1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanHCFGTransforms.h" 62 #include "VPlanPredicator.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpander.h" 95 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 96 #include "llvm/Analysis/TargetLibraryInfo.h" 97 #include "llvm/Analysis/TargetTransformInfo.h" 98 #include "llvm/Analysis/VectorUtils.h" 99 #include "llvm/IR/Attributes.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/CFG.h" 102 #include "llvm/IR/Constant.h" 103 #include "llvm/IR/Constants.h" 104 #include "llvm/IR/DataLayout.h" 105 #include "llvm/IR/DebugInfoMetadata.h" 106 #include "llvm/IR/DebugLoc.h" 107 #include "llvm/IR/DerivedTypes.h" 108 #include "llvm/IR/DiagnosticInfo.h" 109 #include "llvm/IR/Dominators.h" 110 #include "llvm/IR/Function.h" 111 #include "llvm/IR/IRBuilder.h" 112 #include "llvm/IR/InstrTypes.h" 113 #include "llvm/IR/Instruction.h" 114 #include "llvm/IR/Instructions.h" 115 #include "llvm/IR/IntrinsicInst.h" 116 #include "llvm/IR/Intrinsics.h" 117 #include "llvm/IR/LLVMContext.h" 118 #include "llvm/IR/Metadata.h" 119 #include "llvm/IR/Module.h" 120 #include "llvm/IR/Operator.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/LoopSimplify.h" 137 #include "llvm/Transforms/Utils/LoopUtils.h" 138 #include "llvm/Transforms/Utils/LoopVersioning.h" 139 #include "llvm/Transforms/Utils/SizeOpts.h" 140 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 141 #include <algorithm> 142 #include <cassert> 143 #include <cstdint> 144 #include <cstdlib> 145 #include <functional> 146 #include <iterator> 147 #include <limits> 148 #include <memory> 149 #include <string> 150 #include <tuple> 151 #include <utility> 152 #include <vector> 153 154 using namespace llvm; 155 156 #define LV_NAME "loop-vectorize" 157 #define DEBUG_TYPE LV_NAME 158 159 /// @{ 160 /// Metadata attribute names 161 static const char *const LLVMLoopVectorizeFollowupAll = 162 "llvm.loop.vectorize.followup_all"; 163 static const char *const LLVMLoopVectorizeFollowupVectorized = 164 "llvm.loop.vectorize.followup_vectorized"; 165 static const char *const LLVMLoopVectorizeFollowupEpilogue = 166 "llvm.loop.vectorize.followup_epilogue"; 167 /// @} 168 169 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 170 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 171 172 /// Loops with a known constant trip count below this number are vectorized only 173 /// if no scalar iteration overheads are incurred. 174 static cl::opt<unsigned> TinyTripCountVectorThreshold( 175 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 176 cl::desc("Loops with a constant trip count that is smaller than this " 177 "value are vectorized only if no scalar iteration overheads " 178 "are incurred.")); 179 180 static cl::opt<bool> MaximizeBandwidth( 181 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 182 cl::desc("Maximize bandwidth when selecting vectorization factor which " 183 "will be determined by the smallest type in loop.")); 184 185 static cl::opt<bool> EnableInterleavedMemAccesses( 186 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 187 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 188 189 /// An interleave-group may need masking if it resides in a block that needs 190 /// predication, or in order to mask away gaps. 191 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 192 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 193 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 194 195 /// We don't interleave loops with a known constant trip count below this 196 /// number. 197 static const unsigned TinyTripCountInterleaveThreshold = 128; 198 199 static cl::opt<unsigned> ForceTargetNumScalarRegs( 200 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 201 cl::desc("A flag that overrides the target's number of scalar registers.")); 202 203 static cl::opt<unsigned> ForceTargetNumVectorRegs( 204 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 205 cl::desc("A flag that overrides the target's number of vector registers.")); 206 207 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 208 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 209 cl::desc("A flag that overrides the target's max interleave factor for " 210 "scalar loops.")); 211 212 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 213 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 214 cl::desc("A flag that overrides the target's max interleave factor for " 215 "vectorized loops.")); 216 217 static cl::opt<unsigned> ForceTargetInstructionCost( 218 "force-target-instruction-cost", cl::init(0), cl::Hidden, 219 cl::desc("A flag that overrides the target's expected cost for " 220 "an instruction to a single constant value. Mostly " 221 "useful for getting consistent testing.")); 222 223 static cl::opt<unsigned> SmallLoopCost( 224 "small-loop-cost", cl::init(20), cl::Hidden, 225 cl::desc( 226 "The cost of a loop that is considered 'small' by the interleaver.")); 227 228 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 229 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 230 cl::desc("Enable the use of the block frequency analysis to access PGO " 231 "heuristics minimizing code growth in cold regions and being more " 232 "aggressive in hot regions.")); 233 234 // Runtime interleave loops for load/store throughput. 235 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 236 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 237 cl::desc( 238 "Enable runtime interleaving until load/store ports are saturated")); 239 240 /// The number of stores in a loop that are allowed to need predication. 241 static cl::opt<unsigned> NumberOfStoresToPredicate( 242 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 243 cl::desc("Max number of stores to be predicated behind an if.")); 244 245 static cl::opt<bool> EnableIndVarRegisterHeur( 246 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 247 cl::desc("Count the induction variable only once when interleaving")); 248 249 static cl::opt<bool> EnableCondStoresVectorization( 250 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 251 cl::desc("Enable if predication of stores during vectorization.")); 252 253 static cl::opt<unsigned> MaxNestedScalarReductionIC( 254 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 255 cl::desc("The maximum interleave count to use when interleaving a scalar " 256 "reduction in a nested loop.")); 257 258 cl::opt<bool> EnableVPlanNativePath( 259 "enable-vplan-native-path", cl::init(false), cl::Hidden, 260 cl::desc("Enable VPlan-native vectorization path with " 261 "support for outer loop vectorization.")); 262 263 // FIXME: Remove this switch once we have divergence analysis. Currently we 264 // assume divergent non-backedge branches when this switch is true. 265 cl::opt<bool> EnableVPlanPredication( 266 "enable-vplan-predication", cl::init(false), cl::Hidden, 267 cl::desc("Enable VPlan-native vectorization path predicator with " 268 "support for outer loop vectorization.")); 269 270 // This flag enables the stress testing of the VPlan H-CFG construction in the 271 // VPlan-native vectorization path. It must be used in conjuction with 272 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 273 // verification of the H-CFGs built. 274 static cl::opt<bool> VPlanBuildStressTest( 275 "vplan-build-stress-test", cl::init(false), cl::Hidden, 276 cl::desc( 277 "Build VPlan for every supported loop nest in the function and bail " 278 "out right after the build (stress test the VPlan H-CFG construction " 279 "in the VPlan-native vectorization path).")); 280 281 cl::opt<bool> llvm::EnableLoopInterleaving( 282 "interleave-loops", cl::init(true), cl::Hidden, 283 cl::desc("Enable loop interleaving in Loop vectorization passes")); 284 cl::opt<bool> llvm::EnableLoopVectorization( 285 "vectorize-loops", cl::init(true), cl::Hidden, 286 cl::desc("Run the Loop vectorization passes")); 287 288 /// A helper function for converting Scalar types to vector types. 289 /// If the incoming type is void, we return void. If the VF is 1, we return 290 /// the scalar type. 291 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 292 if (Scalar->isVoidTy() || VF == 1) 293 return Scalar; 294 return VectorType::get(Scalar, VF); 295 } 296 297 /// A helper function that returns the type of loaded or stored value. 298 static Type *getMemInstValueType(Value *I) { 299 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 300 "Expected Load or Store instruction"); 301 if (auto *LI = dyn_cast<LoadInst>(I)) 302 return LI->getType(); 303 return cast<StoreInst>(I)->getValueOperand()->getType(); 304 } 305 306 /// A helper function that returns true if the given type is irregular. The 307 /// type is irregular if its allocated size doesn't equal the store size of an 308 /// element of the corresponding vector type at the given vectorization factor. 309 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 310 // Determine if an array of VF elements of type Ty is "bitcast compatible" 311 // with a <VF x Ty> vector. 312 if (VF > 1) { 313 auto *VectorTy = VectorType::get(Ty, VF); 314 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 315 } 316 317 // If the vectorization factor is one, we just check if an array of type Ty 318 // requires padding between elements. 319 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 320 } 321 322 /// A helper function that returns the reciprocal of the block probability of 323 /// predicated blocks. If we return X, we are assuming the predicated block 324 /// will execute once for every X iterations of the loop header. 325 /// 326 /// TODO: We should use actual block probability here, if available. Currently, 327 /// we always assume predicated blocks have a 50% chance of executing. 328 static unsigned getReciprocalPredBlockProb() { return 2; } 329 330 /// A helper function that adds a 'fast' flag to floating-point operations. 331 static Value *addFastMathFlag(Value *V) { 332 if (isa<FPMathOperator>(V)) 333 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 334 return V; 335 } 336 337 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 338 if (isa<FPMathOperator>(V)) 339 cast<Instruction>(V)->setFastMathFlags(FMF); 340 return V; 341 } 342 343 /// A helper function that returns an integer or floating-point constant with 344 /// value C. 345 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 346 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 347 : ConstantFP::get(Ty, C); 348 } 349 350 namespace llvm { 351 352 /// InnerLoopVectorizer vectorizes loops which contain only one basic 353 /// block to a specified vectorization factor (VF). 354 /// This class performs the widening of scalars into vectors, or multiple 355 /// scalars. This class also implements the following features: 356 /// * It inserts an epilogue loop for handling loops that don't have iteration 357 /// counts that are known to be a multiple of the vectorization factor. 358 /// * It handles the code generation for reduction variables. 359 /// * Scalarization (implementation using scalars) of un-vectorizable 360 /// instructions. 361 /// InnerLoopVectorizer does not perform any vectorization-legality 362 /// checks, and relies on the caller to check for the different legality 363 /// aspects. The InnerLoopVectorizer relies on the 364 /// LoopVectorizationLegality class to provide information about the induction 365 /// and reduction variables that were found to a given vectorization factor. 366 class InnerLoopVectorizer { 367 public: 368 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 369 LoopInfo *LI, DominatorTree *DT, 370 const TargetLibraryInfo *TLI, 371 const TargetTransformInfo *TTI, AssumptionCache *AC, 372 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 373 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 374 LoopVectorizationCostModel *CM) 375 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 376 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 377 Builder(PSE.getSE()->getContext()), 378 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 379 virtual ~InnerLoopVectorizer() = default; 380 381 /// Create a new empty loop. Unlink the old loop and connect the new one. 382 /// Return the pre-header block of the new loop. 383 BasicBlock *createVectorizedLoopSkeleton(); 384 385 /// Widen a single instruction within the innermost loop. 386 void widenInstruction(Instruction &I); 387 388 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 389 void fixVectorizedLoop(); 390 391 // Return true if any runtime check is added. 392 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 393 394 /// A type for vectorized values in the new loop. Each value from the 395 /// original loop, when vectorized, is represented by UF vector values in the 396 /// new unrolled loop, where UF is the unroll factor. 397 using VectorParts = SmallVector<Value *, 2>; 398 399 /// Vectorize a single PHINode in a block. This method handles the induction 400 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 401 /// arbitrary length vectors. 402 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 403 404 /// A helper function to scalarize a single Instruction in the innermost loop. 405 /// Generates a sequence of scalar instances for each lane between \p MinLane 406 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 407 /// inclusive.. 408 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 409 bool IfPredicateInstr); 410 411 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 412 /// is provided, the integer induction variable will first be truncated to 413 /// the corresponding type. 414 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 415 416 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 417 /// vector or scalar value on-demand if one is not yet available. When 418 /// vectorizing a loop, we visit the definition of an instruction before its 419 /// uses. When visiting the definition, we either vectorize or scalarize the 420 /// instruction, creating an entry for it in the corresponding map. (In some 421 /// cases, such as induction variables, we will create both vector and scalar 422 /// entries.) Then, as we encounter uses of the definition, we derive values 423 /// for each scalar or vector use unless such a value is already available. 424 /// For example, if we scalarize a definition and one of its uses is vector, 425 /// we build the required vector on-demand with an insertelement sequence 426 /// when visiting the use. Otherwise, if the use is scalar, we can use the 427 /// existing scalar definition. 428 /// 429 /// Return a value in the new loop corresponding to \p V from the original 430 /// loop at unroll index \p Part. If the value has already been vectorized, 431 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 432 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 433 /// a new vector value on-demand by inserting the scalar values into a vector 434 /// with an insertelement sequence. If the value has been neither vectorized 435 /// nor scalarized, it must be loop invariant, so we simply broadcast the 436 /// value into a vector. 437 Value *getOrCreateVectorValue(Value *V, unsigned Part); 438 439 /// Return a value in the new loop corresponding to \p V from the original 440 /// loop at unroll and vector indices \p Instance. If the value has been 441 /// vectorized but not scalarized, the necessary extractelement instruction 442 /// will be generated. 443 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 444 445 /// Construct the vector value of a scalarized value \p V one lane at a time. 446 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 447 448 /// Try to vectorize the interleaved access group that \p Instr belongs to, 449 /// optionally masking the vector operations if \p BlockInMask is non-null. 450 void vectorizeInterleaveGroup(Instruction *Instr, 451 VectorParts *BlockInMask = nullptr); 452 453 /// Vectorize Load and Store instructions, optionally masking the vector 454 /// operations if \p BlockInMask is non-null. 455 void vectorizeMemoryInstruction(Instruction *Instr, 456 VectorParts *BlockInMask = nullptr); 457 458 /// Set the debug location in the builder using the debug location in 459 /// the instruction. 460 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 461 462 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 463 void fixNonInductionPHIs(void); 464 465 protected: 466 friend class LoopVectorizationPlanner; 467 468 /// A small list of PHINodes. 469 using PhiVector = SmallVector<PHINode *, 4>; 470 471 /// A type for scalarized values in the new loop. Each value from the 472 /// original loop, when scalarized, is represented by UF x VF scalar values 473 /// in the new unrolled loop, where UF is the unroll factor and VF is the 474 /// vectorization factor. 475 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 476 477 /// Set up the values of the IVs correctly when exiting the vector loop. 478 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 479 Value *CountRoundDown, Value *EndValue, 480 BasicBlock *MiddleBlock); 481 482 /// Create a new induction variable inside L. 483 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 484 Value *Step, Instruction *DL); 485 486 /// Handle all cross-iteration phis in the header. 487 void fixCrossIterationPHIs(); 488 489 /// Fix a first-order recurrence. This is the second phase of vectorizing 490 /// this phi node. 491 void fixFirstOrderRecurrence(PHINode *Phi); 492 493 /// Fix a reduction cross-iteration phi. This is the second phase of 494 /// vectorizing this phi node. 495 void fixReduction(PHINode *Phi); 496 497 /// The Loop exit block may have single value PHI nodes with some 498 /// incoming value. While vectorizing we only handled real values 499 /// that were defined inside the loop and we should have one value for 500 /// each predecessor of its parent basic block. See PR14725. 501 void fixLCSSAPHIs(); 502 503 /// Iteratively sink the scalarized operands of a predicated instruction into 504 /// the block that was created for it. 505 void sinkScalarOperands(Instruction *PredInst); 506 507 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 508 /// represented as. 509 void truncateToMinimalBitwidths(); 510 511 /// Insert the new loop to the loop hierarchy and pass manager 512 /// and update the analysis passes. 513 void updateAnalysis(); 514 515 /// Create a broadcast instruction. This method generates a broadcast 516 /// instruction (shuffle) for loop invariant values and for the induction 517 /// value. If this is the induction variable then we extend it to N, N+1, ... 518 /// this is needed because each iteration in the loop corresponds to a SIMD 519 /// element. 520 virtual Value *getBroadcastInstrs(Value *V); 521 522 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 523 /// to each vector element of Val. The sequence starts at StartIndex. 524 /// \p Opcode is relevant for FP induction variable. 525 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 526 Instruction::BinaryOps Opcode = 527 Instruction::BinaryOpsEnd); 528 529 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 530 /// variable on which to base the steps, \p Step is the size of the step, and 531 /// \p EntryVal is the value from the original loop that maps to the steps. 532 /// Note that \p EntryVal doesn't have to be an induction variable - it 533 /// can also be a truncate instruction. 534 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 535 const InductionDescriptor &ID); 536 537 /// Create a vector induction phi node based on an existing scalar one. \p 538 /// EntryVal is the value from the original loop that maps to the vector phi 539 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 540 /// truncate instruction, instead of widening the original IV, we widen a 541 /// version of the IV truncated to \p EntryVal's type. 542 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 543 Value *Step, Instruction *EntryVal); 544 545 /// Returns true if an instruction \p I should be scalarized instead of 546 /// vectorized for the chosen vectorization factor. 547 bool shouldScalarizeInstruction(Instruction *I) const; 548 549 /// Returns true if we should generate a scalar version of \p IV. 550 bool needsScalarInduction(Instruction *IV) const; 551 552 /// If there is a cast involved in the induction variable \p ID, which should 553 /// be ignored in the vectorized loop body, this function records the 554 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 555 /// cast. We had already proved that the casted Phi is equal to the uncasted 556 /// Phi in the vectorized loop (under a runtime guard), and therefore 557 /// there is no need to vectorize the cast - the same value can be used in the 558 /// vector loop for both the Phi and the cast. 559 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 560 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 561 /// 562 /// \p EntryVal is the value from the original loop that maps to the vector 563 /// phi node and is used to distinguish what is the IV currently being 564 /// processed - original one (if \p EntryVal is a phi corresponding to the 565 /// original IV) or the "newly-created" one based on the proof mentioned above 566 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 567 /// latter case \p EntryVal is a TruncInst and we must not record anything for 568 /// that IV, but it's error-prone to expect callers of this routine to care 569 /// about that, hence this explicit parameter. 570 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 571 const Instruction *EntryVal, 572 Value *VectorLoopValue, 573 unsigned Part, 574 unsigned Lane = UINT_MAX); 575 576 /// Generate a shuffle sequence that will reverse the vector Vec. 577 virtual Value *reverseVector(Value *Vec); 578 579 /// Returns (and creates if needed) the original loop trip count. 580 Value *getOrCreateTripCount(Loop *NewLoop); 581 582 /// Returns (and creates if needed) the trip count of the widened loop. 583 Value *getOrCreateVectorTripCount(Loop *NewLoop); 584 585 /// Returns a bitcasted value to the requested vector type. 586 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 587 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 588 const DataLayout &DL); 589 590 /// Emit a bypass check to see if the vector trip count is zero, including if 591 /// it overflows. 592 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 593 594 /// Emit a bypass check to see if all of the SCEV assumptions we've 595 /// had to make are correct. 596 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 597 598 /// Emit bypass checks to check any memory assumptions we may have made. 599 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 600 601 /// Compute the transformed value of Index at offset StartValue using step 602 /// StepValue. 603 /// For integer induction, returns StartValue + Index * StepValue. 604 /// For pointer induction, returns StartValue[Index * StepValue]. 605 /// FIXME: The newly created binary instructions should contain nsw/nuw 606 /// flags, which can be found from the original scalar operations. 607 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 608 const DataLayout &DL, 609 const InductionDescriptor &ID) const; 610 611 /// Add additional metadata to \p To that was not present on \p Orig. 612 /// 613 /// Currently this is used to add the noalias annotations based on the 614 /// inserted memchecks. Use this for instructions that are *cloned* into the 615 /// vector loop. 616 void addNewMetadata(Instruction *To, const Instruction *Orig); 617 618 /// Add metadata from one instruction to another. 619 /// 620 /// This includes both the original MDs from \p From and additional ones (\see 621 /// addNewMetadata). Use this for *newly created* instructions in the vector 622 /// loop. 623 void addMetadata(Instruction *To, Instruction *From); 624 625 /// Similar to the previous function but it adds the metadata to a 626 /// vector of instructions. 627 void addMetadata(ArrayRef<Value *> To, Instruction *From); 628 629 /// The original loop. 630 Loop *OrigLoop; 631 632 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 633 /// dynamic knowledge to simplify SCEV expressions and converts them to a 634 /// more usable form. 635 PredicatedScalarEvolution &PSE; 636 637 /// Loop Info. 638 LoopInfo *LI; 639 640 /// Dominator Tree. 641 DominatorTree *DT; 642 643 /// Alias Analysis. 644 AliasAnalysis *AA; 645 646 /// Target Library Info. 647 const TargetLibraryInfo *TLI; 648 649 /// Target Transform Info. 650 const TargetTransformInfo *TTI; 651 652 /// Assumption Cache. 653 AssumptionCache *AC; 654 655 /// Interface to emit optimization remarks. 656 OptimizationRemarkEmitter *ORE; 657 658 /// LoopVersioning. It's only set up (non-null) if memchecks were 659 /// used. 660 /// 661 /// This is currently only used to add no-alias metadata based on the 662 /// memchecks. The actually versioning is performed manually. 663 std::unique_ptr<LoopVersioning> LVer; 664 665 /// The vectorization SIMD factor to use. Each vector will have this many 666 /// vector elements. 667 unsigned VF; 668 669 /// The vectorization unroll factor to use. Each scalar is vectorized to this 670 /// many different vector instructions. 671 unsigned UF; 672 673 /// The builder that we use 674 IRBuilder<> Builder; 675 676 // --- Vectorization state --- 677 678 /// The vector-loop preheader. 679 BasicBlock *LoopVectorPreHeader; 680 681 /// The scalar-loop preheader. 682 BasicBlock *LoopScalarPreHeader; 683 684 /// Middle Block between the vector and the scalar. 685 BasicBlock *LoopMiddleBlock; 686 687 /// The ExitBlock of the scalar loop. 688 BasicBlock *LoopExitBlock; 689 690 /// The vector loop body. 691 BasicBlock *LoopVectorBody; 692 693 /// The scalar loop body. 694 BasicBlock *LoopScalarBody; 695 696 /// A list of all bypass blocks. The first block is the entry of the loop. 697 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 698 699 /// The new Induction variable which was added to the new block. 700 PHINode *Induction = nullptr; 701 702 /// The induction variable of the old basic block. 703 PHINode *OldInduction = nullptr; 704 705 /// Maps values from the original loop to their corresponding values in the 706 /// vectorized loop. A key value can map to either vector values, scalar 707 /// values or both kinds of values, depending on whether the key was 708 /// vectorized and scalarized. 709 VectorizerValueMap VectorLoopValueMap; 710 711 /// Store instructions that were predicated. 712 SmallVector<Instruction *, 4> PredicatedInstructions; 713 714 /// Trip count of the original loop. 715 Value *TripCount = nullptr; 716 717 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 718 Value *VectorTripCount = nullptr; 719 720 /// The legality analysis. 721 LoopVectorizationLegality *Legal; 722 723 /// The profitablity analysis. 724 LoopVectorizationCostModel *Cost; 725 726 // Record whether runtime checks are added. 727 bool AddedSafetyChecks = false; 728 729 // Holds the end values for each induction variable. We save the end values 730 // so we can later fix-up the external users of the induction variables. 731 DenseMap<PHINode *, Value *> IVEndValues; 732 733 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 734 // fixed up at the end of vector code generation. 735 SmallVector<PHINode *, 8> OrigPHIsToFix; 736 }; 737 738 class InnerLoopUnroller : public InnerLoopVectorizer { 739 public: 740 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 741 LoopInfo *LI, DominatorTree *DT, 742 const TargetLibraryInfo *TLI, 743 const TargetTransformInfo *TTI, AssumptionCache *AC, 744 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 745 LoopVectorizationLegality *LVL, 746 LoopVectorizationCostModel *CM) 747 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 748 UnrollFactor, LVL, CM) {} 749 750 private: 751 Value *getBroadcastInstrs(Value *V) override; 752 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 753 Instruction::BinaryOps Opcode = 754 Instruction::BinaryOpsEnd) override; 755 Value *reverseVector(Value *Vec) override; 756 }; 757 758 } // end namespace llvm 759 760 /// Look for a meaningful debug location on the instruction or it's 761 /// operands. 762 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 763 if (!I) 764 return I; 765 766 DebugLoc Empty; 767 if (I->getDebugLoc() != Empty) 768 return I; 769 770 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 771 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 772 if (OpInst->getDebugLoc() != Empty) 773 return OpInst; 774 } 775 776 return I; 777 } 778 779 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 780 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 781 const DILocation *DIL = Inst->getDebugLoc(); 782 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 783 !isa<DbgInfoIntrinsic>(Inst)) { 784 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 785 if (NewDIL) 786 B.SetCurrentDebugLocation(NewDIL.getValue()); 787 else 788 LLVM_DEBUG(dbgs() 789 << "Failed to create new discriminator: " 790 << DIL->getFilename() << " Line: " << DIL->getLine()); 791 } 792 else 793 B.SetCurrentDebugLocation(DIL); 794 } else 795 B.SetCurrentDebugLocation(DebugLoc()); 796 } 797 798 #ifndef NDEBUG 799 /// \return string containing a file name and a line # for the given loop. 800 static std::string getDebugLocString(const Loop *L) { 801 std::string Result; 802 if (L) { 803 raw_string_ostream OS(Result); 804 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 805 LoopDbgLoc.print(OS); 806 else 807 // Just print the module name. 808 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 809 OS.flush(); 810 } 811 return Result; 812 } 813 #endif 814 815 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 816 const Instruction *Orig) { 817 // If the loop was versioned with memchecks, add the corresponding no-alias 818 // metadata. 819 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 820 LVer->annotateInstWithNoAlias(To, Orig); 821 } 822 823 void InnerLoopVectorizer::addMetadata(Instruction *To, 824 Instruction *From) { 825 propagateMetadata(To, From); 826 addNewMetadata(To, From); 827 } 828 829 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 830 Instruction *From) { 831 for (Value *V : To) { 832 if (Instruction *I = dyn_cast<Instruction>(V)) 833 addMetadata(I, From); 834 } 835 } 836 837 namespace llvm { 838 839 /// LoopVectorizationCostModel - estimates the expected speedups due to 840 /// vectorization. 841 /// In many cases vectorization is not profitable. This can happen because of 842 /// a number of reasons. In this class we mainly attempt to predict the 843 /// expected speedup/slowdowns due to the supported instruction set. We use the 844 /// TargetTransformInfo to query the different backends for the cost of 845 /// different operations. 846 class LoopVectorizationCostModel { 847 public: 848 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 849 LoopInfo *LI, LoopVectorizationLegality *Legal, 850 const TargetTransformInfo &TTI, 851 const TargetLibraryInfo *TLI, DemandedBits *DB, 852 AssumptionCache *AC, 853 OptimizationRemarkEmitter *ORE, const Function *F, 854 const LoopVectorizeHints *Hints, 855 InterleavedAccessInfo &IAI) 856 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 857 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} 858 859 /// \return An upper bound for the vectorization factor, or None if 860 /// vectorization and interleaving should be avoided up front. 861 Optional<unsigned> computeMaxVF(bool OptForSize); 862 863 /// \return The most profitable vectorization factor and the cost of that VF. 864 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 865 /// then this vectorization factor will be selected if vectorization is 866 /// possible. 867 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 868 869 /// Setup cost-based decisions for user vectorization factor. 870 void selectUserVectorizationFactor(unsigned UserVF) { 871 collectUniformsAndScalars(UserVF); 872 collectInstsToScalarize(UserVF); 873 } 874 875 /// \return The size (in bits) of the smallest and widest types in the code 876 /// that needs to be vectorized. We ignore values that remain scalar such as 877 /// 64 bit loop indices. 878 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 879 880 /// \return The desired interleave count. 881 /// If interleave count has been specified by metadata it will be returned. 882 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 883 /// are the selected vectorization factor and the cost of the selected VF. 884 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 885 unsigned LoopCost); 886 887 /// Memory access instruction may be vectorized in more than one way. 888 /// Form of instruction after vectorization depends on cost. 889 /// This function takes cost-based decisions for Load/Store instructions 890 /// and collects them in a map. This decisions map is used for building 891 /// the lists of loop-uniform and loop-scalar instructions. 892 /// The calculated cost is saved with widening decision in order to 893 /// avoid redundant calculations. 894 void setCostBasedWideningDecision(unsigned VF); 895 896 /// A struct that represents some properties of the register usage 897 /// of a loop. 898 struct RegisterUsage { 899 /// Holds the number of loop invariant values that are used in the loop. 900 unsigned LoopInvariantRegs; 901 902 /// Holds the maximum number of concurrent live intervals in the loop. 903 unsigned MaxLocalUsers; 904 }; 905 906 /// \return Returns information about the register usages of the loop for the 907 /// given vectorization factors. 908 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 909 910 /// Collect values we want to ignore in the cost model. 911 void collectValuesToIgnore(); 912 913 /// \returns The smallest bitwidth each instruction can be represented with. 914 /// The vector equivalents of these instructions should be truncated to this 915 /// type. 916 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 917 return MinBWs; 918 } 919 920 /// \returns True if it is more profitable to scalarize instruction \p I for 921 /// vectorization factor \p VF. 922 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 923 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 924 925 // Cost model is not run in the VPlan-native path - return conservative 926 // result until this changes. 