1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/Metadata.h" 116 #include "llvm/IR/Module.h" 117 #include "llvm/IR/Operator.h" 118 #include "llvm/IR/PatternMatch.h" 119 #include "llvm/IR/Type.h" 120 #include "llvm/IR/Use.h" 121 #include "llvm/IR/User.h" 122 #include "llvm/IR/Value.h" 123 #include "llvm/IR/ValueHandle.h" 124 #include "llvm/IR/Verifier.h" 125 #include "llvm/InitializePasses.h" 126 #include "llvm/Pass.h" 127 #include "llvm/Support/Casting.h" 128 #include "llvm/Support/CommandLine.h" 129 #include "llvm/Support/Compiler.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/InstructionCost.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <functional> 147 #include <iterator> 148 #include <limits> 149 #include <map> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 #ifndef NDEBUG 161 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 162 #endif 163 164 /// @{ 165 /// Metadata attribute names 166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 167 const char LLVMLoopVectorizeFollowupVectorized[] = 168 "llvm.loop.vectorize.followup_vectorized"; 169 const char LLVMLoopVectorizeFollowupEpilogue[] = 170 "llvm.loop.vectorize.followup_epilogue"; 171 /// @} 172 173 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 176 177 static cl::opt<bool> EnableEpilogueVectorization( 178 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 179 cl::desc("Enable vectorization of epilogue loops.")); 180 181 static cl::opt<unsigned> EpilogueVectorizationForceVF( 182 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 183 cl::desc("When epilogue vectorization is enabled, and a value greater than " 184 "1 is specified, forces the given VF for all applicable epilogue " 185 "loops.")); 186 187 static cl::opt<unsigned> EpilogueVectorizationMinVF( 188 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 189 cl::desc("Only loops with vectorization factor equal to or larger than " 190 "the specified value are considered for epilogue vectorization.")); 191 192 /// Loops with a known constant trip count below this number are vectorized only 193 /// if no scalar iteration overheads are incurred. 194 static cl::opt<unsigned> TinyTripCountVectorThreshold( 195 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 196 cl::desc("Loops with a constant trip count that is smaller than this " 197 "value are vectorized only if no scalar iteration overheads " 198 "are incurred.")); 199 200 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 201 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 202 cl::desc("The maximum allowed number of runtime memory checks with a " 203 "vectorize(enable) pragma.")); 204 205 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 206 // that predication is preferred, and this lists all options. I.e., the 207 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 208 // and predicate the instructions accordingly. If tail-folding fails, there are 209 // different fallback strategies depending on these values: 210 namespace PreferPredicateTy { 211 enum Option { 212 ScalarEpilogue = 0, 213 PredicateElseScalarEpilogue, 214 PredicateOrDontVectorize 215 }; 216 } // namespace PreferPredicateTy 217 218 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 219 "prefer-predicate-over-epilogue", 220 cl::init(PreferPredicateTy::ScalarEpilogue), 221 cl::Hidden, 222 cl::desc("Tail-folding and predication preferences over creating a scalar " 223 "epilogue loop."), 224 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 225 "scalar-epilogue", 226 "Don't tail-predicate loops, create scalar epilogue"), 227 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 228 "predicate-else-scalar-epilogue", 229 "prefer tail-folding, create scalar epilogue if tail " 230 "folding fails."), 231 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 232 "predicate-dont-vectorize", 233 "prefers tail-folding, don't attempt vectorization if " 234 "tail-folding fails."))); 235 236 static cl::opt<bool> MaximizeBandwidth( 237 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 238 cl::desc("Maximize bandwidth when selecting vectorization factor which " 239 "will be determined by the smallest type in loop.")); 240 241 static cl::opt<bool> EnableInterleavedMemAccesses( 242 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 243 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 244 245 /// An interleave-group may need masking if it resides in a block that needs 246 /// predication, or in order to mask away gaps. 247 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 248 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 249 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 250 251 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 252 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 253 cl::desc("We don't interleave loops with a estimated constant trip count " 254 "below this number")); 255 256 static cl::opt<unsigned> ForceTargetNumScalarRegs( 257 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 258 cl::desc("A flag that overrides the target's number of scalar registers.")); 259 260 static cl::opt<unsigned> ForceTargetNumVectorRegs( 261 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 262 cl::desc("A flag that overrides the target's number of vector registers.")); 263 264 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 265 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 266 cl::desc("A flag that overrides the target's max interleave factor for " 267 "scalar loops.")); 268 269 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 270 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 271 cl::desc("A flag that overrides the target's max interleave factor for " 272 "vectorized loops.")); 273 274 static cl::opt<unsigned> ForceTargetInstructionCost( 275 "force-target-instruction-cost", cl::init(0), cl::Hidden, 276 cl::desc("A flag that overrides the target's expected cost for " 277 "an instruction to a single constant value. Mostly " 278 "useful for getting consistent testing.")); 279 280 static cl::opt<bool> ForceTargetSupportsScalableVectors( 281 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 282 cl::desc( 283 "Pretend that scalable vectors are supported, even if the target does " 284 "not support them. This flag should only be used for testing.")); 285 286 static cl::opt<unsigned> SmallLoopCost( 287 "small-loop-cost", cl::init(20), cl::Hidden, 288 cl::desc( 289 "The cost of a loop that is considered 'small' by the interleaver.")); 290 291 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 292 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 293 cl::desc("Enable the use of the block frequency analysis to access PGO " 294 "heuristics minimizing code growth in cold regions and being more " 295 "aggressive in hot regions.")); 296 297 // Runtime interleave loops for load/store throughput. 298 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 299 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 300 cl::desc( 301 "Enable runtime interleaving until load/store ports are saturated")); 302 303 /// Interleave small loops with scalar reductions. 304 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 305 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 306 cl::desc("Enable interleaving for loops with small iteration counts that " 307 "contain scalar reductions to expose ILP.")); 308 309 /// The number of stores in a loop that are allowed to need predication. 310 static cl::opt<unsigned> NumberOfStoresToPredicate( 311 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 312 cl::desc("Max number of stores to be predicated behind an if.")); 313 314 static cl::opt<bool> EnableIndVarRegisterHeur( 315 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 316 cl::desc("Count the induction variable only once when interleaving")); 317 318 static cl::opt<bool> EnableCondStoresVectorization( 319 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 320 cl::desc("Enable if predication of stores during vectorization.")); 321 322 static cl::opt<unsigned> MaxNestedScalarReductionIC( 323 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 324 cl::desc("The maximum interleave count to use when interleaving a scalar " 325 "reduction in a nested loop.")); 326 327 static cl::opt<bool> 328 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 329 cl::Hidden, 330 cl::desc("Prefer in-loop vector reductions, " 331 "overriding the targets preference.")); 332 333 static cl::opt<bool> ForceOrderedReductions( 334 "force-ordered-reductions", cl::init(false), cl::Hidden, 335 cl::desc("Enable the vectorisation of loops with in-order (strict) " 336 "FP reductions")); 337 338 static cl::opt<bool> PreferPredicatedReductionSelect( 339 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 340 cl::desc( 341 "Prefer predicating a reduction operation over an after loop select.")); 342 343 cl::opt<bool> EnableVPlanNativePath( 344 "enable-vplan-native-path", cl::init(false), cl::Hidden, 345 cl::desc("Enable VPlan-native vectorization path with " 346 "support for outer loop vectorization.")); 347 348 // FIXME: Remove this switch once we have divergence analysis. Currently we 349 // assume divergent non-backedge branches when this switch is true. 350 cl::opt<bool> EnableVPlanPredication( 351 "enable-vplan-predication", cl::init(false), cl::Hidden, 352 cl::desc("Enable VPlan-native vectorization path predicator with " 353 "support for outer loop vectorization.")); 354 355 // This flag enables the stress testing of the VPlan H-CFG construction in the 356 // VPlan-native vectorization path. It must be used in conjuction with 357 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 358 // verification of the H-CFGs built. 359 static cl::opt<bool> VPlanBuildStressTest( 360 "vplan-build-stress-test", cl::init(false), cl::Hidden, 361 cl::desc( 362 "Build VPlan for every supported loop nest in the function and bail " 363 "out right after the build (stress test the VPlan H-CFG construction " 364 "in the VPlan-native vectorization path).")); 365 366 cl::opt<bool> llvm::EnableLoopInterleaving( 367 "interleave-loops", cl::init(true), cl::Hidden, 368 cl::desc("Enable loop interleaving in Loop vectorization passes")); 369 cl::opt<bool> llvm::EnableLoopVectorization( 370 "vectorize-loops", cl::init(true), cl::Hidden, 371 cl::desc("Run the Loop vectorization passes")); 372 373 cl::opt<bool> PrintVPlansInDotFormat( 374 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 375 cl::desc("Use dot format instead of plain text when dumping VPlans")); 376 377 /// A helper function that returns true if the given type is irregular. The 378 /// type is irregular if its allocated size doesn't equal the store size of an 379 /// element of the corresponding vector type. 380 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 381 // Determine if an array of N elements of type Ty is "bitcast compatible" 382 // with a <N x Ty> vector. 383 // This is only true if there is no padding between the array elements. 384 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 385 } 386 387 /// A helper function that returns the reciprocal of the block probability of 388 /// predicated blocks. If we return X, we are assuming the predicated block 389 /// will execute once for every X iterations of the loop header. 390 /// 391 /// TODO: We should use actual block probability here, if available. Currently, 392 /// we always assume predicated blocks have a 50% chance of executing. 393 static unsigned getReciprocalPredBlockProb() { return 2; } 394 395 /// A helper function that returns an integer or floating-point constant with 396 /// value C. 397 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 398 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 399 : ConstantFP::get(Ty, C); 400 } 401 402 /// Returns "best known" trip count for the specified loop \p L as defined by 403 /// the following procedure: 404 /// 1) Returns exact trip count if it is known. 405 /// 2) Returns expected trip count according to profile data if any. 406 /// 3) Returns upper bound estimate if it is known. 407 /// 4) Returns None if all of the above failed. 408 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 409 // Check if exact trip count is known. 410 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 411 return ExpectedTC; 412 413 // Check if there is an expected trip count available from profile data. 414 if (LoopVectorizeWithBlockFrequency) 415 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 416 return EstimatedTC; 417 418 // Check if upper bound estimate is known. 419 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 420 return ExpectedTC; 421 422 return None; 423 } 424 425 // Forward declare GeneratedRTChecks. 426 class GeneratedRTChecks; 427 428 namespace llvm { 429 430 AnalysisKey ShouldRunExtraVectorPasses::Key; 431 432 /// InnerLoopVectorizer vectorizes loops which contain only one basic 433 /// block to a specified vectorization factor (VF). 434 /// This class performs the widening of scalars into vectors, or multiple 435 /// scalars. This class also implements the following features: 436 /// * It inserts an epilogue loop for handling loops that don't have iteration 437 /// counts that are known to be a multiple of the vectorization factor. 438 /// * It handles the code generation for reduction variables. 439 /// * Scalarization (implementation using scalars) of un-vectorizable 440 /// instructions. 441 /// InnerLoopVectorizer does not perform any vectorization-legality 442 /// checks, and relies on the caller to check for the different legality 443 /// aspects. The InnerLoopVectorizer relies on the 444 /// LoopVectorizationLegality class to provide information about the induction 445 /// and reduction variables that were found to a given vectorization factor. 446 class InnerLoopVectorizer { 447 public: 448 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 449 LoopInfo *LI, DominatorTree *DT, 450 const TargetLibraryInfo *TLI, 451 const TargetTransformInfo *TTI, AssumptionCache *AC, 452 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 453 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 454 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 455 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 456 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 457 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 458 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 459 PSI(PSI), RTChecks(RTChecks) { 460 // Query this against the original loop and save it here because the profile 461 // of the original loop header may change as the transformation happens. 462 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 463 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 464 } 465 466 virtual ~InnerLoopVectorizer() = default; 467 468 /// Create a new empty loop that will contain vectorized instructions later 469 /// on, while the old loop will be used as the scalar remainder. Control flow 470 /// is generated around the vectorized (and scalar epilogue) loops consisting 471 /// of various checks and bypasses. Return the pre-header block of the new 472 /// loop and the start value for the canonical induction, if it is != 0. The 473 /// latter is the case when vectorizing the epilogue loop. In the case of 474 /// epilogue vectorization, this function is overriden to handle the more 475 /// complex control flow around the loops. 476 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 477 478 /// Widen a single call instruction within the innermost loop. 479 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 480 VPTransformState &State); 481 482 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 483 void fixVectorizedLoop(VPTransformState &State); 484 485 // Return true if any runtime check is added. 486 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 487 488 /// A type for vectorized values in the new loop. Each value from the 489 /// original loop, when vectorized, is represented by UF vector values in the 490 /// new unrolled loop, where UF is the unroll factor. 491 using VectorParts = SmallVector<Value *, 2>; 492 493 /// Vectorize a single first-order recurrence or pointer induction PHINode in 494 /// a block. This method handles the induction variable canonicalization. It 495 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 496 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 497 VPTransformState &State); 498 499 /// A helper function to scalarize a single Instruction in the innermost loop. 500 /// Generates a sequence of scalar instances for each lane between \p MinLane 501 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 502 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 503 /// Instr's operands. 504 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 505 const VPIteration &Instance, bool IfPredicateInstr, 506 VPTransformState &State); 507 508 /// Construct the vector value of a scalarized value \p V one lane at a time. 509 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 510 VPTransformState &State); 511 512 /// Try to vectorize interleaved access group \p Group with the base address 513 /// given in \p Addr, optionally masking the vector operations if \p 514 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 515 /// values in the vectorized loop. 516 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 517 ArrayRef<VPValue *> VPDefs, 518 VPTransformState &State, VPValue *Addr, 519 ArrayRef<VPValue *> StoredValues, 520 VPValue *BlockInMask = nullptr); 521 522 /// Set the debug location in the builder \p Ptr using the debug location in 523 /// \p V. If \p Ptr is None then it uses the class member's Builder. 524 void setDebugLocFromInst(const Value *V, 525 Optional<IRBuilderBase *> CustomBuilder = None); 526 527 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 528 void fixNonInductionPHIs(VPTransformState &State); 529 530 /// Returns true if the reordering of FP operations is not allowed, but we are 531 /// able to vectorize with strict in-order reductions for the given RdxDesc. 532 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 533 534 /// Create a broadcast instruction. This method generates a broadcast 535 /// instruction (shuffle) for loop invariant values and for the induction 536 /// value. If this is the induction variable then we extend it to N, N+1, ... 537 /// this is needed because each iteration in the loop corresponds to a SIMD 538 /// element. 539 virtual Value *getBroadcastInstrs(Value *V); 540 541 /// Add metadata from one instruction to another. 542 /// 543 /// This includes both the original MDs from \p From and additional ones (\see 544 /// addNewMetadata). Use this for *newly created* instructions in the vector 545 /// loop. 546 void addMetadata(Instruction *To, Instruction *From); 547 548 /// Similar to the previous function but it adds the metadata to a 549 /// vector of instructions. 550 void addMetadata(ArrayRef<Value *> To, Instruction *From); 551 552 // Returns the resume value (bc.merge.rdx) for a reduction as 553 // generated by fixReduction. 554 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 555 556 protected: 557 friend class LoopVectorizationPlanner; 558 559 /// A small list of PHINodes. 560 using PhiVector = SmallVector<PHINode *, 4>; 561 562 /// A type for scalarized values in the new loop. Each value from the 563 /// original loop, when scalarized, is represented by UF x VF scalar values 564 /// in the new unrolled loop, where UF is the unroll factor and VF is the 565 /// vectorization factor. 566 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 567 568 /// Set up the values of the IVs correctly when exiting the vector loop. 569 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 570 Value *CountRoundDown, Value *EndValue, 571 BasicBlock *MiddleBlock, BasicBlock *VectorHeader); 572 573 /// Introduce a conditional branch (on true, condition to be set later) at the 574 /// end of the header=latch connecting it to itself (across the backedge) and 575 /// to the exit block of \p L. 576 void createHeaderBranch(Loop *L); 577 578 /// Handle all cross-iteration phis in the header. 579 void fixCrossIterationPHIs(VPTransformState &State); 580 581 /// Create the exit value of first order recurrences in the middle block and 582 /// update their users. 583 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 584 VPTransformState &State); 585 586 /// Create code for the loop exit value of the reduction. 587 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 588 589 /// Clear NSW/NUW flags from reduction instructions if necessary. 590 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 591 VPTransformState &State); 592 593 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 594 /// means we need to add the appropriate incoming value from the middle 595 /// block as exiting edges from the scalar epilogue loop (if present) are 596 /// already in place, and we exit the vector loop exclusively to the middle 597 /// block. 598 void fixLCSSAPHIs(VPTransformState &State); 599 600 /// Iteratively sink the scalarized operands of a predicated instruction into 601 /// the block that was created for it. 602 void sinkScalarOperands(Instruction *PredInst); 603 604 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 605 /// represented as. 606 void truncateToMinimalBitwidths(VPTransformState &State); 607 608 /// Returns (and creates if needed) the original loop trip count. 609 Value *getOrCreateTripCount(BasicBlock *InsertBlock); 610 611 /// Returns (and creates if needed) the trip count of the widened loop. 612 Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); 613 614 /// Returns a bitcasted value to the requested vector type. 615 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 616 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 617 const DataLayout &DL); 618 619 /// Emit a bypass check to see if the vector trip count is zero, including if 620 /// it overflows. 621 void emitMinimumIterationCountCheck(BasicBlock *Bypass); 622 623 /// Emit a bypass check to see if all of the SCEV assumptions we've 624 /// had to make are correct. Returns the block containing the checks or 625 /// nullptr if no checks have been added. 626 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 627 628 /// Emit bypass checks to check any memory assumptions we may have made. 629 /// Returns the block containing the checks or nullptr if no checks have been 630 /// added. 631 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); 632 633 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 634 /// vector loop preheader, middle block and scalar preheader. Also 635 /// allocate a loop object for the new vector loop and return it. 636 Loop *createVectorLoopSkeleton(StringRef Prefix); 637 638 /// Create new phi nodes for the induction variables to resume iteration count 639 /// in the scalar epilogue, from where the vectorized loop left off. 640 /// In cases where the loop skeleton is more complicated (eg. epilogue 641 /// vectorization) and the resume values can come from an additional bypass 642 /// block, the \p AdditionalBypass pair provides information about the bypass 643 /// block and the end value on the edge from bypass to this loop. 644 void createInductionResumeValues( 645 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 646 647 /// Complete the loop skeleton by adding debug MDs, creating appropriate 648 /// conditional branches in the middle block, preparing the builder and 649 /// running the verifier. Return the preheader of the completed vector loop. 650 BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID); 651 652 /// Add additional metadata to \p To that was not present on \p Orig. 653 /// 654 /// Currently this is used to add the noalias annotations based on the 655 /// inserted memchecks. Use this for instructions that are *cloned* into the 656 /// vector loop. 657 void addNewMetadata(Instruction *To, const Instruction *Orig); 658 659 /// Collect poison-generating recipes that may generate a poison value that is 660 /// used after vectorization, even when their operands are not poison. Those 661 /// recipes meet the following conditions: 662 /// * Contribute to the address computation of a recipe generating a widen 663 /// memory load/store (VPWidenMemoryInstructionRecipe or 664 /// VPInterleaveRecipe). 665 /// * Such a widen memory load/store has at least one underlying Instruction 666 /// that is in a basic block that needs predication and after vectorization 667 /// the generated instruction won't be predicated. 668 void collectPoisonGeneratingRecipes(VPTransformState &State); 669 670 /// Allow subclasses to override and print debug traces before/after vplan 671 /// execution, when trace information is requested. 672 virtual void printDebugTracesAtStart(){}; 673 virtual void printDebugTracesAtEnd(){}; 674 675 /// The original loop. 676 Loop *OrigLoop; 677 678 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 679 /// dynamic knowledge to simplify SCEV expressions and converts them to a 680 /// more usable form. 681 PredicatedScalarEvolution &PSE; 682 683 /// Loop Info. 684 LoopInfo *LI; 685 686 /// Dominator Tree. 687 DominatorTree *DT; 688 689 /// Alias Analysis. 690 AAResults *AA; 691 692 /// Target Library Info. 693 const TargetLibraryInfo *TLI; 694 695 /// Target Transform Info. 696 const TargetTransformInfo *TTI; 697 698 /// Assumption Cache. 699 AssumptionCache *AC; 700 701 /// Interface to emit optimization remarks. 702 OptimizationRemarkEmitter *ORE; 703 704 /// LoopVersioning. It's only set up (non-null) if memchecks were 705 /// used. 706 /// 707 /// This is currently only used to add no-alias metadata based on the 708 /// memchecks. The actually versioning is performed manually. 709 std::unique_ptr<LoopVersioning> LVer; 710 711 /// The vectorization SIMD factor to use. Each vector will have this many 712 /// vector elements. 713 ElementCount VF; 714 715 /// The vectorization unroll factor to use. Each scalar is vectorized to this 716 /// many different vector instructions. 717 unsigned UF; 718 719 /// The builder that we use 720 IRBuilder<> Builder; 721 722 // --- Vectorization state --- 723 724 /// The vector-loop preheader. 725 BasicBlock *LoopVectorPreHeader; 726 727 /// The scalar-loop preheader. 728 BasicBlock *LoopScalarPreHeader; 729 730 /// Middle Block between the vector and the scalar. 731 BasicBlock *LoopMiddleBlock; 732 733 /// The unique ExitBlock of the scalar loop if one exists. Note that 734 /// there can be multiple exiting edges reaching this block. 735 BasicBlock *LoopExitBlock; 736 737 /// The scalar loop body. 738 BasicBlock *LoopScalarBody; 739 740 /// A list of all bypass blocks. The first block is the entry of the loop. 741 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 742 743 /// Store instructions that were predicated. 744 SmallVector<Instruction *, 4> PredicatedInstructions; 745 746 /// Trip count of the original loop. 747 Value *TripCount = nullptr; 748 749 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 750 Value *VectorTripCount = nullptr; 751 752 /// The legality analysis. 753 LoopVectorizationLegality *Legal; 754 755 /// The profitablity analysis. 756 LoopVectorizationCostModel *Cost; 757 758 // Record whether runtime checks are added. 759 bool AddedSafetyChecks = false; 760 761 // Holds the end values for each induction variable. We save the end values 762 // so we can later fix-up the external users of the induction variables. 763 DenseMap<PHINode *, Value *> IVEndValues; 764 765 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 766 // fixed up at the end of vector code generation. 767 SmallVector<PHINode *, 8> OrigPHIsToFix; 768 769 /// BFI and PSI are used to check for profile guided size optimizations. 770 BlockFrequencyInfo *BFI; 771 ProfileSummaryInfo *PSI; 772 773 // Whether this loop should be optimized for size based on profile guided size 774 // optimizatios. 775 bool OptForSizeBasedOnProfile; 776 777 /// Structure to hold information about generated runtime checks, responsible 778 /// for cleaning the checks, if vectorization turns out unprofitable. 779 GeneratedRTChecks &RTChecks; 780 781 // Holds the resume values for reductions in the loops, used to set the 782 // correct start value of reduction PHIs when vectorizing the epilogue. 783 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 784 ReductionResumeValues; 785 }; 786 787 class InnerLoopUnroller : public InnerLoopVectorizer { 788 public: 789 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 790 LoopInfo *LI, DominatorTree *DT, 791 const TargetLibraryInfo *TLI, 792 const TargetTransformInfo *TTI, AssumptionCache *AC, 793 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 794 LoopVectorizationLegality *LVL, 795 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 796 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 797 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 798 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 799 BFI, PSI, Check) {} 800 801 private: 802 Value *getBroadcastInstrs(Value *V) override; 803 }; 804 805 /// Encapsulate information regarding vectorization of a loop and its epilogue. 806 /// This information is meant to be updated and used across two stages of 807 /// epilogue vectorization. 808 struct EpilogueLoopVectorizationInfo { 809 ElementCount MainLoopVF = ElementCount::getFixed(0); 810 unsigned MainLoopUF = 0; 811 ElementCount EpilogueVF = ElementCount::getFixed(0); 812 unsigned EpilogueUF = 0; 813 BasicBlock *MainLoopIterationCountCheck = nullptr; 814 BasicBlock *EpilogueIterationCountCheck = nullptr; 815 BasicBlock *SCEVSafetyCheck = nullptr; 816 BasicBlock *MemSafetyCheck = nullptr; 817 Value *TripCount = nullptr; 818 Value *VectorTripCount = nullptr; 819 820 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 821 ElementCount EVF, unsigned EUF) 822 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 823 assert(EUF == 1 && 824 "A high UF for the epilogue loop is likely not beneficial."); 825 } 826 }; 827 828 /// An extension of the inner loop vectorizer that creates a skeleton for a 829 /// vectorized loop that has its epilogue (residual) also vectorized. 830 /// The idea is to run the vplan on a given loop twice, firstly to setup the 831 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 832 /// from the first step and vectorize the epilogue. This is achieved by 833 /// deriving two concrete strategy classes from this base class and invoking 834 /// them in succession from the loop vectorizer planner. 835 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 836 public: 837 InnerLoopAndEpilogueVectorizer( 838 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 839 DominatorTree *DT, const TargetLibraryInfo *TLI, 840 const TargetTransformInfo *TTI, AssumptionCache *AC, 841 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 842 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 843 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 844 GeneratedRTChecks &Checks) 845 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 846 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 847 Checks), 848 EPI(EPI) {} 849 850 // Override this function to handle the more complex control flow around the 851 // three loops. 852 std::pair<BasicBlock *, Value *> 853 createVectorizedLoopSkeleton() final override { 854 return createEpilogueVectorizedLoopSkeleton(); 855 } 856 857 /// The interface for creating a vectorized skeleton using one of two 858 /// different strategies, each corresponding to one execution of the vplan 859 /// as described above. 860 virtual std::pair<BasicBlock *, Value *> 861 createEpilogueVectorizedLoopSkeleton() = 0; 862 863 /// Holds and updates state information required to vectorize the main loop 864 /// and its epilogue in two separate passes. This setup helps us avoid 865 /// regenerating and recomputing runtime safety checks. It also helps us to 866 /// shorten the iteration-count-check path length for the cases where the 867 /// iteration count of the loop is so small that the main vector loop is 868 /// completely skipped. 869 EpilogueLoopVectorizationInfo &EPI; 870 }; 871 872 /// A specialized derived class of inner loop vectorizer that performs 873 /// vectorization of *main* loops in the process of vectorizing loops and their 874 /// epilogues. 875 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 876 public: 877 EpilogueVectorizerMainLoop( 878 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 879 DominatorTree *DT, const TargetLibraryInfo *TLI, 880 const TargetTransformInfo *TTI, AssumptionCache *AC, 881 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 882 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 883 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 884 GeneratedRTChecks &Check) 885 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 886 EPI, LVL, CM, BFI, PSI, Check) {} 887 /// Implements the interface for creating a vectorized skeleton using the 888 /// *main loop* strategy (ie the first pass of vplan execution). 889 std::pair<BasicBlock *, Value *> 890 createEpilogueVectorizedLoopSkeleton() final override; 891 892 protected: 893 /// Emits an iteration count bypass check once for the main loop (when \p 894 /// ForEpilogue is false) and once for the epilogue loop (when \p 895 /// ForEpilogue is true). 896 BasicBlock *emitMinimumIterationCountCheck(BasicBlock *Bypass, 897 bool ForEpilogue); 898 void printDebugTracesAtStart() override; 899 void printDebugTracesAtEnd() override; 900 }; 901 902 // A specialized derived class of inner loop vectorizer that performs 903 // vectorization of *epilogue* loops in the process of vectorizing loops and 904 // their epilogues. 905 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 906 public: 907 EpilogueVectorizerEpilogueLoop( 908 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 909 DominatorTree *DT, const TargetLibraryInfo *TLI, 910 const TargetTransformInfo *TTI, AssumptionCache *AC, 911 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 912 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 913 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 914 GeneratedRTChecks &Checks) 915 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 916 EPI, LVL, CM, BFI, PSI, Checks) {} 917 /// Implements the interface for creating a vectorized skeleton using the 918 /// *epilogue loop* strategy (ie the second pass of vplan execution). 919 std::pair<BasicBlock *, Value *> 920 createEpilogueVectorizedLoopSkeleton() final override; 921 922 protected: 923 /// Emits an iteration count bypass check after the main vector loop has 924 /// finished to see if there are any iterations left to execute by either 925 /// the vector epilogue or the scalar epilogue. 926 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 927 BasicBlock *Bypass, 928 BasicBlock *Insert); 929 void printDebugTracesAtStart() override; 930 void printDebugTracesAtEnd() override; 931 }; 932 } // end namespace llvm 933 934 /// Look for a meaningful debug location on the instruction or it's 935 /// operands. 936 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 937 if (!I) 938 return I; 939 940 DebugLoc Empty; 941 if (I->getDebugLoc() != Empty) 942 return I; 943 944 for (Use &Op : I->operands()) { 945 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 946 if (OpInst->getDebugLoc() != Empty) 947 return OpInst; 948 } 949 950 return I; 951 } 952 953 void InnerLoopVectorizer::setDebugLocFromInst( 954 const Value *V, Optional<IRBuilderBase *> CustomBuilder) { 955 IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 956 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 957 const DILocation *DIL = Inst->getDebugLoc(); 958 959 // When a FSDiscriminator is enabled, we don't need to add the multiply 960 // factors to the discriminators. 961 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 962 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 963 // FIXME: For scalable vectors, assume vscale=1. 964 auto NewDIL = 965 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 966 if (NewDIL) 967 B->SetCurrentDebugLocation(NewDIL.getValue()); 968 else 969 LLVM_DEBUG(dbgs() 970 << "Failed to create new discriminator: " 971 << DIL->getFilename() << " Line: " << DIL->getLine()); 972 } else 973 B->SetCurrentDebugLocation(DIL); 974 } else 975 B->SetCurrentDebugLocation(DebugLoc()); 976 } 977 978 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 979 /// is passed, the message relates to that particular instruction. 980 #ifndef NDEBUG 981 static void debugVectorizationMessage(const StringRef Prefix, 982 const StringRef DebugMsg, 983 Instruction *I) { 984 dbgs() << "LV: " << Prefix << DebugMsg; 985 if (I != nullptr) 986 dbgs() << " " << *I; 987 else 988 dbgs() << '.'; 989 dbgs() << '\n'; 990 } 991 #endif 992 993 /// Create an analysis remark that explains why vectorization failed 994 /// 995 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 996 /// RemarkName is the identifier for the remark. If \p I is passed it is an 997 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 998 /// the location of the remark. \return the remark object that can be 999 /// streamed to. 1000 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1001 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1002 Value *CodeRegion = TheLoop->getHeader(); 1003 DebugLoc DL = TheLoop->getStartLoc(); 1004 1005 if (I) { 1006 CodeRegion = I->getParent(); 1007 // If there is no debug location attached to the instruction, revert back to 1008 // using the loop's. 1009 if (I->getDebugLoc()) 1010 DL = I->getDebugLoc(); 1011 } 1012 1013 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1014 } 1015 1016 namespace llvm { 1017 1018 /// Return a value for Step multiplied by VF. 1019 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 1020 int64_t Step) { 1021 assert(Ty->isIntegerTy() && "Expected an integer step"); 1022 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1023 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1024 } 1025 1026 /// Return the runtime value for VF. 1027 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 1028 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1029 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1030 } 1031 1032 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 1033 ElementCount VF) { 1034 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1035 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1036 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1037 return B.CreateUIToFP(RuntimeVF, FTy); 1038 } 1039 1040 void reportVectorizationFailure(const StringRef DebugMsg, 1041 const StringRef OREMsg, const StringRef ORETag, 1042 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1043 Instruction *I) { 1044 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1045 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1046 ORE->emit( 1047 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1048 << "loop not vectorized: " << OREMsg); 1049 } 1050 1051 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1052 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1053 Instruction *I) { 1054 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1055 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1056 ORE->emit( 1057 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1058 << Msg); 1059 } 1060 1061 } // end namespace llvm 1062 1063 #ifndef NDEBUG 1064 /// \return string containing a file name and a line # for the given loop. 1065 static std::string getDebugLocString(const Loop *L) { 1066 std::string Result; 1067 if (L) { 1068 raw_string_ostream OS(Result); 1069 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1070 LoopDbgLoc.print(OS); 1071 else 1072 // Just print the module name. 1073 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1074 OS.flush(); 1075 } 1076 return Result; 1077 } 1078 #endif 1079 1080 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1081 const Instruction *Orig) { 1082 // If the loop was versioned with memchecks, add the corresponding no-alias 1083 // metadata. 1084 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1085 LVer->annotateInstWithNoAlias(To, Orig); 1086 } 1087 1088 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1089 VPTransformState &State) { 1090 1091 // Collect recipes in the backward slice of `Root` that may generate a poison 1092 // value that is used after vectorization. 1093 SmallPtrSet<VPRecipeBase *, 16> Visited; 1094 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1095 SmallVector<VPRecipeBase *, 16> Worklist; 1096 Worklist.push_back(Root); 1097 1098 // Traverse the backward slice of Root through its use-def chain. 1099 while (!Worklist.empty()) { 1100 VPRecipeBase *CurRec = Worklist.back(); 1101 Worklist.pop_back(); 1102 1103 if (!Visited.insert(CurRec).second) 1104 continue; 1105 1106 // Prune search if we find another recipe generating a widen memory 1107 // instruction. Widen memory instructions involved in address computation 1108 // will lead to gather/scatter instructions, which don't need to be 1109 // handled. 1110 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1111 isa<VPInterleaveRecipe>(CurRec) || 1112 isa<VPScalarIVStepsRecipe>(CurRec) || 1113 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1114 continue; 1115 1116 // This recipe contributes to the address computation of a widen 1117 // load/store. Collect recipe if its underlying instruction has 1118 // poison-generating flags. 1119 Instruction *Instr = CurRec->getUnderlyingInstr(); 1120 if (Instr && Instr->hasPoisonGeneratingFlags()) 1121 State.MayGeneratePoisonRecipes.insert(CurRec); 1122 1123 // Add new definitions to the worklist. 1124 for (VPValue *operand : CurRec->operands()) 1125 if (VPDef *OpDef = operand->getDef()) 1126 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1127 } 1128 }); 1129 1130 // Traverse all the recipes in the VPlan and collect the poison-generating 1131 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1132 // VPInterleaveRecipe. 1133 auto Iter = depth_first( 1134 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1135 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1136 for (VPRecipeBase &Recipe : *VPBB) { 1137 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1138 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1139 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1140 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1141 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1142 collectPoisonGeneratingInstrsInBackwardSlice( 1143 cast<VPRecipeBase>(AddrDef)); 1144 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1145 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1146 if (AddrDef) { 1147 // Check if any member of the interleave group needs predication. 1148 const InterleaveGroup<Instruction> *InterGroup = 1149 InterleaveRec->getInterleaveGroup(); 1150 bool NeedPredication = false; 1151 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1152 I < NumMembers; ++I) { 1153 Instruction *Member = InterGroup->getMember(I); 1154 if (Member) 1155 NeedPredication |= 1156 Legal->blockNeedsPredication(Member->getParent()); 1157 } 1158 1159 if (NeedPredication) 1160 collectPoisonGeneratingInstrsInBackwardSlice( 1161 cast<VPRecipeBase>(AddrDef)); 1162 } 1163 } 1164 } 1165 } 1166 } 1167 1168 void InnerLoopVectorizer::addMetadata(Instruction *To, 1169 Instruction *From) { 1170 propagateMetadata(To, From); 1171 addNewMetadata(To, From); 1172 } 1173 1174 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1175 Instruction *From) { 1176 for (Value *V : To) { 1177 if (Instruction *I = dyn_cast<Instruction>(V)) 1178 addMetadata(I, From); 1179 } 1180 } 1181 1182 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1183 const RecurrenceDescriptor &RdxDesc) { 1184 auto It = ReductionResumeValues.find(&RdxDesc); 1185 assert(It != ReductionResumeValues.end() && 1186 "Expected to find a resume value for the reduction."); 1187 return It->second; 1188 } 1189 1190 namespace llvm { 1191 1192 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1193 // lowered. 1194 enum ScalarEpilogueLowering { 1195 1196 // The default: allowing scalar epilogues. 1197 CM_ScalarEpilogueAllowed, 1198 1199 // Vectorization with OptForSize: don't allow epilogues. 1200 CM_ScalarEpilogueNotAllowedOptSize, 1201 1202 // A special case of vectorisation with OptForSize: loops with a very small 1203 // trip count are considered for vectorization under OptForSize, thereby 1204 // making sure the cost of their loop body is dominant, free of runtime 1205 // guards and scalar iteration overheads. 1206 CM_ScalarEpilogueNotAllowedLowTripLoop, 1207 1208 // Loop hint predicate indicating an epilogue is undesired. 1209 CM_ScalarEpilogueNotNeededUsePredicate, 1210 1211 // Directive indicating we must either tail fold or not vectorize 1212 CM_ScalarEpilogueNotAllowedUsePredicate 1213 }; 1214 1215 /// ElementCountComparator creates a total ordering for ElementCount 1216 /// for the purposes of using it in a set structure. 1217 struct ElementCountComparator { 1218 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1219 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1220 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1221 } 1222 }; 1223 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1224 1225 /// LoopVectorizationCostModel - estimates the expected speedups due to 1226 /// vectorization. 1227 /// In many cases vectorization is not profitable. This can happen because of 1228 /// a number of reasons. In this class we mainly attempt to predict the 1229 /// expected speedup/slowdowns due to the supported instruction set. We use the 1230 /// TargetTransformInfo to query the different backends for the cost of 1231 /// different operations. 1232 class LoopVectorizationCostModel { 1233 public: 1234 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1235 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1236 LoopVectorizationLegality *Legal, 1237 const TargetTransformInfo &TTI, 1238 const TargetLibraryInfo *TLI, DemandedBits *DB, 1239 AssumptionCache *AC, 1240 OptimizationRemarkEmitter *ORE, const Function *F, 1241 const LoopVectorizeHints *Hints, 1242 InterleavedAccessInfo &IAI) 1243 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1244 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1245 Hints(Hints), InterleaveInfo(IAI) {} 1246 1247 /// \return An upper bound for the vectorization factors (both fixed and 1248 /// scalable). If the factors are 0, vectorization and interleaving should be 1249 /// avoided up front. 1250 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1251 1252 /// \return True if runtime checks are required for vectorization, and false 1253 /// otherwise. 1254 bool runtimeChecksRequired(); 1255 1256 /// \return The most profitable vectorization factor and the cost of that VF. 1257 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1258 /// then this vectorization factor will be selected if vectorization is 1259 /// possible. 1260 VectorizationFactor 1261 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1262 1263 VectorizationFactor 1264 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1265 const LoopVectorizationPlanner &LVP); 1266 1267 /// Setup cost-based decisions for user vectorization factor. 1268 /// \return true if the UserVF is a feasible VF to be chosen. 1269 bool selectUserVectorizationFactor(ElementCount UserVF) { 1270 collectUniformsAndScalars(UserVF); 1271 collectInstsToScalarize(UserVF); 1272 return expectedCost(UserVF).first.isValid(); 1273 } 1274 1275 /// \return The size (in bits) of the smallest and widest types in the code 1276 /// that needs to be vectorized. We ignore values that remain scalar such as 1277 /// 64 bit loop indices. 1278 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1279 1280 /// \return The desired interleave count. 1281 /// If interleave count has been specified by metadata it will be returned. 1282 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1283 /// are the selected vectorization factor and the cost of the selected VF. 1284 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1285 1286 /// Memory access instruction may be vectorized in more than one way. 1287 /// Form of instruction after vectorization depends on cost. 1288 /// This function takes cost-based decisions for Load/Store instructions 1289 /// and collects them in a map. This decisions map is used for building 1290 /// the lists of loop-uniform and loop-scalar instructions. 1291 /// The calculated cost is saved with widening decision in order to 1292 /// avoid redundant calculations. 1293 void setCostBasedWideningDecision(ElementCount VF); 1294 1295 /// A struct that represents some properties of the register usage 1296 /// of a loop. 1297 struct RegisterUsage { 1298 /// Holds the number of loop invariant values that are used in the loop. 1299 /// The key is ClassID of target-provided register class. 1300 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1301 /// Holds the maximum number of concurrent live intervals in the loop. 1302 /// The key is ClassID of target-provided register class. 1303 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1304 }; 1305 1306 /// \return Returns information about the register usages of the loop for the 1307 /// given vectorization factors. 1308 SmallVector<RegisterUsage, 8> 1309 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1310 1311 /// Collect values we want to ignore in the cost model. 1312 void collectValuesToIgnore(); 1313 1314 /// Collect all element types in the loop for which widening is needed. 1315 void collectElementTypesForWidening(); 1316 1317 /// Split reductions into those that happen in the loop, and those that happen 1318 /// outside. In loop reductions are collected into InLoopReductionChains. 1319 void collectInLoopReductions(); 1320 1321 /// Returns true if we should use strict in-order reductions for the given 1322 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1323 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1324 /// of FP operations. 1325 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1326 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1327 } 1328 1329 /// \returns The smallest bitwidth each instruction can be represented with. 1330 /// The vector equivalents of these instructions should be truncated to this 1331 /// type. 1332 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1333 return MinBWs; 1334 } 1335 1336 /// \returns True if it is more profitable to scalarize instruction \p I for 1337 /// vectorization factor \p VF. 1338 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1339 assert(VF.isVector() && 1340 "Profitable to scalarize relevant only for VF > 1."); 1341 1342 // Cost model is not run in the VPlan-native path - return conservative 1343 // result until this changes. 1344 if (EnableVPlanNativePath) 1345 return false; 1346 1347 auto Scalars = InstsToScalarize.find(VF); 1348 assert(Scalars != InstsToScalarize.end() && 1349 "VF not yet analyzed for scalarization profitability"); 1350 return Scalars->second.find(I) != Scalars->second.end(); 1351 } 1352 1353 /// Returns true if \p I is known to be uniform after vectorization. 1354 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1355 if (VF.isScalar()) 1356 return true; 1357 1358 // Cost model is not run in the VPlan-native path - return conservative 1359 // result until this changes. 1360 if (EnableVPlanNativePath) 1361 return false; 1362 1363 auto UniformsPerVF = Uniforms.find(VF); 1364 assert(UniformsPerVF != Uniforms.end() && 1365 "VF not yet analyzed for uniformity"); 1366 return UniformsPerVF->second.count(I); 1367 } 1368 1369 /// Returns true if \p I is known to be scalar after vectorization. 1370 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1371 if (VF.isScalar()) 1372 return true; 1373 1374 // Cost model is not run in the VPlan-native path - return conservative 1375 // result until this changes. 1376 if (EnableVPlanNativePath) 1377 return false; 1378 1379 auto ScalarsPerVF = Scalars.find(VF); 1380 assert(ScalarsPerVF != Scalars.end() && 1381 "Scalar values are not calculated for VF"); 1382 return ScalarsPerVF->second.count(I); 1383 } 1384 1385 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1386 /// for vectorization factor \p VF. 1387 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1388 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1389 !isProfitableToScalarize(I, VF) && 1390 !isScalarAfterVectorization(I, VF); 1391 } 1392 1393 /// Decision that was taken during cost calculation for memory instruction. 1394 enum InstWidening { 1395 CM_Unknown, 1396 CM_Widen, // For consecutive accesses with stride +1. 1397 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1398 CM_Interleave, 1399 CM_GatherScatter, 1400 CM_Scalarize 1401 }; 1402 1403 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1404 /// instruction \p I and vector width \p VF. 1405 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1406 InstructionCost Cost) { 1407 assert(VF.isVector() && "Expected VF >=2"); 1408 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1409 } 1410 1411 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1412 /// interleaving group \p Grp and vector width \p VF. 1413 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1414 ElementCount VF, InstWidening W, 1415 InstructionCost Cost) { 1416 assert(VF.isVector() && "Expected VF >=2"); 1417 /// Broadcast this decicion to all instructions inside the group. 1418 /// But the cost will be assigned to one instruction only. 1419 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1420 if (auto *I = Grp->getMember(i)) { 1421 if (Grp->getInsertPos() == I) 1422 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1423 else 1424 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1425 } 1426 } 1427 } 1428 1429 /// Return the cost model decision for the given instruction \p I and vector 1430 /// width \p VF. Return CM_Unknown if this instruction did not pass 1431 /// through the cost modeling. 