. We return false if reordering is 1109 /// not necessary or is prevented because \p A and \p B may be dependent. 1110 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1111 StrideEntry *B) const { 1112 // Code motion for interleaved accesses can potentially hoist strided loads 1113 // and sink strided stores. The code below checks the legality of the 1114 // following two conditions: 1115 // 1116 // 1. Potentially moving a strided load (B) before any store (A) that 1117 // precedes B, or 1118 // 1119 // 2. Potentially moving a strided store (A) after any load or store (B) 1120 // that A precedes. 1121 // 1122 // It's legal to reorder A and B if we know there isn't a dependence from A 1123 // to B. Note that this determination is conservative since some 1124 // dependences could potentially be reordered safely. 1125 1126 // A is potentially the source of a dependence. 1127 auto *Src = A->first; 1128 auto SrcDes = A->second; 1129 1130 // B is potentially the sink of a dependence. 1131 auto *Sink = B->first; 1132 auto SinkDes = B->second; 1133 1134 // Code motion for interleaved accesses can't violate WAR dependences. 1135 // Thus, reordering is legal if the source isn't a write. 1136 if (!Src->mayWriteToMemory()) 1137 return true; 1138 1139 // At least one of the accesses must be strided. 1140 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1141 return true; 1142 1143 // If dependence information is not available from LoopAccessInfo, 1144 // conservatively assume the instructions can't be reordered. 1145 if (!areDependencesValid()) 1146 return false; 1147 1148 // If we know there is a dependence from source to sink, assume the 1149 // instructions can't be reordered. Otherwise, reordering is legal. 1150 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1151 } 1152 1153 /// \brief Collect the dependences from LoopAccessInfo. 1154 /// 1155 /// We process the dependences once during the interleaved access analysis to 1156 /// enable constant-time dependence queries. 1157 void collectDependences() { 1158 if (!areDependencesValid()) 1159 return; 1160 auto *Deps = LAI->getDepChecker().getDependences(); 1161 for (auto Dep : *Deps) 1162 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1163 } 1164 }; 1165 1166 /// Utility class for getting and setting loop vectorizer hints in the form 1167 /// of loop metadata. 1168 /// This class keeps a number of loop annotations locally (as member variables) 1169 /// and can, upon request, write them back as metadata on the loop. It will 1170 /// initially scan the loop for existing metadata, and will update the local 1171 /// values based on information in the loop. 1172 /// We cannot write all values to metadata, as the mere presence of some info, 1173 /// for example 'force', means a decision has been made. So, we need to be 1174 /// careful NOT to add them if the user hasn't specifically asked so. 1175 class LoopVectorizeHints { 1176 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED }; 1177 1178 /// Hint - associates name and validation with the hint value. 1179 struct Hint { 1180 const char *Name; 1181 unsigned Value; // This may have to change for non-numeric values. 1182 HintKind Kind; 1183 1184 Hint(const char *Name, unsigned Value, HintKind Kind) 1185 : Name(Name), Value(Value), Kind(Kind) {} 1186 1187 bool validate(unsigned Val) { 1188 switch (Kind) { 1189 case HK_WIDTH: 1190 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1191 case HK_UNROLL: 1192 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1193 case HK_FORCE: 1194 return (Val <= 1); 1195 case HK_ISVECTORIZED: 1196 return (Val==0 || Val==1); 1197 } 1198 return false; 1199 } 1200 }; 1201 1202 /// Vectorization width. 1203 Hint Width; 1204 1205 /// Vectorization interleave factor. 1206 Hint Interleave; 1207 1208 /// Vectorization forced 1209 Hint Force; 1210 1211 /// Already Vectorized 1212 Hint IsVectorized; 1213 1214 /// Return the loop metadata prefix. 1215 static StringRef Prefix() { return "llvm.loop."; } 1216 1217 /// True if there is any unsafe math in the loop. 1218 bool PotentiallyUnsafe = false; 1219 1220 public: 1221 enum ForceKind { 1222 FK_Undefined = -1, ///< Not selected. 1223 FK_Disabled = 0, ///< Forcing disabled. 1224 FK_Enabled = 1, ///< Forcing enabled. 1225 }; 1226 1227 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1228 OptimizationRemarkEmitter &ORE) 1229 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1230 HK_WIDTH), 1231 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1232 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1233 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { 1234 // Populate values with existing loop metadata. 1235 getHintsFromMetadata(); 1236 1237 // force-vector-interleave overrides DisableInterleaving. 1238 if (VectorizerParams::isInterleaveForced()) 1239 Interleave.Value = VectorizerParams::VectorizationInterleave; 1240 1241 if (IsVectorized.Value != 1) 1242 // If the vectorization width and interleaving count are both 1 then 1243 // consider the loop to have been already vectorized because there's 1244 // nothing more that we can do. 1245 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 1246 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1247 << "LV: Interleaving disabled by the pass manager\n"); 1248 } 1249 1250 /// Mark the loop L as already vectorized by setting the width to 1. 1251 void setAlreadyVectorized() { 1252 IsVectorized.Value = 1; 1253 Hint Hints[] = {IsVectorized}; 1254 writeHintsToMetadata(Hints); 1255 } 1256 1257 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1258 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1259 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1260 emitRemarkWithHints(); 1261 return false; 1262 } 1263 1264 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1265 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1266 emitRemarkWithHints(); 1267 return false; 1268 } 1269 1270 if (getIsVectorized() == 1) { 1271 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1272 // FIXME: Add interleave.disable metadata. This will allow 1273 // vectorize.disable to be used without disabling the pass and errors 1274 // to differentiate between disabled vectorization and a width of 1. 1275 ORE.emit([&]() { 1276 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1277 "AllDisabled", L->getStartLoc(), 1278 L->getHeader()) 1279 << "loop not vectorized: vectorization and interleaving are " 1280 "explicitly disabled, or the loop has already been " 1281 "vectorized"; 1282 }); 1283 return false; 1284 } 1285 1286 return true; 1287 } 1288 1289 /// Dumps all the hint information. 1290 void emitRemarkWithHints() const { 1291 using namespace ore; 1292 1293 ORE.emit([&]() { 1294 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1295 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1296 TheLoop->getStartLoc(), 1297 TheLoop->getHeader()) 1298 << "loop not vectorized: vectorization is explicitly disabled"; 1299 else { 1300 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1301 TheLoop->getStartLoc(), 1302 TheLoop->getHeader()); 1303 R << "loop not vectorized"; 1304 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1305 R << " (Force=" << NV("Force", true); 1306 if (Width.Value != 0) 1307 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1308 if (Interleave.Value != 0) 1309 R << ", Interleave Count=" 1310 << NV("InterleaveCount", Interleave.Value); 1311 R << ")"; 1312 } 1313 return R; 1314 } 1315 }); 1316 } 1317 1318 unsigned getWidth() const { return Width.Value; } 1319 unsigned getInterleave() const { return Interleave.Value; } 1320 unsigned getIsVectorized() const { return IsVectorized.Value; } 1321 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1322 1323 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1324 /// pass name to force the frontend to print the diagnostic. 1325 const char *vectorizeAnalysisPassName() const { 1326 if (getWidth() == 1) 1327 return LV_NAME; 1328 if (getForce() == LoopVectorizeHints::FK_Disabled) 1329 return LV_NAME; 1330 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1331 return LV_NAME; 1332 return OptimizationRemarkAnalysis::AlwaysPrint; 1333 } 1334 1335 bool allowReordering() const { 1336 // When enabling loop hints are provided we allow the vectorizer to change 1337 // the order of operations that is given by the scalar loop. This is not 1338 // enabled by default because can be unsafe or inefficient. For example, 1339 // reordering floating-point operations will change the way round-off 1340 // error accumulates in the loop. 1341 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1342 } 1343 1344 bool isPotentiallyUnsafe() const { 1345 // Avoid FP vectorization if the target is unsure about proper support. 1346 // This may be related to the SIMD unit in the target not handling 1347 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1348 // Otherwise, a sequence of vectorized loops, even without reduction, 1349 // could lead to different end results on the destination vectors. 1350 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1351 } 1352 1353 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1354 1355 private: 1356 /// Find hints specified in the loop metadata and update local values. 1357 void getHintsFromMetadata() { 1358 MDNode *LoopID = TheLoop->getLoopID(); 1359 if (!LoopID) 1360 return; 1361 1362 // First operand should refer to the loop id itself. 1363 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1364 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1365 1366 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1367 const MDString *S = nullptr; 1368 SmallVector<Metadata *, 4> Args; 1369 1370 // The expected hint is either a MDString or a MDNode with the first 1371 // operand a MDString. 1372 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1373 if (!MD || MD->getNumOperands() == 0) 1374 continue; 1375 S = dyn_cast<MDString>(MD->getOperand(0)); 1376 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1377 Args.push_back(MD->getOperand(i)); 1378 } else { 1379 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1380 assert(Args.size() == 0 && "too many arguments for MDString"); 1381 } 1382 1383 if (!S) 1384 continue; 1385 1386 // Check if the hint starts with the loop metadata prefix. 1387 StringRef Name = S->getString(); 1388 if (Args.size() == 1) 1389 setHint(Name, Args[0]); 1390 } 1391 } 1392 1393 /// Checks string hint with one operand and set value if valid. 1394 void setHint(StringRef Name, Metadata *Arg) { 1395 if (!Name.startswith(Prefix())) 1396 return; 1397 Name = Name.substr(Prefix().size(), StringRef::npos); 1398 1399 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1400 if (!C) 1401 return; 1402 unsigned Val = C->getZExtValue(); 1403 1404 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 1405 for (auto H : Hints) { 1406 if (Name == H->Name) { 1407 if (H->validate(Val)) 1408 H->Value = Val; 1409 else 1410 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1411 break; 1412 } 1413 } 1414 } 1415 1416 /// Create a new hint from name / value pair. 1417 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1418 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1419 Metadata *MDs[] = {MDString::get(Context, Name), 1420 ConstantAsMetadata::get( 1421 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1422 return MDNode::get(Context, MDs); 1423 } 1424 1425 /// Matches metadata with hint name. 1426 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1427 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1428 if (!Name) 1429 return false; 1430 1431 for (auto H : HintTypes) 1432 if (Name->getString().endswith(H.Name)) 1433 return true; 1434 return false; 1435 } 1436 1437 /// Sets current hints into loop metadata, keeping other values intact. 1438 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1439 if (HintTypes.empty()) 1440 return; 1441 1442 // Reserve the first element to LoopID (see below). 1443 SmallVector<Metadata *, 4> MDs(1); 1444 // If the loop already has metadata, then ignore the existing operands. 1445 MDNode *LoopID = TheLoop->getLoopID(); 1446 if (LoopID) { 1447 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1448 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1449 // If node in update list, ignore old value. 1450 if (!matchesHintMetadataName(Node, HintTypes)) 1451 MDs.push_back(Node); 1452 } 1453 } 1454 1455 // Now, add the missing hints. 1456 for (auto H : HintTypes) 1457 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1458 1459 // Replace current metadata node with new one. 1460 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1461 MDNode *NewLoopID = MDNode::get(Context, MDs); 1462 // Set operand 0 to refer to the loop id itself. 1463 NewLoopID->replaceOperandWith(0, NewLoopID); 1464 1465 TheLoop->setLoopID(NewLoopID); 1466 } 1467 1468 /// The loop these hints belong to. 1469 const Loop *TheLoop; 1470 1471 /// Interface to emit optimization remarks. 1472 OptimizationRemarkEmitter &ORE; 1473 }; 1474 1475 } // end anonymous namespace 1476 1477 static void emitMissedWarning(Function *F, Loop *L, 1478 const LoopVectorizeHints &LH, 1479 OptimizationRemarkEmitter *ORE) { 1480 LH.emitRemarkWithHints(); 1481 1482 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1483 if (LH.getWidth() != 1) 1484 ORE->emit(DiagnosticInfoOptimizationFailure( 1485 DEBUG_TYPE, "FailedRequestedVectorization", 1486 L->getStartLoc(), L->getHeader()) 1487 << "loop not vectorized: " 1488 << "failed explicitly specified loop vectorization"); 1489 else if (LH.getInterleave() != 1) 1490 ORE->emit(DiagnosticInfoOptimizationFailure( 1491 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1492 L->getHeader()) 1493 << "loop not interleaved: " 1494 << "failed explicitly specified loop interleaving"); 1495 } 1496 } 1497 1498 namespace { 1499 1500 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1501 /// to what vectorization factor. 1502 /// This class does not look at the profitability of vectorization, only the 1503 /// legality. This class has two main kinds of checks: 1504 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1505 /// will change the order of memory accesses in a way that will change the 1506 /// correctness of the program. 1507 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1508 /// checks for a number of different conditions, such as the availability of a 1509 /// single induction variable, that all types are supported and vectorize-able, 1510 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1511 /// This class is also used by InnerLoopVectorizer for identifying 1512 /// induction variable and the different reduction variables. 1513 class LoopVectorizationLegality { 1514 public: 1515 LoopVectorizationLegality( 1516 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1517 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1518 const TargetTransformInfo *TTI, 1519 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1520 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1521 LoopVectorizeHints *H) 1522 : TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), GetLAA(GetLAA), 1523 ORE(ORE), InterleaveInfo(PSE, L, DT, LI), Requirements(R), Hints(H) {} 1524 1525 /// ReductionList contains the reduction descriptors for all 1526 /// of the reductions that were found in the loop. 1527 using ReductionList = DenseMap<PHINode *, RecurrenceDescriptor>; 1528 1529 /// InductionList saves induction variables and maps them to the 1530 /// induction descriptor. 1531 using InductionList = MapVector<PHINode *, InductionDescriptor>; 1532 1533 /// RecurrenceSet contains the phi nodes that are recurrences other than 1534 /// inductions and reductions. 1535 using RecurrenceSet = SmallPtrSet<const PHINode *, 8>; 1536 1537 /// Returns true if it is legal to vectorize this loop. 1538 /// This does not mean that it is profitable to vectorize this 1539 /// loop, only that it is legal to do so. 1540 bool canVectorize(); 1541 1542 /// Returns the primary induction variable. 1543 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1544 1545 /// Returns the reduction variables found in the loop. 1546 ReductionList *getReductionVars() { return &Reductions; } 1547 1548 /// Returns the induction variables found in the loop. 1549 InductionList *getInductionVars() { return &Inductions; } 1550 1551 /// Return the first-order recurrences found in the loop. 1552 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1553 1554 /// Return the set of instructions to sink to handle first-order recurrences. 1555 DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; } 1556 1557 /// Returns the widest induction type. 1558 Type *getWidestInductionType() { return WidestIndTy; } 1559 1560 /// Returns True if V is an induction variable in this loop. 1561 bool isInductionVariable(const Value *V); 1562 1563 /// Returns True if PN is a reduction variable in this loop. 1564 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1565 1566 /// Returns True if Phi is a first-order recurrence in this loop. 1567 bool isFirstOrderRecurrence(const PHINode *Phi); 1568 1569 /// Return true if the block BB needs to be predicated in order for the loop 1570 /// to be vectorized. 1571 bool blockNeedsPredication(BasicBlock *BB); 1572 1573 /// Check if this pointer is consecutive when vectorizing. This happens 1574 /// when the last index of the GEP is the induction variable, or that the 1575 /// pointer itself is an induction variable. 1576 /// This check allows us to vectorize A[idx] into a wide load/store. 1577 /// Returns: 1578 /// 0 - Stride is unknown or non-consecutive. 1579 /// 1 - Address is consecutive. 1580 /// -1 - Address is consecutive, and decreasing. 1581 int isConsecutivePtr(Value *Ptr); 1582 1583 /// Returns true if the value V is uniform within the loop. 1584 bool isUniform(Value *V); 1585 1586 /// Returns the information that we collected about runtime memory check. 1587 const RuntimePointerChecking *getRuntimePointerChecking() const { 1588 return LAI->getRuntimePointerChecking(); 1589 } 1590 1591 const LoopAccessInfo *getLAI() const { return LAI; } 1592 1593 /// \brief Check if \p Instr belongs to any interleaved access group. 1594 bool isAccessInterleaved(Instruction *Instr) { 1595 return InterleaveInfo.isInterleaved(Instr); 1596 } 1597 1598 /// \brief Get the interleaved access group that \p Instr belongs to. 1599 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1600 return InterleaveInfo.getInterleaveGroup(Instr); 1601 } 1602 1603 /// \brief Returns true if an interleaved group requires a scalar iteration 1604 /// to handle accesses with gaps. 1605 bool requiresScalarEpilogue() const { 1606 return InterleaveInfo.requiresScalarEpilogue(); 1607 } 1608 1609 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1610 1611 uint64_t getMaxSafeRegisterWidth() const { 1612 return LAI->getDepChecker().getMaxSafeRegisterWidth(); 1613 } 1614 1615 bool hasStride(Value *V) { return LAI->hasStride(V); } 1616 1617 /// Returns true if the target machine supports masked store operation 1618 /// for the given \p DataType and kind of access to \p Ptr. 1619 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1620 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1621 } 1622 1623 /// Returns true if the target machine supports masked load operation 1624 /// for the given \p DataType and kind of access to \p Ptr. 1625 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1626 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1627 } 1628 1629 /// Returns true if the target machine supports masked scatter operation 1630 /// for the given \p DataType. 1631 bool isLegalMaskedScatter(Type *DataType) { 1632 return TTI->isLegalMaskedScatter(DataType); 1633 } 1634 1635 /// Returns true if the target machine supports masked gather operation 1636 /// for the given \p DataType. 1637 bool isLegalMaskedGather(Type *DataType) { 1638 return TTI->isLegalMaskedGather(DataType); 1639 } 1640 1641 /// Returns true if the target machine can represent \p V as a masked gather 1642 /// or scatter operation. 1643 bool isLegalGatherOrScatter(Value *V) { 1644 auto *LI = dyn_cast<LoadInst>(V); 1645 auto *SI = dyn_cast<StoreInst>(V); 1646 if (!LI && !SI) 1647 return false; 1648 auto *Ptr = getPointerOperand(V); 1649 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1650 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1651 } 1652 1653 /// Returns true if vector representation of the instruction \p I 1654 /// requires mask. 1655 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1656 1657 unsigned getNumStores() const { return LAI->getNumStores(); } 1658 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1659 unsigned getNumPredStores() const { return NumPredStores; } 1660 1661 /// Returns true if \p I is an instruction that will be scalarized with 1662 /// predication. Such instructions include conditional stores and 1663 /// instructions that may divide by zero. 1664 bool isScalarWithPredication(Instruction *I); 1665 1666 /// Returns true if \p I is a memory instruction with consecutive memory 1667 /// access that can be widened. 1668 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1669 1670 // Returns true if the NoNaN attribute is set on the function. 1671 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1672 1673 private: 1674 /// Check if a single basic block loop is vectorizable. 1675 /// At this point we know that this is a loop with a constant trip count 1676 /// and we only need to check individual instructions. 1677 bool canVectorizeInstrs(); 1678 1679 /// When we vectorize loops we may change the order in which 1680 /// we read and write from memory. This method checks if it is 1681 /// legal to vectorize the code, considering only memory constrains. 1682 /// Returns true if the loop is vectorizable 1683 bool canVectorizeMemory(); 1684 1685 /// Return true if we can vectorize this loop using the IF-conversion 1686 /// transformation. 1687 bool canVectorizeWithIfConvert(); 1688 1689 /// Return true if all of the instructions in the block can be speculatively 1690 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1691 /// and we know that we can read from them without segfault. 1692 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1693 1694 /// Updates the vectorization state by adding \p Phi to the inductions list. 1695 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1696 /// better choice for the main induction than the existing one. 1697 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1698 SmallPtrSetImpl<Value *> &AllowedExit); 1699 1700 /// Create an analysis remark that explains why vectorization failed 1701 /// 1702 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1703 /// an instruction that prevents vectorization. Otherwise the loop is used 1704 /// for the location of the remark. \return the remark object that can be 1705 /// streamed to. 1706 OptimizationRemarkAnalysis 1707 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1708 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1709 RemarkName, TheLoop, I); 1710 } 1711 1712 /// \brief If an access has a symbolic strides, this maps the pointer value to 1713 /// the stride symbol. 1714 const ValueToValueMap *getSymbolicStrides() { 1715 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1716 // it's collected. This happens from canVectorizeWithIfConvert, when the 1717 // pointer is checked to reference consecutive elements suitable for a 1718 // masked access. 1719 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1720 } 1721 1722 unsigned NumPredStores = 0; 1723 1724 /// The loop that we evaluate. 1725 Loop *TheLoop; 1726 1727 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1728 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1729 /// of existing SCEV assumptions. The analysis will also add a minimal set 1730 /// of new predicates if this is required to enable vectorization and 1731 /// unrolling. 1732 PredicatedScalarEvolution &PSE; 1733 1734 /// Target Library Info. 1735 TargetLibraryInfo *TLI; 1736 1737 /// Target Transform Info 1738 const TargetTransformInfo *TTI; 1739 1740 /// Dominator Tree. 1741 DominatorTree *DT; 1742 1743 // LoopAccess analysis. 1744 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1745 1746 // And the loop-accesses info corresponding to this loop. This pointer is 1747 // null until canVectorizeMemory sets it up. 1748 const LoopAccessInfo *LAI = nullptr; 1749 1750 /// Interface to emit optimization remarks. 1751 OptimizationRemarkEmitter *ORE; 1752 1753 /// The interleave access information contains groups of interleaved accesses 1754 /// with the same stride and close to each other. 1755 InterleavedAccessInfo InterleaveInfo; 1756 1757 // --- vectorization state --- // 1758 1759 /// Holds the primary induction variable. This is the counter of the 1760 /// loop. 1761 PHINode *PrimaryInduction = nullptr; 1762 1763 /// Holds the reduction variables. 1764 ReductionList Reductions; 1765 1766 /// Holds all of the induction variables that we found in the loop. 1767 /// Notice that inductions don't need to start at zero and that induction 1768 /// variables can be pointers. 1769 InductionList Inductions; 1770 1771 /// Holds the phi nodes that are first-order recurrences. 1772 RecurrenceSet FirstOrderRecurrences; 1773 1774 /// Holds instructions that need to sink past other instructions to handle 1775 /// first-order recurrences. 1776 DenseMap<Instruction *, Instruction *> SinkAfter; 1777 1778 /// Holds the widest induction type encountered. 1779 Type *WidestIndTy = nullptr; 1780 1781 /// Allowed outside users. This holds the induction and reduction 1782 /// vars which can be accessed from outside the loop. 1783 SmallPtrSet<Value *, 4> AllowedExit; 1784 1785 /// Can we assume the absence of NaNs. 1786 bool HasFunNoNaNAttr = false; 1787 1788 /// Vectorization requirements that will go through late-evaluation. 1789 LoopVectorizationRequirements *Requirements; 1790 1791 /// Used to emit an analysis of any legality issues. 1792 LoopVectorizeHints *Hints; 1793 1794 /// While vectorizing these instructions we have to generate a 1795 /// call to the appropriate masked intrinsic 1796 SmallPtrSet<const Instruction *, 8> MaskedOp; 1797 }; 1798 1799 /// LoopVectorizationCostModel - estimates the expected speedups due to 1800 /// vectorization. 1801 /// In many cases vectorization is not profitable. This can happen because of 1802 /// a number of reasons. In this class we mainly attempt to predict the 1803 /// expected speedup/slowdowns due to the supported instruction set. We use the 1804 /// TargetTransformInfo to query the different backends for the cost of 1805 /// different operations. 1806 class LoopVectorizationCostModel { 1807 public: 1808 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1809 LoopInfo *LI, LoopVectorizationLegality *Legal, 1810 const TargetTransformInfo &TTI, 1811 const TargetLibraryInfo *TLI, DemandedBits *DB, 1812 AssumptionCache *AC, 1813 OptimizationRemarkEmitter *ORE, const Function *F, 1814 const LoopVectorizeHints *Hints) 1815 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1816 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1817 1818 /// \return An upper bound for the vectorization factor, or None if 1819 /// vectorization should be avoided up front. 1820 Optional<unsigned> computeMaxVF(bool OptForSize); 1821 1822 /// Information about vectorization costs 1823 struct VectorizationFactor { 1824 // Vector width with best cost 1825 unsigned Width; 1826 1827 // Cost of the loop with that width 1828 unsigned Cost; 1829 }; 1830 1831 /// \return The most profitable vectorization factor and the cost of that VF. 1832 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1833 /// then this vectorization factor will be selected if vectorization is 1834 /// possible. 1835 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1836 1837 /// Setup cost-based decisions for user vectorization factor. 1838 void selectUserVectorizationFactor(unsigned UserVF) { 1839 collectUniformsAndScalars(UserVF); 1840 collectInstsToScalarize(UserVF); 1841 } 1842 1843 /// \return The size (in bits) of the smallest and widest types in the code 1844 /// that needs to be vectorized. We ignore values that remain scalar such as 1845 /// 64 bit loop indices. 1846 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1847 1848 /// \return The desired interleave count. 1849 /// If interleave count has been specified by metadata it will be returned. 1850 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1851 /// are the selected vectorization factor and the cost of the selected VF. 1852 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1853 unsigned LoopCost); 1854 1855 /// Memory access instruction may be vectorized in more than one way. 1856 /// Form of instruction after vectorization depends on cost. 1857 /// This function takes cost-based decisions for Load/Store instructions 1858 /// and collects them in a map. This decisions map is used for building 1859 /// the lists of loop-uniform and loop-scalar instructions. 1860 /// The calculated cost is saved with widening decision in order to 1861 /// avoid redundant calculations. 1862 void setCostBasedWideningDecision(unsigned VF); 1863 1864 /// \brief A struct that represents some properties of the register usage 1865 /// of a loop. 1866 struct RegisterUsage { 1867 /// Holds the number of loop invariant values that are used in the loop. 1868 unsigned LoopInvariantRegs; 1869 1870 /// Holds the maximum number of concurrent live intervals in the loop. 1871 unsigned MaxLocalUsers; 1872 1873 /// Holds the number of instructions in the loop. 1874 unsigned NumInstructions; 1875 }; 1876 1877 /// \return Returns information about the register usages of the loop for the 1878 /// given vectorization factors. 1879 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1880 1881 /// Collect values we want to ignore in the cost model. 1882 void collectValuesToIgnore(); 1883 1884 /// \returns The smallest bitwidth each instruction can be represented with. 1885 /// The vector equivalents of these instructions should be truncated to this 1886 /// type. 1887 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1888 return MinBWs; 1889 } 1890 1891 /// \returns True if it is more profitable to scalarize instruction \p I for 1892 /// vectorization factor \p VF. 1893 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1894 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1895 auto Scalars = InstsToScalarize.find(VF); 1896 assert(Scalars != InstsToScalarize.end() && 1897 "VF not yet analyzed for scalarization profitability"); 1898 return Scalars->second.count(I); 1899 } 1900 1901 /// Returns true if \p I is known to be uniform after vectorization. 1902 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1903 if (VF == 1) 1904 return true; 1905 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1906 auto UniformsPerVF = Uniforms.find(VF); 1907 return UniformsPerVF->second.count(I); 1908 } 1909 1910 /// Returns true if \p I is known to be scalar after vectorization. 1911 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1912 if (VF == 1) 1913 return true; 1914 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1915 auto ScalarsPerVF = Scalars.find(VF); 1916 return ScalarsPerVF->second.count(I); 1917 } 1918 1919 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1920 /// for vectorization factor \p VF. 1921 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1922 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1923 !isScalarAfterVectorization(I, VF); 1924 } 1925 1926 /// Decision that was taken during cost calculation for memory instruction. 1927 enum InstWidening { 1928 CM_Unknown, 1929 CM_Widen, 1930 CM_Interleave, 1931 CM_GatherScatter, 1932 CM_Scalarize 1933 }; 1934 1935 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1936 /// instruction \p I and vector width \p VF. 1937 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1938 unsigned Cost) { 1939 assert(VF >= 2 && "Expected VF >=2"); 1940 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1941 } 1942 1943 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1944 /// interleaving group \p Grp and vector width \p VF. 1945 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1946 InstWidening W, unsigned Cost) { 1947 assert(VF >= 2 && "Expected VF >=2"); 1948 /// Broadcast this decicion to all instructions inside the group. 1949 /// But the cost will be assigned to one instruction only. 1950 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1951 if (auto *I = Grp->getMember(i)) { 1952 if (Grp->getInsertPos() == I) 1953 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1954 else 1955 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1956 } 1957 } 1958 } 1959 1960 /// Return the cost model decision for the given instruction \p I and vector 1961 /// width \p VF. Return CM_Unknown if this instruction did not pass 1962 /// through the cost modeling. 1963 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1964 assert(VF >= 2 && "Expected VF >=2"); 1965 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1966 auto Itr = WideningDecisions.find(InstOnVF); 1967 if (Itr == WideningDecisions.end()) 1968 return CM_Unknown; 1969 return Itr->second.first; 1970 } 1971 1972 /// Return the vectorization cost for the given instruction \p I and vector 1973 /// width \p VF. 1974 unsigned getWideningCost(Instruction *I, unsigned VF) { 1975 assert(VF >= 2 && "Expected VF >=2"); 1976 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1977 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 1978 return WideningDecisions[InstOnVF].second; 1979 } 1980 1981 /// Return True if instruction \p I is an optimizable truncate whose operand 1982 /// is an induction variable. Such a truncate will be removed by adding a new 1983 /// induction variable with the destination type. 1984 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1985 // If the instruction is not a truncate, return false. 1986 auto *Trunc = dyn_cast<TruncInst>(I); 1987 if (!Trunc) 1988 return false; 1989 1990 // Get the source and destination types of the truncate. 1991 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1992 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1993 1994 // If the truncate is free for the given types, return false. Replacing a 1995 // free truncate with an induction variable would add an induction variable 1996 // update instruction to each iteration of the loop. We exclude from this 1997 // check the primary induction variable since it will need an update 1998 // instruction regardless. 1999 Value *Op = Trunc->getOperand(0); 2000 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 2001 return false; 2002 2003 // If the truncated value is not an induction variable, return false. 2004 return Legal->isInductionVariable(Op); 2005 } 2006 2007 /// Collects the instructions to scalarize for each predicated instruction in 2008 /// the loop. 2009 void collectInstsToScalarize(unsigned VF); 2010 2011 /// Collect Uniform and Scalar values for the given \p VF. 2012 /// The sets depend on CM decision for Load/Store instructions 2013 /// that may be vectorized as interleave, gather-scatter or scalarized. 2014 void collectUniformsAndScalars(unsigned VF) { 2015 // Do the analysis once. 2016 if (VF == 1 || Uniforms.count(VF)) 2017 return; 2018 setCostBasedWideningDecision(VF); 2019 collectLoopUniforms(VF); 2020 collectLoopScalars(VF); 2021 } 2022 2023 private: 2024 /// \return An upper bound for the vectorization factor, larger than zero. 2025 /// One is returned if vectorization should best be avoided due to cost. 2026 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 2027 2028 /// The vectorization cost is a combination of the cost itself and a boolean 2029 /// indicating whether any of the contributing operations will actually 2030 /// operate on 2031 /// vector values after type legalization in the backend. If this latter value 2032 /// is 2033 /// false, then all operations will be scalarized (i.e. no vectorization has 2034 /// actually taken place). 2035 using VectorizationCostTy = std::pair<unsigned, bool>; 2036 2037 /// Returns the expected execution cost. The unit of the cost does 2038 /// not matter because we use the 'cost' units to compare different 2039 /// vector widths. The cost that is returned is *not* normalized by 2040 /// the factor width. 2041 VectorizationCostTy expectedCost(unsigned VF); 2042 2043 /// Returns the execution time cost of an instruction for a given vector 2044 /// width. Vector width of one means scalar. 2045 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2046 2047 /// The cost-computation logic from getInstructionCost which provides 2048 /// the vector type as an output parameter. 2049 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2050 2051 /// Calculate vectorization cost of memory instruction \p I. 2052 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2053 2054 /// The cost computation for scalarized memory instruction. 2055 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2056 2057 /// The cost computation for interleaving group of memory instructions. 2058 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2059 2060 /// The cost computation for Gather/Scatter instruction. 2061 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2062 2063 /// The cost computation for widening instruction \p I with consecutive 2064 /// memory access. 2065 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2066 2067 /// The cost calculation for Load instruction \p I with uniform pointer - 2068 /// scalar load + broadcast. 2069 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2070 2071 /// Returns whether the instruction is a load or store and will be a emitted 2072 /// as a vector operation. 2073 bool isConsecutiveLoadOrStore(Instruction *I); 2074 2075 /// Create an analysis remark that explains why vectorization failed 2076 /// 2077 /// \p RemarkName is the identifier for the remark. \return the remark object 2078 /// that can be streamed to. 2079 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2080 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2081 RemarkName, TheLoop); 2082 } 2083 2084 /// Map of scalar integer values to the smallest bitwidth they can be legally 2085 /// represented as. The vector equivalents of these values should be truncated 2086 /// to this type. 2087 MapVector<Instruction *, uint64_t> MinBWs; 2088 2089 /// A type representing the costs for instructions if they were to be 2090 /// scalarized rather than vectorized. The entries are Instruction-Cost 2091 /// pairs. 2092 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 2093 2094 /// A set containing all BasicBlocks that are known to present after 2095 /// vectorization as a predicated block. 