927 if (EnableVPlanNativePath) 928 return false; 929 930 auto Scalars = InstsToScalarize.find(VF); 931 assert(Scalars != InstsToScalarize.end() && 932 "VF not yet analyzed for scalarization profitability"); 933 return Scalars->second.find(I) != Scalars->second.end(); 934 } 935 936 /// Returns true if \p I is known to be uniform after vectorization. 937 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 938 if (VF == 1) 939 return true; 940 941 // Cost model is not run in the VPlan-native path - return conservative 942 // result until this changes. 943 if (EnableVPlanNativePath) 944 return false; 945 946 auto UniformsPerVF = Uniforms.find(VF); 947 assert(UniformsPerVF != Uniforms.end() && 948 "VF not yet analyzed for uniformity"); 949 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 950 } 951 952 /// Returns true if \p I is known to be scalar after vectorization. 953 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 954 if (VF == 1) 955 return true; 956 957 // Cost model is not run in the VPlan-native path - return conservative 958 // result until this changes. 959 if (EnableVPlanNativePath) 960 return false; 961 962 auto ScalarsPerVF = Scalars.find(VF); 963 assert(ScalarsPerVF != Scalars.end() && 964 "Scalar values are not calculated for VF"); 965 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 966 } 967 968 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 969 /// for vectorization factor \p VF. 970 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 971 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 972 !isProfitableToScalarize(I, VF) && 973 !isScalarAfterVectorization(I, VF); 974 } 975 976 /// Decision that was taken during cost calculation for memory instruction. 977 enum InstWidening { 978 CM_Unknown, 979 CM_Widen, // For consecutive accesses with stride +1. 980 CM_Widen_Reverse, // For consecutive accesses with stride -1. 981 CM_Interleave, 982 CM_GatherScatter, 983 CM_Scalarize 984 }; 985 986 /// Save vectorization decision \p W and \p Cost taken by the cost model for 987 /// instruction \p I and vector width \p VF. 988 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 989 unsigned Cost) { 990 assert(VF >= 2 && "Expected VF >=2"); 991 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 992 } 993 994 /// Save vectorization decision \p W and \p Cost taken by the cost model for 995 /// interleaving group \p Grp and vector width \p VF. 996 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 997 InstWidening W, unsigned Cost) { 998 assert(VF >= 2 && "Expected VF >=2"); 999 /// Broadcast this decicion to all instructions inside the group. 1000 /// But the cost will be assigned to one instruction only. 1001 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1002 if (auto *I = Grp->getMember(i)) { 1003 if (Grp->getInsertPos() == I) 1004 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1005 else 1006 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1007 } 1008 } 1009 } 1010 1011 /// Return the cost model decision for the given instruction \p I and vector 1012 /// width \p VF. Return CM_Unknown if this instruction did not pass 1013 /// through the cost modeling. 1014 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1015 assert(VF >= 2 && "Expected VF >=2"); 1016 1017 // Cost model is not run in the VPlan-native path - return conservative 1018 // result until this changes. 1019 if (EnableVPlanNativePath) 1020 return CM_GatherScatter; 1021 1022 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1023 auto Itr = WideningDecisions.find(InstOnVF); 1024 if (Itr == WideningDecisions.end()) 1025 return CM_Unknown; 1026 return Itr->second.first; 1027 } 1028 1029 /// Return the vectorization cost for the given instruction \p I and vector 1030 /// width \p VF. 1031 unsigned getWideningCost(Instruction *I, unsigned VF) { 1032 assert(VF >= 2 && "Expected VF >=2"); 1033 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1034 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1035 "The cost is not calculated"); 1036 return WideningDecisions[InstOnVF].second; 1037 } 1038 1039 /// Return True if instruction \p I is an optimizable truncate whose operand 1040 /// is an induction variable. Such a truncate will be removed by adding a new 1041 /// induction variable with the destination type. 1042 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1043 // If the instruction is not a truncate, return false. 1044 auto *Trunc = dyn_cast<TruncInst>(I); 1045 if (!Trunc) 1046 return false; 1047 1048 // Get the source and destination types of the truncate. 1049 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1050 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1051 1052 // If the truncate is free for the given types, return false. Replacing a 1053 // free truncate with an induction variable would add an induction variable 1054 // update instruction to each iteration of the loop. We exclude from this 1055 // check the primary induction variable since it will need an update 1056 // instruction regardless. 1057 Value *Op = Trunc->getOperand(0); 1058 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1059 return false; 1060 1061 // If the truncated value is not an induction variable, return false. 1062 return Legal->isInductionPhi(Op); 1063 } 1064 1065 /// Collects the instructions to scalarize for each predicated instruction in 1066 /// the loop. 1067 void collectInstsToScalarize(unsigned VF); 1068 1069 /// Collect Uniform and Scalar values for the given \p VF. 1070 /// The sets depend on CM decision for Load/Store instructions 1071 /// that may be vectorized as interleave, gather-scatter or scalarized. 1072 void collectUniformsAndScalars(unsigned VF) { 1073 // Do the analysis once. 1074 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1075 return; 1076 setCostBasedWideningDecision(VF); 1077 collectLoopUniforms(VF); 1078 collectLoopScalars(VF); 1079 } 1080 1081 /// Returns true if the target machine supports masked store operation 1082 /// for the given \p DataType and kind of access to \p Ptr. 1083 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1084 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1085 } 1086 1087 /// Returns true if the target machine supports masked load operation 1088 /// for the given \p DataType and kind of access to \p Ptr. 1089 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1090 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1091 } 1092 1093 /// Returns true if the target machine supports masked scatter operation 1094 /// for the given \p DataType. 1095 bool isLegalMaskedScatter(Type *DataType) { 1096 return TTI.isLegalMaskedScatter(DataType); 1097 } 1098 1099 /// Returns true if the target machine supports masked gather operation 1100 /// for the given \p DataType. 1101 bool isLegalMaskedGather(Type *DataType) { 1102 return TTI.isLegalMaskedGather(DataType); 1103 } 1104 1105 /// Returns true if the target machine can represent \p V as a masked gather 1106 /// or scatter operation. 1107 bool isLegalGatherOrScatter(Value *V) { 1108 bool LI = isa<LoadInst>(V); 1109 bool SI = isa<StoreInst>(V); 1110 if (!LI && !SI) 1111 return false; 1112 auto *Ty = getMemInstValueType(V); 1113 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1114 } 1115 1116 /// Returns true if \p I is an instruction that will be scalarized with 1117 /// predication. Such instructions include conditional stores and 1118 /// instructions that may divide by zero. 1119 /// If a non-zero VF has been calculated, we check if I will be scalarized 1120 /// predication for that VF. 1121 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1122 1123 // Returns true if \p I is an instruction that will be predicated either 1124 // through scalar predication or masked load/store or masked gather/scatter. 1125 // Superset of instructions that return true for isScalarWithPredication. 1126 bool isPredicatedInst(Instruction *I) { 1127 if (!blockNeedsPredication(I->getParent())) 1128 return false; 1129 // Loads and stores that need some form of masked operation are predicated 1130 // instructions. 1131 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1132 return Legal->isMaskRequired(I); 1133 return isScalarWithPredication(I); 1134 } 1135 1136 /// Returns true if \p I is a memory instruction with consecutive memory 1137 /// access that can be widened. 1138 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1139 1140 /// Returns true if \p I is a memory instruction in an interleaved-group 1141 /// of memory accesses that can be vectorized with wide vector loads/stores 1142 /// and shuffles. 1143 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1144 1145 /// Check if \p Instr belongs to any interleaved access group. 1146 bool isAccessInterleaved(Instruction *Instr) { 1147 return InterleaveInfo.isInterleaved(Instr); 1148 } 1149 1150 /// Get the interleaved access group that \p Instr belongs to. 1151 const InterleaveGroup<Instruction> * 1152 getInterleavedAccessGroup(Instruction *Instr) { 1153 return InterleaveInfo.getInterleaveGroup(Instr); 1154 } 1155 1156 /// Returns true if an interleaved group requires a scalar iteration 1157 /// to handle accesses with gaps, and there is nothing preventing us from 1158 /// creating a scalar epilogue. 1159 bool requiresScalarEpilogue() const { 1160 return IsScalarEpilogueAllowed && InterleaveInfo.requiresScalarEpilogue(); 1161 } 1162 1163 /// Returns true if a scalar epilogue is not allowed due to optsize. 1164 bool isScalarEpilogueAllowed() const { return IsScalarEpilogueAllowed; } 1165 1166 /// Returns true if all loop blocks should be masked to fold tail loop. 1167 bool foldTailByMasking() const { return FoldTailByMasking; } 1168 1169 bool blockNeedsPredication(BasicBlock *BB) { 1170 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1171 } 1172 1173 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1174 /// with factor VF. Return the cost of the instruction, including 1175 /// scalarization overhead if it's needed. 1176 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1177 1178 /// Estimate cost of a call instruction CI if it were vectorized with factor 1179 /// VF. Return the cost of the instruction, including scalarization overhead 1180 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1181 /// scalarized - 1182 // i.e. either vector version isn't available, or is too expensive. 1183 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1184 1185 private: 1186 unsigned NumPredStores = 0; 1187 1188 /// \return An upper bound for the vectorization factor, larger than zero. 1189 /// One is returned if vectorization should best be avoided due to cost. 1190 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 1191 1192 /// The vectorization cost is a combination of the cost itself and a boolean 1193 /// indicating whether any of the contributing operations will actually 1194 /// operate on 1195 /// vector values after type legalization in the backend. If this latter value 1196 /// is 1197 /// false, then all operations will be scalarized (i.e. no vectorization has 1198 /// actually taken place). 1199 using VectorizationCostTy = std::pair<unsigned, bool>; 1200 1201 /// Returns the expected execution cost. The unit of the cost does 1202 /// not matter because we use the 'cost' units to compare different 1203 /// vector widths. The cost that is returned is *not* normalized by 1204 /// the factor width. 1205 VectorizationCostTy expectedCost(unsigned VF); 1206 1207 /// Returns the execution time cost of an instruction for a given vector 1208 /// width. Vector width of one means scalar. 1209 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1210 1211 /// The cost-computation logic from getInstructionCost which provides 1212 /// the vector type as an output parameter. 1213 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1214 1215 /// Calculate vectorization cost of memory instruction \p I. 1216 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1217 1218 /// The cost computation for scalarized memory instruction. 1219 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1220 1221 /// The cost computation for interleaving group of memory instructions. 1222 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1223 1224 /// The cost computation for Gather/Scatter instruction. 1225 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1226 1227 /// The cost computation for widening instruction \p I with consecutive 1228 /// memory access. 1229 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1230 1231 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1232 /// Load: scalar load + broadcast. 1233 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1234 /// element) 1235 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1236 1237 /// Estimate the overhead of scalarizing an instruction. This is a 1238 /// convenience wrapper for the type-based getScalarizationOverhead API. 1239 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1240 1241 /// Returns whether the instruction is a load or store and will be a emitted 1242 /// as a vector operation. 1243 bool isConsecutiveLoadOrStore(Instruction *I); 1244 1245 /// Returns true if an artificially high cost for emulated masked memrefs 1246 /// should be used. 1247 bool useEmulatedMaskMemRefHack(Instruction *I); 1248 1249 /// Create an analysis remark that explains why vectorization failed 1250 /// 1251 /// \p RemarkName is the identifier for the remark. \return the remark object 1252 /// that can be streamed to. 1253 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1254 return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1255 RemarkName, TheLoop); 1256 } 1257 1258 /// Map of scalar integer values to the smallest bitwidth they can be legally 1259 /// represented as. The vector equivalents of these values should be truncated 1260 /// to this type. 1261 MapVector<Instruction *, uint64_t> MinBWs; 1262 1263 /// A type representing the costs for instructions if they were to be 1264 /// scalarized rather than vectorized. The entries are Instruction-Cost 1265 /// pairs. 1266 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1267 1268 /// A set containing all BasicBlocks that are known to present after 1269 /// vectorization as a predicated block. 1270 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1271 1272 /// Records whether it is allowed to have the original scalar loop execute at 1273 /// least once. This may be needed as a fallback loop in case runtime 1274 /// aliasing/dependence checks fail, or to handle the tail/remainder 1275 /// iterations when the trip count is unknown or doesn't divide by the VF, 1276 /// or as a peel-loop to handle gaps in interleave-groups. 1277 /// Under optsize and when the trip count is very small we don't allow any 1278 /// iterations to execute in the scalar loop. 1279 bool IsScalarEpilogueAllowed = true; 1280 1281 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1282 bool FoldTailByMasking = false; 1283 1284 /// A map holding scalar costs for different vectorization factors. The 1285 /// presence of a cost for an instruction in the mapping indicates that the 1286 /// instruction will be scalarized when vectorizing with the associated 1287 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1288 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1289 1290 /// Holds the instructions known to be uniform after vectorization. 1291 /// The data is collected per VF. 1292 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1293 1294 /// Holds the instructions known to be scalar after vectorization. 1295 /// The data is collected per VF. 1296 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1297 1298 /// Holds the instructions (address computations) that are forced to be 1299 /// scalarized. 1300 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1301 1302 /// Returns the expected difference in cost from scalarizing the expression 1303 /// feeding a predicated instruction \p PredInst. The instructions to 1304 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1305 /// non-negative return value implies the expression will be scalarized. 1306 /// Currently, only single-use chains are considered for scalarization. 1307 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1308 unsigned VF); 1309 1310 /// Collect the instructions that are uniform after vectorization. An 1311 /// instruction is uniform if we represent it with a single scalar value in 1312 /// the vectorized loop corresponding to each vector iteration. Examples of 1313 /// uniform instructions include pointer operands of consecutive or 1314 /// interleaved memory accesses. Note that although uniformity implies an 1315 /// instruction will be scalar, the reverse is not true. In general, a 1316 /// scalarized instruction will be represented by VF scalar values in the 1317 /// vectorized loop, each corresponding to an iteration of the original 1318 /// scalar loop. 1319 void collectLoopUniforms(unsigned VF); 1320 1321 /// Collect the instructions that are scalar after vectorization. An 1322 /// instruction is scalar if it is known to be uniform or will be scalarized 1323 /// during vectorization. Non-uniform scalarized instructions will be 1324 /// represented by VF values in the vectorized loop, each corresponding to an 1325 /// iteration of the original scalar loop. 1326 void collectLoopScalars(unsigned VF); 1327 1328 /// Keeps cost model vectorization decision and cost for instructions. 1329 /// Right now it is used for memory instructions only. 1330 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1331 std::pair<InstWidening, unsigned>>; 1332 1333 DecisionList WideningDecisions; 1334 1335 public: 1336 /// The loop that we evaluate. 1337 Loop *TheLoop; 1338 1339 /// Predicated scalar evolution analysis. 1340 PredicatedScalarEvolution &PSE; 1341 1342 /// Loop Info analysis. 1343 LoopInfo *LI; 1344 1345 /// Vectorization legality. 1346 LoopVectorizationLegality *Legal; 1347 1348 /// Vector target information. 1349 const TargetTransformInfo &TTI; 1350 1351 /// Target Library Info. 1352 const TargetLibraryInfo *TLI; 1353 1354 /// Demanded bits analysis. 1355 DemandedBits *DB; 1356 1357 /// Assumption cache. 1358 AssumptionCache *AC; 1359 1360 /// Interface to emit optimization remarks. 1361 OptimizationRemarkEmitter *ORE; 1362 1363 const Function *TheFunction; 1364 1365 /// Loop Vectorize Hint. 1366 const LoopVectorizeHints *Hints; 1367 1368 /// The interleave access information contains groups of interleaved accesses 1369 /// with the same stride and close to each other. 1370 InterleavedAccessInfo &InterleaveInfo; 1371 1372 /// Values to ignore in the cost model. 1373 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1374 1375 /// Values to ignore in the cost model when VF > 1. 1376 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1377 }; 1378 1379 } // end namespace llvm 1380 1381 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1382 // vectorization. The loop needs to be annotated with #pragma omp simd 1383 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1384 // vector length information is not provided, vectorization is not considered 1385 // explicit. Interleave hints are not allowed either. These limitations will be 1386 // relaxed in the future. 1387 // Please, note that we are currently forced to abuse the pragma 'clang 1388 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1389 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1390 // provides *explicit vectorization hints* (LV can bypass legal checks and 1391 // assume that vectorization is legal). However, both hints are implemented 1392 // using the same metadata (llvm.loop.vectorize, processed by 1393 // LoopVectorizeHints). This will be fixed in the future when the native IR 1394 // representation for pragma 'omp simd' is introduced. 1395 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1396 OptimizationRemarkEmitter *ORE) { 1397 assert(!OuterLp->empty() && "This is not an outer loop"); 1398 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1399 1400 // Only outer loops with an explicit vectorization hint are supported. 1401 // Unannotated outer loops are ignored. 1402 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1403 return false; 1404 1405 Function *Fn = OuterLp->getHeader()->getParent(); 1406 if (!Hints.allowVectorization(Fn, OuterLp, 1407 true /*VectorizeOnlyWhenForced*/)) { 1408 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1409 return false; 1410 } 1411 1412 if (Hints.getInterleave() > 1) { 1413 // TODO: Interleave support is future work. 1414 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1415 "outer loops.\n"); 1416 Hints.emitRemarkWithHints(); 1417 return false; 1418 } 1419 1420 return true; 1421 } 1422 1423 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1424 OptimizationRemarkEmitter *ORE, 1425 SmallVectorImpl<Loop *> &V) { 1426 // Collect inner loops and outer loops without irreducible control flow. For 1427 // now, only collect outer loops that have explicit vectorization hints. If we 1428 // are stress testing the VPlan H-CFG construction, we collect the outermost 1429 // loop of every loop nest. 1430 if (L.empty() || VPlanBuildStressTest || 1431 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1432 LoopBlocksRPO RPOT(&L); 1433 RPOT.perform(LI); 1434 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1435 V.push_back(&L); 1436 // TODO: Collect inner loops inside marked outer loops in case 1437 // vectorization fails for the outer loop. Do not invoke 1438 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1439 // already known to be reducible. We can use an inherited attribute for 1440 // that. 1441 return; 1442 } 1443 } 1444 for (Loop *InnerL : L) 1445 collectSupportedLoops(*InnerL, LI, ORE, V); 1446 } 1447 1448 namespace { 1449 1450 /// The LoopVectorize Pass. 1451 struct LoopVectorize : public FunctionPass { 1452 /// Pass identification, replacement for typeid 1453 static char ID; 1454 1455 LoopVectorizePass Impl; 1456 1457 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1458 bool VectorizeOnlyWhenForced = false) 1459 : FunctionPass(ID) { 1460 Impl.InterleaveOnlyWhenForced = InterleaveOnlyWhenForced; 1461 Impl.VectorizeOnlyWhenForced = VectorizeOnlyWhenForced; 1462 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1463 } 1464 1465 bool runOnFunction(Function &F) override { 1466 if (skipFunction(F)) 1467 return false; 1468 1469 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1470 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1471 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1472 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1473 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1474 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1475 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1476 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1477 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1478 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1479 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1480 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1481 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1482 1483 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1484 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1485 1486 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1487 GetLAA, *ORE, PSI); 1488 } 1489 1490 void getAnalysisUsage(AnalysisUsage &AU) const override { 1491 AU.addRequired<AssumptionCacheTracker>(); 1492 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1493 AU.addRequired<DominatorTreeWrapperPass>(); 1494 AU.addRequired<LoopInfoWrapperPass>(); 1495 AU.addRequired<ScalarEvolutionWrapperPass>(); 1496 AU.addRequired<TargetTransformInfoWrapperPass>(); 1497 AU.addRequired<AAResultsWrapperPass>(); 1498 AU.addRequired<LoopAccessLegacyAnalysis>(); 1499 AU.addRequired<DemandedBitsWrapperPass>(); 1500 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1501 1502 // We currently do not preserve loopinfo/dominator analyses with outer loop 1503 // vectorization. Until this is addressed, mark these analyses as preserved 1504 // only for non-VPlan-native path. 1505 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1506 if (!EnableVPlanNativePath) { 1507 AU.addPreserved<LoopInfoWrapperPass>(); 1508 AU.addPreserved<DominatorTreeWrapperPass>(); 1509 } 1510 1511 AU.addPreserved<BasicAAWrapperPass>(); 1512 AU.addPreserved<GlobalsAAWrapperPass>(); 1513 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1514 } 1515 }; 1516 1517 } // end anonymous namespace 1518 1519 //===----------------------------------------------------------------------===// 1520 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1521 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1522 //===----------------------------------------------------------------------===// 1523 1524 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1525 // We need to place the broadcast of invariant variables outside the loop, 1526 // but only if it's proven safe to do so. Else, broadcast will be inside 1527 // vector loop body. 1528 Instruction *Instr = dyn_cast<Instruction>(V); 1529 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1530 (!Instr || 1531 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1532 // Place the code for broadcasting invariant variables in the new preheader. 1533 IRBuilder<>::InsertPointGuard Guard(Builder); 1534 if (SafeToHoist) 1535 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1536 1537 // Broadcast the scalar into all locations in the vector. 1538 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1539 1540 return Shuf; 1541 } 1542 1543 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1544 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1545 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1546 "Expected either an induction phi-node or a truncate of it!"); 1547 Value *Start = II.getStartValue(); 1548 1549 // Construct the initial value of the vector IV in the vector loop preheader 1550 auto CurrIP = Builder.saveIP(); 1551 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1552 if (isa<TruncInst>(EntryVal)) { 1553 assert(Start->getType()->isIntegerTy() && 1554 "Truncation requires an integer type"); 1555 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1556 Step = Builder.CreateTrunc(Step, TruncType); 1557 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1558 } 1559 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1560 Value *SteppedStart = 1561 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1562 1563 // We create vector phi nodes for both integer and floating-point induction 1564 // variables. Here, we determine the kind of arithmetic we will perform. 1565 Instruction::BinaryOps AddOp; 1566 Instruction::BinaryOps MulOp; 1567 if (Step->getType()->isIntegerTy()) { 1568 AddOp = Instruction::Add; 1569 MulOp = Instruction::Mul; 1570 } else { 1571 AddOp = II.getInductionOpcode(); 1572 MulOp = Instruction::FMul; 1573 } 1574 1575 // Multiply the vectorization factor by the step using integer or 1576 // floating-point arithmetic as appropriate. 1577 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1578 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1579 1580 // Create a vector splat to use in the induction update. 1581 // 1582 // FIXME: If the step is non-constant, we create the vector splat with 1583 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1584 // handle a constant vector splat. 1585 Value *SplatVF = isa<Constant>(Mul) 1586 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1587 : Builder.CreateVectorSplat(VF, Mul); 1588 Builder.restoreIP(CurrIP); 1589 1590 // We may need to add the step a number of times, depending on the unroll 1591 // factor. The last of those goes into the PHI. 1592 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1593 &*LoopVectorBody->getFirstInsertionPt()); 1594 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1595 Instruction *LastInduction = VecInd; 1596 for (unsigned Part = 0; Part < UF; ++Part) { 1597 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1598 1599 if (isa<TruncInst>(EntryVal)) 1600 addMetadata(LastInduction, EntryVal); 1601 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1602 1603 LastInduction = cast<Instruction>(addFastMathFlag( 1604 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1605 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1606 } 1607 1608 // Move the last step to the end of the latch block. This ensures consistent 1609 // placement of all induction updates. 1610 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1611 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1612 auto *ICmp = cast<Instruction>(Br->getCondition()); 1613 LastInduction->moveBefore(ICmp); 1614 LastInduction->setName("vec.ind.next"); 1615 1616 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1617 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1618 } 1619 1620 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1621 return Cost->isScalarAfterVectorization(I, VF) || 1622 Cost->isProfitableToScalarize(I, VF); 1623 } 1624 1625 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1626 if (shouldScalarizeInstruction(IV)) 1627 return true; 1628 auto isScalarInst = [&](User *U) -> bool { 1629 auto *I = cast<Instruction>(U); 1630 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1631 }; 1632 return llvm::any_of(IV->users(), isScalarInst); 1633 } 1634 1635 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1636 const InductionDescriptor &ID, const Instruction *EntryVal, 1637 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1638 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1639 "Expected either an induction phi-node or a truncate of it!"); 1640 1641 // This induction variable is not the phi from the original loop but the 1642 // newly-created IV based on the proof that casted Phi is equal to the 1643 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1644 // re-uses the same InductionDescriptor that original IV uses but we don't 1645 // have to do any recording in this case - that is done when original IV is 1646 // processed. 1647 if (isa<TruncInst>(EntryVal)) 1648 return; 1649 1650 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1651 if (Casts.empty()) 1652 return; 1653 // Only the first Cast instruction in the Casts vector is of interest. 1654 // The rest of the Casts (if exist) have no uses outside the 1655 // induction update chain itself. 1656 Instruction *CastInst = *Casts.begin(); 1657 if (Lane < UINT_MAX) 1658 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1659 else 1660 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1661 } 1662 1663 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1664 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1665 "Primary induction variable must have an integer type"); 1666 1667 auto II = Legal->getInductionVars()->find(IV); 1668 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1669 1670 auto ID = II->second; 1671 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1672 1673 // The scalar value to broadcast. This will be derived from the canonical 1674 // induction variable. 1675 Value *ScalarIV = nullptr; 1676 1677 // The value from the original loop to which we are mapping the new induction 1678 // variable. 1679 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1680 1681 // True if we have vectorized the induction variable. 1682 auto VectorizedIV = false; 1683 1684 // Determine if we want a scalar version of the induction variable. This is 1685 // true if the induction variable itself is not widened, or if it has at 1686 // least one user in the loop that is not widened. 1687 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1688 1689 // Generate code for the induction step. Note that induction steps are 1690 // required to be loop-invariant 1691 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1692 "Induction step should be loop invariant"); 1693 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1694 Value *Step = nullptr; 1695 if (PSE.getSE()->isSCEVable(IV->getType())) { 1696 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1697 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1698 LoopVectorPreHeader->getTerminator()); 1699 } else { 1700 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1701 } 1702 1703 // Try to create a new independent vector induction variable. If we can't 1704 // create the phi node, we will splat the scalar induction variable in each 1705 // loop iteration. 1706 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1707 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1708 VectorizedIV = true; 1709 } 1710 1711 // If we haven't yet vectorized the induction variable, or if we will create 1712 // a scalar one, we need to define the scalar induction variable and step 1713 // values. If we were given a truncation type, truncate the canonical 1714 // induction variable and step. Otherwise, derive these values from the 1715 // induction descriptor. 1716 if (!VectorizedIV || NeedsScalarIV) { 1717 ScalarIV = Induction; 1718 if (IV != OldInduction) { 1719 ScalarIV = IV->getType()->isIntegerTy() 1720 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1721 : Builder.CreateCast(Instruction::SIToFP, Induction, 1722 IV->getType()); 1723 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1724 ScalarIV->setName("offset.idx"); 1725 } 1726 if (Trunc) { 1727 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1728 assert(Step->getType()->isIntegerTy() && 1729 "Truncation requires an integer step"); 1730 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1731 Step = Builder.CreateTrunc(Step, TruncType); 1732 } 1733 } 1734 1735 // If we haven't yet vectorized the induction variable, splat the scalar 1736 // induction variable, and build the necessary step vectors. 1737 // TODO: Don't do it unless the vectorized IV is really required. 