1432 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1433 assert(VF.isVector() && "Expected VF to be a vector VF"); 1434 // Cost model is not run in the VPlan-native path - return conservative 1435 // result until this changes. 1436 if (EnableVPlanNativePath) 1437 return CM_GatherScatter; 1438 1439 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1440 auto Itr = WideningDecisions.find(InstOnVF); 1441 if (Itr == WideningDecisions.end()) 1442 return CM_Unknown; 1443 return Itr->second.first; 1444 } 1445 1446 /// Return the vectorization cost for the given instruction \p I and vector 1447 /// width \p VF. 1448 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1449 assert(VF.isVector() && "Expected VF >=2"); 1450 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1451 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1452 "The cost is not calculated"); 1453 return WideningDecisions[InstOnVF].second; 1454 } 1455 1456 /// Return True if instruction \p I is an optimizable truncate whose operand 1457 /// is an induction variable. Such a truncate will be removed by adding a new 1458 /// induction variable with the destination type. 1459 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1460 // If the instruction is not a truncate, return false. 1461 auto *Trunc = dyn_cast<TruncInst>(I); 1462 if (!Trunc) 1463 return false; 1464 1465 // Get the source and destination types of the truncate. 1466 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1467 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1468 1469 // If the truncate is free for the given types, return false. Replacing a 1470 // free truncate with an induction variable would add an induction variable 1471 // update instruction to each iteration of the loop. We exclude from this 1472 // check the primary induction variable since it will need an update 1473 // instruction regardless. 1474 Value *Op = Trunc->getOperand(0); 1475 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1476 return false; 1477 1478 // If the truncated value is not an induction variable, return false. 1479 return Legal->isInductionPhi(Op); 1480 } 1481 1482 /// Collects the instructions to scalarize for each predicated instruction in 1483 /// the loop. 1484 void collectInstsToScalarize(ElementCount VF); 1485 1486 /// Collect Uniform and Scalar values for the given \p VF. 1487 /// The sets depend on CM decision for Load/Store instructions 1488 /// that may be vectorized as interleave, gather-scatter or scalarized. 1489 void collectUniformsAndScalars(ElementCount VF) { 1490 // Do the analysis once. 1491 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1492 return; 1493 setCostBasedWideningDecision(VF); 1494 collectLoopUniforms(VF); 1495 collectLoopScalars(VF); 1496 } 1497 1498 /// Returns true if the target machine supports masked store operation 1499 /// for the given \p DataType and kind of access to \p Ptr. 1500 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1501 return Legal->isConsecutivePtr(DataType, Ptr) && 1502 TTI.isLegalMaskedStore(DataType, Alignment); 1503 } 1504 1505 /// Returns true if the target machine supports masked load operation 1506 /// for the given \p DataType and kind of access to \p Ptr. 1507 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1508 return Legal->isConsecutivePtr(DataType, Ptr) && 1509 TTI.isLegalMaskedLoad(DataType, Alignment); 1510 } 1511 1512 /// Returns true if the target machine can represent \p V as a masked gather 1513 /// or scatter operation. 1514 bool isLegalGatherOrScatter(Value *V, 1515 ElementCount VF = ElementCount::getFixed(1)) { 1516 bool LI = isa<LoadInst>(V); 1517 bool SI = isa<StoreInst>(V); 1518 if (!LI && !SI) 1519 return false; 1520 auto *Ty = getLoadStoreType(V); 1521 Align Align = getLoadStoreAlignment(V); 1522 if (VF.isVector()) 1523 Ty = VectorType::get(Ty, VF); 1524 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1525 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1526 } 1527 1528 /// Returns true if the target machine supports all of the reduction 1529 /// variables found for the given VF. 1530 bool canVectorizeReductions(ElementCount VF) const { 1531 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1532 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1533 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1534 })); 1535 } 1536 1537 /// Returns true if \p I is an instruction that will be scalarized with 1538 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1539 /// instructions include conditional stores and instructions that may divide 1540 /// by zero. 1541 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1542 1543 // Returns true if \p I is an instruction that will be predicated either 1544 // through scalar predication or masked load/store or masked gather/scatter. 1545 // \p VF is the vectorization factor that will be used to vectorize \p I. 1546 // Superset of instructions that return true for isScalarWithPredication. 1547 bool isPredicatedInst(Instruction *I, ElementCount VF, 1548 bool IsKnownUniform = false) { 1549 // When we know the load is uniform and the original scalar loop was not 1550 // predicated we don't need to mark it as a predicated instruction. Any 1551 // vectorised blocks created when tail-folding are something artificial we 1552 // have introduced and we know there is always at least one active lane. 1553 // That's why we call Legal->blockNeedsPredication here because it doesn't 1554 // query tail-folding. 1555 if (IsKnownUniform && isa<LoadInst>(I) && 1556 !Legal->blockNeedsPredication(I->getParent())) 1557 return false; 1558 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1559 return false; 1560 // Loads and stores that need some form of masked operation are predicated 1561 // instructions. 1562 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1563 return Legal->isMaskRequired(I); 1564 return isScalarWithPredication(I, VF); 1565 } 1566 1567 /// Returns true if \p I is a memory instruction with consecutive memory 1568 /// access that can be widened. 1569 bool 1570 memoryInstructionCanBeWidened(Instruction *I, 1571 ElementCount VF = ElementCount::getFixed(1)); 1572 1573 /// Returns true if \p I is a memory instruction in an interleaved-group 1574 /// of memory accesses that can be vectorized with wide vector loads/stores 1575 /// and shuffles. 1576 bool 1577 interleavedAccessCanBeWidened(Instruction *I, 1578 ElementCount VF = ElementCount::getFixed(1)); 1579 1580 /// Check if \p Instr belongs to any interleaved access group. 1581 bool isAccessInterleaved(Instruction *Instr) { 1582 return InterleaveInfo.isInterleaved(Instr); 1583 } 1584 1585 /// Get the interleaved access group that \p Instr belongs to. 1586 const InterleaveGroup<Instruction> * 1587 getInterleavedAccessGroup(Instruction *Instr) { 1588 return InterleaveInfo.getInterleaveGroup(Instr); 1589 } 1590 1591 /// Returns true if we're required to use a scalar epilogue for at least 1592 /// the final iteration of the original loop. 1593 bool requiresScalarEpilogue(ElementCount VF) const { 1594 if (!isScalarEpilogueAllowed()) 1595 return false; 1596 // If we might exit from anywhere but the latch, must run the exiting 1597 // iteration in scalar form. 1598 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1599 return true; 1600 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1601 } 1602 1603 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1604 /// loop hint annotation. 1605 bool isScalarEpilogueAllowed() const { 1606 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1607 } 1608 1609 /// Returns true if all loop blocks should be masked to fold tail loop. 1610 bool foldTailByMasking() const { return FoldTailByMasking; } 1611 1612 /// Returns true if the instructions in this block requires predication 1613 /// for any reason, e.g. because tail folding now requires a predicate 1614 /// or because the block in the original loop was predicated. 1615 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1616 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1617 } 1618 1619 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1620 /// nodes to the chain of instructions representing the reductions. Uses a 1621 /// MapVector to ensure deterministic iteration order. 1622 using ReductionChainMap = 1623 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1624 1625 /// Return the chain of instructions representing an inloop reduction. 1626 const ReductionChainMap &getInLoopReductionChains() const { 1627 return InLoopReductionChains; 1628 } 1629 1630 /// Returns true if the Phi is part of an inloop reduction. 1631 bool isInLoopReduction(PHINode *Phi) const { 1632 return InLoopReductionChains.count(Phi); 1633 } 1634 1635 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1636 /// with factor VF. Return the cost of the instruction, including 1637 /// scalarization overhead if it's needed. 1638 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1639 1640 /// Estimate cost of a call instruction CI if it were vectorized with factor 1641 /// VF. Return the cost of the instruction, including scalarization overhead 1642 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1643 /// scalarized - 1644 /// i.e. either vector version isn't available, or is too expensive. 1645 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1646 bool &NeedToScalarize) const; 1647 1648 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1649 /// that of B. 1650 bool isMoreProfitable(const VectorizationFactor &A, 1651 const VectorizationFactor &B) const; 1652 1653 /// Invalidates decisions already taken by the cost model. 1654 void invalidateCostModelingDecisions() { 1655 WideningDecisions.clear(); 1656 Uniforms.clear(); 1657 Scalars.clear(); 1658 } 1659 1660 private: 1661 unsigned NumPredStores = 0; 1662 1663 /// Convenience function that returns the value of vscale_range iff 1664 /// vscale_range.min == vscale_range.max or otherwise returns the value 1665 /// returned by the corresponding TLI method. 1666 Optional<unsigned> getVScaleForTuning() const; 1667 1668 /// \return An upper bound for the vectorization factors for both 1669 /// fixed and scalable vectorization, where the minimum-known number of 1670 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1671 /// disabled or unsupported, then the scalable part will be equal to 1672 /// ElementCount::getScalable(0). 1673 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1674 ElementCount UserVF, 1675 bool FoldTailByMasking); 1676 1677 /// \return the maximized element count based on the targets vector 1678 /// registers and the loop trip-count, but limited to a maximum safe VF. 1679 /// This is a helper function of computeFeasibleMaxVF. 1680 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1681 /// issue that occurred on one of the buildbots which cannot be reproduced 1682 /// without having access to the properietary compiler (see comments on 1683 /// D98509). The issue is currently under investigation and this workaround 1684 /// will be removed as soon as possible. 1685 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1686 unsigned SmallestType, 1687 unsigned WidestType, 1688 const ElementCount &MaxSafeVF, 1689 bool FoldTailByMasking); 1690 1691 /// \return the maximum legal scalable VF, based on the safe max number 1692 /// of elements. 1693 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1694 1695 /// The vectorization cost is a combination of the cost itself and a boolean 1696 /// indicating whether any of the contributing operations will actually 1697 /// operate on vector values after type legalization in the backend. If this 1698 /// latter value is false, then all operations will be scalarized (i.e. no 1699 /// vectorization has actually taken place). 1700 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1701 1702 /// Returns the expected execution cost. The unit of the cost does 1703 /// not matter because we use the 'cost' units to compare different 1704 /// vector widths. The cost that is returned is *not* normalized by 1705 /// the factor width. If \p Invalid is not nullptr, this function 1706 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1707 /// each instruction that has an Invalid cost for the given VF. 1708 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1709 VectorizationCostTy 1710 expectedCost(ElementCount VF, 1711 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1712 1713 /// Returns the execution time cost of an instruction for a given vector 1714 /// width. Vector width of one means scalar. 1715 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1716 1717 /// The cost-computation logic from getInstructionCost which provides 1718 /// the vector type as an output parameter. 1719 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1720 Type *&VectorTy); 1721 1722 /// Return the cost of instructions in an inloop reduction pattern, if I is 1723 /// part of that pattern. 1724 Optional<InstructionCost> 1725 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1726 TTI::TargetCostKind CostKind); 1727 1728 /// Calculate vectorization cost of memory instruction \p I. 1729 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1730 1731 /// The cost computation for scalarized memory instruction. 1732 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1733 1734 /// The cost computation for interleaving group of memory instructions. 1735 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1736 1737 /// The cost computation for Gather/Scatter instruction. 1738 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1739 1740 /// The cost computation for widening instruction \p I with consecutive 1741 /// memory access. 1742 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1743 1744 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1745 /// Load: scalar load + broadcast. 1746 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1747 /// element) 1748 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1749 1750 /// Estimate the overhead of scalarizing an instruction. This is a 1751 /// convenience wrapper for the type-based getScalarizationOverhead API. 1752 InstructionCost getScalarizationOverhead(Instruction *I, 1753 ElementCount VF) const; 1754 1755 /// Returns whether the instruction is a load or store and will be a emitted 1756 /// as a vector operation. 1757 bool isConsecutiveLoadOrStore(Instruction *I); 1758 1759 /// Returns true if an artificially high cost for emulated masked memrefs 1760 /// should be used. 1761 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1762 1763 /// Map of scalar integer values to the smallest bitwidth they can be legally 1764 /// represented as. The vector equivalents of these values should be truncated 1765 /// to this type. 1766 MapVector<Instruction *, uint64_t> MinBWs; 1767 1768 /// A type representing the costs for instructions if they were to be 1769 /// scalarized rather than vectorized. The entries are Instruction-Cost 1770 /// pairs. 1771 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1772 1773 /// A set containing all BasicBlocks that are known to present after 1774 /// vectorization as a predicated block. 1775 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1776 1777 /// Records whether it is allowed to have the original scalar loop execute at 1778 /// least once. This may be needed as a fallback loop in case runtime 1779 /// aliasing/dependence checks fail, or to handle the tail/remainder 1780 /// iterations when the trip count is unknown or doesn't divide by the VF, 1781 /// or as a peel-loop to handle gaps in interleave-groups. 1782 /// Under optsize and when the trip count is very small we don't allow any 1783 /// iterations to execute in the scalar loop. 1784 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1785 1786 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1787 bool FoldTailByMasking = false; 1788 1789 /// A map holding scalar costs for different vectorization factors. The 1790 /// presence of a cost for an instruction in the mapping indicates that the 1791 /// instruction will be scalarized when vectorizing with the associated 1792 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1793 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1794 1795 /// Holds the instructions known to be uniform after vectorization. 1796 /// The data is collected per VF. 1797 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1798 1799 /// Holds the instructions known to be scalar after vectorization. 1800 /// The data is collected per VF. 1801 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1802 1803 /// Holds the instructions (address computations) that are forced to be 1804 /// scalarized. 1805 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1806 1807 /// PHINodes of the reductions that should be expanded in-loop along with 1808 /// their associated chains of reduction operations, in program order from top 1809 /// (PHI) to bottom 1810 ReductionChainMap InLoopReductionChains; 1811 1812 /// A Map of inloop reduction operations and their immediate chain operand. 1813 /// FIXME: This can be removed once reductions can be costed correctly in 1814 /// vplan. This was added to allow quick lookup to the inloop operations, 1815 /// without having to loop through InLoopReductionChains. 1816 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1817 1818 /// Returns the expected difference in cost from scalarizing the expression 1819 /// feeding a predicated instruction \p PredInst. The instructions to 1820 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1821 /// non-negative return value implies the expression will be scalarized. 1822 /// Currently, only single-use chains are considered for scalarization. 1823 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1824 ElementCount VF); 1825 1826 /// Collect the instructions that are uniform after vectorization. An 1827 /// instruction is uniform if we represent it with a single scalar value in 1828 /// the vectorized loop corresponding to each vector iteration. Examples of 1829 /// uniform instructions include pointer operands of consecutive or 1830 /// interleaved memory accesses. Note that although uniformity implies an 1831 /// instruction will be scalar, the reverse is not true. In general, a 1832 /// scalarized instruction will be represented by VF scalar values in the 1833 /// vectorized loop, each corresponding to an iteration of the original 1834 /// scalar loop. 1835 void collectLoopUniforms(ElementCount VF); 1836 1837 /// Collect the instructions that are scalar after vectorization. An 1838 /// instruction is scalar if it is known to be uniform or will be scalarized 1839 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1840 /// to the list if they are used by a load/store instruction that is marked as 1841 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1842 /// VF values in the vectorized loop, each corresponding to an iteration of 1843 /// the original scalar loop. 1844 void collectLoopScalars(ElementCount VF); 1845 1846 /// Keeps cost model vectorization decision and cost for instructions. 1847 /// Right now it is used for memory instructions only. 1848 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1849 std::pair<InstWidening, InstructionCost>>; 1850 1851 DecisionList WideningDecisions; 1852 1853 /// Returns true if \p V is expected to be vectorized and it needs to be 1854 /// extracted. 1855 bool needsExtract(Value *V, ElementCount VF) const { 1856 Instruction *I = dyn_cast<Instruction>(V); 1857 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1858 TheLoop->isLoopInvariant(I)) 1859 return false; 1860 1861 // Assume we can vectorize V (and hence we need extraction) if the 1862 // scalars are not computed yet. This can happen, because it is called 1863 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1864 // the scalars are collected. That should be a safe assumption in most 1865 // cases, because we check if the operands have vectorizable types 1866 // beforehand in LoopVectorizationLegality. 1867 return Scalars.find(VF) == Scalars.end() || 1868 !isScalarAfterVectorization(I, VF); 1869 }; 1870 1871 /// Returns a range containing only operands needing to be extracted. 1872 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1873 ElementCount VF) const { 1874 return SmallVector<Value *, 4>(make_filter_range( 1875 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1876 } 1877 1878 /// Determines if we have the infrastructure to vectorize loop \p L and its 1879 /// epilogue, assuming the main loop is vectorized by \p VF. 1880 bool isCandidateForEpilogueVectorization(const Loop &L, 1881 const ElementCount VF) const; 1882 1883 /// Returns true if epilogue vectorization is considered profitable, and 1884 /// false otherwise. 1885 /// \p VF is the vectorization factor chosen for the original loop. 1886 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1887 1888 public: 1889 /// The loop that we evaluate. 1890 Loop *TheLoop; 1891 1892 /// Predicated scalar evolution analysis. 1893 PredicatedScalarEvolution &PSE; 1894 1895 /// Loop Info analysis. 1896 LoopInfo *LI; 1897 1898 /// Vectorization legality. 1899 LoopVectorizationLegality *Legal; 1900 1901 /// Vector target information. 1902 const TargetTransformInfo &TTI; 1903 1904 /// Target Library Info. 1905 const TargetLibraryInfo *TLI; 1906 1907 /// Demanded bits analysis. 1908 DemandedBits *DB; 1909 1910 /// Assumption cache. 1911 AssumptionCache *AC; 1912 1913 /// Interface to emit optimization remarks. 1914 OptimizationRemarkEmitter *ORE; 1915 1916 const Function *TheFunction; 1917 1918 /// Loop Vectorize Hint. 1919 const LoopVectorizeHints *Hints; 1920 1921 /// The interleave access information contains groups of interleaved accesses 1922 /// with the same stride and close to each other. 1923 InterleavedAccessInfo &InterleaveInfo; 1924 1925 /// Values to ignore in the cost model. 1926 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1927 1928 /// Values to ignore in the cost model when VF > 1. 1929 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1930 1931 /// All element types found in the loop. 1932 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1933 1934 /// Profitable vector factors. 1935 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1936 }; 1937 } // end namespace llvm 1938 1939 /// Helper struct to manage generating runtime checks for vectorization. 1940 /// 1941 /// The runtime checks are created up-front in temporary blocks to allow better 1942 /// estimating the cost and un-linked from the existing IR. After deciding to 1943 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1944 /// temporary blocks are completely removed. 1945 class GeneratedRTChecks { 1946 /// Basic block which contains the generated SCEV checks, if any. 1947 BasicBlock *SCEVCheckBlock = nullptr; 1948 1949 /// The value representing the result of the generated SCEV checks. If it is 1950 /// nullptr, either no SCEV checks have been generated or they have been used. 1951 Value *SCEVCheckCond = nullptr; 1952 1953 /// Basic block which contains the generated memory runtime checks, if any. 1954 BasicBlock *MemCheckBlock = nullptr; 1955 1956 /// The value representing the result of the generated memory runtime checks. 1957 /// If it is nullptr, either no memory runtime checks have been generated or 1958 /// they have been used. 1959 Value *MemRuntimeCheckCond = nullptr; 1960 1961 DominatorTree *DT; 1962 LoopInfo *LI; 1963 1964 SCEVExpander SCEVExp; 1965 SCEVExpander MemCheckExp; 1966 1967 public: 1968 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1969 const DataLayout &DL) 1970 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1971 MemCheckExp(SE, DL, "scev.check") {} 1972 1973 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1974 /// accurately estimate the cost of the runtime checks. The blocks are 1975 /// un-linked from the IR and is added back during vector code generation. If 1976 /// there is no vector code generation, the check blocks are removed 1977 /// completely. 1978 void Create(Loop *L, const LoopAccessInfo &LAI, 1979 const SCEVPredicate &Pred) { 1980 1981 BasicBlock *LoopHeader = L->getHeader(); 1982 BasicBlock *Preheader = L->getLoopPreheader(); 1983 1984 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1985 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1986 // may be used by SCEVExpander. The blocks will be un-linked from their 1987 // predecessors and removed from LI & DT at the end of the function. 1988 if (!Pred.isAlwaysTrue()) { 1989 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1990 nullptr, "vector.scevcheck"); 1991 1992 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1993 &Pred, SCEVCheckBlock->getTerminator()); 1994 } 1995 1996 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1997 if (RtPtrChecking.Need) { 1998 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1999 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 2000 "vector.memcheck"); 2001 2002 MemRuntimeCheckCond = 2003 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 2004 RtPtrChecking.getChecks(), MemCheckExp); 2005 assert(MemRuntimeCheckCond && 2006 "no RT checks generated although RtPtrChecking " 2007 "claimed checks are required"); 2008 } 2009 2010 if (!MemCheckBlock && !SCEVCheckBlock) 2011 return; 2012 2013 // Unhook the temporary block with the checks, update various places 2014 // accordingly. 2015 if (SCEVCheckBlock) 2016 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2017 if (MemCheckBlock) 2018 MemCheckBlock->replaceAllUsesWith(Preheader); 2019 2020 if (SCEVCheckBlock) { 2021 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2022 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2023 Preheader->getTerminator()->eraseFromParent(); 2024 } 2025 if (MemCheckBlock) { 2026 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2027 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2028 Preheader->getTerminator()->eraseFromParent(); 2029 } 2030 2031 DT->changeImmediateDominator(LoopHeader, Preheader); 2032 if (MemCheckBlock) { 2033 DT->eraseNode(MemCheckBlock); 2034 LI->removeBlock(MemCheckBlock); 2035 } 2036 if (SCEVCheckBlock) { 2037 DT->eraseNode(SCEVCheckBlock); 2038 LI->removeBlock(SCEVCheckBlock); 2039 } 2040 } 2041 2042 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2043 /// unused. 2044 ~GeneratedRTChecks() { 2045 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2046 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2047 if (!SCEVCheckCond) 2048 SCEVCleaner.markResultUsed(); 2049 2050 if (!MemRuntimeCheckCond) 2051 MemCheckCleaner.markResultUsed(); 2052 2053 if (MemRuntimeCheckCond) { 2054 auto &SE = *MemCheckExp.getSE(); 2055 // Memory runtime check generation creates compares that use expanded 2056 // values. Remove them before running the SCEVExpanderCleaners. 2057 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2058 if (MemCheckExp.isInsertedInstruction(&I)) 2059 continue; 2060 SE.forgetValue(&I); 2061 I.eraseFromParent(); 2062 } 2063 } 2064 MemCheckCleaner.cleanup(); 2065 SCEVCleaner.cleanup(); 2066 2067 if (SCEVCheckCond) 2068 SCEVCheckBlock->eraseFromParent(); 2069 if (MemRuntimeCheckCond) 2070 MemCheckBlock->eraseFromParent(); 2071 } 2072 2073 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2074 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2075 /// depending on the generated condition. 2076 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2077 BasicBlock *LoopVectorPreHeader, 2078 BasicBlock *LoopExitBlock) { 2079 if (!SCEVCheckCond) 2080 return nullptr; 2081 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2082 if (C->isZero()) 2083 return nullptr; 2084 2085 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2086 2087 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2088 // Create new preheader for vector loop. 2089 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2090 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2091 2092 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2093 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2094 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2095 SCEVCheckBlock); 2096 2097 DT->addNewBlock(SCEVCheckBlock, Pred); 2098 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2099 2100 ReplaceInstWithInst( 2101 SCEVCheckBlock->getTerminator(), 2102 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2103 // Mark the check as used, to prevent it from being removed during cleanup. 2104 SCEVCheckCond = nullptr; 2105 return SCEVCheckBlock; 2106 } 2107 2108 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2109 /// the branches to branch to the vector preheader or \p Bypass, depending on 2110 /// the generated condition. 2111 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, 2112 BasicBlock *LoopVectorPreHeader) { 2113 // Check if we generated code that checks in runtime if arrays overlap. 2114 if (!MemRuntimeCheckCond) 2115 return nullptr; 2116 2117 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2118 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2119 MemCheckBlock); 2120 2121 DT->addNewBlock(MemCheckBlock, Pred); 2122 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2123 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2124 2125 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2126 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2127 2128 ReplaceInstWithInst( 2129 MemCheckBlock->getTerminator(), 2130 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2131 MemCheckBlock->getTerminator()->setDebugLoc( 2132 Pred->getTerminator()->getDebugLoc()); 2133 2134 // Mark the check as used, to prevent it from being removed during cleanup. 2135 MemRuntimeCheckCond = nullptr; 2136 return MemCheckBlock; 2137 } 2138 }; 2139 2140 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2141 // vectorization. The loop needs to be annotated with #pragma omp simd 2142 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2143 // vector length information is not provided, vectorization is not considered 2144 // explicit. Interleave hints are not allowed either. These limitations will be 2145 // relaxed in the future. 2146 // Please, note that we are currently forced to abuse the pragma 'clang 2147 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2148 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2149 // provides *explicit vectorization hints* (LV can bypass legal checks and 2150 // assume that vectorization is legal). However, both hints are implemented 2151 // using the same metadata (llvm.loop.vectorize, processed by 2152 // LoopVectorizeHints). This will be fixed in the future when the native IR 2153 // representation for pragma 'omp simd' is introduced. 2154 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2155 OptimizationRemarkEmitter *ORE) { 2156 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2157 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2158 2159 // Only outer loops with an explicit vectorization hint are supported. 2160 // Unannotated outer loops are ignored. 2161 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2162 return false; 2163 2164 Function *Fn = OuterLp->getHeader()->getParent(); 2165 if (!Hints.allowVectorization(Fn, OuterLp, 2166 true /*VectorizeOnlyWhenForced*/)) { 2167 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2168 return false; 2169 } 2170 2171 if (Hints.getInterleave() > 1) { 2172 // TODO: Interleave support is future work. 2173 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2174 "outer loops.\n"); 2175 Hints.emitRemarkWithHints(); 2176 return false; 2177 } 2178 2179 return true; 2180 } 2181 2182 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2183 OptimizationRemarkEmitter *ORE, 2184 SmallVectorImpl<Loop *> &V) { 2185 // Collect inner loops and outer loops without irreducible control flow. For 2186 // now, only collect outer loops that have explicit vectorization hints. If we 2187 // are stress testing the VPlan H-CFG construction, we collect the outermost 2188 // loop of every loop nest. 2189 if (L.isInnermost() || VPlanBuildStressTest || 2190 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2191 LoopBlocksRPO RPOT(&L); 2192 RPOT.perform(LI); 2193 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2194 V.push_back(&L); 2195 // TODO: Collect inner loops inside marked outer loops in case 2196 // vectorization fails for the outer loop. Do not invoke 2197 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2198 // already known to be reducible. We can use an inherited attribute for 2199 // that. 2200 return; 2201 } 2202 } 2203 for (Loop *InnerL : L) 2204 collectSupportedLoops(*InnerL, LI, ORE, V); 2205 } 2206 2207 namespace { 2208 2209 /// The LoopVectorize Pass. 2210 struct LoopVectorize : public FunctionPass { 2211 /// Pass identification, replacement for typeid 2212 static char ID; 2213 2214 LoopVectorizePass Impl; 2215 2216 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2217 bool VectorizeOnlyWhenForced = false) 2218 : FunctionPass(ID), 2219 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2220 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2221 } 2222 2223 bool runOnFunction(Function &F) override { 2224 if (skipFunction(F)) 2225 return false; 2226 2227 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2228 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2229 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2230 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2231 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2232 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2233 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2234 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2235 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2236 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2237 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2238 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2239 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2240 2241 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2242 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2243 2244 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2245 GetLAA, *ORE, PSI).MadeAnyChange; 2246 } 2247 2248 void getAnalysisUsage(AnalysisUsage &AU) const override { 2249 AU.addRequired<AssumptionCacheTracker>(); 2250 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2251 AU.addRequired<DominatorTreeWrapperPass>(); 2252 AU.addRequired<LoopInfoWrapperPass>(); 2253 AU.addRequired<ScalarEvolutionWrapperPass>(); 2254 AU.addRequired<TargetTransformInfoWrapperPass>(); 2255 AU.addRequired<AAResultsWrapperPass>(); 2256 AU.addRequired<LoopAccessLegacyAnalysis>(); 2257 AU.addRequired<DemandedBitsWrapperPass>(); 2258 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2259 AU.addRequired<InjectTLIMappingsLegacy>(); 2260 2261 // We currently do not preserve loopinfo/dominator analyses with outer loop 2262 // vectorization. Until this is addressed, mark these analyses as preserved 2263 // only for non-VPlan-native path. 2264 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2265 if (!EnableVPlanNativePath) { 2266 AU.addPreserved<LoopInfoWrapperPass>(); 2267 AU.addPreserved<DominatorTreeWrapperPass>(); 2268 } 2269 2270 AU.addPreserved<BasicAAWrapperPass>(); 2271 AU.addPreserved<GlobalsAAWrapperPass>(); 2272 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2273 } 2274 }; 2275 2276 } // end anonymous namespace 2277 2278 //===----------------------------------------------------------------------===// 2279 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2280 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2281 //===----------------------------------------------------------------------===// 2282 2283 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2284 // We need to place the broadcast of invariant variables outside the loop, 2285 // but only if it's proven safe to do so. Else, broadcast will be inside 2286 // vector loop body. 2287 Instruction *Instr = dyn_cast<Instruction>(V); 2288 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2289 (!Instr || 2290 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2291 // Place the code for broadcasting invariant variables in the new preheader. 2292 IRBuilder<>::InsertPointGuard Guard(Builder); 2293 if (SafeToHoist) 2294 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2295 2296 // Broadcast the scalar into all locations in the vector. 2297 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2298 2299 return Shuf; 2300 } 2301 2302 /// This function adds 2303 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2304 /// to each vector element of Val. The sequence starts at StartIndex. 2305 /// \p Opcode is relevant for FP induction variable. 2306 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2307 Instruction::BinaryOps BinOp, ElementCount VF, 2308 IRBuilderBase &Builder) { 2309 assert(VF.isVector() && "only vector VFs are supported"); 2310 2311 // Create and check the types. 2312 auto *ValVTy = cast<VectorType>(Val->getType()); 2313 ElementCount VLen = ValVTy->getElementCount(); 2314 2315 Type *STy = Val->getType()->getScalarType(); 2316 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2317 "Induction Step must be an integer or FP"); 2318 assert(Step->getType() == STy && "Step has wrong type"); 2319 2320 SmallVector<Constant *, 8> Indices; 2321 2322 // Create a vector of consecutive numbers from zero to VF. 2323 VectorType *InitVecValVTy = ValVTy; 2324 if (STy->isFloatingPointTy()) { 2325 Type *InitVecValSTy = 2326 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2327 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2328 } 2329 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2330 2331 // Splat the StartIdx 2332 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2333 2334 if (STy->isIntegerTy()) { 2335 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2336 Step = Builder.CreateVectorSplat(VLen, Step); 2337 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2338 // FIXME: The newly created binary instructions should contain nsw/nuw 2339 // flags, which can be found from the original scalar operations. 2340 Step = Builder.CreateMul(InitVec, Step); 2341 return Builder.CreateAdd(Val, Step, "induction"); 2342 } 2343 2344 // Floating point induction. 2345 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2346 "Binary Opcode should be specified for FP induction"); 2347 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2348 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2349 2350 Step = Builder.CreateVectorSplat(VLen, Step); 2351 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2352 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2353 } 2354 2355 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 2356 /// variable on which to base the steps, \p Step is the size of the step. 2357 static void buildScalarSteps(Value *ScalarIV, Value *Step, 2358 const InductionDescriptor &ID, VPValue *Def, 2359 VPTransformState &State) { 2360 IRBuilderBase &Builder = State.Builder; 2361 // We shouldn't have to build scalar steps if we aren't vectorizing. 2362 assert(State.VF.isVector() && "VF should be greater than one"); 2363 // Get the value type and ensure it and the step have the same integer type. 2364 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2365 assert(ScalarIVTy == Step->getType() && 2366 "Val and Step should have the same type"); 2367 2368 // We build scalar steps for both integer and floating-point induction 2369 // variables. Here, we determine the kind of arithmetic we will perform. 2370 Instruction::BinaryOps AddOp; 2371 Instruction::BinaryOps MulOp; 2372 if (ScalarIVTy->isIntegerTy()) { 2373 AddOp = Instruction::Add; 2374 MulOp = Instruction::Mul; 2375 } else { 2376 AddOp = ID.getInductionOpcode(); 2377 MulOp = Instruction::FMul; 2378 } 2379 2380 // Determine the number of scalars we need to generate for each unroll 2381 // iteration. 2382 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2383 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2384 // Compute the scalar steps and save the results in State. 2385 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2386 ScalarIVTy->getScalarSizeInBits()); 2387 Type *VecIVTy = nullptr; 2388 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2389 if (!FirstLaneOnly && State.VF.isScalable()) { 2390 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2391 UnitStepVec = 2392 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2393 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2394 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2395 } 2396 2397 for (unsigned Part = 0; Part < State.UF; ++Part) { 2398 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2399 2400 if (!FirstLaneOnly && State.VF.isScalable()) { 2401 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2402 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2403 if (ScalarIVTy->isFloatingPointTy()) 2404 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2405 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2406 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2407 State.set(Def, Add, Part); 2408 // It's useful to record the lane values too for the known minimum number 2409 // of elements so we do those below. This improves the code quality when 2410 // trying to extract the first element, for example. 2411 } 2412 2413 if (ScalarIVTy->isFloatingPointTy()) 2414 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2415 2416 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2417 Value *StartIdx = Builder.CreateBinOp( 2418 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2419 // The step returned by `createStepForVF` is a runtime-evaluated value 2420 // when VF is scalable. Otherwise, it should be folded into a Constant. 2421 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2422 "Expected StartIdx to be folded to a constant when VF is not " 2423 "scalable"); 2424 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2425 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2426 State.set(Def, Add, VPIteration(Part, Lane)); 2427 } 2428 } 2429 } 2430 2431 // Generate code for the induction step. Note that induction steps are 2432 // required to be loop-invariant 2433 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, 2434 Instruction *InsertBefore, 2435 Loop *OrigLoop = nullptr) { 2436 const DataLayout &DL = SE.getDataLayout(); 2437 assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && 2438 "Induction step should be loop invariant"); 2439 if (auto *E = dyn_cast<SCEVUnknown>(Step)) 2440 return E->getValue(); 2441 2442 SCEVExpander Exp(SE, DL, "induction"); 2443 return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); 2444 } 2445 2446 /// Compute the transformed value of Index at offset StartValue using step 2447 /// StepValue. 2448 /// For integer induction, returns StartValue + Index * StepValue. 2449 /// For pointer induction, returns StartValue[Index * StepValue]. 2450 /// FIXME: The newly created binary instructions should contain nsw/nuw 2451 /// flags, which can be found from the original scalar operations. 2452 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, 2453 Value *StartValue, Value *Step, 2454 const InductionDescriptor &ID) { 2455 assert(Index->getType()->getScalarType() == Step->getType() && 2456 "Index scalar type does not match StepValue type"); 2457 2458 // Note: the IR at this point is broken. We cannot use SE to create any new 2459 // SCEV and then expand it, hoping that SCEV's simplification will give us 2460 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2461 // lead to various SCEV crashes. So all we can do is to use builder and rely 2462 // on InstCombine for future simplifications. Here we handle some trivial 2463 // cases only. 2464 auto CreateAdd = [&B](Value *X, Value *Y) { 2465 assert(X->getType() == Y->getType() && "Types don't match!"); 2466 if (auto *CX = dyn_cast<ConstantInt>(X)) 2467 if (CX->isZero()) 2468 return Y; 2469 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2470 if (CY->isZero()) 2471 return X; 2472 return B.CreateAdd(X, Y); 2473 }; 2474 2475 // We allow X to be a vector type, in which case Y will potentially be 2476 // splatted into a vector with the same element count. 2477 auto CreateMul = [&B](Value *X, Value *Y) { 2478 assert(X->getType()->getScalarType() == Y->getType() && 2479 "Types don't match!"); 2480 if (auto *CX = dyn_cast<ConstantInt>(X)) 2481 if (CX->isOne()) 2482 return Y; 2483 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2484 if (CY->isOne()) 2485 return X; 2486 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2487 if (XVTy && !isa<VectorType>(Y->getType())) 2488 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2489 return B.CreateMul(X, Y); 2490 }; 2491 2492 switch (ID.getKind()) { 2493 case InductionDescriptor::IK_IntInduction: { 2494 assert(!isa<VectorType>(Index->getType()) && 2495 "Vector indices not supported for integer inductions yet"); 2496 assert(Index->getType() == StartValue->getType() && 2497 "Index type does not match StartValue type"); 2498 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2499 return B.CreateSub(StartValue, Index); 2500 auto *Offset = CreateMul(Index, Step); 2501 return CreateAdd(StartValue, Offset); 2502 } 2503 case InductionDescriptor::IK_PtrInduction: { 2504 assert(isa<Constant>(Step) && 2505 "Expected constant step for pointer induction"); 2506 return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); 2507 } 2508 case InductionDescriptor::IK_FpInduction: { 2509 assert(!isa<VectorType>(Index->getType()) && 2510 "Vector indices not supported for FP inductions yet"); 2511 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2512 auto InductionBinOp = ID.getInductionBinOp(); 2513 assert(InductionBinOp && 2514 (InductionBinOp->getOpcode() == Instruction::FAdd || 2515 InductionBinOp->getOpcode() == Instruction::FSub) && 2516 "Original bin op should be defined for FP induction"); 2517 2518 Value *MulExp = B.CreateFMul(Step, Index); 2519 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2520 "induction"); 2521 } 2522 case InductionDescriptor::IK_NoInduction: 2523 return nullptr; 2524 } 2525 llvm_unreachable("invalid enum"); 2526 } 2527 2528 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2529 const VPIteration &Instance, 2530 VPTransformState &State) { 2531 Value *ScalarInst = State.get(Def, Instance); 2532 Value *VectorValue = State.get(Def, Instance.Part); 2533 VectorValue = Builder.CreateInsertElement( 2534 VectorValue, ScalarInst, 2535 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2536 State.set(Def, VectorValue, Instance.Part); 2537 } 2538 2539 // Return whether we allow using masked interleave-groups (for dealing with 2540 // strided loads/stores that reside in predicated blocks, or for dealing 2541 // with gaps). 2542 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2543 // If an override option has been passed in for interleaved accesses, use it. 2544 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2545 return EnableMaskedInterleavedMemAccesses; 2546 2547 return TTI.enableMaskedInterleavedAccessVectorization(); 2548 } 2549 2550 // Try to vectorize the interleave group that \p Instr belongs to. 2551 // 2552 // E.g. Translate following interleaved load group (factor = 3): 2553 // for (i = 0; i < N; i+=3) { 2554 // R = Pic[i]; // Member of index 0 2555 // G = Pic[i+1]; // Member of index 1 2556 // B = Pic[i+2]; // Member of index 2 2557 // ... // do something to R, G, B 2558 // } 2559 // To: 2560 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2561 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2562 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2563 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2564 // 2565 // Or translate following interleaved store group (factor = 3): 2566 // for (i = 0; i < N; i+=3) { 2567 // ... do something to R, G, B 2568 // Pic[i] = R; // Member of index 0 2569 // Pic[i+1] = G; // Member of index 1 2570 // Pic[i+2] = B; // Member of index 2 2571 // } 2572 // To: 2573 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2574 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2575 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2576 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2577 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2578 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2579 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2580 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2581 VPValue *BlockInMask) { 2582 Instruction *Instr = Group->getInsertPos(); 2583 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2584 2585 // Prepare for the vector type of the interleaved load/store. 2586 Type *ScalarTy = getLoadStoreType(Instr); 2587 unsigned InterleaveFactor = Group->getFactor(); 2588 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2589 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2590 2591 // Prepare for the new pointers. 2592 SmallVector<Value *, 2> AddrParts; 2593 unsigned Index = Group->getIndex(Instr); 2594 2595 // TODO: extend the masked interleaved-group support to reversed access. 2596 assert((!BlockInMask || !Group->isReverse()) && 2597 "Reversed masked interleave-group not supported."); 2598 2599 // If the group is reverse, adjust the index to refer to the last vector lane 2600 // instead of the first. We adjust the index from the first vector lane, 2601 // rather than directly getting the pointer for lane VF - 1, because the 2602 // pointer operand of the interleaved access is supposed to be uniform. For 2603 // uniform instructions, we're only required to generate a value for the 2604 // first vector lane in each unroll iteration. 2605 if (Group->isReverse()) 2606 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2607 2608 for (unsigned Part = 0; Part < UF; Part++) { 2609 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2610 setDebugLocFromInst(AddrPart); 2611 2612 // Notice current instruction could be any index. Need to adjust the address 2613 // to the member of index 0. 2614 // 2615 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2616 // b = A[i]; // Member of index 0 2617 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2618 // 2619 // E.g. A[i+1] = a; // Member of index 1 2620 // A[i] = b; // Member of index 0 2621 // A[i+2] = c; // Member of index 2 (Current instruction) 2622 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2623 2624 bool InBounds = false; 2625 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2626 InBounds = gep->isInBounds(); 2627 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2628 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2629 2630 // Cast to the vector pointer type. 2631 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2632 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2633 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2634 } 2635 2636 setDebugLocFromInst(Instr); 2637 Value *PoisonVec = PoisonValue::get(VecTy); 2638 2639 Value *MaskForGaps = nullptr; 2640 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2641 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2642 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2643 } 2644 2645 // Vectorize the interleaved load group. 2646 if (isa<LoadInst>(Instr)) { 2647 // For each unroll part, create a wide load for the group. 2648 SmallVector<Value *, 2> NewLoads; 2649 for (unsigned Part = 0; Part < UF; Part++) { 2650 Instruction *NewLoad; 2651 if (BlockInMask || MaskForGaps) { 2652 assert(useMaskedInterleavedAccesses(*TTI) && 2653 "masked interleaved groups are not allowed."); 2654 Value *GroupMask = MaskForGaps; 2655 if (BlockInMask) { 2656 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2657 Value *ShuffledMask = Builder.CreateShuffleVector( 2658 BlockInMaskPart, 2659 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2660 "interleaved.mask"); 2661 GroupMask = MaskForGaps 2662 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2663 MaskForGaps) 2664 : ShuffledMask; 2665 } 2666 NewLoad = 2667 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2668 GroupMask, PoisonVec, "wide.masked.vec"); 2669 } 2670 else 2671 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2672 Group->getAlign(), "wide.vec"); 2673 Group->addMetadata(NewLoad); 2674 NewLoads.push_back(NewLoad); 2675 } 2676 2677 // For each member in the group, shuffle out the appropriate data from the 2678 // wide loads. 2679 unsigned J = 0; 2680 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2681 Instruction *Member = Group->getMember(I); 2682 2683 // Skip the gaps in the group. 2684 if (!Member) 2685 continue; 2686 2687 auto StrideMask = 2688 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2689 for (unsigned Part = 0; Part < UF; Part++) { 2690 Value *StridedVec = Builder.CreateShuffleVector( 2691 NewLoads[Part], StrideMask, "strided.vec"); 2692 2693 // If this member has different type, cast the result type. 2694 if (Member->getType() != ScalarTy) { 2695 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2696 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2697 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2698 } 2699 2700 if (Group->isReverse()) 2701 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2702 2703 State.set(VPDefs[J], StridedVec, Part); 2704 } 2705 ++J; 2706 } 2707 return; 2708 } 2709 2710 // The sub vector type for current instruction. 2711 auto *SubVT = VectorType::get(ScalarTy, VF); 2712 2713 // Vectorize the interleaved store group. 2714 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2715 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2716 "masked interleaved groups are not allowed."); 2717 assert((!MaskForGaps || !VF.isScalable()) && 2718 "masking gaps for scalable vectors is not yet supported."); 2719 for (unsigned Part = 0; Part < UF; Part++) { 2720 // Collect the stored vector from each member. 