2096 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2097 2098 /// A map holding scalar costs for different vectorization factors. The 2099 /// presence of a cost for an instruction in the mapping indicates that the 2100 /// instruction will be scalarized when vectorizing with the associated 2101 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2102 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2103 2104 /// Holds the instructions known to be uniform after vectorization. 2105 /// The data is collected per VF. 2106 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2107 2108 /// Holds the instructions known to be scalar after vectorization. 2109 /// The data is collected per VF. 2110 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2111 2112 /// Holds the instructions (address computations) that are forced to be 2113 /// scalarized. 2114 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 2115 2116 /// Returns the expected difference in cost from scalarizing the expression 2117 /// feeding a predicated instruction \p PredInst. The instructions to 2118 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2119 /// non-negative return value implies the expression will be scalarized. 2120 /// Currently, only single-use chains are considered for scalarization. 2121 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2122 unsigned VF); 2123 2124 /// Collect the instructions that are uniform after vectorization. An 2125 /// instruction is uniform if we represent it with a single scalar value in 2126 /// the vectorized loop corresponding to each vector iteration. Examples of 2127 /// uniform instructions include pointer operands of consecutive or 2128 /// interleaved memory accesses. Note that although uniformity implies an 2129 /// instruction will be scalar, the reverse is not true. In general, a 2130 /// scalarized instruction will be represented by VF scalar values in the 2131 /// vectorized loop, each corresponding to an iteration of the original 2132 /// scalar loop. 2133 void collectLoopUniforms(unsigned VF); 2134 2135 /// Collect the instructions that are scalar after vectorization. An 2136 /// instruction is scalar if it is known to be uniform or will be scalarized 2137 /// during vectorization. Non-uniform scalarized instructions will be 2138 /// represented by VF values in the vectorized loop, each corresponding to an 2139 /// iteration of the original scalar loop. 2140 void collectLoopScalars(unsigned VF); 2141 2142 /// Keeps cost model vectorization decision and cost for instructions. 2143 /// Right now it is used for memory instructions only. 2144 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 2145 std::pair<InstWidening, unsigned>>; 2146 2147 DecisionList WideningDecisions; 2148 2149 public: 2150 /// The loop that we evaluate. 2151 Loop *TheLoop; 2152 2153 /// Predicated scalar evolution analysis. 2154 PredicatedScalarEvolution &PSE; 2155 2156 /// Loop Info analysis. 2157 LoopInfo *LI; 2158 2159 /// Vectorization legality. 2160 LoopVectorizationLegality *Legal; 2161 2162 /// Vector target information. 2163 const TargetTransformInfo &TTI; 2164 2165 /// Target Library Info. 2166 const TargetLibraryInfo *TLI; 2167 2168 /// Demanded bits analysis. 2169 DemandedBits *DB; 2170 2171 /// Assumption cache. 2172 AssumptionCache *AC; 2173 2174 /// Interface to emit optimization remarks. 2175 OptimizationRemarkEmitter *ORE; 2176 2177 const Function *TheFunction; 2178 2179 /// Loop Vectorize Hint. 2180 const LoopVectorizeHints *Hints; 2181 2182 /// Values to ignore in the cost model. 2183 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2184 2185 /// Values to ignore in the cost model when VF > 1. 2186 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2187 }; 2188 2189 } // end anonymous namespace 2190 2191 namespace llvm { 2192 2193 /// InnerLoopVectorizer vectorizes loops which contain only one basic 2194 /// LoopVectorizationPlanner - drives the vectorization process after having 2195 /// passed Legality checks. 2196 /// The planner builds and optimizes the Vectorization Plans which record the 2197 /// decisions how to vectorize the given loop. In particular, represent the 2198 /// control-flow of the vectorized version, the replication of instructions that 2199 /// are to be scalarized, and interleave access groups. 2200 class LoopVectorizationPlanner { 2201 /// The loop that we evaluate. 2202 Loop *OrigLoop; 2203 2204 /// Loop Info analysis. 2205 LoopInfo *LI; 2206 2207 /// Target Library Info. 2208 const TargetLibraryInfo *TLI; 2209 2210 /// Target Transform Info. 2211 const TargetTransformInfo *TTI; 2212 2213 /// The legality analysis. 2214 LoopVectorizationLegality *Legal; 2215 2216 /// The profitablity analysis. 2217 LoopVectorizationCostModel &CM; 2218 2219 using VPlanPtr = std::unique_ptr<VPlan>; 2220 2221 SmallVector<VPlanPtr, 4> VPlans; 2222 2223 /// This class is used to enable the VPlan to invoke a method of ILV. This is 2224 /// needed until the method is refactored out of ILV and becomes reusable. 2225 struct VPCallbackILV : public VPCallback { 2226 InnerLoopVectorizer &ILV; 2227 2228 VPCallbackILV(InnerLoopVectorizer &ILV) : ILV(ILV) {} 2229 2230 Value *getOrCreateVectorValues(Value *V, unsigned Part) override { 2231 return ILV.getOrCreateVectorValue(V, Part); 2232 } 2233 }; 2234 2235 /// A builder used to construct the current plan. 2236 VPBuilder Builder; 2237 2238 /// When we if-convert we need to create edge masks. We have to cache values 2239 /// so that we don't end up with exponential recursion/IR. Note that 2240 /// if-conversion currently takes place during VPlan-construction, so these 2241 /// caches are only used at that stage. 2242 using EdgeMaskCacheTy = 2243 DenseMap<std::pair<BasicBlock *, BasicBlock *>, VPValue *>; 2244 using BlockMaskCacheTy = DenseMap<BasicBlock *, VPValue *>; 2245 EdgeMaskCacheTy EdgeMaskCache; 2246 BlockMaskCacheTy BlockMaskCache; 2247 2248 unsigned BestVF = 0; 2249 unsigned BestUF = 0; 2250 2251 public: 2252 LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI, 2253 const TargetTransformInfo *TTI, 2254 LoopVectorizationLegality *Legal, 2255 LoopVectorizationCostModel &CM) 2256 : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM) {} 2257 2258 /// Plan how to best vectorize, return the best VF and its cost. 2259 LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize, 2260 unsigned UserVF); 2261 2262 /// Finalize the best decision and dispose of all other VPlans. 2263 void setBestPlan(unsigned VF, unsigned UF); 2264 2265 /// Generate the IR code for the body of the vectorized loop according to the 2266 /// best selected VPlan. 2267 void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT); 2268 2269 void printPlans(raw_ostream &O) { 2270 for (const auto &Plan : VPlans) 2271 O << *Plan; 2272 } 2273 2274 protected: 2275 /// Collect the instructions from the original loop that would be trivially 2276 /// dead in the vectorized loop if generated. 2277 void collectTriviallyDeadInstructions( 2278 SmallPtrSetImpl<Instruction *> &DeadInstructions); 2279 2280 /// A range of powers-of-2 vectorization factors with fixed start and 2281 /// adjustable end. The range includes start and excludes end, e.g.,: 2282 /// [1, 9) = {1, 2, 4, 8} 2283 struct VFRange { 2284 // A power of 2. 2285 const unsigned Start; 2286 2287 // Need not be a power of 2. If End <= Start range is empty. 2288 unsigned End; 2289 }; 2290 2291 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying 2292 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the 2293 /// returned value holds for the entire \p Range. 2294 bool getDecisionAndClampRange(const std::function<bool(unsigned)> &Predicate, 2295 VFRange &Range); 2296 2297 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 2298 /// according to the information gathered by Legal when it checked if it is 2299 /// legal to vectorize the loop. 2300 void buildVPlans(unsigned MinVF, unsigned MaxVF); 2301 2302 private: 2303 /// A helper function that computes the predicate of the block BB, assuming 2304 /// that the header block of the loop is set to True. It returns the *entry* 2305 /// mask for the block BB. 2306 VPValue *createBlockInMask(BasicBlock *BB, VPlanPtr &Plan); 2307 2308 /// A helper function that computes the predicate of the edge between SRC 2309 /// and DST. 2310 VPValue *createEdgeMask(BasicBlock *Src, BasicBlock *Dst, VPlanPtr &Plan); 2311 2312 /// Check if \I belongs to an Interleave Group within the given VF \p Range, 2313 /// \return true in the first returned value if so and false otherwise. 2314 /// Build a new VPInterleaveGroup Recipe if \I is the primary member of an IG 2315 /// for \p Range.Start, and provide it as the second returned value. 2316 /// Note that if \I is an adjunct member of an IG for \p Range.Start, the 2317 /// \return value is <true, nullptr>, as it is handled by another recipe. 2318 /// \p Range.End may be decreased to ensure same decision from \p Range.Start 2319 /// to \p Range.End. 2320 VPInterleaveRecipe *tryToInterleaveMemory(Instruction *I, VFRange &Range); 2321 2322 // Check if \I is a memory instruction to be widened for \p Range.Start and 2323 // potentially masked. Such instructions are handled by a recipe that takes an 2324 // additional VPInstruction for the mask. 2325 VPWidenMemoryInstructionRecipe *tryToWidenMemory(Instruction *I, 2326 VFRange &Range, 2327 VPlanPtr &Plan); 2328 2329 /// Check if an induction recipe should be constructed for \I within the given 2330 /// VF \p Range. If so build and return it. If not, return null. \p Range.End 2331 /// may be decreased to ensure same decision from \p Range.Start to 2332 /// \p Range.End. 2333 VPWidenIntOrFpInductionRecipe *tryToOptimizeInduction(Instruction *I, 2334 VFRange &Range); 2335 2336 /// Handle non-loop phi nodes. Currently all such phi nodes are turned into 2337 /// a sequence of select instructions as the vectorizer currently performs 2338 /// full if-conversion. 2339 VPBlendRecipe *tryToBlend(Instruction *I, VPlanPtr &Plan); 2340 2341 /// Check if \p I can be widened within the given VF \p Range. If \p I can be 2342 /// widened for \p Range.Start, check if the last recipe of \p VPBB can be 2343 /// extended to include \p I or else build a new VPWidenRecipe for it and 2344 /// append it to \p VPBB. Return true if \p I can be widened for Range.Start, 2345 /// false otherwise. Range.End may be decreased to ensure same decision from 2346 /// \p Range.Start to \p Range.End. 2347 bool tryToWiden(Instruction *I, VPBasicBlock *VPBB, VFRange &Range); 2348 2349 /// Build a VPReplicationRecipe for \p I and enclose it within a Region if it 2350 /// is predicated. \return \p VPBB augmented with this new recipe if \p I is 2351 /// not predicated, otherwise \return a new VPBasicBlock that succeeds the new 2352 /// Region. Update the packing decision of predicated instructions if they 2353 /// feed \p I. Range.End may be decreased to ensure same recipe behavior from 2354 /// \p Range.Start to \p Range.End. 2355 VPBasicBlock *handleReplication( 2356 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 2357 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 2358 VPlanPtr &Plan); 2359 2360 /// Create a replicating region for instruction \p I that requires 2361 /// predication. \p PredRecipe is a VPReplicateRecipe holding \p I. 2362 VPRegionBlock *createReplicateRegion(Instruction *I, VPRecipeBase *PredRecipe, 2363 VPlanPtr &Plan); 2364 2365 /// Build a VPlan according to the information gathered by Legal. \return a 2366 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End 2367 /// exclusive, possibly decreasing \p Range.End. 2368 VPlanPtr buildVPlan(VFRange &Range, 2369 const SmallPtrSetImpl<Value *> &NeedDef); 2370 }; 2371 2372 } // end namespace llvm 2373 2374 namespace { 2375 2376 /// \brief This holds vectorization requirements that must be verified late in 2377 /// the process. The requirements are set by legalize and costmodel. Once 2378 /// vectorization has been determined to be possible and profitable the 2379 /// requirements can be verified by looking for metadata or compiler options. 2380 /// For example, some loops require FP commutativity which is only allowed if 2381 /// vectorization is explicitly specified or if the fast-math compiler option 2382 /// has been provided. 2383 /// Late evaluation of these requirements allows helpful diagnostics to be 2384 /// composed that tells the user what need to be done to vectorize the loop. For 2385 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2386 /// evaluation should be used only when diagnostics can generated that can be 2387 /// followed by a non-expert user. 2388 class LoopVectorizationRequirements { 2389 public: 2390 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) : ORE(ORE) {} 2391 2392 void addUnsafeAlgebraInst(Instruction *I) { 2393 // First unsafe algebra instruction. 2394 if (!UnsafeAlgebraInst) 2395 UnsafeAlgebraInst = I; 2396 } 2397 2398 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2399 2400 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2401 const char *PassName = Hints.vectorizeAnalysisPassName(); 2402 bool Failed = false; 2403 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2404 ORE.emit([&]() { 2405 return OptimizationRemarkAnalysisFPCommute( 2406 PassName, "CantReorderFPOps", 2407 UnsafeAlgebraInst->getDebugLoc(), 2408 UnsafeAlgebraInst->getParent()) 2409 << "loop not vectorized: cannot prove it is safe to reorder " 2410 "floating-point operations"; 2411 }); 2412 Failed = true; 2413 } 2414 2415 // Test if runtime memcheck thresholds are exceeded. 2416 bool PragmaThresholdReached = 2417 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2418 bool ThresholdReached = 2419 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2420 if ((ThresholdReached && !Hints.allowReordering()) || 2421 PragmaThresholdReached) { 2422 ORE.emit([&]() { 2423 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2424 L->getStartLoc(), 2425 L->getHeader()) 2426 << "loop not vectorized: cannot prove it is safe to reorder " 2427 "memory operations"; 2428 }); 2429 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2430 Failed = true; 2431 } 2432 2433 return Failed; 2434 } 2435 2436 private: 2437 unsigned NumRuntimePointerChecks = 0; 2438 Instruction *UnsafeAlgebraInst = nullptr; 2439 2440 /// Interface to emit optimization remarks. 2441 OptimizationRemarkEmitter &ORE; 2442 }; 2443 2444 } // end anonymous namespace 2445 2446 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2447 if (L.empty()) { 2448 if (!hasCyclesInLoopBody(L)) 2449 V.push_back(&L); 2450 return; 2451 } 2452 for (Loop *InnerL : L) 2453 addAcyclicInnerLoop(*InnerL, V); 2454 } 2455 2456 namespace { 2457 2458 /// The LoopVectorize Pass. 2459 struct LoopVectorize : public FunctionPass { 2460 /// Pass identification, replacement for typeid 2461 static char ID; 2462 2463 LoopVectorizePass Impl; 2464 2465 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2466 : FunctionPass(ID) { 2467 Impl.DisableUnrolling = NoUnrolling; 2468 Impl.AlwaysVectorize = AlwaysVectorize; 2469 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2470 } 2471 2472 bool runOnFunction(Function &F) override { 2473 if (skipFunction(F)) 2474 return false; 2475 2476 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2477 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2478 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2479 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2480 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2481 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2482 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2483 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2484 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2485 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2486 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2487 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2488 2489 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2490 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2491 2492 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2493 GetLAA, *ORE); 2494 } 2495 2496 void getAnalysisUsage(AnalysisUsage &AU) const override { 2497 AU.addRequired<AssumptionCacheTracker>(); 2498 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2499 AU.addRequired<DominatorTreeWrapperPass>(); 2500 AU.addRequired<LoopInfoWrapperPass>(); 2501 AU.addRequired<ScalarEvolutionWrapperPass>(); 2502 AU.addRequired<TargetTransformInfoWrapperPass>(); 2503 AU.addRequired<AAResultsWrapperPass>(); 2504 AU.addRequired<LoopAccessLegacyAnalysis>(); 2505 AU.addRequired<DemandedBitsWrapperPass>(); 2506 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2507 AU.addPreserved<LoopInfoWrapperPass>(); 2508 AU.addPreserved<DominatorTreeWrapperPass>(); 2509 AU.addPreserved<BasicAAWrapperPass>(); 2510 AU.addPreserved<GlobalsAAWrapperPass>(); 2511 } 2512 }; 2513 2514 } // end anonymous namespace 2515 2516 //===----------------------------------------------------------------------===// 2517 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2518 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2519 //===----------------------------------------------------------------------===// 2520 2521 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2522 // We need to place the broadcast of invariant variables outside the loop. 2523 Instruction *Instr = dyn_cast<Instruction>(V); 2524 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2525 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2526 2527 // Place the code for broadcasting invariant variables in the new preheader. 2528 IRBuilder<>::InsertPointGuard Guard(Builder); 2529 if (Invariant) 2530 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2531 2532 // Broadcast the scalar into all locations in the vector. 2533 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2534 2535 return Shuf; 2536 } 2537 2538 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2539 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2540 Value *Start = II.getStartValue(); 2541 2542 // Construct the initial value of the vector IV in the vector loop preheader 2543 auto CurrIP = Builder.saveIP(); 2544 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2545 if (isa<TruncInst>(EntryVal)) { 2546 assert(Start->getType()->isIntegerTy() && 2547 "Truncation requires an integer type"); 2548 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2549 Step = Builder.CreateTrunc(Step, TruncType); 2550 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2551 } 2552 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2553 Value *SteppedStart = 2554 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2555 2556 // We create vector phi nodes for both integer and floating-point induction 2557 // variables. Here, we determine the kind of arithmetic we will perform. 2558 Instruction::BinaryOps AddOp; 2559 Instruction::BinaryOps MulOp; 2560 if (Step->getType()->isIntegerTy()) { 2561 AddOp = Instruction::Add; 2562 MulOp = Instruction::Mul; 2563 } else { 2564 AddOp = II.getInductionOpcode(); 2565 MulOp = Instruction::FMul; 2566 } 2567 2568 // Multiply the vectorization factor by the step using integer or 2569 // floating-point arithmetic as appropriate. 2570 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2571 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2572 2573 // Create a vector splat to use in the induction update. 2574 // 2575 // FIXME: If the step is non-constant, we create the vector splat with 2576 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2577 // handle a constant vector splat. 2578 Value *SplatVF = isa<Constant>(Mul) 2579 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2580 : Builder.CreateVectorSplat(VF, Mul); 2581 Builder.restoreIP(CurrIP); 2582 2583 // We may need to add the step a number of times, depending on the unroll 2584 // factor. The last of those goes into the PHI. 2585 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2586 &*LoopVectorBody->getFirstInsertionPt()); 2587 Instruction *LastInduction = VecInd; 2588 for (unsigned Part = 0; Part < UF; ++Part) { 2589 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 2590 if (isa<TruncInst>(EntryVal)) 2591 addMetadata(LastInduction, EntryVal); 2592 LastInduction = cast<Instruction>(addFastMathFlag( 2593 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2594 } 2595 2596 // Move the last step to the end of the latch block. This ensures consistent 2597 // placement of all induction updates. 2598 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2599 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2600 auto *ICmp = cast<Instruction>(Br->getCondition()); 2601 LastInduction->moveBefore(ICmp); 2602 LastInduction->setName("vec.ind.next"); 2603 2604 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2605 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2606 } 2607 2608 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2609 return Cost->isScalarAfterVectorization(I, VF) || 2610 Cost->isProfitableToScalarize(I, VF); 2611 } 2612 2613 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2614 if (shouldScalarizeInstruction(IV)) 2615 return true; 2616 auto isScalarInst = [&](User *U) -> bool { 2617 auto *I = cast<Instruction>(U); 2618 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2619 }; 2620 return llvm::any_of(IV->users(), isScalarInst); 2621 } 2622 2623 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2624 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2625 "Primary induction variable must have an integer type"); 2626 2627 auto II = Legal->getInductionVars()->find(IV); 2628 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2629 2630 auto ID = II->second; 2631 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2632 2633 // The scalar value to broadcast. This will be derived from the canonical 2634 // induction variable. 2635 Value *ScalarIV = nullptr; 2636 2637 // The value from the original loop to which we are mapping the new induction 2638 // variable. 2639 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2640 2641 // True if we have vectorized the induction variable. 2642 auto VectorizedIV = false; 2643 2644 // Determine if we want a scalar version of the induction variable. This is 2645 // true if the induction variable itself is not widened, or if it has at 2646 // least one user in the loop that is not widened. 2647 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2648 2649 // Generate code for the induction step. Note that induction steps are 2650 // required to be loop-invariant 2651 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2652 "Induction step should be loop invariant"); 2653 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2654 Value *Step = nullptr; 2655 if (PSE.getSE()->isSCEVable(IV->getType())) { 2656 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2657 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2658 LoopVectorPreHeader->getTerminator()); 2659 } else { 2660 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2661 } 2662 2663 // Try to create a new independent vector induction variable. If we can't 2664 // create the phi node, we will splat the scalar induction variable in each 2665 // loop iteration. 2666 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2667 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2668 VectorizedIV = true; 2669 } 2670 2671 // If we haven't yet vectorized the induction variable, or if we will create 2672 // a scalar one, we need to define the scalar induction variable and step 2673 // values. If we were given a truncation type, truncate the canonical 2674 // induction variable and step. Otherwise, derive these values from the 2675 // induction descriptor. 2676 if (!VectorizedIV || NeedsScalarIV) { 2677 ScalarIV = Induction; 2678 if (IV != OldInduction) { 2679 ScalarIV = IV->getType()->isIntegerTy() 2680 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2681 : Builder.CreateCast(Instruction::SIToFP, Induction, 2682 IV->getType()); 2683 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2684 ScalarIV->setName("offset.idx"); 2685 } 2686 if (Trunc) { 2687 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2688 assert(Step->getType()->isIntegerTy() && 2689 "Truncation requires an integer step"); 2690 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2691 Step = Builder.CreateTrunc(Step, TruncType); 2692 } 2693 } 2694 2695 // If we haven't yet vectorized the induction variable, splat the scalar 2696 // induction variable, and build the necessary step vectors. 2697 if (!VectorizedIV) { 2698 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2699 for (unsigned Part = 0; Part < UF; ++Part) { 2700 Value *EntryPart = 2701 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2702 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2703 if (Trunc) 2704 addMetadata(EntryPart, Trunc); 2705 } 2706 } 2707 2708 // If an induction variable is only used for counting loop iterations or 2709 // calculating addresses, it doesn't need to be widened. Create scalar steps 2710 // that can be used by instructions we will later scalarize. Note that the 2711 // addition of the scalar steps will not increase the number of instructions 2712 // in the loop in the common case prior to InstCombine. We will be trading 2713 // one vector extract for each scalar step. 2714 if (NeedsScalarIV) 2715 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2716 } 2717 2718 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2719 Instruction::BinaryOps BinOp) { 2720 // Create and check the types. 2721 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2722 int VLen = Val->getType()->getVectorNumElements(); 2723 2724 Type *STy = Val->getType()->getScalarType(); 2725 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2726 "Induction Step must be an integer or FP"); 2727 assert(Step->getType() == STy && "Step has wrong type"); 2728 2729 SmallVector<Constant *, 8> Indices; 2730 2731 if (STy->isIntegerTy()) { 2732 // Create a vector of consecutive numbers from zero to VF. 2733 for (int i = 0; i < VLen; ++i) 2734 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2735 2736 // Add the consecutive indices to the vector value. 2737 Constant *Cv = ConstantVector::get(Indices); 2738 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2739 Step = Builder.CreateVectorSplat(VLen, Step); 2740 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2741 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2742 // which can be found from the original scalar operations. 2743 Step = Builder.CreateMul(Cv, Step); 2744 return Builder.CreateAdd(Val, Step, "induction"); 2745 } 2746 2747 // Floating point induction. 2748 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2749 "Binary Opcode should be specified for FP induction"); 2750 // Create a vector of consecutive numbers from zero to VF. 2751 for (int i = 0; i < VLen; ++i) 2752 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2753 2754 // Add the consecutive indices to the vector value. 2755 Constant *Cv = ConstantVector::get(Indices); 2756 2757 Step = Builder.CreateVectorSplat(VLen, Step); 2758 2759 // Floating point operations had to be 'fast' to enable the induction. 2760 FastMathFlags Flags; 2761 Flags.setFast(); 2762 2763 Value *MulOp = Builder.CreateFMul(Cv, Step); 2764 if (isa<Instruction>(MulOp)) 2765 // Have to check, MulOp may be a constant 2766 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2767 2768 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2769 if (isa<Instruction>(BOp)) 2770 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2771 return BOp; 2772 } 2773 2774 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2775 Value *EntryVal, 2776 const InductionDescriptor &ID) { 2777 // We shouldn't have to build scalar steps if we aren't vectorizing. 2778 assert(VF > 1 && "VF should be greater than one"); 2779 2780 // Get the value type and ensure it and the step have the same integer type. 2781 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2782 assert(ScalarIVTy == Step->getType() && 2783 "Val and Step should have the same type"); 2784 2785 // We build scalar steps for both integer and floating-point induction 2786 // variables. Here, we determine the kind of arithmetic we will perform. 2787 Instruction::BinaryOps AddOp; 2788 Instruction::BinaryOps MulOp; 2789 if (ScalarIVTy->isIntegerTy()) { 2790 AddOp = Instruction::Add; 2791 MulOp = Instruction::Mul; 2792 } else { 2793 AddOp = ID.getInductionOpcode(); 2794 MulOp = Instruction::FMul; 2795 } 2796 2797 // Determine the number of scalars we need to generate for each unroll 2798 // iteration. If EntryVal is uniform, we only need to generate the first 2799 // lane. Otherwise, we generate all VF values. 2800 unsigned Lanes = 2801 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2802 : VF; 2803 // Compute the scalar steps and save the results in VectorLoopValueMap. 2804 for (unsigned Part = 0; Part < UF; ++Part) { 2805 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2806 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2807 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2808 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2809 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2810 } 2811 } 2812 } 2813 2814 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2815 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2816 ValueToValueMap(); 2817 2818 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2819 if (Stride == 1 || Stride == -1) 2820 return Stride; 2821 return 0; 2822 } 2823 2824 bool LoopVectorizationLegality::isUniform(Value *V) { 2825 return LAI->isUniform(V); 2826 } 2827 2828 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2829 assert(V != Induction && "The new induction variable should not be used."); 2830 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2831 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2832 2833 // If we have a stride that is replaced by one, do it here. 2834 if (Legal->hasStride(V)) 2835 V = ConstantInt::get(V->getType(), 1); 2836 2837 // If we have a vector mapped to this value, return it. 2838 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2839 return VectorLoopValueMap.getVectorValue(V, Part); 2840 2841 // If the value has not been vectorized, check if it has been scalarized 2842 // instead. If it has been scalarized, and we actually need the value in 2843 // vector form, we will construct the vector values on demand. 2844 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2845 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2846 2847 // If we've scalarized a value, that value should be an instruction. 2848 auto *I = cast<Instruction>(V); 2849 2850 // If we aren't vectorizing, we can just copy the scalar map values over to 2851 // the vector map. 2852 if (VF == 1) { 2853 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2854 return ScalarValue; 2855 } 2856 2857 // Get the last scalar instruction we generated for V and Part. If the value 2858 // is known to be uniform after vectorization, this corresponds to lane zero 2859 // of the Part unroll iteration. Otherwise, the last instruction is the one 2860 // we created for the last vector lane of the Part unroll iteration. 2861 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2862 auto *LastInst = cast<Instruction>( 2863 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2864 2865 // Set the insert point after the last scalarized instruction. This ensures 2866 // the insertelement sequence will directly follow the scalar definitions. 2867 auto OldIP = Builder.saveIP(); 2868 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2869 Builder.SetInsertPoint(&*NewIP); 2870 2871 // However, if we are vectorizing, we need to construct the vector values. 2872 // If the value is known to be uniform after vectorization, we can just 2873 // broadcast the scalar value corresponding to lane zero for each unroll 2874 // iteration. Otherwise, we construct the vector values using insertelement 2875 // instructions. Since the resulting vectors are stored in 2876 // VectorLoopValueMap, we will only generate the insertelements once. 2877 Value *VectorValue = nullptr; 2878 if (Cost->isUniformAfterVectorization(I, VF)) { 2879 VectorValue = getBroadcastInstrs(ScalarValue); 2880 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2881 } else { 2882 // Initialize packing with insertelements to start from undef. 2883 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2884 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2885 for (unsigned Lane = 0; Lane < VF; ++Lane) 2886 packScalarIntoVectorValue(V, {Part, Lane}); 2887 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2888 } 2889 Builder.restoreIP(OldIP); 2890 return VectorValue; 2891 } 2892 2893 // If this scalar is unknown, assume that it is a constant or that it is 2894 // loop invariant. Broadcast V and save the value for future uses. 2895 Value *B = getBroadcastInstrs(V); 2896 VectorLoopValueMap.setVectorValue(V, Part, B); 2897 return B; 2898 } 2899 2900 Value * 2901 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2902 const VPIteration &Instance) { 2903 // If the value is not an instruction contained in the loop, it should 2904 // already be scalar. 2905 if (OrigLoop->isLoopInvariant(V)) 2906 return V; 2907 2908 assert(Instance.Lane > 0 2909 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2910 : true && "Uniform values only have lane zero"); 2911 2912 // If the value from the original loop has not been vectorized, it is 2913 // represented by UF x VF scalar values in the new loop. Return the requested 2914 // scalar value. 2915 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2916 return VectorLoopValueMap.getScalarValue(V, Instance); 2917 2918 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2919 // for the given unroll part. If this entry is not a vector type (i.e., the 2920 // vectorization factor is one), there is no need to generate an 2921 // extractelement instruction. 2922 auto *U = getOrCreateVectorValue(V, Instance.Part); 2923 if (!U->getType()->isVectorTy()) { 2924 assert(VF == 1 && "Value not scalarized has non-vector type"); 2925 return U; 2926 } 2927 2928 // Otherwise, the value from the original loop has been vectorized and is 2929 // represented by UF vector values. Extract and return the requested scalar 2930 // value from the appropriate vector lane. 2931 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2932 } 2933 2934 void InnerLoopVectorizer::packScalarIntoVectorValue( 2935 Value *V, const VPIteration &Instance) { 2936 assert(V != Induction && "The new induction variable should not be used."); 2937 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2938 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2939 2940 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2941 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2942 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2943 Builder.getInt32(Instance.Lane)); 2944 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2945 } 2946 2947 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2948 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2949 SmallVector<Constant *, 8> ShuffleMask; 2950 for (unsigned i = 0; i < VF; ++i) 2951 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2952 2953 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2954 ConstantVector::get(ShuffleMask), 2955 "reverse"); 2956 } 2957 2958 // Try to vectorize the interleave group that \p Instr belongs to. 2959 // 2960 // E.g. Translate following interleaved load group (factor = 3): 2961 // for (i = 0; i < N; i+=3) { 2962 // R = Pic[i]; // Member of index 0 2963 // G = Pic[i+1]; // Member of index 1 2964 // B = Pic[i+2]; // Member of index 2 2965 // ... // do something to R, G, B 2966 // } 2967 // To: 2968 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2969 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2970 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2971 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2972 // 2973 // Or translate following interleaved store group (factor = 3): 2974 // for (i = 0; i < N; i+=3) { 2975 // ... do something to R, G, B 2976 // Pic[i] = R; // Member of index 0 2977 // Pic[i+1] = G; // Member of index 1 2978 // Pic[i+2] = B; // Member of index 2 2979 // } 2980 // To: 2981 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2982 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2983 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2984 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2985 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2986 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2987 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2988 assert(Group && "Fail to get an interleaved access group."); 2989 2990 // Skip if current instruction is not the insert position. 2991 if (Instr != Group->getInsertPos()) 2992 return; 2993 2994 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2995 Value *Ptr = getPointerOperand(Instr); 2996 2997 // Prepare for the vector type of the interleaved load/store. 2998 Type *ScalarTy = getMemInstValueType(Instr); 2999 unsigned InterleaveFactor = Group->getFactor(); 3000 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 3001 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 3002 3003 // Prepare for the new pointers. 3004 setDebugLocFromInst(Builder, Ptr); 3005 SmallVector<Value *, 2> NewPtrs; 3006 unsigned Index = Group->getIndex(Instr); 3007 3008 // If the group is reverse, adjust the index to refer to the last vector lane 3009 // instead of the first. We adjust the index from the first vector lane, 3010 // rather than directly getting the pointer for lane VF - 1, because the 3011 // pointer operand of the interleaved access is supposed to be uniform. For 3012 // uniform instructions, we're only required to generate a value for the 3013 // first vector lane in each unroll iteration. 3014 if (Group->isReverse()) 3015 Index += (VF - 1) * Group->getFactor(); 3016 3017 for (unsigned Part = 0; Part < UF; Part++) { 3018 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 3019 3020 // Notice current instruction could be any index. Need to adjust the address 3021 // to the member of index 0. 3022 // 3023 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 3024 // b = A[i]; // Member of index 0 3025 // Current pointer is pointed to A[i+1], adjust it to A[i]. 3026 // 3027 // E.g. A[i+1] = a; // Member of index 1 3028 // A[i] = b; // Member of index 0 3029 // A[i+2] = c; // Member of index 2 (Current instruction) 3030 // Current pointer is pointed to A[i+2], adjust it to A[i]. 3031 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 3032 3033 // Cast to the vector pointer type. 3034 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 3035 } 3036 3037 setDebugLocFromInst(Builder, Instr); 3038 Value *UndefVec = UndefValue::get(VecTy); 3039 3040 // Vectorize the interleaved load group. 