1738 if (!VectorizedIV) { 1739 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1740 for (unsigned Part = 0; Part < UF; ++Part) { 1741 Value *EntryPart = 1742 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1743 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1744 if (Trunc) 1745 addMetadata(EntryPart, Trunc); 1746 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1747 } 1748 } 1749 1750 // If an induction variable is only used for counting loop iterations or 1751 // calculating addresses, it doesn't need to be widened. Create scalar steps 1752 // that can be used by instructions we will later scalarize. Note that the 1753 // addition of the scalar steps will not increase the number of instructions 1754 // in the loop in the common case prior to InstCombine. We will be trading 1755 // one vector extract for each scalar step. 1756 if (NeedsScalarIV) 1757 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1758 } 1759 1760 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1761 Instruction::BinaryOps BinOp) { 1762 // Create and check the types. 1763 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1764 int VLen = Val->getType()->getVectorNumElements(); 1765 1766 Type *STy = Val->getType()->getScalarType(); 1767 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1768 "Induction Step must be an integer or FP"); 1769 assert(Step->getType() == STy && "Step has wrong type"); 1770 1771 SmallVector<Constant *, 8> Indices; 1772 1773 if (STy->isIntegerTy()) { 1774 // Create a vector of consecutive numbers from zero to VF. 1775 for (int i = 0; i < VLen; ++i) 1776 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1777 1778 // Add the consecutive indices to the vector value. 1779 Constant *Cv = ConstantVector::get(Indices); 1780 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1781 Step = Builder.CreateVectorSplat(VLen, Step); 1782 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1783 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1784 // which can be found from the original scalar operations. 1785 Step = Builder.CreateMul(Cv, Step); 1786 return Builder.CreateAdd(Val, Step, "induction"); 1787 } 1788 1789 // Floating point induction. 1790 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1791 "Binary Opcode should be specified for FP induction"); 1792 // Create a vector of consecutive numbers from zero to VF. 1793 for (int i = 0; i < VLen; ++i) 1794 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1795 1796 // Add the consecutive indices to the vector value. 1797 Constant *Cv = ConstantVector::get(Indices); 1798 1799 Step = Builder.CreateVectorSplat(VLen, Step); 1800 1801 // Floating point operations had to be 'fast' to enable the induction. 1802 FastMathFlags Flags; 1803 Flags.setFast(); 1804 1805 Value *MulOp = Builder.CreateFMul(Cv, Step); 1806 if (isa<Instruction>(MulOp)) 1807 // Have to check, MulOp may be a constant 1808 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1809 1810 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1811 if (isa<Instruction>(BOp)) 1812 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1813 return BOp; 1814 } 1815 1816 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1817 Instruction *EntryVal, 1818 const InductionDescriptor &ID) { 1819 // We shouldn't have to build scalar steps if we aren't vectorizing. 1820 assert(VF > 1 && "VF should be greater than one"); 1821 1822 // Get the value type and ensure it and the step have the same integer type. 1823 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1824 assert(ScalarIVTy == Step->getType() && 1825 "Val and Step should have the same type"); 1826 1827 // We build scalar steps for both integer and floating-point induction 1828 // variables. Here, we determine the kind of arithmetic we will perform. 1829 Instruction::BinaryOps AddOp; 1830 Instruction::BinaryOps MulOp; 1831 if (ScalarIVTy->isIntegerTy()) { 1832 AddOp = Instruction::Add; 1833 MulOp = Instruction::Mul; 1834 } else { 1835 AddOp = ID.getInductionOpcode(); 1836 MulOp = Instruction::FMul; 1837 } 1838 1839 // Determine the number of scalars we need to generate for each unroll 1840 // iteration. If EntryVal is uniform, we only need to generate the first 1841 // lane. Otherwise, we generate all VF values. 1842 unsigned Lanes = 1843 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1844 : VF; 1845 // Compute the scalar steps and save the results in VectorLoopValueMap. 1846 for (unsigned Part = 0; Part < UF; ++Part) { 1847 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 1848 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 1849 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 1850 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 1851 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 1852 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 1853 } 1854 } 1855 } 1856 1857 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 1858 assert(V != Induction && "The new induction variable should not be used."); 1859 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1860 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1861 1862 // If we have a stride that is replaced by one, do it here. Defer this for 1863 // the VPlan-native path until we start running Legal checks in that path. 1864 if (!EnableVPlanNativePath && Legal->hasStride(V)) 1865 V = ConstantInt::get(V->getType(), 1); 1866 1867 // If we have a vector mapped to this value, return it. 1868 if (VectorLoopValueMap.hasVectorValue(V, Part)) 1869 return VectorLoopValueMap.getVectorValue(V, Part); 1870 1871 // If the value has not been vectorized, check if it has been scalarized 1872 // instead. If it has been scalarized, and we actually need the value in 1873 // vector form, we will construct the vector values on demand. 1874 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 1875 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 1876 1877 // If we've scalarized a value, that value should be an instruction. 1878 auto *I = cast<Instruction>(V); 1879 1880 // If we aren't vectorizing, we can just copy the scalar map values over to 1881 // the vector map. 1882 if (VF == 1) { 1883 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 1884 return ScalarValue; 1885 } 1886 1887 // Get the last scalar instruction we generated for V and Part. If the value 1888 // is known to be uniform after vectorization, this corresponds to lane zero 1889 // of the Part unroll iteration. Otherwise, the last instruction is the one 1890 // we created for the last vector lane of the Part unroll iteration. 1891 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 1892 auto *LastInst = cast<Instruction>( 1893 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 1894 1895 // Set the insert point after the last scalarized instruction. This ensures 1896 // the insertelement sequence will directly follow the scalar definitions. 1897 auto OldIP = Builder.saveIP(); 1898 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 1899 Builder.SetInsertPoint(&*NewIP); 1900 1901 // However, if we are vectorizing, we need to construct the vector values. 1902 // If the value is known to be uniform after vectorization, we can just 1903 // broadcast the scalar value corresponding to lane zero for each unroll 1904 // iteration. Otherwise, we construct the vector values using insertelement 1905 // instructions. Since the resulting vectors are stored in 1906 // VectorLoopValueMap, we will only generate the insertelements once. 1907 Value *VectorValue = nullptr; 1908 if (Cost->isUniformAfterVectorization(I, VF)) { 1909 VectorValue = getBroadcastInstrs(ScalarValue); 1910 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 1911 } else { 1912 // Initialize packing with insertelements to start from undef. 1913 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 1914 VectorLoopValueMap.setVectorValue(V, Part, Undef); 1915 for (unsigned Lane = 0; Lane < VF; ++Lane) 1916 packScalarIntoVectorValue(V, {Part, Lane}); 1917 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 1918 } 1919 Builder.restoreIP(OldIP); 1920 return VectorValue; 1921 } 1922 1923 // If this scalar is unknown, assume that it is a constant or that it is 1924 // loop invariant. Broadcast V and save the value for future uses. 1925 Value *B = getBroadcastInstrs(V); 1926 VectorLoopValueMap.setVectorValue(V, Part, B); 1927 return B; 1928 } 1929 1930 Value * 1931 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 1932 const VPIteration &Instance) { 1933 // If the value is not an instruction contained in the loop, it should 1934 // already be scalar. 1935 if (OrigLoop->isLoopInvariant(V)) 1936 return V; 1937 1938 assert(Instance.Lane > 0 1939 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 1940 : true && "Uniform values only have lane zero"); 1941 1942 // If the value from the original loop has not been vectorized, it is 1943 // represented by UF x VF scalar values in the new loop. Return the requested 1944 // scalar value. 1945 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 1946 return VectorLoopValueMap.getScalarValue(V, Instance); 1947 1948 // If the value has not been scalarized, get its entry in VectorLoopValueMap 1949 // for the given unroll part. If this entry is not a vector type (i.e., the 1950 // vectorization factor is one), there is no need to generate an 1951 // extractelement instruction. 1952 auto *U = getOrCreateVectorValue(V, Instance.Part); 1953 if (!U->getType()->isVectorTy()) { 1954 assert(VF == 1 && "Value not scalarized has non-vector type"); 1955 return U; 1956 } 1957 1958 // Otherwise, the value from the original loop has been vectorized and is 1959 // represented by UF vector values. Extract and return the requested scalar 1960 // value from the appropriate vector lane. 1961 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 1962 } 1963 1964 void InnerLoopVectorizer::packScalarIntoVectorValue( 1965 Value *V, const VPIteration &Instance) { 1966 assert(V != Induction && "The new induction variable should not be used."); 1967 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 1968 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1969 1970 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 1971 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 1972 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 1973 Builder.getInt32(Instance.Lane)); 1974 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 1975 } 1976 1977 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1978 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1979 SmallVector<Constant *, 8> ShuffleMask; 1980 for (unsigned i = 0; i < VF; ++i) 1981 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1982 1983 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1984 ConstantVector::get(ShuffleMask), 1985 "reverse"); 1986 } 1987 1988 // Return whether we allow using masked interleave-groups (for dealing with 1989 // strided loads/stores that reside in predicated blocks, or for dealing 1990 // with gaps). 1991 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 1992 // If an override option has been passed in for interleaved accesses, use it. 1993 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 1994 return EnableMaskedInterleavedMemAccesses; 1995 1996 return TTI.enableMaskedInterleavedAccessVectorization(); 1997 } 1998 1999 // Try to vectorize the interleave group that \p Instr belongs to. 2000 // 2001 // E.g. Translate following interleaved load group (factor = 3): 2002 // for (i = 0; i < N; i+=3) { 2003 // R = Pic[i]; // Member of index 0 2004 // G = Pic[i+1]; // Member of index 1 2005 // B = Pic[i+2]; // Member of index 2 2006 // ... // do something to R, G, B 2007 // } 2008 // To: 2009 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2010 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2011 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2012 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2013 // 2014 // Or translate following interleaved store group (factor = 3): 2015 // for (i = 0; i < N; i+=3) { 2016 // ... do something to R, G, B 2017 // Pic[i] = R; // Member of index 0 2018 // Pic[i+1] = G; // Member of index 1 2019 // Pic[i+2] = B; // Member of index 2 2020 // } 2021 // To: 2022 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2023 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2024 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2025 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2026 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2027 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr, 2028 VectorParts *BlockInMask) { 2029 const InterleaveGroup<Instruction> *Group = 2030 Cost->getInterleavedAccessGroup(Instr); 2031 assert(Group && "Fail to get an interleaved access group."); 2032 2033 // Skip if current instruction is not the insert position. 2034 if (Instr != Group->getInsertPos()) 2035 return; 2036 2037 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2038 Value *Ptr = getLoadStorePointerOperand(Instr); 2039 2040 // Prepare for the vector type of the interleaved load/store. 2041 Type *ScalarTy = getMemInstValueType(Instr); 2042 unsigned InterleaveFactor = Group->getFactor(); 2043 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2044 Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr)); 2045 2046 // Prepare for the new pointers. 2047 setDebugLocFromInst(Builder, Ptr); 2048 SmallVector<Value *, 2> NewPtrs; 2049 unsigned Index = Group->getIndex(Instr); 2050 2051 VectorParts Mask; 2052 bool IsMaskForCondRequired = BlockInMask; 2053 if (IsMaskForCondRequired) { 2054 Mask = *BlockInMask; 2055 // TODO: extend the masked interleaved-group support to reversed access. 2056 assert(!Group->isReverse() && "Reversed masked interleave-group " 2057 "not supported."); 2058 } 2059 2060 // If the group is reverse, adjust the index to refer to the last vector lane 2061 // instead of the first. We adjust the index from the first vector lane, 2062 // rather than directly getting the pointer for lane VF - 1, because the 2063 // pointer operand of the interleaved access is supposed to be uniform. For 2064 // uniform instructions, we're only required to generate a value for the 2065 // first vector lane in each unroll iteration. 2066 if (Group->isReverse()) 2067 Index += (VF - 1) * Group->getFactor(); 2068 2069 bool InBounds = false; 2070 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2071 InBounds = gep->isInBounds(); 2072 2073 for (unsigned Part = 0; Part < UF; Part++) { 2074 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2075 2076 // Notice current instruction could be any index. Need to adjust the address 2077 // to the member of index 0. 2078 // 2079 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2080 // b = A[i]; // Member of index 0 2081 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2082 // 2083 // E.g. A[i+1] = a; // Member of index 1 2084 // A[i] = b; // Member of index 0 2085 // A[i+2] = c; // Member of index 2 (Current instruction) 2086 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2087 NewPtr = Builder.CreateGEP(ScalarTy, NewPtr, Builder.getInt32(-Index)); 2088 if (InBounds) 2089 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 2090 2091 // Cast to the vector pointer type. 2092 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2093 } 2094 2095 setDebugLocFromInst(Builder, Instr); 2096 Value *UndefVec = UndefValue::get(VecTy); 2097 2098 Value *MaskForGaps = nullptr; 2099 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2100 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2101 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2102 } 2103 2104 // Vectorize the interleaved load group. 2105 if (isa<LoadInst>(Instr)) { 2106 // For each unroll part, create a wide load for the group. 2107 SmallVector<Value *, 2> NewLoads; 2108 for (unsigned Part = 0; Part < UF; Part++) { 2109 Instruction *NewLoad; 2110 if (IsMaskForCondRequired || MaskForGaps) { 2111 assert(useMaskedInterleavedAccesses(*TTI) && 2112 "masked interleaved groups are not allowed."); 2113 Value *GroupMask = MaskForGaps; 2114 if (IsMaskForCondRequired) { 2115 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2116 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2117 Value *ShuffledMask = Builder.CreateShuffleVector( 2118 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2119 GroupMask = MaskForGaps 2120 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2121 MaskForGaps) 2122 : ShuffledMask; 2123 } 2124 NewLoad = 2125 Builder.CreateMaskedLoad(NewPtrs[Part], Group->getAlignment(), 2126 GroupMask, UndefVec, "wide.masked.vec"); 2127 } 2128 else 2129 NewLoad = Builder.CreateAlignedLoad(VecTy, NewPtrs[Part], 2130 Group->getAlignment(), "wide.vec"); 2131 Group->addMetadata(NewLoad); 2132 NewLoads.push_back(NewLoad); 2133 } 2134 2135 // For each member in the group, shuffle out the appropriate data from the 2136 // wide loads. 2137 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2138 Instruction *Member = Group->getMember(I); 2139 2140 // Skip the gaps in the group. 2141 if (!Member) 2142 continue; 2143 2144 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2145 for (unsigned Part = 0; Part < UF; Part++) { 2146 Value *StridedVec = Builder.CreateShuffleVector( 2147 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2148 2149 // If this member has different type, cast the result type. 2150 if (Member->getType() != ScalarTy) { 2151 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2152 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2153 } 2154 2155 if (Group->isReverse()) 2156 StridedVec = reverseVector(StridedVec); 2157 2158 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2159 } 2160 } 2161 return; 2162 } 2163 2164 // The sub vector type for current instruction. 2165 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2166 2167 // Vectorize the interleaved store group. 2168 for (unsigned Part = 0; Part < UF; Part++) { 2169 // Collect the stored vector from each member. 2170 SmallVector<Value *, 4> StoredVecs; 2171 for (unsigned i = 0; i < InterleaveFactor; i++) { 2172 // Interleaved store group doesn't allow a gap, so each index has a member 2173 Instruction *Member = Group->getMember(i); 2174 assert(Member && "Fail to get a member from an interleaved store group"); 2175 2176 Value *StoredVec = getOrCreateVectorValue( 2177 cast<StoreInst>(Member)->getValueOperand(), Part); 2178 if (Group->isReverse()) 2179 StoredVec = reverseVector(StoredVec); 2180 2181 // If this member has different type, cast it to a unified type. 2182 2183 if (StoredVec->getType() != SubVT) 2184 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2185 2186 StoredVecs.push_back(StoredVec); 2187 } 2188 2189 // Concatenate all vectors into a wide vector. 2190 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2191 2192 // Interleave the elements in the wide vector. 2193 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2194 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2195 "interleaved.vec"); 2196 2197 Instruction *NewStoreInstr; 2198 if (IsMaskForCondRequired) { 2199 auto *Undefs = UndefValue::get(Mask[Part]->getType()); 2200 auto *RepMask = createReplicatedMask(Builder, InterleaveFactor, VF); 2201 Value *ShuffledMask = Builder.CreateShuffleVector( 2202 Mask[Part], Undefs, RepMask, "interleaved.mask"); 2203 NewStoreInstr = Builder.CreateMaskedStore( 2204 IVec, NewPtrs[Part], Group->getAlignment(), ShuffledMask); 2205 } 2206 else 2207 NewStoreInstr = Builder.CreateAlignedStore(IVec, NewPtrs[Part], 2208 Group->getAlignment()); 2209 2210 Group->addMetadata(NewStoreInstr); 2211 } 2212 } 2213 2214 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2215 VectorParts *BlockInMask) { 2216 // Attempt to issue a wide load. 2217 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2218 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2219 2220 assert((LI || SI) && "Invalid Load/Store instruction"); 2221 2222 LoopVectorizationCostModel::InstWidening Decision = 2223 Cost->getWideningDecision(Instr, VF); 2224 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2225 "CM decision should be taken at this point"); 2226 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2227 return vectorizeInterleaveGroup(Instr); 2228 2229 Type *ScalarDataTy = getMemInstValueType(Instr); 2230 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2231 Value *Ptr = getLoadStorePointerOperand(Instr); 2232 unsigned Alignment = getLoadStoreAlignment(Instr); 2233 // An alignment of 0 means target abi alignment. We need to use the scalar's 2234 // target abi alignment in such a case. 2235 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2236 if (!Alignment) 2237 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2238 unsigned AddressSpace = getLoadStoreAddressSpace(Instr); 2239 2240 // Determine if the pointer operand of the access is either consecutive or 2241 // reverse consecutive. 2242 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2243 bool ConsecutiveStride = 2244 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2245 bool CreateGatherScatter = 2246 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2247 2248 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2249 // gather/scatter. Otherwise Decision should have been to Scalarize. 2250 assert((ConsecutiveStride || CreateGatherScatter) && 2251 "The instruction should be scalarized"); 2252 2253 // Handle consecutive loads/stores. 2254 if (ConsecutiveStride) 2255 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2256 2257 VectorParts Mask; 2258 bool isMaskRequired = BlockInMask; 2259 if (isMaskRequired) 2260 Mask = *BlockInMask; 2261 2262 bool InBounds = false; 2263 if (auto *gep = dyn_cast<GetElementPtrInst>( 2264 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2265 InBounds = gep->isInBounds(); 2266 2267 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2268 // Calculate the pointer for the specific unroll-part. 2269 GetElementPtrInst *PartPtr = nullptr; 2270 2271 if (Reverse) { 2272 // If the address is consecutive but reversed, then the 2273 // wide store needs to start at the last vector element. 2274 PartPtr = cast<GetElementPtrInst>( 2275 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2276 PartPtr->setIsInBounds(InBounds); 2277 PartPtr = cast<GetElementPtrInst>( 2278 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2279 PartPtr->setIsInBounds(InBounds); 2280 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2281 Mask[Part] = reverseVector(Mask[Part]); 2282 } else { 2283 PartPtr = cast<GetElementPtrInst>( 2284 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2285 PartPtr->setIsInBounds(InBounds); 2286 } 2287 2288 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2289 }; 2290 2291 // Handle Stores: 2292 if (SI) { 2293 setDebugLocFromInst(Builder, SI); 2294 2295 for (unsigned Part = 0; Part < UF; ++Part) { 2296 Instruction *NewSI = nullptr; 2297 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2298 if (CreateGatherScatter) { 2299 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2300 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2301 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2302 MaskPart); 2303 } else { 2304 if (Reverse) { 2305 // If we store to reverse consecutive memory locations, then we need 2306 // to reverse the order of elements in the stored value. 2307 StoredVal = reverseVector(StoredVal); 2308 // We don't want to update the value in the map as it might be used in 2309 // another expression. So don't call resetVectorValue(StoredVal). 2310 } 2311 auto *VecPtr = CreateVecPtr(Part, Ptr); 2312 if (isMaskRequired) 2313 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2314 Mask[Part]); 2315 else 2316 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2317 } 2318 addMetadata(NewSI, SI); 2319 } 2320 return; 2321 } 2322 2323 // Handle loads. 2324 assert(LI && "Must have a load instruction"); 2325 setDebugLocFromInst(Builder, LI); 2326 for (unsigned Part = 0; Part < UF; ++Part) { 2327 Value *NewLI; 2328 if (CreateGatherScatter) { 2329 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2330 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2331 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2332 nullptr, "wide.masked.gather"); 2333 addMetadata(NewLI, LI); 2334 } else { 2335 auto *VecPtr = CreateVecPtr(Part, Ptr); 2336 if (isMaskRequired) 2337 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2338 UndefValue::get(DataTy), 2339 "wide.masked.load"); 2340 else 2341 NewLI = 2342 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2343 2344 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2345 addMetadata(NewLI, LI); 2346 if (Reverse) 2347 NewLI = reverseVector(NewLI); 2348 } 2349 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2350 } 2351 } 2352 2353 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2354 const VPIteration &Instance, 2355 bool IfPredicateInstr) { 2356 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2357 2358 setDebugLocFromInst(Builder, Instr); 2359 2360 // Does this instruction return a value ? 2361 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2362 2363 Instruction *Cloned = Instr->clone(); 2364 if (!IsVoidRetTy) 2365 Cloned->setName(Instr->getName() + ".cloned"); 2366 2367 // Replace the operands of the cloned instructions with their scalar 2368 // equivalents in the new loop. 2369 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2370 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2371 Cloned->setOperand(op, NewOp); 2372 } 2373 addNewMetadata(Cloned, Instr); 2374 2375 // Place the cloned scalar in the new loop. 2376 Builder.Insert(Cloned); 2377 2378 // Add the cloned scalar to the scalar map entry. 2379 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2380 2381 // If we just cloned a new assumption, add it the assumption cache. 2382 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2383 if (II->getIntrinsicID() == Intrinsic::assume) 2384 AC->registerAssumption(II); 2385 2386 // End if-block. 2387 if (IfPredicateInstr) 2388 PredicatedInstructions.push_back(Cloned); 2389 } 2390 2391 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2392 Value *End, Value *Step, 2393 Instruction *DL) { 2394 BasicBlock *Header = L->getHeader(); 2395 BasicBlock *Latch = L->getLoopLatch(); 2396 // As we're just creating this loop, it's possible no latch exists 2397 // yet. If so, use the header as this will be a single block loop. 2398 if (!Latch) 2399 Latch = Header; 2400 2401 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2402 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2403 setDebugLocFromInst(Builder, OldInst); 2404 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2405 2406 Builder.SetInsertPoint(Latch->getTerminator()); 2407 setDebugLocFromInst(Builder, OldInst); 2408 2409 // Create i+1 and fill the PHINode. 2410 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2411 Induction->addIncoming(Start, L->getLoopPreheader()); 2412 Induction->addIncoming(Next, Latch); 2413 // Create the compare. 2414 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2415 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2416 2417 // Now we have two terminators. Remove the old one from the block. 2418 Latch->getTerminator()->eraseFromParent(); 2419 2420 return Induction; 2421 } 2422 2423 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2424 if (TripCount) 2425 return TripCount; 2426 2427 assert(L && "Create Trip Count for null loop."); 2428 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2429 // Find the loop boundaries. 2430 ScalarEvolution *SE = PSE.getSE(); 2431 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2432 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2433 "Invalid loop count"); 2434 2435 Type *IdxTy = Legal->getWidestInductionType(); 2436 assert(IdxTy && "No type for induction"); 2437 2438 // The exit count might have the type of i64 while the phi is i32. This can 2439 // happen if we have an induction variable that is sign extended before the 2440 // compare. The only way that we get a backedge taken count is that the 2441 // induction variable was signed and as such will not overflow. In such a case 2442 // truncation is legal. 2443 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2444 IdxTy->getPrimitiveSizeInBits()) 2445 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2446 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2447 2448 // Get the total trip count from the count by adding 1. 2449 const SCEV *ExitCount = SE->getAddExpr( 2450 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2451 2452 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2453 2454 // Expand the trip count and place the new instructions in the preheader. 2455 // Notice that the pre-header does not change, only the loop body. 2456 SCEVExpander Exp(*SE, DL, "induction"); 2457 2458 // Count holds the overall loop count (N). 2459 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2460 L->getLoopPreheader()->getTerminator()); 2461 2462 if (TripCount->getType()->isPointerTy()) 2463 TripCount = 2464 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2465 L->getLoopPreheader()->getTerminator()); 2466 2467 return TripCount; 2468 } 2469 2470 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2471 if (VectorTripCount) 2472 return VectorTripCount; 2473 2474 Value *TC = getOrCreateTripCount(L); 2475 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2476 2477 Type *Ty = TC->getType(); 2478 Constant *Step = ConstantInt::get(Ty, VF * UF); 2479 2480 // If the tail is to be folded by masking, round the number of iterations N 2481 // up to a multiple of Step instead of rounding down. This is done by first 2482 // adding Step-1 and then rounding down. Note that it's ok if this addition 2483 // overflows: the vector induction variable will eventually wrap to zero given 2484 // that it starts at zero and its Step is a power of two; the loop will then 2485 // exit, with the last early-exit vector comparison also producing all-true. 2486 if (Cost->foldTailByMasking()) { 2487 assert(isPowerOf2_32(VF * UF) && 2488 "VF*UF must be a power of 2 when folding tail by masking"); 2489 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2490 } 2491 2492 // Now we need to generate the expression for the part of the loop that the 2493 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2494 // iterations are not required for correctness, or N - Step, otherwise. Step 2495 // is equal to the vectorization factor (number of SIMD elements) times the 2496 // unroll factor (number of SIMD instructions). 2497 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2498 2499 // If there is a non-reversed interleaved group that may speculatively access 2500 // memory out-of-bounds, we need to ensure that there will be at least one 2501 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2502 // the trip count, we set the remainder to be equal to the step. If the step 2503 // does not evenly divide the trip count, no adjustment is necessary since 2504 // there will already be scalar iterations. Note that the minimum iterations 2505 // check ensures that N >= Step. 2506 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2507 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2508 R = Builder.CreateSelect(IsZero, Step, R); 2509 } 2510 2511 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2512 2513 return VectorTripCount; 2514 } 2515 2516 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2517 const DataLayout &DL) { 2518 // Verify that V is a vector type with same number of elements as DstVTy. 2519 unsigned VF = DstVTy->getNumElements(); 2520 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2521 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2522 Type *SrcElemTy = SrcVecTy->getElementType(); 2523 Type *DstElemTy = DstVTy->getElementType(); 2524 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2525 "Vector elements must have same size"); 2526 2527 // Do a direct cast if element types are castable. 2528 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2529 return Builder.CreateBitOrPointerCast(V, DstVTy); 2530 } 2531 // V cannot be directly casted to desired vector type. 2532 // May happen when V is a floating point vector but DstVTy is a vector of 2533 // pointers or vice-versa. Handle this using a two-step bitcast using an 2534 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2535 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2536 "Only one type should be a pointer type"); 2537 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2538 "Only one type should be a floating point type"); 2539 Type *IntTy = 2540 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2541 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2542 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2543 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2544 } 2545 2546 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2547 BasicBlock *Bypass) { 2548 Value *Count = getOrCreateTripCount(L); 2549 BasicBlock *BB = L->getLoopPreheader(); 2550 IRBuilder<> Builder(BB->getTerminator()); 2551 2552 // Generate code to check if the loop's trip count is less than VF * UF, or 2553 // equal to it in case a scalar epilogue is required; this implies that the 2554 // vector trip count is zero. This check also covers the case where adding one 2555 // to the backedge-taken count overflowed leading to an incorrect trip count 2556 // of zero. In this case we will also jump to the scalar loop. 2557 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2558 : ICmpInst::ICMP_ULT; 2559 2560 // If tail is to be folded, vector loop takes care of all iterations. 2561 Value *CheckMinIters = Builder.getFalse(); 2562 if (!Cost->foldTailByMasking()) 2563 CheckMinIters = Builder.CreateICmp( 2564 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2565 "min.iters.check"); 2566 2567 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2568 // Update dominator tree immediately if the generated block is a 2569 // LoopBypassBlock because SCEV expansions to generate loop bypass 2570 // checks may query it before the current function is finished. 2571 DT->addNewBlock(NewBB, BB); 2572 if (L->getParentLoop()) 2573 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2574 ReplaceInstWithInst(BB->getTerminator(), 2575 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2576 LoopBypassBlocks.push_back(BB); 2577 } 2578 2579 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2580 BasicBlock *BB = L->getLoopPreheader(); 2581 2582 // Generate the code to check that the SCEV assumptions that we made. 2583 // We want the new basic block to start at the first instruction in a 2584 // sequence of instructions that form a check. 