2721 SmallVector<Value *, 4> StoredVecs; 2722 for (unsigned i = 0; i < InterleaveFactor; i++) { 2723 assert((Group->getMember(i) || MaskForGaps) && 2724 "Fail to get a member from an interleaved store group"); 2725 Instruction *Member = Group->getMember(i); 2726 2727 // Skip the gaps in the group. 2728 if (!Member) { 2729 Value *Undef = PoisonValue::get(SubVT); 2730 StoredVecs.push_back(Undef); 2731 continue; 2732 } 2733 2734 Value *StoredVec = State.get(StoredValues[i], Part); 2735 2736 if (Group->isReverse()) 2737 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2738 2739 // If this member has different type, cast it to a unified type. 2740 2741 if (StoredVec->getType() != SubVT) 2742 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2743 2744 StoredVecs.push_back(StoredVec); 2745 } 2746 2747 // Concatenate all vectors into a wide vector. 2748 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2749 2750 // Interleave the elements in the wide vector. 2751 Value *IVec = Builder.CreateShuffleVector( 2752 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2753 "interleaved.vec"); 2754 2755 Instruction *NewStoreInstr; 2756 if (BlockInMask || MaskForGaps) { 2757 Value *GroupMask = MaskForGaps; 2758 if (BlockInMask) { 2759 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2760 Value *ShuffledMask = Builder.CreateShuffleVector( 2761 BlockInMaskPart, 2762 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2763 "interleaved.mask"); 2764 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2765 ShuffledMask, MaskForGaps) 2766 : ShuffledMask; 2767 } 2768 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2769 Group->getAlign(), GroupMask); 2770 } else 2771 NewStoreInstr = 2772 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2773 2774 Group->addMetadata(NewStoreInstr); 2775 } 2776 } 2777 2778 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2779 VPReplicateRecipe *RepRecipe, 2780 const VPIteration &Instance, 2781 bool IfPredicateInstr, 2782 VPTransformState &State) { 2783 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2784 2785 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2786 // the first lane and part. 2787 if (isa<NoAliasScopeDeclInst>(Instr)) 2788 if (!Instance.isFirstIteration()) 2789 return; 2790 2791 setDebugLocFromInst(Instr); 2792 2793 // Does this instruction return a value ? 2794 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2795 2796 Instruction *Cloned = Instr->clone(); 2797 if (!IsVoidRetTy) 2798 Cloned->setName(Instr->getName() + ".cloned"); 2799 2800 // If the scalarized instruction contributes to the address computation of a 2801 // widen masked load/store which was in a basic block that needed predication 2802 // and is not predicated after vectorization, we can't propagate 2803 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2804 // instruction could feed a poison value to the base address of the widen 2805 // load/store. 2806 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2807 Cloned->dropPoisonGeneratingFlags(); 2808 2809 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 2810 Builder.GetInsertPoint()); 2811 // Replace the operands of the cloned instructions with their scalar 2812 // equivalents in the new loop. 2813 for (auto &I : enumerate(RepRecipe->operands())) { 2814 auto InputInstance = Instance; 2815 VPValue *Operand = I.value(); 2816 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2817 if (OperandR && OperandR->isUniform()) 2818 InputInstance.Lane = VPLane::getFirstLane(); 2819 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2820 } 2821 addNewMetadata(Cloned, Instr); 2822 2823 // Place the cloned scalar in the new loop. 2824 Builder.Insert(Cloned); 2825 2826 State.set(RepRecipe, Cloned, Instance); 2827 2828 // If we just cloned a new assumption, add it the assumption cache. 2829 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2830 AC->registerAssumption(II); 2831 2832 // End if-block. 2833 if (IfPredicateInstr) 2834 PredicatedInstructions.push_back(Cloned); 2835 } 2836 2837 void InnerLoopVectorizer::createHeaderBranch(Loop *L) { 2838 BasicBlock *Header = L->getHeader(); 2839 assert(!L->getLoopLatch() && "loop should not have a latch at this point"); 2840 2841 IRBuilder<> B(Header->getTerminator()); 2842 Instruction *OldInst = 2843 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 2844 setDebugLocFromInst(OldInst, &B); 2845 2846 // Connect the header to the exit and header blocks and replace the old 2847 // terminator. 2848 B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header); 2849 2850 // Now we have two terminators. Remove the old one from the block. 2851 Header->getTerminator()->eraseFromParent(); 2852 } 2853 2854 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) { 2855 if (TripCount) 2856 return TripCount; 2857 2858 assert(InsertBlock); 2859 IRBuilder<> Builder(InsertBlock->getTerminator()); 2860 // Find the loop boundaries. 2861 ScalarEvolution *SE = PSE.getSE(); 2862 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2863 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2864 "Invalid loop count"); 2865 2866 Type *IdxTy = Legal->getWidestInductionType(); 2867 assert(IdxTy && "No type for induction"); 2868 2869 // The exit count might have the type of i64 while the phi is i32. This can 2870 // happen if we have an induction variable that is sign extended before the 2871 // compare. The only way that we get a backedge taken count is that the 2872 // induction variable was signed and as such will not overflow. In such a case 2873 // truncation is legal. 2874 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2875 IdxTy->getPrimitiveSizeInBits()) 2876 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2877 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2878 2879 // Get the total trip count from the count by adding 1. 2880 const SCEV *ExitCount = SE->getAddExpr( 2881 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2882 2883 const DataLayout &DL = InsertBlock->getModule()->getDataLayout(); 2884 2885 // Expand the trip count and place the new instructions in the preheader. 2886 // Notice that the pre-header does not change, only the loop body. 2887 SCEVExpander Exp(*SE, DL, "induction"); 2888 2889 // Count holds the overall loop count (N). 2890 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2891 InsertBlock->getTerminator()); 2892 2893 if (TripCount->getType()->isPointerTy()) 2894 TripCount = 2895 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2896 InsertBlock->getTerminator()); 2897 2898 return TripCount; 2899 } 2900 2901 Value * 2902 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { 2903 if (VectorTripCount) 2904 return VectorTripCount; 2905 2906 Value *TC = getOrCreateTripCount(InsertBlock); 2907 IRBuilder<> Builder(InsertBlock->getTerminator()); 2908 2909 Type *Ty = TC->getType(); 2910 // This is where we can make the step a runtime constant. 2911 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2912 2913 // If the tail is to be folded by masking, round the number of iterations N 2914 // up to a multiple of Step instead of rounding down. This is done by first 2915 // adding Step-1 and then rounding down. Note that it's ok if this addition 2916 // overflows: the vector induction variable will eventually wrap to zero given 2917 // that it starts at zero and its Step is a power of two; the loop will then 2918 // exit, with the last early-exit vector comparison also producing all-true. 2919 if (Cost->foldTailByMasking()) { 2920 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2921 "VF*UF must be a power of 2 when folding tail by masking"); 2922 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 2923 TC = Builder.CreateAdd( 2924 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 2925 } 2926 2927 // Now we need to generate the expression for the part of the loop that the 2928 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2929 // iterations are not required for correctness, or N - Step, otherwise. Step 2930 // is equal to the vectorization factor (number of SIMD elements) times the 2931 // unroll factor (number of SIMD instructions). 2932 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2933 2934 // There are cases where we *must* run at least one iteration in the remainder 2935 // loop. See the cost model for when this can happen. If the step evenly 2936 // divides the trip count, we set the remainder to be equal to the step. If 2937 // the step does not evenly divide the trip count, no adjustment is necessary 2938 // since there will already be scalar iterations. Note that the minimum 2939 // iterations check ensures that N >= Step. 2940 if (Cost->requiresScalarEpilogue(VF)) { 2941 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2942 R = Builder.CreateSelect(IsZero, Step, R); 2943 } 2944 2945 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2946 2947 return VectorTripCount; 2948 } 2949 2950 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2951 const DataLayout &DL) { 2952 // Verify that V is a vector type with same number of elements as DstVTy. 2953 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2954 unsigned VF = DstFVTy->getNumElements(); 2955 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2956 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2957 Type *SrcElemTy = SrcVecTy->getElementType(); 2958 Type *DstElemTy = DstFVTy->getElementType(); 2959 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2960 "Vector elements must have same size"); 2961 2962 // Do a direct cast if element types are castable. 2963 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2964 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2965 } 2966 // V cannot be directly casted to desired vector type. 2967 // May happen when V is a floating point vector but DstVTy is a vector of 2968 // pointers or vice-versa. Handle this using a two-step bitcast using an 2969 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2970 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2971 "Only one type should be a pointer type"); 2972 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2973 "Only one type should be a floating point type"); 2974 Type *IntTy = 2975 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2976 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2977 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2978 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2979 } 2980 2981 void InnerLoopVectorizer::emitMinimumIterationCountCheck(BasicBlock *Bypass) { 2982 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 2983 // Reuse existing vector loop preheader for TC checks. 2984 // Note that new preheader block is generated for vector loop. 2985 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2986 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2987 2988 // Generate code to check if the loop's trip count is less than VF * UF, or 2989 // equal to it in case a scalar epilogue is required; this implies that the 2990 // vector trip count is zero. This check also covers the case where adding one 2991 // to the backedge-taken count overflowed leading to an incorrect trip count 2992 // of zero. In this case we will also jump to the scalar loop. 2993 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 2994 : ICmpInst::ICMP_ULT; 2995 2996 // If tail is to be folded, vector loop takes care of all iterations. 2997 Value *CheckMinIters = Builder.getFalse(); 2998 if (!Cost->foldTailByMasking()) { 2999 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 3000 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3001 } 3002 // Create new preheader for vector loop. 3003 LoopVectorPreHeader = 3004 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3005 "vector.ph"); 3006 3007 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3008 DT->getNode(Bypass)->getIDom()) && 3009 "TC check is expected to dominate Bypass"); 3010 3011 // Update dominator for Bypass & LoopExit (if needed). 3012 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3013 if (!Cost->requiresScalarEpilogue(VF)) 3014 // If there is an epilogue which must run, there's no edge from the 3015 // middle block to exit blocks and thus no need to update the immediate 3016 // dominator of the exit blocks. 3017 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3018 3019 ReplaceInstWithInst( 3020 TCCheckBlock->getTerminator(), 3021 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3022 LoopBypassBlocks.push_back(TCCheckBlock); 3023 } 3024 3025 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 3026 3027 BasicBlock *const SCEVCheckBlock = 3028 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); 3029 if (!SCEVCheckBlock) 3030 return nullptr; 3031 3032 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3033 (OptForSizeBasedOnProfile && 3034 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3035 "Cannot SCEV check stride or overflow when optimizing for size"); 3036 3037 3038 // Update dominator only if this is first RT check. 3039 if (LoopBypassBlocks.empty()) { 3040 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3041 if (!Cost->requiresScalarEpilogue(VF)) 3042 // If there is an epilogue which must run, there's no edge from the 3043 // middle block to exit blocks and thus no need to update the immediate 3044 // dominator of the exit blocks. 3045 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3046 } 3047 3048 LoopBypassBlocks.push_back(SCEVCheckBlock); 3049 AddedSafetyChecks = true; 3050 return SCEVCheckBlock; 3051 } 3052 3053 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { 3054 // VPlan-native path does not do any analysis for runtime checks currently. 3055 if (EnableVPlanNativePath) 3056 return nullptr; 3057 3058 BasicBlock *const MemCheckBlock = 3059 RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); 3060 3061 // Check if we generated code that checks in runtime if arrays overlap. We put 3062 // the checks into a separate block to make the more common case of few 3063 // elements faster. 3064 if (!MemCheckBlock) 3065 return nullptr; 3066 3067 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3068 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3069 "Cannot emit memory checks when optimizing for size, unless forced " 3070 "to vectorize."); 3071 ORE->emit([&]() { 3072 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3073 OrigLoop->getStartLoc(), 3074 OrigLoop->getHeader()) 3075 << "Code-size may be reduced by not forcing " 3076 "vectorization, or by source-code modifications " 3077 "eliminating the need for runtime checks " 3078 "(e.g., adding 'restrict')."; 3079 }); 3080 } 3081 3082 LoopBypassBlocks.push_back(MemCheckBlock); 3083 3084 AddedSafetyChecks = true; 3085 3086 // We currently don't use LoopVersioning for the actual loop cloning but we 3087 // still use it to add the noalias metadata. 3088 LVer = std::make_unique<LoopVersioning>( 3089 *Legal->getLAI(), 3090 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3091 DT, PSE.getSE()); 3092 LVer->prepareNoAliasMetadata(); 3093 return MemCheckBlock; 3094 } 3095 3096 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3097 LoopScalarBody = OrigLoop->getHeader(); 3098 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3099 assert(LoopVectorPreHeader && "Invalid loop structure"); 3100 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3101 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3102 "multiple exit loop without required epilogue?"); 3103 3104 LoopMiddleBlock = 3105 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3106 LI, nullptr, Twine(Prefix) + "middle.block"); 3107 LoopScalarPreHeader = 3108 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3109 nullptr, Twine(Prefix) + "scalar.ph"); 3110 3111 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3112 3113 // Set up the middle block terminator. Two cases: 3114 // 1) If we know that we must execute the scalar epilogue, emit an 3115 // unconditional branch. 3116 // 2) Otherwise, we must have a single unique exit block (due to how we 3117 // implement the multiple exit case). In this case, set up a conditonal 3118 // branch from the middle block to the loop scalar preheader, and the 3119 // exit block. completeLoopSkeleton will update the condition to use an 3120 // iteration check, if required to decide whether to execute the remainder. 3121 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3122 BranchInst::Create(LoopScalarPreHeader) : 3123 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3124 Builder.getTrue()); 3125 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3126 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3127 3128 // We intentionally don't let SplitBlock to update LoopInfo since 3129 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3130 // LoopVectorBody is explicitly added to the correct place few lines later. 3131 BasicBlock *LoopVectorBody = 3132 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3133 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3134 3135 // Update dominator for loop exit. 3136 if (!Cost->requiresScalarEpilogue(VF)) 3137 // If there is an epilogue which must run, there's no edge from the 3138 // middle block to exit blocks and thus no need to update the immediate 3139 // dominator of the exit blocks. 3140 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3141 3142 // Create and register the new vector loop. 3143 Loop *Lp = LI->AllocateLoop(); 3144 Loop *ParentLoop = OrigLoop->getParentLoop(); 3145 3146 // Insert the new loop into the loop nest and register the new basic blocks 3147 // before calling any utilities such as SCEV that require valid LoopInfo. 3148 if (ParentLoop) { 3149 ParentLoop->addChildLoop(Lp); 3150 } else { 3151 LI->addTopLevelLoop(Lp); 3152 } 3153 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3154 return Lp; 3155 } 3156 3157 void InnerLoopVectorizer::createInductionResumeValues( 3158 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3159 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3160 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3161 "Inconsistent information about additional bypass."); 3162 3163 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3164 assert(VectorTripCount && "Expected valid arguments"); 3165 // We are going to resume the execution of the scalar loop. 3166 // Go over all of the induction variables that we found and fix the 3167 // PHIs that are left in the scalar version of the loop. 3168 // The starting values of PHI nodes depend on the counter of the last 3169 // iteration in the vectorized loop. 3170 // If we come from a bypass edge then we need to start from the original 3171 // start value. 3172 Instruction *OldInduction = Legal->getPrimaryInduction(); 3173 for (auto &InductionEntry : Legal->getInductionVars()) { 3174 PHINode *OrigPhi = InductionEntry.first; 3175 InductionDescriptor II = InductionEntry.second; 3176 3177 // Create phi nodes to merge from the backedge-taken check block. 3178 PHINode *BCResumeVal = 3179 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3180 LoopScalarPreHeader->getTerminator()); 3181 // Copy original phi DL over to the new one. 3182 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3183 Value *&EndValue = IVEndValues[OrigPhi]; 3184 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3185 if (OrigPhi == OldInduction) { 3186 // We know what the end value is. 3187 EndValue = VectorTripCount; 3188 } else { 3189 IRBuilder<> B(LoopVectorPreHeader->getTerminator()); 3190 3191 // Fast-math-flags propagate from the original induction instruction. 3192 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3193 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3194 3195 Type *StepType = II.getStep()->getType(); 3196 Instruction::CastOps CastOp = 3197 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3198 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3199 Value *Step = 3200 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3201 EndValue = emitTransformedIndex(B, CRD, II.getStartValue(), Step, II); 3202 EndValue->setName("ind.end"); 3203 3204 // Compute the end value for the additional bypass (if applicable). 3205 if (AdditionalBypass.first) { 3206 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3207 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3208 StepType, true); 3209 Value *Step = 3210 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3211 CRD = 3212 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3213 EndValueFromAdditionalBypass = 3214 emitTransformedIndex(B, CRD, II.getStartValue(), Step, II); 3215 EndValueFromAdditionalBypass->setName("ind.end"); 3216 } 3217 } 3218 // The new PHI merges the original incoming value, in case of a bypass, 3219 // or the value at the end of the vectorized loop. 3220 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3221 3222 // Fix the scalar body counter (PHI node). 3223 // The old induction's phi node in the scalar body needs the truncated 3224 // value. 3225 for (BasicBlock *BB : LoopBypassBlocks) 3226 BCResumeVal->addIncoming(II.getStartValue(), BB); 3227 3228 if (AdditionalBypass.first) 3229 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3230 EndValueFromAdditionalBypass); 3231 3232 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3233 } 3234 } 3235 3236 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) { 3237 // The trip counts should be cached by now. 3238 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 3239 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3240 3241 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3242 3243 // Add a check in the middle block to see if we have completed 3244 // all of the iterations in the first vector loop. Three cases: 3245 // 1) If we require a scalar epilogue, there is no conditional branch as 3246 // we unconditionally branch to the scalar preheader. Do nothing. 3247 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3248 // Thus if tail is to be folded, we know we don't need to run the 3249 // remainder and we can use the previous value for the condition (true). 3250 // 3) Otherwise, construct a runtime check. 3251 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3252 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3253 Count, VectorTripCount, "cmp.n", 3254 LoopMiddleBlock->getTerminator()); 3255 3256 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3257 // of the corresponding compare because they may have ended up with 3258 // different line numbers and we want to avoid awkward line stepping while 3259 // debugging. Eg. if the compare has got a line number inside the loop. 3260 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3261 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3262 } 3263 3264 #ifdef EXPENSIVE_CHECKS 3265 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3266 LI->verify(*DT); 3267 #endif 3268 3269 return LoopVectorPreHeader; 3270 } 3271 3272 std::pair<BasicBlock *, Value *> 3273 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3274 /* 3275 In this function we generate a new loop. The new loop will contain 3276 the vectorized instructions while the old loop will continue to run the 3277 scalar remainder. 3278 3279 [ ] <-- loop iteration number check. 3280 / | 3281 / v 3282 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3283 | / | 3284 | / v 3285 || [ ] <-- vector pre header. 3286 |/ | 3287 | v 3288 | [ ] \ 3289 | [ ]_| <-- vector loop. 3290 | | 3291 | v 3292 \ -[ ] <--- middle-block. 3293 \/ | 3294 /\ v 3295 | ->[ ] <--- new preheader. 3296 | | 3297 (opt) v <-- edge from middle to exit iff epilogue is not required. 3298 | [ ] \ 3299 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3300 \ | 3301 \ v 3302 >[ ] <-- exit block(s). 3303 ... 3304 */ 3305 3306 // Get the metadata of the original loop before it gets modified. 3307 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3308 3309 // Workaround! Compute the trip count of the original loop and cache it 3310 // before we start modifying the CFG. This code has a systemic problem 3311 // wherein it tries to run analysis over partially constructed IR; this is 3312 // wrong, and not simply for SCEV. The trip count of the original loop 3313 // simply happens to be prone to hitting this in practice. In theory, we 3314 // can hit the same issue for any SCEV, or ValueTracking query done during 3315 // mutation. See PR49900. 3316 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 3317 3318 // Create an empty vector loop, and prepare basic blocks for the runtime 3319 // checks. 3320 Loop *Lp = createVectorLoopSkeleton(""); 3321 3322 // Now, compare the new count to zero. If it is zero skip the vector loop and 3323 // jump to the scalar loop. This check also covers the case where the 3324 // backedge-taken count is uint##_max: adding one to it will overflow leading 3325 // to an incorrect trip count of zero. In this (rare) case we will also jump 3326 // to the scalar loop. 3327 emitMinimumIterationCountCheck(LoopScalarPreHeader); 3328 3329 // Generate the code to check any assumptions that we've made for SCEV 3330 // expressions. 3331 emitSCEVChecks(LoopScalarPreHeader); 3332 3333 // Generate the code that checks in runtime if arrays overlap. We put the 3334 // checks into a separate block to make the more common case of few elements 3335 // faster. 3336 emitMemRuntimeChecks(LoopScalarPreHeader); 3337 3338 createHeaderBranch(Lp); 3339 3340 // Emit phis for the new starting index of the scalar loop. 3341 createInductionResumeValues(); 3342 3343 return {completeLoopSkeleton(OrigLoopID), nullptr}; 3344 } 3345 3346 // Fix up external users of the induction variable. At this point, we are 3347 // in LCSSA form, with all external PHIs that use the IV having one input value, 3348 // coming from the remainder loop. We need those PHIs to also have a correct 3349 // value for the IV when arriving directly from the middle block. 3350 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3351 const InductionDescriptor &II, 3352 Value *CountRoundDown, Value *EndValue, 3353 BasicBlock *MiddleBlock, 3354 BasicBlock *VectorHeader) { 3355 // There are two kinds of external IV usages - those that use the value 3356 // computed in the last iteration (the PHI) and those that use the penultimate 3357 // value (the value that feeds into the phi from the loop latch). 3358 // We allow both, but they, obviously, have different values. 3359 3360 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3361 3362 DenseMap<Value *, Value *> MissingVals; 3363 3364 // An external user of the last iteration's value should see the value that 3365 // the remainder loop uses to initialize its own IV. 3366 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3367 for (User *U : PostInc->users()) { 3368 Instruction *UI = cast<Instruction>(U); 3369 if (!OrigLoop->contains(UI)) { 3370 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3371 MissingVals[UI] = EndValue; 3372 } 3373 } 3374 3375 // An external user of the penultimate value need to see EndValue - Step. 3376 // The simplest way to get this is to recompute it from the constituent SCEVs, 3377 // that is Start + (Step * (CRD - 1)). 3378 for (User *U : OrigPhi->users()) { 3379 auto *UI = cast<Instruction>(U); 3380 if (!OrigLoop->contains(UI)) { 3381 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3382 3383 IRBuilder<> B(MiddleBlock->getTerminator()); 3384 3385 // Fast-math-flags propagate from the original induction instruction. 3386 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3387 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3388 3389 Value *CountMinusOne = B.CreateSub( 3390 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3391 Value *CMO = 3392 !II.getStep()->getType()->isIntegerTy() 3393 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3394 II.getStep()->getType()) 3395 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3396 CMO->setName("cast.cmo"); 3397 3398 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 3399 VectorHeader->getTerminator()); 3400 Value *Escape = 3401 emitTransformedIndex(B, CMO, II.getStartValue(), Step, II); 3402 Escape->setName("ind.escape"); 3403 MissingVals[UI] = Escape; 3404 } 3405 } 3406 3407 for (auto &I : MissingVals) { 3408 PHINode *PHI = cast<PHINode>(I.first); 3409 // One corner case we have to handle is two IVs "chasing" each-other, 3410 // that is %IV2 = phi [...], [ %IV1, %latch ] 3411 // In this case, if IV1 has an external use, we need to avoid adding both 3412 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3413 // don't already have an incoming value for the middle block. 3414 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3415 PHI->addIncoming(I.second, MiddleBlock); 3416 } 3417 } 3418 3419 namespace { 3420 3421 struct CSEDenseMapInfo { 3422 static bool canHandle(const Instruction *I) { 3423 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3424 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3425 } 3426 3427 static inline Instruction *getEmptyKey() { 3428 return DenseMapInfo<Instruction *>::getEmptyKey(); 3429 } 3430 3431 static inline Instruction *getTombstoneKey() { 3432 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3433 } 3434 3435 static unsigned getHashValue(const Instruction *I) { 3436 assert(canHandle(I) && "Unknown instruction!"); 3437 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3438 I->value_op_end())); 3439 } 3440 3441 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3442 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3443 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3444 return LHS == RHS; 3445 return LHS->isIdenticalTo(RHS); 3446 } 3447 }; 3448 3449 } // end anonymous namespace 3450 3451 ///Perform cse of induction variable instructions. 3452 static void cse(BasicBlock *BB) { 3453 // Perform simple cse. 3454 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3455 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3456 if (!CSEDenseMapInfo::canHandle(&In)) 3457 continue; 3458 3459 // Check if we can replace this instruction with any of the 3460 // visited instructions. 3461 if (Instruction *V = CSEMap.lookup(&In)) { 3462 In.replaceAllUsesWith(V); 3463 In.eraseFromParent(); 3464 continue; 3465 } 3466 3467 CSEMap[&In] = &In; 3468 } 3469 } 3470 3471 InstructionCost 3472 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3473 bool &NeedToScalarize) const { 3474 Function *F = CI->getCalledFunction(); 3475 Type *ScalarRetTy = CI->getType(); 3476 SmallVector<Type *, 4> Tys, ScalarTys; 3477 for (auto &ArgOp : CI->args()) 3478 ScalarTys.push_back(ArgOp->getType()); 3479 3480 // Estimate cost of scalarized vector call. The source operands are assumed 3481 // to be vectors, so we need to extract individual elements from there, 3482 // execute VF scalar calls, and then gather the result into the vector return 3483 // value. 3484 InstructionCost ScalarCallCost = 3485 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3486 if (VF.isScalar()) 3487 return ScalarCallCost; 3488 3489 // Compute corresponding vector type for return value and arguments. 3490 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3491 for (Type *ScalarTy : ScalarTys) 3492 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3493 3494 // Compute costs of unpacking argument values for the scalar calls and 3495 // packing the return values to a vector. 3496 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3497 3498 InstructionCost Cost = 3499 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3500 3501 // If we can't emit a vector call for this function, then the currently found 3502 // cost is the cost we need to return. 3503 NeedToScalarize = true; 3504 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3505 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3506 3507 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3508 return Cost; 3509 3510 // If the corresponding vector cost is cheaper, return its cost. 3511 InstructionCost VectorCallCost = 3512 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3513 if (VectorCallCost < Cost) { 3514 NeedToScalarize = false; 3515 Cost = VectorCallCost; 3516 } 3517 return Cost; 3518 } 3519 3520 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3521 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3522 return Elt; 3523 return VectorType::get(Elt, VF); 3524 } 3525 3526 InstructionCost 3527 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3528 ElementCount VF) const { 3529 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3530 assert(ID && "Expected intrinsic call!"); 3531 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3532 FastMathFlags FMF; 3533 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3534 FMF = FPMO->getFastMathFlags(); 3535 3536 SmallVector<const Value *> Arguments(CI->args()); 3537 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3538 SmallVector<Type *> ParamTys; 3539 std::transform(FTy->param_begin(), FTy->param_end(), 3540 std::back_inserter(ParamTys), 3541 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3542 3543 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3544 dyn_cast<IntrinsicInst>(CI)); 3545 return TTI.getIntrinsicInstrCost(CostAttrs, 3546 TargetTransformInfo::TCK_RecipThroughput); 3547 } 3548 3549 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3550 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3551 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3552 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3553 } 3554 3555 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3556 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3557 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3558 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3559 } 3560 3561 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3562 // For every instruction `I` in MinBWs, truncate the operands, create a 3563 // truncated version of `I` and reextend its result. InstCombine runs 3564 // later and will remove any ext/trunc pairs. 3565 SmallPtrSet<Value *, 4> Erased; 3566 for (const auto &KV : Cost->getMinimalBitwidths()) { 3567 // If the value wasn't vectorized, we must maintain the original scalar 3568 // type. The absence of the value from State indicates that it 3569 // wasn't vectorized. 3570 // FIXME: Should not rely on getVPValue at this point. 3571 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3572 if (!State.hasAnyVectorValue(Def)) 3573 continue; 3574 for (unsigned Part = 0; Part < UF; ++Part) { 3575 Value *I = State.get(Def, Part); 3576 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3577 continue; 3578 Type *OriginalTy = I->getType(); 3579 Type *ScalarTruncatedTy = 3580 IntegerType::get(OriginalTy->getContext(), KV.second); 3581 auto *TruncatedTy = VectorType::get( 3582 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3583 if (TruncatedTy == OriginalTy) 3584 continue; 3585 3586 IRBuilder<> B(cast<Instruction>(I)); 3587 auto ShrinkOperand = [&](Value *V) -> Value * { 3588 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3589 if (ZI->getSrcTy() == TruncatedTy) 3590 return ZI->getOperand(0); 3591 return B.CreateZExtOrTrunc(V, TruncatedTy); 3592 }; 3593 3594 // The actual instruction modification depends on the instruction type, 3595 // unfortunately. 3596 Value *NewI = nullptr; 3597 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3598 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3599 ShrinkOperand(BO->getOperand(1))); 3600 3601 // Any wrapping introduced by shrinking this operation shouldn't be 3602 // considered undefined behavior. So, we can't unconditionally copy 3603 // arithmetic wrapping flags to NewI. 3604 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3605 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3606 NewI = 3607 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3608 ShrinkOperand(CI->getOperand(1))); 3609 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3610 NewI = B.CreateSelect(SI->getCondition(), 3611 ShrinkOperand(SI->getTrueValue()), 3612 ShrinkOperand(SI->getFalseValue())); 3613 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3614 switch (CI->getOpcode()) { 3615 default: 3616 llvm_unreachable("Unhandled cast!"); 3617 case Instruction::Trunc: 3618 NewI = ShrinkOperand(CI->getOperand(0)); 3619 break; 3620 case Instruction::SExt: 3621 NewI = B.CreateSExtOrTrunc( 3622 CI->getOperand(0), 3623 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3624 break; 3625 case Instruction::ZExt: 3626 NewI = B.CreateZExtOrTrunc( 3627 CI->getOperand(0), 3628 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3629 break; 3630 } 3631 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3632 auto Elements0 = 3633 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3634 auto *O0 = B.CreateZExtOrTrunc( 3635 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3636 auto Elements1 = 3637 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3638 auto *O1 = B.CreateZExtOrTrunc( 3639 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3640 3641 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3642 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3643 // Don't do anything with the operands, just extend the result. 3644 continue; 3645 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3646 auto Elements = 3647 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3648 auto *O0 = B.CreateZExtOrTrunc( 3649 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3650 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3651 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3652 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3653 auto Elements = 3654 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3655 auto *O0 = B.CreateZExtOrTrunc( 3656 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3657 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3658 } else { 3659 // If we don't know what to do, be conservative and don't do anything. 3660 continue; 3661 } 3662 3663 // Lastly, extend the result. 3664 NewI->takeName(cast<Instruction>(I)); 3665 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3666 I->replaceAllUsesWith(Res); 3667 cast<Instruction>(I)->eraseFromParent(); 3668 Erased.insert(I); 3669 State.reset(Def, Res, Part); 3670 } 3671 } 3672 3673 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3674 for (const auto &KV : Cost->getMinimalBitwidths()) { 3675 // If the value wasn't vectorized, we must maintain the original scalar 3676 // type. The absence of the value from State indicates that it 3677 // wasn't vectorized. 3678 // FIXME: Should not rely on getVPValue at this point. 3679 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3680 if (!State.hasAnyVectorValue(Def)) 3681 continue; 3682 for (unsigned Part = 0; Part < UF; ++Part) { 3683 Value *I = State.get(Def, Part); 3684 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3685 if (Inst && Inst->use_empty()) { 3686 Value *NewI = Inst->getOperand(0); 3687 Inst->eraseFromParent(); 3688 State.reset(Def, NewI, Part); 3689 } 3690 } 3691 } 3692 } 3693 3694 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3695 // Insert truncates and extends for any truncated instructions as hints to 3696 // InstCombine. 3697 if (VF.isVector()) 3698 truncateToMinimalBitwidths(State); 3699 3700 // Fix widened non-induction PHIs by setting up the PHI operands. 3701 if (OrigPHIsToFix.size()) { 3702 assert(EnableVPlanNativePath && 3703 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3704 fixNonInductionPHIs(State); 3705 } 3706 3707 // At this point every instruction in the original loop is widened to a 3708 // vector form. Now we need to fix the recurrences in the loop. These PHI 3709 // nodes are currently empty because we did not want to introduce cycles. 3710 // This is the second stage of vectorizing recurrences. 3711 fixCrossIterationPHIs(State); 3712 3713 // Forget the original basic block. 3714 PSE.getSE()->forgetLoop(OrigLoop); 3715 3716 Loop *VectorLoop = LI->getLoopFor(State.CFG.PrevBB); 3717 // If we inserted an edge from the middle block to the unique exit block, 3718 // update uses outside the loop (phis) to account for the newly inserted 3719 // edge. 3720 if (!Cost->requiresScalarEpilogue(VF)) { 3721 // Fix-up external users of the induction variables. 3722 for (auto &Entry : Legal->getInductionVars()) 3723 fixupIVUsers(Entry.first, Entry.second, 3724 getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()), 3725 IVEndValues[Entry.first], LoopMiddleBlock, 3726 VectorLoop->getHeader()); 3727 3728 fixLCSSAPHIs(State); 3729 } 3730 3731 for (Instruction *PI : PredicatedInstructions) 3732 sinkScalarOperands(&*PI); 3733 3734 // Remove redundant induction instructions. 3735 cse(VectorLoop->getHeader()); 3736 3737 // Set/update profile weights for the vector and remainder loops as original 3738 // loop iterations are now distributed among them. Note that original loop 3739 // represented by LoopScalarBody becomes remainder loop after vectorization. 3740 // 3741 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3742 // end up getting slightly roughened result but that should be OK since 3743 // profile is not inherently precise anyway. Note also possible bypass of 3744 // vector code caused by legality checks is ignored, assigning all the weight 3745 // to the vector loop, optimistically. 3746 // 3747 // For scalable vectorization we can't know at compile time how many iterations 3748 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3749 // vscale of '1'. 3750 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, 3751 LI->getLoopFor(LoopScalarBody), 3752 VF.getKnownMinValue() * UF); 3753 } 3754 3755 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3756 // In order to support recurrences we need to be able to vectorize Phi nodes. 3757 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3758 // stage #2: We now need to fix the recurrences by adding incoming edges to 3759 // the currently empty PHI nodes. At this point every instruction in the 3760 // original loop is widened to a vector form so we can use them to construct 3761 // the incoming edges. 3762 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 3763 for (VPRecipeBase &R : Header->phis()) { 3764 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3765 fixReduction(ReductionPhi, State); 3766 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3767 fixFirstOrderRecurrence(FOR, State); 3768 } 3769 } 3770 3771 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3772 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3773 // This is the second phase of vectorizing first-order recurrences. An 3774 // overview of the transformation is described below. Suppose we have the 3775 // following loop. 3776 // 3777 // for (int i = 0; i < n; ++i) 3778 // b[i] = a[i] - a[i - 1]; 3779 // 3780 // There is a first-order recurrence on "a". For this loop, the shorthand 3781 // scalar IR looks like: 3782 // 3783 // scalar.ph: 3784 // s_init = a[-1] 3785 // br scalar.body 3786 // 3787 // scalar.body: 3788 // i = phi [0, scalar.ph], [i+1, scalar.body] 3789 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3790 // s2 = a[i] 3791 // b[i] = s2 - s1 3792 // br cond, scalar.body, ... 3793 // 3794 // In this example, s1 is a recurrence because it's value depends on the 3795 // previous iteration. In the first phase of vectorization, we created a 3796 // vector phi v1 for s1. We now complete the vectorization and produce the 3797 // shorthand vector IR shown below (for VF = 4, UF = 1). 3798 // 3799 // vector.ph: 3800 // v_init = vector(..., ..., ..., a[-1]) 3801 // br vector.body 3802 // 3803 // vector.body 3804 // i = phi [0, vector.ph], [i+4, vector.body] 3805 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3806 // v2 = a[i, i+1, i+2, i+3]; 3807 // v3 = vector(v1(3), v2(0, 1, 2)) 3808 // b[i, i+1, i+2, i+3] = v2 - v3 3809 // br cond, vector.body, middle.block 3810 // 3811 // middle.block: 3812 // x = v2(3) 3813 // br scalar.ph 3814 // 3815 // scalar.ph: 3816 // s_init = phi [x, middle.block], [a[-1], otherwise] 3817 // br scalar.body 3818 // 3819 // After execution completes the vector loop, we extract the next value of 3820 // the recurrence (x) to use as the initial value in the scalar loop. 3821 3822 // Extract the last vector element in the middle block. This will be the 3823 // initial value for the recurrence when jumping to the scalar loop. 3824 VPValue *PreviousDef = PhiR->getBackedgeValue(); 3825 Value *Incoming = State.get(PreviousDef, UF - 1); 3826 auto *ExtractForScalar = Incoming; 3827 auto *IdxTy = Builder.getInt32Ty(); 3828 if (VF.isVector()) { 3829 auto *One = ConstantInt::get(IdxTy, 1); 3830 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3831 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3832 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 3833 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 3834 "vector.recur.extract"); 3835 } 3836 // Extract the second last element in the middle block if the 3837 // Phi is used outside the loop. We need to extract the phi itself 3838 // and not the last element (the phi update in the current iteration). This 3839 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3840 // when the scalar loop is not run at all. 3841 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3842 if (VF.isVector()) { 3843 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3844 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 3845 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3846 Incoming, Idx, "vector.recur.extract.for.phi"); 3847 } else if (UF > 1) 3848 // When loop is unrolled without vectorizing, initialize 3849 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 3850 // of `Incoming`. This is analogous to the vectorized case above: extracting 3851 // the second last element when VF > 1. 3852 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 3853 3854 // Fix the initial value of the original recurrence in the scalar loop. 3855 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3856 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 3857 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3858 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 3859 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3860 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3861 Start->addIncoming(Incoming, BB); 3862 } 3863 3864 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3865 Phi->setName("scalar.recur"); 3866 3867 // Finally, fix users of the recurrence outside the loop. The users will need 3868 // either the last value of the scalar recurrence or the last value of the 3869 // vector recurrence we extracted in the middle block. Since the loop is in 3870 // LCSSA form, we just need to find all the phi nodes for the original scalar 3871 // recurrence in the exit block, and then add an edge for the middle block. 3872 // Note that LCSSA does not imply single entry when the original scalar loop 3873 // had multiple exiting edges (as we always run the last iteration in the 3874 // scalar epilogue); in that case, there is no edge from middle to exit and 3875 // and thus no phis which needed updated. 3876 if (!Cost->requiresScalarEpilogue(VF)) 3877 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 3878 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 3879 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3880 } 3881 3882 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 3883 VPTransformState &State) { 3884 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 3885 // Get it's reduction variable descriptor. 3886 assert(Legal->isReductionVariable(OrigPhi) && 3887 "Unable to find the reduction variable"); 3888 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 3889 3890 RecurKind RK = RdxDesc.getRecurrenceKind(); 3891 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3892 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3893 setDebugLocFromInst(ReductionStartValue); 3894 3895 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 3896 // This is the vector-clone of the value that leaves the loop. 3897 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 3898 3899 // Wrap flags are in general invalid after vectorization, clear them. 3900 clearReductionWrapFlags(RdxDesc, State); 3901 3902 // Before each round, move the insertion point right between 3903 // the PHIs and the values we are going to write. 3904 // This allows us to write both PHINodes and the extractelement 3905 // instructions. 3906 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3907 3908 setDebugLocFromInst(LoopExitInst); 3909 3910 Type *PhiTy = OrigPhi->getType(); 3911 BasicBlock *VectorLoopLatch = 3912 LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch(); 3913 // If tail is folded by masking, the vector value to leave the loop should be 3914 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3915 // instead of the former. For an inloop reduction the reduction will already 3916 // be predicated, and does not need to be handled here. 3917 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 3918 for (unsigned Part = 0; Part < UF; ++Part) { 3919 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 3920 Value *Sel = nullptr; 3921 for (User *U : VecLoopExitInst->users()) { 3922 if (isa<SelectInst>(U)) { 3923 assert(!Sel && "Reduction exit feeding two selects"); 3924 Sel = U; 3925 } else 3926 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3927 } 3928 assert(Sel && "Reduction exit feeds no select"); 3929 State.reset(LoopExitInstDef, Sel, Part); 3930 3931 // If the target can create a predicated operator for the reduction at no 3932 // extra cost in the loop (for example a predicated vadd), it can be 3933 // cheaper for the select to remain in the loop than be sunk out of it, 3934 // and so use the select value for the phi instead of the old 3935 // LoopExitValue. 3936 if (PreferPredicatedReductionSelect || 3937 TTI->preferPredicatedReductionSelect( 3938 RdxDesc.getOpcode(), PhiTy, 3939 TargetTransformInfo::ReductionFlags())) { 3940 auto *VecRdxPhi = 3941 cast<PHINode>(State.get(PhiR, Part)); 3942 VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); 3943 } 3944 } 3945 } 3946 3947 // If the vector reduction can be performed in a smaller type, we truncate 3948 // then extend the loop exit value to enable InstCombine to evaluate the 3949 // entire expression in the smaller type. 3950 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 3951 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 3952 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3953 Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); 3954 VectorParts RdxParts(UF); 3955 for (unsigned Part = 0; Part < UF; ++Part) { 3956 RdxParts[Part] = State.get(LoopExitInstDef, Part); 3957 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3958 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3959 : Builder.CreateZExt(Trunc, VecTy); 3960 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 3961 if (U != Trunc) { 3962 U->replaceUsesOfWith(RdxParts[Part], Extnd); 3963 RdxParts[Part] = Extnd; 3964 } 3965 } 3966 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3967 for (unsigned Part = 0; Part < UF; ++Part) { 3968 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3969 State.reset(LoopExitInstDef, RdxParts[Part], Part); 3970 } 3971 } 3972 3973 // Reduce all of the unrolled parts into a single vector. 3974 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 3975 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 3976 3977 // The middle block terminator has already been assigned a DebugLoc here (the 3978 // OrigLoop's single latch terminator). We want the whole middle block to 3979 // appear to execute on this line because: (a) it is all compiler generated, 3980 // (b) these instructions are always executed after evaluating the latch 3981 // conditional branch, and (c) other passes may add new predecessors which 3982 // terminate on this line. This is the easiest way to ensure we don't 3983 // accidentally cause an extra step back into the loop while debugging. 3984 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 3985 if (PhiR->isOrdered()) 3986 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 3987 else { 3988 // Floating-point operations should have some FMF to enable the reduction. 3989 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 3990 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 3991 for (unsigned Part = 1; Part < UF; ++Part) { 3992 Value *RdxPart = State.get(LoopExitInstDef, Part); 3993 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 3994 ReducedPartRdx = Builder.CreateBinOp( 3995 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 3996 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 3997 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 3998 ReducedPartRdx, RdxPart); 3999 else 4000 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4001 } 4002 } 4003 4004 // Create the reduction after the loop. Note that inloop reductions create the 4005 // target reduction in the loop using a Reduction recipe. 4006 if (VF.isVector() && !PhiR->isInLoop()) { 4007 ReducedPartRdx = 4008 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4009 // If the reduction can be performed in a smaller type, we need to extend 4010 // the reduction to the wider type before we branch to the original loop. 4011 if (PhiTy != RdxDesc.getRecurrenceType()) 4012 ReducedPartRdx = RdxDesc.isSigned() 4013 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4014 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4015 } 4016 4017 PHINode *ResumePhi = 4018 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 4019 4020 // Create a phi node that merges control-flow from the backedge-taken check 4021 // block and the middle block. 