3041 if (isa<LoadInst>(Instr)) { 3042 // For each unroll part, create a wide load for the group. 3043 SmallVector<Value *, 2> NewLoads; 3044 for (unsigned Part = 0; Part < UF; Part++) { 3045 auto *NewLoad = Builder.CreateAlignedLoad( 3046 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 3047 addMetadata(NewLoad, Instr); 3048 NewLoads.push_back(NewLoad); 3049 } 3050 3051 // For each member in the group, shuffle out the appropriate data from the 3052 // wide loads. 3053 for (unsigned I = 0; I < InterleaveFactor; ++I) { 3054 Instruction *Member = Group->getMember(I); 3055 3056 // Skip the gaps in the group. 3057 if (!Member) 3058 continue; 3059 3060 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 3061 for (unsigned Part = 0; Part < UF; Part++) { 3062 Value *StridedVec = Builder.CreateShuffleVector( 3063 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 3064 3065 // If this member has different type, cast the result type. 3066 if (Member->getType() != ScalarTy) { 3067 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 3068 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 3069 } 3070 3071 if (Group->isReverse()) 3072 StridedVec = reverseVector(StridedVec); 3073 3074 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 3075 } 3076 } 3077 return; 3078 } 3079 3080 // The sub vector type for current instruction. 3081 VectorType *SubVT = VectorType::get(ScalarTy, VF); 3082 3083 // Vectorize the interleaved store group. 3084 for (unsigned Part = 0; Part < UF; Part++) { 3085 // Collect the stored vector from each member. 3086 SmallVector<Value *, 4> StoredVecs; 3087 for (unsigned i = 0; i < InterleaveFactor; i++) { 3088 // Interleaved store group doesn't allow a gap, so each index has a member 3089 Instruction *Member = Group->getMember(i); 3090 assert(Member && "Fail to get a member from an interleaved store group"); 3091 3092 Value *StoredVec = getOrCreateVectorValue( 3093 cast<StoreInst>(Member)->getValueOperand(), Part); 3094 if (Group->isReverse()) 3095 StoredVec = reverseVector(StoredVec); 3096 3097 // If this member has different type, cast it to a unified type. 3098 3099 if (StoredVec->getType() != SubVT) 3100 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 3101 3102 StoredVecs.push_back(StoredVec); 3103 } 3104 3105 // Concatenate all vectors into a wide vector. 3106 Value *WideVec = concatenateVectors(Builder, StoredVecs); 3107 3108 // Interleave the elements in the wide vector. 3109 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 3110 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 3111 "interleaved.vec"); 3112 3113 Instruction *NewStoreInstr = 3114 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 3115 addMetadata(NewStoreInstr, Instr); 3116 } 3117 } 3118 3119 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 3120 VectorParts *BlockInMask) { 3121 // Attempt to issue a wide load. 3122 LoadInst *LI = dyn_cast<LoadInst>(Instr); 3123 StoreInst *SI = dyn_cast<StoreInst>(Instr); 3124 3125 assert((LI || SI) && "Invalid Load/Store instruction"); 3126 3127 LoopVectorizationCostModel::InstWidening Decision = 3128 Cost->getWideningDecision(Instr, VF); 3129 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 3130 "CM decision should be taken at this point"); 3131 if (Decision == LoopVectorizationCostModel::CM_Interleave) 3132 return vectorizeInterleaveGroup(Instr); 3133 3134 Type *ScalarDataTy = getMemInstValueType(Instr); 3135 Type *DataTy = VectorType::get(ScalarDataTy, VF); 3136 Value *Ptr = getPointerOperand(Instr); 3137 unsigned Alignment = getMemInstAlignment(Instr); 3138 // An alignment of 0 means target abi alignment. We need to use the scalar's 3139 // target abi alignment in such a case. 3140 const DataLayout &DL = Instr->getModule()->getDataLayout(); 3141 if (!Alignment) 3142 Alignment = DL.getABITypeAlignment(ScalarDataTy); 3143 unsigned AddressSpace = getMemInstAddressSpace(Instr); 3144 3145 // Determine if the pointer operand of the access is either consecutive or 3146 // reverse consecutive. 3147 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 3148 bool Reverse = ConsecutiveStride < 0; 3149 bool CreateGatherScatter = 3150 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 3151 3152 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 3153 // gather/scatter. Otherwise Decision should have been to Scalarize. 3154 assert((ConsecutiveStride || CreateGatherScatter) && 3155 "The instruction should be scalarized"); 3156 3157 // Handle consecutive loads/stores. 3158 if (ConsecutiveStride) 3159 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 3160 3161 VectorParts Mask; 3162 bool isMaskRequired = BlockInMask; 3163 if (isMaskRequired) 3164 Mask = *BlockInMask; 3165 3166 // Handle Stores: 3167 if (SI) { 3168 assert(!Legal->isUniform(SI->getPointerOperand()) && 3169 "We do not allow storing to uniform addresses"); 3170 setDebugLocFromInst(Builder, SI); 3171 3172 for (unsigned Part = 0; Part < UF; ++Part) { 3173 Instruction *NewSI = nullptr; 3174 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 3175 if (CreateGatherScatter) { 3176 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3177 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3178 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 3179 MaskPart); 3180 } else { 3181 // Calculate the pointer for the specific unroll-part. 3182 Value *PartPtr = 3183 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3184 3185 if (Reverse) { 3186 // If we store to reverse consecutive memory locations, then we need 3187 // to reverse the order of elements in the stored value. 3188 StoredVal = reverseVector(StoredVal); 3189 // We don't want to update the value in the map as it might be used in 3190 // another expression. So don't call resetVectorValue(StoredVal). 3191 3192 // If the address is consecutive but reversed, then the 3193 // wide store needs to start at the last vector element. 3194 PartPtr = 3195 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3196 PartPtr = 3197 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3198 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3199 Mask[Part] = reverseVector(Mask[Part]); 3200 } 3201 3202 Value *VecPtr = 3203 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3204 3205 if (isMaskRequired) 3206 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3207 Mask[Part]); 3208 else 3209 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3210 } 3211 addMetadata(NewSI, SI); 3212 } 3213 return; 3214 } 3215 3216 // Handle loads. 3217 assert(LI && "Must have a load instruction"); 3218 setDebugLocFromInst(Builder, LI); 3219 for (unsigned Part = 0; Part < UF; ++Part) { 3220 Value *NewLI; 3221 if (CreateGatherScatter) { 3222 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3223 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3224 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 3225 nullptr, "wide.masked.gather"); 3226 addMetadata(NewLI, LI); 3227 } else { 3228 // Calculate the pointer for the specific unroll-part. 3229 Value *PartPtr = 3230 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3231 3232 if (Reverse) { 3233 // If the address is consecutive but reversed, then the 3234 // wide load needs to start at the last vector element. 3235 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3236 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3237 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3238 Mask[Part] = reverseVector(Mask[Part]); 3239 } 3240 3241 Value *VecPtr = 3242 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3243 if (isMaskRequired) 3244 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3245 UndefValue::get(DataTy), 3246 "wide.masked.load"); 3247 else 3248 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3249 3250 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3251 addMetadata(NewLI, LI); 3252 if (Reverse) 3253 NewLI = reverseVector(NewLI); 3254 } 3255 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 3256 } 3257 } 3258 3259 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3260 const VPIteration &Instance, 3261 bool IfPredicateInstr) { 3262 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3263 3264 setDebugLocFromInst(Builder, Instr); 3265 3266 // Does this instruction return a value ? 3267 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3268 3269 Instruction *Cloned = Instr->clone(); 3270 if (!IsVoidRetTy) 3271 Cloned->setName(Instr->getName() + ".cloned"); 3272 3273 // Replace the operands of the cloned instructions with their scalar 3274 // equivalents in the new loop. 3275 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3276 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 3277 Cloned->setOperand(op, NewOp); 3278 } 3279 addNewMetadata(Cloned, Instr); 3280 3281 // Place the cloned scalar in the new loop. 3282 Builder.Insert(Cloned); 3283 3284 // Add the cloned scalar to the scalar map entry. 3285 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 3286 3287 // If we just cloned a new assumption, add it the assumption cache. 3288 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3289 if (II->getIntrinsicID() == Intrinsic::assume) 3290 AC->registerAssumption(II); 3291 3292 // End if-block. 3293 if (IfPredicateInstr) 3294 PredicatedInstructions.push_back(Cloned); 3295 } 3296 3297 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3298 Value *End, Value *Step, 3299 Instruction *DL) { 3300 BasicBlock *Header = L->getHeader(); 3301 BasicBlock *Latch = L->getLoopLatch(); 3302 // As we're just creating this loop, it's possible no latch exists 3303 // yet. If so, use the header as this will be a single block loop. 3304 if (!Latch) 3305 Latch = Header; 3306 3307 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3308 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3309 setDebugLocFromInst(Builder, OldInst); 3310 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3311 3312 Builder.SetInsertPoint(Latch->getTerminator()); 3313 setDebugLocFromInst(Builder, OldInst); 3314 3315 // Create i+1 and fill the PHINode. 3316 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3317 Induction->addIncoming(Start, L->getLoopPreheader()); 3318 Induction->addIncoming(Next, Latch); 3319 // Create the compare. 3320 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3321 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3322 3323 // Now we have two terminators. Remove the old one from the block. 3324 Latch->getTerminator()->eraseFromParent(); 3325 3326 return Induction; 3327 } 3328 3329 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3330 if (TripCount) 3331 return TripCount; 3332 3333 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3334 // Find the loop boundaries. 3335 ScalarEvolution *SE = PSE.getSE(); 3336 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3337 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3338 "Invalid loop count"); 3339 3340 Type *IdxTy = Legal->getWidestInductionType(); 3341 3342 // The exit count might have the type of i64 while the phi is i32. This can 3343 // happen if we have an induction variable that is sign extended before the 3344 // compare. The only way that we get a backedge taken count is that the 3345 // induction variable was signed and as such will not overflow. In such a case 3346 // truncation is legal. 3347 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3348 IdxTy->getPrimitiveSizeInBits()) 3349 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3350 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3351 3352 // Get the total trip count from the count by adding 1. 3353 const SCEV *ExitCount = SE->getAddExpr( 3354 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3355 3356 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3357 3358 // Expand the trip count and place the new instructions in the preheader. 3359 // Notice that the pre-header does not change, only the loop body. 3360 SCEVExpander Exp(*SE, DL, "induction"); 3361 3362 // Count holds the overall loop count (N). 3363 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3364 L->getLoopPreheader()->getTerminator()); 3365 3366 if (TripCount->getType()->isPointerTy()) 3367 TripCount = 3368 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3369 L->getLoopPreheader()->getTerminator()); 3370 3371 return TripCount; 3372 } 3373 3374 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3375 if (VectorTripCount) 3376 return VectorTripCount; 3377 3378 Value *TC = getOrCreateTripCount(L); 3379 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3380 3381 // Now we need to generate the expression for the part of the loop that the 3382 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3383 // iterations are not required for correctness, or N - Step, otherwise. Step 3384 // is equal to the vectorization factor (number of SIMD elements) times the 3385 // unroll factor (number of SIMD instructions). 3386 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3387 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3388 3389 // If there is a non-reversed interleaved group that may speculatively access 3390 // memory out-of-bounds, we need to ensure that there will be at least one 3391 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3392 // the trip count, we set the remainder to be equal to the step. If the step 3393 // does not evenly divide the trip count, no adjustment is necessary since 3394 // there will already be scalar iterations. Note that the minimum iterations 3395 // check ensures that N >= Step. 3396 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3397 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3398 R = Builder.CreateSelect(IsZero, Step, R); 3399 } 3400 3401 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3402 3403 return VectorTripCount; 3404 } 3405 3406 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3407 const DataLayout &DL) { 3408 // Verify that V is a vector type with same number of elements as DstVTy. 3409 unsigned VF = DstVTy->getNumElements(); 3410 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 3411 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3412 Type *SrcElemTy = SrcVecTy->getElementType(); 3413 Type *DstElemTy = DstVTy->getElementType(); 3414 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3415 "Vector elements must have same size"); 3416 3417 // Do a direct cast if element types are castable. 3418 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3419 return Builder.CreateBitOrPointerCast(V, DstVTy); 3420 } 3421 // V cannot be directly casted to desired vector type. 3422 // May happen when V is a floating point vector but DstVTy is a vector of 3423 // pointers or vice-versa. Handle this using a two-step bitcast using an 3424 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3425 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3426 "Only one type should be a pointer type"); 3427 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3428 "Only one type should be a floating point type"); 3429 Type *IntTy = 3430 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3431 VectorType *VecIntTy = VectorType::get(IntTy, VF); 3432 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3433 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 3434 } 3435 3436 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3437 BasicBlock *Bypass) { 3438 Value *Count = getOrCreateTripCount(L); 3439 BasicBlock *BB = L->getLoopPreheader(); 3440 IRBuilder<> Builder(BB->getTerminator()); 3441 3442 // Generate code to check if the loop's trip count is less than VF * UF, or 3443 // equal to it in case a scalar epilogue is required; this implies that the 3444 // vector trip count is zero. This check also covers the case where adding one 3445 // to the backedge-taken count overflowed leading to an incorrect trip count 3446 // of zero. In this case we will also jump to the scalar loop. 3447 auto P = Legal->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3448 : ICmpInst::ICMP_ULT; 3449 Value *CheckMinIters = Builder.CreateICmp( 3450 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3451 3452 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3453 // Update dominator tree immediately if the generated block is a 3454 // LoopBypassBlock because SCEV expansions to generate loop bypass 3455 // checks may query it before the current function is finished. 3456 DT->addNewBlock(NewBB, BB); 3457 if (L->getParentLoop()) 3458 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3459 ReplaceInstWithInst(BB->getTerminator(), 3460 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3461 LoopBypassBlocks.push_back(BB); 3462 } 3463 3464 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3465 BasicBlock *BB = L->getLoopPreheader(); 3466 3467 // Generate the code to check that the SCEV assumptions that we made. 3468 // We want the new basic block to start at the first instruction in a 3469 // sequence of instructions that form a check. 3470 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3471 "scev.check"); 3472 Value *SCEVCheck = 3473 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3474 3475 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3476 if (C->isZero()) 3477 return; 3478 3479 // Create a new block containing the stride check. 3480 BB->setName("vector.scevcheck"); 3481 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3482 // Update dominator tree immediately if the generated block is a 3483 // LoopBypassBlock because SCEV expansions to generate loop bypass 3484 // checks may query it before the current function is finished. 3485 DT->addNewBlock(NewBB, BB); 3486 if (L->getParentLoop()) 3487 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3488 ReplaceInstWithInst(BB->getTerminator(), 3489 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3490 LoopBypassBlocks.push_back(BB); 3491 AddedSafetyChecks = true; 3492 } 3493 3494 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3495 BasicBlock *BB = L->getLoopPreheader(); 3496 3497 // Generate the code that checks in runtime if arrays overlap. We put the 3498 // checks into a separate block to make the more common case of few elements 3499 // faster. 3500 Instruction *FirstCheckInst; 3501 Instruction *MemRuntimeCheck; 3502 std::tie(FirstCheckInst, MemRuntimeCheck) = 3503 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3504 if (!MemRuntimeCheck) 3505 return; 3506 3507 // Create a new block containing the memory check. 3508 BB->setName("vector.memcheck"); 3509 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3510 // Update dominator tree immediately if the generated block is a 3511 // LoopBypassBlock because SCEV expansions to generate loop bypass 3512 // checks may query it before the current function is finished. 3513 DT->addNewBlock(NewBB, BB); 3514 if (L->getParentLoop()) 3515 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3516 ReplaceInstWithInst(BB->getTerminator(), 3517 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3518 LoopBypassBlocks.push_back(BB); 3519 AddedSafetyChecks = true; 3520 3521 // We currently don't use LoopVersioning for the actual loop cloning but we 3522 // still use it to add the noalias metadata. 3523 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3524 PSE.getSE()); 3525 LVer->prepareNoAliasMetadata(); 3526 } 3527 3528 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3529 /* 3530 In this function we generate a new loop. The new loop will contain 3531 the vectorized instructions while the old loop will continue to run the 3532 scalar remainder. 3533 3534 [ ] <-- loop iteration number check. 3535 / | 3536 / v 3537 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3538 | / | 3539 | / v 3540 || [ ] <-- vector pre header. 3541 |/ | 3542 | v 3543 | [ ] \ 3544 | [ ]_| <-- vector loop. 3545 | | 3546 | v 3547 | -[ ] <--- middle-block. 3548 | / | 3549 | / v 3550 -|- >[ ] <--- new preheader. 3551 | | 3552 | v 3553 | [ ] \ 3554 | [ ]_| <-- old scalar loop to handle remainder. 3555 \ | 3556 \ v 3557 >[ ] <-- exit block. 3558 ... 3559 */ 3560 3561 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3562 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3563 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3564 assert(VectorPH && "Invalid loop structure"); 3565 assert(ExitBlock && "Must have an exit block"); 3566 3567 // Some loops have a single integer induction variable, while other loops 3568 // don't. One example is c++ iterators that often have multiple pointer 3569 // induction variables. In the code below we also support a case where we 3570 // don't have a single induction variable. 3571 // 3572 // We try to obtain an induction variable from the original loop as hard 3573 // as possible. However if we don't find one that: 3574 // - is an integer 3575 // - counts from zero, stepping by one 3576 // - is the size of the widest induction variable type 3577 // then we create a new one. 3578 OldInduction = Legal->getPrimaryInduction(); 3579 Type *IdxTy = Legal->getWidestInductionType(); 3580 3581 // Split the single block loop into the two loop structure described above. 3582 BasicBlock *VecBody = 3583 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3584 BasicBlock *MiddleBlock = 3585 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3586 BasicBlock *ScalarPH = 3587 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3588 3589 // Create and register the new vector loop. 3590 Loop *Lp = LI->AllocateLoop(); 3591 Loop *ParentLoop = OrigLoop->getParentLoop(); 3592 3593 // Insert the new loop into the loop nest and register the new basic blocks 3594 // before calling any utilities such as SCEV that require valid LoopInfo. 3595 if (ParentLoop) { 3596 ParentLoop->addChildLoop(Lp); 3597 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3598 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3599 } else { 3600 LI->addTopLevelLoop(Lp); 3601 } 3602 Lp->addBasicBlockToLoop(VecBody, *LI); 3603 3604 // Find the loop boundaries. 3605 Value *Count = getOrCreateTripCount(Lp); 3606 3607 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3608 3609 // Now, compare the new count to zero. If it is zero skip the vector loop and 3610 // jump to the scalar loop. This check also covers the case where the 3611 // backedge-taken count is uint##_max: adding one to it will overflow leading 3612 // to an incorrect trip count of zero. In this (rare) case we will also jump 3613 // to the scalar loop. 3614 emitMinimumIterationCountCheck(Lp, ScalarPH); 3615 3616 // Generate the code to check any assumptions that we've made for SCEV 3617 // expressions. 3618 emitSCEVChecks(Lp, ScalarPH); 3619 3620 // Generate the code that checks in runtime if arrays overlap. We put the 3621 // checks into a separate block to make the more common case of few elements 3622 // faster. 3623 emitMemRuntimeChecks(Lp, ScalarPH); 3624 3625 // Generate the induction variable. 3626 // The loop step is equal to the vectorization factor (num of SIMD elements) 3627 // times the unroll factor (num of SIMD instructions). 3628 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3629 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3630 Induction = 3631 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3632 getDebugLocFromInstOrOperands(OldInduction)); 3633 3634 // We are going to resume the execution of the scalar loop. 3635 // Go over all of the induction variables that we found and fix the 3636 // PHIs that are left in the scalar version of the loop. 3637 // The starting values of PHI nodes depend on the counter of the last 3638 // iteration in the vectorized loop. 3639 // If we come from a bypass edge then we need to start from the original 3640 // start value. 3641 3642 // This variable saves the new starting index for the scalar loop. It is used 3643 // to test if there are any tail iterations left once the vector loop has 3644 // completed. 3645 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3646 for (auto &InductionEntry : *List) { 3647 PHINode *OrigPhi = InductionEntry.first; 3648 InductionDescriptor II = InductionEntry.second; 3649 3650 // Create phi nodes to merge from the backedge-taken check block. 3651 PHINode *BCResumeVal = PHINode::Create( 3652 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3653 Value *&EndValue = IVEndValues[OrigPhi]; 3654 if (OrigPhi == OldInduction) { 3655 // We know what the end value is. 3656 EndValue = CountRoundDown; 3657 } else { 3658 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3659 Type *StepType = II.getStep()->getType(); 3660 Instruction::CastOps CastOp = 3661 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3662 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3663 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3664 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3665 EndValue->setName("ind.end"); 3666 } 3667 3668 // The new PHI merges the original incoming value, in case of a bypass, 3669 // or the value at the end of the vectorized loop. 3670 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3671 3672 // Fix the scalar body counter (PHI node). 3673 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3674 3675 // The old induction's phi node in the scalar body needs the truncated 3676 // value. 3677 for (BasicBlock *BB : LoopBypassBlocks) 3678 BCResumeVal->addIncoming(II.getStartValue(), BB); 3679 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3680 } 3681 3682 // Add a check in the middle block to see if we have completed 3683 // all of the iterations in the first vector loop. 3684 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3685 Value *CmpN = 3686 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3687 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3688 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3689 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3690 3691 // Get ready to start creating new instructions into the vectorized body. 3692 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3693 3694 // Save the state. 3695 LoopVectorPreHeader = Lp->getLoopPreheader(); 3696 LoopScalarPreHeader = ScalarPH; 3697 LoopMiddleBlock = MiddleBlock; 3698 LoopExitBlock = ExitBlock; 3699 LoopVectorBody = VecBody; 3700 LoopScalarBody = OldBasicBlock; 3701 3702 // Keep all loop hints from the original loop on the vector loop (we'll 3703 // replace the vectorizer-specific hints below). 3704 if (MDNode *LID = OrigLoop->getLoopID()) 3705 Lp->setLoopID(LID); 3706 3707 LoopVectorizeHints Hints(Lp, true, *ORE); 3708 Hints.setAlreadyVectorized(); 3709 3710 return LoopVectorPreHeader; 3711 } 3712 3713 // Fix up external users of the induction variable. At this point, we are 3714 // in LCSSA form, with all external PHIs that use the IV having one input value, 3715 // coming from the remainder loop. We need those PHIs to also have a correct 3716 // value for the IV when arriving directly from the middle block. 3717 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3718 const InductionDescriptor &II, 3719 Value *CountRoundDown, Value *EndValue, 3720 BasicBlock *MiddleBlock) { 3721 // There are two kinds of external IV usages - those that use the value 3722 // computed in the last iteration (the PHI) and those that use the penultimate 3723 // value (the value that feeds into the phi from the loop latch). 3724 // We allow both, but they, obviously, have different values. 3725 3726 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3727 3728 DenseMap<Value *, Value *> MissingVals; 3729 3730 // An external user of the last iteration's value should see the value that 3731 // the remainder loop uses to initialize its own IV. 3732 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3733 for (User *U : PostInc->users()) { 3734 Instruction *UI = cast<Instruction>(U); 3735 if (!OrigLoop->contains(UI)) { 3736 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3737 MissingVals[UI] = EndValue; 3738 } 3739 } 3740 3741 // An external user of the penultimate value need to see EndValue - Step. 3742 // The simplest way to get this is to recompute it from the constituent SCEVs, 3743 // that is Start + (Step * (CRD - 1)). 3744 for (User *U : OrigPhi->users()) { 3745 auto *UI = cast<Instruction>(U); 3746 if (!OrigLoop->contains(UI)) { 3747 const DataLayout &DL = 3748 OrigLoop->getHeader()->getModule()->getDataLayout(); 3749 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3750 3751 IRBuilder<> B(MiddleBlock->getTerminator()); 3752 Value *CountMinusOne = B.CreateSub( 3753 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3754 Value *CMO = 3755 !II.getStep()->getType()->isIntegerTy() 3756 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3757 II.getStep()->getType()) 3758 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3759 CMO->setName("cast.cmo"); 3760 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3761 Escape->setName("ind.escape"); 3762 MissingVals[UI] = Escape; 3763 } 3764 } 3765 3766 for (auto &I : MissingVals) { 3767 PHINode *PHI = cast<PHINode>(I.first); 3768 // One corner case we have to handle is two IVs "chasing" each-other, 3769 // that is %IV2 = phi [...], [ %IV1, %latch ] 3770 // In this case, if IV1 has an external use, we need to avoid adding both 3771 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3772 // don't already have an incoming value for the middle block. 3773 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3774 PHI->addIncoming(I.second, MiddleBlock); 3775 } 3776 } 3777 3778 namespace { 3779 3780 struct CSEDenseMapInfo { 3781 static bool canHandle(const Instruction *I) { 3782 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3783 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3784 } 3785 3786 static inline Instruction *getEmptyKey() { 3787 return DenseMapInfo<Instruction *>::getEmptyKey(); 3788 } 3789 3790 static inline Instruction *getTombstoneKey() { 3791 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3792 } 3793 3794 static unsigned getHashValue(const Instruction *I) { 3795 assert(canHandle(I) && "Unknown instruction!"); 3796 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3797 I->value_op_end())); 3798 } 3799 3800 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3801 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3802 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3803 return LHS == RHS; 3804 return LHS->isIdenticalTo(RHS); 3805 } 3806 }; 3807 3808 } // end anonymous namespace 3809 3810 ///\brief Perform cse of induction variable instructions. 3811 static void cse(BasicBlock *BB) { 3812 // Perform simple cse. 3813 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3814 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3815 Instruction *In = &*I++; 3816 3817 if (!CSEDenseMapInfo::canHandle(In)) 3818 continue; 3819 3820 // Check if we can replace this instruction with any of the 3821 // visited instructions. 3822 if (Instruction *V = CSEMap.lookup(In)) { 3823 In->replaceAllUsesWith(V); 3824 In->eraseFromParent(); 3825 continue; 3826 } 3827 3828 CSEMap[In] = In; 3829 } 3830 } 3831 3832 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3833 /// convenience wrapper for the type-based getScalarizationOverhead API. 3834 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3835 const TargetTransformInfo &TTI) { 3836 if (VF == 1) 3837 return 0; 3838 3839 unsigned Cost = 0; 3840 Type *RetTy = ToVectorTy(I->getType(), VF); 3841 if (!RetTy->isVoidTy() && 3842 (!isa<LoadInst>(I) || 3843 !TTI.supportsEfficientVectorElementLoadStore())) 3844 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3845 3846 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3847 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3848 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3849 } 3850 else if (!isa<StoreInst>(I) || 3851 !TTI.supportsEfficientVectorElementLoadStore()) { 3852 SmallVector<const Value *, 4> Operands(I->operand_values()); 3853 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3854 } 3855 3856 return Cost; 3857 } 3858 3859 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3860 // Return the cost of the instruction, including scalarization overhead if it's 3861 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3862 // i.e. either vector version isn't available, or is too expensive. 3863 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3864 const TargetTransformInfo &TTI, 3865 const TargetLibraryInfo *TLI, 3866 bool &NeedToScalarize) { 3867 Function *F = CI->getCalledFunction(); 3868 StringRef FnName = CI->getCalledFunction()->getName(); 3869 Type *ScalarRetTy = CI->getType(); 3870 SmallVector<Type *, 4> Tys, ScalarTys; 3871 for (auto &ArgOp : CI->arg_operands()) 3872 ScalarTys.push_back(ArgOp->getType()); 3873 3874 // Estimate cost of scalarized vector call. The source operands are assumed 3875 // to be vectors, so we need to extract individual elements from there, 3876 // execute VF scalar calls, and then gather the result into the vector return 3877 // value. 3878 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3879 if (VF == 1) 3880 return ScalarCallCost; 3881 3882 // Compute corresponding vector type for return value and arguments. 3883 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3884 for (Type *ScalarTy : ScalarTys) 3885 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3886 3887 // Compute costs of unpacking argument values for the scalar calls and 3888 // packing the return values to a vector. 3889 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3890 3891 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3892 3893 // If we can't emit a vector call for this function, then the currently found 3894 // cost is the cost we need to return. 3895 NeedToScalarize = true; 3896 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3897 return Cost; 3898 3899 // If the corresponding vector cost is cheaper, return its cost. 3900 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3901 if (VectorCallCost < Cost) { 3902 NeedToScalarize = false; 3903 return VectorCallCost; 3904 } 3905 return Cost; 3906 } 3907 3908 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3909 // factor VF. Return the cost of the instruction, including scalarization 3910 // overhead if it's needed. 3911 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3912 const TargetTransformInfo &TTI, 3913 const TargetLibraryInfo *TLI) { 3914 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3915 assert(ID && "Expected intrinsic call!"); 3916 3917 FastMathFlags FMF; 3918 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3919 FMF = FPMO->getFastMathFlags(); 3920 3921 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3922 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3923 } 3924 3925 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3926 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3927 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3928 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3929 } 3930 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3931 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3932 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3933 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3934 } 3935 3936 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3937 // For every instruction `I` in MinBWs, truncate the operands, create a 3938 // truncated version of `I` and reextend its result. InstCombine runs 3939 // later and will remove any ext/trunc pairs. 3940 SmallPtrSet<Value *, 4> Erased; 3941 for (const auto &KV : Cost->getMinimalBitwidths()) { 3942 // If the value wasn't vectorized, we must maintain the original scalar 3943 // type. The absence of the value from VectorLoopValueMap indicates that it 3944 // wasn't vectorized. 3945 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3946 continue; 3947 for (unsigned Part = 0; Part < UF; ++Part) { 3948 Value *I = getOrCreateVectorValue(KV.first, Part); 3949 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3950 continue; 3951 Type *OriginalTy = I->getType(); 3952 Type *ScalarTruncatedTy = 3953 IntegerType::get(OriginalTy->getContext(), KV.second); 3954 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3955 OriginalTy->getVectorNumElements()); 3956 if (TruncatedTy == OriginalTy) 3957 continue; 3958 3959 IRBuilder<> B(cast<Instruction>(I)); 3960 auto ShrinkOperand = [&](Value *V) -> Value * { 3961 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3962 if (ZI->getSrcTy() == TruncatedTy) 3963 return ZI->getOperand(0); 3964 return B.CreateZExtOrTrunc(V, TruncatedTy); 3965 }; 3966 3967 // The actual instruction modification depends on the instruction type, 3968 // unfortunately. 3969 Value *NewI = nullptr; 3970 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3971 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3972 ShrinkOperand(BO->getOperand(1))); 3973 3974 // Any wrapping introduced by shrinking this operation shouldn't be 3975 // considered undefined behavior. So, we can't unconditionally copy 3976 // arithmetic wrapping flags to NewI. 3977 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3978 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3979 NewI = 3980 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3981 ShrinkOperand(CI->getOperand(1))); 3982 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3983 NewI = B.CreateSelect(SI->getCondition(), 3984 ShrinkOperand(SI->getTrueValue()), 3985 ShrinkOperand(SI->getFalseValue())); 3986 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3987 switch (CI->getOpcode()) { 3988 default: 3989 llvm_unreachable("Unhandled cast!"); 3990 case Instruction::Trunc: 3991 NewI = ShrinkOperand(CI->getOperand(0)); 3992 break; 3993 case Instruction::SExt: 3994 NewI = B.CreateSExtOrTrunc( 3995 CI->getOperand(0), 3996 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3997 break; 3998 case Instruction::ZExt: 3999 NewI = B.CreateZExtOrTrunc( 4000 CI->getOperand(0), 4001 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4002 break; 4003 } 4004 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 4005 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 4006 auto *O0 = B.CreateZExtOrTrunc( 4007 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 4008 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 4009 auto *O1 = B.CreateZExtOrTrunc( 4010 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 4011 4012 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 4013 } else if (isa<LoadInst>(I)) { 4014 // Don't do anything with the operands, just extend the result. 4015 continue; 4016 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4017 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 4018 auto *O0 = B.CreateZExtOrTrunc( 4019 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4020 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4021 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4022 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4023 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 4024 auto *O0 = B.CreateZExtOrTrunc( 4025 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4026 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4027 } else { 4028 llvm_unreachable("Unhandled instruction type!"); 4029 } 4030 4031 // Lastly, extend the result. 