2585 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2586 "scev.check"); 2587 Value *SCEVCheck = 2588 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2589 2590 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2591 if (C->isZero()) 2592 return; 2593 2594 assert(!Cost->foldTailByMasking() && 2595 "Cannot SCEV check stride or overflow when folding tail"); 2596 // Create a new block containing the stride check. 2597 BB->setName("vector.scevcheck"); 2598 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2599 // Update dominator tree immediately if the generated block is a 2600 // LoopBypassBlock because SCEV expansions to generate loop bypass 2601 // checks may query it before the current function is finished. 2602 DT->addNewBlock(NewBB, BB); 2603 if (L->getParentLoop()) 2604 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2605 ReplaceInstWithInst(BB->getTerminator(), 2606 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2607 LoopBypassBlocks.push_back(BB); 2608 AddedSafetyChecks = true; 2609 } 2610 2611 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2612 // VPlan-native path does not do any analysis for runtime checks currently. 2613 if (EnableVPlanNativePath) 2614 return; 2615 2616 BasicBlock *BB = L->getLoopPreheader(); 2617 2618 // Generate the code that checks in runtime if arrays overlap. We put the 2619 // checks into a separate block to make the more common case of few elements 2620 // faster. 2621 Instruction *FirstCheckInst; 2622 Instruction *MemRuntimeCheck; 2623 std::tie(FirstCheckInst, MemRuntimeCheck) = 2624 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2625 if (!MemRuntimeCheck) 2626 return; 2627 2628 assert(!Cost->foldTailByMasking() && "Cannot check memory when folding tail"); 2629 // Create a new block containing the memory check. 2630 BB->setName("vector.memcheck"); 2631 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2632 // Update dominator tree immediately if the generated block is a 2633 // LoopBypassBlock because SCEV expansions to generate loop bypass 2634 // checks may query it before the current function is finished. 2635 DT->addNewBlock(NewBB, BB); 2636 if (L->getParentLoop()) 2637 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2638 ReplaceInstWithInst(BB->getTerminator(), 2639 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2640 LoopBypassBlocks.push_back(BB); 2641 AddedSafetyChecks = true; 2642 2643 // We currently don't use LoopVersioning for the actual loop cloning but we 2644 // still use it to add the noalias metadata. 2645 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2646 PSE.getSE()); 2647 LVer->prepareNoAliasMetadata(); 2648 } 2649 2650 Value *InnerLoopVectorizer::emitTransformedIndex( 2651 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2652 const InductionDescriptor &ID) const { 2653 2654 SCEVExpander Exp(*SE, DL, "induction"); 2655 auto Step = ID.getStep(); 2656 auto StartValue = ID.getStartValue(); 2657 assert(Index->getType() == Step->getType() && 2658 "Index type does not match StepValue type"); 2659 2660 // Note: the IR at this point is broken. We cannot use SE to create any new 2661 // SCEV and then expand it, hoping that SCEV's simplification will give us 2662 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2663 // lead to various SCEV crashes. So all we can do is to use builder and rely 2664 // on InstCombine for future simplifications. Here we handle some trivial 2665 // cases only. 2666 auto CreateAdd = [&B](Value *X, Value *Y) { 2667 assert(X->getType() == Y->getType() && "Types don't match!"); 2668 if (auto *CX = dyn_cast<ConstantInt>(X)) 2669 if (CX->isZero()) 2670 return Y; 2671 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2672 if (CY->isZero()) 2673 return X; 2674 return B.CreateAdd(X, Y); 2675 }; 2676 2677 auto CreateMul = [&B](Value *X, Value *Y) { 2678 assert(X->getType() == Y->getType() && "Types don't match!"); 2679 if (auto *CX = dyn_cast<ConstantInt>(X)) 2680 if (CX->isOne()) 2681 return Y; 2682 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2683 if (CY->isOne()) 2684 return X; 2685 return B.CreateMul(X, Y); 2686 }; 2687 2688 switch (ID.getKind()) { 2689 case InductionDescriptor::IK_IntInduction: { 2690 assert(Index->getType() == StartValue->getType() && 2691 "Index type does not match StartValue type"); 2692 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2693 return B.CreateSub(StartValue, Index); 2694 auto *Offset = CreateMul( 2695 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2696 return CreateAdd(StartValue, Offset); 2697 } 2698 case InductionDescriptor::IK_PtrInduction: { 2699 assert(isa<SCEVConstant>(Step) && 2700 "Expected constant step for pointer induction"); 2701 return B.CreateGEP( 2702 StartValue->getType()->getPointerElementType(), StartValue, 2703 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2704 &*B.GetInsertPoint()))); 2705 } 2706 case InductionDescriptor::IK_FpInduction: { 2707 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2708 auto InductionBinOp = ID.getInductionBinOp(); 2709 assert(InductionBinOp && 2710 (InductionBinOp->getOpcode() == Instruction::FAdd || 2711 InductionBinOp->getOpcode() == Instruction::FSub) && 2712 "Original bin op should be defined for FP induction"); 2713 2714 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2715 2716 // Floating point operations had to be 'fast' to enable the induction. 2717 FastMathFlags Flags; 2718 Flags.setFast(); 2719 2720 Value *MulExp = B.CreateFMul(StepValue, Index); 2721 if (isa<Instruction>(MulExp)) 2722 // We have to check, the MulExp may be a constant. 2723 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2724 2725 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2726 "induction"); 2727 if (isa<Instruction>(BOp)) 2728 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2729 2730 return BOp; 2731 } 2732 case InductionDescriptor::IK_NoInduction: 2733 return nullptr; 2734 } 2735 llvm_unreachable("invalid enum"); 2736 } 2737 2738 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2739 /* 2740 In this function we generate a new loop. The new loop will contain 2741 the vectorized instructions while the old loop will continue to run the 2742 scalar remainder. 2743 2744 [ ] <-- loop iteration number check. 2745 / | 2746 / v 2747 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2748 | / | 2749 | / v 2750 || [ ] <-- vector pre header. 2751 |/ | 2752 | v 2753 | [ ] \ 2754 | [ ]_| <-- vector loop. 2755 | | 2756 | v 2757 | -[ ] <--- middle-block. 2758 | / | 2759 | / v 2760 -|- >[ ] <--- new preheader. 2761 | | 2762 | v 2763 | [ ] \ 2764 | [ ]_| <-- old scalar loop to handle remainder. 2765 \ | 2766 \ v 2767 >[ ] <-- exit block. 2768 ... 2769 */ 2770 2771 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2772 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2773 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2774 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2775 assert(VectorPH && "Invalid loop structure"); 2776 assert(ExitBlock && "Must have an exit block"); 2777 2778 // Some loops have a single integer induction variable, while other loops 2779 // don't. One example is c++ iterators that often have multiple pointer 2780 // induction variables. In the code below we also support a case where we 2781 // don't have a single induction variable. 2782 // 2783 // We try to obtain an induction variable from the original loop as hard 2784 // as possible. However if we don't find one that: 2785 // - is an integer 2786 // - counts from zero, stepping by one 2787 // - is the size of the widest induction variable type 2788 // then we create a new one. 2789 OldInduction = Legal->getPrimaryInduction(); 2790 Type *IdxTy = Legal->getWidestInductionType(); 2791 2792 // Split the single block loop into the two loop structure described above. 2793 BasicBlock *VecBody = 2794 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2795 BasicBlock *MiddleBlock = 2796 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2797 BasicBlock *ScalarPH = 2798 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2799 2800 // Create and register the new vector loop. 2801 Loop *Lp = LI->AllocateLoop(); 2802 Loop *ParentLoop = OrigLoop->getParentLoop(); 2803 2804 // Insert the new loop into the loop nest and register the new basic blocks 2805 // before calling any utilities such as SCEV that require valid LoopInfo. 2806 if (ParentLoop) { 2807 ParentLoop->addChildLoop(Lp); 2808 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2809 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2810 } else { 2811 LI->addTopLevelLoop(Lp); 2812 } 2813 Lp->addBasicBlockToLoop(VecBody, *LI); 2814 2815 // Find the loop boundaries. 2816 Value *Count = getOrCreateTripCount(Lp); 2817 2818 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2819 2820 // Now, compare the new count to zero. If it is zero skip the vector loop and 2821 // jump to the scalar loop. This check also covers the case where the 2822 // backedge-taken count is uint##_max: adding one to it will overflow leading 2823 // to an incorrect trip count of zero. In this (rare) case we will also jump 2824 // to the scalar loop. 2825 emitMinimumIterationCountCheck(Lp, ScalarPH); 2826 2827 // Generate the code to check any assumptions that we've made for SCEV 2828 // expressions. 2829 emitSCEVChecks(Lp, ScalarPH); 2830 2831 // Generate the code that checks in runtime if arrays overlap. We put the 2832 // checks into a separate block to make the more common case of few elements 2833 // faster. 2834 emitMemRuntimeChecks(Lp, ScalarPH); 2835 2836 // Generate the induction variable. 2837 // The loop step is equal to the vectorization factor (num of SIMD elements) 2838 // times the unroll factor (num of SIMD instructions). 2839 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2840 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2841 Induction = 2842 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2843 getDebugLocFromInstOrOperands(OldInduction)); 2844 2845 // We are going to resume the execution of the scalar loop. 2846 // Go over all of the induction variables that we found and fix the 2847 // PHIs that are left in the scalar version of the loop. 2848 // The starting values of PHI nodes depend on the counter of the last 2849 // iteration in the vectorized loop. 2850 // If we come from a bypass edge then we need to start from the original 2851 // start value. 2852 2853 // This variable saves the new starting index for the scalar loop. It is used 2854 // to test if there are any tail iterations left once the vector loop has 2855 // completed. 2856 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2857 for (auto &InductionEntry : *List) { 2858 PHINode *OrigPhi = InductionEntry.first; 2859 InductionDescriptor II = InductionEntry.second; 2860 2861 // Create phi nodes to merge from the backedge-taken check block. 2862 PHINode *BCResumeVal = PHINode::Create( 2863 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 2864 // Copy original phi DL over to the new one. 2865 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 2866 Value *&EndValue = IVEndValues[OrigPhi]; 2867 if (OrigPhi == OldInduction) { 2868 // We know what the end value is. 2869 EndValue = CountRoundDown; 2870 } else { 2871 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 2872 Type *StepType = II.getStep()->getType(); 2873 Instruction::CastOps CastOp = 2874 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 2875 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 2876 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2877 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 2878 EndValue->setName("ind.end"); 2879 } 2880 2881 // The new PHI merges the original incoming value, in case of a bypass, 2882 // or the value at the end of the vectorized loop. 2883 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2884 2885 // Fix the scalar body counter (PHI node). 2886 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2887 2888 // The old induction's phi node in the scalar body needs the truncated 2889 // value. 2890 for (BasicBlock *BB : LoopBypassBlocks) 2891 BCResumeVal->addIncoming(II.getStartValue(), BB); 2892 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2893 } 2894 2895 // We need the OrigLoop (scalar loop part) latch terminator to help 2896 // produce correct debug info for the middle block BB instructions. 2897 // The legality check stage guarantees that the loop will have a single 2898 // latch. 2899 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 2900 "Scalar loop latch terminator isn't a branch"); 2901 BranchInst *ScalarLatchBr = 2902 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 2903 2904 // Add a check in the middle block to see if we have completed 2905 // all of the iterations in the first vector loop. 2906 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2907 // If tail is to be folded, we know we don't need to run the remainder. 2908 Value *CmpN = Builder.getTrue(); 2909 if (!Cost->foldTailByMasking()) { 2910 CmpN = 2911 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2912 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 2913 2914 // Provide correct stepping behaviour by using the same DebugLoc as the 2915 // scalar loop latch branch cmp if it exists. 2916 if (CmpInst *ScalarLatchCmp = 2917 dyn_cast_or_null<CmpInst>(ScalarLatchBr->getCondition())) 2918 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchCmp->getDebugLoc()); 2919 } 2920 2921 BranchInst *BrInst = BranchInst::Create(ExitBlock, ScalarPH, CmpN); 2922 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 2923 ReplaceInstWithInst(MiddleBlock->getTerminator(), BrInst); 2924 2925 // Get ready to start creating new instructions into the vectorized body. 2926 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2927 2928 // Save the state. 2929 LoopVectorPreHeader = Lp->getLoopPreheader(); 2930 LoopScalarPreHeader = ScalarPH; 2931 LoopMiddleBlock = MiddleBlock; 2932 LoopExitBlock = ExitBlock; 2933 LoopVectorBody = VecBody; 2934 LoopScalarBody = OldBasicBlock; 2935 2936 Optional<MDNode *> VectorizedLoopID = 2937 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 2938 LLVMLoopVectorizeFollowupVectorized}); 2939 if (VectorizedLoopID.hasValue()) { 2940 Lp->setLoopID(VectorizedLoopID.getValue()); 2941 2942 // Do not setAlreadyVectorized if loop attributes have been defined 2943 // explicitly. 2944 return LoopVectorPreHeader; 2945 } 2946 2947 // Keep all loop hints from the original loop on the vector loop (we'll 2948 // replace the vectorizer-specific hints below). 2949 if (MDNode *LID = OrigLoop->getLoopID()) 2950 Lp->setLoopID(LID); 2951 2952 LoopVectorizeHints Hints(Lp, true, *ORE); 2953 Hints.setAlreadyVectorized(); 2954 2955 return LoopVectorPreHeader; 2956 } 2957 2958 // Fix up external users of the induction variable. At this point, we are 2959 // in LCSSA form, with all external PHIs that use the IV having one input value, 2960 // coming from the remainder loop. We need those PHIs to also have a correct 2961 // value for the IV when arriving directly from the middle block. 2962 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 2963 const InductionDescriptor &II, 2964 Value *CountRoundDown, Value *EndValue, 2965 BasicBlock *MiddleBlock) { 2966 // There are two kinds of external IV usages - those that use the value 2967 // computed in the last iteration (the PHI) and those that use the penultimate 2968 // value (the value that feeds into the phi from the loop latch). 2969 // We allow both, but they, obviously, have different values. 2970 2971 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 2972 2973 DenseMap<Value *, Value *> MissingVals; 2974 2975 // An external user of the last iteration's value should see the value that 2976 // the remainder loop uses to initialize its own IV. 2977 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 2978 for (User *U : PostInc->users()) { 2979 Instruction *UI = cast<Instruction>(U); 2980 if (!OrigLoop->contains(UI)) { 2981 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2982 MissingVals[UI] = EndValue; 2983 } 2984 } 2985 2986 // An external user of the penultimate value need to see EndValue - Step. 2987 // The simplest way to get this is to recompute it from the constituent SCEVs, 2988 // that is Start + (Step * (CRD - 1)). 2989 for (User *U : OrigPhi->users()) { 2990 auto *UI = cast<Instruction>(U); 2991 if (!OrigLoop->contains(UI)) { 2992 const DataLayout &DL = 2993 OrigLoop->getHeader()->getModule()->getDataLayout(); 2994 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2995 2996 IRBuilder<> B(MiddleBlock->getTerminator()); 2997 Value *CountMinusOne = B.CreateSub( 2998 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 2999 Value *CMO = 3000 !II.getStep()->getType()->isIntegerTy() 3001 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3002 II.getStep()->getType()) 3003 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3004 CMO->setName("cast.cmo"); 3005 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3006 Escape->setName("ind.escape"); 3007 MissingVals[UI] = Escape; 3008 } 3009 } 3010 3011 for (auto &I : MissingVals) { 3012 PHINode *PHI = cast<PHINode>(I.first); 3013 // One corner case we have to handle is two IVs "chasing" each-other, 3014 // that is %IV2 = phi [...], [ %IV1, %latch ] 3015 // In this case, if IV1 has an external use, we need to avoid adding both 3016 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3017 // don't already have an incoming value for the middle block. 3018 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3019 PHI->addIncoming(I.second, MiddleBlock); 3020 } 3021 } 3022 3023 namespace { 3024 3025 struct CSEDenseMapInfo { 3026 static bool canHandle(const Instruction *I) { 3027 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3028 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3029 } 3030 3031 static inline Instruction *getEmptyKey() { 3032 return DenseMapInfo<Instruction *>::getEmptyKey(); 3033 } 3034 3035 static inline Instruction *getTombstoneKey() { 3036 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3037 } 3038 3039 static unsigned getHashValue(const Instruction *I) { 3040 assert(canHandle(I) && "Unknown instruction!"); 3041 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3042 I->value_op_end())); 3043 } 3044 3045 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3046 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3047 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3048 return LHS == RHS; 3049 return LHS->isIdenticalTo(RHS); 3050 } 3051 }; 3052 3053 } // end anonymous namespace 3054 3055 ///Perform cse of induction variable instructions. 3056 static void cse(BasicBlock *BB) { 3057 // Perform simple cse. 3058 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3059 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3060 Instruction *In = &*I++; 3061 3062 if (!CSEDenseMapInfo::canHandle(In)) 3063 continue; 3064 3065 // Check if we can replace this instruction with any of the 3066 // visited instructions. 3067 if (Instruction *V = CSEMap.lookup(In)) { 3068 In->replaceAllUsesWith(V); 3069 In->eraseFromParent(); 3070 continue; 3071 } 3072 3073 CSEMap[In] = In; 3074 } 3075 } 3076 3077 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3078 unsigned VF, 3079 bool &NeedToScalarize) { 3080 Function *F = CI->getCalledFunction(); 3081 StringRef FnName = CI->getCalledFunction()->getName(); 3082 Type *ScalarRetTy = CI->getType(); 3083 SmallVector<Type *, 4> Tys, ScalarTys; 3084 for (auto &ArgOp : CI->arg_operands()) 3085 ScalarTys.push_back(ArgOp->getType()); 3086 3087 // Estimate cost of scalarized vector call. The source operands are assumed 3088 // to be vectors, so we need to extract individual elements from there, 3089 // execute VF scalar calls, and then gather the result into the vector return 3090 // value. 3091 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3092 if (VF == 1) 3093 return ScalarCallCost; 3094 3095 // Compute corresponding vector type for return value and arguments. 3096 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3097 for (Type *ScalarTy : ScalarTys) 3098 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3099 3100 // Compute costs of unpacking argument values for the scalar calls and 3101 // packing the return values to a vector. 3102 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3103 3104 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3105 3106 // If we can't emit a vector call for this function, then the currently found 3107 // cost is the cost we need to return. 3108 NeedToScalarize = true; 3109 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3110 return Cost; 3111 3112 // If the corresponding vector cost is cheaper, return its cost. 3113 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3114 if (VectorCallCost < Cost) { 3115 NeedToScalarize = false; 3116 return VectorCallCost; 3117 } 3118 return Cost; 3119 } 3120 3121 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3122 unsigned VF) { 3123 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3124 assert(ID && "Expected intrinsic call!"); 3125 3126 FastMathFlags FMF; 3127 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3128 FMF = FPMO->getFastMathFlags(); 3129 3130 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3131 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3132 } 3133 3134 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3135 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3136 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3137 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3138 } 3139 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3140 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3141 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3142 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3143 } 3144 3145 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3146 // For every instruction `I` in MinBWs, truncate the operands, create a 3147 // truncated version of `I` and reextend its result. InstCombine runs 3148 // later and will remove any ext/trunc pairs. 3149 SmallPtrSet<Value *, 4> Erased; 3150 for (const auto &KV : Cost->getMinimalBitwidths()) { 3151 // If the value wasn't vectorized, we must maintain the original scalar 3152 // type. The absence of the value from VectorLoopValueMap indicates that it 3153 // wasn't vectorized. 3154 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3155 continue; 3156 for (unsigned Part = 0; Part < UF; ++Part) { 3157 Value *I = getOrCreateVectorValue(KV.first, Part); 3158 if (Erased.find(I) != Erased.end() || I->use_empty() || 3159 !isa<Instruction>(I)) 3160 continue; 3161 Type *OriginalTy = I->getType(); 3162 Type *ScalarTruncatedTy = 3163 IntegerType::get(OriginalTy->getContext(), KV.second); 3164 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3165 OriginalTy->getVectorNumElements()); 3166 if (TruncatedTy == OriginalTy) 3167 continue; 3168 3169 IRBuilder<> B(cast<Instruction>(I)); 3170 auto ShrinkOperand = [&](Value *V) -> Value * { 3171 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3172 if (ZI->getSrcTy() == TruncatedTy) 3173 return ZI->getOperand(0); 3174 return B.CreateZExtOrTrunc(V, TruncatedTy); 3175 }; 3176 3177 // The actual instruction modification depends on the instruction type, 3178 // unfortunately. 3179 Value *NewI = nullptr; 3180 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3181 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3182 ShrinkOperand(BO->getOperand(1))); 3183 3184 // Any wrapping introduced by shrinking this operation shouldn't be 3185 // considered undefined behavior. So, we can't unconditionally copy 3186 // arithmetic wrapping flags to NewI. 3187 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3188 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3189 NewI = 3190 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3191 ShrinkOperand(CI->getOperand(1))); 3192 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3193 NewI = B.CreateSelect(SI->getCondition(), 3194 ShrinkOperand(SI->getTrueValue()), 3195 ShrinkOperand(SI->getFalseValue())); 3196 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3197 switch (CI->getOpcode()) { 3198 default: 3199 llvm_unreachable("Unhandled cast!"); 3200 case Instruction::Trunc: 3201 NewI = ShrinkOperand(CI->getOperand(0)); 3202 break; 3203 case Instruction::SExt: 3204 NewI = B.CreateSExtOrTrunc( 3205 CI->getOperand(0), 3206 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3207 break; 3208 case Instruction::ZExt: 3209 NewI = B.CreateZExtOrTrunc( 3210 CI->getOperand(0), 3211 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3212 break; 3213 } 3214 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3215 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3216 auto *O0 = B.CreateZExtOrTrunc( 3217 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3218 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3219 auto *O1 = B.CreateZExtOrTrunc( 3220 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3221 3222 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3223 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3224 // Don't do anything with the operands, just extend the result. 3225 continue; 3226 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3227 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3228 auto *O0 = B.CreateZExtOrTrunc( 3229 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3230 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3231 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3232 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3233 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3234 auto *O0 = B.CreateZExtOrTrunc( 3235 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3236 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3237 } else { 3238 // If we don't know what to do, be conservative and don't do anything. 3239 continue; 3240 } 3241 3242 // Lastly, extend the result. 3243 NewI->takeName(cast<Instruction>(I)); 3244 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3245 I->replaceAllUsesWith(Res); 3246 cast<Instruction>(I)->eraseFromParent(); 3247 Erased.insert(I); 3248 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3249 } 3250 } 3251 3252 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3253 for (const auto &KV : Cost->getMinimalBitwidths()) { 3254 // If the value wasn't vectorized, we must maintain the original scalar 3255 // type. The absence of the value from VectorLoopValueMap indicates that it 3256 // wasn't vectorized. 3257 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3258 continue; 3259 for (unsigned Part = 0; Part < UF; ++Part) { 3260 Value *I = getOrCreateVectorValue(KV.first, Part); 3261 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3262 if (Inst && Inst->use_empty()) { 3263 Value *NewI = Inst->getOperand(0); 3264 Inst->eraseFromParent(); 3265 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3266 } 3267 } 3268 } 3269 } 3270 3271 void InnerLoopVectorizer::fixVectorizedLoop() { 3272 // Insert truncates and extends for any truncated instructions as hints to 3273 // InstCombine. 3274 if (VF > 1) 3275 truncateToMinimalBitwidths(); 3276 3277 // Fix widened non-induction PHIs by setting up the PHI operands. 3278 if (OrigPHIsToFix.size()) { 3279 assert(EnableVPlanNativePath && 3280 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3281 fixNonInductionPHIs(); 3282 } 3283 3284 // At this point every instruction in the original loop is widened to a 3285 // vector form. Now we need to fix the recurrences in the loop. These PHI 3286 // nodes are currently empty because we did not want to introduce cycles. 3287 // This is the second stage of vectorizing recurrences. 3288 fixCrossIterationPHIs(); 3289 3290 // Update the dominator tree. 3291 // 3292 // FIXME: After creating the structure of the new loop, the dominator tree is 3293 // no longer up-to-date, and it remains that way until we update it 3294 // here. An out-of-date dominator tree is problematic for SCEV, 3295 // because SCEVExpander uses it to guide code generation. The 3296 // vectorizer use SCEVExpanders in several places. Instead, we should 3297 // keep the dominator tree up-to-date as we go. 3298 updateAnalysis(); 3299 3300 // Fix-up external users of the induction variables. 3301 for (auto &Entry : *Legal->getInductionVars()) 3302 fixupIVUsers(Entry.first, Entry.second, 3303 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3304 IVEndValues[Entry.first], LoopMiddleBlock); 3305 3306 fixLCSSAPHIs(); 3307 for (Instruction *PI : PredicatedInstructions) 3308 sinkScalarOperands(&*PI); 3309 3310 // Remove redundant induction instructions. 3311 cse(LoopVectorBody); 3312 } 3313 3314 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3315 // In order to support recurrences we need to be able to vectorize Phi nodes. 3316 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3317 // stage #2: We now need to fix the recurrences by adding incoming edges to 3318 // the currently empty PHI nodes. At this point every instruction in the 3319 // original loop is widened to a vector form so we can use them to construct 3320 // the incoming edges. 3321 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3322 // Handle first-order recurrences and reductions that need to be fixed. 3323 if (Legal->isFirstOrderRecurrence(&Phi)) 3324 fixFirstOrderRecurrence(&Phi); 3325 else if (Legal->isReductionVariable(&Phi)) 3326 fixReduction(&Phi); 3327 } 3328 } 3329 3330 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3331 // This is the second phase of vectorizing first-order recurrences. An 3332 // overview of the transformation is described below. Suppose we have the 3333 // following loop. 3334 // 3335 // for (int i = 0; i < n; ++i) 3336 // b[i] = a[i] - a[i - 1]; 3337 // 3338 // There is a first-order recurrence on "a". For this loop, the shorthand 3339 // scalar IR looks like: 3340 // 3341 // scalar.ph: 3342 // s_init = a[-1] 3343 // br scalar.body 3344 // 3345 // scalar.body: 3346 // i = phi [0, scalar.ph], [i+1, scalar.body] 3347 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3348 // s2 = a[i] 3349 // b[i] = s2 - s1 3350 // br cond, scalar.body, ... 3351 // 3352 // In this example, s1 is a recurrence because it's value depends on the 3353 // previous iteration. In the first phase of vectorization, we created a 3354 // temporary value for s1. We now complete the vectorization and produce the 3355 // shorthand vector IR shown below (for VF = 4, UF = 1). 3356 // 3357 // vector.ph: 3358 // v_init = vector(..., ..., ..., a[-1]) 3359 // br vector.body 3360 // 3361 // vector.body 3362 // i = phi [0, vector.ph], [i+4, vector.body] 3363 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3364 // v2 = a[i, i+1, i+2, i+3]; 3365 // v3 = vector(v1(3), v2(0, 1, 2)) 3366 // b[i, i+1, i+2, i+3] = v2 - v3 3367 // br cond, vector.body, middle.block 3368 // 3369 // middle.block: 3370 // x = v2(3) 3371 // br scalar.ph 3372 // 3373 // scalar.ph: 3374 // s_init = phi [x, middle.block], [a[-1], otherwise] 3375 // br scalar.body 3376 // 3377 // After execution completes the vector loop, we extract the next value of 3378 // the recurrence (x) to use as the initial value in the scalar loop. 3379 3380 // Get the original loop preheader and single loop latch. 3381 auto *Preheader = OrigLoop->getLoopPreheader(); 3382 auto *Latch = OrigLoop->getLoopLatch(); 3383 3384 // Get the initial and previous values of the scalar recurrence. 3385 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3386 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3387 3388 // Create a vector from the initial value. 3389 auto *VectorInit = ScalarInit; 3390 if (VF > 1) { 3391 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3392 VectorInit = Builder.CreateInsertElement( 3393 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3394 Builder.getInt32(VF - 1), "vector.recur.init"); 3395 } 3396 3397 // We constructed a temporary phi node in the first phase of vectorization. 3398 // This phi node will eventually be deleted. 3399 Builder.SetInsertPoint( 3400 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3401 3402 // Create a phi node for the new recurrence. The current value will either be 3403 // the initial value inserted into a vector or loop-varying vector value. 3404 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3405 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3406 3407 // Get the vectorized previous value of the last part UF - 1. It appears last 3408 // among all unrolled iterations, due to the order of their construction. 3409 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3410 3411 // Set the insertion point after the previous value if it is an instruction. 3412 // Note that the previous value may have been constant-folded so it is not 3413 // guaranteed to be an instruction in the vector loop. Also, if the previous 3414 // value is a phi node, we should insert after all the phi nodes to avoid 3415 // breaking basic block verification. 3416 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 3417 isa<PHINode>(PreviousLastPart)) 3418 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3419 else 3420 Builder.SetInsertPoint( 3421 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 3422 3423 // We will construct a vector for the recurrence by combining the values for 3424 // the current and previous iterations. This is the required shuffle mask. 3425 SmallVector<Constant *, 8> ShuffleMask(VF); 3426 ShuffleMask[0] = Builder.getInt32(VF - 1); 3427 for (unsigned I = 1; I < VF; ++I) 3428 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3429 3430 // The vector from which to take the initial value for the current iteration 3431 // (actual or unrolled). Initially, this is the vector phi node. 3432 Value *Incoming = VecPhi; 3433 3434 // Shuffle the current and previous vector and update the vector parts. 