4022 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4023 LoopScalarPreHeader->getTerminator()); 4024 4025 // If we are fixing reductions in the epilogue loop then we should already 4026 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 4027 // we carry over the incoming values correctly. 4028 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 4029 if (Incoming == LoopMiddleBlock) 4030 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 4031 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 4032 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 4033 Incoming); 4034 else 4035 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 4036 } 4037 4038 // Set the resume value for this reduction 4039 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4040 4041 // Now, we need to fix the users of the reduction variable 4042 // inside and outside of the scalar remainder loop. 4043 4044 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4045 // in the exit blocks. See comment on analogous loop in 4046 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4047 if (!Cost->requiresScalarEpilogue(VF)) 4048 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4049 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4050 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4051 4052 // Fix the scalar loop reduction variable with the incoming reduction sum 4053 // from the vector body and from the backedge value. 4054 int IncomingEdgeBlockIdx = 4055 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4056 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4057 // Pick the other block. 4058 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4059 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4060 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4061 } 4062 4063 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4064 VPTransformState &State) { 4065 RecurKind RK = RdxDesc.getRecurrenceKind(); 4066 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4067 return; 4068 4069 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4070 assert(LoopExitInstr && "null loop exit instruction"); 4071 SmallVector<Instruction *, 8> Worklist; 4072 SmallPtrSet<Instruction *, 8> Visited; 4073 Worklist.push_back(LoopExitInstr); 4074 Visited.insert(LoopExitInstr); 4075 4076 while (!Worklist.empty()) { 4077 Instruction *Cur = Worklist.pop_back_val(); 4078 if (isa<OverflowingBinaryOperator>(Cur)) 4079 for (unsigned Part = 0; Part < UF; ++Part) { 4080 // FIXME: Should not rely on getVPValue at this point. 4081 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4082 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4083 } 4084 4085 for (User *U : Cur->users()) { 4086 Instruction *UI = cast<Instruction>(U); 4087 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4088 Visited.insert(UI).second) 4089 Worklist.push_back(UI); 4090 } 4091 } 4092 } 4093 4094 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4095 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4096 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4097 // Some phis were already hand updated by the reduction and recurrence 4098 // code above, leave them alone. 4099 continue; 4100 4101 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4102 // Non-instruction incoming values will have only one value. 4103 4104 VPLane Lane = VPLane::getFirstLane(); 4105 if (isa<Instruction>(IncomingValue) && 4106 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4107 VF)) 4108 Lane = VPLane::getLastLaneForVF(VF); 4109 4110 // Can be a loop invariant incoming value or the last scalar value to be 4111 // extracted from the vectorized loop. 4112 // FIXME: Should not rely on getVPValue at this point. 4113 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4114 Value *lastIncomingValue = 4115 OrigLoop->isLoopInvariant(IncomingValue) 4116 ? IncomingValue 4117 : State.get(State.Plan->getVPValue(IncomingValue, true), 4118 VPIteration(UF - 1, Lane)); 4119 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4120 } 4121 } 4122 4123 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4124 // The basic block and loop containing the predicated instruction. 4125 auto *PredBB = PredInst->getParent(); 4126 auto *VectorLoop = LI->getLoopFor(PredBB); 4127 4128 // Initialize a worklist with the operands of the predicated instruction. 4129 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4130 4131 // Holds instructions that we need to analyze again. An instruction may be 4132 // reanalyzed if we don't yet know if we can sink it or not. 4133 SmallVector<Instruction *, 8> InstsToReanalyze; 4134 4135 // Returns true if a given use occurs in the predicated block. Phi nodes use 4136 // their operands in their corresponding predecessor blocks. 4137 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4138 auto *I = cast<Instruction>(U.getUser()); 4139 BasicBlock *BB = I->getParent(); 4140 if (auto *Phi = dyn_cast<PHINode>(I)) 4141 BB = Phi->getIncomingBlock( 4142 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4143 return BB == PredBB; 4144 }; 4145 4146 // Iteratively sink the scalarized operands of the predicated instruction 4147 // into the block we created for it. When an instruction is sunk, it's 4148 // operands are then added to the worklist. The algorithm ends after one pass 4149 // through the worklist doesn't sink a single instruction. 4150 bool Changed; 4151 do { 4152 // Add the instructions that need to be reanalyzed to the worklist, and 4153 // reset the changed indicator. 4154 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4155 InstsToReanalyze.clear(); 4156 Changed = false; 4157 4158 while (!Worklist.empty()) { 4159 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4160 4161 // We can't sink an instruction if it is a phi node, is not in the loop, 4162 // or may have side effects. 4163 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4164 I->mayHaveSideEffects()) 4165 continue; 4166 4167 // If the instruction is already in PredBB, check if we can sink its 4168 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4169 // sinking the scalar instruction I, hence it appears in PredBB; but it 4170 // may have failed to sink I's operands (recursively), which we try 4171 // (again) here. 4172 if (I->getParent() == PredBB) { 4173 Worklist.insert(I->op_begin(), I->op_end()); 4174 continue; 4175 } 4176 4177 // It's legal to sink the instruction if all its uses occur in the 4178 // predicated block. Otherwise, there's nothing to do yet, and we may 4179 // need to reanalyze the instruction. 4180 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4181 InstsToReanalyze.push_back(I); 4182 continue; 4183 } 4184 4185 // Move the instruction to the beginning of the predicated block, and add 4186 // it's operands to the worklist. 4187 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4188 Worklist.insert(I->op_begin(), I->op_end()); 4189 4190 // The sinking may have enabled other instructions to be sunk, so we will 4191 // need to iterate. 4192 Changed = true; 4193 } 4194 } while (Changed); 4195 } 4196 4197 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4198 for (PHINode *OrigPhi : OrigPHIsToFix) { 4199 VPWidenPHIRecipe *VPPhi = 4200 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4201 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4202 // Make sure the builder has a valid insert point. 4203 Builder.SetInsertPoint(NewPhi); 4204 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4205 VPValue *Inc = VPPhi->getIncomingValue(i); 4206 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4207 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4208 } 4209 } 4210 } 4211 4212 bool InnerLoopVectorizer::useOrderedReductions( 4213 const RecurrenceDescriptor &RdxDesc) { 4214 return Cost->useOrderedReductions(RdxDesc); 4215 } 4216 4217 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4218 VPWidenPHIRecipe *PhiR, 4219 VPTransformState &State) { 4220 PHINode *P = cast<PHINode>(PN); 4221 if (EnableVPlanNativePath) { 4222 // Currently we enter here in the VPlan-native path for non-induction 4223 // PHIs where all control flow is uniform. We simply widen these PHIs. 4224 // Create a vector phi with no operands - the vector phi operands will be 4225 // set at the end of vector code generation. 4226 Type *VecTy = (State.VF.isScalar()) 4227 ? PN->getType() 4228 : VectorType::get(PN->getType(), State.VF); 4229 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4230 State.set(PhiR, VecPhi, 0); 4231 OrigPHIsToFix.push_back(P); 4232 4233 return; 4234 } 4235 4236 assert(PN->getParent() == OrigLoop->getHeader() && 4237 "Non-header phis should have been handled elsewhere"); 4238 4239 // In order to support recurrences we need to be able to vectorize Phi nodes. 4240 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4241 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4242 // this value when we vectorize all of the instructions that use the PHI. 4243 4244 assert(!Legal->isReductionVariable(P) && 4245 "reductions should be handled elsewhere"); 4246 4247 setDebugLocFromInst(P); 4248 4249 // This PHINode must be an induction variable. 4250 // Make sure that we know about it. 4251 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4252 4253 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4254 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4255 4256 auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV(); 4257 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 4258 4259 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4260 // which can be found from the original scalar operations. 4261 switch (II.getKind()) { 4262 case InductionDescriptor::IK_NoInduction: 4263 llvm_unreachable("Unknown induction"); 4264 case InductionDescriptor::IK_IntInduction: 4265 case InductionDescriptor::IK_FpInduction: 4266 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4267 case InductionDescriptor::IK_PtrInduction: { 4268 // Handle the pointer induction variable case. 4269 assert(P->getType()->isPointerTy() && "Unexpected type."); 4270 4271 if (all_of(PhiR->users(), [PhiR](const VPUser *U) { 4272 return cast<VPRecipeBase>(U)->usesScalars(PhiR); 4273 })) { 4274 // This is the normalized GEP that starts counting at zero. 4275 Value *PtrInd = 4276 Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType()); 4277 // Determine the number of scalars we need to generate for each unroll 4278 // iteration. If the instruction is uniform, we only need to generate the 4279 // first lane. Otherwise, we generate all VF values. 4280 bool IsUniform = vputils::onlyFirstLaneUsed(PhiR); 4281 assert((IsUniform || !State.VF.isScalable()) && 4282 "Cannot scalarize a scalable VF"); 4283 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 4284 4285 for (unsigned Part = 0; Part < UF; ++Part) { 4286 Value *PartStart = 4287 createStepForVF(Builder, PtrInd->getType(), VF, Part); 4288 4289 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4290 Value *Idx = Builder.CreateAdd( 4291 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4292 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4293 4294 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 4295 State.CFG.PrevBB->getTerminator()); 4296 Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, 4297 II.getStartValue(), Step, II); 4298 SclrGep->setName("next.gep"); 4299 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4300 } 4301 } 4302 return; 4303 } 4304 assert(isa<SCEVConstant>(II.getStep()) && 4305 "Induction step not a SCEV constant!"); 4306 Type *PhiType = II.getStep()->getType(); 4307 4308 // Build a pointer phi 4309 Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue(); 4310 Type *ScStValueType = ScalarStartValue->getType(); 4311 PHINode *NewPointerPhi = 4312 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 4313 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4314 4315 // A pointer induction, performed by using a gep 4316 BasicBlock *LoopLatch = LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch(); 4317 Instruction *InductionLoc = LoopLatch->getTerminator(); 4318 const SCEV *ScalarStep = II.getStep(); 4319 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4320 Value *ScalarStepValue = 4321 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4322 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4323 Value *NumUnrolledElems = 4324 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4325 Value *InductionGEP = GetElementPtrInst::Create( 4326 II.getElementType(), NewPointerPhi, 4327 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4328 InductionLoc); 4329 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4330 4331 // Create UF many actual address geps that use the pointer 4332 // phi as base and a vectorized version of the step value 4333 // (<step*0, ..., step*N>) as offset. 4334 for (unsigned Part = 0; Part < State.UF; ++Part) { 4335 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4336 Value *StartOffsetScalar = 4337 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4338 Value *StartOffset = 4339 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4340 // Create a vector of consecutive numbers from zero to VF. 4341 StartOffset = 4342 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4343 4344 Value *GEP = Builder.CreateGEP( 4345 II.getElementType(), NewPointerPhi, 4346 Builder.CreateMul( 4347 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4348 "vector.gep")); 4349 State.set(PhiR, GEP, Part); 4350 } 4351 } 4352 } 4353 } 4354 4355 /// A helper function for checking whether an integer division-related 4356 /// instruction may divide by zero (in which case it must be predicated if 4357 /// executed conditionally in the scalar code). 4358 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4359 /// Non-zero divisors that are non compile-time constants will not be 4360 /// converted into multiplication, so we will still end up scalarizing 4361 /// the division, but can do so w/o predication. 4362 static bool mayDivideByZero(Instruction &I) { 4363 assert((I.getOpcode() == Instruction::UDiv || 4364 I.getOpcode() == Instruction::SDiv || 4365 I.getOpcode() == Instruction::URem || 4366 I.getOpcode() == Instruction::SRem) && 4367 "Unexpected instruction"); 4368 Value *Divisor = I.getOperand(1); 4369 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4370 return !CInt || CInt->isZero(); 4371 } 4372 4373 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4374 VPUser &ArgOperands, 4375 VPTransformState &State) { 4376 assert(!isa<DbgInfoIntrinsic>(I) && 4377 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4378 setDebugLocFromInst(&I); 4379 4380 Module *M = I.getParent()->getParent()->getParent(); 4381 auto *CI = cast<CallInst>(&I); 4382 4383 SmallVector<Type *, 4> Tys; 4384 for (Value *ArgOperand : CI->args()) 4385 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4386 4387 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4388 4389 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4390 // version of the instruction. 4391 // Is it beneficial to perform intrinsic call compared to lib call? 4392 bool NeedToScalarize = false; 4393 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4394 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4395 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4396 assert((UseVectorIntrinsic || !NeedToScalarize) && 4397 "Instruction should be scalarized elsewhere."); 4398 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4399 "Either the intrinsic cost or vector call cost must be valid"); 4400 4401 for (unsigned Part = 0; Part < UF; ++Part) { 4402 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4403 SmallVector<Value *, 4> Args; 4404 for (auto &I : enumerate(ArgOperands.operands())) { 4405 // Some intrinsics have a scalar argument - don't replace it with a 4406 // vector. 4407 Value *Arg; 4408 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4409 Arg = State.get(I.value(), Part); 4410 else { 4411 Arg = State.get(I.value(), VPIteration(0, 0)); 4412 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 4413 TysForDecl.push_back(Arg->getType()); 4414 } 4415 Args.push_back(Arg); 4416 } 4417 4418 Function *VectorF; 4419 if (UseVectorIntrinsic) { 4420 // Use vector version of the intrinsic. 4421 if (VF.isVector()) 4422 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4423 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4424 assert(VectorF && "Can't retrieve vector intrinsic."); 4425 } else { 4426 // Use vector version of the function call. 4427 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4428 #ifndef NDEBUG 4429 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4430 "Can't create vector function."); 4431 #endif 4432 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4433 } 4434 SmallVector<OperandBundleDef, 1> OpBundles; 4435 CI->getOperandBundlesAsDefs(OpBundles); 4436 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4437 4438 if (isa<FPMathOperator>(V)) 4439 V->copyFastMathFlags(CI); 4440 4441 State.set(Def, V, Part); 4442 addMetadata(V, &I); 4443 } 4444 } 4445 4446 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4447 // We should not collect Scalars more than once per VF. Right now, this 4448 // function is called from collectUniformsAndScalars(), which already does 4449 // this check. Collecting Scalars for VF=1 does not make any sense. 4450 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4451 "This function should not be visited twice for the same VF"); 4452 4453 // This avoids any chances of creating a REPLICATE recipe during planning 4454 // since that would result in generation of scalarized code during execution, 4455 // which is not supported for scalable vectors. 4456 if (VF.isScalable()) { 4457 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4458 return; 4459 } 4460 4461 SmallSetVector<Instruction *, 8> Worklist; 4462 4463 // These sets are used to seed the analysis with pointers used by memory 4464 // accesses that will remain scalar. 4465 SmallSetVector<Instruction *, 8> ScalarPtrs; 4466 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4467 auto *Latch = TheLoop->getLoopLatch(); 4468 4469 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4470 // The pointer operands of loads and stores will be scalar as long as the 4471 // memory access is not a gather or scatter operation. The value operand of a 4472 // store will remain scalar if the store is scalarized. 4473 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4474 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4475 assert(WideningDecision != CM_Unknown && 4476 "Widening decision should be ready at this moment"); 4477 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4478 if (Ptr == Store->getValueOperand()) 4479 return WideningDecision == CM_Scalarize; 4480 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4481 "Ptr is neither a value or pointer operand"); 4482 return WideningDecision != CM_GatherScatter; 4483 }; 4484 4485 // A helper that returns true if the given value is a bitcast or 4486 // getelementptr instruction contained in the loop. 4487 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4488 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4489 isa<GetElementPtrInst>(V)) && 4490 !TheLoop->isLoopInvariant(V); 4491 }; 4492 4493 // A helper that evaluates a memory access's use of a pointer. If the use will 4494 // be a scalar use and the pointer is only used by memory accesses, we place 4495 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4496 // PossibleNonScalarPtrs. 4497 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4498 // We only care about bitcast and getelementptr instructions contained in 4499 // the loop. 4500 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4501 return; 4502 4503 // If the pointer has already been identified as scalar (e.g., if it was 4504 // also identified as uniform), there's nothing to do. 4505 auto *I = cast<Instruction>(Ptr); 4506 if (Worklist.count(I)) 4507 return; 4508 4509 // If the use of the pointer will be a scalar use, and all users of the 4510 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4511 // place the pointer in PossibleNonScalarPtrs. 4512 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4513 return isa<LoadInst>(U) || isa<StoreInst>(U); 4514 })) 4515 ScalarPtrs.insert(I); 4516 else 4517 PossibleNonScalarPtrs.insert(I); 4518 }; 4519 4520 // We seed the scalars analysis with three classes of instructions: (1) 4521 // instructions marked uniform-after-vectorization and (2) bitcast, 4522 // getelementptr and (pointer) phi instructions used by memory accesses 4523 // requiring a scalar use. 4524 // 4525 // (1) Add to the worklist all instructions that have been identified as 4526 // uniform-after-vectorization. 4527 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4528 4529 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4530 // memory accesses requiring a scalar use. The pointer operands of loads and 4531 // stores will be scalar as long as the memory accesses is not a gather or 4532 // scatter operation. The value operand of a store will remain scalar if the 4533 // store is scalarized. 4534 for (auto *BB : TheLoop->blocks()) 4535 for (auto &I : *BB) { 4536 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4537 evaluatePtrUse(Load, Load->getPointerOperand()); 4538 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4539 evaluatePtrUse(Store, Store->getPointerOperand()); 4540 evaluatePtrUse(Store, Store->getValueOperand()); 4541 } 4542 } 4543 for (auto *I : ScalarPtrs) 4544 if (!PossibleNonScalarPtrs.count(I)) { 4545 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4546 Worklist.insert(I); 4547 } 4548 4549 // Insert the forced scalars. 4550 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4551 // induction variable when the PHI user is scalarized. 4552 auto ForcedScalar = ForcedScalars.find(VF); 4553 if (ForcedScalar != ForcedScalars.end()) 4554 for (auto *I : ForcedScalar->second) 4555 Worklist.insert(I); 4556 4557 // Expand the worklist by looking through any bitcasts and getelementptr 4558 // instructions we've already identified as scalar. This is similar to the 4559 // expansion step in collectLoopUniforms(); however, here we're only 4560 // expanding to include additional bitcasts and getelementptr instructions. 4561 unsigned Idx = 0; 4562 while (Idx != Worklist.size()) { 4563 Instruction *Dst = Worklist[Idx++]; 4564 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4565 continue; 4566 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4567 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4568 auto *J = cast<Instruction>(U); 4569 return !TheLoop->contains(J) || Worklist.count(J) || 4570 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4571 isScalarUse(J, Src)); 4572 })) { 4573 Worklist.insert(Src); 4574 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4575 } 4576 } 4577 4578 // An induction variable will remain scalar if all users of the induction 4579 // variable and induction variable update remain scalar. 4580 for (auto &Induction : Legal->getInductionVars()) { 4581 auto *Ind = Induction.first; 4582 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4583 4584 // If tail-folding is applied, the primary induction variable will be used 4585 // to feed a vector compare. 4586 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4587 continue; 4588 4589 // Returns true if \p Indvar is a pointer induction that is used directly by 4590 // load/store instruction \p I. 4591 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4592 Instruction *I) { 4593 return Induction.second.getKind() == 4594 InductionDescriptor::IK_PtrInduction && 4595 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4596 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4597 }; 4598 4599 // Determine if all users of the induction variable are scalar after 4600 // vectorization. 4601 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4602 auto *I = cast<Instruction>(U); 4603 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4604 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4605 }); 4606 if (!ScalarInd) 4607 continue; 4608 4609 // Determine if all users of the induction variable update instruction are 4610 // scalar after vectorization. 4611 auto ScalarIndUpdate = 4612 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4613 auto *I = cast<Instruction>(U); 4614 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4615 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4616 }); 4617 if (!ScalarIndUpdate) 4618 continue; 4619 4620 // The induction variable and its update instruction will remain scalar. 4621 Worklist.insert(Ind); 4622 Worklist.insert(IndUpdate); 4623 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4624 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4625 << "\n"); 4626 } 4627 4628 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4629 } 4630 4631 bool LoopVectorizationCostModel::isScalarWithPredication( 4632 Instruction *I, ElementCount VF) const { 4633 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4634 return false; 4635 switch(I->getOpcode()) { 4636 default: 4637 break; 4638 case Instruction::Load: 4639 case Instruction::Store: { 4640 if (!Legal->isMaskRequired(I)) 4641 return false; 4642 auto *Ptr = getLoadStorePointerOperand(I); 4643 auto *Ty = getLoadStoreType(I); 4644 Type *VTy = Ty; 4645 if (VF.isVector()) 4646 VTy = VectorType::get(Ty, VF); 4647 const Align Alignment = getLoadStoreAlignment(I); 4648 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4649 TTI.isLegalMaskedGather(VTy, Alignment)) 4650 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4651 TTI.isLegalMaskedScatter(VTy, Alignment)); 4652 } 4653 case Instruction::UDiv: 4654 case Instruction::SDiv: 4655 case Instruction::SRem: 4656 case Instruction::URem: 4657 return mayDivideByZero(*I); 4658 } 4659 return false; 4660 } 4661 4662 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4663 Instruction *I, ElementCount VF) { 4664 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4665 assert(getWideningDecision(I, VF) == CM_Unknown && 4666 "Decision should not be set yet."); 4667 auto *Group = getInterleavedAccessGroup(I); 4668 assert(Group && "Must have a group."); 4669 4670 // If the instruction's allocated size doesn't equal it's type size, it 4671 // requires padding and will be scalarized. 4672 auto &DL = I->getModule()->getDataLayout(); 4673 auto *ScalarTy = getLoadStoreType(I); 4674 if (hasIrregularType(ScalarTy, DL)) 4675 return false; 4676 4677 // Check if masking is required. 4678 // A Group may need masking for one of two reasons: it resides in a block that 4679 // needs predication, or it was decided to use masking to deal with gaps 4680 // (either a gap at the end of a load-access that may result in a speculative 4681 // load, or any gaps in a store-access). 4682 bool PredicatedAccessRequiresMasking = 4683 blockNeedsPredicationForAnyReason(I->getParent()) && 4684 Legal->isMaskRequired(I); 4685 bool LoadAccessWithGapsRequiresEpilogMasking = 4686 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4687 !isScalarEpilogueAllowed(); 4688 bool StoreAccessWithGapsRequiresMasking = 4689 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4690 if (!PredicatedAccessRequiresMasking && 4691 !LoadAccessWithGapsRequiresEpilogMasking && 4692 !StoreAccessWithGapsRequiresMasking) 4693 return true; 4694 4695 // If masked interleaving is required, we expect that the user/target had 4696 // enabled it, because otherwise it either wouldn't have been created or 4697 // it should have been invalidated by the CostModel. 4698 assert(useMaskedInterleavedAccesses(TTI) && 4699 "Masked interleave-groups for predicated accesses are not enabled."); 4700 4701 if (Group->isReverse()) 4702 return false; 4703 4704 auto *Ty = getLoadStoreType(I); 4705 const Align Alignment = getLoadStoreAlignment(I); 4706 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4707 : TTI.isLegalMaskedStore(Ty, Alignment); 4708 } 4709 4710 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4711 Instruction *I, ElementCount VF) { 4712 // Get and ensure we have a valid memory instruction. 4713 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4714 4715 auto *Ptr = getLoadStorePointerOperand(I); 4716 auto *ScalarTy = getLoadStoreType(I); 4717 4718 // In order to be widened, the pointer should be consecutive, first of all. 4719 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4720 return false; 4721 4722 // If the instruction is a store located in a predicated block, it will be 4723 // scalarized. 4724 if (isScalarWithPredication(I, VF)) 4725 return false; 4726 4727 // If the instruction's allocated size doesn't equal it's type size, it 4728 // requires padding and will be scalarized. 4729 auto &DL = I->getModule()->getDataLayout(); 4730 if (hasIrregularType(ScalarTy, DL)) 4731 return false; 4732 4733 return true; 4734 } 4735 4736 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4737 // We should not collect Uniforms more than once per VF. Right now, 4738 // this function is called from collectUniformsAndScalars(), which 4739 // already does this check. Collecting Uniforms for VF=1 does not make any 4740 // sense. 4741 4742 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4743 "This function should not be visited twice for the same VF"); 4744 4745 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4746 // not analyze again. Uniforms.count(VF) will return 1. 4747 Uniforms[VF].clear(); 4748 4749 // We now know that the loop is vectorizable! 4750 // Collect instructions inside the loop that will remain uniform after 4751 // vectorization. 4752 4753 // Global values, params and instructions outside of current loop are out of 4754 // scope. 4755 auto isOutOfScope = [&](Value *V) -> bool { 4756 Instruction *I = dyn_cast<Instruction>(V); 4757 return (!I || !TheLoop->contains(I)); 4758 }; 4759 4760 // Worklist containing uniform instructions demanding lane 0. 4761 SetVector<Instruction *> Worklist; 4762 BasicBlock *Latch = TheLoop->getLoopLatch(); 4763 4764 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4765 // that are scalar with predication must not be considered uniform after 4766 // vectorization, because that would create an erroneous replicating region 4767 // where only a single instance out of VF should be formed. 4768 // TODO: optimize such seldom cases if found important, see PR40816. 4769 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4770 if (isOutOfScope(I)) { 4771 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4772 << *I << "\n"); 4773 return; 4774 } 4775 if (isScalarWithPredication(I, VF)) { 4776 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4777 << *I << "\n"); 4778 return; 4779 } 4780 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4781 Worklist.insert(I); 4782 }; 4783 4784 // Start with the conditional branch. If the branch condition is an 4785 // instruction contained in the loop that is only used by the branch, it is 4786 // uniform. 4787 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4788 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4789 addToWorklistIfAllowed(Cmp); 4790 4791 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 4792 InstWidening WideningDecision = getWideningDecision(I, VF); 4793 assert(WideningDecision != CM_Unknown && 4794 "Widening decision should be ready at this moment"); 4795 4796 // A uniform memory op is itself uniform. We exclude uniform stores 4797 // here as they demand the last lane, not the first one. 4798 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 4799 assert(WideningDecision == CM_Scalarize); 4800 return true; 4801 } 4802 4803 return (WideningDecision == CM_Widen || 4804 WideningDecision == CM_Widen_Reverse || 4805 WideningDecision == CM_Interleave); 4806 }; 4807 4808 4809 // Returns true if Ptr is the pointer operand of a memory access instruction 4810 // I, and I is known to not require scalarization. 4811 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4812 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4813 }; 4814 4815 // Holds a list of values which are known to have at least one uniform use. 4816 // Note that there may be other uses which aren't uniform. A "uniform use" 4817 // here is something which only demands lane 0 of the unrolled iterations; 4818 // it does not imply that all lanes produce the same value (e.g. this is not 4819 // the usual meaning of uniform) 4820 SetVector<Value *> HasUniformUse; 4821 4822 // Scan the loop for instructions which are either a) known to have only 4823 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 4824 for (auto *BB : TheLoop->blocks()) 4825 for (auto &I : *BB) { 4826 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 4827 switch (II->getIntrinsicID()) { 4828 case Intrinsic::sideeffect: 4829 case Intrinsic::experimental_noalias_scope_decl: 4830 case Intrinsic::assume: 4831 case Intrinsic::lifetime_start: 4832 case Intrinsic::lifetime_end: 4833 if (TheLoop->hasLoopInvariantOperands(&I)) 4834 addToWorklistIfAllowed(&I); 4835 break; 4836 default: 4837 break; 4838 } 4839 } 4840 4841 // ExtractValue instructions must be uniform, because the operands are 4842 // known to be loop-invariant. 4843 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 4844 assert(isOutOfScope(EVI->getAggregateOperand()) && 4845 "Expected aggregate value to be loop invariant"); 4846 addToWorklistIfAllowed(EVI); 4847 continue; 4848 } 4849 4850 // If there's no pointer operand, there's nothing to do. 4851 auto *Ptr = getLoadStorePointerOperand(&I); 4852 if (!Ptr) 4853 continue; 4854 4855 // A uniform memory op is itself uniform. We exclude uniform stores 4856 // here as they demand the last lane, not the first one. 4857 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 4858 addToWorklistIfAllowed(&I); 4859 4860 if (isUniformDecision(&I, VF)) { 4861 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 4862 HasUniformUse.insert(Ptr); 4863 } 4864 } 4865 4866 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 4867 // demanding) users. Since loops are assumed to be in LCSSA form, this 4868 // disallows uses outside the loop as well. 4869 for (auto *V : HasUniformUse) { 4870 if (isOutOfScope(V)) 4871 continue; 4872 auto *I = cast<Instruction>(V); 4873 auto UsersAreMemAccesses = 4874 llvm::all_of(I->users(), [&](User *U) -> bool { 4875 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 4876 }); 4877 if (UsersAreMemAccesses) 4878 addToWorklistIfAllowed(I); 4879 } 4880 4881 // Expand Worklist in topological order: whenever a new instruction 4882 // is added , its users should be already inside Worklist. It ensures 4883 // a uniform instruction will only be used by uniform instructions. 4884 unsigned idx = 0; 4885 while (idx != Worklist.size()) { 4886 Instruction *I = Worklist[idx++]; 4887 4888 for (auto OV : I->operand_values()) { 4889 // isOutOfScope operands cannot be uniform instructions. 4890 if (isOutOfScope(OV)) 4891 continue; 4892 // First order recurrence Phi's should typically be considered 4893 // non-uniform. 4894 auto *OP = dyn_cast<PHINode>(OV); 4895 if (OP && Legal->isFirstOrderRecurrence(OP)) 4896 continue; 4897 // If all the users of the operand are uniform, then add the 4898 // operand into the uniform worklist. 4899 auto *OI = cast<Instruction>(OV); 4900 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4901 auto *J = cast<Instruction>(U); 4902 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 4903 })) 4904 addToWorklistIfAllowed(OI); 4905 } 4906 } 4907 4908 // For an instruction to be added into Worklist above, all its users inside 4909 // the loop should also be in Worklist. However, this condition cannot be 4910 // true for phi nodes that form a cyclic dependence. We must process phi 4911 // nodes separately. An induction variable will remain uniform if all users 4912 // of the induction variable and induction variable update remain uniform. 4913 // The code below handles both pointer and non-pointer induction variables. 4914 for (auto &Induction : Legal->getInductionVars()) { 4915 auto *Ind = Induction.first; 4916 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4917 4918 // Determine if all users of the induction variable are uniform after 4919 // vectorization. 4920 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4921 auto *I = cast<Instruction>(U); 4922 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4923 isVectorizedMemAccessUse(I, Ind); 4924 }); 4925 if (!UniformInd) 4926 continue; 4927 4928 // Determine if all users of the induction variable update instruction are 4929 // uniform after vectorization. 4930 auto UniformIndUpdate = 4931 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4932 auto *I = cast<Instruction>(U); 4933 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4934 isVectorizedMemAccessUse(I, IndUpdate); 4935 }); 4936 if (!UniformIndUpdate) 4937 continue; 4938 4939 // The induction variable and its update instruction will remain uniform. 4940 addToWorklistIfAllowed(Ind); 4941 addToWorklistIfAllowed(IndUpdate); 4942 } 4943 4944 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4945 } 4946 4947 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4948 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4949 4950 if (Legal->getRuntimePointerChecking()->Need) { 4951 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4952 "runtime pointer checks needed. Enable vectorization of this " 4953 "loop with '#pragma clang loop vectorize(enable)' when " 4954 "compiling with -Os/-Oz", 4955 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4956 return true; 4957 } 4958 4959 if (!PSE.getPredicate().isAlwaysTrue()) { 4960 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4961 "runtime SCEV checks needed. Enable vectorization of this " 4962 "loop with '#pragma clang loop vectorize(enable)' when " 4963 "compiling with -Os/-Oz", 4964 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4965 return true; 4966 } 4967 4968 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4969 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4970 reportVectorizationFailure("Runtime stride check for small trip count", 4971 "runtime stride == 1 checks needed. Enable vectorization of " 4972 "this loop without such check by compiling with -Os/-Oz", 4973 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4974 return true; 4975 } 4976 4977 return false; 4978 } 4979 4980 ElementCount 4981 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 4982 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 4983 return ElementCount::getScalable(0); 4984 4985 if (Hints->isScalableVectorizationDisabled()) { 4986 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 4987 "ScalableVectorizationDisabled", ORE, TheLoop); 4988 return ElementCount::getScalable(0); 4989 } 4990 4991 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 4992 4993 auto MaxScalableVF = ElementCount::getScalable( 4994 std::numeric_limits<ElementCount::ScalarTy>::max()); 4995 4996 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 4997 // FIXME: While for scalable vectors this is currently sufficient, this should 4998 // be replaced by a more detailed mechanism that filters out specific VFs, 4999 // instead of invalidating vectorization for a whole set of VFs based on the 5000 // MaxVF. 5001 5002 // Disable scalable vectorization if the loop contains unsupported reductions. 5003 if (!canVectorizeReductions(MaxScalableVF)) { 5004 reportVectorizationInfo( 5005 "Scalable vectorization not supported for the reduction " 5006 "operations found in this loop.", 5007 "ScalableVFUnfeasible", ORE, TheLoop); 5008 return ElementCount::getScalable(0); 5009 } 5010 5011 // Disable scalable vectorization if the loop contains any instructions 5012 // with element types not supported for scalable vectors. 5013 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5014 return !Ty->isVoidTy() && 5015 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5016 })) { 5017 reportVectorizationInfo("Scalable vectorization is not supported " 5018 "for all element types found in this loop.", 5019 "ScalableVFUnfeasible", ORE, TheLoop); 5020 return ElementCount::getScalable(0); 5021 } 5022 5023 if (Legal->isSafeForAnyVectorWidth()) 5024 return MaxScalableVF; 5025 5026 // Limit MaxScalableVF by the maximum safe dependence distance. 5027 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5028 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 5029 MaxVScale = 5030 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 5031 MaxScalableVF = ElementCount::getScalable( 5032 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5033 if (!MaxScalableVF) 5034 reportVectorizationInfo( 5035 "Max legal vector width too small, scalable vectorization " 5036 "unfeasible.", 5037 "ScalableVFUnfeasible", ORE, TheLoop); 5038 5039 return MaxScalableVF; 5040 } 5041 5042 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 5043 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 5044 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5045 unsigned SmallestType, WidestType; 5046 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5047 5048 // Get the maximum safe dependence distance in bits computed by LAA. 5049 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5050 // the memory accesses that is most restrictive (involved in the smallest 5051 // dependence distance). 5052 unsigned MaxSafeElements = 5053 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5054 5055 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5056 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5057 5058 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5059 << ".\n"); 5060 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5061 << ".\n"); 5062 5063 // First analyze the UserVF, fall back if the UserVF should be ignored. 5064 if (UserVF) { 5065 auto MaxSafeUserVF = 5066 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5067 5068 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5069 // If `VF=vscale x N` is safe, then so is `VF=N` 5070 if (UserVF.isScalable()) 5071 return FixedScalableVFPair( 5072 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5073 else 5074 return UserVF; 5075 } 5076 5077 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5078 5079 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5080 // is better to ignore the hint and let the compiler choose a suitable VF. 5081 if (!UserVF.isScalable()) { 5082 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5083 << " is unsafe, clamping to max safe VF=" 5084 << MaxSafeFixedVF << ".\n"); 5085 ORE->emit([&]() { 5086 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5087 TheLoop->getStartLoc(), 5088 TheLoop->getHeader()) 5089 << "User-specified vectorization factor " 5090 << ore::NV("UserVectorizationFactor", UserVF) 5091 << " is unsafe, clamping to maximum safe vectorization factor " 5092 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5093 }); 5094 return MaxSafeFixedVF; 5095 } 5096 5097 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5098 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5099 << " is ignored because scalable vectors are not " 5100 "available.\n"); 5101 ORE->emit([&]() { 5102 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5103 TheLoop->getStartLoc(), 5104 TheLoop->getHeader()) 5105 << "User-specified vectorization factor " 5106 << ore::NV("UserVectorizationFactor", UserVF) 5107 << " is ignored because the target does not support scalable " 5108 "vectors. The compiler will pick a more suitable value."; 5109 }); 5110 } else { 5111 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5112 << " is unsafe. Ignoring scalable UserVF.\n"); 5113 ORE->emit([&]() { 5114 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5115 TheLoop->getStartLoc(), 5116 TheLoop->getHeader()) 5117 << "User-specified vectorization factor " 5118 << ore::NV("UserVectorizationFactor", UserVF) 5119 << " is unsafe. Ignoring the hint to let the compiler pick a " 5120 "more suitable value."; 5121 }); 5122 } 5123 } 5124 5125 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5126 << " / " << WidestType << " bits.\n"); 5127 5128 FixedScalableVFPair Result(ElementCount::getFixed(1), 5129 ElementCount::getScalable(0)); 5130 if (auto MaxVF = 5131 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5132 MaxSafeFixedVF, FoldTailByMasking)) 5133 Result.FixedVF = MaxVF; 5134 5135 if (auto MaxVF = 5136 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5137 MaxSafeScalableVF, FoldTailByMasking)) 5138 if (MaxVF.isScalable()) { 5139 Result.ScalableVF = MaxVF; 5140 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5141 << "\n"); 5142 } 5143 5144 return Result; 5145 } 5146 5147 FixedScalableVFPair 5148 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5149 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5150 // TODO: It may by useful to do since it's still likely to be dynamically 5151 // uniform if the target can skip. 5152 reportVectorizationFailure( 5153 "Not inserting runtime ptr check for divergent target", 5154 "runtime pointer checks needed. Not enabled for divergent target", 5155 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5156 return FixedScalableVFPair::getNone(); 5157 } 5158 5159 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5160 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5161 if (TC == 1) { 5162 reportVectorizationFailure("Single iteration (non) loop", 5163 "loop trip count is one, irrelevant for vectorization", 5164 "SingleIterationLoop", ORE, TheLoop); 5165 return FixedScalableVFPair::getNone(); 5166 } 5167 5168 switch (ScalarEpilogueStatus) { 5169 case CM_ScalarEpilogueAllowed: 5170 return computeFeasibleMaxVF(TC, UserVF, false); 5171 case CM_ScalarEpilogueNotAllowedUsePredicate: 5172 LLVM_FALLTHROUGH; 5173 case CM_ScalarEpilogueNotNeededUsePredicate: 5174 LLVM_DEBUG( 5175 dbgs() << "LV: vector predicate hint/switch found.\n" 5176 << "LV: Not allowing scalar epilogue, creating predicated " 5177 << "vector loop.\n"); 5178 break; 5179 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5180 // fallthrough as a special case of OptForSize 5181 case CM_ScalarEpilogueNotAllowedOptSize: 5182 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5183 LLVM_DEBUG( 5184 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5185 else 5186 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5187 << "count.\n"); 5188 5189 // Bail if runtime checks are required, which are not good when optimising 5190 // for size. 5191 if (runtimeChecksRequired()) 5192 return FixedScalableVFPair::getNone(); 5193 5194 break; 5195 } 5196 5197 // The only loops we can vectorize without a scalar epilogue, are loops with 5198 // a bottom-test and a single exiting block. We'd have to handle the fact 5199 // that not every instruction executes on the last iteration. This will 5200 // require a lane mask which varies through the vector loop body. (TODO) 5201 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5202 // If there was a tail-folding hint/switch, but we can't fold the tail by 5203 // masking, fallback to a vectorization with a scalar epilogue. 5204 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5205 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5206 "scalar epilogue instead.\n"); 5207 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5208 return computeFeasibleMaxVF(TC, UserVF, false); 5209 } 5210 return FixedScalableVFPair::getNone(); 5211 } 5212 5213 // Now try the tail folding 5214 5215 // Invalidate interleave groups that require an epilogue if we can't mask 5216 // the interleave-group. 5217 if (!useMaskedInterleavedAccesses(TTI)) { 5218 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5219 "No decisions should have been taken at this point"); 5220 // Note: There is no need to invalidate any cost modeling decisions here, as 5221 // non where taken so far. 5222 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5223 } 5224 5225 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5226 // Avoid tail folding if the trip count is known to be a multiple of any VF 5227 // we chose. 5228 // FIXME: The condition below pessimises the case for fixed-width vectors, 5229 // when scalable VFs are also candidates for vectorization. 5230 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5231 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5232 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5233 "MaxFixedVF must be a power of 2"); 5234 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5235 : MaxFixedVF.getFixedValue(); 5236 ScalarEvolution *SE = PSE.getSE(); 5237 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5238 const SCEV *ExitCount = SE->getAddExpr( 5239 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5240 const SCEV *Rem = SE->getURemExpr( 5241 SE->applyLoopGuards(ExitCount, TheLoop), 5242 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5243 if (Rem->isZero()) { 5244 // Accept MaxFixedVF if we do not have a tail. 5245 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5246 return MaxFactors; 5247 } 5248 } 5249 5250 // For scalable vectors don't use tail folding for low trip counts or 5251 // optimizing for code size. We only permit this if the user has explicitly 5252 // requested it. 5253 if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate && 5254 ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate && 5255 MaxFactors.ScalableVF.isVector()) 5256 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5257 5258 // If we don't know the precise trip count, or if the trip count that we 5259 // found modulo the vectorization factor is not zero, try to fold the tail 5260 // by masking. 5261 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5262 if (Legal->prepareToFoldTailByMasking()) { 5263 FoldTailByMasking = true; 5264 return MaxFactors; 5265 } 5266 5267 // If there was a tail-folding hint/switch, but we can't fold the tail by 5268 // masking, fallback to a vectorization with a scalar epilogue. 5269 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5270 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5271 "scalar epilogue instead.\n"); 5272 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5273 return MaxFactors; 5274 } 5275 5276 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5277 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5278 return FixedScalableVFPair::getNone(); 5279 } 5280 5281 if (TC == 0) { 5282 reportVectorizationFailure( 5283 "Unable to calculate the loop count due to complex control flow", 5284 "unable to calculate the loop count due to complex control flow", 5285 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5286 return FixedScalableVFPair::getNone(); 5287 } 5288 5289 reportVectorizationFailure( 5290 "Cannot optimize for size and vectorize at the same time.", 5291 "cannot optimize for size and vectorize at the same time. " 5292 "Enable vectorization of this loop with '#pragma clang loop " 5293 "vectorize(enable)' when compiling with -Os/-Oz", 5294 "NoTailLoopWithOptForSize", ORE, TheLoop); 5295 return FixedScalableVFPair::getNone(); 5296 } 5297 5298 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5299 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5300 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5301 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5302 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5303 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5304 : TargetTransformInfo::RGK_FixedWidthVector); 5305 5306 // Convenience function to return the minimum of two ElementCounts. 5307 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5308 assert((LHS.isScalable() == RHS.isScalable()) && 5309 "Scalable flags must match"); 5310 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5311 }; 5312 5313 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5314 // Note that both WidestRegister and WidestType may not be a powers of 2. 5315 auto MaxVectorElementCount = ElementCount::get( 5316 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5317 ComputeScalableMaxVF); 5318 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5319 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5320 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5321 5322 if (!MaxVectorElementCount) { 5323 LLVM_DEBUG(dbgs() << "LV: The target has no " 5324 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5325 << " vector registers.\n"); 5326 return ElementCount::getFixed(1); 5327 } 5328 5329 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5330 if (ConstTripCount && 5331 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5332 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5333 // If loop trip count (TC) is known at compile time there is no point in 5334 // choosing VF greater than TC (as done in the loop below). Select maximum 5335 // power of two which doesn't exceed TC. 5336 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5337 // when the TC is less than or equal to the known number of lanes. 5338 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5339 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5340 "exceeding the constant trip count: " 5341 << ClampedConstTripCount << "\n"); 5342 return ElementCount::getFixed(ClampedConstTripCount); 5343 } 5344 5345 ElementCount MaxVF = MaxVectorElementCount; 5346 if (TTI.shouldMaximizeVectorBandwidth() || 5347 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5348 auto MaxVectorElementCountMaxBW = ElementCount::get( 5349 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5350 ComputeScalableMaxVF); 5351 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5352 5353 // Collect all viable vectorization factors larger than the default MaxVF 5354 // (i.e. MaxVectorElementCount). 5355 SmallVector<ElementCount, 8> VFs; 5356 for (ElementCount VS = MaxVectorElementCount * 2; 5357 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5358 VFs.push_back(VS); 5359 5360 // For each VF calculate its register usage. 