4032 NewI->takeName(cast<Instruction>(I)); 4033 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4034 I->replaceAllUsesWith(Res); 4035 cast<Instruction>(I)->eraseFromParent(); 4036 Erased.insert(I); 4037 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 4038 } 4039 } 4040 4041 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4042 for (const auto &KV : Cost->getMinimalBitwidths()) { 4043 // If the value wasn't vectorized, we must maintain the original scalar 4044 // type. The absence of the value from VectorLoopValueMap indicates that it 4045 // wasn't vectorized. 4046 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 4047 continue; 4048 for (unsigned Part = 0; Part < UF; ++Part) { 4049 Value *I = getOrCreateVectorValue(KV.first, Part); 4050 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4051 if (Inst && Inst->use_empty()) { 4052 Value *NewI = Inst->getOperand(0); 4053 Inst->eraseFromParent(); 4054 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 4055 } 4056 } 4057 } 4058 } 4059 4060 void InnerLoopVectorizer::fixVectorizedLoop() { 4061 // Insert truncates and extends for any truncated instructions as hints to 4062 // InstCombine. 4063 if (VF > 1) 4064 truncateToMinimalBitwidths(); 4065 4066 // At this point every instruction in the original loop is widened to a 4067 // vector form. Now we need to fix the recurrences in the loop. These PHI 4068 // nodes are currently empty because we did not want to introduce cycles. 4069 // This is the second stage of vectorizing recurrences. 4070 fixCrossIterationPHIs(); 4071 4072 // Update the dominator tree. 4073 // 4074 // FIXME: After creating the structure of the new loop, the dominator tree is 4075 // no longer up-to-date, and it remains that way until we update it 4076 // here. An out-of-date dominator tree is problematic for SCEV, 4077 // because SCEVExpander uses it to guide code generation. The 4078 // vectorizer use SCEVExpanders in several places. Instead, we should 4079 // keep the dominator tree up-to-date as we go. 4080 updateAnalysis(); 4081 4082 // Fix-up external users of the induction variables. 4083 for (auto &Entry : *Legal->getInductionVars()) 4084 fixupIVUsers(Entry.first, Entry.second, 4085 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4086 IVEndValues[Entry.first], LoopMiddleBlock); 4087 4088 fixLCSSAPHIs(); 4089 for (Instruction *PI : PredicatedInstructions) 4090 sinkScalarOperands(&*PI); 4091 4092 // Remove redundant induction instructions. 4093 cse(LoopVectorBody); 4094 } 4095 4096 void InnerLoopVectorizer::fixCrossIterationPHIs() { 4097 // In order to support recurrences we need to be able to vectorize Phi nodes. 4098 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4099 // stage #2: We now need to fix the recurrences by adding incoming edges to 4100 // the currently empty PHI nodes. At this point every instruction in the 4101 // original loop is widened to a vector form so we can use them to construct 4102 // the incoming edges. 4103 for (Instruction &I : *OrigLoop->getHeader()) { 4104 PHINode *Phi = dyn_cast<PHINode>(&I); 4105 if (!Phi) 4106 break; 4107 // Handle first-order recurrences and reductions that need to be fixed. 4108 if (Legal->isFirstOrderRecurrence(Phi)) 4109 fixFirstOrderRecurrence(Phi); 4110 else if (Legal->isReductionVariable(Phi)) 4111 fixReduction(Phi); 4112 } 4113 } 4114 4115 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 4116 // This is the second phase of vectorizing first-order recurrences. An 4117 // overview of the transformation is described below. Suppose we have the 4118 // following loop. 4119 // 4120 // for (int i = 0; i < n; ++i) 4121 // b[i] = a[i] - a[i - 1]; 4122 // 4123 // There is a first-order recurrence on "a". For this loop, the shorthand 4124 // scalar IR looks like: 4125 // 4126 // scalar.ph: 4127 // s_init = a[-1] 4128 // br scalar.body 4129 // 4130 // scalar.body: 4131 // i = phi [0, scalar.ph], [i+1, scalar.body] 4132 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4133 // s2 = a[i] 4134 // b[i] = s2 - s1 4135 // br cond, scalar.body, ... 4136 // 4137 // In this example, s1 is a recurrence because it's value depends on the 4138 // previous iteration. In the first phase of vectorization, we created a 4139 // temporary value for s1. We now complete the vectorization and produce the 4140 // shorthand vector IR shown below (for VF = 4, UF = 1). 4141 // 4142 // vector.ph: 4143 // v_init = vector(..., ..., ..., a[-1]) 4144 // br vector.body 4145 // 4146 // vector.body 4147 // i = phi [0, vector.ph], [i+4, vector.body] 4148 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4149 // v2 = a[i, i+1, i+2, i+3]; 4150 // v3 = vector(v1(3), v2(0, 1, 2)) 4151 // b[i, i+1, i+2, i+3] = v2 - v3 4152 // br cond, vector.body, middle.block 4153 // 4154 // middle.block: 4155 // x = v2(3) 4156 // br scalar.ph 4157 // 4158 // scalar.ph: 4159 // s_init = phi [x, middle.block], [a[-1], otherwise] 4160 // br scalar.body 4161 // 4162 // After execution completes the vector loop, we extract the next value of 4163 // the recurrence (x) to use as the initial value in the scalar loop. 4164 4165 // Get the original loop preheader and single loop latch. 4166 auto *Preheader = OrigLoop->getLoopPreheader(); 4167 auto *Latch = OrigLoop->getLoopLatch(); 4168 4169 // Get the initial and previous values of the scalar recurrence. 4170 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4171 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4172 4173 // Create a vector from the initial value. 4174 auto *VectorInit = ScalarInit; 4175 if (VF > 1) { 4176 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4177 VectorInit = Builder.CreateInsertElement( 4178 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4179 Builder.getInt32(VF - 1), "vector.recur.init"); 4180 } 4181 4182 // We constructed a temporary phi node in the first phase of vectorization. 4183 // This phi node will eventually be deleted. 4184 Builder.SetInsertPoint( 4185 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4186 4187 // Create a phi node for the new recurrence. The current value will either be 4188 // the initial value inserted into a vector or loop-varying vector value. 4189 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4190 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4191 4192 // Get the vectorized previous value of the last part UF - 1. It appears last 4193 // among all unrolled iterations, due to the order of their construction. 4194 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4195 4196 // Set the insertion point after the previous value if it is an instruction. 4197 // Note that the previous value may have been constant-folded so it is not 4198 // guaranteed to be an instruction in the vector loop. Also, if the previous 4199 // value is a phi node, we should insert after all the phi nodes to avoid 4200 // breaking basic block verification. 4201 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 4202 isa<PHINode>(PreviousLastPart)) 4203 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4204 else 4205 Builder.SetInsertPoint( 4206 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 4207 4208 // We will construct a vector for the recurrence by combining the values for 4209 // the current and previous iterations. This is the required shuffle mask. 4210 SmallVector<Constant *, 8> ShuffleMask(VF); 4211 ShuffleMask[0] = Builder.getInt32(VF - 1); 4212 for (unsigned I = 1; I < VF; ++I) 4213 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4214 4215 // The vector from which to take the initial value for the current iteration 4216 // (actual or unrolled). Initially, this is the vector phi node. 4217 Value *Incoming = VecPhi; 4218 4219 // Shuffle the current and previous vector and update the vector parts. 4220 for (unsigned Part = 0; Part < UF; ++Part) { 4221 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4222 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4223 auto *Shuffle = 4224 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 4225 ConstantVector::get(ShuffleMask)) 4226 : Incoming; 4227 PhiPart->replaceAllUsesWith(Shuffle); 4228 cast<Instruction>(PhiPart)->eraseFromParent(); 4229 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4230 Incoming = PreviousPart; 4231 } 4232 4233 // Fix the latch value of the new recurrence in the vector loop. 4234 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4235 4236 // Extract the last vector element in the middle block. This will be the 4237 // initial value for the recurrence when jumping to the scalar loop. 4238 auto *ExtractForScalar = Incoming; 4239 if (VF > 1) { 4240 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4241 ExtractForScalar = Builder.CreateExtractElement( 4242 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4243 } 4244 // Extract the second last element in the middle block if the 4245 // Phi is used outside the loop. We need to extract the phi itself 4246 // and not the last element (the phi update in the current iteration). This 4247 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4248 // when the scalar loop is not run at all. 4249 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4250 if (VF > 1) 4251 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4252 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4253 // When loop is unrolled without vectorizing, initialize 4254 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4255 // `Incoming`. This is analogous to the vectorized case above: extracting the 4256 // second last element when VF > 1. 4257 else if (UF > 1) 4258 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4259 4260 // Fix the initial value of the original recurrence in the scalar loop. 4261 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4262 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4263 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4264 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4265 Start->addIncoming(Incoming, BB); 4266 } 4267 4268 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4269 Phi->setName("scalar.recur"); 4270 4271 // Finally, fix users of the recurrence outside the loop. The users will need 4272 // either the last value of the scalar recurrence or the last value of the 4273 // vector recurrence we extracted in the middle block. Since the loop is in 4274 // LCSSA form, we just need to find the phi node for the original scalar 4275 // recurrence in the exit block, and then add an edge for the middle block. 4276 for (auto &I : *LoopExitBlock) { 4277 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4278 if (!LCSSAPhi) 4279 break; 4280 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4281 LCSSAPhi->addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4282 break; 4283 } 4284 } 4285 } 4286 4287 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4288 Constant *Zero = Builder.getInt32(0); 4289 4290 // Get it's reduction variable descriptor. 4291 assert(Legal->isReductionVariable(Phi) && 4292 "Unable to find the reduction variable"); 4293 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4294 4295 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4296 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4297 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4298 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4299 RdxDesc.getMinMaxRecurrenceKind(); 4300 setDebugLocFromInst(Builder, ReductionStartValue); 4301 4302 // We need to generate a reduction vector from the incoming scalar. 4303 // To do so, we need to generate the 'identity' vector and override 4304 // one of the elements with the incoming scalar reduction. We need 4305 // to do it in the vector-loop preheader. 4306 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4307 4308 // This is the vector-clone of the value that leaves the loop. 4309 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4310 4311 // Find the reduction identity variable. Zero for addition, or, xor, 4312 // one for multiplication, -1 for And. 4313 Value *Identity; 4314 Value *VectorStart; 4315 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4316 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4317 // MinMax reduction have the start value as their identify. 4318 if (VF == 1) { 4319 VectorStart = Identity = ReductionStartValue; 4320 } else { 4321 VectorStart = Identity = 4322 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4323 } 4324 } else { 4325 // Handle other reduction kinds: 4326 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4327 RK, VecTy->getScalarType()); 4328 if (VF == 1) { 4329 Identity = Iden; 4330 // This vector is the Identity vector where the first element is the 4331 // incoming scalar reduction. 4332 VectorStart = ReductionStartValue; 4333 } else { 4334 Identity = ConstantVector::getSplat(VF, Iden); 4335 4336 // This vector is the Identity vector where the first element is the 4337 // incoming scalar reduction. 4338 VectorStart = 4339 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4340 } 4341 } 4342 4343 // Fix the vector-loop phi. 4344 4345 // Reductions do not have to start at zero. They can start with 4346 // any loop invariant values. 4347 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4348 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4349 for (unsigned Part = 0; Part < UF; ++Part) { 4350 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4351 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4352 // Make sure to add the reduction stat value only to the 4353 // first unroll part. 4354 Value *StartVal = (Part == 0) ? VectorStart : Identity; 4355 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 4356 cast<PHINode>(VecRdxPhi) 4357 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4358 } 4359 4360 // Before each round, move the insertion point right between 4361 // the PHIs and the values we are going to write. 4362 // This allows us to write both PHINodes and the extractelement 4363 // instructions. 4364 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4365 4366 setDebugLocFromInst(Builder, LoopExitInst); 4367 4368 // If the vector reduction can be performed in a smaller type, we truncate 4369 // then extend the loop exit value to enable InstCombine to evaluate the 4370 // entire expression in the smaller type. 4371 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4372 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4373 Builder.SetInsertPoint( 4374 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4375 VectorParts RdxParts(UF); 4376 for (unsigned Part = 0; Part < UF; ++Part) { 4377 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4378 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4379 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4380 : Builder.CreateZExt(Trunc, VecTy); 4381 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4382 UI != RdxParts[Part]->user_end();) 4383 if (*UI != Trunc) { 4384 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4385 RdxParts[Part] = Extnd; 4386 } else { 4387 ++UI; 4388 } 4389 } 4390 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4391 for (unsigned Part = 0; Part < UF; ++Part) { 4392 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4393 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4394 } 4395 } 4396 4397 // Reduce all of the unrolled parts into a single vector. 4398 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4399 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4400 setDebugLocFromInst(Builder, ReducedPartRdx); 4401 for (unsigned Part = 1; Part < UF; ++Part) { 4402 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4403 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4404 // Floating point operations had to be 'fast' to enable the reduction. 4405 ReducedPartRdx = addFastMathFlag( 4406 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4407 ReducedPartRdx, "bin.rdx")); 4408 else 4409 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4410 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 4411 } 4412 4413 if (VF > 1) { 4414 bool NoNaN = Legal->hasFunNoNaNAttr(); 4415 ReducedPartRdx = 4416 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4417 // If the reduction can be performed in a smaller type, we need to extend 4418 // the reduction to the wider type before we branch to the original loop. 4419 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4420 ReducedPartRdx = 4421 RdxDesc.isSigned() 4422 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4423 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4424 } 4425 4426 // Create a phi node that merges control-flow from the backedge-taken check 4427 // block and the middle block. 4428 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4429 LoopScalarPreHeader->getTerminator()); 4430 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4431 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4432 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4433 4434 // Now, we need to fix the users of the reduction variable 4435 // inside and outside of the scalar remainder loop. 4436 // We know that the loop is in LCSSA form. We need to update the 4437 // PHI nodes in the exit blocks. 4438 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4439 LEE = LoopExitBlock->end(); 4440 LEI != LEE; ++LEI) { 4441 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4442 if (!LCSSAPhi) 4443 break; 4444 4445 // All PHINodes need to have a single entry edge, or two if 4446 // we already fixed them. 4447 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4448 4449 // We found a reduction value exit-PHI. Update it with the 4450 // incoming bypass edge. 4451 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) 4452 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4453 } // end of the LCSSA phi scan. 4454 4455 // Fix the scalar loop reduction variable with the incoming reduction sum 4456 // from the vector body and from the backedge value. 4457 int IncomingEdgeBlockIdx = 4458 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4459 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4460 // Pick the other block. 4461 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4462 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4463 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4464 } 4465 4466 void InnerLoopVectorizer::fixLCSSAPHIs() { 4467 for (Instruction &LEI : *LoopExitBlock) { 4468 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4469 if (!LCSSAPhi) 4470 break; 4471 if (LCSSAPhi->getNumIncomingValues() == 1) { 4472 assert(OrigLoop->isLoopInvariant(LCSSAPhi->getIncomingValue(0)) && 4473 "Incoming value isn't loop invariant"); 4474 LCSSAPhi->addIncoming(LCSSAPhi->getIncomingValue(0), LoopMiddleBlock); 4475 } 4476 } 4477 } 4478 4479 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4480 // The basic block and loop containing the predicated instruction. 4481 auto *PredBB = PredInst->getParent(); 4482 auto *VectorLoop = LI->getLoopFor(PredBB); 4483 4484 // Initialize a worklist with the operands of the predicated instruction. 4485 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4486 4487 // Holds instructions that we need to analyze again. An instruction may be 4488 // reanalyzed if we don't yet know if we can sink it or not. 4489 SmallVector<Instruction *, 8> InstsToReanalyze; 4490 4491 // Returns true if a given use occurs in the predicated block. Phi nodes use 4492 // their operands in their corresponding predecessor blocks. 4493 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4494 auto *I = cast<Instruction>(U.getUser()); 4495 BasicBlock *BB = I->getParent(); 4496 if (auto *Phi = dyn_cast<PHINode>(I)) 4497 BB = Phi->getIncomingBlock( 4498 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4499 return BB == PredBB; 4500 }; 4501 4502 // Iteratively sink the scalarized operands of the predicated instruction 4503 // into the block we created for it. When an instruction is sunk, it's 4504 // operands are then added to the worklist. The algorithm ends after one pass 4505 // through the worklist doesn't sink a single instruction. 4506 bool Changed; 4507 do { 4508 // Add the instructions that need to be reanalyzed to the worklist, and 4509 // reset the changed indicator. 4510 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4511 InstsToReanalyze.clear(); 4512 Changed = false; 4513 4514 while (!Worklist.empty()) { 4515 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4516 4517 // We can't sink an instruction if it is a phi node, is already in the 4518 // predicated block, is not in the loop, or may have side effects. 4519 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4520 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4521 continue; 4522 4523 // It's legal to sink the instruction if all its uses occur in the 4524 // predicated block. Otherwise, there's nothing to do yet, and we may 4525 // need to reanalyze the instruction. 4526 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4527 InstsToReanalyze.push_back(I); 4528 continue; 4529 } 4530 4531 // Move the instruction to the beginning of the predicated block, and add 4532 // it's operands to the worklist. 4533 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4534 Worklist.insert(I->op_begin(), I->op_end()); 4535 4536 // The sinking may have enabled other instructions to be sunk, so we will 4537 // need to iterate. 4538 Changed = true; 4539 } 4540 } while (Changed); 4541 } 4542 4543 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4544 unsigned VF) { 4545 assert(PN->getParent() == OrigLoop->getHeader() && 4546 "Non-header phis should have been handled elsewhere"); 4547 4548 PHINode *P = cast<PHINode>(PN); 4549 // In order to support recurrences we need to be able to vectorize Phi nodes. 4550 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4551 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4552 // this value when we vectorize all of the instructions that use the PHI. 4553 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4554 for (unsigned Part = 0; Part < UF; ++Part) { 4555 // This is phase one of vectorizing PHIs. 4556 Type *VecTy = 4557 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4558 Value *EntryPart = PHINode::Create( 4559 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4560 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4561 } 4562 return; 4563 } 4564 4565 setDebugLocFromInst(Builder, P); 4566 4567 // This PHINode must be an induction variable. 4568 // Make sure that we know about it. 4569 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4570 4571 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4572 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4573 4574 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4575 // which can be found from the original scalar operations. 4576 switch (II.getKind()) { 4577 case InductionDescriptor::IK_NoInduction: 4578 llvm_unreachable("Unknown induction"); 4579 case InductionDescriptor::IK_IntInduction: 4580 case InductionDescriptor::IK_FpInduction: 4581 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4582 case InductionDescriptor::IK_PtrInduction: { 4583 // Handle the pointer induction variable case. 4584 assert(P->getType()->isPointerTy() && "Unexpected type."); 4585 // This is the normalized GEP that starts counting at zero. 4586 Value *PtrInd = Induction; 4587 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4588 // Determine the number of scalars we need to generate for each unroll 4589 // iteration. If the instruction is uniform, we only need to generate the 4590 // first lane. Otherwise, we generate all VF values. 4591 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4592 // These are the scalar results. Notice that we don't generate vector GEPs 4593 // because scalar GEPs result in better code. 4594 for (unsigned Part = 0; Part < UF; ++Part) { 4595 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4596 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4597 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4598 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4599 SclrGep->setName("next.gep"); 4600 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4601 } 4602 } 4603 return; 4604 } 4605 } 4606 } 4607 4608 /// A helper function for checking whether an integer division-related 4609 /// instruction may divide by zero (in which case it must be predicated if 4610 /// executed conditionally in the scalar code). 4611 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4612 /// Non-zero divisors that are non compile-time constants will not be 4613 /// converted into multiplication, so we will still end up scalarizing 4614 /// the division, but can do so w/o predication. 4615 static bool mayDivideByZero(Instruction &I) { 4616 assert((I.getOpcode() == Instruction::UDiv || 4617 I.getOpcode() == Instruction::SDiv || 4618 I.getOpcode() == Instruction::URem || 4619 I.getOpcode() == Instruction::SRem) && 4620 "Unexpected instruction"); 4621 Value *Divisor = I.getOperand(1); 4622 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4623 return !CInt || CInt->isZero(); 4624 } 4625 4626 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4627 switch (I.getOpcode()) { 4628 case Instruction::Br: 4629 case Instruction::PHI: 4630 llvm_unreachable("This instruction is handled by a different recipe."); 4631 case Instruction::GetElementPtr: { 4632 // Construct a vector GEP by widening the operands of the scalar GEP as 4633 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4634 // results in a vector of pointers when at least one operand of the GEP 4635 // is vector-typed. Thus, to keep the representation compact, we only use 4636 // vector-typed operands for loop-varying values. 4637 auto *GEP = cast<GetElementPtrInst>(&I); 4638 4639 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4640 // If we are vectorizing, but the GEP has only loop-invariant operands, 4641 // the GEP we build (by only using vector-typed operands for 4642 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4643 // produce a vector of pointers, we need to either arbitrarily pick an 4644 // operand to broadcast, or broadcast a clone of the original GEP. 4645 // Here, we broadcast a clone of the original. 4646 // 4647 // TODO: If at some point we decide to scalarize instructions having 4648 // loop-invariant operands, this special case will no longer be 4649 // required. We would add the scalarization decision to 4650 // collectLoopScalars() and teach getVectorValue() to broadcast 4651 // the lane-zero scalar value. 4652 auto *Clone = Builder.Insert(GEP->clone()); 4653 for (unsigned Part = 0; Part < UF; ++Part) { 4654 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4655 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 4656 addMetadata(EntryPart, GEP); 4657 } 4658 } else { 4659 // If the GEP has at least one loop-varying operand, we are sure to 4660 // produce a vector of pointers. But if we are only unrolling, we want 4661 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4662 // produce with the code below will be scalar (if VF == 1) or vector 4663 // (otherwise). Note that for the unroll-only case, we still maintain 4664 // values in the vector mapping with initVector, as we do for other 4665 // instructions. 4666 for (unsigned Part = 0; Part < UF; ++Part) { 4667 // The pointer operand of the new GEP. If it's loop-invariant, we 4668 // won't broadcast it. 4669 auto *Ptr = 4670 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4671 ? GEP->getPointerOperand() 4672 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4673 4674 // Collect all the indices for the new GEP. If any index is 4675 // loop-invariant, we won't broadcast it. 4676 SmallVector<Value *, 4> Indices; 4677 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4678 if (OrigLoop->isLoopInvariant(U.get())) 4679 Indices.push_back(U.get()); 4680 else 4681 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 4682 } 4683 4684 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4685 // but it should be a vector, otherwise. 4686 auto *NewGEP = GEP->isInBounds() 4687 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4688 : Builder.CreateGEP(Ptr, Indices); 4689 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4690 "NewGEP is not a pointer vector"); 4691 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4692 addMetadata(NewGEP, GEP); 4693 } 4694 } 4695 4696 break; 4697 } 4698 case Instruction::UDiv: 4699 case Instruction::SDiv: 4700 case Instruction::SRem: 4701 case Instruction::URem: 4702 case Instruction::Add: 4703 case Instruction::FAdd: 4704 case Instruction::Sub: 4705 case Instruction::FSub: 4706 case Instruction::Mul: 4707 case Instruction::FMul: 4708 case Instruction::FDiv: 4709 case Instruction::FRem: 4710 case Instruction::Shl: 4711 case Instruction::LShr: 4712 case Instruction::AShr: 4713 case Instruction::And: 4714 case Instruction::Or: 4715 case Instruction::Xor: { 4716 // Just widen binops. 4717 auto *BinOp = cast<BinaryOperator>(&I); 4718 setDebugLocFromInst(Builder, BinOp); 4719 4720 for (unsigned Part = 0; Part < UF; ++Part) { 4721 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 4722 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 4723 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 4724 4725 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4726 VecOp->copyIRFlags(BinOp); 4727 4728 // Use this vector value for all users of the original instruction. 4729 VectorLoopValueMap.setVectorValue(&I, Part, V); 4730 addMetadata(V, BinOp); 4731 } 4732 4733 break; 4734 } 4735 case Instruction::Select: { 4736 // Widen selects. 4737 // If the selector is loop invariant we can create a select 4738 // instruction with a scalar condition. Otherwise, use vector-select. 4739 auto *SE = PSE.getSE(); 4740 bool InvariantCond = 4741 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4742 setDebugLocFromInst(Builder, &I); 4743 4744 // The condition can be loop invariant but still defined inside the 4745 // loop. This means that we can't just use the original 'cond' value. 4746 // We have to take the 'vectorized' value and pick the first lane. 4747 // Instcombine will make this a no-op. 4748 4749 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4750 4751 for (unsigned Part = 0; Part < UF; ++Part) { 4752 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4753 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4754 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4755 Value *Sel = 4756 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4757 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4758 addMetadata(Sel, &I); 4759 } 4760 4761 break; 4762 } 4763 4764 case Instruction::ICmp: 4765 case Instruction::FCmp: { 4766 // Widen compares. Generate vector compares. 4767 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4768 auto *Cmp = dyn_cast<CmpInst>(&I); 4769 setDebugLocFromInst(Builder, Cmp); 4770 for (unsigned Part = 0; Part < UF; ++Part) { 4771 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4772 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4773 Value *C = nullptr; 4774 if (FCmp) { 4775 // Propagate fast math flags. 4776 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4777 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4778 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4779 } else { 4780 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4781 } 4782 VectorLoopValueMap.setVectorValue(&I, Part, C); 4783 addMetadata(C, &I); 4784 } 4785 4786 break; 4787 } 4788 4789 case Instruction::ZExt: 4790 case Instruction::SExt: 4791 case Instruction::FPToUI: 4792 case Instruction::FPToSI: 4793 case Instruction::FPExt: 4794 case Instruction::PtrToInt: 4795 case Instruction::IntToPtr: 4796 case Instruction::SIToFP: 4797 case Instruction::UIToFP: 4798 case Instruction::Trunc: 4799 case Instruction::FPTrunc: 4800 case Instruction::BitCast: { 4801 auto *CI = dyn_cast<CastInst>(&I); 4802 setDebugLocFromInst(Builder, CI); 4803 4804 /// Vectorize casts. 4805 Type *DestTy = 4806 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4807 4808 for (unsigned Part = 0; Part < UF; ++Part) { 4809 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4810 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4811 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4812 addMetadata(Cast, &I); 4813 } 4814 break; 4815 } 4816 4817 case Instruction::Call: { 4818 // Ignore dbg intrinsics. 4819 if (isa<DbgInfoIntrinsic>(I)) 4820 break; 4821 setDebugLocFromInst(Builder, &I); 4822 4823 Module *M = I.getParent()->getParent()->getParent(); 4824 auto *CI = cast<CallInst>(&I); 4825 4826 StringRef FnName = CI->getCalledFunction()->getName(); 4827 Function *F = CI->getCalledFunction(); 4828 Type *RetTy = ToVectorTy(CI->getType(), VF); 4829 SmallVector<Type *, 4> Tys; 4830 for (Value *ArgOperand : CI->arg_operands()) 4831 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4832 4833 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4834 4835 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4836 // version of the instruction. 4837 // Is it beneficial to perform intrinsic call compared to lib call? 4838 bool NeedToScalarize; 4839 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4840 bool UseVectorIntrinsic = 4841 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4842 assert((UseVectorIntrinsic || !NeedToScalarize) && 4843 "Instruction should be scalarized elsewhere."); 4844 4845 for (unsigned Part = 0; Part < UF; ++Part) { 4846 SmallVector<Value *, 4> Args; 4847 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4848 Value *Arg = CI->getArgOperand(i); 4849 // Some intrinsics have a scalar argument - don't replace it with a 4850 // vector. 4851 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4852 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4853 Args.push_back(Arg); 4854 } 4855 4856 Function *VectorF; 4857 if (UseVectorIntrinsic) { 4858 // Use vector version of the intrinsic. 4859 Type *TysForDecl[] = {CI->getType()}; 4860 if (VF > 1) 4861 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4862 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4863 } else { 4864 // Use vector version of the library call. 4865 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4866 assert(!VFnName.empty() && "Vector function name is empty."); 4867 VectorF = M->getFunction(VFnName); 4868 if (!VectorF) { 4869 // Generate a declaration 4870 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4871 VectorF = 4872 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4873 VectorF->copyAttributesFrom(F); 4874 } 4875 } 4876 assert(VectorF && "Can't create vector function."); 4877 4878 SmallVector<OperandBundleDef, 1> OpBundles; 4879 CI->getOperandBundlesAsDefs(OpBundles); 4880 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4881 4882 if (isa<FPMathOperator>(V)) 4883 V->copyFastMathFlags(CI); 4884 4885 VectorLoopValueMap.setVectorValue(&I, Part, V); 4886 addMetadata(V, &I); 4887 } 4888 4889 break; 4890 } 4891 4892 default: 4893 // This instruction is not vectorized by simple widening. 4894 DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4895 llvm_unreachable("Unhandled instruction!"); 4896 } // end of switch. 4897 } 4898 4899 void InnerLoopVectorizer::updateAnalysis() { 4900 // Forget the original basic block. 4901 PSE.getSE()->forgetLoop(OrigLoop); 4902 4903 // Update the dominator tree information. 4904 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4905 "Entry does not dominate exit."); 4906 4907 DT->addNewBlock(LoopMiddleBlock, 4908 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4909 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4910 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4911 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4912 DEBUG(DT->verifyDomTree()); 4913 } 4914 4915 /// \brief Check whether it is safe to if-convert this phi node. 4916 /// 4917 /// Phi nodes with constant expressions that can trap are not safe to if 4918 /// convert. 4919 static bool canIfConvertPHINodes(BasicBlock *BB) { 4920 for (Instruction &I : *BB) { 4921 auto *Phi = dyn_cast<PHINode>(&I); 4922 if (!Phi) 4923 return true; 4924 for (Value *V : Phi->incoming_values()) 4925 if (auto *C = dyn_cast<Constant>(V)) 4926 if (C->canTrap()) 4927 return false; 4928 } 4929 return true; 4930 } 4931 4932 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4933 if (!EnableIfConversion) { 4934 ORE->emit(createMissedAnalysis("IfConversionDisabled") 4935 << "if-conversion is disabled"); 4936 return false; 4937 } 4938 4939 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4940 4941 // A list of pointers that we can safely read and write to. 4942 SmallPtrSet<Value *, 8> SafePointes; 4943 4944 // Collect safe addresses. 4945 for (BasicBlock *BB : TheLoop->blocks()) { 4946 if (blockNeedsPredication(BB)) 4947 continue; 4948 4949 for (Instruction &I : *BB) 4950 if (auto *Ptr = getPointerOperand(&I)) 4951 SafePointes.insert(Ptr); 4952 } 4953 4954 // Collect the blocks that need predication. 4955 BasicBlock *Header = TheLoop->getHeader(); 4956 for (BasicBlock *BB : TheLoop->blocks()) { 4957 // We don't support switch statements inside loops. 4958 if (!isa<BranchInst>(BB->getTerminator())) { 4959 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 4960 << "loop contains a switch statement"); 4961 return false; 4962 } 4963 4964 // We must be able to predicate all blocks that need to be predicated. 4965 if (blockNeedsPredication(BB)) { 4966 if (!blockCanBePredicated(BB, SafePointes)) { 4967 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4968 << "control flow cannot be substituted for a select"); 4969 return false; 4970 } 4971 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4972 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4973 << "control flow cannot be substituted for a select"); 4974 return false; 4975 } 4976 } 4977 4978 // We can if-convert this loop. 4979 return true; 4980 } 4981 4982 bool LoopVectorizationLegality::canVectorize() { 4983 // Store the result and return it at the end instead of exiting early, in case 4984 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 4985 bool Result = true; 4986 4987 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 4988 if (DoExtraAnalysis) 4989 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4990 // be canonicalized. 4991 if (!TheLoop->getLoopPreheader()) { 4992 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4993 << "loop control flow is not understood by vectorizer"); 4994 if (DoExtraAnalysis) 4995 Result = false; 4996 else 4997 return false; 4998 } 4999 5000 // FIXME: The code is currently dead, since the loop gets sent to 5001 // LoopVectorizationLegality is already an innermost loop. 5002 // 5003 // We can only vectorize innermost loops. 