3435 for (unsigned Part = 0; Part < UF; ++Part) { 3436 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3437 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3438 auto *Shuffle = 3439 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3440 ConstantVector::get(ShuffleMask)) 3441 : Incoming; 3442 PhiPart->replaceAllUsesWith(Shuffle); 3443 cast<Instruction>(PhiPart)->eraseFromParent(); 3444 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3445 Incoming = PreviousPart; 3446 } 3447 3448 // Fix the latch value of the new recurrence in the vector loop. 3449 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3450 3451 // Extract the last vector element in the middle block. This will be the 3452 // initial value for the recurrence when jumping to the scalar loop. 3453 auto *ExtractForScalar = Incoming; 3454 if (VF > 1) { 3455 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3456 ExtractForScalar = Builder.CreateExtractElement( 3457 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3458 } 3459 // Extract the second last element in the middle block if the 3460 // Phi is used outside the loop. We need to extract the phi itself 3461 // and not the last element (the phi update in the current iteration). This 3462 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3463 // when the scalar loop is not run at all. 3464 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3465 if (VF > 1) 3466 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3467 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3468 // When loop is unrolled without vectorizing, initialize 3469 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3470 // `Incoming`. This is analogous to the vectorized case above: extracting the 3471 // second last element when VF > 1. 3472 else if (UF > 1) 3473 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3474 3475 // Fix the initial value of the original recurrence in the scalar loop. 3476 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3477 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3478 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3479 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3480 Start->addIncoming(Incoming, BB); 3481 } 3482 3483 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3484 Phi->setName("scalar.recur"); 3485 3486 // Finally, fix users of the recurrence outside the loop. The users will need 3487 // either the last value of the scalar recurrence or the last value of the 3488 // vector recurrence we extracted in the middle block. Since the loop is in 3489 // LCSSA form, we just need to find all the phi nodes for the original scalar 3490 // recurrence in the exit block, and then add an edge for the middle block. 3491 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3492 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3493 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3494 } 3495 } 3496 } 3497 3498 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3499 Constant *Zero = Builder.getInt32(0); 3500 3501 // Get it's reduction variable descriptor. 3502 assert(Legal->isReductionVariable(Phi) && 3503 "Unable to find the reduction variable"); 3504 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3505 3506 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3507 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3508 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3509 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3510 RdxDesc.getMinMaxRecurrenceKind(); 3511 setDebugLocFromInst(Builder, ReductionStartValue); 3512 3513 // We need to generate a reduction vector from the incoming scalar. 3514 // To do so, we need to generate the 'identity' vector and override 3515 // one of the elements with the incoming scalar reduction. We need 3516 // to do it in the vector-loop preheader. 3517 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3518 3519 // This is the vector-clone of the value that leaves the loop. 3520 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3521 3522 // Find the reduction identity variable. Zero for addition, or, xor, 3523 // one for multiplication, -1 for And. 3524 Value *Identity; 3525 Value *VectorStart; 3526 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3527 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3528 // MinMax reduction have the start value as their identify. 3529 if (VF == 1) { 3530 VectorStart = Identity = ReductionStartValue; 3531 } else { 3532 VectorStart = Identity = 3533 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3534 } 3535 } else { 3536 // Handle other reduction kinds: 3537 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3538 RK, VecTy->getScalarType()); 3539 if (VF == 1) { 3540 Identity = Iden; 3541 // This vector is the Identity vector where the first element is the 3542 // incoming scalar reduction. 3543 VectorStart = ReductionStartValue; 3544 } else { 3545 Identity = ConstantVector::getSplat(VF, Iden); 3546 3547 // This vector is the Identity vector where the first element is the 3548 // incoming scalar reduction. 3549 VectorStart = 3550 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3551 } 3552 } 3553 3554 // Fix the vector-loop phi. 3555 3556 // Reductions do not have to start at zero. They can start with 3557 // any loop invariant values. 3558 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3559 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3560 for (unsigned Part = 0; Part < UF; ++Part) { 3561 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3562 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3563 // Make sure to add the reduction stat value only to the 3564 // first unroll part. 3565 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3566 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3567 cast<PHINode>(VecRdxPhi) 3568 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3569 } 3570 3571 // Before each round, move the insertion point right between 3572 // the PHIs and the values we are going to write. 3573 // This allows us to write both PHINodes and the extractelement 3574 // instructions. 3575 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3576 3577 setDebugLocFromInst(Builder, LoopExitInst); 3578 3579 // If the vector reduction can be performed in a smaller type, we truncate 3580 // then extend the loop exit value to enable InstCombine to evaluate the 3581 // entire expression in the smaller type. 3582 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3583 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3584 Builder.SetInsertPoint( 3585 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3586 VectorParts RdxParts(UF); 3587 for (unsigned Part = 0; Part < UF; ++Part) { 3588 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3589 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3590 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3591 : Builder.CreateZExt(Trunc, VecTy); 3592 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3593 UI != RdxParts[Part]->user_end();) 3594 if (*UI != Trunc) { 3595 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3596 RdxParts[Part] = Extnd; 3597 } else { 3598 ++UI; 3599 } 3600 } 3601 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3602 for (unsigned Part = 0; Part < UF; ++Part) { 3603 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3604 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3605 } 3606 } 3607 3608 // Reduce all of the unrolled parts into a single vector. 3609 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3610 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3611 setDebugLocFromInst(Builder, ReducedPartRdx); 3612 for (unsigned Part = 1; Part < UF; ++Part) { 3613 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3614 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3615 // Floating point operations had to be 'fast' to enable the reduction. 3616 ReducedPartRdx = addFastMathFlag( 3617 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3618 ReducedPartRdx, "bin.rdx"), 3619 RdxDesc.getFastMathFlags()); 3620 else 3621 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3622 RdxPart); 3623 } 3624 3625 if (VF > 1) { 3626 bool NoNaN = Legal->hasFunNoNaNAttr(); 3627 ReducedPartRdx = 3628 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3629 // If the reduction can be performed in a smaller type, we need to extend 3630 // the reduction to the wider type before we branch to the original loop. 3631 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3632 ReducedPartRdx = 3633 RdxDesc.isSigned() 3634 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3635 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3636 } 3637 3638 // Create a phi node that merges control-flow from the backedge-taken check 3639 // block and the middle block. 3640 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3641 LoopScalarPreHeader->getTerminator()); 3642 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3643 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3644 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3645 3646 // Now, we need to fix the users of the reduction variable 3647 // inside and outside of the scalar remainder loop. 3648 // We know that the loop is in LCSSA form. We need to update the 3649 // PHI nodes in the exit blocks. 3650 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3651 // All PHINodes need to have a single entry edge, or two if 3652 // we already fixed them. 3653 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3654 3655 // We found a reduction value exit-PHI. Update it with the 3656 // incoming bypass edge. 3657 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3658 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3659 } // end of the LCSSA phi scan. 3660 3661 // Fix the scalar loop reduction variable with the incoming reduction sum 3662 // from the vector body and from the backedge value. 3663 int IncomingEdgeBlockIdx = 3664 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3665 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3666 // Pick the other block. 3667 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3668 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3669 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3670 } 3671 3672 void InnerLoopVectorizer::fixLCSSAPHIs() { 3673 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3674 if (LCSSAPhi.getNumIncomingValues() == 1) { 3675 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3676 // Non-instruction incoming values will have only one value. 3677 unsigned LastLane = 0; 3678 if (isa<Instruction>(IncomingValue)) 3679 LastLane = Cost->isUniformAfterVectorization( 3680 cast<Instruction>(IncomingValue), VF) 3681 ? 0 3682 : VF - 1; 3683 // Can be a loop invariant incoming value or the last scalar value to be 3684 // extracted from the vectorized loop. 3685 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3686 Value *lastIncomingValue = 3687 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3688 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3689 } 3690 } 3691 } 3692 3693 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3694 // The basic block and loop containing the predicated instruction. 3695 auto *PredBB = PredInst->getParent(); 3696 auto *VectorLoop = LI->getLoopFor(PredBB); 3697 3698 // Initialize a worklist with the operands of the predicated instruction. 3699 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3700 3701 // Holds instructions that we need to analyze again. An instruction may be 3702 // reanalyzed if we don't yet know if we can sink it or not. 3703 SmallVector<Instruction *, 8> InstsToReanalyze; 3704 3705 // Returns true if a given use occurs in the predicated block. Phi nodes use 3706 // their operands in their corresponding predecessor blocks. 3707 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3708 auto *I = cast<Instruction>(U.getUser()); 3709 BasicBlock *BB = I->getParent(); 3710 if (auto *Phi = dyn_cast<PHINode>(I)) 3711 BB = Phi->getIncomingBlock( 3712 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3713 return BB == PredBB; 3714 }; 3715 3716 // Iteratively sink the scalarized operands of the predicated instruction 3717 // into the block we created for it. When an instruction is sunk, it's 3718 // operands are then added to the worklist. The algorithm ends after one pass 3719 // through the worklist doesn't sink a single instruction. 3720 bool Changed; 3721 do { 3722 // Add the instructions that need to be reanalyzed to the worklist, and 3723 // reset the changed indicator. 3724 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3725 InstsToReanalyze.clear(); 3726 Changed = false; 3727 3728 while (!Worklist.empty()) { 3729 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3730 3731 // We can't sink an instruction if it is a phi node, is already in the 3732 // predicated block, is not in the loop, or may have side effects. 3733 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3734 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3735 continue; 3736 3737 // It's legal to sink the instruction if all its uses occur in the 3738 // predicated block. Otherwise, there's nothing to do yet, and we may 3739 // need to reanalyze the instruction. 3740 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3741 InstsToReanalyze.push_back(I); 3742 continue; 3743 } 3744 3745 // Move the instruction to the beginning of the predicated block, and add 3746 // it's operands to the worklist. 3747 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3748 Worklist.insert(I->op_begin(), I->op_end()); 3749 3750 // The sinking may have enabled other instructions to be sunk, so we will 3751 // need to iterate. 3752 Changed = true; 3753 } 3754 } while (Changed); 3755 } 3756 3757 void InnerLoopVectorizer::fixNonInductionPHIs() { 3758 for (PHINode *OrigPhi : OrigPHIsToFix) { 3759 PHINode *NewPhi = 3760 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 3761 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 3762 3763 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 3764 predecessors(OrigPhi->getParent())); 3765 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 3766 predecessors(NewPhi->getParent())); 3767 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 3768 "Scalar and Vector BB should have the same number of predecessors"); 3769 3770 // The insertion point in Builder may be invalidated by the time we get 3771 // here. Force the Builder insertion point to something valid so that we do 3772 // not run into issues during insertion point restore in 3773 // getOrCreateVectorValue calls below. 3774 Builder.SetInsertPoint(NewPhi); 3775 3776 // The predecessor order is preserved and we can rely on mapping between 3777 // scalar and vector block predecessors. 3778 for (unsigned i = 0; i < NumIncomingValues; ++i) { 3779 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 3780 3781 // When looking up the new scalar/vector values to fix up, use incoming 3782 // values from original phi. 3783 Value *ScIncV = 3784 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 3785 3786 // Scalar incoming value may need a broadcast 3787 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 3788 NewPhi->addIncoming(NewIncV, NewPredBB); 3789 } 3790 } 3791 } 3792 3793 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 3794 unsigned VF) { 3795 PHINode *P = cast<PHINode>(PN); 3796 if (EnableVPlanNativePath) { 3797 // Currently we enter here in the VPlan-native path for non-induction 3798 // PHIs where all control flow is uniform. We simply widen these PHIs. 3799 // Create a vector phi with no operands - the vector phi operands will be 3800 // set at the end of vector code generation. 3801 Type *VecTy = 3802 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3803 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 3804 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 3805 OrigPHIsToFix.push_back(P); 3806 3807 return; 3808 } 3809 3810 assert(PN->getParent() == OrigLoop->getHeader() && 3811 "Non-header phis should have been handled elsewhere"); 3812 3813 // In order to support recurrences we need to be able to vectorize Phi nodes. 3814 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3815 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 3816 // this value when we vectorize all of the instructions that use the PHI. 3817 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3818 for (unsigned Part = 0; Part < UF; ++Part) { 3819 // This is phase one of vectorizing PHIs. 3820 Type *VecTy = 3821 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3822 Value *EntryPart = PHINode::Create( 3823 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3824 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 3825 } 3826 return; 3827 } 3828 3829 setDebugLocFromInst(Builder, P); 3830 3831 // This PHINode must be an induction variable. 3832 // Make sure that we know about it. 3833 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 3834 3835 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3836 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3837 3838 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3839 // which can be found from the original scalar operations. 3840 switch (II.getKind()) { 3841 case InductionDescriptor::IK_NoInduction: 3842 llvm_unreachable("Unknown induction"); 3843 case InductionDescriptor::IK_IntInduction: 3844 case InductionDescriptor::IK_FpInduction: 3845 llvm_unreachable("Integer/fp induction is handled elsewhere."); 3846 case InductionDescriptor::IK_PtrInduction: { 3847 // Handle the pointer induction variable case. 3848 assert(P->getType()->isPointerTy() && "Unexpected type."); 3849 // This is the normalized GEP that starts counting at zero. 3850 Value *PtrInd = Induction; 3851 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 3852 // Determine the number of scalars we need to generate for each unroll 3853 // iteration. If the instruction is uniform, we only need to generate the 3854 // first lane. Otherwise, we generate all VF values. 3855 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 3856 // These are the scalar results. Notice that we don't generate vector GEPs 3857 // because scalar GEPs result in better code. 3858 for (unsigned Part = 0; Part < UF; ++Part) { 3859 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3860 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 3861 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3862 Value *SclrGep = 3863 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 3864 SclrGep->setName("next.gep"); 3865 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 3866 } 3867 } 3868 return; 3869 } 3870 } 3871 } 3872 3873 /// A helper function for checking whether an integer division-related 3874 /// instruction may divide by zero (in which case it must be predicated if 3875 /// executed conditionally in the scalar code). 3876 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 3877 /// Non-zero divisors that are non compile-time constants will not be 3878 /// converted into multiplication, so we will still end up scalarizing 3879 /// the division, but can do so w/o predication. 3880 static bool mayDivideByZero(Instruction &I) { 3881 assert((I.getOpcode() == Instruction::UDiv || 3882 I.getOpcode() == Instruction::SDiv || 3883 I.getOpcode() == Instruction::URem || 3884 I.getOpcode() == Instruction::SRem) && 3885 "Unexpected instruction"); 3886 Value *Divisor = I.getOperand(1); 3887 auto *CInt = dyn_cast<ConstantInt>(Divisor); 3888 return !CInt || CInt->isZero(); 3889 } 3890 3891 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 3892 switch (I.getOpcode()) { 3893 case Instruction::Br: 3894 case Instruction::PHI: 3895 llvm_unreachable("This instruction is handled by a different recipe."); 3896 case Instruction::GetElementPtr: { 3897 // Construct a vector GEP by widening the operands of the scalar GEP as 3898 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 3899 // results in a vector of pointers when at least one operand of the GEP 3900 // is vector-typed. Thus, to keep the representation compact, we only use 3901 // vector-typed operands for loop-varying values. 3902 auto *GEP = cast<GetElementPtrInst>(&I); 3903 3904 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 3905 // If we are vectorizing, but the GEP has only loop-invariant operands, 3906 // the GEP we build (by only using vector-typed operands for 3907 // loop-varying values) would be a scalar pointer. Thus, to ensure we 3908 // produce a vector of pointers, we need to either arbitrarily pick an 3909 // operand to broadcast, or broadcast a clone of the original GEP. 3910 // Here, we broadcast a clone of the original. 3911 // 3912 // TODO: If at some point we decide to scalarize instructions having 3913 // loop-invariant operands, this special case will no longer be 3914 // required. We would add the scalarization decision to 3915 // collectLoopScalars() and teach getVectorValue() to broadcast 3916 // the lane-zero scalar value. 3917 auto *Clone = Builder.Insert(GEP->clone()); 3918 for (unsigned Part = 0; Part < UF; ++Part) { 3919 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 3920 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 3921 addMetadata(EntryPart, GEP); 3922 } 3923 } else { 3924 // If the GEP has at least one loop-varying operand, we are sure to 3925 // produce a vector of pointers. But if we are only unrolling, we want 3926 // to produce a scalar GEP for each unroll part. Thus, the GEP we 3927 // produce with the code below will be scalar (if VF == 1) or vector 3928 // (otherwise). Note that for the unroll-only case, we still maintain 3929 // values in the vector mapping with initVector, as we do for other 3930 // instructions. 3931 for (unsigned Part = 0; Part < UF; ++Part) { 3932 // The pointer operand of the new GEP. If it's loop-invariant, we 3933 // won't broadcast it. 3934 auto *Ptr = 3935 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 3936 ? GEP->getPointerOperand() 3937 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 3938 3939 // Collect all the indices for the new GEP. If any index is 3940 // loop-invariant, we won't broadcast it. 3941 SmallVector<Value *, 4> Indices; 3942 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 3943 if (OrigLoop->isLoopInvariant(U.get())) 3944 Indices.push_back(U.get()); 3945 else 3946 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 3947 } 3948 3949 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 3950 // but it should be a vector, otherwise. 3951 auto *NewGEP = 3952 GEP->isInBounds() 3953 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 3954 Indices) 3955 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 3956 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 3957 "NewGEP is not a pointer vector"); 3958 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 3959 addMetadata(NewGEP, GEP); 3960 } 3961 } 3962 3963 break; 3964 } 3965 case Instruction::UDiv: 3966 case Instruction::SDiv: 3967 case Instruction::SRem: 3968 case Instruction::URem: 3969 case Instruction::Add: 3970 case Instruction::FAdd: 3971 case Instruction::Sub: 3972 case Instruction::FSub: 3973 case Instruction::FNeg: 3974 case Instruction::Mul: 3975 case Instruction::FMul: 3976 case Instruction::FDiv: 3977 case Instruction::FRem: 3978 case Instruction::Shl: 3979 case Instruction::LShr: 3980 case Instruction::AShr: 3981 case Instruction::And: 3982 case Instruction::Or: 3983 case Instruction::Xor: { 3984 // Just widen unops and binops. 3985 setDebugLocFromInst(Builder, &I); 3986 3987 for (unsigned Part = 0; Part < UF; ++Part) { 3988 SmallVector<Value *, 2> Ops; 3989 for (Value *Op : I.operands()) 3990 Ops.push_back(getOrCreateVectorValue(Op, Part)); 3991 3992 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 3993 3994 if (auto *VecOp = dyn_cast<Instruction>(V)) 3995 VecOp->copyIRFlags(&I); 3996 3997 // Use this vector value for all users of the original instruction. 3998 VectorLoopValueMap.setVectorValue(&I, Part, V); 3999 addMetadata(V, &I); 4000 } 4001 4002 break; 4003 } 4004 case Instruction::Select: { 4005 // Widen selects. 4006 // If the selector is loop invariant we can create a select 4007 // instruction with a scalar condition. Otherwise, use vector-select. 4008 auto *SE = PSE.getSE(); 4009 bool InvariantCond = 4010 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4011 setDebugLocFromInst(Builder, &I); 4012 4013 // The condition can be loop invariant but still defined inside the 4014 // loop. This means that we can't just use the original 'cond' value. 4015 // We have to take the 'vectorized' value and pick the first lane. 4016 // Instcombine will make this a no-op. 4017 4018 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4019 4020 for (unsigned Part = 0; Part < UF; ++Part) { 4021 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4022 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4023 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4024 Value *Sel = 4025 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4026 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4027 addMetadata(Sel, &I); 4028 } 4029 4030 break; 4031 } 4032 4033 case Instruction::ICmp: 4034 case Instruction::FCmp: { 4035 // Widen compares. Generate vector compares. 4036 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4037 auto *Cmp = dyn_cast<CmpInst>(&I); 4038 setDebugLocFromInst(Builder, Cmp); 4039 for (unsigned Part = 0; Part < UF; ++Part) { 4040 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4041 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4042 Value *C = nullptr; 4043 if (FCmp) { 4044 // Propagate fast math flags. 4045 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4046 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4047 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4048 } else { 4049 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4050 } 4051 VectorLoopValueMap.setVectorValue(&I, Part, C); 4052 addMetadata(C, &I); 4053 } 4054 4055 break; 4056 } 4057 4058 case Instruction::ZExt: 4059 case Instruction::SExt: 4060 case Instruction::FPToUI: 4061 case Instruction::FPToSI: 4062 case Instruction::FPExt: 4063 case Instruction::PtrToInt: 4064 case Instruction::IntToPtr: 4065 case Instruction::SIToFP: 4066 case Instruction::UIToFP: 4067 case Instruction::Trunc: 4068 case Instruction::FPTrunc: 4069 case Instruction::BitCast: { 4070 auto *CI = dyn_cast<CastInst>(&I); 4071 setDebugLocFromInst(Builder, CI); 4072 4073 /// Vectorize casts. 4074 Type *DestTy = 4075 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4076 4077 for (unsigned Part = 0; Part < UF; ++Part) { 4078 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4079 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4080 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4081 addMetadata(Cast, &I); 4082 } 4083 break; 4084 } 4085 4086 case Instruction::Call: { 4087 // Ignore dbg intrinsics. 4088 if (isa<DbgInfoIntrinsic>(I)) 4089 break; 4090 setDebugLocFromInst(Builder, &I); 4091 4092 Module *M = I.getParent()->getParent()->getParent(); 4093 auto *CI = cast<CallInst>(&I); 4094 4095 StringRef FnName = CI->getCalledFunction()->getName(); 4096 Function *F = CI->getCalledFunction(); 4097 Type *RetTy = ToVectorTy(CI->getType(), VF); 4098 SmallVector<Type *, 4> Tys; 4099 for (Value *ArgOperand : CI->arg_operands()) 4100 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4101 4102 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4103 4104 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4105 // version of the instruction. 4106 // Is it beneficial to perform intrinsic call compared to lib call? 4107 bool NeedToScalarize; 4108 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4109 bool UseVectorIntrinsic = 4110 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4111 assert((UseVectorIntrinsic || !NeedToScalarize) && 4112 "Instruction should be scalarized elsewhere."); 4113 4114 for (unsigned Part = 0; Part < UF; ++Part) { 4115 SmallVector<Value *, 4> Args; 4116 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4117 Value *Arg = CI->getArgOperand(i); 4118 // Some intrinsics have a scalar argument - don't replace it with a 4119 // vector. 4120 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4121 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4122 Args.push_back(Arg); 4123 } 4124 4125 Function *VectorF; 4126 if (UseVectorIntrinsic) { 4127 // Use vector version of the intrinsic. 4128 Type *TysForDecl[] = {CI->getType()}; 4129 if (VF > 1) 4130 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4131 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4132 } else { 4133 // Use vector version of the library call. 4134 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4135 assert(!VFnName.empty() && "Vector function name is empty."); 4136 VectorF = M->getFunction(VFnName); 4137 if (!VectorF) { 4138 // Generate a declaration 4139 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4140 VectorF = 4141 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4142 VectorF->copyAttributesFrom(F); 4143 } 4144 } 4145 assert(VectorF && "Can't create vector function."); 4146 4147 SmallVector<OperandBundleDef, 1> OpBundles; 4148 CI->getOperandBundlesAsDefs(OpBundles); 4149 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4150 4151 if (isa<FPMathOperator>(V)) 4152 V->copyFastMathFlags(CI); 4153 4154 VectorLoopValueMap.setVectorValue(&I, Part, V); 4155 addMetadata(V, &I); 4156 } 4157 4158 break; 4159 } 4160 4161 default: 4162 // This instruction is not vectorized by simple widening. 4163 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4164 llvm_unreachable("Unhandled instruction!"); 4165 } // end of switch. 4166 } 4167 4168 void InnerLoopVectorizer::updateAnalysis() { 4169 // Forget the original basic block. 4170 PSE.getSE()->forgetLoop(OrigLoop); 4171 4172 // DT is not kept up-to-date for outer loop vectorization 4173 if (EnableVPlanNativePath) 4174 return; 4175 4176 // Update the dominator tree information. 4177 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4178 "Entry does not dominate exit."); 4179 4180 DT->addNewBlock(LoopMiddleBlock, 4181 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4182 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4183 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4184 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4185 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4186 } 4187 4188 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4189 // We should not collect Scalars more than once per VF. Right now, this 4190 // function is called from collectUniformsAndScalars(), which already does 4191 // this check. Collecting Scalars for VF=1 does not make any sense. 4192 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4193 "This function should not be visited twice for the same VF"); 4194 4195 SmallSetVector<Instruction *, 8> Worklist; 4196 4197 // These sets are used to seed the analysis with pointers used by memory 4198 // accesses that will remain scalar. 4199 SmallSetVector<Instruction *, 8> ScalarPtrs; 4200 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4201 4202 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4203 // The pointer operands of loads and stores will be scalar as long as the 4204 // memory access is not a gather or scatter operation. The value operand of a 4205 // store will remain scalar if the store is scalarized. 4206 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4207 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4208 assert(WideningDecision != CM_Unknown && 4209 "Widening decision should be ready at this moment"); 4210 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4211 if (Ptr == Store->getValueOperand()) 4212 return WideningDecision == CM_Scalarize; 4213 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4214 "Ptr is neither a value or pointer operand"); 4215 return WideningDecision != CM_GatherScatter; 4216 }; 4217 4218 // A helper that returns true if the given value is a bitcast or 4219 // getelementptr instruction contained in the loop. 4220 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4221 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4222 isa<GetElementPtrInst>(V)) && 4223 !TheLoop->isLoopInvariant(V); 4224 }; 4225 4226 // A helper that evaluates a memory access's use of a pointer. If the use 4227 // will be a scalar use, and the pointer is only used by memory accesses, we 4228 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4229 // PossibleNonScalarPtrs. 4230 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4231 // We only care about bitcast and getelementptr instructions contained in 4232 // the loop. 4233 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4234 return; 4235 4236 // If the pointer has already been identified as scalar (e.g., if it was 4237 // also identified as uniform), there's nothing to do. 4238 auto *I = cast<Instruction>(Ptr); 4239 if (Worklist.count(I)) 4240 return; 4241 4242 // If the use of the pointer will be a scalar use, and all users of the 4243 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4244 // place the pointer in PossibleNonScalarPtrs. 4245 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4246 return isa<LoadInst>(U) || isa<StoreInst>(U); 4247 })) 4248 ScalarPtrs.insert(I); 4249 else 4250 PossibleNonScalarPtrs.insert(I); 4251 }; 4252 4253 // We seed the scalars analysis with three classes of instructions: (1) 4254 // instructions marked uniform-after-vectorization, (2) bitcast and 4255 // getelementptr instructions used by memory accesses requiring a scalar use, 4256 // and (3) pointer induction variables and their update instructions (we 4257 // currently only scalarize these). 4258 // 4259 // (1) Add to the worklist all instructions that have been identified as 4260 // uniform-after-vectorization. 4261 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4262 4263 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4264 // memory accesses requiring a scalar use. The pointer operands of loads and 4265 // stores will be scalar as long as the memory accesses is not a gather or 4266 // scatter operation. The value operand of a store will remain scalar if the 4267 // store is scalarized. 