5361 auto RUs = calculateRegisterUsage(VFs); 5362 5363 // Select the largest VF which doesn't require more registers than existing 5364 // ones. 5365 for (int i = RUs.size() - 1; i >= 0; --i) { 5366 bool Selected = true; 5367 for (auto &pair : RUs[i].MaxLocalUsers) { 5368 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5369 if (pair.second > TargetNumRegisters) 5370 Selected = false; 5371 } 5372 if (Selected) { 5373 MaxVF = VFs[i]; 5374 break; 5375 } 5376 } 5377 if (ElementCount MinVF = 5378 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5379 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5380 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5381 << ") with target's minimum: " << MinVF << '\n'); 5382 MaxVF = MinVF; 5383 } 5384 } 5385 } 5386 return MaxVF; 5387 } 5388 5389 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5390 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5391 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5392 auto Min = Attr.getVScaleRangeMin(); 5393 auto Max = Attr.getVScaleRangeMax(); 5394 if (Max && Min == Max) 5395 return Max; 5396 } 5397 5398 return TTI.getVScaleForTuning(); 5399 } 5400 5401 bool LoopVectorizationCostModel::isMoreProfitable( 5402 const VectorizationFactor &A, const VectorizationFactor &B) const { 5403 InstructionCost CostA = A.Cost; 5404 InstructionCost CostB = B.Cost; 5405 5406 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5407 5408 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5409 MaxTripCount) { 5410 // If we are folding the tail and the trip count is a known (possibly small) 5411 // constant, the trip count will be rounded up to an integer number of 5412 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5413 // which we compare directly. When not folding the tail, the total cost will 5414 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5415 // approximated with the per-lane cost below instead of using the tripcount 5416 // as here. 5417 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5418 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5419 return RTCostA < RTCostB; 5420 } 5421 5422 // Improve estimate for the vector width if it is scalable. 5423 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5424 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5425 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5426 if (A.Width.isScalable()) 5427 EstimatedWidthA *= VScale.getValue(); 5428 if (B.Width.isScalable()) 5429 EstimatedWidthB *= VScale.getValue(); 5430 } 5431 5432 // Assume vscale may be larger than 1 (or the value being tuned for), 5433 // so that scalable vectorization is slightly favorable over fixed-width 5434 // vectorization. 5435 if (A.Width.isScalable() && !B.Width.isScalable()) 5436 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5437 5438 // To avoid the need for FP division: 5439 // (CostA / A.Width) < (CostB / B.Width) 5440 // <=> (CostA * B.Width) < (CostB * A.Width) 5441 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5442 } 5443 5444 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5445 const ElementCountSet &VFCandidates) { 5446 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5447 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5448 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5449 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5450 "Expected Scalar VF to be a candidate"); 5451 5452 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5453 VectorizationFactor ChosenFactor = ScalarCost; 5454 5455 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5456 if (ForceVectorization && VFCandidates.size() > 1) { 5457 // Ignore scalar width, because the user explicitly wants vectorization. 5458 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5459 // evaluation. 5460 ChosenFactor.Cost = InstructionCost::getMax(); 5461 } 5462 5463 SmallVector<InstructionVFPair> InvalidCosts; 5464 for (const auto &i : VFCandidates) { 5465 // The cost for scalar VF=1 is already calculated, so ignore it. 5466 if (i.isScalar()) 5467 continue; 5468 5469 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5470 VectorizationFactor Candidate(i, C.first); 5471 5472 #ifndef NDEBUG 5473 unsigned AssumedMinimumVscale = 1; 5474 if (Optional<unsigned> VScale = getVScaleForTuning()) 5475 AssumedMinimumVscale = VScale.getValue(); 5476 unsigned Width = 5477 Candidate.Width.isScalable() 5478 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5479 : Candidate.Width.getFixedValue(); 5480 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5481 << " costs: " << (Candidate.Cost / Width)); 5482 if (i.isScalable()) 5483 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5484 << AssumedMinimumVscale << ")"); 5485 LLVM_DEBUG(dbgs() << ".\n"); 5486 #endif 5487 5488 if (!C.second && !ForceVectorization) { 5489 LLVM_DEBUG( 5490 dbgs() << "LV: Not considering vector loop of width " << i 5491 << " because it will not generate any vector instructions.\n"); 5492 continue; 5493 } 5494 5495 // If profitable add it to ProfitableVF list. 5496 if (isMoreProfitable(Candidate, ScalarCost)) 5497 ProfitableVFs.push_back(Candidate); 5498 5499 if (isMoreProfitable(Candidate, ChosenFactor)) 5500 ChosenFactor = Candidate; 5501 } 5502 5503 // Emit a report of VFs with invalid costs in the loop. 5504 if (!InvalidCosts.empty()) { 5505 // Group the remarks per instruction, keeping the instruction order from 5506 // InvalidCosts. 5507 std::map<Instruction *, unsigned> Numbering; 5508 unsigned I = 0; 5509 for (auto &Pair : InvalidCosts) 5510 if (!Numbering.count(Pair.first)) 5511 Numbering[Pair.first] = I++; 5512 5513 // Sort the list, first on instruction(number) then on VF. 5514 llvm::sort(InvalidCosts, 5515 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5516 if (Numbering[A.first] != Numbering[B.first]) 5517 return Numbering[A.first] < Numbering[B.first]; 5518 ElementCountComparator ECC; 5519 return ECC(A.second, B.second); 5520 }); 5521 5522 // For a list of ordered instruction-vf pairs: 5523 // [(load, vf1), (load, vf2), (store, vf1)] 5524 // Group the instructions together to emit separate remarks for: 5525 // load (vf1, vf2) 5526 // store (vf1) 5527 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5528 auto Subset = ArrayRef<InstructionVFPair>(); 5529 do { 5530 if (Subset.empty()) 5531 Subset = Tail.take_front(1); 5532 5533 Instruction *I = Subset.front().first; 5534 5535 // If the next instruction is different, or if there are no other pairs, 5536 // emit a remark for the collated subset. e.g. 5537 // [(load, vf1), (load, vf2))] 5538 // to emit: 5539 // remark: invalid costs for 'load' at VF=(vf, vf2) 5540 if (Subset == Tail || Tail[Subset.size()].first != I) { 5541 std::string OutString; 5542 raw_string_ostream OS(OutString); 5543 assert(!Subset.empty() && "Unexpected empty range"); 5544 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5545 for (auto &Pair : Subset) 5546 OS << (Pair.second == Subset.front().second ? "" : ", ") 5547 << Pair.second; 5548 OS << "):"; 5549 if (auto *CI = dyn_cast<CallInst>(I)) 5550 OS << " call to " << CI->getCalledFunction()->getName(); 5551 else 5552 OS << " " << I->getOpcodeName(); 5553 OS.flush(); 5554 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5555 Tail = Tail.drop_front(Subset.size()); 5556 Subset = {}; 5557 } else 5558 // Grow the subset by one element 5559 Subset = Tail.take_front(Subset.size() + 1); 5560 } while (!Tail.empty()); 5561 } 5562 5563 if (!EnableCondStoresVectorization && NumPredStores) { 5564 reportVectorizationFailure("There are conditional stores.", 5565 "store that is conditionally executed prevents vectorization", 5566 "ConditionalStore", ORE, TheLoop); 5567 ChosenFactor = ScalarCost; 5568 } 5569 5570 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5571 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5572 << "LV: Vectorization seems to be not beneficial, " 5573 << "but was forced by a user.\n"); 5574 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5575 return ChosenFactor; 5576 } 5577 5578 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5579 const Loop &L, ElementCount VF) const { 5580 // Cross iteration phis such as reductions need special handling and are 5581 // currently unsupported. 5582 if (any_of(L.getHeader()->phis(), 5583 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5584 return false; 5585 5586 // Phis with uses outside of the loop require special handling and are 5587 // currently unsupported. 5588 for (auto &Entry : Legal->getInductionVars()) { 5589 // Look for uses of the value of the induction at the last iteration. 5590 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5591 for (User *U : PostInc->users()) 5592 if (!L.contains(cast<Instruction>(U))) 5593 return false; 5594 // Look for uses of penultimate value of the induction. 5595 for (User *U : Entry.first->users()) 5596 if (!L.contains(cast<Instruction>(U))) 5597 return false; 5598 } 5599 5600 // Induction variables that are widened require special handling that is 5601 // currently not supported. 5602 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5603 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5604 this->isProfitableToScalarize(Entry.first, VF)); 5605 })) 5606 return false; 5607 5608 // Epilogue vectorization code has not been auditted to ensure it handles 5609 // non-latch exits properly. It may be fine, but it needs auditted and 5610 // tested. 5611 if (L.getExitingBlock() != L.getLoopLatch()) 5612 return false; 5613 5614 return true; 5615 } 5616 5617 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5618 const ElementCount VF) const { 5619 // FIXME: We need a much better cost-model to take different parameters such 5620 // as register pressure, code size increase and cost of extra branches into 5621 // account. For now we apply a very crude heuristic and only consider loops 5622 // with vectorization factors larger than a certain value. 5623 // We also consider epilogue vectorization unprofitable for targets that don't 5624 // consider interleaving beneficial (eg. MVE). 5625 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5626 return false; 5627 // FIXME: We should consider changing the threshold for scalable 5628 // vectors to take VScaleForTuning into account. 5629 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5630 return true; 5631 return false; 5632 } 5633 5634 VectorizationFactor 5635 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5636 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5637 VectorizationFactor Result = VectorizationFactor::Disabled(); 5638 if (!EnableEpilogueVectorization) { 5639 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5640 return Result; 5641 } 5642 5643 if (!isScalarEpilogueAllowed()) { 5644 LLVM_DEBUG( 5645 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5646 "allowed.\n";); 5647 return Result; 5648 } 5649 5650 // Not really a cost consideration, but check for unsupported cases here to 5651 // simplify the logic. 5652 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5653 LLVM_DEBUG( 5654 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5655 "not a supported candidate.\n";); 5656 return Result; 5657 } 5658 5659 if (EpilogueVectorizationForceVF > 1) { 5660 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5661 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5662 if (LVP.hasPlanWithVF(ForcedEC)) 5663 return {ForcedEC, 0}; 5664 else { 5665 LLVM_DEBUG( 5666 dbgs() 5667 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5668 return Result; 5669 } 5670 } 5671 5672 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5673 TheLoop->getHeader()->getParent()->hasMinSize()) { 5674 LLVM_DEBUG( 5675 dbgs() 5676 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5677 return Result; 5678 } 5679 5680 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5681 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5682 "this loop\n"); 5683 return Result; 5684 } 5685 5686 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5687 // the main loop handles 8 lanes per iteration. We could still benefit from 5688 // vectorizing the epilogue loop with VF=4. 5689 ElementCount EstimatedRuntimeVF = MainLoopVF; 5690 if (MainLoopVF.isScalable()) { 5691 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5692 if (Optional<unsigned> VScale = getVScaleForTuning()) 5693 EstimatedRuntimeVF *= VScale.getValue(); 5694 } 5695 5696 for (auto &NextVF : ProfitableVFs) 5697 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5698 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5699 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5700 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5701 LVP.hasPlanWithVF(NextVF.Width)) 5702 Result = NextVF; 5703 5704 if (Result != VectorizationFactor::Disabled()) 5705 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5706 << Result.Width << "\n";); 5707 return Result; 5708 } 5709 5710 std::pair<unsigned, unsigned> 5711 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5712 unsigned MinWidth = -1U; 5713 unsigned MaxWidth = 8; 5714 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5715 // For in-loop reductions, no element types are added to ElementTypesInLoop 5716 // if there are no loads/stores in the loop. In this case, check through the 5717 // reduction variables to determine the maximum width. 5718 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5719 // Reset MaxWidth so that we can find the smallest type used by recurrences 5720 // in the loop. 5721 MaxWidth = -1U; 5722 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5723 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5724 // When finding the min width used by the recurrence we need to account 5725 // for casts on the input operands of the recurrence. 5726 MaxWidth = std::min<unsigned>( 5727 MaxWidth, std::min<unsigned>( 5728 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5729 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5730 } 5731 } else { 5732 for (Type *T : ElementTypesInLoop) { 5733 MinWidth = std::min<unsigned>( 5734 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5735 MaxWidth = std::max<unsigned>( 5736 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5737 } 5738 } 5739 return {MinWidth, MaxWidth}; 5740 } 5741 5742 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5743 ElementTypesInLoop.clear(); 5744 // For each block. 5745 for (BasicBlock *BB : TheLoop->blocks()) { 5746 // For each instruction in the loop. 5747 for (Instruction &I : BB->instructionsWithoutDebug()) { 5748 Type *T = I.getType(); 5749 5750 // Skip ignored values. 5751 if (ValuesToIgnore.count(&I)) 5752 continue; 5753 5754 // Only examine Loads, Stores and PHINodes. 5755 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5756 continue; 5757 5758 // Examine PHI nodes that are reduction variables. Update the type to 5759 // account for the recurrence type. 5760 if (auto *PN = dyn_cast<PHINode>(&I)) { 5761 if (!Legal->isReductionVariable(PN)) 5762 continue; 5763 const RecurrenceDescriptor &RdxDesc = 5764 Legal->getReductionVars().find(PN)->second; 5765 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5766 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5767 RdxDesc.getRecurrenceType(), 5768 TargetTransformInfo::ReductionFlags())) 5769 continue; 5770 T = RdxDesc.getRecurrenceType(); 5771 } 5772 5773 // Examine the stored values. 5774 if (auto *ST = dyn_cast<StoreInst>(&I)) 5775 T = ST->getValueOperand()->getType(); 5776 5777 assert(T->isSized() && 5778 "Expected the load/store/recurrence type to be sized"); 5779 5780 ElementTypesInLoop.insert(T); 5781 } 5782 } 5783 } 5784 5785 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5786 unsigned LoopCost) { 5787 // -- The interleave heuristics -- 5788 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5789 // There are many micro-architectural considerations that we can't predict 5790 // at this level. For example, frontend pressure (on decode or fetch) due to 5791 // code size, or the number and capabilities of the execution ports. 5792 // 5793 // We use the following heuristics to select the interleave count: 5794 // 1. If the code has reductions, then we interleave to break the cross 5795 // iteration dependency. 5796 // 2. If the loop is really small, then we interleave to reduce the loop 5797 // overhead. 5798 // 3. We don't interleave if we think that we will spill registers to memory 5799 // due to the increased register pressure. 5800 5801 if (!isScalarEpilogueAllowed()) 5802 return 1; 5803 5804 // We used the distance for the interleave count. 5805 if (Legal->getMaxSafeDepDistBytes() != -1U) 5806 return 1; 5807 5808 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5809 const bool HasReductions = !Legal->getReductionVars().empty(); 5810 // Do not interleave loops with a relatively small known or estimated trip 5811 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5812 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5813 // because with the above conditions interleaving can expose ILP and break 5814 // cross iteration dependences for reductions. 5815 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5816 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5817 return 1; 5818 5819 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5820 // We divide by these constants so assume that we have at least one 5821 // instruction that uses at least one register. 5822 for (auto& pair : R.MaxLocalUsers) { 5823 pair.second = std::max(pair.second, 1U); 5824 } 5825 5826 // We calculate the interleave count using the following formula. 5827 // Subtract the number of loop invariants from the number of available 5828 // registers. These registers are used by all of the interleaved instances. 5829 // Next, divide the remaining registers by the number of registers that is 5830 // required by the loop, in order to estimate how many parallel instances 5831 // fit without causing spills. All of this is rounded down if necessary to be 5832 // a power of two. We want power of two interleave count to simplify any 5833 // addressing operations or alignment considerations. 5834 // We also want power of two interleave counts to ensure that the induction 5835 // variable of the vector loop wraps to zero, when tail is folded by masking; 5836 // this currently happens when OptForSize, in which case IC is set to 1 above. 5837 unsigned IC = UINT_MAX; 5838 5839 for (auto& pair : R.MaxLocalUsers) { 5840 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5841 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5842 << " registers of " 5843 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5844 if (VF.isScalar()) { 5845 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5846 TargetNumRegisters = ForceTargetNumScalarRegs; 5847 } else { 5848 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5849 TargetNumRegisters = ForceTargetNumVectorRegs; 5850 } 5851 unsigned MaxLocalUsers = pair.second; 5852 unsigned LoopInvariantRegs = 0; 5853 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5854 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5855 5856 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5857 // Don't count the induction variable as interleaved. 5858 if (EnableIndVarRegisterHeur) { 5859 TmpIC = 5860 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5861 std::max(1U, (MaxLocalUsers - 1))); 5862 } 5863 5864 IC = std::min(IC, TmpIC); 5865 } 5866 5867 // Clamp the interleave ranges to reasonable counts. 5868 unsigned MaxInterleaveCount = 5869 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5870 5871 // Check if the user has overridden the max. 5872 if (VF.isScalar()) { 5873 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5874 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5875 } else { 5876 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5877 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5878 } 5879 5880 // If trip count is known or estimated compile time constant, limit the 5881 // interleave count to be less than the trip count divided by VF, provided it 5882 // is at least 1. 5883 // 5884 // For scalable vectors we can't know if interleaving is beneficial. It may 5885 // not be beneficial for small loops if none of the lanes in the second vector 5886 // iterations is enabled. However, for larger loops, there is likely to be a 5887 // similar benefit as for fixed-width vectors. For now, we choose to leave 5888 // the InterleaveCount as if vscale is '1', although if some information about 5889 // the vector is known (e.g. min vector size), we can make a better decision. 5890 if (BestKnownTC) { 5891 MaxInterleaveCount = 5892 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5893 // Make sure MaxInterleaveCount is greater than 0. 5894 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5895 } 5896 5897 assert(MaxInterleaveCount > 0 && 5898 "Maximum interleave count must be greater than 0"); 5899 5900 // Clamp the calculated IC to be between the 1 and the max interleave count 5901 // that the target and trip count allows. 5902 if (IC > MaxInterleaveCount) 5903 IC = MaxInterleaveCount; 5904 else 5905 // Make sure IC is greater than 0. 5906 IC = std::max(1u, IC); 5907 5908 assert(IC > 0 && "Interleave count must be greater than 0."); 5909 5910 // If we did not calculate the cost for VF (because the user selected the VF) 5911 // then we calculate the cost of VF here. 5912 if (LoopCost == 0) { 5913 InstructionCost C = expectedCost(VF).first; 5914 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 5915 LoopCost = *C.getValue(); 5916 } 5917 5918 assert(LoopCost && "Non-zero loop cost expected"); 5919 5920 // Interleave if we vectorized this loop and there is a reduction that could 5921 // benefit from interleaving. 5922 if (VF.isVector() && HasReductions) { 5923 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5924 return IC; 5925 } 5926 5927 // For any scalar loop that either requires runtime checks or predication we 5928 // are better off leaving this to the unroller. Note that if we've already 5929 // vectorized the loop we will have done the runtime check and so interleaving 5930 // won't require further checks. 5931 bool ScalarInterleavingRequiresPredication = 5932 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5933 return Legal->blockNeedsPredication(BB); 5934 })); 5935 bool ScalarInterleavingRequiresRuntimePointerCheck = 5936 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5937 5938 // We want to interleave small loops in order to reduce the loop overhead and 5939 // potentially expose ILP opportunities. 5940 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5941 << "LV: IC is " << IC << '\n' 5942 << "LV: VF is " << VF << '\n'); 5943 const bool AggressivelyInterleaveReductions = 5944 TTI.enableAggressiveInterleaving(HasReductions); 5945 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5946 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5947 // We assume that the cost overhead is 1 and we use the cost model 5948 // to estimate the cost of the loop and interleave until the cost of the 5949 // loop overhead is about 5% of the cost of the loop. 5950 unsigned SmallIC = 5951 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5952 5953 // Interleave until store/load ports (estimated by max interleave count) are 5954 // saturated. 5955 unsigned NumStores = Legal->getNumStores(); 5956 unsigned NumLoads = Legal->getNumLoads(); 5957 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5958 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5959 5960 // There is little point in interleaving for reductions containing selects 5961 // and compares when VF=1 since it may just create more overhead than it's 5962 // worth for loops with small trip counts. This is because we still have to 5963 // do the final reduction after the loop. 5964 bool HasSelectCmpReductions = 5965 HasReductions && 5966 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5967 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5968 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 5969 RdxDesc.getRecurrenceKind()); 5970 }); 5971 if (HasSelectCmpReductions) { 5972 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5973 return 1; 5974 } 5975 5976 // If we have a scalar reduction (vector reductions are already dealt with 5977 // by this point), we can increase the critical path length if the loop 5978 // we're interleaving is inside another loop. For tree-wise reductions 5979 // set the limit to 2, and for ordered reductions it's best to disable 5980 // interleaving entirely. 5981 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5982 bool HasOrderedReductions = 5983 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5984 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5985 return RdxDesc.isOrdered(); 5986 }); 5987 if (HasOrderedReductions) { 5988 LLVM_DEBUG( 5989 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5990 return 1; 5991 } 5992 5993 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5994 SmallIC = std::min(SmallIC, F); 5995 StoresIC = std::min(StoresIC, F); 5996 LoadsIC = std::min(LoadsIC, F); 5997 } 5998 5999 if (EnableLoadStoreRuntimeInterleave && 6000 std::max(StoresIC, LoadsIC) > SmallIC) { 6001 LLVM_DEBUG( 6002 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6003 return std::max(StoresIC, LoadsIC); 6004 } 6005 6006 // If there are scalar reductions and TTI has enabled aggressive 6007 // interleaving for reductions, we will interleave to expose ILP. 6008 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6009 AggressivelyInterleaveReductions) { 6010 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6011 // Interleave no less than SmallIC but not as aggressive as the normal IC 6012 // to satisfy the rare situation when resources are too limited. 6013 return std::max(IC / 2, SmallIC); 6014 } else { 6015 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6016 return SmallIC; 6017 } 6018 } 6019 6020 // Interleave if this is a large loop (small loops are already dealt with by 6021 // this point) that could benefit from interleaving. 6022 if (AggressivelyInterleaveReductions) { 6023 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6024 return IC; 6025 } 6026 6027 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6028 return 1; 6029 } 6030 6031 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6032 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6033 // This function calculates the register usage by measuring the highest number 6034 // of values that are alive at a single location. Obviously, this is a very 6035 // rough estimation. We scan the loop in a topological order in order and 6036 // assign a number to each instruction. We use RPO to ensure that defs are 6037 // met before their users. We assume that each instruction that has in-loop 6038 // users starts an interval. We record every time that an in-loop value is 6039 // used, so we have a list of the first and last occurrences of each 6040 // instruction. Next, we transpose this data structure into a multi map that 6041 // holds the list of intervals that *end* at a specific location. This multi 6042 // map allows us to perform a linear search. We scan the instructions linearly 6043 // and record each time that a new interval starts, by placing it in a set. 6044 // If we find this value in the multi-map then we remove it from the set. 6045 // The max register usage is the maximum size of the set. 6046 // We also search for instructions that are defined outside the loop, but are 6047 // used inside the loop. We need this number separately from the max-interval 6048 // usage number because when we unroll, loop-invariant values do not take 6049 // more register. 6050 LoopBlocksDFS DFS(TheLoop); 6051 DFS.perform(LI); 6052 6053 RegisterUsage RU; 6054 6055 // Each 'key' in the map opens a new interval. The values 6056 // of the map are the index of the 'last seen' usage of the 6057 // instruction that is the key. 6058 using IntervalMap = DenseMap<Instruction *, unsigned>; 6059 6060 // Maps instruction to its index. 6061 SmallVector<Instruction *, 64> IdxToInstr; 6062 // Marks the end of each interval. 6063 IntervalMap EndPoint; 6064 // Saves the list of instruction indices that are used in the loop. 6065 SmallPtrSet<Instruction *, 8> Ends; 6066 // Saves the list of values that are used in the loop but are 6067 // defined outside the loop, such as arguments and constants. 6068 SmallPtrSet<Value *, 8> LoopInvariants; 6069 6070 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6071 for (Instruction &I : BB->instructionsWithoutDebug()) { 6072 IdxToInstr.push_back(&I); 6073 6074 // Save the end location of each USE. 6075 for (Value *U : I.operands()) { 6076 auto *Instr = dyn_cast<Instruction>(U); 6077 6078 // Ignore non-instruction values such as arguments, constants, etc. 6079 if (!Instr) 6080 continue; 6081 6082 // If this instruction is outside the loop then record it and continue. 6083 if (!TheLoop->contains(Instr)) { 6084 LoopInvariants.insert(Instr); 6085 continue; 6086 } 6087 6088 // Overwrite previous end points. 6089 EndPoint[Instr] = IdxToInstr.size(); 6090 Ends.insert(Instr); 6091 } 6092 } 6093 } 6094 6095 // Saves the list of intervals that end with the index in 'key'. 6096 using InstrList = SmallVector<Instruction *, 2>; 6097 DenseMap<unsigned, InstrList> TransposeEnds; 6098 6099 // Transpose the EndPoints to a list of values that end at each index. 6100 for (auto &Interval : EndPoint) 6101 TransposeEnds[Interval.second].push_back(Interval.first); 6102 6103 SmallPtrSet<Instruction *, 8> OpenIntervals; 6104 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6105 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6106 6107 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6108 6109 // A lambda that gets the register usage for the given type and VF. 6110 const auto &TTICapture = TTI; 6111 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6112 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6113 return 0; 6114 InstructionCost::CostType RegUsage = 6115 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6116 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6117 "Nonsensical values for register usage."); 6118 return RegUsage; 6119 }; 6120 6121 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6122 Instruction *I = IdxToInstr[i]; 6123 6124 // Remove all of the instructions that end at this location. 6125 InstrList &List = TransposeEnds[i]; 6126 for (Instruction *ToRemove : List) 6127 OpenIntervals.erase(ToRemove); 6128 6129 // Ignore instructions that are never used within the loop. 6130 if (!Ends.count(I)) 6131 continue; 6132 6133 // Skip ignored values. 6134 if (ValuesToIgnore.count(I)) 6135 continue; 6136 6137 // For each VF find the maximum usage of registers. 6138 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6139 // Count the number of live intervals. 6140 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6141 6142 if (VFs[j].isScalar()) { 6143 for (auto Inst : OpenIntervals) { 6144 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6145 if (RegUsage.find(ClassID) == RegUsage.end()) 6146 RegUsage[ClassID] = 1; 6147 else 6148 RegUsage[ClassID] += 1; 6149 } 6150 } else { 6151 collectUniformsAndScalars(VFs[j]); 6152 for (auto Inst : OpenIntervals) { 6153 // Skip ignored values for VF > 1. 6154 if (VecValuesToIgnore.count(Inst)) 6155 continue; 6156 if (isScalarAfterVectorization(Inst, VFs[j])) { 6157 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6158 if (RegUsage.find(ClassID) == RegUsage.end()) 6159 RegUsage[ClassID] = 1; 6160 else 6161 RegUsage[ClassID] += 1; 6162 } else { 6163 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6164 if (RegUsage.find(ClassID) == RegUsage.end()) 6165 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6166 else 6167 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6168 } 6169 } 6170 } 6171 6172 for (auto& pair : RegUsage) { 6173 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6174 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6175 else 6176 MaxUsages[j][pair.first] = pair.second; 6177 } 6178 } 6179 6180 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6181 << OpenIntervals.size() << '\n'); 6182 6183 // Add the current instruction to the list of open intervals. 6184 OpenIntervals.insert(I); 6185 } 6186 6187 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6188 SmallMapVector<unsigned, unsigned, 4> Invariant; 6189 6190 for (auto Inst : LoopInvariants) { 6191 unsigned Usage = 6192 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6193 unsigned ClassID = 6194 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6195 if (Invariant.find(ClassID) == Invariant.end()) 6196 Invariant[ClassID] = Usage; 6197 else 6198 Invariant[ClassID] += Usage; 6199 } 6200 6201 LLVM_DEBUG({ 6202 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6203 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6204 << " item\n"; 6205 for (const auto &pair : MaxUsages[i]) { 6206 dbgs() << "LV(REG): RegisterClass: " 6207 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6208 << " registers\n"; 6209 } 6210 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6211 << " item\n"; 6212 for (const auto &pair : Invariant) { 6213 dbgs() << "LV(REG): RegisterClass: " 6214 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6215 << " registers\n"; 6216 } 6217 }); 6218 6219 RU.LoopInvariantRegs = Invariant; 6220 RU.MaxLocalUsers = MaxUsages[i]; 6221 RUs[i] = RU; 6222 } 6223 6224 return RUs; 6225 } 6226 6227 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6228 ElementCount VF) { 6229 // TODO: Cost model for emulated masked load/store is completely 6230 // broken. This hack guides the cost model to use an artificially 6231 // high enough value to practically disable vectorization with such 6232 // operations, except where previously deployed legality hack allowed 6233 // using very low cost values. This is to avoid regressions coming simply 6234 // from moving "masked load/store" check from legality to cost model. 6235 // Masked Load/Gather emulation was previously never allowed. 6236 // Limited number of Masked Store/Scatter emulation was allowed. 6237 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6238 return isa<LoadInst>(I) || 6239 (isa<StoreInst>(I) && 6240 NumPredStores > NumberOfStoresToPredicate); 6241 } 6242 6243 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6244 // If we aren't vectorizing the loop, or if we've already collected the 6245 // instructions to scalarize, there's nothing to do. Collection may already 6246 // have occurred if we have a user-selected VF and are now computing the 6247 // expected cost for interleaving. 6248 if (VF.isScalar() || VF.isZero() || 6249 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6250 return; 6251 6252 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6253 // not profitable to scalarize any instructions, the presence of VF in the 6254 // map will indicate that we've analyzed it already. 6255 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6256 6257 // Find all the instructions that are scalar with predication in the loop and 6258 // determine if it would be better to not if-convert the blocks they are in. 6259 // If so, we also record the instructions to scalarize. 6260 for (BasicBlock *BB : TheLoop->blocks()) { 6261 if (!blockNeedsPredicationForAnyReason(BB)) 6262 continue; 6263 for (Instruction &I : *BB) 6264 if (isScalarWithPredication(&I, VF)) { 6265 ScalarCostsTy ScalarCosts; 6266 // Do not apply discount if scalable, because that would lead to 6267 // invalid scalarization costs. 6268 // Do not apply discount logic if hacked cost is needed 6269 // for emulated masked memrefs. 6270 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6271 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6272 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6273 // Remember that BB will remain after vectorization. 6274 PredicatedBBsAfterVectorization.insert(BB); 6275 } 6276 } 6277 } 6278 6279 int LoopVectorizationCostModel::computePredInstDiscount( 6280 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6281 assert(!isUniformAfterVectorization(PredInst, VF) && 6282 "Instruction marked uniform-after-vectorization will be predicated"); 6283 6284 // Initialize the discount to zero, meaning that the scalar version and the 6285 // vector version cost the same. 6286 InstructionCost Discount = 0; 6287 6288 // Holds instructions to analyze. The instructions we visit are mapped in 6289 // ScalarCosts. Those instructions are the ones that would be scalarized if 6290 // we find that the scalar version costs less. 6291 SmallVector<Instruction *, 8> Worklist; 6292 6293 // Returns true if the given instruction can be scalarized. 6294 auto canBeScalarized = [&](Instruction *I) -> bool { 6295 // We only attempt to scalarize instructions forming a single-use chain 6296 // from the original predicated block that would otherwise be vectorized. 6297 // Although not strictly necessary, we give up on instructions we know will 6298 // already be scalar to avoid traversing chains that are unlikely to be 6299 // beneficial. 6300 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6301 isScalarAfterVectorization(I, VF)) 6302 return false; 6303 6304 // If the instruction is scalar with predication, it will be analyzed 6305 // separately. We ignore it within the context of PredInst. 6306 if (isScalarWithPredication(I, VF)) 6307 return false; 6308 6309 // If any of the instruction's operands are uniform after vectorization, 6310 // the instruction cannot be scalarized. This prevents, for example, a 6311 // masked load from being scalarized. 6312 // 6313 // We assume we will only emit a value for lane zero of an instruction 6314 // marked uniform after vectorization, rather than VF identical values. 6315 // Thus, if we scalarize an instruction that uses a uniform, we would 6316 // create uses of values corresponding to the lanes we aren't emitting code 6317 // for. This behavior can be changed by allowing getScalarValue to clone 6318 // the lane zero values for uniforms rather than asserting. 6319 for (Use &U : I->operands()) 6320 if (auto *J = dyn_cast<Instruction>(U.get())) 6321 if (isUniformAfterVectorization(J, VF)) 6322 return false; 6323 6324 // Otherwise, we can scalarize the instruction. 6325 return true; 6326 }; 6327 6328 // Compute the expected cost discount from scalarizing the entire expression 6329 // feeding the predicated instruction. We currently only consider expressions 6330 // that are single-use instruction chains. 6331 Worklist.push_back(PredInst); 6332 while (!Worklist.empty()) { 6333 Instruction *I = Worklist.pop_back_val(); 6334 6335 // If we've already analyzed the instruction, there's nothing to do. 6336 if (ScalarCosts.find(I) != ScalarCosts.end()) 6337 continue; 6338 6339 // Compute the cost of the vector instruction. Note that this cost already 6340 // includes the scalarization overhead of the predicated instruction. 6341 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6342 6343 // Compute the cost of the scalarized instruction. This cost is the cost of 6344 // the instruction as if it wasn't if-converted and instead remained in the 6345 // predicated block. We will scale this cost by block probability after 6346 // computing the scalarization overhead. 6347 InstructionCost ScalarCost = 6348 VF.getFixedValue() * 6349 getInstructionCost(I, ElementCount::getFixed(1)).first; 6350 6351 // Compute the scalarization overhead of needed insertelement instructions 6352 // and phi nodes. 6353 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6354 ScalarCost += TTI.getScalarizationOverhead( 6355 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6356 APInt::getAllOnes(VF.getFixedValue()), true, false); 6357 ScalarCost += 6358 VF.getFixedValue() * 6359 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6360 } 6361 6362 // Compute the scalarization overhead of needed extractelement 6363 // instructions. For each of the instruction's operands, if the operand can 6364 // be scalarized, add it to the worklist; otherwise, account for the 6365 // overhead. 6366 for (Use &U : I->operands()) 6367 if (auto *J = dyn_cast<Instruction>(U.get())) { 6368 assert(VectorType::isValidElementType(J->getType()) && 6369 "Instruction has non-scalar type"); 6370 if (canBeScalarized(J)) 6371 Worklist.push_back(J); 6372 else if (needsExtract(J, VF)) { 6373 ScalarCost += TTI.getScalarizationOverhead( 6374 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6375 APInt::getAllOnes(VF.getFixedValue()), false, true); 6376 } 6377 } 6378 6379 // Scale the total scalar cost by block probability. 6380 ScalarCost /= getReciprocalPredBlockProb(); 6381 6382 // Compute the discount. A non-negative discount means the vector version 6383 // of the instruction costs more, and scalarizing would be beneficial. 6384 Discount += VectorCost - ScalarCost; 6385 ScalarCosts[I] = ScalarCost; 6386 } 6387 6388 return *Discount.getValue(); 6389 } 6390 6391 LoopVectorizationCostModel::VectorizationCostTy 6392 LoopVectorizationCostModel::expectedCost( 6393 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6394 VectorizationCostTy Cost; 6395 6396 // For each block. 6397 for (BasicBlock *BB : TheLoop->blocks()) { 6398 VectorizationCostTy BlockCost; 6399 6400 // For each instruction in the old loop. 6401 for (Instruction &I : BB->instructionsWithoutDebug()) { 6402 // Skip ignored values. 6403 if (ValuesToIgnore.count(&I) || 6404 (VF.isVector() && VecValuesToIgnore.count(&I))) 6405 continue; 6406 6407 VectorizationCostTy C = getInstructionCost(&I, VF); 6408 6409 // Check if we should override the cost. 6410 if (C.first.isValid() && 6411 ForceTargetInstructionCost.getNumOccurrences() > 0) 6412 C.first = InstructionCost(ForceTargetInstructionCost); 6413 6414 // Keep a list of instructions with invalid costs. 6415 if (Invalid && !C.first.isValid()) 6416 Invalid->emplace_back(&I, VF); 6417 6418 BlockCost.first += C.first; 6419 BlockCost.second |= C.second; 6420 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6421 << " for VF " << VF << " For instruction: " << I 6422 << '\n'); 6423 } 6424 6425 // If we are vectorizing a predicated block, it will have been 6426 // if-converted. This means that the block's instructions (aside from 6427 // stores and instructions that may divide by zero) will now be 6428 // unconditionally executed. For the scalar case, we may not always execute 6429 // the predicated block, if it is an if-else block. Thus, scale the block's 6430 // cost by the probability of executing it. blockNeedsPredication from 6431 // Legal is used so as to not include all blocks in tail folded loops. 6432 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6433 BlockCost.first /= getReciprocalPredBlockProb(); 6434 6435 Cost.first += BlockCost.first; 6436 Cost.second |= BlockCost.second; 6437 } 6438 6439 return Cost; 6440 } 6441 6442 /// Gets Address Access SCEV after verifying that the access pattern 6443 /// is loop invariant except the induction variable dependence. 6444 /// 6445 /// This SCEV can be sent to the Target in order to estimate the address 6446 /// calculation cost. 6447 static const SCEV *getAddressAccessSCEV( 6448 Value *Ptr, 6449 LoopVectorizationLegality *Legal, 6450 PredicatedScalarEvolution &PSE, 6451 const Loop *TheLoop) { 6452 6453 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6454 if (!Gep) 6455 return nullptr; 6456 6457 // We are looking for a gep with all loop invariant indices except for one 6458 // which should be an induction variable. 6459 auto SE = PSE.getSE(); 6460 unsigned NumOperands = Gep->getNumOperands(); 6461 for (unsigned i = 1; i < NumOperands; ++i) { 6462 Value *Opd = Gep->getOperand(i); 6463 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6464 !Legal->isInductionVariable(Opd)) 6465 return nullptr; 6466 } 6467 6468 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6469 return PSE.getSCEV(Ptr); 6470 } 6471 6472 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6473 return Legal->hasStride(I->getOperand(0)) || 6474 Legal->hasStride(I->getOperand(1)); 6475 } 6476 6477 InstructionCost 6478 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6479 ElementCount VF) { 6480 assert(VF.isVector() && 6481 "Scalarization cost of instruction implies vectorization."); 6482 if (VF.isScalable()) 6483 return InstructionCost::getInvalid(); 6484 6485 Type *ValTy = getLoadStoreType(I); 6486 auto SE = PSE.getSE(); 6487 6488 unsigned AS = getLoadStoreAddressSpace(I); 6489 Value *Ptr = getLoadStorePointerOperand(I); 6490 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6491 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6492 // that it is being called from this specific place. 6493 6494 // Figure out whether the access is strided and get the stride value 6495 // if it's known in compile time 6496 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6497 6498 // Get the cost of the scalar memory instruction and address computation. 6499 InstructionCost Cost = 6500 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6501 6502 // Don't pass *I here, since it is scalar but will actually be part of a 6503 // vectorized loop where the user of it is a vectorized instruction. 6504 const Align Alignment = getLoadStoreAlignment(I); 6505 Cost += VF.getKnownMinValue() * 6506 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6507 AS, TTI::TCK_RecipThroughput); 6508 6509 // Get the overhead of the extractelement and insertelement instructions 6510 // we might create due to scalarization. 6511 Cost += getScalarizationOverhead(I, VF); 6512 6513 // If we have a predicated load/store, it will need extra i1 extracts and 6514 // conditional branches, but may not be executed for each vector lane. Scale 6515 // the cost by the probability of executing the predicated block. 6516 if (isPredicatedInst(I, VF)) { 6517 Cost /= getReciprocalPredBlockProb(); 6518 6519 // Add the cost of an i1 extract and a branch 6520 auto *Vec_i1Ty = 6521 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6522 Cost += TTI.getScalarizationOverhead( 6523 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6524 /*Insert=*/false, /*Extract=*/true); 6525 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6526 6527 if (useEmulatedMaskMemRefHack(I, VF)) 6528 // Artificially setting to a high enough value to practically disable 6529 // vectorization with such operations. 6530 Cost = 3000000; 6531 } 6532 6533 return Cost; 6534 } 6535 6536 InstructionCost 6537 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6538 ElementCount VF) { 6539 Type *ValTy = getLoadStoreType(I); 6540 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6541 Value *Ptr = getLoadStorePointerOperand(I); 6542 unsigned AS = getLoadStoreAddressSpace(I); 6543 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6544 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6545 6546 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6547 "Stride should be 1 or -1 for consecutive memory access"); 6548 const Align Alignment = getLoadStoreAlignment(I); 6549 InstructionCost Cost = 0; 6550 if (Legal->isMaskRequired(I)) 6551 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6552 CostKind); 6553 else 6554 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6555 CostKind, I); 6556 6557 bool Reverse = ConsecutiveStride < 0; 6558 if (Reverse) 6559 Cost += 6560 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6561 return Cost; 6562 } 6563 6564 InstructionCost 6565 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6566 ElementCount VF) { 6567 assert(Legal->isUniformMemOp(*I)); 6568 6569 Type *ValTy = getLoadStoreType(I); 6570 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6571 const Align Alignment = getLoadStoreAlignment(I); 6572 unsigned AS = getLoadStoreAddressSpace(I); 6573 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6574 if (isa<LoadInst>(I)) { 6575 return TTI.getAddressComputationCost(ValTy) + 6576 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6577 CostKind) + 6578 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6579 } 6580 StoreInst *SI = cast<StoreInst>(I); 6581 6582 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6583 return TTI.getAddressComputationCost(ValTy) + 6584 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6585 CostKind) + 6586 (isLoopInvariantStoreValue 6587 ? 0 6588 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6589 VF.getKnownMinValue() - 1)); 6590 } 6591 6592 InstructionCost 6593 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6594 ElementCount VF) { 6595 Type *ValTy = getLoadStoreType(I); 6596 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6597 const Align Alignment = getLoadStoreAlignment(I); 6598 const Value *Ptr = getLoadStorePointerOperand(I); 6599 6600 return TTI.getAddressComputationCost(VectorTy) + 6601 TTI.getGatherScatterOpCost( 6602 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6603 TargetTransformInfo::TCK_RecipThroughput, I); 6604 } 6605 6606 InstructionCost 6607 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6608 ElementCount VF) { 6609 // TODO: Once we have support for interleaving with scalable vectors 6610 // we can calculate the cost properly here. 6611 if (VF.isScalable()) 6612 return InstructionCost::getInvalid(); 6613 6614 Type *ValTy = getLoadStoreType(I); 6615 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6616 unsigned AS = getLoadStoreAddressSpace(I); 6617 6618 auto Group = getInterleavedAccessGroup(I); 6619 assert(Group && "Fail to get an interleaved access group."); 6620 6621 unsigned InterleaveFactor = Group->getFactor(); 6622 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6623 6624 // Holds the indices of existing members in the interleaved group. 6625 SmallVector<unsigned, 4> Indices; 6626 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6627 if (Group->getMember(IF)) 6628 Indices.push_back(IF); 6629 6630 // Calculate the cost of the whole interleaved group. 6631 bool UseMaskForGaps = 6632 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6633 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6634 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6635 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6636 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6637 6638 if (Group->isReverse()) { 6639 // TODO: Add support for reversed masked interleaved access. 6640 assert(!Legal->isMaskRequired(I) && 6641 "Reverse masked interleaved access not supported."); 6642 Cost += 6643 Group->getNumMembers() * 6644 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6645 } 6646 return Cost; 6647 } 6648 6649 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6650 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6651 using namespace llvm::PatternMatch; 6652 // Early exit for no inloop reductions 6653 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6654 return None; 6655 auto *VectorTy = cast<VectorType>(Ty); 6656 6657 // We are looking for a pattern of, and finding the minimal acceptable cost: 6658 // reduce(mul(ext(A), ext(B))) or 6659 // reduce(mul(A, B)) or 6660 // reduce(ext(A)) or 6661 // reduce(A). 6662 // The basic idea is that we walk down the tree to do that, finding the root 6663 // reduction instruction in InLoopReductionImmediateChains. From there we find 6664 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6665 // of the components. If the reduction cost is lower then we return it for the 6666 // reduction instruction and 0 for the other instructions in the pattern. If 6667 // it is not we return an invalid cost specifying the orignal cost method 6668 // should be used. 6669 Instruction *RetI = I; 6670 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6671 if (!RetI->hasOneUser()) 6672 return None; 6673 RetI = RetI->user_back(); 6674 } 6675 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6676 RetI->user_back()->getOpcode() == Instruction::Add) { 6677 if (!RetI->hasOneUser()) 6678 return None; 6679 RetI = RetI->user_back(); 6680 } 6681 6682 // Test if the found instruction is a reduction, and if not return an invalid 6683 // cost specifying the parent to use the original cost modelling. 6684 if (!InLoopReductionImmediateChains.count(RetI)) 6685 return None; 6686 6687 // Find the reduction this chain is a part of and calculate the basic cost of 6688 // the reduction on its own. 6689 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6690 Instruction *ReductionPhi = LastChain; 6691 while (!isa<PHINode>(ReductionPhi)) 6692 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6693 6694 const RecurrenceDescriptor &RdxDesc = 6695 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6696 6697 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6698 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6699 6700 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6701 // normal fmul instruction to the cost of the fadd reduction. 6702 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6703 BaseCost += 6704 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6705 6706 // If we're using ordered reductions then we can just return the base cost 6707 // here, since getArithmeticReductionCost calculates the full ordered 6708 // reduction cost when FP reassociation is not allowed. 6709 if (useOrderedReductions(RdxDesc)) 6710 return BaseCost; 6711 6712 // Get the operand that was not the reduction chain and match it to one of the 6713 // patterns, returning the better cost if it is found. 