5004 if (!TheLoop->empty()) { 5005 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5006 << "loop is not the innermost loop"); 5007 if (DoExtraAnalysis) 5008 Result = false; 5009 else 5010 return false; 5011 } 5012 5013 // We must have a single backedge. 5014 if (TheLoop->getNumBackEdges() != 1) { 5015 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5016 << "loop control flow is not understood by vectorizer"); 5017 if (DoExtraAnalysis) 5018 Result = false; 5019 else 5020 return false; 5021 } 5022 5023 // We must have a single exiting block. 5024 if (!TheLoop->getExitingBlock()) { 5025 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5026 << "loop control flow is not understood by vectorizer"); 5027 if (DoExtraAnalysis) 5028 Result = false; 5029 else 5030 return false; 5031 } 5032 5033 // We only handle bottom-tested loops, i.e. loop in which the condition is 5034 // checked at the end of each iteration. With that we can assume that all 5035 // instructions in the loop are executed the same number of times. 5036 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5037 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5038 << "loop control flow is not understood by vectorizer"); 5039 if (DoExtraAnalysis) 5040 Result = false; 5041 else 5042 return false; 5043 } 5044 5045 // We need to have a loop header. 5046 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5047 << '\n'); 5048 5049 // Check if we can if-convert non-single-bb loops. 5050 unsigned NumBlocks = TheLoop->getNumBlocks(); 5051 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5052 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5053 if (DoExtraAnalysis) 5054 Result = false; 5055 else 5056 return false; 5057 } 5058 5059 // Check if we can vectorize the instructions and CFG in this loop. 5060 if (!canVectorizeInstrs()) { 5061 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5062 if (DoExtraAnalysis) 5063 Result = false; 5064 else 5065 return false; 5066 } 5067 5068 // Go over each instruction and look at memory deps. 5069 if (!canVectorizeMemory()) { 5070 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5071 if (DoExtraAnalysis) 5072 Result = false; 5073 else 5074 return false; 5075 } 5076 5077 DEBUG(dbgs() << "LV: We can vectorize this loop" 5078 << (LAI->getRuntimePointerChecking()->Need 5079 ? " (with a runtime bound check)" 5080 : "") 5081 << "!\n"); 5082 5083 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5084 5085 // If an override option has been passed in for interleaved accesses, use it. 5086 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5087 UseInterleaved = EnableInterleavedMemAccesses; 5088 5089 // Analyze interleaved memory accesses. 5090 if (UseInterleaved) 5091 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5092 5093 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5094 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5095 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5096 5097 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5098 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5099 << "Too many SCEV assumptions need to be made and checked " 5100 << "at runtime"); 5101 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5102 if (DoExtraAnalysis) 5103 Result = false; 5104 else 5105 return false; 5106 } 5107 5108 // Okay! We've done all the tests. If any have failed, return false. Otherwise 5109 // we can vectorize, and at this point we don't have any other mem analysis 5110 // which may limit our maximum vectorization factor, so just return true with 5111 // no restrictions. 5112 return Result; 5113 } 5114 5115 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5116 if (Ty->isPointerTy()) 5117 return DL.getIntPtrType(Ty); 5118 5119 // It is possible that char's or short's overflow when we ask for the loop's 5120 // trip count, work around this by changing the type size. 5121 if (Ty->getScalarSizeInBits() < 32) 5122 return Type::getInt32Ty(Ty->getContext()); 5123 5124 return Ty; 5125 } 5126 5127 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5128 Ty0 = convertPointerToIntegerType(DL, Ty0); 5129 Ty1 = convertPointerToIntegerType(DL, Ty1); 5130 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5131 return Ty0; 5132 return Ty1; 5133 } 5134 5135 /// \brief Check that the instruction has outside loop users and is not an 5136 /// identified reduction variable. 5137 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5138 SmallPtrSetImpl<Value *> &AllowedExit) { 5139 // Reduction and Induction instructions are allowed to have exit users. All 5140 // other instructions must not have external users. 5141 if (!AllowedExit.count(Inst)) 5142 // Check that all of the users of the loop are inside the BB. 5143 for (User *U : Inst->users()) { 5144 Instruction *UI = cast<Instruction>(U); 5145 // This user may be a reduction exit value. 5146 if (!TheLoop->contains(UI)) { 5147 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5148 return true; 5149 } 5150 } 5151 return false; 5152 } 5153 5154 void LoopVectorizationLegality::addInductionPhi( 5155 PHINode *Phi, const InductionDescriptor &ID, 5156 SmallPtrSetImpl<Value *> &AllowedExit) { 5157 Inductions[Phi] = ID; 5158 Type *PhiTy = Phi->getType(); 5159 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5160 5161 // Get the widest type. 5162 if (!PhiTy->isFloatingPointTy()) { 5163 if (!WidestIndTy) 5164 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5165 else 5166 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5167 } 5168 5169 // Int inductions are special because we only allow one IV. 5170 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5171 ID.getConstIntStepValue() && 5172 ID.getConstIntStepValue()->isOne() && 5173 isa<Constant>(ID.getStartValue()) && 5174 cast<Constant>(ID.getStartValue())->isNullValue()) { 5175 5176 // Use the phi node with the widest type as induction. Use the last 5177 // one if there are multiple (no good reason for doing this other 5178 // than it is expedient). We've checked that it begins at zero and 5179 // steps by one, so this is a canonical induction variable. 5180 if (!PrimaryInduction || PhiTy == WidestIndTy) 5181 PrimaryInduction = Phi; 5182 } 5183 5184 // Both the PHI node itself, and the "post-increment" value feeding 5185 // back into the PHI node may have external users. 5186 // We can allow those uses, except if the SCEVs we have for them rely 5187 // on predicates that only hold within the loop, since allowing the exit 5188 // currently means re-using this SCEV outside the loop. 5189 if (PSE.getUnionPredicate().isAlwaysTrue()) { 5190 AllowedExit.insert(Phi); 5191 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5192 } 5193 5194 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5195 } 5196 5197 bool LoopVectorizationLegality::canVectorizeInstrs() { 5198 BasicBlock *Header = TheLoop->getHeader(); 5199 5200 // Look for the attribute signaling the absence of NaNs. 5201 Function &F = *Header->getParent(); 5202 HasFunNoNaNAttr = 5203 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5204 5205 // For each block in the loop. 5206 for (BasicBlock *BB : TheLoop->blocks()) { 5207 // Scan the instructions in the block and look for hazards. 5208 for (Instruction &I : *BB) { 5209 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5210 Type *PhiTy = Phi->getType(); 5211 // Check that this PHI type is allowed. 5212 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5213 !PhiTy->isPointerTy()) { 5214 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5215 << "loop control flow is not understood by vectorizer"); 5216 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5217 return false; 5218 } 5219 5220 // If this PHINode is not in the header block, then we know that we 5221 // can convert it to select during if-conversion. No need to check if 5222 // the PHIs in this block are induction or reduction variables. 5223 if (BB != Header) { 5224 // Check that this instruction has no outside users or is an 5225 // identified reduction value with an outside user. 5226 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5227 continue; 5228 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5229 << "value could not be identified as " 5230 "an induction or reduction variable"); 5231 return false; 5232 } 5233 5234 // We only allow if-converted PHIs with exactly two incoming values. 5235 if (Phi->getNumIncomingValues() != 2) { 5236 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5237 << "control flow not understood by vectorizer"); 5238 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5239 return false; 5240 } 5241 5242 RecurrenceDescriptor RedDes; 5243 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5244 if (RedDes.hasUnsafeAlgebra()) 5245 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5246 AllowedExit.insert(RedDes.getLoopExitInstr()); 5247 Reductions[Phi] = RedDes; 5248 continue; 5249 } 5250 5251 InductionDescriptor ID; 5252 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5253 addInductionPhi(Phi, ID, AllowedExit); 5254 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5255 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5256 continue; 5257 } 5258 5259 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 5260 SinkAfter, DT)) { 5261 FirstOrderRecurrences.insert(Phi); 5262 continue; 5263 } 5264 5265 // As a last resort, coerce the PHI to a AddRec expression 5266 // and re-try classifying it a an induction PHI. 5267 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5268 addInductionPhi(Phi, ID, AllowedExit); 5269 continue; 5270 } 5271 5272 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5273 << "value that could not be identified as " 5274 "reduction is used outside the loop"); 5275 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5276 return false; 5277 } // end of PHI handling 5278 5279 // We handle calls that: 5280 // * Are debug info intrinsics. 5281 // * Have a mapping to an IR intrinsic. 5282 // * Have a vector version available. 5283 auto *CI = dyn_cast<CallInst>(&I); 5284 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5285 !isa<DbgInfoIntrinsic>(CI) && 5286 !(CI->getCalledFunction() && TLI && 5287 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5288 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5289 << "call instruction cannot be vectorized"); 5290 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5291 return false; 5292 } 5293 5294 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5295 // second argument is the same (i.e. loop invariant) 5296 if (CI && hasVectorInstrinsicScalarOpd( 5297 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5298 auto *SE = PSE.getSE(); 5299 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5300 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5301 << "intrinsic instruction cannot be vectorized"); 5302 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5303 return false; 5304 } 5305 } 5306 5307 // Check that the instruction return type is vectorizable. 5308 // Also, we can't vectorize extractelement instructions. 5309 if ((!VectorType::isValidElementType(I.getType()) && 5310 !I.getType()->isVoidTy()) || 5311 isa<ExtractElementInst>(I)) { 5312 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5313 << "instruction return type cannot be vectorized"); 5314 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5315 return false; 5316 } 5317 5318 // Check that the stored type is vectorizable. 5319 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5320 Type *T = ST->getValueOperand()->getType(); 5321 if (!VectorType::isValidElementType(T)) { 5322 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5323 << "store instruction cannot be vectorized"); 5324 return false; 5325 } 5326 5327 // FP instructions can allow unsafe algebra, thus vectorizable by 5328 // non-IEEE-754 compliant SIMD units. 5329 // This applies to floating-point math operations and calls, not memory 5330 // operations, shuffles, or casts, as they don't change precision or 5331 // semantics. 5332 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5333 !I.isFast()) { 5334 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5335 Hints->setPotentiallyUnsafe(); 5336 } 5337 5338 // Reduction instructions are allowed to have exit users. 5339 // All other instructions must not have external users. 5340 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5341 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5342 << "value cannot be used outside the loop"); 5343 return false; 5344 } 5345 } // next instr. 5346 } 5347 5348 if (!PrimaryInduction) { 5349 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5350 if (Inductions.empty()) { 5351 ORE->emit(createMissedAnalysis("NoInductionVariable") 5352 << "loop induction variable could not be identified"); 5353 return false; 5354 } 5355 } 5356 5357 // Now we know the widest induction type, check if our found induction 5358 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5359 // will create another. 5360 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5361 PrimaryInduction = nullptr; 5362 5363 return true; 5364 } 5365 5366 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5367 // We should not collect Scalars more than once per VF. Right now, this 5368 // function is called from collectUniformsAndScalars(), which already does 5369 // this check. Collecting Scalars for VF=1 does not make any sense. 5370 assert(VF >= 2 && !Scalars.count(VF) && 5371 "This function should not be visited twice for the same VF"); 5372 5373 SmallSetVector<Instruction *, 8> Worklist; 5374 5375 // These sets are used to seed the analysis with pointers used by memory 5376 // accesses that will remain scalar. 5377 SmallSetVector<Instruction *, 8> ScalarPtrs; 5378 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5379 5380 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5381 // The pointer operands of loads and stores will be scalar as long as the 5382 // memory access is not a gather or scatter operation. The value operand of a 5383 // store will remain scalar if the store is scalarized. 5384 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5385 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5386 assert(WideningDecision != CM_Unknown && 5387 "Widening decision should be ready at this moment"); 5388 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5389 if (Ptr == Store->getValueOperand()) 5390 return WideningDecision == CM_Scalarize; 5391 assert(Ptr == getPointerOperand(MemAccess) && 5392 "Ptr is neither a value or pointer operand"); 5393 return WideningDecision != CM_GatherScatter; 5394 }; 5395 5396 // A helper that returns true if the given value is a bitcast or 5397 // getelementptr instruction contained in the loop. 5398 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5399 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5400 isa<GetElementPtrInst>(V)) && 5401 !TheLoop->isLoopInvariant(V); 5402 }; 5403 5404 // A helper that evaluates a memory access's use of a pointer. If the use 5405 // will be a scalar use, and the pointer is only used by memory accesses, we 5406 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5407 // PossibleNonScalarPtrs. 5408 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5409 // We only care about bitcast and getelementptr instructions contained in 5410 // the loop. 5411 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5412 return; 5413 5414 // If the pointer has already been identified as scalar (e.g., if it was 5415 // also identified as uniform), there's nothing to do. 5416 auto *I = cast<Instruction>(Ptr); 5417 if (Worklist.count(I)) 5418 return; 5419 5420 // If the use of the pointer will be a scalar use, and all users of the 5421 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5422 // place the pointer in PossibleNonScalarPtrs. 5423 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5424 return isa<LoadInst>(U) || isa<StoreInst>(U); 5425 })) 5426 ScalarPtrs.insert(I); 5427 else 5428 PossibleNonScalarPtrs.insert(I); 5429 }; 5430 5431 // We seed the scalars analysis with three classes of instructions: (1) 5432 // instructions marked uniform-after-vectorization, (2) bitcast and 5433 // getelementptr instructions used by memory accesses requiring a scalar use, 5434 // and (3) pointer induction variables and their update instructions (we 5435 // currently only scalarize these). 5436 // 5437 // (1) Add to the worklist all instructions that have been identified as 5438 // uniform-after-vectorization. 5439 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5440 5441 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5442 // memory accesses requiring a scalar use. The pointer operands of loads and 5443 // stores will be scalar as long as the memory accesses is not a gather or 5444 // scatter operation. The value operand of a store will remain scalar if the 5445 // store is scalarized. 5446 for (auto *BB : TheLoop->blocks()) 5447 for (auto &I : *BB) { 5448 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5449 evaluatePtrUse(Load, Load->getPointerOperand()); 5450 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5451 evaluatePtrUse(Store, Store->getPointerOperand()); 5452 evaluatePtrUse(Store, Store->getValueOperand()); 5453 } 5454 } 5455 for (auto *I : ScalarPtrs) 5456 if (!PossibleNonScalarPtrs.count(I)) { 5457 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5458 Worklist.insert(I); 5459 } 5460 5461 // (3) Add to the worklist all pointer induction variables and their update 5462 // instructions. 5463 // 5464 // TODO: Once we are able to vectorize pointer induction variables we should 5465 // no longer insert them into the worklist here. 5466 auto *Latch = TheLoop->getLoopLatch(); 5467 for (auto &Induction : *Legal->getInductionVars()) { 5468 auto *Ind = Induction.first; 5469 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5470 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5471 continue; 5472 Worklist.insert(Ind); 5473 Worklist.insert(IndUpdate); 5474 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5475 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5476 } 5477 5478 // Insert the forced scalars. 5479 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5480 // induction variable when the PHI user is scalarized. 5481 if (ForcedScalars.count(VF)) 5482 for (auto *I : ForcedScalars.find(VF)->second) 5483 Worklist.insert(I); 5484 5485 // Expand the worklist by looking through any bitcasts and getelementptr 5486 // instructions we've already identified as scalar. This is similar to the 5487 // expansion step in collectLoopUniforms(); however, here we're only 5488 // expanding to include additional bitcasts and getelementptr instructions. 5489 unsigned Idx = 0; 5490 while (Idx != Worklist.size()) { 5491 Instruction *Dst = Worklist[Idx++]; 5492 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5493 continue; 5494 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5495 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5496 auto *J = cast<Instruction>(U); 5497 return !TheLoop->contains(J) || Worklist.count(J) || 5498 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5499 isScalarUse(J, Src)); 5500 })) { 5501 Worklist.insert(Src); 5502 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5503 } 5504 } 5505 5506 // An induction variable will remain scalar if all users of the induction 5507 // variable and induction variable update remain scalar. 5508 for (auto &Induction : *Legal->getInductionVars()) { 5509 auto *Ind = Induction.first; 5510 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5511 5512 // We already considered pointer induction variables, so there's no reason 5513 // to look at their users again. 5514 // 5515 // TODO: Once we are able to vectorize pointer induction variables we 5516 // should no longer skip over them here. 5517 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5518 continue; 5519 5520 // Determine if all users of the induction variable are scalar after 5521 // vectorization. 5522 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5523 auto *I = cast<Instruction>(U); 5524 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5525 }); 5526 if (!ScalarInd) 5527 continue; 5528 5529 // Determine if all users of the induction variable update instruction are 5530 // scalar after vectorization. 5531 auto ScalarIndUpdate = 5532 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5533 auto *I = cast<Instruction>(U); 5534 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5535 }); 5536 if (!ScalarIndUpdate) 5537 continue; 5538 5539 // The induction variable and its update instruction will remain scalar. 5540 Worklist.insert(Ind); 5541 Worklist.insert(IndUpdate); 5542 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5543 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5544 } 5545 5546 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5547 } 5548 5549 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5550 if (!blockNeedsPredication(I->getParent())) 5551 return false; 5552 switch(I->getOpcode()) { 5553 default: 5554 break; 5555 case Instruction::Store: 5556 return !isMaskRequired(I); 5557 case Instruction::UDiv: 5558 case Instruction::SDiv: 5559 case Instruction::SRem: 5560 case Instruction::URem: 5561 return mayDivideByZero(*I); 5562 } 5563 return false; 5564 } 5565 5566 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5567 unsigned VF) { 5568 // Get and ensure we have a valid memory instruction. 5569 LoadInst *LI = dyn_cast<LoadInst>(I); 5570 StoreInst *SI = dyn_cast<StoreInst>(I); 5571 assert((LI || SI) && "Invalid memory instruction"); 5572 5573 auto *Ptr = getPointerOperand(I); 5574 5575 // In order to be widened, the pointer should be consecutive, first of all. 5576 if (!isConsecutivePtr(Ptr)) 5577 return false; 5578 5579 // If the instruction is a store located in a predicated block, it will be 5580 // scalarized. 5581 if (isScalarWithPredication(I)) 5582 return false; 5583 5584 // If the instruction's allocated size doesn't equal it's type size, it 5585 // requires padding and will be scalarized. 5586 auto &DL = I->getModule()->getDataLayout(); 5587 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5588 if (hasIrregularType(ScalarTy, DL, VF)) 5589 return false; 5590 5591 return true; 5592 } 5593 5594 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5595 // We should not collect Uniforms more than once per VF. Right now, 5596 // this function is called from collectUniformsAndScalars(), which 5597 // already does this check. Collecting Uniforms for VF=1 does not make any 5598 // sense. 5599 5600 assert(VF >= 2 && !Uniforms.count(VF) && 5601 "This function should not be visited twice for the same VF"); 5602 5603 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5604 // not analyze again. Uniforms.count(VF) will return 1. 5605 Uniforms[VF].clear(); 5606 5607 // We now know that the loop is vectorizable! 5608 // Collect instructions inside the loop that will remain uniform after 5609 // vectorization. 5610 5611 // Global values, params and instructions outside of current loop are out of 5612 // scope. 5613 auto isOutOfScope = [&](Value *V) -> bool { 5614 Instruction *I = dyn_cast<Instruction>(V); 5615 return (!I || !TheLoop->contains(I)); 5616 }; 5617 5618 SetVector<Instruction *> Worklist; 5619 BasicBlock *Latch = TheLoop->getLoopLatch(); 5620 5621 // Start with the conditional branch. If the branch condition is an 5622 // instruction contained in the loop that is only used by the branch, it is 5623 // uniform. 5624 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5625 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5626 Worklist.insert(Cmp); 5627 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5628 } 5629 5630 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5631 // are pointers that are treated like consecutive pointers during 5632 // vectorization. The pointer operands of interleaved accesses are an 5633 // example. 5634 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5635 5636 // Holds pointer operands of instructions that are possibly non-uniform. 5637 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5638 5639 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5640 InstWidening WideningDecision = getWideningDecision(I, VF); 5641 assert(WideningDecision != CM_Unknown && 5642 "Widening decision should be ready at this moment"); 5643 5644 return (WideningDecision == CM_Widen || 5645 WideningDecision == CM_Interleave); 5646 }; 5647 // Iterate over the instructions in the loop, and collect all 5648 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5649 // that a consecutive-like pointer operand will be scalarized, we collect it 5650 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5651 // getelementptr instruction can be used by both vectorized and scalarized 5652 // memory instructions. For example, if a loop loads and stores from the same 5653 // location, but the store is conditional, the store will be scalarized, and 5654 // the getelementptr won't remain uniform. 5655 for (auto *BB : TheLoop->blocks()) 5656 for (auto &I : *BB) { 5657 // If there's no pointer operand, there's nothing to do. 5658 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5659 if (!Ptr) 5660 continue; 5661 5662 // True if all users of Ptr are memory accesses that have Ptr as their 5663 // pointer operand. 5664 auto UsersAreMemAccesses = 5665 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 5666 return getPointerOperand(U) == Ptr; 5667 }); 5668 5669 // Ensure the memory instruction will not be scalarized or used by 5670 // gather/scatter, making its pointer operand non-uniform. If the pointer 5671 // operand is used by any instruction other than a memory access, we 5672 // conservatively assume the pointer operand may be non-uniform. 5673 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5674 PossibleNonUniformPtrs.insert(Ptr); 5675 5676 // If the memory instruction will be vectorized and its pointer operand 5677 // is consecutive-like, or interleaving - the pointer operand should 5678 // remain uniform. 5679 else 5680 ConsecutiveLikePtrs.insert(Ptr); 5681 } 5682 5683 // Add to the Worklist all consecutive and consecutive-like pointers that 5684 // aren't also identified as possibly non-uniform. 5685 for (auto *V : ConsecutiveLikePtrs) 5686 if (!PossibleNonUniformPtrs.count(V)) { 5687 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5688 Worklist.insert(V); 5689 } 5690 5691 // Expand Worklist in topological order: whenever a new instruction 5692 // is added , its users should be either already inside Worklist, or 5693 // out of scope. It ensures a uniform instruction will only be used 5694 // by uniform instructions or out of scope instructions. 5695 unsigned idx = 0; 5696 while (idx != Worklist.size()) { 5697 Instruction *I = Worklist[idx++]; 5698 5699 for (auto OV : I->operand_values()) { 5700 if (isOutOfScope(OV)) 5701 continue; 5702 auto *OI = cast<Instruction>(OV); 5703 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5704 auto *J = cast<Instruction>(U); 5705 return !TheLoop->contains(J) || Worklist.count(J) || 5706 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5707 })) { 5708 Worklist.insert(OI); 5709 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5710 } 5711 } 5712 } 5713 5714 // Returns true if Ptr is the pointer operand of a memory access instruction 5715 // I, and I is known to not require scalarization. 5716 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5717 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5718 }; 5719 5720 // For an instruction to be added into Worklist above, all its users inside 5721 // the loop should also be in Worklist. However, this condition cannot be 5722 // true for phi nodes that form a cyclic dependence. We must process phi 5723 // nodes separately. An induction variable will remain uniform if all users 5724 // of the induction variable and induction variable update remain uniform. 5725 // The code below handles both pointer and non-pointer induction variables. 5726 for (auto &Induction : *Legal->getInductionVars()) { 5727 auto *Ind = Induction.first; 5728 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5729 5730 // Determine if all users of the induction variable are uniform after 5731 // vectorization. 5732 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5733 auto *I = cast<Instruction>(U); 5734 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5735 isVectorizedMemAccessUse(I, Ind); 5736 }); 5737 if (!UniformInd) 5738 continue; 5739 5740 // Determine if all users of the induction variable update instruction are 5741 // uniform after vectorization. 5742 auto UniformIndUpdate = 5743 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5744 auto *I = cast<Instruction>(U); 5745 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5746 isVectorizedMemAccessUse(I, IndUpdate); 5747 }); 5748 if (!UniformIndUpdate) 5749 continue; 5750 5751 // The induction variable and its update instruction will remain uniform. 5752 Worklist.insert(Ind); 5753 Worklist.insert(IndUpdate); 5754 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5755 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5756 } 5757 5758 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5759 } 5760 5761 bool LoopVectorizationLegality::canVectorizeMemory() { 5762 LAI = &(*GetLAA)(*TheLoop); 5763 InterleaveInfo.setLAI(LAI); 5764 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5765 if (LAR) { 5766 ORE->emit([&]() { 5767 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 5768 "loop not vectorized: ", *LAR); 5769 }); 5770 } 5771 if (!LAI->canVectorizeMemory()) 5772 return false; 5773 5774 if (LAI->hasStoreToLoopInvariantAddress()) { 5775 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5776 << "write to a loop invariant address could not be vectorized"); 5777 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5778 return false; 5779 } 5780 5781 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5782 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5783 5784 return true; 5785 } 5786 5787 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5788 Value *In0 = const_cast<Value *>(V); 5789 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5790 if (!PN) 5791 return false; 5792 5793 return Inductions.count(PN); 5794 } 5795 5796 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5797 return FirstOrderRecurrences.count(Phi); 5798 } 5799 5800 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5801 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5802 } 5803 5804 bool LoopVectorizationLegality::blockCanBePredicated( 5805 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5806 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5807 5808 for (Instruction &I : *BB) { 5809 // Check that we don't have a constant expression that can trap as operand. 5810 for (Value *Operand : I.operands()) { 5811 if (auto *C = dyn_cast<Constant>(Operand)) 5812 if (C->canTrap()) 5813 return false; 5814 } 5815 // We might be able to hoist the load. 5816 if (I.mayReadFromMemory()) { 5817 auto *LI = dyn_cast<LoadInst>(&I); 5818 if (!LI) 5819 return false; 5820 if (!SafePtrs.count(LI->getPointerOperand())) { 5821 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5822 isLegalMaskedGather(LI->getType())) { 5823 MaskedOp.insert(LI); 5824 continue; 5825 } 5826 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5827 if (IsAnnotatedParallel) 5828 continue; 5829 return false; 5830 } 5831 } 5832 5833 if (I.mayWriteToMemory()) { 5834 auto *SI = dyn_cast<StoreInst>(&I); 5835 // We only support predication of stores in basic blocks with one 5836 // predecessor. 5837 if (!SI) 5838 return false; 5839 5840 // Build a masked store if it is legal for the target. 5841 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5842 SI->getPointerOperand()) || 5843 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5844 MaskedOp.insert(SI); 5845 continue; 5846 } 5847 5848 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5849 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5850 5851 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5852 !isSinglePredecessor) 5853 return false; 5854 } 5855 if (I.mayThrow()) 5856 return false; 5857 } 5858 5859 return true; 5860 } 5861 5862 void InterleavedAccessInfo::collectConstStrideAccesses( 5863 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5864 const ValueToValueMap &Strides) { 5865 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5866 5867 // Since it's desired that the load/store instructions be maintained in 5868 // "program order" for the interleaved access analysis, we have to visit the 5869 // blocks in the loop in reverse postorder (i.e., in a topological order). 5870 // Such an ordering will ensure that any load/store that may be executed 5871 // before a second load/store will precede the second load/store in 5872 // AccessStrideInfo. 5873 LoopBlocksDFS DFS(TheLoop); 5874 DFS.perform(LI); 5875 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5876 for (auto &I : *BB) { 5877 auto *LI = dyn_cast<LoadInst>(&I); 5878 auto *SI = dyn_cast<StoreInst>(&I); 5879 if (!LI && !SI) 5880 continue; 5881 5882 Value *Ptr = getPointerOperand(&I); 5883 // We don't check wrapping here because we don't know yet if Ptr will be 5884 // part of a full group or a group with gaps. Checking wrapping for all 5885 // pointers (even those that end up in groups with no gaps) will be overly 5886 // conservative. For full groups, wrapping should be ok since if we would 5887 // wrap around the address space we would do a memory access at nullptr 5888 // even without the transformation. The wrapping checks are therefore 5889 // deferred until after we've formed the interleaved groups. 5890 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5891 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5892 5893 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5894 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5895 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5896 5897 // An alignment of 0 means target ABI alignment. 5898 unsigned Align = getMemInstAlignment(&I); 5899 if (!Align) 5900 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5901 5902 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5903 } 5904 } 5905 5906 // Analyze interleaved accesses and collect them into interleaved load and 5907 // store groups. 5908 // 5909 // When generating code for an interleaved load group, we effectively hoist all 5910 // loads in the group to the location of the first load in program order. When 5911 // generating code for an interleaved store group, we sink all stores to the 5912 // location of the last store. This code motion can change the order of load 5913 // and store instructions and may break dependences. 5914 // 5915 // The code generation strategy mentioned above ensures that we won't violate 5916 // any write-after-read (WAR) dependences. 5917 // 5918 // E.g., for the WAR dependence: a = A[i]; // (1) 5919 // A[i] = b; // (2) 5920 // 5921 // The store group of (2) is always inserted at or below (2), and the load 5922 // group of (1) is always inserted at or above (1). Thus, the instructions will 5923 // never be reordered. All other dependences are checked to ensure the 5924 // correctness of the instruction reordering. 5925 // 5926 // The algorithm visits all memory accesses in the loop in bottom-up program 5927 // order. Program order is established by traversing the blocks in the loop in 5928 // reverse postorder when collecting the accesses. 5929 // 5930 // We visit the memory accesses in bottom-up order because it can simplify the 5931 // construction of store groups in the presence of write-after-write (WAW) 5932 // dependences. 5933 // 5934 // E.g., for the WAW dependence: A[i] = a; // (1) 5935 // A[i] = b; // (2) 5936 // A[i + 1] = c; // (3) 5937 // 5938 // We will first create a store group with (3) and (2). (1) can't be added to 5939 // this group because it and (2) are dependent. However, (1) can be grouped 5940 // with other accesses that may precede it in program order. Note that a 5941 // bottom-up order does not imply that WAW dependences should not be checked. 5942 void InterleavedAccessInfo::analyzeInterleaving( 5943 const ValueToValueMap &Strides) { 5944 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5945 5946 // Holds all accesses with a constant stride. 5947 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5948 collectConstStrideAccesses(AccessStrideInfo, Strides); 5949 5950 if (AccessStrideInfo.empty()) 5951 return; 5952 5953 // Collect the dependences in the loop. 5954 collectDependences(); 5955 5956 // Holds all interleaved store groups temporarily. 5957 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5958 // Holds all interleaved load groups temporarily. 5959 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5960 5961 // Search in bottom-up program order for pairs of accesses (A and B) that can 5962 // form interleaved load or store groups. In the algorithm below, access A 5963 // precedes access B in program order. We initialize a group for B in the 5964 // outer loop of the algorithm, and then in the inner loop, we attempt to 5965 // insert each A into B's group if: 5966 // 5967 // 1. A and B have the same stride, 5968 // 2. A and B have the same memory object size, and 5969 // 3. A belongs in B's group according to its distance from B. 5970 // 5971 // Special care is taken to ensure group formation will not break any 5972 // dependences. 5973 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5974 BI != E; ++BI) { 5975 Instruction *B = BI->first; 5976 StrideDescriptor DesB = BI->second; 5977 5978 // Initialize a group for B if it has an allowable stride. Even if we don't 5979 // create a group for B, we continue with the bottom-up algorithm to ensure 5980 // we don't break any of B's dependences. 5981 InterleaveGroup *Group = nullptr; 5982 if (isStrided(DesB.Stride)) { 5983 Group = getInterleaveGroup(B); 5984 if (!Group) { 5985 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 5986 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 5987 } 5988 if (B->mayWriteToMemory()) 5989 StoreGroups.insert(Group); 5990 else 5991 LoadGroups.insert(Group); 5992 } 5993 5994 for (auto AI = std::next(BI); AI != E; ++AI) { 5995 Instruction *A = AI->first; 5996 StrideDescriptor DesA = AI->second; 5997 5998 // Our code motion strategy implies that we can't have dependences 5999 // between accesses in an interleaved group and other accesses located 6000 // between the first and last member of the group. Note that this also 6001 // means that a group can't have more than one member at a given offset. 6002 // The accesses in a group can have dependences with other accesses, but 6003 // we must ensure we don't extend the boundaries of the group such that 6004 // we encompass those dependent accesses. 