4268 for (auto *BB : TheLoop->blocks()) 4269 for (auto &I : *BB) { 4270 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4271 evaluatePtrUse(Load, Load->getPointerOperand()); 4272 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4273 evaluatePtrUse(Store, Store->getPointerOperand()); 4274 evaluatePtrUse(Store, Store->getValueOperand()); 4275 } 4276 } 4277 for (auto *I : ScalarPtrs) 4278 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4279 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4280 Worklist.insert(I); 4281 } 4282 4283 // (3) Add to the worklist all pointer induction variables and their update 4284 // instructions. 4285 // 4286 // TODO: Once we are able to vectorize pointer induction variables we should 4287 // no longer insert them into the worklist here. 4288 auto *Latch = TheLoop->getLoopLatch(); 4289 for (auto &Induction : *Legal->getInductionVars()) { 4290 auto *Ind = Induction.first; 4291 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4292 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4293 continue; 4294 Worklist.insert(Ind); 4295 Worklist.insert(IndUpdate); 4296 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4297 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4298 << "\n"); 4299 } 4300 4301 // Insert the forced scalars. 4302 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4303 // induction variable when the PHI user is scalarized. 4304 auto ForcedScalar = ForcedScalars.find(VF); 4305 if (ForcedScalar != ForcedScalars.end()) 4306 for (auto *I : ForcedScalar->second) 4307 Worklist.insert(I); 4308 4309 // Expand the worklist by looking through any bitcasts and getelementptr 4310 // instructions we've already identified as scalar. This is similar to the 4311 // expansion step in collectLoopUniforms(); however, here we're only 4312 // expanding to include additional bitcasts and getelementptr instructions. 4313 unsigned Idx = 0; 4314 while (Idx != Worklist.size()) { 4315 Instruction *Dst = Worklist[Idx++]; 4316 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4317 continue; 4318 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4319 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4320 auto *J = cast<Instruction>(U); 4321 return !TheLoop->contains(J) || Worklist.count(J) || 4322 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4323 isScalarUse(J, Src)); 4324 })) { 4325 Worklist.insert(Src); 4326 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4327 } 4328 } 4329 4330 // An induction variable will remain scalar if all users of the induction 4331 // variable and induction variable update remain scalar. 4332 for (auto &Induction : *Legal->getInductionVars()) { 4333 auto *Ind = Induction.first; 4334 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4335 4336 // We already considered pointer induction variables, so there's no reason 4337 // to look at their users again. 4338 // 4339 // TODO: Once we are able to vectorize pointer induction variables we 4340 // should no longer skip over them here. 4341 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4342 continue; 4343 4344 // Determine if all users of the induction variable are scalar after 4345 // vectorization. 4346 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4347 auto *I = cast<Instruction>(U); 4348 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4349 }); 4350 if (!ScalarInd) 4351 continue; 4352 4353 // Determine if all users of the induction variable update instruction are 4354 // scalar after vectorization. 4355 auto ScalarIndUpdate = 4356 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4357 auto *I = cast<Instruction>(U); 4358 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4359 }); 4360 if (!ScalarIndUpdate) 4361 continue; 4362 4363 // The induction variable and its update instruction will remain scalar. 4364 Worklist.insert(Ind); 4365 Worklist.insert(IndUpdate); 4366 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4367 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4368 << "\n"); 4369 } 4370 4371 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4372 } 4373 4374 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4375 if (!blockNeedsPredication(I->getParent())) 4376 return false; 4377 switch(I->getOpcode()) { 4378 default: 4379 break; 4380 case Instruction::Load: 4381 case Instruction::Store: { 4382 if (!Legal->isMaskRequired(I)) 4383 return false; 4384 auto *Ptr = getLoadStorePointerOperand(I); 4385 auto *Ty = getMemInstValueType(I); 4386 // We have already decided how to vectorize this instruction, get that 4387 // result. 4388 if (VF > 1) { 4389 InstWidening WideningDecision = getWideningDecision(I, VF); 4390 assert(WideningDecision != CM_Unknown && 4391 "Widening decision should be ready at this moment"); 4392 return WideningDecision == CM_Scalarize; 4393 } 4394 return isa<LoadInst>(I) ? 4395 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 4396 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 4397 } 4398 case Instruction::UDiv: 4399 case Instruction::SDiv: 4400 case Instruction::SRem: 4401 case Instruction::URem: 4402 return mayDivideByZero(*I); 4403 } 4404 return false; 4405 } 4406 4407 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4408 unsigned VF) { 4409 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4410 assert(getWideningDecision(I, VF) == CM_Unknown && 4411 "Decision should not be set yet."); 4412 auto *Group = getInterleavedAccessGroup(I); 4413 assert(Group && "Must have a group."); 4414 4415 // Check if masking is required. 4416 // A Group may need masking for one of two reasons: it resides in a block that 4417 // needs predication, or it was decided to use masking to deal with gaps. 4418 bool PredicatedAccessRequiresMasking = 4419 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4420 bool AccessWithGapsRequiresMasking = 4421 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 4422 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4423 return true; 4424 4425 // If masked interleaving is required, we expect that the user/target had 4426 // enabled it, because otherwise it either wouldn't have been created or 4427 // it should have been invalidated by the CostModel. 4428 assert(useMaskedInterleavedAccesses(TTI) && 4429 "Masked interleave-groups for predicated accesses are not enabled."); 4430 4431 auto *Ty = getMemInstValueType(I); 4432 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty) 4433 : TTI.isLegalMaskedStore(Ty); 4434 } 4435 4436 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4437 unsigned VF) { 4438 // Get and ensure we have a valid memory instruction. 4439 LoadInst *LI = dyn_cast<LoadInst>(I); 4440 StoreInst *SI = dyn_cast<StoreInst>(I); 4441 assert((LI || SI) && "Invalid memory instruction"); 4442 4443 auto *Ptr = getLoadStorePointerOperand(I); 4444 4445 // In order to be widened, the pointer should be consecutive, first of all. 4446 if (!Legal->isConsecutivePtr(Ptr)) 4447 return false; 4448 4449 // If the instruction is a store located in a predicated block, it will be 4450 // scalarized. 4451 if (isScalarWithPredication(I)) 4452 return false; 4453 4454 // If the instruction's allocated size doesn't equal it's type size, it 4455 // requires padding and will be scalarized. 4456 auto &DL = I->getModule()->getDataLayout(); 4457 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4458 if (hasIrregularType(ScalarTy, DL, VF)) 4459 return false; 4460 4461 return true; 4462 } 4463 4464 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4465 // We should not collect Uniforms more than once per VF. Right now, 4466 // this function is called from collectUniformsAndScalars(), which 4467 // already does this check. Collecting Uniforms for VF=1 does not make any 4468 // sense. 4469 4470 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4471 "This function should not be visited twice for the same VF"); 4472 4473 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4474 // not analyze again. Uniforms.count(VF) will return 1. 4475 Uniforms[VF].clear(); 4476 4477 // We now know that the loop is vectorizable! 4478 // Collect instructions inside the loop that will remain uniform after 4479 // vectorization. 4480 4481 // Global values, params and instructions outside of current loop are out of 4482 // scope. 4483 auto isOutOfScope = [&](Value *V) -> bool { 4484 Instruction *I = dyn_cast<Instruction>(V); 4485 return (!I || !TheLoop->contains(I)); 4486 }; 4487 4488 SetVector<Instruction *> Worklist; 4489 BasicBlock *Latch = TheLoop->getLoopLatch(); 4490 4491 // Start with the conditional branch. If the branch condition is an 4492 // instruction contained in the loop that is only used by the branch, it is 4493 // uniform. 4494 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4495 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 4496 Worklist.insert(Cmp); 4497 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4498 } 4499 4500 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4501 // are pointers that are treated like consecutive pointers during 4502 // vectorization. The pointer operands of interleaved accesses are an 4503 // example. 4504 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4505 4506 // Holds pointer operands of instructions that are possibly non-uniform. 4507 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4508 4509 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4510 InstWidening WideningDecision = getWideningDecision(I, VF); 4511 assert(WideningDecision != CM_Unknown && 4512 "Widening decision should be ready at this moment"); 4513 4514 return (WideningDecision == CM_Widen || 4515 WideningDecision == CM_Widen_Reverse || 4516 WideningDecision == CM_Interleave); 4517 }; 4518 // Iterate over the instructions in the loop, and collect all 4519 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4520 // that a consecutive-like pointer operand will be scalarized, we collect it 4521 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4522 // getelementptr instruction can be used by both vectorized and scalarized 4523 // memory instructions. For example, if a loop loads and stores from the same 4524 // location, but the store is conditional, the store will be scalarized, and 4525 // the getelementptr won't remain uniform. 4526 for (auto *BB : TheLoop->blocks()) 4527 for (auto &I : *BB) { 4528 // If there's no pointer operand, there's nothing to do. 4529 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4530 if (!Ptr) 4531 continue; 4532 4533 // True if all users of Ptr are memory accesses that have Ptr as their 4534 // pointer operand. 4535 auto UsersAreMemAccesses = 4536 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4537 return getLoadStorePointerOperand(U) == Ptr; 4538 }); 4539 4540 // Ensure the memory instruction will not be scalarized or used by 4541 // gather/scatter, making its pointer operand non-uniform. If the pointer 4542 // operand is used by any instruction other than a memory access, we 4543 // conservatively assume the pointer operand may be non-uniform. 4544 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4545 PossibleNonUniformPtrs.insert(Ptr); 4546 4547 // If the memory instruction will be vectorized and its pointer operand 4548 // is consecutive-like, or interleaving - the pointer operand should 4549 // remain uniform. 4550 else 4551 ConsecutiveLikePtrs.insert(Ptr); 4552 } 4553 4554 // Add to the Worklist all consecutive and consecutive-like pointers that 4555 // aren't also identified as possibly non-uniform. 4556 for (auto *V : ConsecutiveLikePtrs) 4557 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) { 4558 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 4559 Worklist.insert(V); 4560 } 4561 4562 // Expand Worklist in topological order: whenever a new instruction 4563 // is added , its users should be already inside Worklist. It ensures 4564 // a uniform instruction will only be used by uniform instructions. 4565 unsigned idx = 0; 4566 while (idx != Worklist.size()) { 4567 Instruction *I = Worklist[idx++]; 4568 4569 for (auto OV : I->operand_values()) { 4570 // isOutOfScope operands cannot be uniform instructions. 4571 if (isOutOfScope(OV)) 4572 continue; 4573 // First order recurrence Phi's should typically be considered 4574 // non-uniform. 4575 auto *OP = dyn_cast<PHINode>(OV); 4576 if (OP && Legal->isFirstOrderRecurrence(OP)) 4577 continue; 4578 // If all the users of the operand are uniform, then add the 4579 // operand into the uniform worklist. 4580 auto *OI = cast<Instruction>(OV); 4581 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4582 auto *J = cast<Instruction>(U); 4583 return Worklist.count(J) || 4584 (OI == getLoadStorePointerOperand(J) && 4585 isUniformDecision(J, VF)); 4586 })) { 4587 Worklist.insert(OI); 4588 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4589 } 4590 } 4591 } 4592 4593 // Returns true if Ptr is the pointer operand of a memory access instruction 4594 // I, and I is known to not require scalarization. 4595 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4596 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4597 }; 4598 4599 // For an instruction to be added into Worklist above, all its users inside 4600 // the loop should also be in Worklist. However, this condition cannot be 4601 // true for phi nodes that form a cyclic dependence. We must process phi 4602 // nodes separately. An induction variable will remain uniform if all users 4603 // of the induction variable and induction variable update remain uniform. 4604 // The code below handles both pointer and non-pointer induction variables. 4605 for (auto &Induction : *Legal->getInductionVars()) { 4606 auto *Ind = Induction.first; 4607 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4608 4609 // Determine if all users of the induction variable are uniform after 4610 // vectorization. 4611 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4612 auto *I = cast<Instruction>(U); 4613 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4614 isVectorizedMemAccessUse(I, Ind); 4615 }); 4616 if (!UniformInd) 4617 continue; 4618 4619 // Determine if all users of the induction variable update instruction are 4620 // uniform after vectorization. 4621 auto UniformIndUpdate = 4622 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4623 auto *I = cast<Instruction>(U); 4624 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4625 isVectorizedMemAccessUse(I, IndUpdate); 4626 }); 4627 if (!UniformIndUpdate) 4628 continue; 4629 4630 // The induction variable and its update instruction will remain uniform. 4631 Worklist.insert(Ind); 4632 Worklist.insert(IndUpdate); 4633 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 4634 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate 4635 << "\n"); 4636 } 4637 4638 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4639 } 4640 4641 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 4642 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4643 // TODO: It may by useful to do since it's still likely to be dynamically 4644 // uniform if the target can skip. 4645 LLVM_DEBUG( 4646 dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 4647 4648 ORE->emit( 4649 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 4650 << "runtime pointer checks needed. Not enabled for divergent target"); 4651 4652 return None; 4653 } 4654 4655 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4656 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 4657 return computeFeasibleMaxVF(OptForSize, TC); 4658 4659 if (Legal->getRuntimePointerChecking()->Need) { 4660 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4661 << "runtime pointer checks needed. Enable vectorization of this " 4662 "loop with '#pragma clang loop vectorize(enable)' when " 4663 "compiling with -Os/-Oz"); 4664 LLVM_DEBUG( 4665 dbgs() 4666 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4667 return None; 4668 } 4669 4670 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4671 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4672 << "runtime SCEV checks needed. Enable vectorization of this " 4673 "loop with '#pragma clang loop vectorize(enable)' when " 4674 "compiling with -Os/-Oz"); 4675 LLVM_DEBUG( 4676 dbgs() 4677 << "LV: Aborting. Runtime SCEV check is required with -Os/-Oz.\n"); 4678 return None; 4679 } 4680 4681 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4682 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4683 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4684 << "runtime stride == 1 checks needed. Enable vectorization of " 4685 "this loop with '#pragma clang loop vectorize(enable)' when " 4686 "compiling with -Os/-Oz"); 4687 LLVM_DEBUG( 4688 dbgs() 4689 << "LV: Aborting. Runtime stride check is required with -Os/-Oz.\n"); 4690 return None; 4691 } 4692 4693 // If we optimize the program for size, avoid creating the tail loop. 4694 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4695 4696 if (TC == 1) { 4697 ORE->emit(createMissedAnalysis("SingleIterationLoop") 4698 << "loop trip count is one, irrelevant for vectorization"); 4699 LLVM_DEBUG(dbgs() << "LV: Aborting, single iteration (non) loop.\n"); 4700 return None; 4701 } 4702 4703 // Record that scalar epilogue is not allowed. 4704 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4705 4706 IsScalarEpilogueAllowed = !OptForSize; 4707 4708 // We don't create an epilogue when optimizing for size. 4709 // Invalidate interleave groups that require an epilogue if we can't mask 4710 // the interleave-group. 4711 if (!useMaskedInterleavedAccesses(TTI)) 4712 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 4713 4714 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 4715 4716 if (TC > 0 && TC % MaxVF == 0) { 4717 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 4718 return MaxVF; 4719 } 4720 4721 // If we don't know the precise trip count, or if the trip count that we 4722 // found modulo the vectorization factor is not zero, try to fold the tail 4723 // by masking. 4724 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 4725 if (Legal->canFoldTailByMasking()) { 4726 FoldTailByMasking = true; 4727 return MaxVF; 4728 } 4729 4730 if (TC == 0) { 4731 ORE->emit( 4732 createMissedAnalysis("UnknownLoopCountComplexCFG") 4733 << "unable to calculate the loop count due to complex control flow"); 4734 return None; 4735 } 4736 4737 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 4738 << "cannot optimize for size and vectorize at the same time. " 4739 "Enable vectorization of this loop with '#pragma clang loop " 4740 "vectorize(enable)' when compiling with -Os/-Oz"); 4741 return None; 4742 } 4743 4744 unsigned 4745 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 4746 unsigned ConstTripCount) { 4747 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4748 unsigned SmallestType, WidestType; 4749 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4750 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4751 4752 // Get the maximum safe dependence distance in bits computed by LAA. 4753 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4754 // the memory accesses that is most restrictive (involved in the smallest 4755 // dependence distance). 4756 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4757 4758 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4759 4760 unsigned MaxVectorSize = WidestRegister / WidestType; 4761 4762 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4763 << " / " << WidestType << " bits.\n"); 4764 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4765 << WidestRegister << " bits.\n"); 4766 4767 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4768 " into one vector!"); 4769 if (MaxVectorSize == 0) { 4770 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4771 MaxVectorSize = 1; 4772 return MaxVectorSize; 4773 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4774 isPowerOf2_32(ConstTripCount)) { 4775 // We need to clamp the VF to be the ConstTripCount. There is no point in 4776 // choosing a higher viable VF as done in the loop below. 4777 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4778 << ConstTripCount << "\n"); 4779 MaxVectorSize = ConstTripCount; 4780 return MaxVectorSize; 4781 } 4782 4783 unsigned MaxVF = MaxVectorSize; 4784 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) || 4785 (MaximizeBandwidth && !OptForSize)) { 4786 // Collect all viable vectorization factors larger than the default MaxVF 4787 // (i.e. MaxVectorSize). 4788 SmallVector<unsigned, 8> VFs; 4789 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 4790 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 4791 VFs.push_back(VS); 4792 4793 // For each VF calculate its register usage. 4794 auto RUs = calculateRegisterUsage(VFs); 4795 4796 // Select the largest VF which doesn't require more registers than existing 4797 // ones. 4798 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 4799 for (int i = RUs.size() - 1; i >= 0; --i) { 4800 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 4801 MaxVF = VFs[i]; 4802 break; 4803 } 4804 } 4805 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 4806 if (MaxVF < MinVF) { 4807 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 4808 << ") with target's minimum: " << MinVF << '\n'); 4809 MaxVF = MinVF; 4810 } 4811 } 4812 } 4813 return MaxVF; 4814 } 4815 4816 VectorizationFactor 4817 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 4818 float Cost = expectedCost(1).first; 4819 const float ScalarCost = Cost; 4820 unsigned Width = 1; 4821 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4822 4823 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4824 if (ForceVectorization && MaxVF > 1) { 4825 // Ignore scalar width, because the user explicitly wants vectorization. 4826 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 4827 // evaluation. 4828 Cost = std::numeric_limits<float>::max(); 4829 } 4830 4831 for (unsigned i = 2; i <= MaxVF; i *= 2) { 4832 // Notice that the vector loop needs to be executed less times, so 4833 // we need to divide the cost of the vector loops by the width of 4834 // the vector elements. 4835 VectorizationCostTy C = expectedCost(i); 4836 float VectorCost = C.first / (float)i; 4837 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 4838 << " costs: " << (int)VectorCost << ".\n"); 4839 if (!C.second && !ForceVectorization) { 4840 LLVM_DEBUG( 4841 dbgs() << "LV: Not considering vector loop of width " << i 4842 << " because it will not generate any vector instructions.\n"); 4843 continue; 4844 } 4845 if (VectorCost < Cost) { 4846 Cost = VectorCost; 4847 Width = i; 4848 } 4849 } 4850 4851 if (!EnableCondStoresVectorization && NumPredStores) { 4852 ORE->emit(createMissedAnalysis("ConditionalStore") 4853 << "store that is conditionally executed prevents vectorization"); 4854 LLVM_DEBUG( 4855 dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4856 Width = 1; 4857 Cost = ScalarCost; 4858 } 4859 4860 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4861 << "LV: Vectorization seems to be not beneficial, " 4862 << "but was forced by a user.\n"); 4863 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 4864 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 4865 return Factor; 4866 } 4867 4868 std::pair<unsigned, unsigned> 4869 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 4870 unsigned MinWidth = -1U; 4871 unsigned MaxWidth = 8; 4872 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4873 4874 // For each block. 4875 for (BasicBlock *BB : TheLoop->blocks()) { 4876 // For each instruction in the loop. 4877 for (Instruction &I : BB->instructionsWithoutDebug()) { 4878 Type *T = I.getType(); 4879 4880 // Skip ignored values. 4881 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 4882 continue; 4883 4884 // Only examine Loads, Stores and PHINodes. 4885 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 4886 continue; 4887 4888 // Examine PHI nodes that are reduction variables. Update the type to 4889 // account for the recurrence type. 4890 if (auto *PN = dyn_cast<PHINode>(&I)) { 4891 if (!Legal->isReductionVariable(PN)) 4892 continue; 4893 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 4894 T = RdxDesc.getRecurrenceType(); 4895 } 4896 4897 // Examine the stored values. 4898 if (auto *ST = dyn_cast<StoreInst>(&I)) 4899 T = ST->getValueOperand()->getType(); 4900 4901 // Ignore loaded pointer types and stored pointer types that are not 4902 // vectorizable. 4903 // 4904 // FIXME: The check here attempts to predict whether a load or store will 4905 // be vectorized. We only know this for certain after a VF has 4906 // been selected. Here, we assume that if an access can be 4907 // vectorized, it will be. We should also look at extending this 4908 // optimization to non-pointer types. 4909 // 4910 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 4911 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 4912 continue; 4913 4914 MinWidth = std::min(MinWidth, 4915 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4916 MaxWidth = std::max(MaxWidth, 4917 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4918 } 4919 } 4920 4921 return {MinWidth, MaxWidth}; 4922 } 4923 4924 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 4925 unsigned VF, 4926 unsigned LoopCost) { 4927 // -- The interleave heuristics -- 4928 // We interleave the loop in order to expose ILP and reduce the loop overhead. 4929 // There are many micro-architectural considerations that we can't predict 4930 // at this level. For example, frontend pressure (on decode or fetch) due to 4931 // code size, or the number and capabilities of the execution ports. 4932 // 4933 // We use the following heuristics to select the interleave count: 4934 // 1. If the code has reductions, then we interleave to break the cross 4935 // iteration dependency. 4936 // 2. If the loop is really small, then we interleave to reduce the loop 4937 // overhead. 4938 // 3. We don't interleave if we think that we will spill registers to memory 4939 // due to the increased register pressure. 4940 4941 // When we optimize for size, we don't interleave. 4942 if (OptForSize) 4943 return 1; 4944 4945 // We used the distance for the interleave count. 4946 if (Legal->getMaxSafeDepDistBytes() != -1U) 4947 return 1; 4948 4949 // Do not interleave loops with a relatively small trip count. 4950 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4951 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 4952 return 1; 4953 4954 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4955 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 4956 << " registers\n"); 4957 4958 if (VF == 1) { 4959 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4960 TargetNumRegisters = ForceTargetNumScalarRegs; 4961 } else { 4962 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4963 TargetNumRegisters = ForceTargetNumVectorRegs; 4964 } 4965 4966 RegisterUsage R = calculateRegisterUsage({VF})[0]; 4967 // We divide by these constants so assume that we have at least one 4968 // instruction that uses at least one register. 4969 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4970 4971 // We calculate the interleave count using the following formula. 4972 // Subtract the number of loop invariants from the number of available 4973 // registers. These registers are used by all of the interleaved instances. 4974 // Next, divide the remaining registers by the number of registers that is 4975 // required by the loop, in order to estimate how many parallel instances 4976 // fit without causing spills. All of this is rounded down if necessary to be 4977 // a power of two. We want power of two interleave count to simplify any 4978 // addressing operations or alignment considerations. 4979 // We also want power of two interleave counts to ensure that the induction 4980 // variable of the vector loop wraps to zero, when tail is folded by masking; 4981 // this currently happens when OptForSize, in which case IC is set to 1 above. 4982 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4983 R.MaxLocalUsers); 4984 4985 // Don't count the induction variable as interleaved. 4986 if (EnableIndVarRegisterHeur) 4987 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4988 std::max(1U, (R.MaxLocalUsers - 1))); 4989 4990 // Clamp the interleave ranges to reasonable counts. 4991 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 4992 4993 // Check if the user has overridden the max. 4994 if (VF == 1) { 4995 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4996 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 4997 } else { 4998 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4999 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5000 } 5001 5002 // If we did not calculate the cost for VF (because the user selected the VF) 5003 // then we calculate the cost of VF here. 5004 if (LoopCost == 0) 5005 LoopCost = expectedCost(VF).first; 5006 5007 assert(LoopCost && "Non-zero loop cost expected"); 5008 5009 // Clamp the calculated IC to be between the 1 and the max interleave count 5010 // that the target allows. 5011 if (IC > MaxInterleaveCount) 5012 IC = MaxInterleaveCount; 5013 else if (IC < 1) 5014 IC = 1; 5015 5016 // Interleave if we vectorized this loop and there is a reduction that could 5017 // benefit from interleaving. 5018 if (VF > 1 && !Legal->getReductionVars()->empty()) { 5019 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5020 return IC; 5021 } 5022 5023 // Note that if we've already vectorized the loop we will have done the 5024 // runtime check and so interleaving won't require further checks. 5025 bool InterleavingRequiresRuntimePointerCheck = 5026 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5027 5028 // We want to interleave small loops in order to reduce the loop overhead and 5029 // potentially expose ILP opportunities. 5030 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5031 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5032 // We assume that the cost overhead is 1 and we use the cost model 5033 // to estimate the cost of the loop and interleave until the cost of the 5034 // loop overhead is about 5% of the cost of the loop. 5035 unsigned SmallIC = 5036 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5037 5038 // Interleave until store/load ports (estimated by max interleave count) are 5039 // saturated. 5040 unsigned NumStores = Legal->getNumStores(); 5041 unsigned NumLoads = Legal->getNumLoads(); 5042 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5043 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5044 5045 // If we have a scalar reduction (vector reductions are already dealt with 5046 // by this point), we can increase the critical path length if the loop 5047 // we're interleaving is inside another loop. Limit, by default to 2, so the 5048 // critical path only gets increased by one reduction operation. 5049 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 5050 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5051 SmallIC = std::min(SmallIC, F); 5052 StoresIC = std::min(StoresIC, F); 5053 LoadsIC = std::min(LoadsIC, F); 5054 } 5055 5056 if (EnableLoadStoreRuntimeInterleave && 5057 std::max(StoresIC, LoadsIC) > SmallIC) { 5058 LLVM_DEBUG( 5059 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5060 return std::max(StoresIC, LoadsIC); 5061 } 5062 5063 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5064 return SmallIC; 5065 } 5066 5067 // Interleave if this is a large loop (small loops are already dealt with by 5068 // this point) that could benefit from interleaving. 5069 bool HasReductions = !Legal->getReductionVars()->empty(); 5070 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5071 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5072 return IC; 5073 } 5074 5075 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5076 return 1; 5077 } 5078 5079 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5080 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5081 // This function calculates the register usage by measuring the highest number 5082 // of values that are alive at a single location. Obviously, this is a very 5083 // rough estimation. We scan the loop in a topological order in order and 5084 // assign a number to each instruction. We use RPO to ensure that defs are 5085 // met before their users. We assume that each instruction that has in-loop 5086 // users starts an interval. We record every time that an in-loop value is 5087 // used, so we have a list of the first and last occurrences of each 5088 // instruction. Next, we transpose this data structure into a multi map that 5089 // holds the list of intervals that *end* at a specific location. This multi 5090 // map allows us to perform a linear search. We scan the instructions linearly 5091 // and record each time that a new interval starts, by placing it in a set. 5092 // If we find this value in the multi-map then we remove it from the set. 5093 // The max register usage is the maximum size of the set. 5094 // We also search for instructions that are defined outside the loop, but are 5095 // used inside the loop. We need this number separately from the max-interval 5096 // usage number because when we unroll, loop-invariant values do not take 5097 // more register. 5098 LoopBlocksDFS DFS(TheLoop); 5099 DFS.perform(LI); 5100 5101 RegisterUsage RU; 5102 5103 // Each 'key' in the map opens a new interval. The values 5104 // of the map are the index of the 'last seen' usage of the 5105 // instruction that is the key. 5106 using IntervalMap = DenseMap<Instruction *, unsigned>; 5107 5108 // Maps instruction to its index. 5109 SmallVector<Instruction *, 64> IdxToInstr; 5110 // Marks the end of each interval. 5111 IntervalMap EndPoint; 5112 // Saves the list of instruction indices that are used in the loop. 5113 SmallPtrSet<Instruction *, 8> Ends; 5114 // Saves the list of values that are used in the loop but are 5115 // defined outside the loop, such as arguments and constants. 5116 SmallPtrSet<Value *, 8> LoopInvariants; 5117 5118 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5119 for (Instruction &I : BB->instructionsWithoutDebug()) { 5120 IdxToInstr.push_back(&I); 5121 5122 // Save the end location of each USE. 5123 for (Value *U : I.operands()) { 5124 auto *Instr = dyn_cast<Instruction>(U); 5125 5126 // Ignore non-instruction values such as arguments, constants, etc. 5127 if (!Instr) 5128 continue; 5129 5130 // If this instruction is outside the loop then record it and continue. 