6714 Instruction *RedOp = RetI->getOperand(1) == LastChain 6715 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6716 : dyn_cast<Instruction>(RetI->getOperand(1)); 6717 6718 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6719 6720 Instruction *Op0, *Op1; 6721 if (RedOp && 6722 match(RedOp, 6723 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6724 match(Op0, m_ZExtOrSExt(m_Value())) && 6725 Op0->getOpcode() == Op1->getOpcode() && 6726 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6727 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6728 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6729 6730 // Matched reduce(ext(mul(ext(A), ext(B))) 6731 // Note that the extend opcodes need to all match, or if A==B they will have 6732 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6733 // which is equally fine. 6734 bool IsUnsigned = isa<ZExtInst>(Op0); 6735 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6736 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6737 6738 InstructionCost ExtCost = 6739 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6740 TTI::CastContextHint::None, CostKind, Op0); 6741 InstructionCost MulCost = 6742 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6743 InstructionCost Ext2Cost = 6744 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6745 TTI::CastContextHint::None, CostKind, RedOp); 6746 6747 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6748 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6749 CostKind); 6750 6751 if (RedCost.isValid() && 6752 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6753 return I == RetI ? RedCost : 0; 6754 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6755 !TheLoop->isLoopInvariant(RedOp)) { 6756 // Matched reduce(ext(A)) 6757 bool IsUnsigned = isa<ZExtInst>(RedOp); 6758 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6759 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6760 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6761 CostKind); 6762 6763 InstructionCost ExtCost = 6764 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6765 TTI::CastContextHint::None, CostKind, RedOp); 6766 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6767 return I == RetI ? RedCost : 0; 6768 } else if (RedOp && 6769 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6770 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6771 Op0->getOpcode() == Op1->getOpcode() && 6772 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6773 bool IsUnsigned = isa<ZExtInst>(Op0); 6774 Type *Op0Ty = Op0->getOperand(0)->getType(); 6775 Type *Op1Ty = Op1->getOperand(0)->getType(); 6776 Type *LargestOpTy = 6777 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6778 : Op0Ty; 6779 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6780 6781 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6782 // different sizes. We take the largest type as the ext to reduce, and add 6783 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6784 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6785 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6786 TTI::CastContextHint::None, CostKind, Op0); 6787 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6788 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6789 TTI::CastContextHint::None, CostKind, Op1); 6790 InstructionCost MulCost = 6791 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6792 6793 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6794 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6795 CostKind); 6796 InstructionCost ExtraExtCost = 0; 6797 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6798 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6799 ExtraExtCost = TTI.getCastInstrCost( 6800 ExtraExtOp->getOpcode(), ExtType, 6801 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6802 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6803 } 6804 6805 if (RedCost.isValid() && 6806 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6807 return I == RetI ? RedCost : 0; 6808 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6809 // Matched reduce(mul()) 6810 InstructionCost MulCost = 6811 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6812 6813 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6814 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6815 CostKind); 6816 6817 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6818 return I == RetI ? RedCost : 0; 6819 } 6820 } 6821 6822 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 6823 } 6824 6825 InstructionCost 6826 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6827 ElementCount VF) { 6828 // Calculate scalar cost only. Vectorization cost should be ready at this 6829 // moment. 6830 if (VF.isScalar()) { 6831 Type *ValTy = getLoadStoreType(I); 6832 const Align Alignment = getLoadStoreAlignment(I); 6833 unsigned AS = getLoadStoreAddressSpace(I); 6834 6835 return TTI.getAddressComputationCost(ValTy) + 6836 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6837 TTI::TCK_RecipThroughput, I); 6838 } 6839 return getWideningCost(I, VF); 6840 } 6841 6842 LoopVectorizationCostModel::VectorizationCostTy 6843 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6844 ElementCount VF) { 6845 // If we know that this instruction will remain uniform, check the cost of 6846 // the scalar version. 6847 if (isUniformAfterVectorization(I, VF)) 6848 VF = ElementCount::getFixed(1); 6849 6850 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6851 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6852 6853 // Forced scalars do not have any scalarization overhead. 6854 auto ForcedScalar = ForcedScalars.find(VF); 6855 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6856 auto InstSet = ForcedScalar->second; 6857 if (InstSet.count(I)) 6858 return VectorizationCostTy( 6859 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6860 VF.getKnownMinValue()), 6861 false); 6862 } 6863 6864 Type *VectorTy; 6865 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6866 6867 bool TypeNotScalarized = false; 6868 if (VF.isVector() && VectorTy->isVectorTy()) { 6869 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 6870 if (NumParts) 6871 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 6872 else 6873 C = InstructionCost::getInvalid(); 6874 } 6875 return VectorizationCostTy(C, TypeNotScalarized); 6876 } 6877 6878 InstructionCost 6879 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6880 ElementCount VF) const { 6881 6882 // There is no mechanism yet to create a scalable scalarization loop, 6883 // so this is currently Invalid. 6884 if (VF.isScalable()) 6885 return InstructionCost::getInvalid(); 6886 6887 if (VF.isScalar()) 6888 return 0; 6889 6890 InstructionCost Cost = 0; 6891 Type *RetTy = ToVectorTy(I->getType(), VF); 6892 if (!RetTy->isVoidTy() && 6893 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6894 Cost += TTI.getScalarizationOverhead( 6895 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 6896 false); 6897 6898 // Some targets keep addresses scalar. 6899 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6900 return Cost; 6901 6902 // Some targets support efficient element stores. 6903 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6904 return Cost; 6905 6906 // Collect operands to consider. 6907 CallInst *CI = dyn_cast<CallInst>(I); 6908 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6909 6910 // Skip operands that do not require extraction/scalarization and do not incur 6911 // any overhead. 6912 SmallVector<Type *> Tys; 6913 for (auto *V : filterExtractingOperands(Ops, VF)) 6914 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 6915 return Cost + TTI.getOperandsScalarizationOverhead( 6916 filterExtractingOperands(Ops, VF), Tys); 6917 } 6918 6919 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6920 if (VF.isScalar()) 6921 return; 6922 NumPredStores = 0; 6923 for (BasicBlock *BB : TheLoop->blocks()) { 6924 // For each instruction in the old loop. 6925 for (Instruction &I : *BB) { 6926 Value *Ptr = getLoadStorePointerOperand(&I); 6927 if (!Ptr) 6928 continue; 6929 6930 // TODO: We should generate better code and update the cost model for 6931 // predicated uniform stores. Today they are treated as any other 6932 // predicated store (see added test cases in 6933 // invariant-store-vectorization.ll). 6934 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6935 NumPredStores++; 6936 6937 if (Legal->isUniformMemOp(I)) { 6938 // TODO: Avoid replicating loads and stores instead of 6939 // relying on instcombine to remove them. 6940 // Load: Scalar load + broadcast 6941 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6942 InstructionCost Cost; 6943 if (isa<StoreInst>(&I) && VF.isScalable() && 6944 isLegalGatherOrScatter(&I, VF)) { 6945 Cost = getGatherScatterCost(&I, VF); 6946 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 6947 } else { 6948 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 6949 "Cannot yet scalarize uniform stores"); 6950 Cost = getUniformMemOpCost(&I, VF); 6951 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6952 } 6953 continue; 6954 } 6955 6956 // We assume that widening is the best solution when possible. 6957 if (memoryInstructionCanBeWidened(&I, VF)) { 6958 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6959 int ConsecutiveStride = Legal->isConsecutivePtr( 6960 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6961 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6962 "Expected consecutive stride."); 6963 InstWidening Decision = 6964 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6965 setWideningDecision(&I, VF, Decision, Cost); 6966 continue; 6967 } 6968 6969 // Choose between Interleaving, Gather/Scatter or Scalarization. 6970 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6971 unsigned NumAccesses = 1; 6972 if (isAccessInterleaved(&I)) { 6973 auto Group = getInterleavedAccessGroup(&I); 6974 assert(Group && "Fail to get an interleaved access group."); 6975 6976 // Make one decision for the whole group. 6977 if (getWideningDecision(&I, VF) != CM_Unknown) 6978 continue; 6979 6980 NumAccesses = Group->getNumMembers(); 6981 if (interleavedAccessCanBeWidened(&I, VF)) 6982 InterleaveCost = getInterleaveGroupCost(&I, VF); 6983 } 6984 6985 InstructionCost GatherScatterCost = 6986 isLegalGatherOrScatter(&I, VF) 6987 ? getGatherScatterCost(&I, VF) * NumAccesses 6988 : InstructionCost::getInvalid(); 6989 6990 InstructionCost ScalarizationCost = 6991 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6992 6993 // Choose better solution for the current VF, 6994 // write down this decision and use it during vectorization. 6995 InstructionCost Cost; 6996 InstWidening Decision; 6997 if (InterleaveCost <= GatherScatterCost && 6998 InterleaveCost < ScalarizationCost) { 6999 Decision = CM_Interleave; 7000 Cost = InterleaveCost; 7001 } else if (GatherScatterCost < ScalarizationCost) { 7002 Decision = CM_GatherScatter; 7003 Cost = GatherScatterCost; 7004 } else { 7005 Decision = CM_Scalarize; 7006 Cost = ScalarizationCost; 7007 } 7008 // If the instructions belongs to an interleave group, the whole group 7009 // receives the same decision. The whole group receives the cost, but 7010 // the cost will actually be assigned to one instruction. 7011 if (auto Group = getInterleavedAccessGroup(&I)) 7012 setWideningDecision(Group, VF, Decision, Cost); 7013 else 7014 setWideningDecision(&I, VF, Decision, Cost); 7015 } 7016 } 7017 7018 // Make sure that any load of address and any other address computation 7019 // remains scalar unless there is gather/scatter support. This avoids 7020 // inevitable extracts into address registers, and also has the benefit of 7021 // activating LSR more, since that pass can't optimize vectorized 7022 // addresses. 7023 if (TTI.prefersVectorizedAddressing()) 7024 return; 7025 7026 // Start with all scalar pointer uses. 7027 SmallPtrSet<Instruction *, 8> AddrDefs; 7028 for (BasicBlock *BB : TheLoop->blocks()) 7029 for (Instruction &I : *BB) { 7030 Instruction *PtrDef = 7031 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7032 if (PtrDef && TheLoop->contains(PtrDef) && 7033 getWideningDecision(&I, VF) != CM_GatherScatter) 7034 AddrDefs.insert(PtrDef); 7035 } 7036 7037 // Add all instructions used to generate the addresses. 7038 SmallVector<Instruction *, 4> Worklist; 7039 append_range(Worklist, AddrDefs); 7040 while (!Worklist.empty()) { 7041 Instruction *I = Worklist.pop_back_val(); 7042 for (auto &Op : I->operands()) 7043 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7044 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7045 AddrDefs.insert(InstOp).second) 7046 Worklist.push_back(InstOp); 7047 } 7048 7049 for (auto *I : AddrDefs) { 7050 if (isa<LoadInst>(I)) { 7051 // Setting the desired widening decision should ideally be handled in 7052 // by cost functions, but since this involves the task of finding out 7053 // if the loaded register is involved in an address computation, it is 7054 // instead changed here when we know this is the case. 7055 InstWidening Decision = getWideningDecision(I, VF); 7056 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7057 // Scalarize a widened load of address. 7058 setWideningDecision( 7059 I, VF, CM_Scalarize, 7060 (VF.getKnownMinValue() * 7061 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7062 else if (auto Group = getInterleavedAccessGroup(I)) { 7063 // Scalarize an interleave group of address loads. 7064 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7065 if (Instruction *Member = Group->getMember(I)) 7066 setWideningDecision( 7067 Member, VF, CM_Scalarize, 7068 (VF.getKnownMinValue() * 7069 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7070 } 7071 } 7072 } else 7073 // Make sure I gets scalarized and a cost estimate without 7074 // scalarization overhead. 7075 ForcedScalars[VF].insert(I); 7076 } 7077 } 7078 7079 InstructionCost 7080 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7081 Type *&VectorTy) { 7082 Type *RetTy = I->getType(); 7083 if (canTruncateToMinimalBitwidth(I, VF)) 7084 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7085 auto SE = PSE.getSE(); 7086 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7087 7088 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7089 ElementCount VF) -> bool { 7090 if (VF.isScalar()) 7091 return true; 7092 7093 auto Scalarized = InstsToScalarize.find(VF); 7094 assert(Scalarized != InstsToScalarize.end() && 7095 "VF not yet analyzed for scalarization profitability"); 7096 return !Scalarized->second.count(I) && 7097 llvm::all_of(I->users(), [&](User *U) { 7098 auto *UI = cast<Instruction>(U); 7099 return !Scalarized->second.count(UI); 7100 }); 7101 }; 7102 (void) hasSingleCopyAfterVectorization; 7103 7104 if (isScalarAfterVectorization(I, VF)) { 7105 // With the exception of GEPs and PHIs, after scalarization there should 7106 // only be one copy of the instruction generated in the loop. This is 7107 // because the VF is either 1, or any instructions that need scalarizing 7108 // have already been dealt with by the the time we get here. As a result, 7109 // it means we don't have to multiply the instruction cost by VF. 7110 assert(I->getOpcode() == Instruction::GetElementPtr || 7111 I->getOpcode() == Instruction::PHI || 7112 (I->getOpcode() == Instruction::BitCast && 7113 I->getType()->isPointerTy()) || 7114 hasSingleCopyAfterVectorization(I, VF)); 7115 VectorTy = RetTy; 7116 } else 7117 VectorTy = ToVectorTy(RetTy, VF); 7118 7119 // TODO: We need to estimate the cost of intrinsic calls. 7120 switch (I->getOpcode()) { 7121 case Instruction::GetElementPtr: 7122 // We mark this instruction as zero-cost because the cost of GEPs in 7123 // vectorized code depends on whether the corresponding memory instruction 7124 // is scalarized or not. Therefore, we handle GEPs with the memory 7125 // instruction cost. 7126 return 0; 7127 case Instruction::Br: { 7128 // In cases of scalarized and predicated instructions, there will be VF 7129 // predicated blocks in the vectorized loop. Each branch around these 7130 // blocks requires also an extract of its vector compare i1 element. 7131 bool ScalarPredicatedBB = false; 7132 BranchInst *BI = cast<BranchInst>(I); 7133 if (VF.isVector() && BI->isConditional() && 7134 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7135 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7136 ScalarPredicatedBB = true; 7137 7138 if (ScalarPredicatedBB) { 7139 // Not possible to scalarize scalable vector with predicated instructions. 7140 if (VF.isScalable()) 7141 return InstructionCost::getInvalid(); 7142 // Return cost for branches around scalarized and predicated blocks. 7143 auto *Vec_i1Ty = 7144 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7145 return ( 7146 TTI.getScalarizationOverhead( 7147 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7148 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7149 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7150 // The back-edge branch will remain, as will all scalar branches. 7151 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7152 else 7153 // This branch will be eliminated by if-conversion. 7154 return 0; 7155 // Note: We currently assume zero cost for an unconditional branch inside 7156 // a predicated block since it will become a fall-through, although we 7157 // may decide in the future to call TTI for all branches. 7158 } 7159 case Instruction::PHI: { 7160 auto *Phi = cast<PHINode>(I); 7161 7162 // First-order recurrences are replaced by vector shuffles inside the loop. 7163 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7164 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7165 return TTI.getShuffleCost( 7166 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7167 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7168 7169 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7170 // converted into select instructions. We require N - 1 selects per phi 7171 // node, where N is the number of incoming values. 7172 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7173 return (Phi->getNumIncomingValues() - 1) * 7174 TTI.getCmpSelInstrCost( 7175 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7176 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7177 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7178 7179 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7180 } 7181 case Instruction::UDiv: 7182 case Instruction::SDiv: 7183 case Instruction::URem: 7184 case Instruction::SRem: 7185 // If we have a predicated instruction, it may not be executed for each 7186 // vector lane. Get the scalarization cost and scale this amount by the 7187 // probability of executing the predicated block. If the instruction is not 7188 // predicated, we fall through to the next case. 7189 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7190 InstructionCost Cost = 0; 7191 7192 // These instructions have a non-void type, so account for the phi nodes 7193 // that we will create. This cost is likely to be zero. The phi node 7194 // cost, if any, should be scaled by the block probability because it 7195 // models a copy at the end of each predicated block. 7196 Cost += VF.getKnownMinValue() * 7197 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7198 7199 // The cost of the non-predicated instruction. 7200 Cost += VF.getKnownMinValue() * 7201 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7202 7203 // The cost of insertelement and extractelement instructions needed for 7204 // scalarization. 7205 Cost += getScalarizationOverhead(I, VF); 7206 7207 // Scale the cost by the probability of executing the predicated blocks. 7208 // This assumes the predicated block for each vector lane is equally 7209 // likely. 7210 return Cost / getReciprocalPredBlockProb(); 7211 } 7212 LLVM_FALLTHROUGH; 7213 case Instruction::Add: 7214 case Instruction::FAdd: 7215 case Instruction::Sub: 7216 case Instruction::FSub: 7217 case Instruction::Mul: 7218 case Instruction::FMul: 7219 case Instruction::FDiv: 7220 case Instruction::FRem: 7221 case Instruction::Shl: 7222 case Instruction::LShr: 7223 case Instruction::AShr: 7224 case Instruction::And: 7225 case Instruction::Or: 7226 case Instruction::Xor: { 7227 // Since we will replace the stride by 1 the multiplication should go away. 7228 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7229 return 0; 7230 7231 // Detect reduction patterns 7232 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7233 return *RedCost; 7234 7235 // Certain instructions can be cheaper to vectorize if they have a constant 7236 // second vector operand. One example of this are shifts on x86. 7237 Value *Op2 = I->getOperand(1); 7238 TargetTransformInfo::OperandValueProperties Op2VP; 7239 TargetTransformInfo::OperandValueKind Op2VK = 7240 TTI.getOperandInfo(Op2, Op2VP); 7241 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7242 Op2VK = TargetTransformInfo::OK_UniformValue; 7243 7244 SmallVector<const Value *, 4> Operands(I->operand_values()); 7245 return TTI.getArithmeticInstrCost( 7246 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7247 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7248 } 7249 case Instruction::FNeg: { 7250 return TTI.getArithmeticInstrCost( 7251 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7252 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7253 TargetTransformInfo::OP_None, I->getOperand(0), I); 7254 } 7255 case Instruction::Select: { 7256 SelectInst *SI = cast<SelectInst>(I); 7257 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7258 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7259 7260 const Value *Op0, *Op1; 7261 using namespace llvm::PatternMatch; 7262 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7263 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7264 // select x, y, false --> x & y 7265 // select x, true, y --> x | y 7266 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7267 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7268 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7269 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7270 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7271 Op1->getType()->getScalarSizeInBits() == 1); 7272 7273 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7274 return TTI.getArithmeticInstrCost( 7275 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7276 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7277 } 7278 7279 Type *CondTy = SI->getCondition()->getType(); 7280 if (!ScalarCond) 7281 CondTy = VectorType::get(CondTy, VF); 7282 7283 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7284 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7285 Pred = Cmp->getPredicate(); 7286 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7287 CostKind, I); 7288 } 7289 case Instruction::ICmp: 7290 case Instruction::FCmp: { 7291 Type *ValTy = I->getOperand(0)->getType(); 7292 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7293 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7294 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7295 VectorTy = ToVectorTy(ValTy, VF); 7296 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7297 cast<CmpInst>(I)->getPredicate(), CostKind, 7298 I); 7299 } 7300 case Instruction::Store: 7301 case Instruction::Load: { 7302 ElementCount Width = VF; 7303 if (Width.isVector()) { 7304 InstWidening Decision = getWideningDecision(I, Width); 7305 assert(Decision != CM_Unknown && 7306 "CM decision should be taken at this point"); 7307 if (Decision == CM_Scalarize) 7308 Width = ElementCount::getFixed(1); 7309 } 7310 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7311 return getMemoryInstructionCost(I, VF); 7312 } 7313 case Instruction::BitCast: 7314 if (I->getType()->isPointerTy()) 7315 return 0; 7316 LLVM_FALLTHROUGH; 7317 case Instruction::ZExt: 7318 case Instruction::SExt: 7319 case Instruction::FPToUI: 7320 case Instruction::FPToSI: 7321 case Instruction::FPExt: 7322 case Instruction::PtrToInt: 7323 case Instruction::IntToPtr: 7324 case Instruction::SIToFP: 7325 case Instruction::UIToFP: 7326 case Instruction::Trunc: 7327 case Instruction::FPTrunc: { 7328 // Computes the CastContextHint from a Load/Store instruction. 7329 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7330 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7331 "Expected a load or a store!"); 7332 7333 if (VF.isScalar() || !TheLoop->contains(I)) 7334 return TTI::CastContextHint::Normal; 7335 7336 switch (getWideningDecision(I, VF)) { 7337 case LoopVectorizationCostModel::CM_GatherScatter: 7338 return TTI::CastContextHint::GatherScatter; 7339 case LoopVectorizationCostModel::CM_Interleave: 7340 return TTI::CastContextHint::Interleave; 7341 case LoopVectorizationCostModel::CM_Scalarize: 7342 case LoopVectorizationCostModel::CM_Widen: 7343 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7344 : TTI::CastContextHint::Normal; 7345 case LoopVectorizationCostModel::CM_Widen_Reverse: 7346 return TTI::CastContextHint::Reversed; 7347 case LoopVectorizationCostModel::CM_Unknown: 7348 llvm_unreachable("Instr did not go through cost modelling?"); 7349 } 7350 7351 llvm_unreachable("Unhandled case!"); 7352 }; 7353 7354 unsigned Opcode = I->getOpcode(); 7355 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7356 // For Trunc, the context is the only user, which must be a StoreInst. 7357 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7358 if (I->hasOneUse()) 7359 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7360 CCH = ComputeCCH(Store); 7361 } 7362 // For Z/Sext, the context is the operand, which must be a LoadInst. 7363 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7364 Opcode == Instruction::FPExt) { 7365 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7366 CCH = ComputeCCH(Load); 7367 } 7368 7369 // We optimize the truncation of induction variables having constant 7370 // integer steps. The cost of these truncations is the same as the scalar 7371 // operation. 7372 if (isOptimizableIVTruncate(I, VF)) { 7373 auto *Trunc = cast<TruncInst>(I); 7374 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7375 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7376 } 7377 7378 // Detect reduction patterns 7379 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7380 return *RedCost; 7381 7382 Type *SrcScalarTy = I->getOperand(0)->getType(); 7383 Type *SrcVecTy = 7384 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7385 if (canTruncateToMinimalBitwidth(I, VF)) { 7386 // This cast is going to be shrunk. This may remove the cast or it might 7387 // turn it into slightly different cast. For example, if MinBW == 16, 7388 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7389 // 7390 // Calculate the modified src and dest types. 7391 Type *MinVecTy = VectorTy; 7392 if (Opcode == Instruction::Trunc) { 7393 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7394 VectorTy = 7395 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7396 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7397 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7398 VectorTy = 7399 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7400 } 7401 } 7402 7403 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7404 } 7405 case Instruction::Call: { 7406 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7407 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7408 return *RedCost; 7409 bool NeedToScalarize; 7410 CallInst *CI = cast<CallInst>(I); 7411 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7412 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7413 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7414 return std::min(CallCost, IntrinsicCost); 7415 } 7416 return CallCost; 7417 } 7418 case Instruction::ExtractValue: 7419 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7420 case Instruction::Alloca: 7421 // We cannot easily widen alloca to a scalable alloca, as 7422 // the result would need to be a vector of pointers. 7423 if (VF.isScalable()) 7424 return InstructionCost::getInvalid(); 7425 LLVM_FALLTHROUGH; 7426 default: 7427 // This opcode is unknown. Assume that it is the same as 'mul'. 7428 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7429 } // end of switch. 7430 } 7431 7432 char LoopVectorize::ID = 0; 7433 7434 static const char lv_name[] = "Loop Vectorization"; 7435 7436 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7437 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7438 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7439 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7440 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7441 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7442 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7443 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7444 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7445 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7446 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7447 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7448 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7449 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7450 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7451 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7452 7453 namespace llvm { 7454 7455 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7456 7457 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7458 bool VectorizeOnlyWhenForced) { 7459 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7460 } 7461 7462 } // end namespace llvm 7463 7464 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7465 // Check if the pointer operand of a load or store instruction is 7466 // consecutive. 7467 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7468 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7469 return false; 7470 } 7471 7472 void LoopVectorizationCostModel::collectValuesToIgnore() { 7473 // Ignore ephemeral values. 7474 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7475 7476 // Ignore type-promoting instructions we identified during reduction 7477 // detection. 7478 for (auto &Reduction : Legal->getReductionVars()) { 7479 const RecurrenceDescriptor &RedDes = Reduction.second; 7480 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7481 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7482 } 7483 // Ignore type-casting instructions we identified during induction 7484 // detection. 7485 for (auto &Induction : Legal->getInductionVars()) { 7486 const InductionDescriptor &IndDes = Induction.second; 7487 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7488 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7489 } 7490 } 7491 7492 void LoopVectorizationCostModel::collectInLoopReductions() { 7493 for (auto &Reduction : Legal->getReductionVars()) { 7494 PHINode *Phi = Reduction.first; 7495 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7496 7497 // We don't collect reductions that are type promoted (yet). 7498 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7499 continue; 7500 7501 // If the target would prefer this reduction to happen "in-loop", then we 7502 // want to record it as such. 7503 unsigned Opcode = RdxDesc.getOpcode(); 7504 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7505 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7506 TargetTransformInfo::ReductionFlags())) 7507 continue; 7508 7509 // Check that we can correctly put the reductions into the loop, by 7510 // finding the chain of operations that leads from the phi to the loop 7511 // exit value. 7512 SmallVector<Instruction *, 4> ReductionOperations = 7513 RdxDesc.getReductionOpChain(Phi, TheLoop); 7514 bool InLoop = !ReductionOperations.empty(); 7515 if (InLoop) { 7516 InLoopReductionChains[Phi] = ReductionOperations; 7517 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7518 Instruction *LastChain = Phi; 7519 for (auto *I : ReductionOperations) { 7520 InLoopReductionImmediateChains[I] = LastChain; 7521 LastChain = I; 7522 } 7523 } 7524 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7525 << " reduction for phi: " << *Phi << "\n"); 7526 } 7527 } 7528 7529 // TODO: we could return a pair of values that specify the max VF and 7530 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7531 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7532 // doesn't have a cost model that can choose which plan to execute if 7533 // more than one is generated. 7534 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7535 LoopVectorizationCostModel &CM) { 7536 unsigned WidestType; 7537 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7538 return WidestVectorRegBits / WidestType; 7539 } 7540 7541 VectorizationFactor 7542 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7543 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7544 ElementCount VF = UserVF; 7545 // Outer loop handling: They may require CFG and instruction level 7546 // transformations before even evaluating whether vectorization is profitable. 7547 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7548 // the vectorization pipeline. 7549 if (!OrigLoop->isInnermost()) { 7550 // If the user doesn't provide a vectorization factor, determine a 7551 // reasonable one. 7552 if (UserVF.isZero()) { 7553 VF = ElementCount::getFixed(determineVPlanVF( 7554 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7555 .getFixedSize(), 7556 CM)); 7557 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7558 7559 // Make sure we have a VF > 1 for stress testing. 7560 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7561 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7562 << "overriding computed VF.\n"); 7563 VF = ElementCount::getFixed(4); 7564 } 7565 } 7566 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7567 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7568 "VF needs to be a power of two"); 7569 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7570 << "VF " << VF << " to build VPlans.\n"); 7571 buildVPlans(VF, VF); 7572 7573 // For VPlan build stress testing, we bail out after VPlan construction. 7574 if (VPlanBuildStressTest) 7575 return VectorizationFactor::Disabled(); 7576 7577 return {VF, 0 /*Cost*/}; 7578 } 7579 7580 LLVM_DEBUG( 7581 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7582 "VPlan-native path.\n"); 7583 return VectorizationFactor::Disabled(); 7584 } 7585 7586 Optional<VectorizationFactor> 7587 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7588 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7589 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7590 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7591 return None; 7592 7593 // Invalidate interleave groups if all blocks of loop will be predicated. 7594 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7595 !useMaskedInterleavedAccesses(*TTI)) { 7596 LLVM_DEBUG( 7597 dbgs() 7598 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7599 "which requires masked-interleaved support.\n"); 7600 if (CM.InterleaveInfo.invalidateGroups()) 7601 // Invalidating interleave groups also requires invalidating all decisions 7602 // based on them, which includes widening decisions and uniform and scalar 7603 // values. 7604 CM.invalidateCostModelingDecisions(); 7605 } 7606 7607 ElementCount MaxUserVF = 7608 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7609 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7610 if (!UserVF.isZero() && UserVFIsLegal) { 7611 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7612 "VF needs to be a power of two"); 7613 // Collect the instructions (and their associated costs) that will be more 7614 // profitable to scalarize. 7615 if (CM.selectUserVectorizationFactor(UserVF)) { 7616 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7617 CM.collectInLoopReductions(); 7618 buildVPlansWithVPRecipes(UserVF, UserVF); 7619 LLVM_DEBUG(printPlans(dbgs())); 7620 return {{UserVF, 0}}; 7621 } else 7622 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7623 "InvalidCost", ORE, OrigLoop); 7624 } 7625 7626 // Populate the set of Vectorization Factor Candidates. 7627 ElementCountSet VFCandidates; 7628 for (auto VF = ElementCount::getFixed(1); 7629 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7630 VFCandidates.insert(VF); 7631 for (auto VF = ElementCount::getScalable(1); 7632 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7633 VFCandidates.insert(VF); 7634 7635 for (const auto &VF : VFCandidates) { 7636 // Collect Uniform and Scalar instructions after vectorization with VF. 7637 CM.collectUniformsAndScalars(VF); 7638 7639 // Collect the instructions (and their associated costs) that will be more 7640 // profitable to scalarize. 7641 if (VF.isVector()) 7642 CM.collectInstsToScalarize(VF); 7643 } 7644 7645 CM.collectInLoopReductions(); 7646 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7647 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7648 7649 LLVM_DEBUG(printPlans(dbgs())); 7650 if (!MaxFactors.hasVector()) 7651 return VectorizationFactor::Disabled(); 7652 7653 // Select the optimal vectorization factor. 7654 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7655 7656 // Check if it is profitable to vectorize with runtime checks. 7657 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7658 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7659 bool PragmaThresholdReached = 7660 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7661 bool ThresholdReached = 7662 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7663 if ((ThresholdReached && !Hints.allowReordering()) || 7664 PragmaThresholdReached) { 7665 ORE->emit([&]() { 7666 return OptimizationRemarkAnalysisAliasing( 7667 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7668 OrigLoop->getHeader()) 7669 << "loop not vectorized: cannot prove it is safe to reorder " 7670 "memory operations"; 7671 }); 7672 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7673 Hints.emitRemarkWithHints(); 7674 return VectorizationFactor::Disabled(); 7675 } 7676 } 7677 return SelectedVF; 7678 } 7679 7680 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7681 assert(count_if(VPlans, 7682 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7683 1 && 7684 "Best VF has not a single VPlan."); 7685 7686 for (const VPlanPtr &Plan : VPlans) { 7687 if (Plan->hasVF(VF)) 7688 return *Plan.get(); 7689 } 7690 llvm_unreachable("No plan found!"); 7691 } 7692 7693 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7694 SmallVector<Metadata *, 4> MDs; 7695 // Reserve first location for self reference to the LoopID metadata node. 7696 MDs.push_back(nullptr); 7697 bool IsUnrollMetadata = false; 7698 MDNode *LoopID = L->getLoopID(); 7699 if (LoopID) { 7700 // First find existing loop unrolling disable metadata. 7701 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7702 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7703 if (MD) { 7704 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7705 IsUnrollMetadata = 7706 S && S->getString().startswith("llvm.loop.unroll.disable"); 7707 } 7708 MDs.push_back(LoopID->getOperand(i)); 7709 } 7710 } 7711 7712 if (!IsUnrollMetadata) { 7713 // Add runtime unroll disable metadata. 7714 LLVMContext &Context = L->getHeader()->getContext(); 7715 SmallVector<Metadata *, 1> DisableOperands; 7716 DisableOperands.push_back( 7717 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7718 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7719 MDs.push_back(DisableNode); 7720 MDNode *NewLoopID = MDNode::get(Context, MDs); 7721 // Set operand 0 to refer to the loop id itself. 7722 NewLoopID->replaceOperandWith(0, NewLoopID); 7723 L->setLoopID(NewLoopID); 7724 } 7725 } 7726 7727 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7728 VPlan &BestVPlan, 7729 InnerLoopVectorizer &ILV, 7730 DominatorTree *DT) { 7731 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7732 << '\n'); 7733 7734 // Perform the actual loop transformation. 7735 7736 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7737 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7738 Value *CanonicalIVStartValue; 7739 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7740 ILV.createVectorizedLoopSkeleton(); 7741 ILV.collectPoisonGeneratingRecipes(State); 7742 7743 ILV.printDebugTracesAtStart(); 7744 7745 //===------------------------------------------------===// 7746 // 7747 // Notice: any optimization or new instruction that go 7748 // into the code below should also be implemented in 7749 // the cost-model. 7750 // 7751 //===------------------------------------------------===// 7752 7753 // 2. Copy and widen instructions from the old loop into the new loop. 7754 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7755 ILV.getOrCreateVectorTripCount(nullptr), 7756 CanonicalIVStartValue, State); 7757 BestVPlan.execute(&State); 7758 7759 // Keep all loop hints from the original loop on the vector loop (we'll 7760 // replace the vectorizer-specific hints below). 7761 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7762 7763 Optional<MDNode *> VectorizedLoopID = 7764 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7765 LLVMLoopVectorizeFollowupVectorized}); 7766 7767 Loop *L = LI->getLoopFor(State.CFG.PrevBB); 7768 if (VectorizedLoopID.hasValue()) 7769 L->setLoopID(VectorizedLoopID.getValue()); 7770 else { 7771 // Keep all loop hints from the original loop on the vector loop (we'll 7772 // replace the vectorizer-specific hints below). 7773 if (MDNode *LID = OrigLoop->getLoopID()) 7774 L->setLoopID(LID); 7775 7776 LoopVectorizeHints Hints(L, true, *ORE); 7777 Hints.setAlreadyVectorized(); 7778 } 7779 // Disable runtime unrolling when vectorizing the epilogue loop. 7780 if (CanonicalIVStartValue) 7781 AddRuntimeUnrollDisableMetaData(L); 7782 7783 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7784 // predication, updating analyses. 7785 ILV.fixVectorizedLoop(State); 7786 7787 ILV.printDebugTracesAtEnd(); 7788 } 7789 7790 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7791 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7792 for (const auto &Plan : VPlans) 7793 if (PrintVPlansInDotFormat) 7794 Plan->printDOT(O); 7795 else 7796 Plan->print(O); 7797 } 7798 #endif 7799 7800 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7801 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7802 7803 // We create new control-flow for the vectorized loop, so the original exit 7804 // conditions will be dead after vectorization if it's only used by the 7805 // terminator 7806 SmallVector<BasicBlock*> ExitingBlocks; 7807 OrigLoop->getExitingBlocks(ExitingBlocks); 7808 for (auto *BB : ExitingBlocks) { 7809 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7810 if (!Cmp || !Cmp->hasOneUse()) 7811 continue; 7812 7813 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7814 if (!DeadInstructions.insert(Cmp).second) 7815 continue; 7816 7817 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7818 // TODO: can recurse through operands in general 7819 for (Value *Op : Cmp->operands()) { 7820 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7821 DeadInstructions.insert(cast<Instruction>(Op)); 7822 } 7823 } 7824 7825 // We create new "steps" for induction variable updates to which the original 7826 // induction variables map. An original update instruction will be dead if 7827 // all its users except the induction variable are dead. 7828 auto *Latch = OrigLoop->getLoopLatch(); 7829 for (auto &Induction : Legal->getInductionVars()) { 7830 PHINode *Ind = Induction.first; 7831 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7832 7833 // If the tail is to be folded by masking, the primary induction variable, 7834 // if exists, isn't dead: it will be used for masking. Don't kill it. 7835 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7836 continue; 7837 7838 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7839 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7840 })) 7841 DeadInstructions.insert(IndUpdate); 7842 } 7843 } 7844 7845 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7846 7847 //===--------------------------------------------------------------------===// 7848 // EpilogueVectorizerMainLoop 7849 //===--------------------------------------------------------------------===// 7850 7851 /// This function is partially responsible for generating the control flow 7852 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7853 std::pair<BasicBlock *, Value *> 7854 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7855 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7856 Loop *Lp = createVectorLoopSkeleton(""); 7857 7858 // Generate the code to check the minimum iteration count of the vector 7859 // epilogue (see below). 7860 EPI.EpilogueIterationCountCheck = 7861 emitMinimumIterationCountCheck(LoopScalarPreHeader, true); 7862 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7863 7864 // Generate the code to check any assumptions that we've made for SCEV 7865 // expressions. 7866 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7867 7868 // Generate the code that checks at runtime if arrays overlap. We put the 7869 // checks into a separate block to make the more common case of few elements 7870 // faster. 7871 EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); 7872 7873 // Generate the iteration count check for the main loop, *after* the check 7874 // for the epilogue loop, so that the path-length is shorter for the case 7875 // that goes directly through the vector epilogue. The longer-path length for 7876 // the main loop is compensated for, by the gain from vectorizing the larger 7877 // trip count. Note: the branch will get updated later on when we vectorize 7878 // the epilogue. 7879 EPI.MainLoopIterationCountCheck = 7880 emitMinimumIterationCountCheck(LoopScalarPreHeader, false); 7881 7882 // Generate the induction variable. 7883 Value *CountRoundDown = getOrCreateVectorTripCount(LoopVectorPreHeader); 7884 EPI.VectorTripCount = CountRoundDown; 7885 createHeaderBranch(Lp); 7886 7887 // Skip induction resume value creation here because they will be created in 7888 // the second pass. If we created them here, they wouldn't be used anyway, 7889 // because the vplan in the second pass still contains the inductions from the 7890 // original loop. 7891 7892 return {completeLoopSkeleton(OrigLoopID), nullptr}; 7893 } 7894 7895 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7896 LLVM_DEBUG({ 7897 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7898 << "Main Loop VF:" << EPI.MainLoopVF 7899 << ", Main Loop UF:" << EPI.MainLoopUF 7900 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7901 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7902 }); 7903 } 7904 7905 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7906 DEBUG_WITH_TYPE(VerboseDebug, { 7907 dbgs() << "intermediate fn:\n" 7908 << *OrigLoop->getHeader()->getParent() << "\n"; 7909 }); 7910 } 7911 7912 BasicBlock * 7913 EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(BasicBlock *Bypass, 7914 bool ForEpilogue) { 7915 assert(Bypass && "Expected valid bypass basic block."); 7916 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7917 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7918 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 7919 // Reuse existing vector loop preheader for TC checks. 7920 // Note that new preheader block is generated for vector loop. 7921 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7922 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7923 7924 // Generate code to check if the loop's trip count is less than VF * UF of the 7925 // main vector loop. 7926 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 7927 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7928 7929 Value *CheckMinIters = Builder.CreateICmp( 7930 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7931 "min.iters.check"); 7932 7933 if (!ForEpilogue) 7934 TCCheckBlock->setName("vector.main.loop.iter.check"); 7935 7936 // Create new preheader for vector loop. 7937 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7938 DT, LI, nullptr, "vector.ph"); 7939 7940 if (ForEpilogue) { 7941 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7942 DT->getNode(Bypass)->getIDom()) && 7943 "TC check is expected to dominate Bypass"); 7944 7945 // Update dominator for Bypass & LoopExit. 7946 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7947 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7948 // For loops with multiple exits, there's no edge from the middle block 7949 // to exit blocks (as the epilogue must run) and thus no need to update 7950 // the immediate dominator of the exit blocks. 7951 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7952 7953 LoopBypassBlocks.push_back(TCCheckBlock); 7954 7955 // Save the trip count so we don't have to regenerate it in the 7956 // vec.epilog.iter.check. This is safe to do because the trip count 7957 // generated here dominates the vector epilog iter check. 7958 EPI.TripCount = Count; 7959 } 7960 7961 ReplaceInstWithInst( 7962 TCCheckBlock->getTerminator(), 7963 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7964 7965 return TCCheckBlock; 7966 } 7967 7968 //===--------------------------------------------------------------------===// 7969 // EpilogueVectorizerEpilogueLoop 7970 //===--------------------------------------------------------------------===// 7971 7972 /// This function is partially responsible for generating the control flow 7973 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7974 std::pair<BasicBlock *, Value *> 7975 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7976 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7977 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 7978 7979 // Now, compare the remaining count and if there aren't enough iterations to 7980 // execute the vectorized epilogue skip to the scalar part. 7981 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7982 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7983 LoopVectorPreHeader = 7984 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7985 LI, nullptr, "vec.epilog.ph"); 7986 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 7987 VecEpilogueIterationCountCheck); 7988 7989 // Adjust the control flow taking the state info from the main loop 7990 // vectorization into account. 7991 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7992 "expected this to be saved from the previous pass."); 7993 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7994 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7995 7996 DT->changeImmediateDominator(LoopVectorPreHeader, 7997 EPI.MainLoopIterationCountCheck); 7998 7999 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8000 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8001 8002 if (EPI.SCEVSafetyCheck) 8003 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8004 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8005 if (EPI.MemSafetyCheck) 8006 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8007 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8008 8009 DT->changeImmediateDominator( 8010 VecEpilogueIterationCountCheck, 8011 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8012 8013 DT->changeImmediateDominator(LoopScalarPreHeader, 8014 EPI.EpilogueIterationCountCheck); 8015 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8016 // If there is an epilogue which must run, there's no edge from the 8017 // middle block to exit blocks and thus no need to update the immediate 8018 // dominator of the exit blocks. 8019 DT->changeImmediateDominator(LoopExitBlock, 8020 EPI.EpilogueIterationCountCheck); 8021 8022 // Keep track of bypass blocks, as they feed start values to the induction 8023 // phis in the scalar loop preheader. 8024 if (EPI.SCEVSafetyCheck) 8025 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8026 if (EPI.MemSafetyCheck) 8027 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8028 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8029 8030 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 8031 // merge control-flow from the latch block and the middle block. Update the 8032 // incoming values here and move the Phi into the preheader. 8033 SmallVector<PHINode *, 4> PhisInBlock; 8034 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 8035 PhisInBlock.push_back(&Phi); 8036 8037 for (PHINode *Phi : PhisInBlock) { 8038 Phi->replaceIncomingBlockWith( 8039 VecEpilogueIterationCountCheck->getSinglePredecessor(), 8040 VecEpilogueIterationCountCheck); 8041 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 8042 if (EPI.SCEVSafetyCheck) 8043 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 8044 if (EPI.MemSafetyCheck) 8045 Phi->removeIncomingValue(EPI.MemSafetyCheck); 8046 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 8047 } 8048 8049 // Generate a resume induction for the vector epilogue and put it in the 8050 // vector epilogue preheader 8051 Type *IdxTy = Legal->getWidestInductionType(); 8052 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8053 LoopVectorPreHeader->getFirstNonPHI()); 8054 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8055 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8056 EPI.MainLoopIterationCountCheck); 8057 8058 // Generate the induction variable. 8059 createHeaderBranch(Lp); 8060 8061 // Generate induction resume values. These variables save the new starting 8062 // indexes for the scalar loop. They are used to test if there are any tail 8063 // iterations left once the vector loop has completed. 8064 // Note that when the vectorized epilogue is skipped due to iteration count 8065 // check, then the resume value for the induction variable comes from 8066 // the trip count of the main vector loop, hence passing the AdditionalBypass 8067 // argument. 