6005 // 6006 // For example, assume we have the sequence of accesses shown below in a 6007 // stride-2 loop: 6008 // 6009 // (1, 2) is a group | A[i] = a; // (1) 6010 // | A[i-1] = b; // (2) | 6011 // A[i-3] = c; // (3) 6012 // A[i] = d; // (4) | (2, 4) is not a group 6013 // 6014 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 6015 // but not with (4). If we did, the dependent access (3) would be within 6016 // the boundaries of the (2, 4) group. 6017 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 6018 // If a dependence exists and A is already in a group, we know that A 6019 // must be a store since A precedes B and WAR dependences are allowed. 6020 // Thus, A would be sunk below B. We release A's group to prevent this 6021 // illegal code motion. A will then be free to form another group with 6022 // instructions that precede it. 6023 if (isInterleaved(A)) { 6024 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 6025 StoreGroups.remove(StoreGroup); 6026 releaseGroup(StoreGroup); 6027 } 6028 6029 // If a dependence exists and A is not already in a group (or it was 6030 // and we just released it), B might be hoisted above A (if B is a 6031 // load) or another store might be sunk below A (if B is a store). In 6032 // either case, we can't add additional instructions to B's group. B 6033 // will only form a group with instructions that it precedes. 6034 break; 6035 } 6036 6037 // At this point, we've checked for illegal code motion. If either A or B 6038 // isn't strided, there's nothing left to do. 6039 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 6040 continue; 6041 6042 // Ignore A if it's already in a group or isn't the same kind of memory 6043 // operation as B. 6044 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 6045 continue; 6046 6047 // Check rules 1 and 2. Ignore A if its stride or size is different from 6048 // that of B. 6049 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 6050 continue; 6051 6052 // Ignore A if the memory object of A and B don't belong to the same 6053 // address space 6054 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 6055 continue; 6056 6057 // Calculate the distance from A to B. 6058 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6059 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6060 if (!DistToB) 6061 continue; 6062 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6063 6064 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6065 // size. 6066 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6067 continue; 6068 6069 // Ignore A if either A or B is in a predicated block. Although we 6070 // currently prevent group formation for predicated accesses, we may be 6071 // able to relax this limitation in the future once we handle more 6072 // complicated blocks. 6073 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6074 continue; 6075 6076 // The index of A is the index of B plus A's distance to B in multiples 6077 // of the size. 6078 int IndexA = 6079 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6080 6081 // Try to insert A into B's group. 6082 if (Group->insertMember(A, IndexA, DesA.Align)) { 6083 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6084 << " into the interleave group with" << *B << '\n'); 6085 InterleaveGroupMap[A] = Group; 6086 6087 // Set the first load in program order as the insert position. 6088 if (A->mayReadFromMemory()) 6089 Group->setInsertPos(A); 6090 } 6091 } // Iteration over A accesses. 6092 } // Iteration over B accesses. 6093 6094 // Remove interleaved store groups with gaps. 6095 for (InterleaveGroup *Group : StoreGroups) 6096 if (Group->getNumMembers() != Group->getFactor()) { 6097 DEBUG(dbgs() << "LV: Invalidate candidate interleaved store group due " 6098 "to gaps.\n"); 6099 releaseGroup(Group); 6100 } 6101 // Remove interleaved groups with gaps (currently only loads) whose memory 6102 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6103 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6104 // not check wrapping (see documentation there). 6105 // FORNOW we use Assume=false; 6106 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6107 // of runtime SCEV assumptions checks (thereby potentially failing to 6108 // vectorize altogether). 6109 // Additional optional optimizations: 6110 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6111 // wrap then we can deduce that all pointers in the group don't wrap. 6112 // This means that we can forcefully peel the loop in order to only have to 6113 // check the first pointer for no-wrap. When we'll change to use Assume=true 6114 // we'll only need at most one runtime check per interleaved group. 6115 for (InterleaveGroup *Group : LoadGroups) { 6116 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6117 // load would wrap around the address space we would do a memory access at 6118 // nullptr even without the transformation. 6119 if (Group->getNumMembers() == Group->getFactor()) 6120 continue; 6121 6122 // Case 2: If first and last members of the group don't wrap this implies 6123 // that all the pointers in the group don't wrap. 6124 // So we check only group member 0 (which is always guaranteed to exist), 6125 // and group member Factor - 1; If the latter doesn't exist we rely on 6126 // peeling (if it is a non-reveresed accsess -- see Case 3). 6127 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6128 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6129 /*ShouldCheckWrap=*/true)) { 6130 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6131 "first group member potentially pointer-wrapping.\n"); 6132 releaseGroup(Group); 6133 continue; 6134 } 6135 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6136 if (LastMember) { 6137 Value *LastMemberPtr = getPointerOperand(LastMember); 6138 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6139 /*ShouldCheckWrap=*/true)) { 6140 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6141 "last group member potentially pointer-wrapping.\n"); 6142 releaseGroup(Group); 6143 } 6144 } else { 6145 // Case 3: A non-reversed interleaved load group with gaps: We need 6146 // to execute at least one scalar epilogue iteration. This will ensure 6147 // we don't speculatively access memory out-of-bounds. We only need 6148 // to look for a member at index factor - 1, since every group must have 6149 // a member at index zero. 6150 if (Group->isReverse()) { 6151 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6152 "a reverse access with gaps.\n"); 6153 releaseGroup(Group); 6154 continue; 6155 } 6156 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6157 RequiresScalarEpilogue = true; 6158 } 6159 } 6160 } 6161 6162 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6163 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6164 ORE->emit(createMissedAnalysis("ConditionalStore") 6165 << "store that is conditionally executed prevents vectorization"); 6166 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6167 return None; 6168 } 6169 6170 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 6171 // TODO: It may by useful to do since it's still likely to be dynamically 6172 // uniform if the target can skip. 6173 DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 6174 6175 ORE->emit( 6176 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 6177 << "runtime pointer checks needed. Not enabled for divergent target"); 6178 6179 return None; 6180 } 6181 6182 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6183 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6184 return computeFeasibleMaxVF(OptForSize, TC); 6185 6186 if (Legal->getRuntimePointerChecking()->Need) { 6187 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6188 << "runtime pointer checks needed. Enable vectorization of this " 6189 "loop with '#pragma clang loop vectorize(enable)' when " 6190 "compiling with -Os/-Oz"); 6191 DEBUG(dbgs() 6192 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6193 return None; 6194 } 6195 6196 // If we optimize the program for size, avoid creating the tail loop. 6197 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6198 6199 // If we don't know the precise trip count, don't try to vectorize. 6200 if (TC < 2) { 6201 ORE->emit( 6202 createMissedAnalysis("UnknownLoopCountComplexCFG") 6203 << "unable to calculate the loop count due to complex control flow"); 6204 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6205 return None; 6206 } 6207 6208 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 6209 6210 if (TC % MaxVF != 0) { 6211 // If the trip count that we found modulo the vectorization factor is not 6212 // zero then we require a tail. 6213 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6214 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6215 // smaller MaxVF that does not require a scalar epilog. 6216 6217 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6218 << "cannot optimize for size and vectorize at the " 6219 "same time. Enable vectorization of this loop " 6220 "with '#pragma clang loop vectorize(enable)' " 6221 "when compiling with -Os/-Oz"); 6222 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6223 return None; 6224 } 6225 6226 return MaxVF; 6227 } 6228 6229 unsigned 6230 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 6231 unsigned ConstTripCount) { 6232 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6233 unsigned SmallestType, WidestType; 6234 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6235 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6236 6237 // Get the maximum safe dependence distance in bits computed by LAA. 6238 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 6239 // the memory accesses that is most restrictive (involved in the smallest 6240 // dependence distance). 6241 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 6242 6243 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 6244 6245 unsigned MaxVectorSize = WidestRegister / WidestType; 6246 6247 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6248 << WidestType << " bits.\n"); 6249 DEBUG(dbgs() << "LV: The Widest register safe to use is: " << WidestRegister 6250 << " bits.\n"); 6251 6252 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6253 " into one vector!"); 6254 if (MaxVectorSize == 0) { 6255 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6256 MaxVectorSize = 1; 6257 return MaxVectorSize; 6258 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 6259 isPowerOf2_32(ConstTripCount)) { 6260 // We need to clamp the VF to be the ConstTripCount. There is no point in 6261 // choosing a higher viable VF as done in the loop below. 6262 DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 6263 << ConstTripCount << "\n"); 6264 MaxVectorSize = ConstTripCount; 6265 return MaxVectorSize; 6266 } 6267 6268 unsigned MaxVF = MaxVectorSize; 6269 if (MaximizeBandwidth && !OptForSize) { 6270 // Collect all viable vectorization factors larger than the default MaxVF 6271 // (i.e. MaxVectorSize). 6272 SmallVector<unsigned, 8> VFs; 6273 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6274 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 6275 VFs.push_back(VS); 6276 6277 // For each VF calculate its register usage. 6278 auto RUs = calculateRegisterUsage(VFs); 6279 6280 // Select the largest VF which doesn't require more registers than existing 6281 // ones. 6282 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6283 for (int i = RUs.size() - 1; i >= 0; --i) { 6284 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6285 MaxVF = VFs[i]; 6286 break; 6287 } 6288 } 6289 } 6290 return MaxVF; 6291 } 6292 6293 LoopVectorizationCostModel::VectorizationFactor 6294 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6295 float Cost = expectedCost(1).first; 6296 #ifndef NDEBUG 6297 const float ScalarCost = Cost; 6298 #endif /* NDEBUG */ 6299 unsigned Width = 1; 6300 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6301 6302 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6303 // Ignore scalar width, because the user explicitly wants vectorization. 6304 if (ForceVectorization && MaxVF > 1) { 6305 Width = 2; 6306 Cost = expectedCost(Width).first / (float)Width; 6307 } 6308 6309 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6310 // Notice that the vector loop needs to be executed less times, so 6311 // we need to divide the cost of the vector loops by the width of 6312 // the vector elements. 6313 VectorizationCostTy C = expectedCost(i); 6314 float VectorCost = C.first / (float)i; 6315 DEBUG(dbgs() << "LV: Vector loop of width " << i 6316 << " costs: " << (int)VectorCost << ".\n"); 6317 if (!C.second && !ForceVectorization) { 6318 DEBUG( 6319 dbgs() << "LV: Not considering vector loop of width " << i 6320 << " because it will not generate any vector instructions.\n"); 6321 continue; 6322 } 6323 if (VectorCost < Cost) { 6324 Cost = VectorCost; 6325 Width = i; 6326 } 6327 } 6328 6329 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6330 << "LV: Vectorization seems to be not beneficial, " 6331 << "but was forced by a user.\n"); 6332 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6333 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6334 return Factor; 6335 } 6336 6337 std::pair<unsigned, unsigned> 6338 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6339 unsigned MinWidth = -1U; 6340 unsigned MaxWidth = 8; 6341 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6342 6343 // For each block. 6344 for (BasicBlock *BB : TheLoop->blocks()) { 6345 // For each instruction in the loop. 6346 for (Instruction &I : *BB) { 6347 Type *T = I.getType(); 6348 6349 // Skip ignored values. 6350 if (ValuesToIgnore.count(&I)) 6351 continue; 6352 6353 // Only examine Loads, Stores and PHINodes. 6354 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6355 continue; 6356 6357 // Examine PHI nodes that are reduction variables. Update the type to 6358 // account for the recurrence type. 6359 if (auto *PN = dyn_cast<PHINode>(&I)) { 6360 if (!Legal->isReductionVariable(PN)) 6361 continue; 6362 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6363 T = RdxDesc.getRecurrenceType(); 6364 } 6365 6366 // Examine the stored values. 6367 if (auto *ST = dyn_cast<StoreInst>(&I)) 6368 T = ST->getValueOperand()->getType(); 6369 6370 // Ignore loaded pointer types and stored pointer types that are not 6371 // vectorizable. 6372 // 6373 // FIXME: The check here attempts to predict whether a load or store will 6374 // be vectorized. We only know this for certain after a VF has 6375 // been selected. Here, we assume that if an access can be 6376 // vectorized, it will be. We should also look at extending this 6377 // optimization to non-pointer types. 6378 // 6379 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6380 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6381 continue; 6382 6383 MinWidth = std::min(MinWidth, 6384 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6385 MaxWidth = std::max(MaxWidth, 6386 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6387 } 6388 } 6389 6390 return {MinWidth, MaxWidth}; 6391 } 6392 6393 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6394 unsigned VF, 6395 unsigned LoopCost) { 6396 // -- The interleave heuristics -- 6397 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6398 // There are many micro-architectural considerations that we can't predict 6399 // at this level. For example, frontend pressure (on decode or fetch) due to 6400 // code size, or the number and capabilities of the execution ports. 6401 // 6402 // We use the following heuristics to select the interleave count: 6403 // 1. If the code has reductions, then we interleave to break the cross 6404 // iteration dependency. 6405 // 2. If the loop is really small, then we interleave to reduce the loop 6406 // overhead. 6407 // 3. We don't interleave if we think that we will spill registers to memory 6408 // due to the increased register pressure. 6409 6410 // When we optimize for size, we don't interleave. 6411 if (OptForSize) 6412 return 1; 6413 6414 // We used the distance for the interleave count. 6415 if (Legal->getMaxSafeDepDistBytes() != -1U) 6416 return 1; 6417 6418 // Do not interleave loops with a relatively small trip count. 6419 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6420 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6421 return 1; 6422 6423 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6424 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6425 << " registers\n"); 6426 6427 if (VF == 1) { 6428 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6429 TargetNumRegisters = ForceTargetNumScalarRegs; 6430 } else { 6431 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6432 TargetNumRegisters = ForceTargetNumVectorRegs; 6433 } 6434 6435 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6436 // We divide by these constants so assume that we have at least one 6437 // instruction that uses at least one register. 6438 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6439 R.NumInstructions = std::max(R.NumInstructions, 1U); 6440 6441 // We calculate the interleave count using the following formula. 6442 // Subtract the number of loop invariants from the number of available 6443 // registers. These registers are used by all of the interleaved instances. 6444 // Next, divide the remaining registers by the number of registers that is 6445 // required by the loop, in order to estimate how many parallel instances 6446 // fit without causing spills. All of this is rounded down if necessary to be 6447 // a power of two. We want power of two interleave count to simplify any 6448 // addressing operations or alignment considerations. 6449 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6450 R.MaxLocalUsers); 6451 6452 // Don't count the induction variable as interleaved. 6453 if (EnableIndVarRegisterHeur) 6454 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6455 std::max(1U, (R.MaxLocalUsers - 1))); 6456 6457 // Clamp the interleave ranges to reasonable counts. 6458 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6459 6460 // Check if the user has overridden the max. 6461 if (VF == 1) { 6462 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6463 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6464 } else { 6465 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6466 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6467 } 6468 6469 // If we did not calculate the cost for VF (because the user selected the VF) 6470 // then we calculate the cost of VF here. 6471 if (LoopCost == 0) 6472 LoopCost = expectedCost(VF).first; 6473 6474 // Clamp the calculated IC to be between the 1 and the max interleave count 6475 // that the target allows. 6476 if (IC > MaxInterleaveCount) 6477 IC = MaxInterleaveCount; 6478 else if (IC < 1) 6479 IC = 1; 6480 6481 // Interleave if we vectorized this loop and there is a reduction that could 6482 // benefit from interleaving. 6483 if (VF > 1 && !Legal->getReductionVars()->empty()) { 6484 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6485 return IC; 6486 } 6487 6488 // Note that if we've already vectorized the loop we will have done the 6489 // runtime check and so interleaving won't require further checks. 6490 bool InterleavingRequiresRuntimePointerCheck = 6491 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6492 6493 // We want to interleave small loops in order to reduce the loop overhead and 6494 // potentially expose ILP opportunities. 6495 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6496 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6497 // We assume that the cost overhead is 1 and we use the cost model 6498 // to estimate the cost of the loop and interleave until the cost of the 6499 // loop overhead is about 5% of the cost of the loop. 6500 unsigned SmallIC = 6501 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6502 6503 // Interleave until store/load ports (estimated by max interleave count) are 6504 // saturated. 6505 unsigned NumStores = Legal->getNumStores(); 6506 unsigned NumLoads = Legal->getNumLoads(); 6507 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6508 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6509 6510 // If we have a scalar reduction (vector reductions are already dealt with 6511 // by this point), we can increase the critical path length if the loop 6512 // we're interleaving is inside another loop. Limit, by default to 2, so the 6513 // critical path only gets increased by one reduction operation. 6514 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 6515 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6516 SmallIC = std::min(SmallIC, F); 6517 StoresIC = std::min(StoresIC, F); 6518 LoadsIC = std::min(LoadsIC, F); 6519 } 6520 6521 if (EnableLoadStoreRuntimeInterleave && 6522 std::max(StoresIC, LoadsIC) > SmallIC) { 6523 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6524 return std::max(StoresIC, LoadsIC); 6525 } 6526 6527 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6528 return SmallIC; 6529 } 6530 6531 // Interleave if this is a large loop (small loops are already dealt with by 6532 // this point) that could benefit from interleaving. 6533 bool HasReductions = !Legal->getReductionVars()->empty(); 6534 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6535 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6536 return IC; 6537 } 6538 6539 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6540 return 1; 6541 } 6542 6543 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6544 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6545 // This function calculates the register usage by measuring the highest number 6546 // of values that are alive at a single location. Obviously, this is a very 6547 // rough estimation. We scan the loop in a topological order in order and 6548 // assign a number to each instruction. We use RPO to ensure that defs are 6549 // met before their users. We assume that each instruction that has in-loop 6550 // users starts an interval. We record every time that an in-loop value is 6551 // used, so we have a list of the first and last occurrences of each 6552 // instruction. Next, we transpose this data structure into a multi map that 6553 // holds the list of intervals that *end* at a specific location. This multi 6554 // map allows us to perform a linear search. We scan the instructions linearly 6555 // and record each time that a new interval starts, by placing it in a set. 6556 // If we find this value in the multi-map then we remove it from the set. 6557 // The max register usage is the maximum size of the set. 6558 // We also search for instructions that are defined outside the loop, but are 6559 // used inside the loop. We need this number separately from the max-interval 6560 // usage number because when we unroll, loop-invariant values do not take 6561 // more register. 6562 LoopBlocksDFS DFS(TheLoop); 6563 DFS.perform(LI); 6564 6565 RegisterUsage RU; 6566 RU.NumInstructions = 0; 6567 6568 // Each 'key' in the map opens a new interval. The values 6569 // of the map are the index of the 'last seen' usage of the 6570 // instruction that is the key. 6571 using IntervalMap = DenseMap<Instruction *, unsigned>; 6572 6573 // Maps instruction to its index. 6574 DenseMap<unsigned, Instruction *> IdxToInstr; 6575 // Marks the end of each interval. 6576 IntervalMap EndPoint; 6577 // Saves the list of instruction indices that are used in the loop. 6578 SmallSet<Instruction *, 8> Ends; 6579 // Saves the list of values that are used in the loop but are 6580 // defined outside the loop, such as arguments and constants. 6581 SmallPtrSet<Value *, 8> LoopInvariants; 6582 6583 unsigned Index = 0; 6584 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6585 RU.NumInstructions += BB->size(); 6586 for (Instruction &I : *BB) { 6587 IdxToInstr[Index++] = &I; 6588 6589 // Save the end location of each USE. 6590 for (Value *U : I.operands()) { 6591 auto *Instr = dyn_cast<Instruction>(U); 6592 6593 // Ignore non-instruction values such as arguments, constants, etc. 6594 if (!Instr) 6595 continue; 6596 6597 // If this instruction is outside the loop then record it and continue. 6598 if (!TheLoop->contains(Instr)) { 6599 LoopInvariants.insert(Instr); 6600 continue; 6601 } 6602 6603 // Overwrite previous end points. 6604 EndPoint[Instr] = Index; 6605 Ends.insert(Instr); 6606 } 6607 } 6608 } 6609 6610 // Saves the list of intervals that end with the index in 'key'. 6611 using InstrList = SmallVector<Instruction *, 2>; 6612 DenseMap<unsigned, InstrList> TransposeEnds; 6613 6614 // Transpose the EndPoints to a list of values that end at each index. 6615 for (auto &Interval : EndPoint) 6616 TransposeEnds[Interval.second].push_back(Interval.first); 6617 6618 SmallSet<Instruction *, 8> OpenIntervals; 6619 6620 // Get the size of the widest register. 6621 unsigned MaxSafeDepDist = -1U; 6622 if (Legal->getMaxSafeDepDistBytes() != -1U) 6623 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6624 unsigned WidestRegister = 6625 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6626 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6627 6628 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6629 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6630 6631 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6632 6633 // A lambda that gets the register usage for the given type and VF. 6634 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6635 if (Ty->isTokenTy()) 6636 return 0U; 6637 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6638 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6639 }; 6640 6641 for (unsigned int i = 0; i < Index; ++i) { 6642 Instruction *I = IdxToInstr[i]; 6643 6644 // Remove all of the instructions that end at this location. 6645 InstrList &List = TransposeEnds[i]; 6646 for (Instruction *ToRemove : List) 6647 OpenIntervals.erase(ToRemove); 6648 6649 // Ignore instructions that are never used within the loop. 6650 if (!Ends.count(I)) 6651 continue; 6652 6653 // Skip ignored values. 6654 if (ValuesToIgnore.count(I)) 6655 continue; 6656 6657 // For each VF find the maximum usage of registers. 6658 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6659 if (VFs[j] == 1) { 6660 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6661 continue; 6662 } 6663 collectUniformsAndScalars(VFs[j]); 6664 // Count the number of live intervals. 6665 unsigned RegUsage = 0; 6666 for (auto Inst : OpenIntervals) { 6667 // Skip ignored values for VF > 1. 6668 if (VecValuesToIgnore.count(Inst) || 6669 isScalarAfterVectorization(Inst, VFs[j])) 6670 continue; 6671 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6672 } 6673 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6674 } 6675 6676 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6677 << OpenIntervals.size() << '\n'); 6678 6679 // Add the current instruction to the list of open intervals. 6680 OpenIntervals.insert(I); 6681 } 6682 6683 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6684 unsigned Invariant = 0; 6685 if (VFs[i] == 1) 6686 Invariant = LoopInvariants.size(); 6687 else { 6688 for (auto Inst : LoopInvariants) 6689 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6690 } 6691 6692 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6693 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6694 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6695 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6696 6697 RU.LoopInvariantRegs = Invariant; 6698 RU.MaxLocalUsers = MaxUsages[i]; 6699 RUs[i] = RU; 6700 } 6701 6702 return RUs; 6703 } 6704 6705 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6706 // If we aren't vectorizing the loop, or if we've already collected the 6707 // instructions to scalarize, there's nothing to do. Collection may already 6708 // have occurred if we have a user-selected VF and are now computing the 6709 // expected cost for interleaving. 6710 if (VF < 2 || InstsToScalarize.count(VF)) 6711 return; 6712 6713 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6714 // not profitable to scalarize any instructions, the presence of VF in the 6715 // map will indicate that we've analyzed it already. 6716 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6717 6718 // Find all the instructions that are scalar with predication in the loop and 6719 // determine if it would be better to not if-convert the blocks they are in. 6720 // If so, we also record the instructions to scalarize. 6721 for (BasicBlock *BB : TheLoop->blocks()) { 6722 if (!Legal->blockNeedsPredication(BB)) 6723 continue; 6724 for (Instruction &I : *BB) 6725 if (Legal->isScalarWithPredication(&I)) { 6726 ScalarCostsTy ScalarCosts; 6727 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6728 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6729 6730 // Remember that BB will remain after vectorization. 6731 PredicatedBBsAfterVectorization.insert(BB); 6732 } 6733 } 6734 } 6735 6736 int LoopVectorizationCostModel::computePredInstDiscount( 6737 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6738 unsigned VF) { 6739 assert(!isUniformAfterVectorization(PredInst, VF) && 6740 "Instruction marked uniform-after-vectorization will be predicated"); 6741 6742 // Initialize the discount to zero, meaning that the scalar version and the 6743 // vector version cost the same. 6744 int Discount = 0; 6745 6746 // Holds instructions to analyze. The instructions we visit are mapped in 6747 // ScalarCosts. Those instructions are the ones that would be scalarized if 6748 // we find that the scalar version costs less. 6749 SmallVector<Instruction *, 8> Worklist; 6750 6751 // Returns true if the given instruction can be scalarized. 6752 auto canBeScalarized = [&](Instruction *I) -> bool { 6753 // We only attempt to scalarize instructions forming a single-use chain 6754 // from the original predicated block that would otherwise be vectorized. 6755 // Although not strictly necessary, we give up on instructions we know will 6756 // already be scalar to avoid traversing chains that are unlikely to be 6757 // beneficial. 6758 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6759 isScalarAfterVectorization(I, VF)) 6760 return false; 6761 6762 // If the instruction is scalar with predication, it will be analyzed 6763 // separately. We ignore it within the context of PredInst. 6764 if (Legal->isScalarWithPredication(I)) 6765 return false; 6766 6767 // If any of the instruction's operands are uniform after vectorization, 6768 // the instruction cannot be scalarized. This prevents, for example, a 6769 // masked load from being scalarized. 6770 // 6771 // We assume we will only emit a value for lane zero of an instruction 6772 // marked uniform after vectorization, rather than VF identical values. 6773 // Thus, if we scalarize an instruction that uses a uniform, we would 6774 // create uses of values corresponding to the lanes we aren't emitting code 6775 // for. This behavior can be changed by allowing getScalarValue to clone 6776 // the lane zero values for uniforms rather than asserting. 6777 for (Use &U : I->operands()) 6778 if (auto *J = dyn_cast<Instruction>(U.get())) 6779 if (isUniformAfterVectorization(J, VF)) 6780 return false; 6781 6782 // Otherwise, we can scalarize the instruction. 6783 return true; 6784 }; 6785 6786 // Returns true if an operand that cannot be scalarized must be extracted 6787 // from a vector. We will account for this scalarization overhead below. Note 6788 // that the non-void predicated instructions are placed in their own blocks, 6789 // and their return values are inserted into vectors. Thus, an extract would 6790 // still be required. 6791 auto needsExtract = [&](Instruction *I) -> bool { 6792 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6793 }; 6794 6795 // Compute the expected cost discount from scalarizing the entire expression 6796 // feeding the predicated instruction. We currently only consider expressions 6797 // that are single-use instruction chains. 6798 Worklist.push_back(PredInst); 6799 while (!Worklist.empty()) { 6800 Instruction *I = Worklist.pop_back_val(); 6801 6802 // If we've already analyzed the instruction, there's nothing to do. 6803 if (ScalarCosts.count(I)) 6804 continue; 6805 6806 // Compute the cost of the vector instruction. Note that this cost already 6807 // includes the scalarization overhead of the predicated instruction. 6808 unsigned VectorCost = getInstructionCost(I, VF).first; 6809 6810 // Compute the cost of the scalarized instruction. This cost is the cost of 6811 // the instruction as if it wasn't if-converted and instead remained in the 6812 // predicated block. We will scale this cost by block probability after 6813 // computing the scalarization overhead. 6814 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6815 6816 // Compute the scalarization overhead of needed insertelement instructions 6817 // and phi nodes. 6818 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6819 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6820 true, false); 6821 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6822 } 6823 6824 // Compute the scalarization overhead of needed extractelement 6825 // instructions. For each of the instruction's operands, if the operand can 6826 // be scalarized, add it to the worklist; otherwise, account for the 6827 // overhead. 6828 for (Use &U : I->operands()) 6829 if (auto *J = dyn_cast<Instruction>(U.get())) { 6830 assert(VectorType::isValidElementType(J->getType()) && 6831 "Instruction has non-scalar type"); 6832 if (canBeScalarized(J)) 6833 Worklist.push_back(J); 6834 else if (needsExtract(J)) 6835 ScalarCost += TTI.getScalarizationOverhead( 6836 ToVectorTy(J->getType(),VF), false, true); 6837 } 6838 6839 // Scale the total scalar cost by block probability. 6840 ScalarCost /= getReciprocalPredBlockProb(); 6841 6842 // Compute the discount. A non-negative discount means the vector version 6843 // of the instruction costs more, and scalarizing would be beneficial. 6844 Discount += VectorCost - ScalarCost; 6845 ScalarCosts[I] = ScalarCost; 6846 } 6847 6848 return Discount; 6849 } 6850 6851 LoopVectorizationCostModel::VectorizationCostTy 6852 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6853 VectorizationCostTy Cost; 6854 6855 // For each block. 6856 for (BasicBlock *BB : TheLoop->blocks()) { 6857 VectorizationCostTy BlockCost; 6858 6859 // For each instruction in the old loop. 6860 for (Instruction &I : *BB) { 6861 // Skip dbg intrinsics. 6862 if (isa<DbgInfoIntrinsic>(I)) 6863 continue; 6864 6865 // Skip ignored values. 6866 if (ValuesToIgnore.count(&I)) 6867 continue; 6868 6869 VectorizationCostTy C = getInstructionCost(&I, VF); 6870 6871 // Check if we should override the cost. 6872 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6873 C.first = ForceTargetInstructionCost; 6874 6875 BlockCost.first += C.first; 6876 BlockCost.second |= C.second; 6877 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6878 << VF << " For instruction: " << I << '\n'); 6879 } 6880 6881 // If we are vectorizing a predicated block, it will have been 6882 // if-converted. This means that the block's instructions (aside from 6883 // stores and instructions that may divide by zero) will now be 6884 // unconditionally executed. For the scalar case, we may not always execute 6885 // the predicated block. Thus, scale the block's cost by the probability of 6886 // executing it. 6887 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6888 BlockCost.first /= getReciprocalPredBlockProb(); 6889 6890 Cost.first += BlockCost.first; 6891 Cost.second |= BlockCost.second; 6892 } 6893 6894 return Cost; 6895 } 6896 6897 /// \brief Gets Address Access SCEV after verifying that the access pattern 6898 /// is loop invariant except the induction variable dependence. 6899 /// 6900 /// This SCEV can be sent to the Target in order to estimate the address 6901 /// calculation cost. 6902 static const SCEV *getAddressAccessSCEV( 6903 Value *Ptr, 6904 LoopVectorizationLegality *Legal, 6905 ScalarEvolution *SE, 6906 const Loop *TheLoop) { 6907 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6908 if (!Gep) 6909 return nullptr; 6910 6911 // We are looking for a gep with all loop invariant indices except for one 6912 // which should be an induction variable. 6913 unsigned NumOperands = Gep->getNumOperands(); 6914 for (unsigned i = 1; i < NumOperands; ++i) { 6915 Value *Opd = Gep->getOperand(i); 6916 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6917 !Legal->isInductionVariable(Opd)) 6918 return nullptr; 6919 } 6920 6921 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6922 return SE->getSCEV(Ptr); 6923 } 6924 6925 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6926 return Legal->hasStride(I->getOperand(0)) || 6927 Legal->hasStride(I->getOperand(1)); 6928 } 6929 6930 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6931 unsigned VF) { 6932 Type *ValTy = getMemInstValueType(I); 6933 auto SE = PSE.getSE(); 6934 6935 unsigned Alignment = getMemInstAlignment(I); 6936 unsigned AS = getMemInstAddressSpace(I); 6937 Value *Ptr = getPointerOperand(I); 6938 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6939 6940 // Figure out whether the access is strided and get the stride value 6941 // if it's known in compile time 6942 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop); 6943 6944 // Get the cost of the scalar memory instruction and address computation. 6945 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6946 6947 Cost += VF * 6948 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6949 AS, I); 6950 6951 // Get the overhead of the extractelement and insertelement instructions 6952 // we might create due to scalarization. 6953 Cost += getScalarizationOverhead(I, VF, TTI); 6954 6955 // If we have a predicated store, it may not be executed for each vector 6956 // lane. Scale the cost by the probability of executing the predicated 6957 // block. 