5131 if (!TheLoop->contains(Instr)) { 5132 LoopInvariants.insert(Instr); 5133 continue; 5134 } 5135 5136 // Overwrite previous end points. 5137 EndPoint[Instr] = IdxToInstr.size(); 5138 Ends.insert(Instr); 5139 } 5140 } 5141 } 5142 5143 // Saves the list of intervals that end with the index in 'key'. 5144 using InstrList = SmallVector<Instruction *, 2>; 5145 DenseMap<unsigned, InstrList> TransposeEnds; 5146 5147 // Transpose the EndPoints to a list of values that end at each index. 5148 for (auto &Interval : EndPoint) 5149 TransposeEnds[Interval.second].push_back(Interval.first); 5150 5151 SmallPtrSet<Instruction *, 8> OpenIntervals; 5152 5153 // Get the size of the widest register. 5154 unsigned MaxSafeDepDist = -1U; 5155 if (Legal->getMaxSafeDepDistBytes() != -1U) 5156 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5157 unsigned WidestRegister = 5158 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5159 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5160 5161 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5162 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5163 5164 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5165 5166 // A lambda that gets the register usage for the given type and VF. 5167 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5168 if (Ty->isTokenTy()) 5169 return 0U; 5170 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5171 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5172 }; 5173 5174 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5175 Instruction *I = IdxToInstr[i]; 5176 5177 // Remove all of the instructions that end at this location. 5178 InstrList &List = TransposeEnds[i]; 5179 for (Instruction *ToRemove : List) 5180 OpenIntervals.erase(ToRemove); 5181 5182 // Ignore instructions that are never used within the loop. 5183 if (Ends.find(I) == Ends.end()) 5184 continue; 5185 5186 // Skip ignored values. 5187 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 5188 continue; 5189 5190 // For each VF find the maximum usage of registers. 5191 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5192 if (VFs[j] == 1) { 5193 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5194 continue; 5195 } 5196 collectUniformsAndScalars(VFs[j]); 5197 // Count the number of live intervals. 5198 unsigned RegUsage = 0; 5199 for (auto Inst : OpenIntervals) { 5200 // Skip ignored values for VF > 1. 5201 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end() || 5202 isScalarAfterVectorization(Inst, VFs[j])) 5203 continue; 5204 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5205 } 5206 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5207 } 5208 5209 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5210 << OpenIntervals.size() << '\n'); 5211 5212 // Add the current instruction to the list of open intervals. 5213 OpenIntervals.insert(I); 5214 } 5215 5216 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5217 unsigned Invariant = 0; 5218 if (VFs[i] == 1) 5219 Invariant = LoopInvariants.size(); 5220 else { 5221 for (auto Inst : LoopInvariants) 5222 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5223 } 5224 5225 LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5226 LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5227 LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant 5228 << '\n'); 5229 5230 RU.LoopInvariantRegs = Invariant; 5231 RU.MaxLocalUsers = MaxUsages[i]; 5232 RUs[i] = RU; 5233 } 5234 5235 return RUs; 5236 } 5237 5238 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5239 // TODO: Cost model for emulated masked load/store is completely 5240 // broken. This hack guides the cost model to use an artificially 5241 // high enough value to practically disable vectorization with such 5242 // operations, except where previously deployed legality hack allowed 5243 // using very low cost values. This is to avoid regressions coming simply 5244 // from moving "masked load/store" check from legality to cost model. 5245 // Masked Load/Gather emulation was previously never allowed. 5246 // Limited number of Masked Store/Scatter emulation was allowed. 5247 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5248 return isa<LoadInst>(I) || 5249 (isa<StoreInst>(I) && 5250 NumPredStores > NumberOfStoresToPredicate); 5251 } 5252 5253 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5254 // If we aren't vectorizing the loop, or if we've already collected the 5255 // instructions to scalarize, there's nothing to do. Collection may already 5256 // have occurred if we have a user-selected VF and are now computing the 5257 // expected cost for interleaving. 5258 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5259 return; 5260 5261 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5262 // not profitable to scalarize any instructions, the presence of VF in the 5263 // map will indicate that we've analyzed it already. 5264 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5265 5266 // Find all the instructions that are scalar with predication in the loop and 5267 // determine if it would be better to not if-convert the blocks they are in. 5268 // If so, we also record the instructions to scalarize. 5269 for (BasicBlock *BB : TheLoop->blocks()) { 5270 if (!blockNeedsPredication(BB)) 5271 continue; 5272 for (Instruction &I : *BB) 5273 if (isScalarWithPredication(&I)) { 5274 ScalarCostsTy ScalarCosts; 5275 // Do not apply discount logic if hacked cost is needed 5276 // for emulated masked memrefs. 5277 if (!useEmulatedMaskMemRefHack(&I) && 5278 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5279 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5280 // Remember that BB will remain after vectorization. 5281 PredicatedBBsAfterVectorization.insert(BB); 5282 } 5283 } 5284 } 5285 5286 int LoopVectorizationCostModel::computePredInstDiscount( 5287 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5288 unsigned VF) { 5289 assert(!isUniformAfterVectorization(PredInst, VF) && 5290 "Instruction marked uniform-after-vectorization will be predicated"); 5291 5292 // Initialize the discount to zero, meaning that the scalar version and the 5293 // vector version cost the same. 5294 int Discount = 0; 5295 5296 // Holds instructions to analyze. The instructions we visit are mapped in 5297 // ScalarCosts. Those instructions are the ones that would be scalarized if 5298 // we find that the scalar version costs less. 5299 SmallVector<Instruction *, 8> Worklist; 5300 5301 // Returns true if the given instruction can be scalarized. 5302 auto canBeScalarized = [&](Instruction *I) -> bool { 5303 // We only attempt to scalarize instructions forming a single-use chain 5304 // from the original predicated block that would otherwise be vectorized. 5305 // Although not strictly necessary, we give up on instructions we know will 5306 // already be scalar to avoid traversing chains that are unlikely to be 5307 // beneficial. 5308 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5309 isScalarAfterVectorization(I, VF)) 5310 return false; 5311 5312 // If the instruction is scalar with predication, it will be analyzed 5313 // separately. We ignore it within the context of PredInst. 5314 if (isScalarWithPredication(I)) 5315 return false; 5316 5317 // If any of the instruction's operands are uniform after vectorization, 5318 // the instruction cannot be scalarized. This prevents, for example, a 5319 // masked load from being scalarized. 5320 // 5321 // We assume we will only emit a value for lane zero of an instruction 5322 // marked uniform after vectorization, rather than VF identical values. 5323 // Thus, if we scalarize an instruction that uses a uniform, we would 5324 // create uses of values corresponding to the lanes we aren't emitting code 5325 // for. This behavior can be changed by allowing getScalarValue to clone 5326 // the lane zero values for uniforms rather than asserting. 5327 for (Use &U : I->operands()) 5328 if (auto *J = dyn_cast<Instruction>(U.get())) 5329 if (isUniformAfterVectorization(J, VF)) 5330 return false; 5331 5332 // Otherwise, we can scalarize the instruction. 5333 return true; 5334 }; 5335 5336 // Returns true if an operand that cannot be scalarized must be extracted 5337 // from a vector. We will account for this scalarization overhead below. Note 5338 // that the non-void predicated instructions are placed in their own blocks, 5339 // and their return values are inserted into vectors. Thus, an extract would 5340 // still be required. 5341 auto needsExtract = [&](Instruction *I) -> bool { 5342 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 5343 }; 5344 5345 // Compute the expected cost discount from scalarizing the entire expression 5346 // feeding the predicated instruction. We currently only consider expressions 5347 // that are single-use instruction chains. 5348 Worklist.push_back(PredInst); 5349 while (!Worklist.empty()) { 5350 Instruction *I = Worklist.pop_back_val(); 5351 5352 // If we've already analyzed the instruction, there's nothing to do. 5353 if (ScalarCosts.find(I) != ScalarCosts.end()) 5354 continue; 5355 5356 // Compute the cost of the vector instruction. Note that this cost already 5357 // includes the scalarization overhead of the predicated instruction. 5358 unsigned VectorCost = getInstructionCost(I, VF).first; 5359 5360 // Compute the cost of the scalarized instruction. This cost is the cost of 5361 // the instruction as if it wasn't if-converted and instead remained in the 5362 // predicated block. We will scale this cost by block probability after 5363 // computing the scalarization overhead. 5364 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5365 5366 // Compute the scalarization overhead of needed insertelement instructions 5367 // and phi nodes. 5368 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5369 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5370 true, false); 5371 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5372 } 5373 5374 // Compute the scalarization overhead of needed extractelement 5375 // instructions. For each of the instruction's operands, if the operand can 5376 // be scalarized, add it to the worklist; otherwise, account for the 5377 // overhead. 5378 for (Use &U : I->operands()) 5379 if (auto *J = dyn_cast<Instruction>(U.get())) { 5380 assert(VectorType::isValidElementType(J->getType()) && 5381 "Instruction has non-scalar type"); 5382 if (canBeScalarized(J)) 5383 Worklist.push_back(J); 5384 else if (needsExtract(J)) 5385 ScalarCost += TTI.getScalarizationOverhead( 5386 ToVectorTy(J->getType(),VF), false, true); 5387 } 5388 5389 // Scale the total scalar cost by block probability. 5390 ScalarCost /= getReciprocalPredBlockProb(); 5391 5392 // Compute the discount. A non-negative discount means the vector version 5393 // of the instruction costs more, and scalarizing would be beneficial. 5394 Discount += VectorCost - ScalarCost; 5395 ScalarCosts[I] = ScalarCost; 5396 } 5397 5398 return Discount; 5399 } 5400 5401 LoopVectorizationCostModel::VectorizationCostTy 5402 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5403 VectorizationCostTy Cost; 5404 5405 // For each block. 5406 for (BasicBlock *BB : TheLoop->blocks()) { 5407 VectorizationCostTy BlockCost; 5408 5409 // For each instruction in the old loop. 5410 for (Instruction &I : BB->instructionsWithoutDebug()) { 5411 // Skip ignored values. 5412 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5413 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5414 continue; 5415 5416 VectorizationCostTy C = getInstructionCost(&I, VF); 5417 5418 // Check if we should override the cost. 5419 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5420 C.first = ForceTargetInstructionCost; 5421 5422 BlockCost.first += C.first; 5423 BlockCost.second |= C.second; 5424 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5425 << " for VF " << VF << " For instruction: " << I 5426 << '\n'); 5427 } 5428 5429 // If we are vectorizing a predicated block, it will have been 5430 // if-converted. This means that the block's instructions (aside from 5431 // stores and instructions that may divide by zero) will now be 5432 // unconditionally executed. For the scalar case, we may not always execute 5433 // the predicated block. Thus, scale the block's cost by the probability of 5434 // executing it. 5435 if (VF == 1 && blockNeedsPredication(BB)) 5436 BlockCost.first /= getReciprocalPredBlockProb(); 5437 5438 Cost.first += BlockCost.first; 5439 Cost.second |= BlockCost.second; 5440 } 5441 5442 return Cost; 5443 } 5444 5445 /// Gets Address Access SCEV after verifying that the access pattern 5446 /// is loop invariant except the induction variable dependence. 5447 /// 5448 /// This SCEV can be sent to the Target in order to estimate the address 5449 /// calculation cost. 5450 static const SCEV *getAddressAccessSCEV( 5451 Value *Ptr, 5452 LoopVectorizationLegality *Legal, 5453 PredicatedScalarEvolution &PSE, 5454 const Loop *TheLoop) { 5455 5456 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5457 if (!Gep) 5458 return nullptr; 5459 5460 // We are looking for a gep with all loop invariant indices except for one 5461 // which should be an induction variable. 5462 auto SE = PSE.getSE(); 5463 unsigned NumOperands = Gep->getNumOperands(); 5464 for (unsigned i = 1; i < NumOperands; ++i) { 5465 Value *Opd = Gep->getOperand(i); 5466 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5467 !Legal->isInductionVariable(Opd)) 5468 return nullptr; 5469 } 5470 5471 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5472 return PSE.getSCEV(Ptr); 5473 } 5474 5475 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5476 return Legal->hasStride(I->getOperand(0)) || 5477 Legal->hasStride(I->getOperand(1)); 5478 } 5479 5480 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5481 unsigned VF) { 5482 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5483 Type *ValTy = getMemInstValueType(I); 5484 auto SE = PSE.getSE(); 5485 5486 unsigned Alignment = getLoadStoreAlignment(I); 5487 unsigned AS = getLoadStoreAddressSpace(I); 5488 Value *Ptr = getLoadStorePointerOperand(I); 5489 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5490 5491 // Figure out whether the access is strided and get the stride value 5492 // if it's known in compile time 5493 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5494 5495 // Get the cost of the scalar memory instruction and address computation. 5496 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5497 5498 // Don't pass *I here, since it is scalar but will actually be part of a 5499 // vectorized loop where the user of it is a vectorized instruction. 5500 Cost += VF * 5501 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 5502 AS); 5503 5504 // Get the overhead of the extractelement and insertelement instructions 5505 // we might create due to scalarization. 5506 Cost += getScalarizationOverhead(I, VF); 5507 5508 // If we have a predicated store, it may not be executed for each vector 5509 // lane. Scale the cost by the probability of executing the predicated 5510 // block. 5511 if (isPredicatedInst(I)) { 5512 Cost /= getReciprocalPredBlockProb(); 5513 5514 if (useEmulatedMaskMemRefHack(I)) 5515 // Artificially setting to a high enough value to practically disable 5516 // vectorization with such operations. 5517 Cost = 3000000; 5518 } 5519 5520 return Cost; 5521 } 5522 5523 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5524 unsigned VF) { 5525 Type *ValTy = getMemInstValueType(I); 5526 Type *VectorTy = ToVectorTy(ValTy, VF); 5527 unsigned Alignment = getLoadStoreAlignment(I); 5528 Value *Ptr = getLoadStorePointerOperand(I); 5529 unsigned AS = getLoadStoreAddressSpace(I); 5530 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5531 5532 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5533 "Stride should be 1 or -1 for consecutive memory access"); 5534 unsigned Cost = 0; 5535 if (Legal->isMaskRequired(I)) 5536 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5537 else 5538 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5539 5540 bool Reverse = ConsecutiveStride < 0; 5541 if (Reverse) 5542 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5543 return Cost; 5544 } 5545 5546 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5547 unsigned VF) { 5548 Type *ValTy = getMemInstValueType(I); 5549 Type *VectorTy = ToVectorTy(ValTy, VF); 5550 unsigned Alignment = getLoadStoreAlignment(I); 5551 unsigned AS = getLoadStoreAddressSpace(I); 5552 if (isa<LoadInst>(I)) { 5553 return TTI.getAddressComputationCost(ValTy) + 5554 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5555 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5556 } 5557 StoreInst *SI = cast<StoreInst>(I); 5558 5559 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5560 return TTI.getAddressComputationCost(ValTy) + 5561 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) + 5562 (isLoopInvariantStoreValue ? 0 : TTI.getVectorInstrCost( 5563 Instruction::ExtractElement, 5564 VectorTy, VF - 1)); 5565 } 5566 5567 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5568 unsigned VF) { 5569 Type *ValTy = getMemInstValueType(I); 5570 Type *VectorTy = ToVectorTy(ValTy, VF); 5571 unsigned Alignment = getLoadStoreAlignment(I); 5572 Value *Ptr = getLoadStorePointerOperand(I); 5573 5574 return TTI.getAddressComputationCost(VectorTy) + 5575 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5576 Legal->isMaskRequired(I), Alignment); 5577 } 5578 5579 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5580 unsigned VF) { 5581 Type *ValTy = getMemInstValueType(I); 5582 Type *VectorTy = ToVectorTy(ValTy, VF); 5583 unsigned AS = getLoadStoreAddressSpace(I); 5584 5585 auto Group = getInterleavedAccessGroup(I); 5586 assert(Group && "Fail to get an interleaved access group."); 5587 5588 unsigned InterleaveFactor = Group->getFactor(); 5589 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5590 5591 // Holds the indices of existing members in an interleaved load group. 5592 // An interleaved store group doesn't need this as it doesn't allow gaps. 5593 SmallVector<unsigned, 4> Indices; 5594 if (isa<LoadInst>(I)) { 5595 for (unsigned i = 0; i < InterleaveFactor; i++) 5596 if (Group->getMember(i)) 5597 Indices.push_back(i); 5598 } 5599 5600 // Calculate the cost of the whole interleaved group. 5601 bool UseMaskForGaps = 5602 Group->requiresScalarEpilogue() && !IsScalarEpilogueAllowed; 5603 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5604 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5605 Group->getAlignment(), AS, Legal->isMaskRequired(I), UseMaskForGaps); 5606 5607 if (Group->isReverse()) { 5608 // TODO: Add support for reversed masked interleaved access. 5609 assert(!Legal->isMaskRequired(I) && 5610 "Reverse masked interleaved access not supported."); 5611 Cost += Group->getNumMembers() * 5612 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5613 } 5614 return Cost; 5615 } 5616 5617 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5618 unsigned VF) { 5619 // Calculate scalar cost only. Vectorization cost should be ready at this 5620 // moment. 5621 if (VF == 1) { 5622 Type *ValTy = getMemInstValueType(I); 5623 unsigned Alignment = getLoadStoreAlignment(I); 5624 unsigned AS = getLoadStoreAddressSpace(I); 5625 5626 return TTI.getAddressComputationCost(ValTy) + 5627 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5628 } 5629 return getWideningCost(I, VF); 5630 } 5631 5632 LoopVectorizationCostModel::VectorizationCostTy 5633 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5634 // If we know that this instruction will remain uniform, check the cost of 5635 // the scalar version. 5636 if (isUniformAfterVectorization(I, VF)) 5637 VF = 1; 5638 5639 if (VF > 1 && isProfitableToScalarize(I, VF)) 5640 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5641 5642 // Forced scalars do not have any scalarization overhead. 5643 auto ForcedScalar = ForcedScalars.find(VF); 5644 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5645 auto InstSet = ForcedScalar->second; 5646 if (InstSet.find(I) != InstSet.end()) 5647 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5648 } 5649 5650 Type *VectorTy; 5651 unsigned C = getInstructionCost(I, VF, VectorTy); 5652 5653 bool TypeNotScalarized = 5654 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5655 return VectorizationCostTy(C, TypeNotScalarized); 5656 } 5657 5658 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 5659 unsigned VF) { 5660 5661 if (VF == 1) 5662 return 0; 5663 5664 unsigned Cost = 0; 5665 Type *RetTy = ToVectorTy(I->getType(), VF); 5666 if (!RetTy->isVoidTy() && 5667 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 5668 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 5669 5670 // Some targets keep addresses scalar. 5671 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 5672 return Cost; 5673 5674 if (CallInst *CI = dyn_cast<CallInst>(I)) { 5675 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 5676 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 5677 } else if (!isa<StoreInst>(I) || 5678 !TTI.supportsEfficientVectorElementLoadStore()) { 5679 SmallVector<const Value *, 4> Operands(I->operand_values()); 5680 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 5681 } 5682 5683 return Cost; 5684 } 5685 5686 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5687 if (VF == 1) 5688 return; 5689 NumPredStores = 0; 5690 for (BasicBlock *BB : TheLoop->blocks()) { 5691 // For each instruction in the old loop. 5692 for (Instruction &I : *BB) { 5693 Value *Ptr = getLoadStorePointerOperand(&I); 5694 if (!Ptr) 5695 continue; 5696 5697 // TODO: We should generate better code and update the cost model for 5698 // predicated uniform stores. Today they are treated as any other 5699 // predicated store (see added test cases in 5700 // invariant-store-vectorization.ll). 5701 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5702 NumPredStores++; 5703 5704 if (Legal->isUniform(Ptr) && 5705 // Conditional loads and stores should be scalarized and predicated. 5706 // isScalarWithPredication cannot be used here since masked 5707 // gather/scatters are not considered scalar with predication. 5708 !Legal->blockNeedsPredication(I.getParent())) { 5709 // TODO: Avoid replicating loads and stores instead of 5710 // relying on instcombine to remove them. 5711 // Load: Scalar load + broadcast 5712 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 5713 unsigned Cost = getUniformMemOpCost(&I, VF); 5714 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5715 continue; 5716 } 5717 5718 // We assume that widening is the best solution when possible. 5719 if (memoryInstructionCanBeWidened(&I, VF)) { 5720 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5721 int ConsecutiveStride = 5722 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5723 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5724 "Expected consecutive stride."); 5725 InstWidening Decision = 5726 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 5727 setWideningDecision(&I, VF, Decision, Cost); 5728 continue; 5729 } 5730 5731 // Choose between Interleaving, Gather/Scatter or Scalarization. 5732 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 5733 unsigned NumAccesses = 1; 5734 if (isAccessInterleaved(&I)) { 5735 auto Group = getInterleavedAccessGroup(&I); 5736 assert(Group && "Fail to get an interleaved access group."); 5737 5738 // Make one decision for the whole group. 5739 if (getWideningDecision(&I, VF) != CM_Unknown) 5740 continue; 5741 5742 NumAccesses = Group->getNumMembers(); 5743 if (interleavedAccessCanBeWidened(&I, VF)) 5744 InterleaveCost = getInterleaveGroupCost(&I, VF); 5745 } 5746 5747 unsigned GatherScatterCost = 5748 isLegalGatherOrScatter(&I) 5749 ? getGatherScatterCost(&I, VF) * NumAccesses 5750 : std::numeric_limits<unsigned>::max(); 5751 5752 unsigned ScalarizationCost = 5753 getMemInstScalarizationCost(&I, VF) * NumAccesses; 5754 5755 // Choose better solution for the current VF, 5756 // write down this decision and use it during vectorization. 5757 unsigned Cost; 5758 InstWidening Decision; 5759 if (InterleaveCost <= GatherScatterCost && 5760 InterleaveCost < ScalarizationCost) { 5761 Decision = CM_Interleave; 5762 Cost = InterleaveCost; 5763 } else if (GatherScatterCost < ScalarizationCost) { 5764 Decision = CM_GatherScatter; 5765 Cost = GatherScatterCost; 5766 } else { 5767 Decision = CM_Scalarize; 5768 Cost = ScalarizationCost; 5769 } 5770 // If the instructions belongs to an interleave group, the whole group 5771 // receives the same decision. The whole group receives the cost, but 5772 // the cost will actually be assigned to one instruction. 5773 if (auto Group = getInterleavedAccessGroup(&I)) 5774 setWideningDecision(Group, VF, Decision, Cost); 5775 else 5776 setWideningDecision(&I, VF, Decision, Cost); 5777 } 5778 } 5779 5780 // Make sure that any load of address and any other address computation 5781 // remains scalar unless there is gather/scatter support. This avoids 5782 // inevitable extracts into address registers, and also has the benefit of 5783 // activating LSR more, since that pass can't optimize vectorized 5784 // addresses. 5785 if (TTI.prefersVectorizedAddressing()) 5786 return; 5787 5788 // Start with all scalar pointer uses. 5789 SmallPtrSet<Instruction *, 8> AddrDefs; 5790 for (BasicBlock *BB : TheLoop->blocks()) 5791 for (Instruction &I : *BB) { 5792 Instruction *PtrDef = 5793 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5794 if (PtrDef && TheLoop->contains(PtrDef) && 5795 getWideningDecision(&I, VF) != CM_GatherScatter) 5796 AddrDefs.insert(PtrDef); 5797 } 5798 5799 // Add all instructions used to generate the addresses. 5800 SmallVector<Instruction *, 4> Worklist; 5801 for (auto *I : AddrDefs) 5802 Worklist.push_back(I); 5803 while (!Worklist.empty()) { 5804 Instruction *I = Worklist.pop_back_val(); 5805 for (auto &Op : I->operands()) 5806 if (auto *InstOp = dyn_cast<Instruction>(Op)) 5807 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 5808 AddrDefs.insert(InstOp).second) 5809 Worklist.push_back(InstOp); 5810 } 5811 5812 for (auto *I : AddrDefs) { 5813 if (isa<LoadInst>(I)) { 5814 // Setting the desired widening decision should ideally be handled in 5815 // by cost functions, but since this involves the task of finding out 5816 // if the loaded register is involved in an address computation, it is 5817 // instead changed here when we know this is the case. 5818 InstWidening Decision = getWideningDecision(I, VF); 5819 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 5820 // Scalarize a widened load of address. 5821 setWideningDecision(I, VF, CM_Scalarize, 5822 (VF * getMemoryInstructionCost(I, 1))); 5823 else if (auto Group = getInterleavedAccessGroup(I)) { 5824 // Scalarize an interleave group of address loads. 5825 for (unsigned I = 0; I < Group->getFactor(); ++I) { 5826 if (Instruction *Member = Group->getMember(I)) 5827 setWideningDecision(Member, VF, CM_Scalarize, 5828 (VF * getMemoryInstructionCost(Member, 1))); 5829 } 5830 } 5831 } else 5832 // Make sure I gets scalarized and a cost estimate without 5833 // scalarization overhead. 5834 ForcedScalars[VF].insert(I); 5835 } 5836 } 5837 5838 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5839 unsigned VF, 5840 Type *&VectorTy) { 5841 Type *RetTy = I->getType(); 5842 if (canTruncateToMinimalBitwidth(I, VF)) 5843 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5844 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 5845 auto SE = PSE.getSE(); 5846 5847 // TODO: We need to estimate the cost of intrinsic calls. 5848 switch (I->getOpcode()) { 5849 case Instruction::GetElementPtr: 5850 // We mark this instruction as zero-cost because the cost of GEPs in 5851 // vectorized code depends on whether the corresponding memory instruction 5852 // is scalarized or not. Therefore, we handle GEPs with the memory 5853 // instruction cost. 5854 return 0; 5855 case Instruction::Br: { 5856 // In cases of scalarized and predicated instructions, there will be VF 5857 // predicated blocks in the vectorized loop. Each branch around these 5858 // blocks requires also an extract of its vector compare i1 element. 5859 bool ScalarPredicatedBB = false; 5860 BranchInst *BI = cast<BranchInst>(I); 5861 if (VF > 1 && BI->isConditional() && 5862 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 5863 PredicatedBBsAfterVectorization.end() || 5864 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 5865 PredicatedBBsAfterVectorization.end())) 5866 ScalarPredicatedBB = true; 5867 5868 if (ScalarPredicatedBB) { 5869 // Return cost for branches around scalarized and predicated blocks. 5870 Type *Vec_i1Ty = 5871 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 5872 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 5873 (TTI.getCFInstrCost(Instruction::Br) * VF)); 5874 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 5875 // The back-edge branch will remain, as will all scalar branches. 5876 return TTI.getCFInstrCost(Instruction::Br); 5877 else 5878 // This branch will be eliminated by if-conversion. 5879 return 0; 5880 // Note: We currently assume zero cost for an unconditional branch inside 5881 // a predicated block since it will become a fall-through, although we 5882 // may decide in the future to call TTI for all branches. 5883 } 5884 case Instruction::PHI: { 5885 auto *Phi = cast<PHINode>(I); 5886 5887 // First-order recurrences are replaced by vector shuffles inside the loop. 5888 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 5889 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5890 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5891 VectorTy, VF - 1, VectorType::get(RetTy, 1)); 5892 5893 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 5894 // converted into select instructions. We require N - 1 selects per phi 5895 // node, where N is the number of incoming values. 5896 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 5897 return (Phi->getNumIncomingValues() - 1) * 5898 TTI.getCmpSelInstrCost( 5899 Instruction::Select, ToVectorTy(Phi->getType(), VF), 5900 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 5901 5902 return TTI.getCFInstrCost(Instruction::PHI); 5903 } 5904 case Instruction::UDiv: 5905 case Instruction::SDiv: 5906 case Instruction::URem: 5907 case Instruction::SRem: 5908 // If we have a predicated instruction, it may not be executed for each 5909 // vector lane. Get the scalarization cost and scale this amount by the 5910 // probability of executing the predicated block. If the instruction is not 5911 // predicated, we fall through to the next case. 5912 if (VF > 1 && isScalarWithPredication(I)) { 5913 unsigned Cost = 0; 5914 5915 // These instructions have a non-void type, so account for the phi nodes 5916 // that we will create. This cost is likely to be zero. The phi node 5917 // cost, if any, should be scaled by the block probability because it 5918 // models a copy at the end of each predicated block. 5919 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 5920 5921 // The cost of the non-predicated instruction. 5922 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 5923 5924 // The cost of insertelement and extractelement instructions needed for 5925 // scalarization. 5926 Cost += getScalarizationOverhead(I, VF); 5927 5928 // Scale the cost by the probability of executing the predicated blocks. 5929 // This assumes the predicated block for each vector lane is equally 5930 // likely. 5931 return Cost / getReciprocalPredBlockProb(); 5932 } 5933 LLVM_FALLTHROUGH; 5934 case Instruction::Add: 5935 case Instruction::FAdd: 5936 case Instruction::Sub: 5937 case Instruction::FSub: 5938 case Instruction::Mul: 5939 case Instruction::FMul: 5940 case Instruction::FDiv: 5941 case Instruction::FRem: 5942 case Instruction::Shl: 5943 case Instruction::LShr: 5944 case Instruction::AShr: 5945 case Instruction::And: 5946 case Instruction::Or: 5947 case Instruction::Xor: { 5948 // Since we will replace the stride by 1 the multiplication should go away. 5949 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5950 return 0; 5951 // Certain instructions can be cheaper to vectorize if they have a constant 5952 // second vector operand. One example of this are shifts on x86. 5953 Value *Op2 = I->getOperand(1); 5954 TargetTransformInfo::OperandValueProperties Op2VP; 5955 TargetTransformInfo::OperandValueKind Op2VK = 5956 TTI.getOperandInfo(Op2, Op2VP); 5957 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 5958 Op2VK = TargetTransformInfo::OK_UniformValue; 5959 5960 SmallVector<const Value *, 4> Operands(I->operand_values()); 5961 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 5962 return N * TTI.getArithmeticInstrCost( 5963 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 5964 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands); 5965 } 5966 case Instruction::FNeg: { 5967 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 5968 return N * TTI.getArithmeticInstrCost( 5969 I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue, 5970 TargetTransformInfo::OK_AnyValue, 5971 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 5972 I->getOperand(0)); 5973 } 5974 case Instruction::Select: { 5975 SelectInst *SI = cast<SelectInst>(I); 5976 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5977 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5978 Type *CondTy = SI->getCondition()->getType(); 5979 if (!ScalarCond) 5980 CondTy = VectorType::get(CondTy, VF); 5981 5982 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 5983 } 5984 case Instruction::ICmp: 5985 case Instruction::FCmp: { 5986 Type *ValTy = I->getOperand(0)->getType(); 5987 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5988 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 5989 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 5990 VectorTy = ToVectorTy(ValTy, VF); 5991 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 5992 } 5993 case Instruction::Store: 5994 case Instruction::Load: { 5995 unsigned Width = VF; 5996 if (Width > 1) { 5997 InstWidening Decision = getWideningDecision(I, Width); 5998 assert(Decision != CM_Unknown && 5999 "CM decision should be taken at this point"); 6000 if (Decision == CM_Scalarize) 6001 Width = 1; 6002 } 6003 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6004 return getMemoryInstructionCost(I, VF); 6005 } 6006 case Instruction::ZExt: 6007 case Instruction::SExt: 6008 case Instruction::FPToUI: 6009 case Instruction::FPToSI: 6010 case Instruction::FPExt: 6011 case Instruction::PtrToInt: 6012 case Instruction::IntToPtr: 6013 case Instruction::SIToFP: 6014 case Instruction::UIToFP: 6015 case Instruction::Trunc: 6016 case Instruction::FPTrunc: 6017 case Instruction::BitCast: { 6018 // We optimize the truncation of induction variables having constant 6019 // integer steps. The cost of these truncations is the same as the scalar 6020 // operation. 