8068 createInductionResumeValues({VecEpilogueIterationCountCheck, 8069 EPI.VectorTripCount} /* AdditionalBypass */); 8070 8071 return {completeLoopSkeleton(OrigLoopID), EPResumeVal}; 8072 } 8073 8074 BasicBlock * 8075 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8076 BasicBlock *Bypass, BasicBlock *Insert) { 8077 8078 assert(EPI.TripCount && 8079 "Expected trip count to have been safed in the first pass."); 8080 assert( 8081 (!isa<Instruction>(EPI.TripCount) || 8082 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8083 "saved trip count does not dominate insertion point."); 8084 Value *TC = EPI.TripCount; 8085 IRBuilder<> Builder(Insert->getTerminator()); 8086 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8087 8088 // Generate code to check if the loop's trip count is less than VF * UF of the 8089 // vector epilogue loop. 8090 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8091 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8092 8093 Value *CheckMinIters = 8094 Builder.CreateICmp(P, Count, 8095 createStepForVF(Builder, Count->getType(), 8096 EPI.EpilogueVF, EPI.EpilogueUF), 8097 "min.epilog.iters.check"); 8098 8099 ReplaceInstWithInst( 8100 Insert->getTerminator(), 8101 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8102 8103 LoopBypassBlocks.push_back(Insert); 8104 return Insert; 8105 } 8106 8107 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8108 LLVM_DEBUG({ 8109 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8110 << "Epilogue Loop VF:" << EPI.EpilogueVF 8111 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8112 }); 8113 } 8114 8115 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8116 DEBUG_WITH_TYPE(VerboseDebug, { 8117 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8118 }); 8119 } 8120 8121 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8122 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8123 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8124 bool PredicateAtRangeStart = Predicate(Range.Start); 8125 8126 for (ElementCount TmpVF = Range.Start * 2; 8127 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8128 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8129 Range.End = TmpVF; 8130 break; 8131 } 8132 8133 return PredicateAtRangeStart; 8134 } 8135 8136 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8137 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8138 /// of VF's starting at a given VF and extending it as much as possible. Each 8139 /// vectorization decision can potentially shorten this sub-range during 8140 /// buildVPlan(). 8141 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8142 ElementCount MaxVF) { 8143 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8144 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8145 VFRange SubRange = {VF, MaxVFPlusOne}; 8146 VPlans.push_back(buildVPlan(SubRange)); 8147 VF = SubRange.End; 8148 } 8149 } 8150 8151 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8152 VPlanPtr &Plan) { 8153 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8154 8155 // Look for cached value. 8156 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8157 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8158 if (ECEntryIt != EdgeMaskCache.end()) 8159 return ECEntryIt->second; 8160 8161 VPValue *SrcMask = createBlockInMask(Src, Plan); 8162 8163 // The terminator has to be a branch inst! 8164 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8165 assert(BI && "Unexpected terminator found"); 8166 8167 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8168 return EdgeMaskCache[Edge] = SrcMask; 8169 8170 // If source is an exiting block, we know the exit edge is dynamically dead 8171 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8172 // adding uses of an otherwise potentially dead instruction. 8173 if (OrigLoop->isLoopExiting(Src)) 8174 return EdgeMaskCache[Edge] = SrcMask; 8175 8176 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8177 assert(EdgeMask && "No Edge Mask found for condition"); 8178 8179 if (BI->getSuccessor(0) != Dst) 8180 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8181 8182 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8183 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8184 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8185 // The select version does not introduce new UB if SrcMask is false and 8186 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8187 VPValue *False = Plan->getOrAddVPValue( 8188 ConstantInt::getFalse(BI->getCondition()->getType())); 8189 EdgeMask = 8190 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8191 } 8192 8193 return EdgeMaskCache[Edge] = EdgeMask; 8194 } 8195 8196 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8197 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8198 8199 // Look for cached value. 8200 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8201 if (BCEntryIt != BlockMaskCache.end()) 8202 return BCEntryIt->second; 8203 8204 // All-one mask is modelled as no-mask following the convention for masked 8205 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8206 VPValue *BlockMask = nullptr; 8207 8208 if (OrigLoop->getHeader() == BB) { 8209 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8210 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8211 8212 // Introduce the early-exit compare IV <= BTC to form header block mask. 8213 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8214 // constructing the desired canonical IV in the header block as its first 8215 // non-phi instructions. 8216 assert(CM.foldTailByMasking() && "must fold the tail"); 8217 VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock(); 8218 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8219 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8220 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8221 8222 VPBuilder::InsertPointGuard Guard(Builder); 8223 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8224 if (CM.TTI.emitGetActiveLaneMask()) { 8225 VPValue *TC = Plan->getOrCreateTripCount(); 8226 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8227 } else { 8228 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8229 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8230 } 8231 return BlockMaskCache[BB] = BlockMask; 8232 } 8233 8234 // This is the block mask. We OR all incoming edges. 8235 for (auto *Predecessor : predecessors(BB)) { 8236 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8237 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8238 return BlockMaskCache[BB] = EdgeMask; 8239 8240 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8241 BlockMask = EdgeMask; 8242 continue; 8243 } 8244 8245 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8246 } 8247 8248 return BlockMaskCache[BB] = BlockMask; 8249 } 8250 8251 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8252 ArrayRef<VPValue *> Operands, 8253 VFRange &Range, 8254 VPlanPtr &Plan) { 8255 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8256 "Must be called with either a load or store"); 8257 8258 auto willWiden = [&](ElementCount VF) -> bool { 8259 if (VF.isScalar()) 8260 return false; 8261 LoopVectorizationCostModel::InstWidening Decision = 8262 CM.getWideningDecision(I, VF); 8263 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8264 "CM decision should be taken at this point."); 8265 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8266 return true; 8267 if (CM.isScalarAfterVectorization(I, VF) || 8268 CM.isProfitableToScalarize(I, VF)) 8269 return false; 8270 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8271 }; 8272 8273 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8274 return nullptr; 8275 8276 VPValue *Mask = nullptr; 8277 if (Legal->isMaskRequired(I)) 8278 Mask = createBlockInMask(I->getParent(), Plan); 8279 8280 // Determine if the pointer operand of the access is either consecutive or 8281 // reverse consecutive. 8282 LoopVectorizationCostModel::InstWidening Decision = 8283 CM.getWideningDecision(I, Range.Start); 8284 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8285 bool Consecutive = 8286 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8287 8288 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8289 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8290 Consecutive, Reverse); 8291 8292 StoreInst *Store = cast<StoreInst>(I); 8293 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8294 Mask, Consecutive, Reverse); 8295 } 8296 8297 static VPWidenIntOrFpInductionRecipe * 8298 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc, 8299 VPValue *Start, const InductionDescriptor &IndDesc, 8300 LoopVectorizationCostModel &CM, ScalarEvolution &SE, 8301 Loop &OrigLoop, VFRange &Range) { 8302 // Returns true if an instruction \p I should be scalarized instead of 8303 // vectorized for the chosen vectorization factor. 8304 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8305 return CM.isScalarAfterVectorization(I, VF) || 8306 CM.isProfitableToScalarize(I, VF); 8307 }; 8308 8309 bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange( 8310 [&](ElementCount VF) { 8311 // Returns true if we should generate a scalar version of \p IV. 8312 if (ShouldScalarizeInstruction(PhiOrTrunc, VF)) 8313 return true; 8314 auto isScalarInst = [&](User *U) -> bool { 8315 auto *I = cast<Instruction>(U); 8316 return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF); 8317 }; 8318 return any_of(PhiOrTrunc->users(), isScalarInst); 8319 }, 8320 Range); 8321 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8322 [&](ElementCount VF) { 8323 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8324 }, 8325 Range); 8326 assert(IndDesc.getStartValue() == 8327 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8328 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8329 "step must be loop invariant"); 8330 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8331 return new VPWidenIntOrFpInductionRecipe( 8332 Phi, Start, IndDesc, TruncI, NeedsScalarIV, !NeedsScalarIVOnly, SE); 8333 } 8334 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8335 return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV, 8336 !NeedsScalarIVOnly, SE); 8337 } 8338 8339 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI( 8340 PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const { 8341 8342 // Check if this is an integer or fp induction. If so, build the recipe that 8343 // produces its scalar and vector values. 8344 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8345 return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, 8346 *PSE.getSE(), *OrigLoop, Range); 8347 8348 return nullptr; 8349 } 8350 8351 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8352 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8353 VPlan &Plan) const { 8354 // Optimize the special case where the source is a constant integer 8355 // induction variable. Notice that we can only optimize the 'trunc' case 8356 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8357 // (c) other casts depend on pointer size. 8358 8359 // Determine whether \p K is a truncation based on an induction variable that 8360 // can be optimized. 8361 auto isOptimizableIVTruncate = 8362 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8363 return [=](ElementCount VF) -> bool { 8364 return CM.isOptimizableIVTruncate(K, VF); 8365 }; 8366 }; 8367 8368 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8369 isOptimizableIVTruncate(I), Range)) { 8370 8371 auto *Phi = cast<PHINode>(I->getOperand(0)); 8372 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8373 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8374 return createWidenInductionRecipe(Phi, I, Start, II, CM, *PSE.getSE(), 8375 *OrigLoop, Range); 8376 } 8377 return nullptr; 8378 } 8379 8380 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8381 ArrayRef<VPValue *> Operands, 8382 VPlanPtr &Plan) { 8383 // If all incoming values are equal, the incoming VPValue can be used directly 8384 // instead of creating a new VPBlendRecipe. 8385 VPValue *FirstIncoming = Operands[0]; 8386 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8387 return FirstIncoming == Inc; 8388 })) { 8389 return Operands[0]; 8390 } 8391 8392 unsigned NumIncoming = Phi->getNumIncomingValues(); 8393 // For in-loop reductions, we do not need to create an additional select. 8394 VPValue *InLoopVal = nullptr; 8395 for (unsigned In = 0; In < NumIncoming; In++) { 8396 PHINode *PhiOp = 8397 dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); 8398 if (PhiOp && CM.isInLoopReduction(PhiOp)) { 8399 assert(!InLoopVal && "Found more than one in-loop reduction!"); 8400 InLoopVal = Operands[In]; 8401 } 8402 } 8403 8404 assert((!InLoopVal || NumIncoming == 2) && 8405 "Found an in-loop reduction for PHI with unexpected number of " 8406 "incoming values"); 8407 if (InLoopVal) 8408 return Operands[Operands[0] == InLoopVal ? 1 : 0]; 8409 8410 // We know that all PHIs in non-header blocks are converted into selects, so 8411 // we don't have to worry about the insertion order and we can just use the 8412 // builder. At this point we generate the predication tree. There may be 8413 // duplications since this is a simple recursive scan, but future 8414 // optimizations will clean it up. 8415 SmallVector<VPValue *, 2> OperandsWithMask; 8416 8417 for (unsigned In = 0; In < NumIncoming; In++) { 8418 VPValue *EdgeMask = 8419 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8420 assert((EdgeMask || NumIncoming == 1) && 8421 "Multiple predecessors with one having a full mask"); 8422 OperandsWithMask.push_back(Operands[In]); 8423 if (EdgeMask) 8424 OperandsWithMask.push_back(EdgeMask); 8425 } 8426 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8427 } 8428 8429 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8430 ArrayRef<VPValue *> Operands, 8431 VFRange &Range) const { 8432 8433 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8434 [this, CI](ElementCount VF) { 8435 return CM.isScalarWithPredication(CI, VF); 8436 }, 8437 Range); 8438 8439 if (IsPredicated) 8440 return nullptr; 8441 8442 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8443 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8444 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8445 ID == Intrinsic::pseudoprobe || 8446 ID == Intrinsic::experimental_noalias_scope_decl)) 8447 return nullptr; 8448 8449 auto willWiden = [&](ElementCount VF) -> bool { 8450 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8451 // The following case may be scalarized depending on the VF. 8452 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8453 // version of the instruction. 8454 // Is it beneficial to perform intrinsic call compared to lib call? 8455 bool NeedToScalarize = false; 8456 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8457 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8458 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8459 return UseVectorIntrinsic || !NeedToScalarize; 8460 }; 8461 8462 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8463 return nullptr; 8464 8465 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8466 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8467 } 8468 8469 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8470 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8471 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8472 // Instruction should be widened, unless it is scalar after vectorization, 8473 // scalarization is profitable or it is predicated. 8474 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8475 return CM.isScalarAfterVectorization(I, VF) || 8476 CM.isProfitableToScalarize(I, VF) || 8477 CM.isScalarWithPredication(I, VF); 8478 }; 8479 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8480 Range); 8481 } 8482 8483 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8484 ArrayRef<VPValue *> Operands) const { 8485 auto IsVectorizableOpcode = [](unsigned Opcode) { 8486 switch (Opcode) { 8487 case Instruction::Add: 8488 case Instruction::And: 8489 case Instruction::AShr: 8490 case Instruction::BitCast: 8491 case Instruction::FAdd: 8492 case Instruction::FCmp: 8493 case Instruction::FDiv: 8494 case Instruction::FMul: 8495 case Instruction::FNeg: 8496 case Instruction::FPExt: 8497 case Instruction::FPToSI: 8498 case Instruction::FPToUI: 8499 case Instruction::FPTrunc: 8500 case Instruction::FRem: 8501 case Instruction::FSub: 8502 case Instruction::ICmp: 8503 case Instruction::IntToPtr: 8504 case Instruction::LShr: 8505 case Instruction::Mul: 8506 case Instruction::Or: 8507 case Instruction::PtrToInt: 8508 case Instruction::SDiv: 8509 case Instruction::Select: 8510 case Instruction::SExt: 8511 case Instruction::Shl: 8512 case Instruction::SIToFP: 8513 case Instruction::SRem: 8514 case Instruction::Sub: 8515 case Instruction::Trunc: 8516 case Instruction::UDiv: 8517 case Instruction::UIToFP: 8518 case Instruction::URem: 8519 case Instruction::Xor: 8520 case Instruction::ZExt: 8521 return true; 8522 } 8523 return false; 8524 }; 8525 8526 if (!IsVectorizableOpcode(I->getOpcode())) 8527 return nullptr; 8528 8529 // Success: widen this instruction. 8530 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8531 } 8532 8533 void VPRecipeBuilder::fixHeaderPhis() { 8534 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8535 for (VPHeaderPHIRecipe *R : PhisToFix) { 8536 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8537 VPRecipeBase *IncR = 8538 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8539 R->addOperand(IncR->getVPSingleValue()); 8540 } 8541 } 8542 8543 VPBasicBlock *VPRecipeBuilder::handleReplication( 8544 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8545 VPlanPtr &Plan) { 8546 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8547 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8548 Range); 8549 8550 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8551 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8552 Range); 8553 8554 // Even if the instruction is not marked as uniform, there are certain 8555 // intrinsic calls that can be effectively treated as such, so we check for 8556 // them here. Conservatively, we only do this for scalable vectors, since 8557 // for fixed-width VFs we can always fall back on full scalarization. 8558 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8559 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8560 case Intrinsic::assume: 8561 case Intrinsic::lifetime_start: 8562 case Intrinsic::lifetime_end: 8563 // For scalable vectors if one of the operands is variant then we still 8564 // want to mark as uniform, which will generate one instruction for just 8565 // the first lane of the vector. We can't scalarize the call in the same 8566 // way as for fixed-width vectors because we don't know how many lanes 8567 // there are. 8568 // 8569 // The reasons for doing it this way for scalable vectors are: 8570 // 1. For the assume intrinsic generating the instruction for the first 8571 // lane is still be better than not generating any at all. For 8572 // example, the input may be a splat across all lanes. 8573 // 2. For the lifetime start/end intrinsics the pointer operand only 8574 // does anything useful when the input comes from a stack object, 8575 // which suggests it should always be uniform. For non-stack objects 8576 // the effect is to poison the object, which still allows us to 8577 // remove the call. 8578 IsUniform = true; 8579 break; 8580 default: 8581 break; 8582 } 8583 } 8584 8585 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8586 IsUniform, IsPredicated); 8587 setRecipe(I, Recipe); 8588 Plan->addVPValue(I, Recipe); 8589 8590 // Find if I uses a predicated instruction. If so, it will use its scalar 8591 // value. Avoid hoisting the insert-element which packs the scalar value into 8592 // a vector value, as that happens iff all users use the vector value. 8593 for (VPValue *Op : Recipe->operands()) { 8594 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8595 if (!PredR) 8596 continue; 8597 auto *RepR = 8598 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8599 assert(RepR->isPredicated() && 8600 "expected Replicate recipe to be predicated"); 8601 RepR->setAlsoPack(false); 8602 } 8603 8604 // Finalize the recipe for Instr, first if it is not predicated. 8605 if (!IsPredicated) { 8606 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8607 VPBB->appendRecipe(Recipe); 8608 return VPBB; 8609 } 8610 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8611 8612 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8613 assert(SingleSucc && "VPBB must have a single successor when handling " 8614 "predicated replication."); 8615 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8616 // Record predicated instructions for above packing optimizations. 8617 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8618 VPBlockUtils::insertBlockAfter(Region, VPBB); 8619 auto *RegSucc = new VPBasicBlock(); 8620 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8621 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8622 return RegSucc; 8623 } 8624 8625 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8626 VPRecipeBase *PredRecipe, 8627 VPlanPtr &Plan) { 8628 // Instructions marked for predication are replicated and placed under an 8629 // if-then construct to prevent side-effects. 8630 8631 // Generate recipes to compute the block mask for this region. 8632 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8633 8634 // Build the triangular if-then region. 8635 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8636 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8637 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8638 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8639 auto *PHIRecipe = Instr->getType()->isVoidTy() 8640 ? nullptr 8641 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8642 if (PHIRecipe) { 8643 Plan->removeVPValueFor(Instr); 8644 Plan->addVPValue(Instr, PHIRecipe); 8645 } 8646 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8647 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8648 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8649 8650 // Note: first set Entry as region entry and then connect successors starting 8651 // from it in order, to propagate the "parent" of each VPBasicBlock. 8652 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8653 VPBlockUtils::connectBlocks(Pred, Exit); 8654 8655 return Region; 8656 } 8657 8658 VPRecipeOrVPValueTy 8659 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8660 ArrayRef<VPValue *> Operands, 8661 VFRange &Range, VPlanPtr &Plan) { 8662 // First, check for specific widening recipes that deal with calls, memory 8663 // operations, inductions and Phi nodes. 8664 if (auto *CI = dyn_cast<CallInst>(Instr)) 8665 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8666 8667 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8668 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8669 8670 VPRecipeBase *Recipe; 8671 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8672 if (Phi->getParent() != OrigLoop->getHeader()) 8673 return tryToBlend(Phi, Operands, Plan); 8674 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range))) 8675 return toVPRecipeResult(Recipe); 8676 8677 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8678 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8679 VPValue *StartV = Operands[0]; 8680 if (Legal->isReductionVariable(Phi)) { 8681 const RecurrenceDescriptor &RdxDesc = 8682 Legal->getReductionVars().find(Phi)->second; 8683 assert(RdxDesc.getRecurrenceStartValue() == 8684 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8685 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8686 CM.isInLoopReduction(Phi), 8687 CM.useOrderedReductions(RdxDesc)); 8688 } else { 8689 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8690 } 8691 8692 // Record the incoming value from the backedge, so we can add the incoming 8693 // value from the backedge after all recipes have been created. 8694 recordRecipeOf(cast<Instruction>( 8695 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8696 PhisToFix.push_back(PhiRecipe); 8697 } else { 8698 // TODO: record backedge value for remaining pointer induction phis. 8699 assert(Phi->getType()->isPointerTy() && 8700 "only pointer phis should be handled here"); 8701 assert(Legal->getInductionVars().count(Phi) && 8702 "Not an induction variable"); 8703 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8704 VPValue *Start = Plan->getOrAddVPValue(II.getStartValue()); 8705 PhiRecipe = new VPWidenPHIRecipe(Phi, Start); 8706 } 8707 8708 return toVPRecipeResult(PhiRecipe); 8709 } 8710 8711 if (isa<TruncInst>(Instr) && 8712 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8713 Range, *Plan))) 8714 return toVPRecipeResult(Recipe); 8715 8716 if (!shouldWiden(Instr, Range)) 8717 return nullptr; 8718 8719 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8720 return toVPRecipeResult(new VPWidenGEPRecipe( 8721 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8722 8723 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8724 bool InvariantCond = 8725 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8726 return toVPRecipeResult(new VPWidenSelectRecipe( 8727 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8728 } 8729 8730 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8731 } 8732 8733 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8734 ElementCount MaxVF) { 8735 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8736 8737 // Collect instructions from the original loop that will become trivially dead 8738 // in the vectorized loop. We don't need to vectorize these instructions. For 8739 // example, original induction update instructions can become dead because we 8740 // separately emit induction "steps" when generating code for the new loop. 8741 // Similarly, we create a new latch condition when setting up the structure 8742 // of the new loop, so the old one can become dead. 8743 SmallPtrSet<Instruction *, 4> DeadInstructions; 8744 collectTriviallyDeadInstructions(DeadInstructions); 8745 8746 // Add assume instructions we need to drop to DeadInstructions, to prevent 8747 // them from being added to the VPlan. 8748 // TODO: We only need to drop assumes in blocks that get flattend. If the 8749 // control flow is preserved, we should keep them. 8750 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8751 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8752 8753 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8754 // Dead instructions do not need sinking. Remove them from SinkAfter. 8755 for (Instruction *I : DeadInstructions) 8756 SinkAfter.erase(I); 8757 8758 // Cannot sink instructions after dead instructions (there won't be any 8759 // recipes for them). Instead, find the first non-dead previous instruction. 8760 for (auto &P : Legal->getSinkAfter()) { 8761 Instruction *SinkTarget = P.second; 8762 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8763 (void)FirstInst; 8764 while (DeadInstructions.contains(SinkTarget)) { 8765 assert( 8766 SinkTarget != FirstInst && 8767 "Must find a live instruction (at least the one feeding the " 8768 "first-order recurrence PHI) before reaching beginning of the block"); 8769 SinkTarget = SinkTarget->getPrevNode(); 8770 assert(SinkTarget != P.first && 8771 "sink source equals target, no sinking required"); 8772 } 8773 P.second = SinkTarget; 8774 } 8775 8776 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8777 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8778 VFRange SubRange = {VF, MaxVFPlusOne}; 8779 VPlans.push_back( 8780 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8781 VF = SubRange.End; 8782 } 8783 } 8784 8785 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8786 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8787 // BranchOnCount VPInstruction to the latch. 8788 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8789 bool HasNUW, bool IsVPlanNative) { 8790 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8791 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8792 8793 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8794 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8795 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8796 if (IsVPlanNative) 8797 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 8798 Header->insert(CanonicalIVPHI, Header->begin()); 8799 8800 auto *CanonicalIVIncrement = 8801 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8802 : VPInstruction::CanonicalIVIncrement, 8803 {CanonicalIVPHI}, DL); 8804 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8805 8806 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8807 if (IsVPlanNative) { 8808 EB = cast<VPBasicBlock>(EB->getSinglePredecessor()); 8809 EB->setCondBit(nullptr); 8810 } 8811 EB->appendRecipe(CanonicalIVIncrement); 8812 8813 auto *BranchOnCount = 8814 new VPInstruction(VPInstruction::BranchOnCount, 8815 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8816 EB->appendRecipe(BranchOnCount); 8817 } 8818 8819 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8820 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8821 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8822 8823 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8824 8825 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8826 8827 // --------------------------------------------------------------------------- 8828 // Pre-construction: record ingredients whose recipes we'll need to further 8829 // process after constructing the initial VPlan. 8830 // --------------------------------------------------------------------------- 8831 8832 // Mark instructions we'll need to sink later and their targets as 8833 // ingredients whose recipe we'll need to record. 8834 for (auto &Entry : SinkAfter) { 8835 RecipeBuilder.recordRecipeOf(Entry.first); 8836 RecipeBuilder.recordRecipeOf(Entry.second); 8837 } 8838 for (auto &Reduction : CM.getInLoopReductionChains()) { 8839 PHINode *Phi = Reduction.first; 8840 RecurKind Kind = 8841 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8842 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8843 8844 RecipeBuilder.recordRecipeOf(Phi); 8845 for (auto &R : ReductionOperations) { 8846 RecipeBuilder.recordRecipeOf(R); 8847 // For min/max reductions, where we have a pair of icmp/select, we also 8848 // need to record the ICmp recipe, so it can be removed later. 8849 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8850 "Only min/max recurrences allowed for inloop reductions"); 8851 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8852 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8853 } 8854 } 8855 8856 // For each interleave group which is relevant for this (possibly trimmed) 8857 // Range, add it to the set of groups to be later applied to the VPlan and add 8858 // placeholders for its members' Recipes which we'll be replacing with a 8859 // single VPInterleaveRecipe. 8860 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8861 auto applyIG = [IG, this](ElementCount VF) -> bool { 8862 return (VF.isVector() && // Query is illegal for VF == 1 8863 CM.getWideningDecision(IG->getInsertPos(), VF) == 8864 LoopVectorizationCostModel::CM_Interleave); 8865 }; 8866 if (!getDecisionAndClampRange(applyIG, Range)) 8867 continue; 8868 InterleaveGroups.insert(IG); 8869 for (unsigned i = 0; i < IG->getFactor(); i++) 8870 if (Instruction *Member = IG->getMember(i)) 8871 RecipeBuilder.recordRecipeOf(Member); 8872 }; 8873 8874 // --------------------------------------------------------------------------- 8875 // Build initial VPlan: Scan the body of the loop in a topological order to 8876 // visit each basic block after having visited its predecessor basic blocks. 8877 // --------------------------------------------------------------------------- 8878 8879 // Create initial VPlan skeleton, with separate header and latch blocks. 8880 VPBasicBlock *HeaderVPBB = new VPBasicBlock(); 8881 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 8882 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 8883 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 8884 auto Plan = std::make_unique<VPlan>(TopRegion); 8885 8886 Instruction *DLInst = 8887 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 8888 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 8889 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 8890 !CM.foldTailByMasking(), false); 8891 8892 // Scan the body of the loop in a topological order to visit each basic block 8893 // after having visited its predecessor basic blocks. 8894 LoopBlocksDFS DFS(OrigLoop); 8895 DFS.perform(LI); 8896 8897 VPBasicBlock *VPBB = HeaderVPBB; 8898 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 8899 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8900 // Relevant instructions from basic block BB will be grouped into VPRecipe 8901 // ingredients and fill a new VPBasicBlock. 8902 unsigned VPBBsForBB = 0; 8903 VPBB->setName(BB->getName()); 8904 Builder.setInsertPoint(VPBB); 8905 8906 // Introduce each ingredient into VPlan. 8907 // TODO: Model and preserve debug instrinsics in VPlan. 8908 for (Instruction &I : BB->instructionsWithoutDebug()) { 8909 Instruction *Instr = &I; 8910 8911 // First filter out irrelevant instructions, to ensure no recipes are 8912 // built for them. 8913 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8914 continue; 8915 8916 SmallVector<VPValue *, 4> Operands; 8917 auto *Phi = dyn_cast<PHINode>(Instr); 8918 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 8919 Operands.push_back(Plan->getOrAddVPValue( 8920 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 8921 } else { 8922 auto OpRange = Plan->mapToVPValues(Instr->operands()); 8923 Operands = {OpRange.begin(), OpRange.end()}; 8924 } 8925 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 8926 Instr, Operands, Range, Plan)) { 8927 // If Instr can be simplified to an existing VPValue, use it. 8928 if (RecipeOrValue.is<VPValue *>()) { 8929 auto *VPV = RecipeOrValue.get<VPValue *>(); 8930 Plan->addVPValue(Instr, VPV); 8931 // If the re-used value is a recipe, register the recipe for the 8932 // instruction, in case the recipe for Instr needs to be recorded. 8933 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 8934 RecipeBuilder.setRecipe(Instr, R); 8935 continue; 8936 } 8937 // Otherwise, add the new recipe. 8938 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8939 for (auto *Def : Recipe->definedValues()) { 8940 auto *UV = Def->getUnderlyingValue(); 8941 Plan->addVPValue(UV, Def); 8942 } 8943 8944 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 8945 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 8946 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 8947 // of the header block. That can happen for truncates of induction 8948 // variables. Those recipes are moved to the phi section of the header 8949 // block after applying SinkAfter, which relies on the original 8950 // position of the trunc. 8951 assert(isa<TruncInst>(Instr)); 8952 InductionsToMove.push_back( 8953 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 8954 } 8955 RecipeBuilder.setRecipe(Instr, Recipe); 8956 VPBB->appendRecipe(Recipe); 8957 continue; 8958 } 8959 8960 // Otherwise, if all widening options failed, Instruction is to be 8961 // replicated. This may create a successor for VPBB. 8962 VPBasicBlock *NextVPBB = 8963 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8964 if (NextVPBB != VPBB) { 8965 VPBB = NextVPBB; 8966 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8967 : ""); 8968 } 8969 } 8970 8971 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 8972 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 8973 } 8974 8975 // Fold the last, empty block into its predecessor. 8976 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 8977 assert(VPBB && "expected to fold last (empty) block"); 8978 // After here, VPBB should not be used. 8979 VPBB = nullptr; 8980 8981 assert(isa<VPRegionBlock>(Plan->getEntry()) && 8982 !Plan->getEntry()->getEntryBasicBlock()->empty() && 8983 "entry block must be set to a VPRegionBlock having a non-empty entry " 8984 "VPBasicBlock"); 8985 RecipeBuilder.fixHeaderPhis(); 8986 8987 // --------------------------------------------------------------------------- 8988 // Transform initial VPlan: Apply previously taken decisions, in order, to 8989 // bring the VPlan to its final state. 8990 // --------------------------------------------------------------------------- 8991 8992 // Apply Sink-After legal constraints. 8993 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 8994 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 8995 if (Region && Region->isReplicator()) { 8996 assert(Region->getNumSuccessors() == 1 && 8997 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 8998 assert(R->getParent()->size() == 1 && 8999 "A recipe in an original replicator region must be the only " 9000 "recipe in its block"); 9001 return Region; 9002 } 9003 return nullptr; 9004 }; 9005 for (auto &Entry : SinkAfter) { 9006 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9007 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9008 9009 auto *TargetRegion = GetReplicateRegion(Target); 9010 auto *SinkRegion = GetReplicateRegion(Sink); 9011 if (!SinkRegion) { 9012 // If the sink source is not a replicate region, sink the recipe directly. 9013 if (TargetRegion) { 9014 // The target is in a replication region, make sure to move Sink to 9015 // the block after it, not into the replication region itself. 9016 VPBasicBlock *NextBlock = 9017 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9018 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9019 } else 9020 Sink->moveAfter(Target); 9021 continue; 9022 } 9023 9024 // The sink source is in a replicate region. Unhook the region from the CFG. 9025 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9026 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9027 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9028 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9029 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9030 9031 if (TargetRegion) { 9032 // The target recipe is also in a replicate region, move the sink region 9033 // after the target region. 9034 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9035 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9036 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9037 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9038 } else { 9039 // The sink source is in a replicate region, we need to move the whole 9040 // replicate region, which should only contain a single recipe in the 9041 // main block. 9042 auto *SplitBlock = 9043 Target->getParent()->splitAt(std::next(Target->getIterator())); 9044 9045 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9046 9047 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9048 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9049 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9050 } 9051 } 9052 9053 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 9054 VPlanTransforms::removeRedundantInductionCasts(*Plan); 9055 9056 // Now that sink-after is done, move induction recipes for optimized truncates 9057 // to the phi section of the header block. 9058 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 9059 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 9060 9061 // Adjust the recipes for any inloop reductions. 9062 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 9063 RecipeBuilder, Range.Start); 9064 9065 // Introduce a recipe to combine the incoming and previous values of a 9066 // first-order recurrence. 9067 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9068 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9069 if (!RecurPhi) 9070 continue; 9071 9072 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9073 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 9074 auto *Region = GetReplicateRegion(PrevRecipe); 9075 if (Region) 9076 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9077 if (Region || PrevRecipe->isPhi()) 9078 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 9079 else 9080 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 9081 9082 auto *RecurSplice = cast<VPInstruction>( 9083 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9084 {RecurPhi, RecurPhi->getBackedgeValue()})); 9085 9086 RecurPhi->replaceAllUsesWith(RecurSplice); 9087 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9088 // all users. 9089 RecurSplice->setOperand(0, RecurPhi); 9090 } 9091 9092 // Interleave memory: for each Interleave Group we marked earlier as relevant 9093 // for this VPlan, replace the Recipes widening its memory instructions with a 9094 // single VPInterleaveRecipe at its insertion point. 9095 for (auto IG : InterleaveGroups) { 9096 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9097 RecipeBuilder.getRecipe(IG->getInsertPos())); 9098 SmallVector<VPValue *, 4> StoredValues; 9099 for (unsigned i = 0; i < IG->getFactor(); ++i) 9100 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9101 auto *StoreR = 9102 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9103 StoredValues.push_back(StoreR->getStoredValue()); 9104 } 9105 9106 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9107 Recipe->getMask()); 9108 VPIG->insertBefore(Recipe); 9109 unsigned J = 0; 9110 for (unsigned i = 0; i < IG->getFactor(); ++i) 9111 if (Instruction *Member = IG->getMember(i)) { 9112 if (!Member->getType()->isVoidTy()) { 9113 VPValue *OriginalV = Plan->getVPValue(Member); 9114 Plan->removeVPValueFor(Member); 9115 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9116 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9117 J++; 9118 } 9119 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9120 } 9121 } 9122 9123 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9124 // in ways that accessing values using original IR values is incorrect. 9125 Plan->disableValue2VPValue(); 9126 9127 VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); 9128 VPlanTransforms::sinkScalarOperands(*Plan); 9129 VPlanTransforms::mergeReplicateRegions(*Plan); 9130 VPlanTransforms::removeDeadRecipes(*Plan, *OrigLoop); 9131 9132 std::string PlanName; 9133 raw_string_ostream RSO(PlanName); 9134 ElementCount VF = Range.Start; 9135 Plan->addVF(VF); 9136 RSO << "Initial VPlan for VF={" << VF; 9137 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9138 Plan->addVF(VF); 9139 RSO << "," << VF; 9140 } 9141 RSO << "},UF>=1"; 9142 RSO.flush(); 9143 Plan->setName(PlanName); 9144 9145 // Fold Exit block into its predecessor if possible. 9146 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9147 // VPBasicBlock as exit. 9148 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9149 9150 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9151 return Plan; 9152 } 9153 9154 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9155 // Outer loop handling: They may require CFG and instruction level 9156 // transformations before even evaluating whether vectorization is profitable. 9157 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9158 // the vectorization pipeline. 9159 assert(!OrigLoop->isInnermost()); 9160 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9161 9162 // Create new empty VPlan 9163 auto Plan = std::make_unique<VPlan>(); 9164 9165 // Build hierarchical CFG 9166 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9167 HCFGBuilder.buildHierarchicalCFG(); 9168 9169 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9170 VF *= 2) 9171 Plan->addVF(VF); 9172 9173 if (EnableVPlanPredication) { 9174 VPlanPredicator VPP(*Plan); 9175 VPP.predicate(); 9176 9177 // Avoid running transformation to recipes until masked code generation in 9178 // VPlan-native path is in place. 9179 return Plan; 9180 } 9181 9182 SmallPtrSet<Instruction *, 1> DeadInstructions; 9183 VPlanTransforms::VPInstructionsToVPRecipes( 9184 OrigLoop, Plan, 9185 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9186 DeadInstructions, *PSE.getSE()); 9187 9188 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9189 true, true); 9190 return Plan; 9191 } 9192 9193 // Adjust the recipes for reductions. For in-loop reductions the chain of 9194 // instructions leading from the loop exit instr to the phi need to be converted 9195 // to reductions, with one operand being vector and the other being the scalar 9196 // reduction chain. For other reductions, a select is introduced between the phi 9197 // and live-out recipes when folding the tail. 9198 void LoopVectorizationPlanner::adjustRecipesForReductions( 9199 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9200 ElementCount MinVF) { 9201 for (auto &Reduction : CM.getInLoopReductionChains()) { 9202 PHINode *Phi = Reduction.first; 9203 const RecurrenceDescriptor &RdxDesc = 9204 Legal->getReductionVars().find(Phi)->second; 9205 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9206 9207 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9208 continue; 9209 9210 // ReductionOperations are orders top-down from the phi's use to the 9211 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9212 // which of the two operands will remain scalar and which will be reduced. 9213 // For minmax the chain will be the select instructions. 9214 Instruction *Chain = Phi; 9215 for (Instruction *R : ReductionOperations) { 9216 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9217 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9218 9219 VPValue *ChainOp = Plan->getVPValue(Chain); 9220 unsigned FirstOpId; 9221 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9222 "Only min/max recurrences allowed for inloop reductions"); 9223 // Recognize a call to the llvm.fmuladd intrinsic. 9224 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9225 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9226 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9227 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9228 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9229 "Expected to replace a VPWidenSelectSC"); 9230 FirstOpId = 1; 9231 } else { 9232 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9233 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9234 "Expected to replace a VPWidenSC"); 9235 FirstOpId = 0; 9236 } 9237 unsigned VecOpId = 9238 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9239 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9240 9241 auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent()) 9242 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9243 : nullptr; 9244 9245 if (IsFMulAdd) { 9246 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9247 // need to create an fmul recipe to use as the vector operand for the 9248 // fadd reduction. 9249 VPInstruction *FMulRecipe = new VPInstruction( 9250 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9251 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9252 WidenRecipe->getParent()->insert(FMulRecipe, 9253 WidenRecipe->getIterator()); 9254 VecOp = FMulRecipe; 9255 } 9256 VPReductionRecipe *RedRecipe = 9257 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9258 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9259 Plan->removeVPValueFor(R); 9260 Plan->addVPValue(R, RedRecipe); 9261 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9262 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9263 WidenRecipe->eraseFromParent(); 9264 9265 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9266 VPRecipeBase *CompareRecipe = 9267 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9268 assert(isa<VPWidenRecipe>(CompareRecipe) && 9269 "Expected to replace a VPWidenSC"); 9270 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9271 "Expected no remaining users"); 9272 CompareRecipe->eraseFromParent(); 9273 } 9274 Chain = R; 9275 } 9276 } 9277 9278 // If tail is folded by masking, introduce selects between the phi 9279 // and the live-out instruction of each reduction, at the beginning of the 9280 // dedicated latch block. 9281 if (CM.foldTailByMasking()) { 9282 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9283 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9284 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9285 if (!PhiR || PhiR->isInLoop()) 9286 continue; 9287 VPValue *Cond = 9288 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9289 VPValue *Red = PhiR->getBackedgeValue(); 9290 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9291 "reduction recipe must be defined before latch"); 9292 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9293 } 9294 } 9295 } 9296 9297 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9298 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9299 VPSlotTracker &SlotTracker) const { 9300 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9301 IG->getInsertPos()->printAsOperand(O, false); 9302 O << ", "; 9303 getAddr()->printAsOperand(O, SlotTracker); 9304 VPValue *Mask = getMask(); 9305 if (Mask) { 9306 O << ", "; 9307 Mask->printAsOperand(O, SlotTracker); 9308 } 9309 9310 unsigned OpIdx = 0; 9311 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9312 if (!IG->getMember(i)) 9313 continue; 9314 if (getNumStoreOperands() > 0) { 9315 O << "\n" << Indent << " store "; 9316 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9317 O << " to index " << i; 9318 } else { 9319 O << "\n" << Indent << " "; 9320 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9321 O << " = load from index " << i; 9322 } 9323 ++OpIdx; 9324 } 9325 } 9326 #endif 9327 9328 void VPWidenCallRecipe::execute(VPTransformState &State) { 9329 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9330 *this, State); 9331 } 9332 9333 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9334 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9335 State.ILV->setDebugLocFromInst(&I); 9336 9337 // The condition can be loop invariant but still defined inside the 9338 // loop. This means that we can't just use the original 'cond' value. 9339 // We have to take the 'vectorized' value and pick the first lane. 9340 // Instcombine will make this a no-op. 9341 auto *InvarCond = 9342 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9343 9344 for (unsigned Part = 0; Part < State.UF; ++Part) { 9345 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9346 Value *Op0 = State.get(getOperand(1), Part); 9347 Value *Op1 = State.get(getOperand(2), Part); 9348 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9349 State.set(this, Sel, Part); 9350 State.ILV->addMetadata(Sel, &I); 9351 } 9352 } 9353 9354 void VPWidenRecipe::execute(VPTransformState &State) { 9355 auto &I = *cast<Instruction>(getUnderlyingValue()); 9356 auto &Builder = State.Builder; 9357 switch (I.getOpcode()) { 9358 case Instruction::Call: 9359 case Instruction::Br: 9360 case Instruction::PHI: 9361 case Instruction::GetElementPtr: 9362 case Instruction::Select: 9363 llvm_unreachable("This instruction is handled by a different recipe."); 9364 case Instruction::UDiv: 9365 case Instruction::SDiv: 9366 case Instruction::SRem: 9367 case Instruction::URem: 9368 case Instruction::Add: 9369 case Instruction::FAdd: 9370 case Instruction::Sub: 9371 case Instruction::FSub: 9372 case Instruction::FNeg: 9373 case Instruction::Mul: 9374 case Instruction::FMul: 9375 case Instruction::FDiv: 9376 case Instruction::FRem: 9377 case Instruction::Shl: 9378 case Instruction::LShr: 9379 case Instruction::AShr: 9380 case Instruction::And: 9381 case Instruction::Or: 9382 case Instruction::Xor: { 9383 // Just widen unops and binops. 9384 State.ILV->setDebugLocFromInst(&I); 9385 9386 for (unsigned Part = 0; Part < State.UF; ++Part) { 9387 SmallVector<Value *, 2> Ops; 9388 for (VPValue *VPOp : operands()) 9389 Ops.push_back(State.get(VPOp, Part)); 9390 9391 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9392 9393 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9394 VecOp->copyIRFlags(&I); 9395 9396 // If the instruction is vectorized and was in a basic block that needed 9397 // predication, we can't propagate poison-generating flags (nuw/nsw, 9398 // exact, etc.). The control flow has been linearized and the 9399 // instruction is no longer guarded by the predicate, which could make 9400 // the flag properties to no longer hold. 9401 if (State.MayGeneratePoisonRecipes.contains(this)) 9402 VecOp->dropPoisonGeneratingFlags(); 9403 } 9404 9405 // Use this vector value for all users of the original instruction. 9406 State.set(this, V, Part); 9407 State.ILV->addMetadata(V, &I); 9408 } 9409 9410 break; 9411 } 9412 case Instruction::ICmp: 9413 case Instruction::FCmp: { 9414 // Widen compares. Generate vector compares. 9415 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9416 auto *Cmp = cast<CmpInst>(&I); 9417 State.ILV->setDebugLocFromInst(Cmp); 9418 for (unsigned Part = 0; Part < State.UF; ++Part) { 9419 Value *A = State.get(getOperand(0), Part); 9420 Value *B = State.get(getOperand(1), Part); 9421 Value *C = nullptr; 9422 if (FCmp) { 9423 // Propagate fast math flags. 9424 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9425 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9426 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9427 } else { 9428 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9429 } 9430 State.set(this, C, Part); 9431 State.ILV->addMetadata(C, &I); 9432 } 9433 9434 break; 9435 } 9436 9437 case Instruction::ZExt: 9438 case Instruction::SExt: 9439 case Instruction::FPToUI: 9440 case Instruction::FPToSI: 9441 case Instruction::FPExt: 9442 case Instruction::PtrToInt: 9443 case Instruction::IntToPtr: 9444 case Instruction::SIToFP: 9445 case Instruction::UIToFP: 9446 case Instruction::Trunc: 9447 case Instruction::FPTrunc: 9448 case Instruction::BitCast: { 9449 auto *CI = cast<CastInst>(&I); 9450 State.ILV->setDebugLocFromInst(CI); 9451 9452 /// Vectorize casts. 9453 Type *DestTy = (State.VF.isScalar()) 9454 ? CI->getType() 9455 : VectorType::get(CI->getType(), State.VF); 9456 9457 for (unsigned Part = 0; Part < State.UF; ++Part) { 9458 Value *A = State.get(getOperand(0), Part); 9459 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9460 State.set(this, Cast, Part); 9461 State.ILV->addMetadata(Cast, &I); 9462 } 9463 break; 9464 } 9465 default: 9466 // This instruction is not vectorized by simple widening. 9467 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9468 llvm_unreachable("Unhandled instruction!"); 9469 } // end of switch. 