6958 if (Legal->isScalarWithPredication(I)) 6959 Cost /= getReciprocalPredBlockProb(); 6960 6961 return Cost; 6962 } 6963 6964 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6965 unsigned VF) { 6966 Type *ValTy = getMemInstValueType(I); 6967 Type *VectorTy = ToVectorTy(ValTy, VF); 6968 unsigned Alignment = getMemInstAlignment(I); 6969 Value *Ptr = getPointerOperand(I); 6970 unsigned AS = getMemInstAddressSpace(I); 6971 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6972 6973 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6974 "Stride should be 1 or -1 for consecutive memory access"); 6975 unsigned Cost = 0; 6976 if (Legal->isMaskRequired(I)) 6977 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6978 else 6979 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 6980 6981 bool Reverse = ConsecutiveStride < 0; 6982 if (Reverse) 6983 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6984 return Cost; 6985 } 6986 6987 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6988 unsigned VF) { 6989 LoadInst *LI = cast<LoadInst>(I); 6990 Type *ValTy = LI->getType(); 6991 Type *VectorTy = ToVectorTy(ValTy, VF); 6992 unsigned Alignment = LI->getAlignment(); 6993 unsigned AS = LI->getPointerAddressSpace(); 6994 6995 return TTI.getAddressComputationCost(ValTy) + 6996 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 6997 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6998 } 6999 7000 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7001 unsigned VF) { 7002 Type *ValTy = getMemInstValueType(I); 7003 Type *VectorTy = ToVectorTy(ValTy, VF); 7004 unsigned Alignment = getMemInstAlignment(I); 7005 Value *Ptr = getPointerOperand(I); 7006 7007 return TTI.getAddressComputationCost(VectorTy) + 7008 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 7009 Legal->isMaskRequired(I), Alignment); 7010 } 7011 7012 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7013 unsigned VF) { 7014 Type *ValTy = getMemInstValueType(I); 7015 Type *VectorTy = ToVectorTy(ValTy, VF); 7016 unsigned AS = getMemInstAddressSpace(I); 7017 7018 auto Group = Legal->getInterleavedAccessGroup(I); 7019 assert(Group && "Fail to get an interleaved access group."); 7020 7021 unsigned InterleaveFactor = Group->getFactor(); 7022 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7023 7024 // Holds the indices of existing members in an interleaved load group. 7025 // An interleaved store group doesn't need this as it doesn't allow gaps. 7026 SmallVector<unsigned, 4> Indices; 7027 if (isa<LoadInst>(I)) { 7028 for (unsigned i = 0; i < InterleaveFactor; i++) 7029 if (Group->getMember(i)) 7030 Indices.push_back(i); 7031 } 7032 7033 // Calculate the cost of the whole interleaved group. 7034 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 7035 Group->getFactor(), Indices, 7036 Group->getAlignment(), AS); 7037 7038 if (Group->isReverse()) 7039 Cost += Group->getNumMembers() * 7040 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7041 return Cost; 7042 } 7043 7044 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7045 unsigned VF) { 7046 // Calculate scalar cost only. Vectorization cost should be ready at this 7047 // moment. 7048 if (VF == 1) { 7049 Type *ValTy = getMemInstValueType(I); 7050 unsigned Alignment = getMemInstAlignment(I); 7051 unsigned AS = getMemInstAddressSpace(I); 7052 7053 return TTI.getAddressComputationCost(ValTy) + 7054 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 7055 } 7056 return getWideningCost(I, VF); 7057 } 7058 7059 LoopVectorizationCostModel::VectorizationCostTy 7060 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7061 // If we know that this instruction will remain uniform, check the cost of 7062 // the scalar version. 7063 if (isUniformAfterVectorization(I, VF)) 7064 VF = 1; 7065 7066 if (VF > 1 && isProfitableToScalarize(I, VF)) 7067 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7068 7069 // Forced scalars do not have any scalarization overhead. 7070 if (VF > 1 && ForcedScalars.count(VF) && 7071 ForcedScalars.find(VF)->second.count(I)) 7072 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 7073 7074 Type *VectorTy; 7075 unsigned C = getInstructionCost(I, VF, VectorTy); 7076 7077 bool TypeNotScalarized = 7078 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 7079 return VectorizationCostTy(C, TypeNotScalarized); 7080 } 7081 7082 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7083 if (VF == 1) 7084 return; 7085 for (BasicBlock *BB : TheLoop->blocks()) { 7086 // For each instruction in the old loop. 7087 for (Instruction &I : *BB) { 7088 Value *Ptr = getPointerOperand(&I); 7089 if (!Ptr) 7090 continue; 7091 7092 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7093 // Scalar load + broadcast 7094 unsigned Cost = getUniformMemOpCost(&I, VF); 7095 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7096 continue; 7097 } 7098 7099 // We assume that widening is the best solution when possible. 7100 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7101 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7102 setWideningDecision(&I, VF, CM_Widen, Cost); 7103 continue; 7104 } 7105 7106 // Choose between Interleaving, Gather/Scatter or Scalarization. 7107 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 7108 unsigned NumAccesses = 1; 7109 if (Legal->isAccessInterleaved(&I)) { 7110 auto Group = Legal->getInterleavedAccessGroup(&I); 7111 assert(Group && "Fail to get an interleaved access group."); 7112 7113 // Make one decision for the whole group. 7114 if (getWideningDecision(&I, VF) != CM_Unknown) 7115 continue; 7116 7117 NumAccesses = Group->getNumMembers(); 7118 InterleaveCost = getInterleaveGroupCost(&I, VF); 7119 } 7120 7121 unsigned GatherScatterCost = 7122 Legal->isLegalGatherOrScatter(&I) 7123 ? getGatherScatterCost(&I, VF) * NumAccesses 7124 : std::numeric_limits<unsigned>::max(); 7125 7126 unsigned ScalarizationCost = 7127 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7128 7129 // Choose better solution for the current VF, 7130 // write down this decision and use it during vectorization. 7131 unsigned Cost; 7132 InstWidening Decision; 7133 if (InterleaveCost <= GatherScatterCost && 7134 InterleaveCost < ScalarizationCost) { 7135 Decision = CM_Interleave; 7136 Cost = InterleaveCost; 7137 } else if (GatherScatterCost < ScalarizationCost) { 7138 Decision = CM_GatherScatter; 7139 Cost = GatherScatterCost; 7140 } else { 7141 Decision = CM_Scalarize; 7142 Cost = ScalarizationCost; 7143 } 7144 // If the instructions belongs to an interleave group, the whole group 7145 // receives the same decision. The whole group receives the cost, but 7146 // the cost will actually be assigned to one instruction. 7147 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7148 setWideningDecision(Group, VF, Decision, Cost); 7149 else 7150 setWideningDecision(&I, VF, Decision, Cost); 7151 } 7152 } 7153 7154 // Make sure that any load of address and any other address computation 7155 // remains scalar unless there is gather/scatter support. This avoids 7156 // inevitable extracts into address registers, and also has the benefit of 7157 // activating LSR more, since that pass can't optimize vectorized 7158 // addresses. 7159 if (TTI.prefersVectorizedAddressing()) 7160 return; 7161 7162 // Start with all scalar pointer uses. 7163 SmallPtrSet<Instruction *, 8> AddrDefs; 7164 for (BasicBlock *BB : TheLoop->blocks()) 7165 for (Instruction &I : *BB) { 7166 Instruction *PtrDef = 7167 dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 7168 if (PtrDef && TheLoop->contains(PtrDef) && 7169 getWideningDecision(&I, VF) != CM_GatherScatter) 7170 AddrDefs.insert(PtrDef); 7171 } 7172 7173 // Add all instructions used to generate the addresses. 7174 SmallVector<Instruction *, 4> Worklist; 7175 for (auto *I : AddrDefs) 7176 Worklist.push_back(I); 7177 while (!Worklist.empty()) { 7178 Instruction *I = Worklist.pop_back_val(); 7179 for (auto &Op : I->operands()) 7180 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7181 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7182 AddrDefs.insert(InstOp).second) 7183 Worklist.push_back(InstOp); 7184 } 7185 7186 for (auto *I : AddrDefs) { 7187 if (isa<LoadInst>(I)) { 7188 // Setting the desired widening decision should ideally be handled in 7189 // by cost functions, but since this involves the task of finding out 7190 // if the loaded register is involved in an address computation, it is 7191 // instead changed here when we know this is the case. 7192 if (getWideningDecision(I, VF) == CM_Widen) 7193 // Scalarize a widened load of address. 7194 setWideningDecision(I, VF, CM_Scalarize, 7195 (VF * getMemoryInstructionCost(I, 1))); 7196 else if (auto Group = Legal->getInterleavedAccessGroup(I)) { 7197 // Scalarize an interleave group of address loads. 7198 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7199 if (Instruction *Member = Group->getMember(I)) 7200 setWideningDecision(Member, VF, CM_Scalarize, 7201 (VF * getMemoryInstructionCost(Member, 1))); 7202 } 7203 } 7204 } else 7205 // Make sure I gets scalarized and a cost estimate without 7206 // scalarization overhead. 7207 ForcedScalars[VF].insert(I); 7208 } 7209 } 7210 7211 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7212 unsigned VF, 7213 Type *&VectorTy) { 7214 Type *RetTy = I->getType(); 7215 if (canTruncateToMinimalBitwidth(I, VF)) 7216 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7217 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7218 auto SE = PSE.getSE(); 7219 7220 // TODO: We need to estimate the cost of intrinsic calls. 7221 switch (I->getOpcode()) { 7222 case Instruction::GetElementPtr: 7223 // We mark this instruction as zero-cost because the cost of GEPs in 7224 // vectorized code depends on whether the corresponding memory instruction 7225 // is scalarized or not. Therefore, we handle GEPs with the memory 7226 // instruction cost. 7227 return 0; 7228 case Instruction::Br: { 7229 // In cases of scalarized and predicated instructions, there will be VF 7230 // predicated blocks in the vectorized loop. Each branch around these 7231 // blocks requires also an extract of its vector compare i1 element. 7232 bool ScalarPredicatedBB = false; 7233 BranchInst *BI = cast<BranchInst>(I); 7234 if (VF > 1 && BI->isConditional() && 7235 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7236 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7237 ScalarPredicatedBB = true; 7238 7239 if (ScalarPredicatedBB) { 7240 // Return cost for branches around scalarized and predicated blocks. 7241 Type *Vec_i1Ty = 7242 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7243 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7244 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7245 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7246 // The back-edge branch will remain, as will all scalar branches. 7247 return TTI.getCFInstrCost(Instruction::Br); 7248 else 7249 // This branch will be eliminated by if-conversion. 7250 return 0; 7251 // Note: We currently assume zero cost for an unconditional branch inside 7252 // a predicated block since it will become a fall-through, although we 7253 // may decide in the future to call TTI for all branches. 7254 } 7255 case Instruction::PHI: { 7256 auto *Phi = cast<PHINode>(I); 7257 7258 // First-order recurrences are replaced by vector shuffles inside the loop. 7259 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7260 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7261 VectorTy, VF - 1, VectorTy); 7262 7263 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7264 // converted into select instructions. We require N - 1 selects per phi 7265 // node, where N is the number of incoming values. 7266 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7267 return (Phi->getNumIncomingValues() - 1) * 7268 TTI.getCmpSelInstrCost( 7269 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7270 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7271 7272 return TTI.getCFInstrCost(Instruction::PHI); 7273 } 7274 case Instruction::UDiv: 7275 case Instruction::SDiv: 7276 case Instruction::URem: 7277 case Instruction::SRem: 7278 // If we have a predicated instruction, it may not be executed for each 7279 // vector lane. Get the scalarization cost and scale this amount by the 7280 // probability of executing the predicated block. If the instruction is not 7281 // predicated, we fall through to the next case. 7282 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7283 unsigned Cost = 0; 7284 7285 // These instructions have a non-void type, so account for the phi nodes 7286 // that we will create. This cost is likely to be zero. The phi node 7287 // cost, if any, should be scaled by the block probability because it 7288 // models a copy at the end of each predicated block. 7289 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7290 7291 // The cost of the non-predicated instruction. 7292 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7293 7294 // The cost of insertelement and extractelement instructions needed for 7295 // scalarization. 7296 Cost += getScalarizationOverhead(I, VF, TTI); 7297 7298 // Scale the cost by the probability of executing the predicated blocks. 7299 // This assumes the predicated block for each vector lane is equally 7300 // likely. 7301 return Cost / getReciprocalPredBlockProb(); 7302 } 7303 LLVM_FALLTHROUGH; 7304 case Instruction::Add: 7305 case Instruction::FAdd: 7306 case Instruction::Sub: 7307 case Instruction::FSub: 7308 case Instruction::Mul: 7309 case Instruction::FMul: 7310 case Instruction::FDiv: 7311 case Instruction::FRem: 7312 case Instruction::Shl: 7313 case Instruction::LShr: 7314 case Instruction::AShr: 7315 case Instruction::And: 7316 case Instruction::Or: 7317 case Instruction::Xor: { 7318 // Since we will replace the stride by 1 the multiplication should go away. 7319 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7320 return 0; 7321 // Certain instructions can be cheaper to vectorize if they have a constant 7322 // second vector operand. One example of this are shifts on x86. 7323 TargetTransformInfo::OperandValueKind Op1VK = 7324 TargetTransformInfo::OK_AnyValue; 7325 TargetTransformInfo::OperandValueKind Op2VK = 7326 TargetTransformInfo::OK_AnyValue; 7327 TargetTransformInfo::OperandValueProperties Op1VP = 7328 TargetTransformInfo::OP_None; 7329 TargetTransformInfo::OperandValueProperties Op2VP = 7330 TargetTransformInfo::OP_None; 7331 Value *Op2 = I->getOperand(1); 7332 7333 // Check for a splat or for a non uniform vector of constants. 7334 if (isa<ConstantInt>(Op2)) { 7335 ConstantInt *CInt = cast<ConstantInt>(Op2); 7336 if (CInt && CInt->getValue().isPowerOf2()) 7337 Op2VP = TargetTransformInfo::OP_PowerOf2; 7338 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7339 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7340 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7341 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7342 if (SplatValue) { 7343 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7344 if (CInt && CInt->getValue().isPowerOf2()) 7345 Op2VP = TargetTransformInfo::OP_PowerOf2; 7346 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7347 } 7348 } else if (Legal->isUniform(Op2)) { 7349 Op2VK = TargetTransformInfo::OK_UniformValue; 7350 } 7351 SmallVector<const Value *, 4> Operands(I->operand_values()); 7352 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7353 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7354 Op2VK, Op1VP, Op2VP, Operands); 7355 } 7356 case Instruction::Select: { 7357 SelectInst *SI = cast<SelectInst>(I); 7358 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7359 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7360 Type *CondTy = SI->getCondition()->getType(); 7361 if (!ScalarCond) 7362 CondTy = VectorType::get(CondTy, VF); 7363 7364 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7365 } 7366 case Instruction::ICmp: 7367 case Instruction::FCmp: { 7368 Type *ValTy = I->getOperand(0)->getType(); 7369 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7370 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7371 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7372 VectorTy = ToVectorTy(ValTy, VF); 7373 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7374 } 7375 case Instruction::Store: 7376 case Instruction::Load: { 7377 unsigned Width = VF; 7378 if (Width > 1) { 7379 InstWidening Decision = getWideningDecision(I, Width); 7380 assert(Decision != CM_Unknown && 7381 "CM decision should be taken at this point"); 7382 if (Decision == CM_Scalarize) 7383 Width = 1; 7384 } 7385 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7386 return getMemoryInstructionCost(I, VF); 7387 } 7388 case Instruction::ZExt: 7389 case Instruction::SExt: 7390 case Instruction::FPToUI: 7391 case Instruction::FPToSI: 7392 case Instruction::FPExt: 7393 case Instruction::PtrToInt: 7394 case Instruction::IntToPtr: 7395 case Instruction::SIToFP: 7396 case Instruction::UIToFP: 7397 case Instruction::Trunc: 7398 case Instruction::FPTrunc: 7399 case Instruction::BitCast: { 7400 // We optimize the truncation of induction variables having constant 7401 // integer steps. The cost of these truncations is the same as the scalar 7402 // operation. 7403 if (isOptimizableIVTruncate(I, VF)) { 7404 auto *Trunc = cast<TruncInst>(I); 7405 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7406 Trunc->getSrcTy(), Trunc); 7407 } 7408 7409 Type *SrcScalarTy = I->getOperand(0)->getType(); 7410 Type *SrcVecTy = 7411 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7412 if (canTruncateToMinimalBitwidth(I, VF)) { 7413 // This cast is going to be shrunk. This may remove the cast or it might 7414 // turn it into slightly different cast. For example, if MinBW == 16, 7415 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7416 // 7417 // Calculate the modified src and dest types. 7418 Type *MinVecTy = VectorTy; 7419 if (I->getOpcode() == Instruction::Trunc) { 7420 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7421 VectorTy = 7422 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7423 } else if (I->getOpcode() == Instruction::ZExt || 7424 I->getOpcode() == Instruction::SExt) { 7425 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7426 VectorTy = 7427 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7428 } 7429 } 7430 7431 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7432 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7433 } 7434 case Instruction::Call: { 7435 bool NeedToScalarize; 7436 CallInst *CI = cast<CallInst>(I); 7437 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7438 if (getVectorIntrinsicIDForCall(CI, TLI)) 7439 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7440 return CallCost; 7441 } 7442 default: 7443 // The cost of executing VF copies of the scalar instruction. This opcode 7444 // is unknown. Assume that it is the same as 'mul'. 7445 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7446 getScalarizationOverhead(I, VF, TTI); 7447 } // end of switch. 7448 } 7449 7450 char LoopVectorize::ID = 0; 7451 7452 static const char lv_name[] = "Loop Vectorization"; 7453 7454 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7455 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7456 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7457 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7458 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7459 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7460 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7461 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7462 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7463 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7464 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7465 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7466 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7467 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7468 7469 namespace llvm { 7470 7471 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7472 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7473 } 7474 7475 } // end namespace llvm 7476 7477 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7478 // Check if the pointer operand of a load or store instruction is 7479 // consecutive. 7480 if (auto *Ptr = getPointerOperand(Inst)) 7481 return Legal->isConsecutivePtr(Ptr); 7482 return false; 7483 } 7484 7485 void LoopVectorizationCostModel::collectValuesToIgnore() { 7486 // Ignore ephemeral values. 7487 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7488 7489 // Ignore type-promoting instructions we identified during reduction 7490 // detection. 7491 for (auto &Reduction : *Legal->getReductionVars()) { 7492 RecurrenceDescriptor &RedDes = Reduction.second; 7493 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7494 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7495 } 7496 } 7497 7498 LoopVectorizationCostModel::VectorizationFactor 7499 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7500 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7501 const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U, 7502 0U}; 7503 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7504 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7505 return NoVectorization; 7506 7507 if (UserVF) { 7508 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7509 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7510 // Collect the instructions (and their associated costs) that will be more 7511 // profitable to scalarize. 7512 CM.selectUserVectorizationFactor(UserVF); 7513 buildVPlans(UserVF, UserVF); 7514 DEBUG(printPlans(dbgs())); 7515 return {UserVF, 0}; 7516 } 7517 7518 unsigned MaxVF = MaybeMaxVF.getValue(); 7519 assert(MaxVF != 0 && "MaxVF is zero."); 7520 7521 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 7522 // Collect Uniform and Scalar instructions after vectorization with VF. 7523 CM.collectUniformsAndScalars(VF); 7524 7525 // Collect the instructions (and their associated costs) that will be more 7526 // profitable to scalarize. 7527 if (VF > 1) 7528 CM.collectInstsToScalarize(VF); 7529 } 7530 7531 buildVPlans(1, MaxVF); 7532 DEBUG(printPlans(dbgs())); 7533 if (MaxVF == 1) 7534 return NoVectorization; 7535 7536 // Select the optimal vectorization factor. 7537 return CM.selectVectorizationFactor(MaxVF); 7538 } 7539 7540 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 7541 DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF << '\n'); 7542 BestVF = VF; 7543 BestUF = UF; 7544 7545 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7546 return !Plan->hasVF(VF); 7547 }); 7548 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7549 } 7550 7551 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7552 DominatorTree *DT) { 7553 // Perform the actual loop transformation. 7554 7555 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7556 VPCallbackILV CallbackILV(ILV); 7557 7558 VPTransformState State{BestVF, BestUF, LI, 7559 DT, ILV.Builder, ILV.VectorLoopValueMap, 7560 &ILV, CallbackILV}; 7561 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7562 7563 //===------------------------------------------------===// 7564 // 7565 // Notice: any optimization or new instruction that go 7566 // into the code below should also be implemented in 7567 // the cost-model. 7568 // 7569 //===------------------------------------------------===// 7570 7571 // 2. Copy and widen instructions from the old loop into the new loop. 7572 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7573 VPlans.front()->execute(&State); 7574 7575 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7576 // predication, updating analyses. 7577 ILV.fixVectorizedLoop(); 7578 } 7579 7580 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7581 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7582 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7583 7584 // We create new control-flow for the vectorized loop, so the original 7585 // condition will be dead after vectorization if it's only used by the 7586 // branch. 7587 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7588 if (Cmp && Cmp->hasOneUse()) 7589 DeadInstructions.insert(Cmp); 7590 7591 // We create new "steps" for induction variable updates to which the original 7592 // induction variables map. An original update instruction will be dead if 7593 // all its users except the induction variable are dead. 7594 for (auto &Induction : *Legal->getInductionVars()) { 7595 PHINode *Ind = Induction.first; 7596 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7597 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7598 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7599 })) 7600 DeadInstructions.insert(IndUpdate); 7601 } 7602 } 7603 7604 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7605 7606 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7607 7608 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7609 Instruction::BinaryOps BinOp) { 7610 // When unrolling and the VF is 1, we only need to add a simple scalar. 7611 Type *Ty = Val->getType(); 7612 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7613 7614 if (Ty->isFloatingPointTy()) { 7615 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7616 7617 // Floating point operations had to be 'fast' to enable the unrolling. 7618 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7619 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7620 } 7621 Constant *C = ConstantInt::get(Ty, StartIdx); 7622 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7623 } 7624 7625 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7626 SmallVector<Metadata *, 4> MDs; 7627 // Reserve first location for self reference to the LoopID metadata node. 7628 MDs.push_back(nullptr); 7629 bool IsUnrollMetadata = false; 7630 MDNode *LoopID = L->getLoopID(); 7631 if (LoopID) { 7632 // First find existing loop unrolling disable metadata. 7633 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7634 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7635 if (MD) { 7636 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7637 IsUnrollMetadata = 7638 S && S->getString().startswith("llvm.loop.unroll.disable"); 7639 } 7640 MDs.push_back(LoopID->getOperand(i)); 7641 } 7642 } 7643 7644 if (!IsUnrollMetadata) { 7645 // Add runtime unroll disable metadata. 7646 LLVMContext &Context = L->getHeader()->getContext(); 7647 SmallVector<Metadata *, 1> DisableOperands; 7648 DisableOperands.push_back( 7649 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7650 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7651 MDs.push_back(DisableNode); 7652 MDNode *NewLoopID = MDNode::get(Context, MDs); 7653 // Set operand 0 to refer to the loop id itself. 7654 NewLoopID->replaceOperandWith(0, NewLoopID); 7655 L->setLoopID(NewLoopID); 7656 } 7657 } 7658 7659 namespace { 7660 7661 /// VPWidenRecipe is a recipe for producing a copy of vector type for each 7662 /// Instruction in its ingredients independently, in order. This recipe covers 7663 /// most of the traditional vectorization cases where each ingredient transforms 7664 /// into a vectorized version of itself. 7665 class VPWidenRecipe : public VPRecipeBase { 7666 private: 7667 /// Hold the ingredients by pointing to their original BasicBlock location. 7668 BasicBlock::iterator Begin; 7669 BasicBlock::iterator End; 7670 7671 public: 7672 VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) { 7673 End = I->getIterator(); 7674 Begin = End++; 7675 } 7676 7677 ~VPWidenRecipe() override = default; 7678 7679 /// Method to support type inquiry through isa, cast, and dyn_cast. 7680 static inline bool classof(const VPRecipeBase *V) { 7681 return V->getVPRecipeID() == VPRecipeBase::VPWidenSC; 7682 } 7683 7684 /// Produce widened copies of all Ingredients. 7685 void execute(VPTransformState &State) override { 7686 for (auto &Instr : make_range(Begin, End)) 7687 State.ILV->widenInstruction(Instr); 7688 } 7689 7690 /// Augment the recipe to include Instr, if it lies at its End. 7691 bool appendInstruction(Instruction *Instr) { 7692 if (End != Instr->getIterator()) 7693 return false; 7694 End++; 7695 return true; 7696 } 7697 7698 /// Print the recipe. 7699 void print(raw_ostream &O, const Twine &Indent) const override { 7700 O << " +\n" << Indent << "\"WIDEN\\l\""; 7701 for (auto &Instr : make_range(Begin, End)) 7702 O << " +\n" << Indent << "\" " << VPlanIngredient(&Instr) << "\\l\""; 7703 } 7704 }; 7705 7706 /// A recipe for handling phi nodes of integer and floating-point inductions, 7707 /// producing their vector and scalar values. 7708 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase { 7709 private: 7710 PHINode *IV; 7711 TruncInst *Trunc; 7712 7713 public: 7714 VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr) 7715 : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {} 7716 ~VPWidenIntOrFpInductionRecipe() override = default; 7717 7718 /// Method to support type inquiry through isa, cast, and dyn_cast. 7719 static inline bool classof(const VPRecipeBase *V) { 7720 return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC; 7721 } 7722 7723 /// Generate the vectorized and scalarized versions of the phi node as 7724 /// needed by their users. 7725 void execute(VPTransformState &State) override { 7726 assert(!State.Instance && "Int or FP induction being replicated."); 7727 State.ILV->widenIntOrFpInduction(IV, Trunc); 7728 } 7729 7730 /// Print the recipe. 7731 void print(raw_ostream &O, const Twine &Indent) const override { 7732 O << " +\n" << Indent << "\"WIDEN-INDUCTION"; 7733 if (Trunc) { 7734 O << "\\l\""; 7735 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 7736 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc) << "\\l\""; 7737 } else 7738 O << " " << VPlanIngredient(IV) << "\\l\""; 7739 } 7740 }; 7741 7742 /// A recipe for handling all phi nodes except for integer and FP inductions. 7743 class VPWidenPHIRecipe : public VPRecipeBase { 7744 private: 7745 PHINode *Phi; 7746 7747 public: 7748 VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {} 7749 ~VPWidenPHIRecipe() override = default; 7750 7751 /// Method to support type inquiry through isa, cast, and dyn_cast. 7752 static inline bool classof(const VPRecipeBase *V) { 7753 return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC; 7754 } 7755 7756 /// Generate the phi/select nodes. 7757 void execute(VPTransformState &State) override { 7758 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7759 } 7760 7761 /// Print the recipe. 7762 void print(raw_ostream &O, const Twine &Indent) const override { 7763 O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\""; 7764 } 7765 }; 7766 7767 /// A recipe for vectorizing a phi-node as a sequence of mask-based select 7768 /// instructions. 7769 class VPBlendRecipe : public VPRecipeBase { 7770 private: 7771 PHINode *Phi; 7772 7773 /// The blend operation is a User of a mask, if not null. 7774 std::unique_ptr<VPUser> User; 7775 7776 public: 7777 VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks) 7778 : VPRecipeBase(VPBlendSC), Phi(Phi) { 7779 assert((Phi->getNumIncomingValues() == 1 || 7780 Phi->getNumIncomingValues() == Masks.size()) && 7781 "Expected the same number of incoming values and masks"); 7782 if (!Masks.empty()) 7783 User.reset(new VPUser(Masks)); 7784 } 7785 7786 /// Method to support type inquiry through isa, cast, and dyn_cast. 7787 static inline bool classof(const VPRecipeBase *V) { 7788 return V->getVPRecipeID() == VPRecipeBase::VPBlendSC; 7789 } 7790 7791 /// Generate the phi/select nodes. 7792 void execute(VPTransformState &State) override { 7793 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7794 // We know that all PHIs in non-header blocks are converted into 7795 // selects, so we don't have to worry about the insertion order and we 7796 // can just use the builder. 7797 // At this point we generate the predication tree. There may be 7798 // duplications since this is a simple recursive scan, but future 7799 // optimizations will clean it up. 7800 7801 unsigned NumIncoming = Phi->getNumIncomingValues(); 7802 7803 assert((User || NumIncoming == 1) && 7804 "Multiple predecessors with predecessors having a full mask"); 7805 // Generate a sequence of selects of the form: 7806 // SELECT(Mask3, In3, 7807 // SELECT(Mask2, In2, 7808 // ( ...))) 7809 InnerLoopVectorizer::VectorParts Entry(State.UF); 7810 for (unsigned In = 0; In < NumIncoming; ++In) { 7811 for (unsigned Part = 0; Part < State.UF; ++Part) { 7812 // We might have single edge PHIs (blocks) - use an identity 7813 // 'select' for the first PHI operand. 7814 Value *In0 = 7815 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 7816 if (In == 0) 7817 Entry[Part] = In0; // Initialize with the first incoming value. 7818 else { 7819 // Select between the current value and the previous incoming edge 7820 // based on the incoming mask. 7821 Value *Cond = State.get(User->getOperand(In), Part); 7822 Entry[Part] = 7823 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7824 } 7825 } 7826 } 7827 for (unsigned Part = 0; Part < State.UF; ++Part) 7828 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7829 } 7830 7831 /// Print the recipe. 7832 void print(raw_ostream &O, const Twine &Indent) const override { 7833 O << " +\n" << Indent << "\"BLEND "; 7834 Phi->printAsOperand(O, false); 7835 O << " ="; 7836 if (!User) { 7837 // Not a User of any mask: not really blending, this is a 7838 // single-predecessor phi. 7839 O << " "; 7840 Phi->getIncomingValue(0)->printAsOperand(O, false); 7841 } else { 7842 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 7843 O << " "; 7844 Phi->getIncomingValue(I)->printAsOperand(O, false); 7845 O << "/"; 7846 User->getOperand(I)->printAsOperand(O); 7847 } 7848 } 7849 O << "\\l\""; 7850 } 7851 }; 7852 7853 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load 7854 /// or stores into one wide load/store and shuffles. 7855 class VPInterleaveRecipe : public VPRecipeBase { 7856 private: 7857 const InterleaveGroup *IG; 7858 7859 public: 7860 VPInterleaveRecipe(const InterleaveGroup *IG) 7861 : VPRecipeBase(VPInterleaveSC), IG(IG) {} 7862 ~VPInterleaveRecipe() override = default; 7863 7864 /// Method to support type inquiry through isa, cast, and dyn_cast. 7865 static inline bool classof(const VPRecipeBase *V) { 7866 return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC; 7867 } 7868 7869 /// Generate the wide load or store, and shuffles. 7870 void execute(VPTransformState &State) override { 7871 assert(!State.Instance && "Interleave group being replicated."); 7872 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7873 } 7874 7875 /// Print the recipe. 7876 void print(raw_ostream &O, const Twine &Indent) const override; 7877 7878 const InterleaveGroup *getInterleaveGroup() { return IG; } 7879 }; 7880 7881 /// VPReplicateRecipe replicates a given instruction producing multiple scalar 7882 /// copies of the original scalar type, one per lane, instead of producing a 7883 /// single copy of widened type for all lanes. If the instruction is known to be 7884 /// uniform only one copy, per lane zero, will be generated. 7885 class VPReplicateRecipe : public VPRecipeBase { 7886 private: 7887 /// The instruction being replicated. 7888 Instruction *Ingredient; 7889 7890 /// Indicator if only a single replica per lane is needed. 7891 bool IsUniform; 7892 7893 /// Indicator if the replicas are also predicated. 7894 bool IsPredicated; 7895 7896 /// Indicator if the scalar values should also be packed into a vector. 7897 bool AlsoPack; 7898 7899 public: 7900 VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false) 7901 : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform), 7902 IsPredicated(IsPredicated) { 7903 // Retain the previous behavior of predicateInstructions(), where an 7904 // insert-element of a predicated instruction got hoisted into the 7905 // predicated basic block iff it was its only user. This is achieved by 7906 // having predicated instructions also pack their values into a vector by 7907 // default unless they have a replicated user which uses their scalar value. 7908 AlsoPack = IsPredicated && !I->use_empty(); 7909 } 7910 7911 ~VPReplicateRecipe() override = default; 7912 7913 /// Method to support type inquiry through isa, cast, and dyn_cast. 7914 static inline bool classof(const VPRecipeBase *V) { 7915 return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC; 7916 } 7917 7918 /// Generate replicas of the desired Ingredient. Replicas will be generated 7919 /// for all parts and lanes unless a specific part and lane are specified in 7920 /// the \p State. 7921 void execute(VPTransformState &State) override; 7922 7923 void setAlsoPack(bool Pack) { AlsoPack = Pack; } 7924 7925 /// Print the recipe. 7926 void print(raw_ostream &O, const Twine &Indent) const override { 7927 O << " +\n" 7928 << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 7929 << VPlanIngredient(Ingredient); 7930 if (AlsoPack) 7931 O << " (S->V)"; 7932 O << "\\l\""; 7933 } 7934 }; 7935 7936 /// A recipe for generating conditional branches on the bits of a mask. 7937 class VPBranchOnMaskRecipe : public VPRecipeBase { 7938 private: 7939 std::unique_ptr<VPUser> User; 7940 7941 public: 7942 VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) { 7943 if (BlockInMask) // nullptr means all-one mask. 7944 User.reset(new VPUser({BlockInMask})); 7945 } 7946 7947 /// Method to support type inquiry through isa, cast, and dyn_cast. 7948 static inline bool classof(const VPRecipeBase *V) { 7949 return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC; 7950 } 7951 7952 /// Generate the extraction of the appropriate bit from the block mask and the 7953 /// conditional branch. 7954 void execute(VPTransformState &State) override; 7955 7956 /// Print the recipe. 7957 void print(raw_ostream &O, const Twine &Indent) const override { 7958 O << " +\n" << Indent << "\"BRANCH-ON-MASK "; 7959 if (User) 7960 O << *User->getOperand(0); 7961 else 7962 O << " All-One"; 7963 O << "\\l\""; 7964 } 7965 }; 7966 7967 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when 7968 /// control converges back from a Branch-on-Mask. The phi nodes are needed in 7969 /// order to merge values that are set under such a branch and feed their uses. 7970 /// The phi nodes can be scalar or vector depending on the users of the value. 7971 /// This recipe works in concert with VPBranchOnMaskRecipe. 7972 class VPPredInstPHIRecipe : public VPRecipeBase { 7973 private: 7974 Instruction *PredInst; 7975 7976 public: 7977 /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi 7978 /// nodes after merging back from a Branch-on-Mask. 7979 VPPredInstPHIRecipe(Instruction *PredInst) 7980 : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {} 7981 ~VPPredInstPHIRecipe() override = default; 7982 7983 /// Method to support type inquiry through isa, cast, and dyn_cast. 7984 static inline bool classof(const VPRecipeBase *V) { 7985 return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC; 7986 } 7987 7988 /// Generates phi nodes for live-outs as needed to retain SSA form. 7989 void execute(VPTransformState &State) override; 7990 7991 /// Print the recipe. 7992 void print(raw_ostream &O, const Twine &Indent) const override { 7993 O << " +\n" 7994 << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst) 7995 << "\\l\""; 7996 } 7997 }; 7998 7999 /// A Recipe for widening load/store operations. 8000 /// TODO: We currently execute only per-part unless a specific instance is 8001 /// provided. 8002 class VPWidenMemoryInstructionRecipe : public VPRecipeBase { 8003 private: 8004 Instruction &Instr; 8005 std::unique_ptr<VPUser> User; 8006 8007 public: 8008 VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Mask) 8009 : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr) { 8010 if (Mask) // Create a VPInstruction to register as a user of the mask. 8011 User.reset(new VPUser({Mask})); 8012 } 8013 8014 /// Method to support type inquiry through isa, cast, and dyn_cast. 8015 static inline bool classof(const VPRecipeBase *V) { 8016 return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC; 8017 } 8018 8019 /// Generate the wide load/store. 8020 void execute(VPTransformState &State) override { 8021 if (!User) 8022 return State.ILV->vectorizeMemoryInstruction(&Instr); 8023 8024 // Last (and currently only) operand is a mask. 8025 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 8026 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 8027 for (unsigned Part = 0; Part < State.UF; ++Part) 8028 MaskValues[Part] = State.get(Mask, Part); 8029 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 8030 } 8031 8032 /// Print the recipe. 8033 void print(raw_ostream &O, const Twine &Indent) const override { 8034 O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr); 8035 if (User) { 8036 O << ", "; 8037 User->getOperand(0)->printAsOperand(O); 8038 } 8039 O << "\\l\""; 8040 } 8041 }; 8042 } // end anonymous namespace 8043 8044 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8045 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 8046 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 8047 bool PredicateAtRangeStart = Predicate(Range.Start); 8048 8049 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 8050 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8051 Range.End = TmpVF; 8052 break; 8053 } 8054 8055 return PredicateAtRangeStart; 8056 } 8057 8058 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8059 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8060 /// of VF's starting at a given VF and extending it as much as possible. Each 8061 /// vectorization decision can potentially shorten this sub-range during 8062 /// buildVPlan(). 8063 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 8064 8065 // Collect conditions feeding internal conditional branches; they need to be 8066 // represented in VPlan for it to model masking. 8067 SmallPtrSet<Value *, 1> NeedDef; 8068 8069 auto *Latch = OrigLoop->getLoopLatch(); 8070 for (BasicBlock *BB : OrigLoop->blocks()) { 8071 if (BB == Latch) 8072 continue; 8073 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 8074 if (Branch && Branch->isConditional()) 8075 NeedDef.insert(Branch->getCondition()); 8076 } 8077 8078 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 8079 VFRange SubRange = {VF, MaxVF + 1}; 8080 VPlans.push_back(buildVPlan(SubRange, NeedDef)); 8081 VF = SubRange.End; 8082 } 8083 } 8084 8085 VPValue *LoopVectorizationPlanner::createEdgeMask(BasicBlock *Src, 8086 BasicBlock *Dst, 8087 VPlanPtr &Plan) { 8088 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8089 8090 // Look for cached value. 8091 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8092 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8093 if (ECEntryIt != EdgeMaskCache.end()) 8094 return ECEntryIt->second; 8095 8096 VPValue *SrcMask = createBlockInMask(Src, Plan); 8097 8098 // The terminator has to be a branch inst! 8099 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8100 assert(BI && "Unexpected terminator found"); 8101 8102 if (!BI->isConditional()) 8103 return EdgeMaskCache[Edge] = SrcMask; 8104 8105 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 8106 assert(EdgeMask && "No Edge Mask found for condition"); 8107 8108 if (BI->getSuccessor(0) != Dst) 8109 EdgeMask = Builder.createNot(EdgeMask); 8110 8111 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 8112 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 8113 8114 return EdgeMaskCache[Edge] = EdgeMask; 8115 } 8116 8117 VPValue *LoopVectorizationPlanner::createBlockInMask(BasicBlock *BB, 8118 VPlanPtr &Plan) { 8119 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8120 8121 // Look for cached value. 8122 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8123 if (BCEntryIt != BlockMaskCache.end()) 8124 return BCEntryIt->second; 8125 8126 // All-one mask is modelled as no-mask following the convention for masked 8127 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8128 VPValue *BlockMask = nullptr; 8129 8130 // Loop incoming mask is all-one. 8131 if (OrigLoop->getHeader() == BB) 8132 return BlockMaskCache[BB] = BlockMask; 8133 8134 // This is the block mask. We OR all incoming edges. 8135 for (auto *Predecessor : predecessors(BB)) { 8136 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8137 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8138 return BlockMaskCache[BB] = EdgeMask; 8139 8140 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8141 BlockMask = EdgeMask; 8142 continue; 8143 } 8144 8145 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8146 } 8147 8148 return BlockMaskCache[BB] = BlockMask; 8149 } 8150 8151 VPInterleaveRecipe * 8152 LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I, 8153 VFRange &Range) { 8154 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(I); 8155 if (!IG) 8156 return nullptr; 8157 8158 // Now check if IG is relevant for VF's in the given range. 8159 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 8160 return [=](unsigned VF) -> bool { 8161 return (VF >= 2 && // Query is illegal for VF == 1 8162 CM.getWideningDecision(I, VF) == 8163 LoopVectorizationCostModel::CM_Interleave); 8164 }; 8165 }; 8166 if (!getDecisionAndClampRange(isIGMember(I), Range)) 8167 return nullptr; 8168 8169 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 8170 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 8171 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 8172 assert(I == IG->getInsertPos() && 8173 "Generating a recipe for an adjunct member of an interleave group"); 8174 8175 return new VPInterleaveRecipe(IG); 8176 } 8177 8178 VPWidenMemoryInstructionRecipe * 8179 LoopVectorizationPlanner::tryToWidenMemory(Instruction *I, VFRange &Range, 8180 VPlanPtr &Plan) { 8181 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 8182 return nullptr; 8183 8184 auto willWiden = [&](unsigned VF) -> bool { 8185 if (VF == 1) 8186 return false; 8187 if (CM.isScalarAfterVectorization(I, VF) || 8188 CM.isProfitableToScalarize(I, VF)) 8189 return false; 8190 LoopVectorizationCostModel::InstWidening Decision = 8191 CM.getWideningDecision(I, VF); 8192 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8193 "CM decision should be taken at this point."); 8194 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 8195 "Interleave memory opportunity should be caught earlier."); 8196 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8197 }; 8198 8199 if (!getDecisionAndClampRange(willWiden, Range)) 8200 return nullptr; 8201 8202 VPValue *Mask = nullptr; 8203 if (Legal->isMaskRequired(I)) 8204 Mask = createBlockInMask(I->getParent(), Plan); 8205 8206 return new VPWidenMemoryInstructionRecipe(*I, Mask); 8207 } 8208 8209 VPWidenIntOrFpInductionRecipe * 8210 LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I, 8211 VFRange &Range) { 8212 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 8213 // Check if this is an integer or fp induction. If so, build the recipe that 8214 // produces its scalar and vector values. 8215 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 8216 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8217 II.getKind() == InductionDescriptor::IK_FpInduction) 8218 return new VPWidenIntOrFpInductionRecipe(Phi); 8219 8220 return nullptr; 8221 } 8222 8223 // Optimize the special case where the source is a constant integer 8224 // induction variable. Notice that we can only optimize the 'trunc' case 8225 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8226 // (c) other casts depend on pointer size. 8227 8228 // Determine whether \p K is a truncation based on an induction variable that 8229 // can be optimized. 8230 auto isOptimizableIVTruncate = 8231 [&](Instruction *K) -> std::function<bool(unsigned)> { 8232 return 8233 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 8234 }; 8235 8236 if (isa<TruncInst>(I) && 8237 getDecisionAndClampRange(isOptimizableIVTruncate(I), Range)) 8238 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8239 cast<TruncInst>(I)); 8240 return nullptr; 8241 } 8242 8243 VPBlendRecipe * 8244 LoopVectorizationPlanner::tryToBlend(Instruction *I, VPlanPtr &Plan) { 8245 PHINode *Phi = dyn_cast<PHINode>(I); 8246 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 8247 return nullptr; 8248 8249 // We know that all PHIs in non-header blocks are converted into selects, so 8250 // we don't have to worry about the insertion order and we can just use the 8251 // builder. At this point we generate the predication tree. There may be 8252 // duplications since this is a simple recursive scan, but future 8253 // optimizations will clean it up. 8254 8255 SmallVector<VPValue *, 2> Masks; 8256 unsigned NumIncoming = Phi->getNumIncomingValues(); 8257 for (unsigned In = 0; In < NumIncoming; In++) { 8258 VPValue *EdgeMask = 8259 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8260 assert((EdgeMask || NumIncoming == 1) && 8261 "Multiple predecessors with one having a full mask"); 8262 if (EdgeMask) 8263 Masks.push_back(EdgeMask); 8264 } 8265 return new VPBlendRecipe(Phi, Masks); 8266 } 8267 8268 bool LoopVectorizationPlanner::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 8269 VFRange &Range) { 8270 if (Legal->isScalarWithPredication(I)) 8271 return false; 8272 8273 auto IsVectorizableOpcode = [](unsigned Opcode) { 8274 switch (Opcode) { 8275 case Instruction::Add: 8276 case Instruction::And: 8277 case Instruction::AShr: 8278 case Instruction::BitCast: 8279 case Instruction::Br: 8280 case Instruction::Call: 8281 case Instruction::FAdd: 8282 case Instruction::FCmp: 8283 case Instruction::FDiv: 8284 case Instruction::FMul: 8285 case Instruction::FPExt: 8286 case Instruction::FPToSI: 8287 case Instruction::FPToUI: 8288 case Instruction::FPTrunc: 8289 case Instruction::FRem: 8290 case Instruction::FSub: 8291 case Instruction::GetElementPtr: 8292 case Instruction::ICmp: 8293 case Instruction::IntToPtr: 8294 case Instruction::Load: 8295 case Instruction::LShr: 8296 case Instruction::Mul: 8297 case Instruction::Or: 8298 case Instruction::PHI: 8299 case Instruction::PtrToInt: 8300 case Instruction::SDiv: 8301 case Instruction::Select: 8302 case Instruction::SExt: 8303 case Instruction::Shl: 8304 case Instruction::SIToFP: 8305 case Instruction::SRem: 8306 case Instruction::Store: 8307 case Instruction::Sub: 8308 case Instruction::Trunc: 8309 case Instruction::UDiv: 8310 case Instruction::UIToFP: 8311 case Instruction::URem: 8312 case Instruction::Xor: 8313 case Instruction::ZExt: 8314 return true; 8315 } 8316 return false; 8317 }; 8318 8319 if (!IsVectorizableOpcode(I->getOpcode())) 8320 return false; 8321 8322 if (CallInst *CI = dyn_cast<CallInst>(I)) { 8323 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8324 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8325 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 8326 return false; 8327 } 8328 8329 auto willWiden = [&](unsigned VF) -> bool { 8330 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 8331 CM.isProfitableToScalarize(I, VF))) 8332 return false; 8333 if (CallInst *CI = dyn_cast<CallInst>(I)) { 8334 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8335 // The following case may be scalarized depending on the VF. 8336 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8337 // version of the instruction. 8338 // Is it beneficial to perform intrinsic call compared to lib call? 8339 bool NeedToScalarize; 8340 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 8341 bool UseVectorIntrinsic = 8342 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 8343 return UseVectorIntrinsic || !NeedToScalarize; 8344 } 8345 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 8346 assert(CM.getWideningDecision(I, VF) == 8347 LoopVectorizationCostModel::CM_Scalarize && 8348 "Memory widening decisions should have been taken care by now"); 8349 return false; 8350 } 8351 return true; 8352 }; 8353 8354 if (!getDecisionAndClampRange(willWiden, Range)) 8355 return false; 8356 8357 // Success: widen this instruction. We optimize the common case where 8358 // consecutive instructions can be represented by a single recipe. 8359 if (!VPBB->empty()) { 8360 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 8361 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 8362 return true; 8363 } 8364 8365 VPBB->appendRecipe(new VPWidenRecipe(I)); 8366 return true; 8367 } 8368 8369 VPBasicBlock *LoopVectorizationPlanner::handleReplication( 8370 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8371 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 8372 VPlanPtr &Plan) { 8373 bool IsUniform = getDecisionAndClampRange( 8374 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 8375 Range); 8376 8377 bool IsPredicated = Legal->isScalarWithPredication(I); 8378 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 8379 8380 // Find if I uses a predicated instruction. If so, it will use its scalar 8381 // value. Avoid hoisting the insert-element which packs the scalar value into 8382 // a vector value, as that happens iff all users use the vector value. 8383 for (auto &Op : I->operands()) 8384 if (auto *PredInst = dyn_cast<Instruction>(Op)) 8385 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 8386 PredInst2Recipe[PredInst]->setAlsoPack(false); 8387 8388 // Finalize the recipe for Instr, first if it is not predicated. 8389 if (!IsPredicated) { 8390 DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8391 VPBB->appendRecipe(Recipe); 8392 return VPBB; 8393 } 8394 DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8395 assert(VPBB->getSuccessors().empty() && 8396 "VPBB has successors when handling predicated replication."); 8397 // Record predicated instructions for above packing optimizations. 8398 PredInst2Recipe[I] = Recipe; 8399 VPBlockBase *Region = 8400 VPBB->setOneSuccessor(createReplicateRegion(I, Recipe, Plan)); 8401 return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock())); 8402 } 8403 8404 VPRegionBlock * 8405 LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr, 8406 VPRecipeBase *PredRecipe, 8407 VPlanPtr &Plan) { 8408 // Instructions marked for predication are replicated and placed under an 8409 // if-then construct to prevent side-effects. 8410 8411 // Generate recipes to compute the block mask for this region. 8412 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8413 8414 // Build the triangular if-then region. 8415 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8416 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8417 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8418 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8419 auto *PHIRecipe = 8420 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 8421 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8422 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8423 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8424 8425 // Note: first set Entry as region entry and then connect successors starting 8426 // from it in order, to propagate the "parent" of each VPBasicBlock. 8427 Entry->setTwoSuccessors(Pred, Exit); 8428 Pred->setOneSuccessor(Exit); 8429 8430 return Region; 8431 } 8432 8433 LoopVectorizationPlanner::VPlanPtr 8434 LoopVectorizationPlanner::buildVPlan(VFRange &Range, 8435 const SmallPtrSetImpl<Value *> &NeedDef) { 8436 EdgeMaskCache.clear(); 8437 BlockMaskCache.clear(); 8438 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8439 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 8440 8441 // Collect instructions from the original loop that will become trivially dead 8442 // in the vectorized loop. We don't need to vectorize these instructions. For 8443 // example, original induction update instructions can become dead because we 8444 // separately emit induction "steps" when generating code for the new loop. 8445 // Similarly, we create a new latch condition when setting up the structure 8446 // of the new loop, so the old one can become dead. 8447 SmallPtrSet<Instruction *, 4> DeadInstructions; 8448 collectTriviallyDeadInstructions(DeadInstructions); 8449 8450 // Hold a mapping from predicated instructions to their recipes, in order to 8451 // fix their AlsoPack behavior if a user is determined to replicate and use a 8452 // scalar instead of vector value. 8453 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 8454 8455 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 8456 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 8457 auto Plan = llvm::make_unique<VPlan>(VPBB); 8458 8459 // Represent values that will have defs inside VPlan. 8460 for (Value *V : NeedDef) 8461 Plan->addVPValue(V); 8462 8463 // Scan the body of the loop in a topological order to visit each basic block 8464 // after having visited its predecessor basic blocks. 8465 LoopBlocksDFS DFS(OrigLoop); 8466 DFS.perform(LI); 8467 8468 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8469 // Relevant instructions from basic block BB will be grouped into VPRecipe 8470 // ingredients and fill a new VPBasicBlock. 8471 unsigned VPBBsForBB = 0; 8472 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8473 VPBB->setOneSuccessor(FirstVPBBForBB); 8474 VPBB = FirstVPBBForBB; 8475 Builder.setInsertPoint(VPBB); 8476 8477 std::vector<Instruction *> Ingredients; 8478 8479 // Organize the ingredients to vectorize from current basic block in the 8480 // right order. 8481 for (Instruction &I : *BB) { 8482 Instruction *Instr = &I; 8483 8484 // First filter out irrelevant instructions, to ensure no recipes are 8485 // built for them. 8486 if (isa<BranchInst>(Instr) || isa<DbgInfoIntrinsic>(Instr) || 8487 DeadInstructions.count(Instr)) 8488 continue; 8489 8490 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 8491 // member of the IG, do not construct any Recipe for it. 8492 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(Instr); 8493 if (IG && Instr != IG->getInsertPos() && 8494 Range.Start >= 2 && // Query is illegal for VF == 1 8495 CM.getWideningDecision(Instr, Range.Start) == 8496 LoopVectorizationCostModel::CM_Interleave) { 8497 if (SinkAfterInverse.count(Instr)) 8498 Ingredients.push_back(SinkAfterInverse.find(Instr)->second); 8499 continue; 8500 } 8501 8502 // Move instructions to handle first-order recurrences, step 1: avoid 8503 // handling this instruction until after we've handled the instruction it 8504 // should follow. 8505 auto SAIt = SinkAfter.find(Instr); 8506 if (SAIt != SinkAfter.end()) { 8507 DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" << *SAIt->second 8508 << " to vectorize a 1st order recurrence.\n"); 8509 SinkAfterInverse[SAIt->second] = Instr; 8510 continue; 8511 } 8512 8513 Ingredients.push_back(Instr); 8514 8515 // Move instructions to handle first-order recurrences, step 2: push the 8516 // instruction to be sunk at its insertion point. 8517 auto SAInvIt = SinkAfterInverse.find(Instr); 8518 if (SAInvIt != SinkAfterInverse.end()) 8519 Ingredients.push_back(SAInvIt->second); 8520 } 8521 8522 // Introduce each ingredient into VPlan. 8523 for (Instruction *Instr : Ingredients) { 8524 VPRecipeBase *Recipe = nullptr; 8525 8526 // Check if Instr should belong to an interleave memory recipe, or already 8527 // does. In the latter case Instr is irrelevant. 8528 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 8529 VPBB->appendRecipe(Recipe); 8530 continue; 8531 } 8532 8533 // Check if Instr is a memory operation that should be widened. 8534 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 8535 VPBB->appendRecipe(Recipe); 8536 continue; 8537 } 8538 8539 // Check if Instr should form some PHI recipe. 8540 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 8541 VPBB->appendRecipe(Recipe); 8542 continue; 8543 } 8544 if ((Recipe = tryToBlend(Instr, Plan))) { 8545 VPBB->appendRecipe(Recipe); 8546 continue; 8547 } 8548 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 8549 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 8550 continue; 8551 } 8552 8553 // Check if Instr is to be widened by a general VPWidenRecipe, after 8554 // having first checked for specific widening recipes that deal with 8555 // Interleave Groups, Inductions and Phi nodes. 8556 if (tryToWiden(Instr, VPBB, Range)) 8557 continue; 8558 8559 // Otherwise, if all widening options failed, Instruction is to be 8560 // replicated. This may create a successor for VPBB. 8561 VPBasicBlock *NextVPBB = 8562 handleReplication(Instr, Range, VPBB, PredInst2Recipe, Plan); 8563 if (NextVPBB != VPBB) { 8564 VPBB = NextVPBB; 8565 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8566 : ""); 8567 } 8568 } 8569 } 8570 8571 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8572 // may also be empty, such as the last one VPBB, reflecting original 8573 // basic-blocks with no recipes. 8574 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8575 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8576 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8577 PreEntry->disconnectSuccessor(Entry); 8578 delete PreEntry; 8579 8580 std::string PlanName; 8581 raw_string_ostream RSO(PlanName); 8582 unsigned VF = Range.Start; 8583 Plan->addVF(VF); 8584 RSO << "Initial VPlan for VF={" << VF; 8585 for (VF *= 2; VF < Range.End; VF *= 2) { 8586 Plan->addVF(VF); 8587 RSO << "," << VF; 8588 } 8589 RSO << "},UF>=1"; 8590 RSO.flush(); 8591 Plan->setName(PlanName); 8592 8593 return Plan; 8594 } 8595 8596 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 8597 O << " +\n" 8598 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8599 IG->getInsertPos()->printAsOperand(O, false); 8600 O << "\\l\""; 8601 for (unsigned i = 0; i < IG->getFactor(); ++i) 8602 if (Instruction *I = IG->getMember(i)) 8603 O << " +\n" 8604 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 8605 } 8606 8607 void VPReplicateRecipe::execute(VPTransformState &State) { 8608 if (State.Instance) { // Generate a single instance. 8609 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 8610 // Insert scalar instance packing it into a vector. 8611 if (AlsoPack && State.VF > 1) { 8612 // If we're constructing lane 0, initialize to start from undef. 8613 if (State.Instance->Lane == 0) { 8614 Value *Undef = 8615 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 8616 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 8617 } 8618 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 8619 } 8620 return; 8621 } 8622 8623 // Generate scalar instances for all VF lanes of all UF parts, unless the 8624 // instruction is uniform inwhich case generate only the first lane for each 8625 // of the UF parts. 8626 unsigned EndLane = IsUniform ? 1 : State.VF; 8627 for (unsigned Part = 0; Part < State.UF; ++Part) 8628 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8629 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 8630 } 8631 8632 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8633 assert(State.Instance && "Branch on Mask works only on single instance."); 8634 8635 unsigned Part = State.Instance->Part; 8636 unsigned Lane = State.Instance->Lane; 8637 8638 Value *ConditionBit = nullptr; 8639 if (!User) // Block in mask is all-one. 8640 ConditionBit = State.Builder.getTrue(); 8641 else { 8642 VPValue *BlockInMask = User->getOperand(0); 8643 ConditionBit = State.get(BlockInMask, Part); 8644 if (ConditionBit->getType()->isVectorTy()) 8645 ConditionBit = State.Builder.CreateExtractElement( 8646 ConditionBit, State.Builder.getInt32(Lane)); 8647 } 8648 8649 // Replace the temporary unreachable terminator with a new conditional branch, 8650 // whose two destinations will be set later when they are created. 8651 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8652 assert(isa<UnreachableInst>(CurrentTerminator) && 8653 "Expected to replace unreachable terminator with conditional branch."); 8654 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8655 CondBr->setSuccessor(0, nullptr); 8656 ReplaceInstWithInst(CurrentTerminator, CondBr); 8657 } 8658 8659 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8660 assert(State.Instance && "Predicated instruction PHI works per instance."); 8661 Instruction *ScalarPredInst = cast<Instruction>( 8662 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 8663 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8664 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8665 assert(PredicatingBB && "Predicated block has no single predecessor."); 8666 8667 // By current pack/unpack logic we need to generate only a single phi node: if 8668 // a vector value for the predicated instruction exists at this point it means 8669 // the instruction has vector users only, and a phi for the vector value is 8670 // needed. In this case the recipe of the predicated instruction is marked to 8671 // also do that packing, thereby "hoisting" the insert-element sequence. 8672 // Otherwise, a phi node for the scalar value is needed. 8673 unsigned Part = State.Instance->Part; 8674 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8675 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8676 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8677 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8678 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8679 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8680 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8681 } else { 8682 Type *PredInstType = PredInst->getType(); 8683 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8684 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8685 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8686 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8687 } 8688 } 8689 8690 bool LoopVectorizePass::processLoop(Loop *L) { 8691 assert(L->empty() && "Only process inner loops."); 8692 8693 #ifndef NDEBUG 8694 const std::string DebugLocStr = getDebugLocString(L); 8695 #endif /* NDEBUG */ 8696 8697 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8698 << L->getHeader()->getParent()->getName() << "\" from " 8699 << DebugLocStr << "\n"); 8700 8701 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 8702 8703 DEBUG(dbgs() << "LV: Loop hints:" 8704 << " force=" 8705 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8706 ? "disabled" 8707 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8708 ? "enabled" 8709 : "?")) 8710 << " width=" << Hints.getWidth() 8711 << " unroll=" << Hints.getInterleave() << "\n"); 8712 8713 // Function containing loop 8714 Function *F = L->getHeader()->getParent(); 8715 8716 // Looking at the diagnostic output is the only way to determine if a loop 8717 // was vectorized (other than looking at the IR or machine code), so it 8718 // is important to generate an optimization remark for each loop. Most of 8719 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8720 // generated as OptimizationRemark and OptimizationRemarkMissed are 8721 // less verbose reporting vectorized loops and unvectorized loops that may 8722 // benefit from vectorization, respectively. 8723 8724 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 8725 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8726 return false; 8727 } 8728 8729 PredicatedScalarEvolution PSE(*SE, *L); 8730 8731 // Check if it is legal to vectorize the loop. 8732 LoopVectorizationRequirements Requirements(*ORE); 8733 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 8734 &Requirements, &Hints); 8735 if (!LVL.canVectorize()) { 8736 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8737 emitMissedWarning(F, L, Hints, ORE); 8738 return false; 8739 } 8740 8741 // Check the function attributes to find out if this function should be 8742 // optimized for size. 8743 bool OptForSize = 8744 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 8745 8746 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8747 // count by optimizing for size, to minimize overheads. 8748 unsigned ExpectedTC = SE->getSmallConstantMaxTripCount(L); 8749 bool HasExpectedTC = (ExpectedTC > 0); 8750 8751 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 8752 auto EstimatedTC = getLoopEstimatedTripCount(L); 8753 if (EstimatedTC) { 8754 ExpectedTC = *EstimatedTC; 8755 HasExpectedTC = true; 8756 } 8757 } 8758 8759 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 8760 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8761 << "This loop is worth vectorizing only if no scalar " 8762 << "iteration overheads are incurred."); 8763 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8764 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8765 else { 8766 DEBUG(dbgs() << "\n"); 8767 // Loops with a very small trip count are considered for vectorization 8768 // under OptForSize, thereby making sure the cost of their loop body is 8769 // dominant, free of runtime guards and scalar iteration overheads. 8770 OptForSize = true; 8771 } 8772 } 8773 8774 // Check the function attributes to see if implicit floats are allowed. 8775 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8776 // an integer loop and the vector instructions selected are purely integer 8777 // vector instructions? 8778 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8779 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 8780 "attribute is used.\n"); 8781 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 8782 "NoImplicitFloat", L) 8783 << "loop not vectorized due to NoImplicitFloat attribute"); 8784 emitMissedWarning(F, L, Hints, ORE); 8785 return false; 8786 } 8787 8788 // Check if the target supports potentially unsafe FP vectorization. 8789 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8790 // for the target we're vectorizing for, to make sure none of the 8791 // additional fp-math flags can help. 8792 if (Hints.isPotentiallyUnsafe() && 8793 TTI->isFPVectorizationPotentiallyUnsafe()) { 8794 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 8795 ORE->emit( 8796 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 8797 << "loop not vectorized due to unsafe FP support."); 8798 emitMissedWarning(F, L, Hints, ORE); 8799 return false; 8800 } 8801 8802 // Use the cost model. 8803 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 8804 &Hints); 8805 CM.collectValuesToIgnore(); 8806 8807 // Use the planner for vectorization. 8808 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 8809 8810 // Get user vectorization factor. 8811 unsigned UserVF = Hints.getWidth(); 8812 8813 // Plan how to best vectorize, return the best VF and its cost. 8814 LoopVectorizationCostModel::VectorizationFactor VF = 8815 LVP.plan(OptForSize, UserVF); 8816 8817 // Select the interleave count. 8818 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 8819 8820 // Get user interleave count. 8821 unsigned UserIC = Hints.getInterleave(); 8822 8823 // Identify the diagnostic messages that should be produced. 8824 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8825 bool VectorizeLoop = true, InterleaveLoop = true; 8826 if (Requirements.doesNotMeet(F, L, Hints)) { 8827 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8828 "requirements.\n"); 8829 emitMissedWarning(F, L, Hints, ORE); 8830 return false; 8831 } 8832 8833 if (VF.Width == 1) { 8834 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8835 VecDiagMsg = std::make_pair( 8836 "VectorizationNotBeneficial", 8837 "the cost-model indicates that vectorization is not beneficial"); 8838 VectorizeLoop = false; 8839 } 8840 8841 if (IC == 1 && UserIC <= 1) { 8842 // Tell the user interleaving is not beneficial. 8843 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8844 IntDiagMsg = std::make_pair( 8845 "InterleavingNotBeneficial", 8846 "the cost-model indicates that interleaving is not beneficial"); 8847 InterleaveLoop = false; 8848 if (UserIC == 1) { 8849 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8850 IntDiagMsg.second += 8851 " and is explicitly disabled or interleave count is set to 1"; 8852 } 8853 } else if (IC > 1 && UserIC == 1) { 8854 // Tell the user interleaving is beneficial, but it explicitly disabled. 8855 DEBUG(dbgs() 8856 << "LV: Interleaving is beneficial but is explicitly disabled."); 8857 IntDiagMsg = std::make_pair( 8858 "InterleavingBeneficialButDisabled", 8859 "the cost-model indicates that interleaving is beneficial " 8860 "but is explicitly disabled or interleave count is set to 1"); 8861 InterleaveLoop = false; 8862 } 8863 8864 // Override IC if user provided an interleave count. 8865 IC = UserIC > 0 ? UserIC : IC; 8866 8867 // Emit diagnostic messages, if any. 8868 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8869 if (!VectorizeLoop && !InterleaveLoop) { 8870 // Do not vectorize or interleaving the loop. 8871 ORE->emit([&]() { 8872 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8873 L->getStartLoc(), L->getHeader()) 8874 << VecDiagMsg.second; 8875 }); 8876 ORE->emit([&]() { 8877 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8878 L->getStartLoc(), L->getHeader()) 8879 << IntDiagMsg.second; 8880 }); 8881 return false; 8882 } else if (!VectorizeLoop && InterleaveLoop) { 8883 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8884 ORE->emit([&]() { 8885 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8886 L->getStartLoc(), L->getHeader()) 8887 << VecDiagMsg.second; 8888 }); 8889 } else if (VectorizeLoop && !InterleaveLoop) { 8890 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8891 << DebugLocStr << '\n'); 8892 ORE->emit([&]() { 8893 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8894 L->getStartLoc(), L->getHeader()) 8895 << IntDiagMsg.second; 8896 }); 8897 } else if (VectorizeLoop && InterleaveLoop) { 8898 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8899 << DebugLocStr << '\n'); 8900 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8901 } 8902 8903 LVP.setBestPlan(VF.Width, IC); 8904 8905 using namespace ore; 8906 8907 if (!VectorizeLoop) { 8908 assert(IC > 1 && "interleave count should not be 1 or 0"); 8909 // If we decided that it is not legal to vectorize the loop, then 8910 // interleave it. 8911 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 8912 &CM); 8913 LVP.executePlan(Unroller, DT); 8914 8915 ORE->emit([&]() { 8916 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8917 L->getHeader()) 8918 << "interleaved loop (interleaved count: " 8919 << NV("InterleaveCount", IC) << ")"; 8920 }); 8921 } else { 8922 // If we decided that it is *legal* to vectorize the loop, then do it. 8923 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8924 &LVL, &CM); 8925 LVP.executePlan(LB, DT); 8926 ++LoopsVectorized; 8927 8928 // Add metadata to disable runtime unrolling a scalar loop when there are 8929 // no runtime checks about strides and memory. A scalar loop that is 8930 // rarely used is not worth unrolling. 8931 if (!LB.areSafetyChecksAdded()) 8932 AddRuntimeUnrollDisableMetaData(L); 8933 8934 // Report the vectorization decision. 8935 ORE->emit([&]() { 8936 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8937 L->getHeader()) 8938 << "vectorized loop (vectorization width: " 8939 << NV("VectorizationFactor", VF.Width) 8940 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8941 }); 8942 } 8943 8944 // Mark the loop as already vectorized to avoid vectorizing again. 8945 Hints.setAlreadyVectorized(); 8946 8947 DEBUG(verifyFunction(*L->getHeader()->getParent())); 8948 return true; 8949 } 8950 8951 bool LoopVectorizePass::runImpl( 8952 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8953 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8954 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 8955 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8956 OptimizationRemarkEmitter &ORE_) { 8957 SE = &SE_; 8958 LI = &LI_; 8959 TTI = &TTI_; 8960 DT = &DT_; 8961 BFI = &BFI_; 8962 TLI = TLI_; 8963 AA = &AA_; 8964 AC = &AC_; 8965 GetLAA = &GetLAA_; 8966 DB = &DB_; 8967 ORE = &ORE_; 8968 8969 // Don't attempt if 8970 // 1. the target claims to have no vector registers, and 8971 // 2. interleaving won't help ILP. 8972 // 8973 // The second condition is necessary because, even if the target has no 8974 // vector registers, loop vectorization may still enable scalar 8975 // interleaving. 8976 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 8977 return false; 8978 8979 bool Changed = false; 8980 8981 // The vectorizer requires loops to be in simplified form. 8982 // Since simplification may add new inner loops, it has to run before the 8983 // legality and profitability checks. This means running the loop vectorizer 8984 // will simplify all loops, regardless of whether anything end up being 8985 // vectorized. 8986 for (auto &L : *LI) 8987 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 8988 8989 // Build up a worklist of inner-loops to vectorize. This is necessary as 8990 // the act of vectorizing or partially unrolling a loop creates new loops 8991 // and can invalidate iterators across the loops. 8992 SmallVector<Loop *, 8> Worklist; 8993 8994 for (Loop *L : *LI) 8995 addAcyclicInnerLoop(*L, Worklist); 8996 8997 LoopsAnalyzed += Worklist.size(); 8998 8999 // Now walk the identified inner loops. 9000 while (!Worklist.empty()) { 9001 Loop *L = Worklist.pop_back_val(); 9002 9003 // For the inner loops we actually process, form LCSSA to simplify the 9004 // transform. 9005 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 9006 9007 Changed |= processLoop(L); 9008 } 9009 9010 // Process each loop nest in the function. 9011 return Changed; 9012 } 9013 9014 PreservedAnalyses LoopVectorizePass::run(Function &F, 9015 FunctionAnalysisManager &AM) { 9016 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 9017 auto &LI = AM.getResult<LoopAnalysis>(F); 9018 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 9019 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 9020 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 9021 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 9022 auto &AA = AM.getResult<AAManager>(F); 9023 auto &AC = AM.getResult<AssumptionAnalysis>(F); 9024 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 9025 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 9026 9027 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 9028 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 9029 [&](Loop &L) -> const LoopAccessInfo & { 9030 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 9031 return LAM.getResult<LoopAccessAnalysis>(L, AR); 9032 }; 9033 bool Changed = 9034 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 9035 if (!Changed) 9036 return PreservedAnalyses::all(); 9037 PreservedAnalyses PA; 9038 PA.preserve<LoopAnalysis>(); 9039 PA.preserve<DominatorTreeAnalysis>(); 9040 PA.preserve<BasicAA>(); 9041 PA.preserve<GlobalsAA>(); 9042 return PA; 9043 } 9044