9470 } 9471 9472 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9473 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9474 // Construct a vector GEP by widening the operands of the scalar GEP as 9475 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9476 // results in a vector of pointers when at least one operand of the GEP 9477 // is vector-typed. Thus, to keep the representation compact, we only use 9478 // vector-typed operands for loop-varying values. 9479 9480 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9481 // If we are vectorizing, but the GEP has only loop-invariant operands, 9482 // the GEP we build (by only using vector-typed operands for 9483 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9484 // produce a vector of pointers, we need to either arbitrarily pick an 9485 // operand to broadcast, or broadcast a clone of the original GEP. 9486 // Here, we broadcast a clone of the original. 9487 // 9488 // TODO: If at some point we decide to scalarize instructions having 9489 // loop-invariant operands, this special case will no longer be 9490 // required. We would add the scalarization decision to 9491 // collectLoopScalars() and teach getVectorValue() to broadcast 9492 // the lane-zero scalar value. 9493 auto *Clone = State.Builder.Insert(GEP->clone()); 9494 for (unsigned Part = 0; Part < State.UF; ++Part) { 9495 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9496 State.set(this, EntryPart, Part); 9497 State.ILV->addMetadata(EntryPart, GEP); 9498 } 9499 } else { 9500 // If the GEP has at least one loop-varying operand, we are sure to 9501 // produce a vector of pointers. But if we are only unrolling, we want 9502 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9503 // produce with the code below will be scalar (if VF == 1) or vector 9504 // (otherwise). Note that for the unroll-only case, we still maintain 9505 // values in the vector mapping with initVector, as we do for other 9506 // instructions. 9507 for (unsigned Part = 0; Part < State.UF; ++Part) { 9508 // The pointer operand of the new GEP. If it's loop-invariant, we 9509 // won't broadcast it. 9510 auto *Ptr = IsPtrLoopInvariant 9511 ? State.get(getOperand(0), VPIteration(0, 0)) 9512 : State.get(getOperand(0), Part); 9513 9514 // Collect all the indices for the new GEP. If any index is 9515 // loop-invariant, we won't broadcast it. 9516 SmallVector<Value *, 4> Indices; 9517 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9518 VPValue *Operand = getOperand(I); 9519 if (IsIndexLoopInvariant[I - 1]) 9520 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9521 else 9522 Indices.push_back(State.get(Operand, Part)); 9523 } 9524 9525 // If the GEP instruction is vectorized and was in a basic block that 9526 // needed predication, we can't propagate the poison-generating 'inbounds' 9527 // flag. The control flow has been linearized and the GEP is no longer 9528 // guarded by the predicate, which could make the 'inbounds' properties to 9529 // no longer hold. 9530 bool IsInBounds = 9531 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9532 9533 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9534 // but it should be a vector, otherwise. 9535 auto *NewGEP = IsInBounds 9536 ? State.Builder.CreateInBoundsGEP( 9537 GEP->getSourceElementType(), Ptr, Indices) 9538 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9539 Ptr, Indices); 9540 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9541 "NewGEP is not a pointer vector"); 9542 State.set(this, NewGEP, Part); 9543 State.ILV->addMetadata(NewGEP, GEP); 9544 } 9545 } 9546 } 9547 9548 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9549 assert(!State.Instance && "Int or FP induction being replicated."); 9550 9551 Value *Start = getStartValue()->getLiveInIRValue(); 9552 const InductionDescriptor &ID = getInductionDescriptor(); 9553 TruncInst *Trunc = getTruncInst(); 9554 IRBuilderBase &Builder = State.Builder; 9555 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 9556 assert(State.VF.isVector() && "must have vector VF"); 9557 9558 // The value from the original loop to which we are mapping the new induction 9559 // variable. 9560 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 9561 9562 auto &DL = EntryVal->getModule()->getDataLayout(); 9563 9564 // Generate code for the induction step. Note that induction steps are 9565 // required to be loop-invariant 9566 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 9567 if (SE.isSCEVable(IV->getType())) { 9568 SCEVExpander Exp(SE, DL, "induction"); 9569 return Exp.expandCodeFor(Step, Step->getType(), 9570 State.CFG.VectorPreHeader->getTerminator()); 9571 } 9572 return cast<SCEVUnknown>(Step)->getValue(); 9573 }; 9574 9575 // Fast-math-flags propagate from the original induction instruction. 9576 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9577 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 9578 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 9579 9580 // Now do the actual transformations, and start with creating the step value. 9581 Value *Step = CreateStepValue(ID.getStep()); 9582 9583 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 9584 "Expected either an induction phi-node or a truncate of it!"); 9585 9586 // Construct the initial value of the vector IV in the vector loop preheader 9587 auto CurrIP = Builder.saveIP(); 9588 Builder.SetInsertPoint(State.CFG.VectorPreHeader->getTerminator()); 9589 if (isa<TruncInst>(EntryVal)) { 9590 assert(Start->getType()->isIntegerTy() && 9591 "Truncation requires an integer type"); 9592 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 9593 Step = Builder.CreateTrunc(Step, TruncType); 9594 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 9595 } 9596 9597 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 9598 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 9599 Value *SteppedStart = getStepVector( 9600 SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); 9601 9602 // We create vector phi nodes for both integer and floating-point induction 9603 // variables. Here, we determine the kind of arithmetic we will perform. 9604 Instruction::BinaryOps AddOp; 9605 Instruction::BinaryOps MulOp; 9606 if (Step->getType()->isIntegerTy()) { 9607 AddOp = Instruction::Add; 9608 MulOp = Instruction::Mul; 9609 } else { 9610 AddOp = ID.getInductionOpcode(); 9611 MulOp = Instruction::FMul; 9612 } 9613 9614 // Multiply the vectorization factor by the step using integer or 9615 // floating-point arithmetic as appropriate. 9616 Type *StepType = Step->getType(); 9617 Value *RuntimeVF; 9618 if (Step->getType()->isFloatingPointTy()) 9619 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 9620 else 9621 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 9622 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 9623 9624 // Create a vector splat to use in the induction update. 9625 // 9626 // FIXME: If the step is non-constant, we create the vector splat with 9627 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 9628 // handle a constant vector splat. 9629 Value *SplatVF = isa<Constant>(Mul) 9630 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 9631 : Builder.CreateVectorSplat(State.VF, Mul); 9632 Builder.restoreIP(CurrIP); 9633 9634 // We may need to add the step a number of times, depending on the unroll 9635 // factor. The last of those goes into the PHI. 9636 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 9637 &*State.CFG.PrevBB->getFirstInsertionPt()); 9638 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 9639 Instruction *LastInduction = VecInd; 9640 for (unsigned Part = 0; Part < State.UF; ++Part) { 9641 State.set(this, LastInduction, Part); 9642 9643 if (isa<TruncInst>(EntryVal)) 9644 State.ILV->addMetadata(LastInduction, EntryVal); 9645 9646 LastInduction = cast<Instruction>( 9647 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 9648 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 9649 } 9650 9651 // Move the last step to the end of the latch block. This ensures consistent 9652 // placement of all induction updates. 9653 auto *LoopVectorLatch = 9654 State.LI->getLoopFor(State.CFG.PrevBB)->getLoopLatch(); 9655 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 9656 LastInduction->moveBefore(Br); 9657 LastInduction->setName("vec.ind.next"); 9658 9659 VecInd->addIncoming(SteppedStart, State.CFG.VectorPreHeader); 9660 VecInd->addIncoming(LastInduction, LoopVectorLatch); 9661 } 9662 9663 void VPScalarIVStepsRecipe::execute(VPTransformState &State) { 9664 assert(!State.Instance && "VPScalarIVStepsRecipe being replicated."); 9665 9666 // Fast-math-flags propagate from the original induction instruction. 9667 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9668 if (IndDesc.getInductionBinOp() && 9669 isa<FPMathOperator>(IndDesc.getInductionBinOp())) 9670 State.Builder.setFastMathFlags( 9671 IndDesc.getInductionBinOp()->getFastMathFlags()); 9672 9673 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9674 auto CreateScalarIV = [&](Value *&Step) -> Value * { 9675 Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0)); 9676 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9677 if (!isCanonical() || CanonicalIV->getType() != Ty) { 9678 ScalarIV = 9679 Ty->isIntegerTy() 9680 ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty) 9681 : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty); 9682 ScalarIV = emitTransformedIndex(State.Builder, ScalarIV, 9683 getStartValue()->getLiveInIRValue(), Step, 9684 IndDesc); 9685 ScalarIV->setName("offset.idx"); 9686 } 9687 if (TruncToTy) { 9688 assert(Step->getType()->isIntegerTy() && 9689 "Truncation requires an integer step"); 9690 ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy); 9691 Step = State.Builder.CreateTrunc(Step, TruncToTy); 9692 } 9693 return ScalarIV; 9694 }; 9695 9696 Value *ScalarIV = CreateScalarIV(Step); 9697 if (State.VF.isVector()) { 9698 buildScalarSteps(ScalarIV, Step, IndDesc, this, State); 9699 return; 9700 } 9701 9702 for (unsigned Part = 0; Part < State.UF; ++Part) { 9703 assert(!State.VF.isScalable() && "scalable vectors not yet supported."); 9704 Value *EntryPart; 9705 if (Step->getType()->isFloatingPointTy()) { 9706 Value *StartIdx = 9707 getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part); 9708 // Floating-point operations inherit FMF via the builder's flags. 9709 Value *MulOp = State.Builder.CreateFMul(StartIdx, Step); 9710 EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(), 9711 ScalarIV, MulOp); 9712 } else { 9713 Value *StartIdx = 9714 getRuntimeVF(State.Builder, Step->getType(), State.VF * Part); 9715 EntryPart = State.Builder.CreateAdd( 9716 ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction"); 9717 } 9718 State.set(this, EntryPart, Part); 9719 } 9720 } 9721 9722 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9723 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9724 State); 9725 } 9726 9727 void VPBlendRecipe::execute(VPTransformState &State) { 9728 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9729 // We know that all PHIs in non-header blocks are converted into 9730 // selects, so we don't have to worry about the insertion order and we 9731 // can just use the builder. 9732 // At this point we generate the predication tree. There may be 9733 // duplications since this is a simple recursive scan, but future 9734 // optimizations will clean it up. 9735 9736 unsigned NumIncoming = getNumIncomingValues(); 9737 9738 // Generate a sequence of selects of the form: 9739 // SELECT(Mask3, In3, 9740 // SELECT(Mask2, In2, 9741 // SELECT(Mask1, In1, 9742 // In0))) 9743 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9744 // are essentially undef are taken from In0. 9745 InnerLoopVectorizer::VectorParts Entry(State.UF); 9746 for (unsigned In = 0; In < NumIncoming; ++In) { 9747 for (unsigned Part = 0; Part < State.UF; ++Part) { 9748 // We might have single edge PHIs (blocks) - use an identity 9749 // 'select' for the first PHI operand. 9750 Value *In0 = State.get(getIncomingValue(In), Part); 9751 if (In == 0) 9752 Entry[Part] = In0; // Initialize with the first incoming value. 9753 else { 9754 // Select between the current value and the previous incoming edge 9755 // based on the incoming mask. 9756 Value *Cond = State.get(getMask(In), Part); 9757 Entry[Part] = 9758 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9759 } 9760 } 9761 } 9762 for (unsigned Part = 0; Part < State.UF; ++Part) 9763 State.set(this, Entry[Part], Part); 9764 } 9765 9766 void VPInterleaveRecipe::execute(VPTransformState &State) { 9767 assert(!State.Instance && "Interleave group being replicated."); 9768 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9769 getStoredValues(), getMask()); 9770 } 9771 9772 void VPReductionRecipe::execute(VPTransformState &State) { 9773 assert(!State.Instance && "Reduction being replicated."); 9774 Value *PrevInChain = State.get(getChainOp(), 0); 9775 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9776 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9777 // Propagate the fast-math flags carried by the underlying instruction. 9778 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9779 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9780 for (unsigned Part = 0; Part < State.UF; ++Part) { 9781 Value *NewVecOp = State.get(getVecOp(), Part); 9782 if (VPValue *Cond = getCondOp()) { 9783 Value *NewCond = State.get(Cond, Part); 9784 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9785 Value *Iden = RdxDesc->getRecurrenceIdentity( 9786 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9787 Value *IdenVec = 9788 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9789 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9790 NewVecOp = Select; 9791 } 9792 Value *NewRed; 9793 Value *NextInChain; 9794 if (IsOrdered) { 9795 if (State.VF.isVector()) 9796 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9797 PrevInChain); 9798 else 9799 NewRed = State.Builder.CreateBinOp( 9800 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9801 NewVecOp); 9802 PrevInChain = NewRed; 9803 } else { 9804 PrevInChain = State.get(getChainOp(), Part); 9805 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9806 } 9807 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9808 NextInChain = 9809 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9810 NewRed, PrevInChain); 9811 } else if (IsOrdered) 9812 NextInChain = NewRed; 9813 else 9814 NextInChain = State.Builder.CreateBinOp( 9815 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9816 PrevInChain); 9817 State.set(this, NextInChain, Part); 9818 } 9819 } 9820 9821 void VPReplicateRecipe::execute(VPTransformState &State) { 9822 if (State.Instance) { // Generate a single instance. 9823 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9824 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9825 IsPredicated, State); 9826 // Insert scalar instance packing it into a vector. 9827 if (AlsoPack && State.VF.isVector()) { 9828 // If we're constructing lane 0, initialize to start from poison. 9829 if (State.Instance->Lane.isFirstLane()) { 9830 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9831 Value *Poison = PoisonValue::get( 9832 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9833 State.set(this, Poison, State.Instance->Part); 9834 } 9835 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9836 } 9837 return; 9838 } 9839 9840 // Generate scalar instances for all VF lanes of all UF parts, unless the 9841 // instruction is uniform inwhich case generate only the first lane for each 9842 // of the UF parts. 9843 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9844 assert((!State.VF.isScalable() || IsUniform) && 9845 "Can't scalarize a scalable vector"); 9846 for (unsigned Part = 0; Part < State.UF; ++Part) 9847 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9848 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9849 VPIteration(Part, Lane), IsPredicated, 9850 State); 9851 } 9852 9853 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9854 assert(State.Instance && "Branch on Mask works only on single instance."); 9855 9856 unsigned Part = State.Instance->Part; 9857 unsigned Lane = State.Instance->Lane.getKnownLane(); 9858 9859 Value *ConditionBit = nullptr; 9860 VPValue *BlockInMask = getMask(); 9861 if (BlockInMask) { 9862 ConditionBit = State.get(BlockInMask, Part); 9863 if (ConditionBit->getType()->isVectorTy()) 9864 ConditionBit = State.Builder.CreateExtractElement( 9865 ConditionBit, State.Builder.getInt32(Lane)); 9866 } else // Block in mask is all-one. 9867 ConditionBit = State.Builder.getTrue(); 9868 9869 // Replace the temporary unreachable terminator with a new conditional branch, 9870 // whose two destinations will be set later when they are created. 9871 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9872 assert(isa<UnreachableInst>(CurrentTerminator) && 9873 "Expected to replace unreachable terminator with conditional branch."); 9874 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9875 CondBr->setSuccessor(0, nullptr); 9876 ReplaceInstWithInst(CurrentTerminator, CondBr); 9877 } 9878 9879 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9880 assert(State.Instance && "Predicated instruction PHI works per instance."); 9881 Instruction *ScalarPredInst = 9882 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9883 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9884 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9885 assert(PredicatingBB && "Predicated block has no single predecessor."); 9886 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9887 "operand must be VPReplicateRecipe"); 9888 9889 // By current pack/unpack logic we need to generate only a single phi node: if 9890 // a vector value for the predicated instruction exists at this point it means 9891 // the instruction has vector users only, and a phi for the vector value is 9892 // needed. In this case the recipe of the predicated instruction is marked to 9893 // also do that packing, thereby "hoisting" the insert-element sequence. 9894 // Otherwise, a phi node for the scalar value is needed. 9895 unsigned Part = State.Instance->Part; 9896 if (State.hasVectorValue(getOperand(0), Part)) { 9897 Value *VectorValue = State.get(getOperand(0), Part); 9898 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9899 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9900 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9901 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9902 if (State.hasVectorValue(this, Part)) 9903 State.reset(this, VPhi, Part); 9904 else 9905 State.set(this, VPhi, Part); 9906 // NOTE: Currently we need to update the value of the operand, so the next 9907 // predicated iteration inserts its generated value in the correct vector. 9908 State.reset(getOperand(0), VPhi, Part); 9909 } else { 9910 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9911 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9912 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9913 PredicatingBB); 9914 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9915 if (State.hasScalarValue(this, *State.Instance)) 9916 State.reset(this, Phi, *State.Instance); 9917 else 9918 State.set(this, Phi, *State.Instance); 9919 // NOTE: Currently we need to update the value of the operand, so the next 9920 // predicated iteration inserts its generated value in the correct vector. 9921 State.reset(getOperand(0), Phi, *State.Instance); 9922 } 9923 } 9924 9925 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9926 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9927 9928 // Attempt to issue a wide load. 9929 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9930 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9931 9932 assert((LI || SI) && "Invalid Load/Store instruction"); 9933 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9934 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9935 9936 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9937 9938 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9939 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9940 bool CreateGatherScatter = !Consecutive; 9941 9942 auto &Builder = State.Builder; 9943 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9944 bool isMaskRequired = getMask(); 9945 if (isMaskRequired) 9946 for (unsigned Part = 0; Part < State.UF; ++Part) 9947 BlockInMaskParts[Part] = State.get(getMask(), Part); 9948 9949 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9950 // Calculate the pointer for the specific unroll-part. 9951 GetElementPtrInst *PartPtr = nullptr; 9952 9953 bool InBounds = false; 9954 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9955 InBounds = gep->isInBounds(); 9956 if (Reverse) { 9957 // If the address is consecutive but reversed, then the 9958 // wide store needs to start at the last vector element. 9959 // RunTimeVF = VScale * VF.getKnownMinValue() 9960 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9961 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9962 // NumElt = -Part * RunTimeVF 9963 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9964 // LastLane = 1 - RunTimeVF 9965 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9966 PartPtr = 9967 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9968 PartPtr->setIsInBounds(InBounds); 9969 PartPtr = cast<GetElementPtrInst>( 9970 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9971 PartPtr->setIsInBounds(InBounds); 9972 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9973 BlockInMaskParts[Part] = 9974 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9975 } else { 9976 Value *Increment = 9977 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9978 PartPtr = cast<GetElementPtrInst>( 9979 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9980 PartPtr->setIsInBounds(InBounds); 9981 } 9982 9983 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9984 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9985 }; 9986 9987 // Handle Stores: 9988 if (SI) { 9989 State.ILV->setDebugLocFromInst(SI); 9990 9991 for (unsigned Part = 0; Part < State.UF; ++Part) { 9992 Instruction *NewSI = nullptr; 9993 Value *StoredVal = State.get(StoredValue, Part); 9994 if (CreateGatherScatter) { 9995 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9996 Value *VectorGep = State.get(getAddr(), Part); 9997 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9998 MaskPart); 9999 } else { 10000 if (Reverse) { 10001 // If we store to reverse consecutive memory locations, then we need 10002 // to reverse the order of elements in the stored value. 10003 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 10004 // We don't want to update the value in the map as it might be used in 10005 // another expression. So don't call resetVectorValue(StoredVal). 10006 } 10007 auto *VecPtr = 10008 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10009 if (isMaskRequired) 10010 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 10011 BlockInMaskParts[Part]); 10012 else 10013 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 10014 } 10015 State.ILV->addMetadata(NewSI, SI); 10016 } 10017 return; 10018 } 10019 10020 // Handle loads. 10021 assert(LI && "Must have a load instruction"); 10022 State.ILV->setDebugLocFromInst(LI); 10023 for (unsigned Part = 0; Part < State.UF; ++Part) { 10024 Value *NewLI; 10025 if (CreateGatherScatter) { 10026 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10027 Value *VectorGep = State.get(getAddr(), Part); 10028 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10029 nullptr, "wide.masked.gather"); 10030 State.ILV->addMetadata(NewLI, LI); 10031 } else { 10032 auto *VecPtr = 10033 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10034 if (isMaskRequired) 10035 NewLI = Builder.CreateMaskedLoad( 10036 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10037 PoisonValue::get(DataTy), "wide.masked.load"); 10038 else 10039 NewLI = 10040 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10041 10042 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10043 State.ILV->addMetadata(NewLI, LI); 10044 if (Reverse) 10045 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10046 } 10047 10048 State.set(this, NewLI, Part); 10049 } 10050 } 10051 10052 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10053 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10054 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10055 // for predication. 10056 static ScalarEpilogueLowering getScalarEpilogueLowering( 10057 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10058 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10059 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10060 LoopVectorizationLegality &LVL) { 10061 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10062 // don't look at hints or options, and don't request a scalar epilogue. 10063 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10064 // LoopAccessInfo (due to code dependency and not being able to reliably get 10065 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10066 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10067 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10068 // back to the old way and vectorize with versioning when forced. See D81345.) 10069 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10070 PGSOQueryType::IRPass) && 10071 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10072 return CM_ScalarEpilogueNotAllowedOptSize; 10073 10074 // 2) If set, obey the directives 10075 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10076 switch (PreferPredicateOverEpilogue) { 10077 case PreferPredicateTy::ScalarEpilogue: 10078 return CM_ScalarEpilogueAllowed; 10079 case PreferPredicateTy::PredicateElseScalarEpilogue: 10080 return CM_ScalarEpilogueNotNeededUsePredicate; 10081 case PreferPredicateTy::PredicateOrDontVectorize: 10082 return CM_ScalarEpilogueNotAllowedUsePredicate; 10083 }; 10084 } 10085 10086 // 3) If set, obey the hints 10087 switch (Hints.getPredicate()) { 10088 case LoopVectorizeHints::FK_Enabled: 10089 return CM_ScalarEpilogueNotNeededUsePredicate; 10090 case LoopVectorizeHints::FK_Disabled: 10091 return CM_ScalarEpilogueAllowed; 10092 }; 10093 10094 // 4) if the TTI hook indicates this is profitable, request predication. 10095 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10096 LVL.getLAI())) 10097 return CM_ScalarEpilogueNotNeededUsePredicate; 10098 10099 return CM_ScalarEpilogueAllowed; 10100 } 10101 10102 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10103 // If Values have been set for this Def return the one relevant for \p Part. 10104 if (hasVectorValue(Def, Part)) 10105 return Data.PerPartOutput[Def][Part]; 10106 10107 if (!hasScalarValue(Def, {Part, 0})) { 10108 Value *IRV = Def->getLiveInIRValue(); 10109 Value *B = ILV->getBroadcastInstrs(IRV); 10110 set(Def, B, Part); 10111 return B; 10112 } 10113 10114 Value *ScalarValue = get(Def, {Part, 0}); 10115 // If we aren't vectorizing, we can just copy the scalar map values over 10116 // to the vector map. 10117 if (VF.isScalar()) { 10118 set(Def, ScalarValue, Part); 10119 return ScalarValue; 10120 } 10121 10122 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10123 bool IsUniform = RepR && RepR->isUniform(); 10124 10125 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10126 // Check if there is a scalar value for the selected lane. 10127 if (!hasScalarValue(Def, {Part, LastLane})) { 10128 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10129 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) || 10130 isa<VPScalarIVStepsRecipe>(Def->getDef())) && 10131 "unexpected recipe found to be invariant"); 10132 IsUniform = true; 10133 LastLane = 0; 10134 } 10135 10136 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10137 // Set the insert point after the last scalarized instruction or after the 10138 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10139 // will directly follow the scalar definitions. 10140 auto OldIP = Builder.saveIP(); 10141 auto NewIP = 10142 isa<PHINode>(LastInst) 10143 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10144 : std::next(BasicBlock::iterator(LastInst)); 10145 Builder.SetInsertPoint(&*NewIP); 10146 10147 // However, if we are vectorizing, we need to construct the vector values. 10148 // If the value is known to be uniform after vectorization, we can just 10149 // broadcast the scalar value corresponding to lane zero for each unroll 10150 // iteration. Otherwise, we construct the vector values using 10151 // insertelement instructions. Since the resulting vectors are stored in 10152 // State, we will only generate the insertelements once. 10153 Value *VectorValue = nullptr; 10154 if (IsUniform) { 10155 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10156 set(Def, VectorValue, Part); 10157 } else { 10158 // Initialize packing with insertelements to start from undef. 10159 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10160 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10161 set(Def, Undef, Part); 10162 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10163 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10164 VectorValue = get(Def, Part); 10165 } 10166 Builder.restoreIP(OldIP); 10167 return VectorValue; 10168 } 10169 10170 // Process the loop in the VPlan-native vectorization path. This path builds 10171 // VPlan upfront in the vectorization pipeline, which allows to apply 10172 // VPlan-to-VPlan transformations from the very beginning without modifying the 10173 // input LLVM IR. 10174 static bool processLoopInVPlanNativePath( 10175 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10176 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10177 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10178 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10179 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10180 LoopVectorizationRequirements &Requirements) { 10181 10182 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10183 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10184 return false; 10185 } 10186 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10187 Function *F = L->getHeader()->getParent(); 10188 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10189 10190 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10191 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10192 10193 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10194 &Hints, IAI); 10195 // Use the planner for outer loop vectorization. 10196 // TODO: CM is not used at this point inside the planner. Turn CM into an 10197 // optional argument if we don't need it in the future. 10198 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10199 Requirements, ORE); 10200 10201 // Get user vectorization factor. 10202 ElementCount UserVF = Hints.getWidth(); 10203 10204 CM.collectElementTypesForWidening(); 10205 10206 // Plan how to best vectorize, return the best VF and its cost. 10207 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10208 10209 // If we are stress testing VPlan builds, do not attempt to generate vector 10210 // code. Masked vector code generation support will follow soon. 10211 // Also, do not attempt to vectorize if no vector code will be produced. 10212 if (VPlanBuildStressTest || EnableVPlanPredication || 10213 VectorizationFactor::Disabled() == VF) 10214 return false; 10215 10216 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10217 10218 { 10219 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10220 F->getParent()->getDataLayout()); 10221 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10222 &CM, BFI, PSI, Checks); 10223 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10224 << L->getHeader()->getParent()->getName() << "\"\n"); 10225 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10226 } 10227 10228 // Mark the loop as already vectorized to avoid vectorizing again. 10229 Hints.setAlreadyVectorized(); 10230 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10231 return true; 10232 } 10233 10234 // Emit a remark if there are stores to floats that required a floating point 10235 // extension. If the vectorized loop was generated with floating point there 10236 // will be a performance penalty from the conversion overhead and the change in 10237 // the vector width. 10238 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10239 SmallVector<Instruction *, 4> Worklist; 10240 for (BasicBlock *BB : L->getBlocks()) { 10241 for (Instruction &Inst : *BB) { 10242 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10243 if (S->getValueOperand()->getType()->isFloatTy()) 10244 Worklist.push_back(S); 10245 } 10246 } 10247 } 10248 10249 // Traverse the floating point stores upwards searching, for floating point 10250 // conversions. 10251 SmallPtrSet<const Instruction *, 4> Visited; 10252 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10253 while (!Worklist.empty()) { 10254 auto *I = Worklist.pop_back_val(); 10255 if (!L->contains(I)) 10256 continue; 10257 if (!Visited.insert(I).second) 10258 continue; 10259 10260 // Emit a remark if the floating point store required a floating 10261 // point conversion. 10262 // TODO: More work could be done to identify the root cause such as a 10263 // constant or a function return type and point the user to it. 10264 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10265 ORE->emit([&]() { 10266 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10267 I->getDebugLoc(), L->getHeader()) 10268 << "floating point conversion changes vector width. " 10269 << "Mixed floating point precision requires an up/down " 10270 << "cast that will negatively impact performance."; 10271 }); 10272 10273 for (Use &Op : I->operands()) 10274 if (auto *OpI = dyn_cast<Instruction>(Op)) 10275 Worklist.push_back(OpI); 10276 } 10277 } 10278 10279 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10280 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10281 !EnableLoopInterleaving), 10282 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10283 !EnableLoopVectorization) {} 10284 10285 bool LoopVectorizePass::processLoop(Loop *L) { 10286 assert((EnableVPlanNativePath || L->isInnermost()) && 10287 "VPlan-native path is not enabled. Only process inner loops."); 10288 10289 #ifndef NDEBUG 10290 const std::string DebugLocStr = getDebugLocString(L); 10291 #endif /* NDEBUG */ 10292 10293 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10294 << L->getHeader()->getParent()->getName() << "' from " 10295 << DebugLocStr << "\n"); 10296 10297 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10298 10299 LLVM_DEBUG( 10300 dbgs() << "LV: Loop hints:" 10301 << " force=" 10302 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10303 ? "disabled" 10304 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10305 ? "enabled" 10306 : "?")) 10307 << " width=" << Hints.getWidth() 10308 << " interleave=" << Hints.getInterleave() << "\n"); 10309 10310 // Function containing loop 10311 Function *F = L->getHeader()->getParent(); 10312 10313 // Looking at the diagnostic output is the only way to determine if a loop 10314 // was vectorized (other than looking at the IR or machine code), so it 10315 // is important to generate an optimization remark for each loop. Most of 10316 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10317 // generated as OptimizationRemark and OptimizationRemarkMissed are 10318 // less verbose reporting vectorized loops and unvectorized loops that may 10319 // benefit from vectorization, respectively. 10320 10321 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10322 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10323 return false; 10324 } 10325 10326 PredicatedScalarEvolution PSE(*SE, *L); 10327 10328 // Check if it is legal to vectorize the loop. 10329 LoopVectorizationRequirements Requirements; 10330 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10331 &Requirements, &Hints, DB, AC, BFI, PSI); 10332 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10333 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10334 Hints.emitRemarkWithHints(); 10335 return false; 10336 } 10337 10338 // Check the function attributes and profiles to find out if this function 10339 // should be optimized for size. 10340 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10341 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10342 10343 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10344 // here. They may require CFG and instruction level transformations before 10345 // even evaluating whether vectorization is profitable. Since we cannot modify 10346 // the incoming IR, we need to build VPlan upfront in the vectorization 10347 // pipeline. 10348 if (!L->isInnermost()) 10349 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10350 ORE, BFI, PSI, Hints, Requirements); 10351 10352 assert(L->isInnermost() && "Inner loop expected."); 10353 10354 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10355 // count by optimizing for size, to minimize overheads. 10356 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10357 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10358 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10359 << "This loop is worth vectorizing only if no scalar " 10360 << "iteration overheads are incurred."); 10361 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10362 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10363 else { 10364 LLVM_DEBUG(dbgs() << "\n"); 10365 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10366 } 10367 } 10368 10369 // Check the function attributes to see if implicit floats are allowed. 10370 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10371 // an integer loop and the vector instructions selected are purely integer 10372 // vector instructions? 10373 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10374 reportVectorizationFailure( 10375 "Can't vectorize when the NoImplicitFloat attribute is used", 10376 "loop not vectorized due to NoImplicitFloat attribute", 10377 "NoImplicitFloat", ORE, L); 10378 Hints.emitRemarkWithHints(); 10379 return false; 10380 } 10381 10382 // Check if the target supports potentially unsafe FP vectorization. 10383 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10384 // for the target we're vectorizing for, to make sure none of the 10385 // additional fp-math flags can help. 10386 if (Hints.isPotentiallyUnsafe() && 10387 TTI->isFPVectorizationPotentiallyUnsafe()) { 10388 reportVectorizationFailure( 10389 "Potentially unsafe FP op prevents vectorization", 10390 "loop not vectorized due to unsafe FP support.", 10391 "UnsafeFP", ORE, L); 10392 Hints.emitRemarkWithHints(); 10393 return false; 10394 } 10395 10396 bool AllowOrderedReductions; 10397 // If the flag is set, use that instead and override the TTI behaviour. 10398 if (ForceOrderedReductions.getNumOccurrences() > 0) 10399 AllowOrderedReductions = ForceOrderedReductions; 10400 else 10401 AllowOrderedReductions = TTI->enableOrderedReductions(); 10402 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10403 ORE->emit([&]() { 10404 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10405 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10406 ExactFPMathInst->getDebugLoc(), 10407 ExactFPMathInst->getParent()) 10408 << "loop not vectorized: cannot prove it is safe to reorder " 10409 "floating-point operations"; 10410 }); 10411 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10412 "reorder floating-point operations\n"); 10413 Hints.emitRemarkWithHints(); 10414 return false; 10415 } 10416 10417 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10418 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10419 10420 // If an override option has been passed in for interleaved accesses, use it. 10421 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10422 UseInterleaved = EnableInterleavedMemAccesses; 10423 10424 // Analyze interleaved memory accesses. 10425 if (UseInterleaved) { 10426 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10427 } 10428 10429 // Use the cost model. 10430 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10431 F, &Hints, IAI); 10432 CM.collectValuesToIgnore(); 10433 CM.collectElementTypesForWidening(); 10434 10435 // Use the planner for vectorization. 10436 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10437 Requirements, ORE); 10438 10439 // Get user vectorization factor and interleave count. 10440 ElementCount UserVF = Hints.getWidth(); 10441 unsigned UserIC = Hints.getInterleave(); 10442 10443 // Plan how to best vectorize, return the best VF and its cost. 10444 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10445 10446 VectorizationFactor VF = VectorizationFactor::Disabled(); 10447 unsigned IC = 1; 10448 10449 if (MaybeVF) { 10450 VF = *MaybeVF; 10451 // Select the interleave count. 10452 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10453 } 10454 10455 // Identify the diagnostic messages that should be produced. 10456 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10457 bool VectorizeLoop = true, InterleaveLoop = true; 10458 if (VF.Width.isScalar()) { 10459 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10460 VecDiagMsg = std::make_pair( 10461 "VectorizationNotBeneficial", 10462 "the cost-model indicates that vectorization is not beneficial"); 10463 VectorizeLoop = false; 10464 } 10465 10466 if (!MaybeVF && UserIC > 1) { 10467 // Tell the user interleaving was avoided up-front, despite being explicitly 10468 // requested. 10469 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10470 "interleaving should be avoided up front\n"); 10471 IntDiagMsg = std::make_pair( 10472 "InterleavingAvoided", 10473 "Ignoring UserIC, because interleaving was avoided up front"); 10474 InterleaveLoop = false; 10475 } else if (IC == 1 && UserIC <= 1) { 10476 // Tell the user interleaving is not beneficial. 10477 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10478 IntDiagMsg = std::make_pair( 10479 "InterleavingNotBeneficial", 10480 "the cost-model indicates that interleaving is not beneficial"); 10481 InterleaveLoop = false; 10482 if (UserIC == 1) { 10483 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10484 IntDiagMsg.second += 10485 " and is explicitly disabled or interleave count is set to 1"; 10486 } 10487 } else if (IC > 1 && UserIC == 1) { 10488 // Tell the user interleaving is beneficial, but it explicitly disabled. 10489 LLVM_DEBUG( 10490 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10491 IntDiagMsg = std::make_pair( 10492 "InterleavingBeneficialButDisabled", 10493 "the cost-model indicates that interleaving is beneficial " 10494 "but is explicitly disabled or interleave count is set to 1"); 10495 InterleaveLoop = false; 10496 } 10497 10498 // Override IC if user provided an interleave count. 10499 IC = UserIC > 0 ? UserIC : IC; 10500 10501 // Emit diagnostic messages, if any. 10502 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10503 if (!VectorizeLoop && !InterleaveLoop) { 10504 // Do not vectorize or interleaving the loop. 10505 ORE->emit([&]() { 10506 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10507 L->getStartLoc(), L->getHeader()) 10508 << VecDiagMsg.second; 10509 }); 10510 ORE->emit([&]() { 10511 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10512 L->getStartLoc(), L->getHeader()) 10513 << IntDiagMsg.second; 10514 }); 10515 return false; 10516 } else if (!VectorizeLoop && InterleaveLoop) { 10517 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10518 ORE->emit([&]() { 10519 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10520 L->getStartLoc(), L->getHeader()) 10521 << VecDiagMsg.second; 10522 }); 10523 } else if (VectorizeLoop && !InterleaveLoop) { 10524 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10525 << ") in " << DebugLocStr << '\n'); 10526 ORE->emit([&]() { 10527 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10528 L->getStartLoc(), L->getHeader()) 10529 << IntDiagMsg.second; 10530 }); 10531 } else if (VectorizeLoop && InterleaveLoop) { 10532 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10533 << ") in " << DebugLocStr << '\n'); 10534 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10535 } 10536 10537 bool DisableRuntimeUnroll = false; 10538 MDNode *OrigLoopID = L->getLoopID(); 10539 { 10540 // Optimistically generate runtime checks. Drop them if they turn out to not 10541 // be profitable. Limit the scope of Checks, so the cleanup happens 10542 // immediately after vector codegeneration is done. 10543 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10544 F->getParent()->getDataLayout()); 10545 if (!VF.Width.isScalar() || IC > 1) 10546 Checks.Create(L, *LVL.getLAI(), PSE.getPredicate()); 10547 10548 using namespace ore; 10549 if (!VectorizeLoop) { 10550 assert(IC > 1 && "interleave count should not be 1 or 0"); 10551 // If we decided that it is not legal to vectorize the loop, then 10552 // interleave it. 10553 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10554 &CM, BFI, PSI, Checks); 10555 10556 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10557 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10558 10559 ORE->emit([&]() { 10560 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10561 L->getHeader()) 10562 << "interleaved loop (interleaved count: " 10563 << NV("InterleaveCount", IC) << ")"; 10564 }); 10565 } else { 10566 // If we decided that it is *legal* to vectorize the loop, then do it. 10567 10568 // Consider vectorizing the epilogue too if it's profitable. 10569 VectorizationFactor EpilogueVF = 10570 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10571 if (EpilogueVF.Width.isVector()) { 10572 10573 // The first pass vectorizes the main loop and creates a scalar epilogue 10574 // to be vectorized by executing the plan (potentially with a different 10575 // factor) again shortly afterwards. 10576 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10577 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10578 EPI, &LVL, &CM, BFI, PSI, Checks); 10579 10580 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10581 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10582 DT); 10583 ++LoopsVectorized; 10584 10585 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10586 formLCSSARecursively(*L, *DT, LI, SE); 10587 10588 // Second pass vectorizes the epilogue and adjusts the control flow 10589 // edges from the first pass. 10590 EPI.MainLoopVF = EPI.EpilogueVF; 10591 EPI.MainLoopUF = EPI.EpilogueUF; 10592 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10593 ORE, EPI, &LVL, &CM, BFI, PSI, 10594 Checks); 10595 10596 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10597 10598 // Ensure that the start values for any VPReductionPHIRecipes are 10599 // updated before vectorising the epilogue loop. 10600 VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock(); 10601 for (VPRecipeBase &R : Header->phis()) { 10602 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10603 if (auto *Resume = MainILV.getReductionResumeValue( 10604 ReductionPhi->getRecurrenceDescriptor())) { 10605 VPValue *StartVal = new VPValue(Resume); 10606 BestEpiPlan.addExternalDef(StartVal); 10607 ReductionPhi->setOperand(0, StartVal); 10608 } 10609 } 10610 } 10611 10612 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10613 DT); 10614 ++LoopsEpilogueVectorized; 10615 10616 if (!MainILV.areSafetyChecksAdded()) 10617 DisableRuntimeUnroll = true; 10618 } else { 10619 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10620 &LVL, &CM, BFI, PSI, Checks); 10621 10622 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10623 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10624 ++LoopsVectorized; 10625 10626 // Add metadata to disable runtime unrolling a scalar loop when there 10627 // are no runtime checks about strides and memory. A scalar loop that is 10628 // rarely used is not worth unrolling. 10629 if (!LB.areSafetyChecksAdded()) 10630 DisableRuntimeUnroll = true; 10631 } 10632 // Report the vectorization decision. 10633 ORE->emit([&]() { 10634 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10635 L->getHeader()) 10636 << "vectorized loop (vectorization width: " 10637 << NV("VectorizationFactor", VF.Width) 10638 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10639 }); 10640 } 10641 10642 if (ORE->allowExtraAnalysis(LV_NAME)) 10643 checkMixedPrecision(L, ORE); 10644 } 10645 10646 Optional<MDNode *> RemainderLoopID = 10647 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10648 LLVMLoopVectorizeFollowupEpilogue}); 10649 if (RemainderLoopID.hasValue()) { 10650 L->setLoopID(RemainderLoopID.getValue()); 10651 } else { 10652 if (DisableRuntimeUnroll) 10653 AddRuntimeUnrollDisableMetaData(L); 10654 10655 // Mark the loop as already vectorized to avoid vectorizing again. 10656 Hints.setAlreadyVectorized(); 10657 } 10658 10659 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10660 return true; 10661 } 10662 10663 LoopVectorizeResult LoopVectorizePass::runImpl( 10664 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10665 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10666 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10667 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10668 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10669 SE = &SE_; 10670 LI = &LI_; 10671 TTI = &TTI_; 10672 DT = &DT_; 10673 BFI = &BFI_; 10674 TLI = TLI_; 10675 AA = &AA_; 10676 AC = &AC_; 10677 GetLAA = &GetLAA_; 10678 DB = &DB_; 10679 ORE = &ORE_; 10680 PSI = PSI_; 10681 10682 // Don't attempt if 10683 // 1. the target claims to have no vector registers, and 10684 // 2. interleaving won't help ILP. 10685 // 10686 // The second condition is necessary because, even if the target has no 10687 // vector registers, loop vectorization may still enable scalar 10688 // interleaving. 10689 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10690 TTI->getMaxInterleaveFactor(1) < 2) 10691 return LoopVectorizeResult(false, false); 10692 10693 bool Changed = false, CFGChanged = false; 10694 10695 // The vectorizer requires loops to be in simplified form. 10696 // Since simplification may add new inner loops, it has to run before the 10697 // legality and profitability checks. This means running the loop vectorizer 10698 // will simplify all loops, regardless of whether anything end up being 10699 // vectorized. 10700 for (auto &L : *LI) 10701 Changed |= CFGChanged |= 10702 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10703 10704 // Build up a worklist of inner-loops to vectorize. This is necessary as 10705 // the act of vectorizing or partially unrolling a loop creates new loops 10706 // and can invalidate iterators across the loops. 10707 SmallVector<Loop *, 8> Worklist; 10708 10709 for (Loop *L : *LI) 10710 collectSupportedLoops(*L, LI, ORE, Worklist); 10711 10712 LoopsAnalyzed += Worklist.size(); 10713 10714 // Now walk the identified inner loops. 10715 while (!Worklist.empty()) { 10716 Loop *L = Worklist.pop_back_val(); 10717 10718 // For the inner loops we actually process, form LCSSA to simplify the 10719 // transform. 10720 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10721 10722 Changed |= CFGChanged |= processLoop(L); 10723 } 10724 10725 // Process each loop nest in the function. 10726 return LoopVectorizeResult(Changed, CFGChanged); 10727 } 10728 10729 PreservedAnalyses LoopVectorizePass::run(Function &F, 10730 FunctionAnalysisManager &AM) { 10731 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10732 auto &LI = AM.getResult<LoopAnalysis>(F); 10733 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10734 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10735 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10736 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10737 auto &AA = AM.getResult<AAManager>(F); 10738 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10739 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10740 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10741 10742 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10743 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10744 [&](Loop &L) -> const LoopAccessInfo & { 10745 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10746 TLI, TTI, nullptr, nullptr, nullptr}; 10747 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10748 }; 10749 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10750 ProfileSummaryInfo *PSI = 10751 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10752 LoopVectorizeResult Result = 10753 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10754 if (!Result.MadeAnyChange) 10755 return PreservedAnalyses::all(); 10756 PreservedAnalyses PA; 10757 10758 // We currently do not preserve loopinfo/dominator analyses with outer loop 10759 // vectorization. Until this is addressed, mark these analyses as preserved 10760 // only for non-VPlan-native path. 10761 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10762 if (!EnableVPlanNativePath) { 10763 PA.preserve<LoopAnalysis>(); 10764 PA.preserve<DominatorTreeAnalysis>(); 10765 } 10766 10767 if (Result.MadeCFGChange) { 10768 // Making CFG changes likely means a loop got vectorized. Indicate that 10769 // extra simplification passes should be run. 10770 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10771 // be run if runtime checks have been added. 10772 AM.getResult<ShouldRunExtraVectorPasses>(F); 10773 PA.preserve<ShouldRunExtraVectorPasses>(); 10774 } else { 10775 PA.preserveSet<CFGAnalyses>(); 10776 } 10777 return PA; 10778 } 10779 10780 void LoopVectorizePass::printPipeline( 10781 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10782 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10783 OS, MapClassName2PassName); 10784 10785 OS << "<"; 10786 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10787 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10788 OS << ">"; 10789 } 10790