6021 if (isOptimizableIVTruncate(I, VF)) { 6022 auto *Trunc = cast<TruncInst>(I); 6023 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6024 Trunc->getSrcTy(), Trunc); 6025 } 6026 6027 Type *SrcScalarTy = I->getOperand(0)->getType(); 6028 Type *SrcVecTy = 6029 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6030 if (canTruncateToMinimalBitwidth(I, VF)) { 6031 // This cast is going to be shrunk. This may remove the cast or it might 6032 // turn it into slightly different cast. For example, if MinBW == 16, 6033 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6034 // 6035 // Calculate the modified src and dest types. 6036 Type *MinVecTy = VectorTy; 6037 if (I->getOpcode() == Instruction::Trunc) { 6038 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6039 VectorTy = 6040 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6041 } else if (I->getOpcode() == Instruction::ZExt || 6042 I->getOpcode() == Instruction::SExt) { 6043 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6044 VectorTy = 6045 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6046 } 6047 } 6048 6049 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6050 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 6051 } 6052 case Instruction::Call: { 6053 bool NeedToScalarize; 6054 CallInst *CI = cast<CallInst>(I); 6055 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6056 if (getVectorIntrinsicIDForCall(CI, TLI)) 6057 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6058 return CallCost; 6059 } 6060 default: 6061 // The cost of executing VF copies of the scalar instruction. This opcode 6062 // is unknown. Assume that it is the same as 'mul'. 6063 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 6064 getScalarizationOverhead(I, VF); 6065 } // end of switch. 6066 } 6067 6068 char LoopVectorize::ID = 0; 6069 6070 static const char lv_name[] = "Loop Vectorization"; 6071 6072 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6073 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6074 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6075 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6076 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6077 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6078 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6079 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6080 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6081 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6082 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6083 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6084 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6085 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6086 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6087 6088 namespace llvm { 6089 6090 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6091 6092 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6093 bool VectorizeOnlyWhenForced) { 6094 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6095 } 6096 6097 } // end namespace llvm 6098 6099 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6100 // Check if the pointer operand of a load or store instruction is 6101 // consecutive. 6102 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6103 return Legal->isConsecutivePtr(Ptr); 6104 return false; 6105 } 6106 6107 void LoopVectorizationCostModel::collectValuesToIgnore() { 6108 // Ignore ephemeral values. 6109 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6110 6111 // Ignore type-promoting instructions we identified during reduction 6112 // detection. 6113 for (auto &Reduction : *Legal->getReductionVars()) { 6114 RecurrenceDescriptor &RedDes = Reduction.second; 6115 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6116 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6117 } 6118 // Ignore type-casting instructions we identified during induction 6119 // detection. 6120 for (auto &Induction : *Legal->getInductionVars()) { 6121 InductionDescriptor &IndDes = Induction.second; 6122 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6123 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6124 } 6125 } 6126 6127 // TODO: we could return a pair of values that specify the max VF and 6128 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6129 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6130 // doesn't have a cost model that can choose which plan to execute if 6131 // more than one is generated. 6132 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6133 LoopVectorizationCostModel &CM) { 6134 unsigned WidestType; 6135 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6136 return WidestVectorRegBits / WidestType; 6137 } 6138 6139 VectorizationFactor 6140 LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize, 6141 unsigned UserVF) { 6142 unsigned VF = UserVF; 6143 // Outer loop handling: They may require CFG and instruction level 6144 // transformations before even evaluating whether vectorization is profitable. 6145 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6146 // the vectorization pipeline. 6147 if (!OrigLoop->empty()) { 6148 // If the user doesn't provide a vectorization factor, determine a 6149 // reasonable one. 6150 if (!UserVF) { 6151 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6152 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6153 6154 // Make sure we have a VF > 1 for stress testing. 6155 if (VPlanBuildStressTest && VF < 2) { 6156 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6157 << "overriding computed VF.\n"); 6158 VF = 4; 6159 } 6160 } 6161 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6162 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6163 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6164 << " to build VPlans.\n"); 6165 buildVPlans(VF, VF); 6166 6167 // For VPlan build stress testing, we bail out after VPlan construction. 6168 if (VPlanBuildStressTest) 6169 return VectorizationFactor::Disabled(); 6170 6171 return {VF, 0}; 6172 } 6173 6174 LLVM_DEBUG( 6175 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6176 "VPlan-native path.\n"); 6177 return VectorizationFactor::Disabled(); 6178 } 6179 6180 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(bool OptForSize, 6181 unsigned UserVF) { 6182 assert(OrigLoop->empty() && "Inner loop expected."); 6183 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 6184 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6185 return None; 6186 6187 // Invalidate interleave groups if all blocks of loop will be predicated. 6188 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6189 !useMaskedInterleavedAccesses(*TTI)) { 6190 LLVM_DEBUG( 6191 dbgs() 6192 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6193 "which requires masked-interleaved support.\n"); 6194 CM.InterleaveInfo.reset(); 6195 } 6196 6197 if (UserVF) { 6198 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6199 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6200 // Collect the instructions (and their associated costs) that will be more 6201 // profitable to scalarize. 6202 CM.selectUserVectorizationFactor(UserVF); 6203 buildVPlansWithVPRecipes(UserVF, UserVF); 6204 LLVM_DEBUG(printPlans(dbgs())); 6205 return {{UserVF, 0}}; 6206 } 6207 6208 unsigned MaxVF = MaybeMaxVF.getValue(); 6209 assert(MaxVF != 0 && "MaxVF is zero."); 6210 6211 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6212 // Collect Uniform and Scalar instructions after vectorization with VF. 6213 CM.collectUniformsAndScalars(VF); 6214 6215 // Collect the instructions (and their associated costs) that will be more 6216 // profitable to scalarize. 6217 if (VF > 1) 6218 CM.collectInstsToScalarize(VF); 6219 } 6220 6221 buildVPlansWithVPRecipes(1, MaxVF); 6222 LLVM_DEBUG(printPlans(dbgs())); 6223 if (MaxVF == 1) 6224 return VectorizationFactor::Disabled(); 6225 6226 // Select the optimal vectorization factor. 6227 return CM.selectVectorizationFactor(MaxVF); 6228 } 6229 6230 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6231 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6232 << '\n'); 6233 BestVF = VF; 6234 BestUF = UF; 6235 6236 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6237 return !Plan->hasVF(VF); 6238 }); 6239 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6240 } 6241 6242 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6243 DominatorTree *DT) { 6244 // Perform the actual loop transformation. 6245 6246 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6247 VPCallbackILV CallbackILV(ILV); 6248 6249 VPTransformState State{BestVF, BestUF, LI, 6250 DT, ILV.Builder, ILV.VectorLoopValueMap, 6251 &ILV, CallbackILV}; 6252 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6253 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6254 6255 //===------------------------------------------------===// 6256 // 6257 // Notice: any optimization or new instruction that go 6258 // into the code below should also be implemented in 6259 // the cost-model. 6260 // 6261 //===------------------------------------------------===// 6262 6263 // 2. Copy and widen instructions from the old loop into the new loop. 6264 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6265 VPlans.front()->execute(&State); 6266 6267 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6268 // predication, updating analyses. 6269 ILV.fixVectorizedLoop(); 6270 } 6271 6272 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6273 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6274 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6275 6276 // We create new control-flow for the vectorized loop, so the original 6277 // condition will be dead after vectorization if it's only used by the 6278 // branch. 6279 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6280 if (Cmp && Cmp->hasOneUse()) 6281 DeadInstructions.insert(Cmp); 6282 6283 // We create new "steps" for induction variable updates to which the original 6284 // induction variables map. An original update instruction will be dead if 6285 // all its users except the induction variable are dead. 6286 for (auto &Induction : *Legal->getInductionVars()) { 6287 PHINode *Ind = Induction.first; 6288 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6289 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6290 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 6291 DeadInstructions.end(); 6292 })) 6293 DeadInstructions.insert(IndUpdate); 6294 6295 // We record as "Dead" also the type-casting instructions we had identified 6296 // during induction analysis. We don't need any handling for them in the 6297 // vectorized loop because we have proven that, under a proper runtime 6298 // test guarding the vectorized loop, the value of the phi, and the casted 6299 // value of the phi, are the same. The last instruction in this casting chain 6300 // will get its scalar/vector/widened def from the scalar/vector/widened def 6301 // of the respective phi node. Any other casts in the induction def-use chain 6302 // have no other uses outside the phi update chain, and will be ignored. 6303 InductionDescriptor &IndDes = Induction.second; 6304 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6305 DeadInstructions.insert(Casts.begin(), Casts.end()); 6306 } 6307 } 6308 6309 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6310 6311 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6312 6313 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6314 Instruction::BinaryOps BinOp) { 6315 // When unrolling and the VF is 1, we only need to add a simple scalar. 6316 Type *Ty = Val->getType(); 6317 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6318 6319 if (Ty->isFloatingPointTy()) { 6320 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6321 6322 // Floating point operations had to be 'fast' to enable the unrolling. 6323 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6324 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6325 } 6326 Constant *C = ConstantInt::get(Ty, StartIdx); 6327 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6328 } 6329 6330 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6331 SmallVector<Metadata *, 4> MDs; 6332 // Reserve first location for self reference to the LoopID metadata node. 6333 MDs.push_back(nullptr); 6334 bool IsUnrollMetadata = false; 6335 MDNode *LoopID = L->getLoopID(); 6336 if (LoopID) { 6337 // First find existing loop unrolling disable metadata. 6338 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6339 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6340 if (MD) { 6341 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6342 IsUnrollMetadata = 6343 S && S->getString().startswith("llvm.loop.unroll.disable"); 6344 } 6345 MDs.push_back(LoopID->getOperand(i)); 6346 } 6347 } 6348 6349 if (!IsUnrollMetadata) { 6350 // Add runtime unroll disable metadata. 6351 LLVMContext &Context = L->getHeader()->getContext(); 6352 SmallVector<Metadata *, 1> DisableOperands; 6353 DisableOperands.push_back( 6354 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6355 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6356 MDs.push_back(DisableNode); 6357 MDNode *NewLoopID = MDNode::get(Context, MDs); 6358 // Set operand 0 to refer to the loop id itself. 6359 NewLoopID->replaceOperandWith(0, NewLoopID); 6360 L->setLoopID(NewLoopID); 6361 } 6362 } 6363 6364 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6365 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6366 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6367 bool PredicateAtRangeStart = Predicate(Range.Start); 6368 6369 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6370 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6371 Range.End = TmpVF; 6372 break; 6373 } 6374 6375 return PredicateAtRangeStart; 6376 } 6377 6378 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6379 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6380 /// of VF's starting at a given VF and extending it as much as possible. Each 6381 /// vectorization decision can potentially shorten this sub-range during 6382 /// buildVPlan(). 6383 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6384 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6385 VFRange SubRange = {VF, MaxVF + 1}; 6386 VPlans.push_back(buildVPlan(SubRange)); 6387 VF = SubRange.End; 6388 } 6389 } 6390 6391 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6392 VPlanPtr &Plan) { 6393 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6394 6395 // Look for cached value. 6396 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6397 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6398 if (ECEntryIt != EdgeMaskCache.end()) 6399 return ECEntryIt->second; 6400 6401 VPValue *SrcMask = createBlockInMask(Src, Plan); 6402 6403 // The terminator has to be a branch inst! 6404 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6405 assert(BI && "Unexpected terminator found"); 6406 6407 if (!BI->isConditional()) 6408 return EdgeMaskCache[Edge] = SrcMask; 6409 6410 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6411 assert(EdgeMask && "No Edge Mask found for condition"); 6412 6413 if (BI->getSuccessor(0) != Dst) 6414 EdgeMask = Builder.createNot(EdgeMask); 6415 6416 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6417 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6418 6419 return EdgeMaskCache[Edge] = EdgeMask; 6420 } 6421 6422 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6423 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6424 6425 // Look for cached value. 6426 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6427 if (BCEntryIt != BlockMaskCache.end()) 6428 return BCEntryIt->second; 6429 6430 // All-one mask is modelled as no-mask following the convention for masked 6431 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6432 VPValue *BlockMask = nullptr; 6433 6434 if (OrigLoop->getHeader() == BB) { 6435 if (!CM.blockNeedsPredication(BB)) 6436 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6437 6438 // Introduce the early-exit compare IV <= BTC to form header block mask. 6439 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6440 VPValue *IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6441 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6442 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6443 return BlockMaskCache[BB] = BlockMask; 6444 } 6445 6446 // This is the block mask. We OR all incoming edges. 6447 for (auto *Predecessor : predecessors(BB)) { 6448 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6449 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6450 return BlockMaskCache[BB] = EdgeMask; 6451 6452 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6453 BlockMask = EdgeMask; 6454 continue; 6455 } 6456 6457 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6458 } 6459 6460 return BlockMaskCache[BB] = BlockMask; 6461 } 6462 6463 VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I, 6464 VFRange &Range, 6465 VPlanPtr &Plan) { 6466 const InterleaveGroup<Instruction> *IG = CM.getInterleavedAccessGroup(I); 6467 if (!IG) 6468 return nullptr; 6469 6470 // Now check if IG is relevant for VF's in the given range. 6471 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 6472 return [=](unsigned VF) -> bool { 6473 return (VF >= 2 && // Query is illegal for VF == 1 6474 CM.getWideningDecision(I, VF) == 6475 LoopVectorizationCostModel::CM_Interleave); 6476 }; 6477 }; 6478 if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range)) 6479 return nullptr; 6480 6481 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 6482 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 6483 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 6484 assert(I == IG->getInsertPos() && 6485 "Generating a recipe for an adjunct member of an interleave group"); 6486 6487 VPValue *Mask = nullptr; 6488 if (Legal->isMaskRequired(I)) 6489 Mask = createBlockInMask(I->getParent(), Plan); 6490 6491 return new VPInterleaveRecipe(IG, Mask); 6492 } 6493 6494 VPWidenMemoryInstructionRecipe * 6495 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6496 VPlanPtr &Plan) { 6497 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6498 return nullptr; 6499 6500 auto willWiden = [&](unsigned VF) -> bool { 6501 if (VF == 1) 6502 return false; 6503 if (CM.isScalarAfterVectorization(I, VF) || 6504 CM.isProfitableToScalarize(I, VF)) 6505 return false; 6506 LoopVectorizationCostModel::InstWidening Decision = 6507 CM.getWideningDecision(I, VF); 6508 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6509 "CM decision should be taken at this point."); 6510 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 6511 "Interleave memory opportunity should be caught earlier."); 6512 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6513 }; 6514 6515 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6516 return nullptr; 6517 6518 VPValue *Mask = nullptr; 6519 if (Legal->isMaskRequired(I)) 6520 Mask = createBlockInMask(I->getParent(), Plan); 6521 6522 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6523 } 6524 6525 VPWidenIntOrFpInductionRecipe * 6526 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6527 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6528 // Check if this is an integer or fp induction. If so, build the recipe that 6529 // produces its scalar and vector values. 6530 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6531 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6532 II.getKind() == InductionDescriptor::IK_FpInduction) 6533 return new VPWidenIntOrFpInductionRecipe(Phi); 6534 6535 return nullptr; 6536 } 6537 6538 // Optimize the special case where the source is a constant integer 6539 // induction variable. Notice that we can only optimize the 'trunc' case 6540 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6541 // (c) other casts depend on pointer size. 6542 6543 // Determine whether \p K is a truncation based on an induction variable that 6544 // can be optimized. 6545 auto isOptimizableIVTruncate = 6546 [&](Instruction *K) -> std::function<bool(unsigned)> { 6547 return 6548 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6549 }; 6550 6551 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6552 isOptimizableIVTruncate(I), Range)) 6553 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6554 cast<TruncInst>(I)); 6555 return nullptr; 6556 } 6557 6558 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6559 PHINode *Phi = dyn_cast<PHINode>(I); 6560 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6561 return nullptr; 6562 6563 // We know that all PHIs in non-header blocks are converted into selects, so 6564 // we don't have to worry about the insertion order and we can just use the 6565 // builder. At this point we generate the predication tree. There may be 6566 // duplications since this is a simple recursive scan, but future 6567 // optimizations will clean it up. 6568 6569 SmallVector<VPValue *, 2> Masks; 6570 unsigned NumIncoming = Phi->getNumIncomingValues(); 6571 for (unsigned In = 0; In < NumIncoming; In++) { 6572 VPValue *EdgeMask = 6573 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6574 assert((EdgeMask || NumIncoming == 1) && 6575 "Multiple predecessors with one having a full mask"); 6576 if (EdgeMask) 6577 Masks.push_back(EdgeMask); 6578 } 6579 return new VPBlendRecipe(Phi, Masks); 6580 } 6581 6582 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6583 VFRange &Range) { 6584 6585 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6586 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6587 6588 if (IsPredicated) 6589 return false; 6590 6591 auto IsVectorizableOpcode = [](unsigned Opcode) { 6592 switch (Opcode) { 6593 case Instruction::Add: 6594 case Instruction::And: 6595 case Instruction::AShr: 6596 case Instruction::BitCast: 6597 case Instruction::Br: 6598 case Instruction::Call: 6599 case Instruction::FAdd: 6600 case Instruction::FCmp: 6601 case Instruction::FDiv: 6602 case Instruction::FMul: 6603 case Instruction::FNeg: 6604 case Instruction::FPExt: 6605 case Instruction::FPToSI: 6606 case Instruction::FPToUI: 6607 case Instruction::FPTrunc: 6608 case Instruction::FRem: 6609 case Instruction::FSub: 6610 case Instruction::GetElementPtr: 6611 case Instruction::ICmp: 6612 case Instruction::IntToPtr: 6613 case Instruction::Load: 6614 case Instruction::LShr: 6615 case Instruction::Mul: 6616 case Instruction::Or: 6617 case Instruction::PHI: 6618 case Instruction::PtrToInt: 6619 case Instruction::SDiv: 6620 case Instruction::Select: 6621 case Instruction::SExt: 6622 case Instruction::Shl: 6623 case Instruction::SIToFP: 6624 case Instruction::SRem: 6625 case Instruction::Store: 6626 case Instruction::Sub: 6627 case Instruction::Trunc: 6628 case Instruction::UDiv: 6629 case Instruction::UIToFP: 6630 case Instruction::URem: 6631 case Instruction::Xor: 6632 case Instruction::ZExt: 6633 return true; 6634 } 6635 return false; 6636 }; 6637 6638 if (!IsVectorizableOpcode(I->getOpcode())) 6639 return false; 6640 6641 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6642 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6643 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6644 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6645 return false; 6646 } 6647 6648 auto willWiden = [&](unsigned VF) -> bool { 6649 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6650 CM.isProfitableToScalarize(I, VF))) 6651 return false; 6652 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6653 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6654 // The following case may be scalarized depending on the VF. 6655 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6656 // version of the instruction. 6657 // Is it beneficial to perform intrinsic call compared to lib call? 6658 bool NeedToScalarize; 6659 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 6660 bool UseVectorIntrinsic = 6661 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 6662 return UseVectorIntrinsic || !NeedToScalarize; 6663 } 6664 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6665 assert(CM.getWideningDecision(I, VF) == 6666 LoopVectorizationCostModel::CM_Scalarize && 6667 "Memory widening decisions should have been taken care by now"); 6668 return false; 6669 } 6670 return true; 6671 }; 6672 6673 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6674 return false; 6675 6676 // Success: widen this instruction. We optimize the common case where 6677 // consecutive instructions can be represented by a single recipe. 6678 if (!VPBB->empty()) { 6679 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 6680 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 6681 return true; 6682 } 6683 6684 VPBB->appendRecipe(new VPWidenRecipe(I)); 6685 return true; 6686 } 6687 6688 VPBasicBlock *VPRecipeBuilder::handleReplication( 6689 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6690 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6691 VPlanPtr &Plan) { 6692 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6693 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6694 Range); 6695 6696 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6697 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6698 6699 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6700 6701 // Find if I uses a predicated instruction. If so, it will use its scalar 6702 // value. Avoid hoisting the insert-element which packs the scalar value into 6703 // a vector value, as that happens iff all users use the vector value. 6704 for (auto &Op : I->operands()) 6705 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6706 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6707 PredInst2Recipe[PredInst]->setAlsoPack(false); 6708 6709 // Finalize the recipe for Instr, first if it is not predicated. 6710 if (!IsPredicated) { 6711 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6712 VPBB->appendRecipe(Recipe); 6713 return VPBB; 6714 } 6715 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6716 assert(VPBB->getSuccessors().empty() && 6717 "VPBB has successors when handling predicated replication."); 6718 // Record predicated instructions for above packing optimizations. 6719 PredInst2Recipe[I] = Recipe; 6720 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6721 VPBlockUtils::insertBlockAfter(Region, VPBB); 6722 auto *RegSucc = new VPBasicBlock(); 6723 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6724 return RegSucc; 6725 } 6726 6727 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 6728 VPRecipeBase *PredRecipe, 6729 VPlanPtr &Plan) { 6730 // Instructions marked for predication are replicated and placed under an 6731 // if-then construct to prevent side-effects. 6732 6733 // Generate recipes to compute the block mask for this region. 6734 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6735 6736 // Build the triangular if-then region. 6737 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6738 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6739 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6740 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6741 auto *PHIRecipe = 6742 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6743 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6744 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6745 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6746 6747 // Note: first set Entry as region entry and then connect successors starting 6748 // from it in order, to propagate the "parent" of each VPBasicBlock. 6749 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 6750 VPBlockUtils::connectBlocks(Pred, Exit); 6751 6752 return Region; 6753 } 6754 6755 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 6756 VPlanPtr &Plan, VPBasicBlock *VPBB) { 6757 VPRecipeBase *Recipe = nullptr; 6758 // Check if Instr should belong to an interleave memory recipe, or already 6759 // does. In the latter case Instr is irrelevant. 6760 if ((Recipe = tryToInterleaveMemory(Instr, Range, Plan))) { 6761 VPBB->appendRecipe(Recipe); 6762 return true; 6763 } 6764 6765 // Check if Instr is a memory operation that should be widened. 6766 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 6767 VPBB->appendRecipe(Recipe); 6768 return true; 6769 } 6770 6771 // Check if Instr should form some PHI recipe. 6772 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 6773 VPBB->appendRecipe(Recipe); 6774 return true; 6775 } 6776 if ((Recipe = tryToBlend(Instr, Plan))) { 6777 VPBB->appendRecipe(Recipe); 6778 return true; 6779 } 6780 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 6781 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 6782 return true; 6783 } 6784 6785 // Check if Instr is to be widened by a general VPWidenRecipe, after 6786 // having first checked for specific widening recipes that deal with 6787 // Interleave Groups, Inductions and Phi nodes. 6788 if (tryToWiden(Instr, VPBB, Range)) 6789 return true; 6790 6791 return false; 6792 } 6793 6794 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 6795 unsigned MaxVF) { 6796 assert(OrigLoop->empty() && "Inner loop expected."); 6797 6798 // Collect conditions feeding internal conditional branches; they need to be 6799 // represented in VPlan for it to model masking. 6800 SmallPtrSet<Value *, 1> NeedDef; 6801 6802 auto *Latch = OrigLoop->getLoopLatch(); 6803 for (BasicBlock *BB : OrigLoop->blocks()) { 6804 if (BB == Latch) 6805 continue; 6806 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6807 if (Branch && Branch->isConditional()) 6808 NeedDef.insert(Branch->getCondition()); 6809 } 6810 6811 // If the tail is to be folded by masking, the primary induction variable 6812 // needs to be represented in VPlan for it to model early-exit masking. 6813 if (CM.foldTailByMasking()) 6814 NeedDef.insert(Legal->getPrimaryInduction()); 6815 6816 // Collect instructions from the original loop that will become trivially dead 6817 // in the vectorized loop. We don't need to vectorize these instructions. For 6818 // example, original induction update instructions can become dead because we 6819 // separately emit induction "steps" when generating code for the new loop. 6820 // Similarly, we create a new latch condition when setting up the structure 6821 // of the new loop, so the old one can become dead. 6822 SmallPtrSet<Instruction *, 4> DeadInstructions; 6823 collectTriviallyDeadInstructions(DeadInstructions); 6824 6825 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6826 VFRange SubRange = {VF, MaxVF + 1}; 6827 VPlans.push_back( 6828 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 6829 VF = SubRange.End; 6830 } 6831 } 6832 6833 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 6834 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 6835 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6836 // Hold a mapping from predicated instructions to their recipes, in order to 6837 // fix their AlsoPack behavior if a user is determined to replicate and use a 6838 // scalar instead of vector value. 6839 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 6840 6841 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 6842 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 6843 6844 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 6845 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 6846 auto Plan = llvm::make_unique<VPlan>(VPBB); 6847 6848 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, Builder); 6849 // Represent values that will have defs inside VPlan. 6850 for (Value *V : NeedDef) 6851 Plan->addVPValue(V); 6852 6853 // Scan the body of the loop in a topological order to visit each basic block 6854 // after having visited its predecessor basic blocks. 6855 LoopBlocksDFS DFS(OrigLoop); 6856 DFS.perform(LI); 6857 6858 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6859 // Relevant instructions from basic block BB will be grouped into VPRecipe 6860 // ingredients and fill a new VPBasicBlock. 6861 unsigned VPBBsForBB = 0; 6862 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 6863 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 6864 VPBB = FirstVPBBForBB; 6865 Builder.setInsertPoint(VPBB); 6866 6867 std::vector<Instruction *> Ingredients; 6868 6869 // Organize the ingredients to vectorize from current basic block in the 6870 // right order. 6871 for (Instruction &I : BB->instructionsWithoutDebug()) { 6872 Instruction *Instr = &I; 6873 6874 // First filter out irrelevant instructions, to ensure no recipes are 6875 // built for them. 6876 if (isa<BranchInst>(Instr) || 6877 DeadInstructions.find(Instr) != DeadInstructions.end()) 6878 continue; 6879 6880 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 6881 // member of the IG, do not construct any Recipe for it. 6882 const InterleaveGroup<Instruction> *IG = 6883 CM.getInterleavedAccessGroup(Instr); 6884 if (IG && Instr != IG->getInsertPos() && 6885 Range.Start >= 2 && // Query is illegal for VF == 1 6886 CM.getWideningDecision(Instr, Range.Start) == 6887 LoopVectorizationCostModel::CM_Interleave) { 6888 auto SinkCandidate = SinkAfterInverse.find(Instr); 6889 if (SinkCandidate != SinkAfterInverse.end()) 6890 Ingredients.push_back(SinkCandidate->second); 6891 continue; 6892 } 6893 6894 // Move instructions to handle first-order recurrences, step 1: avoid 6895 // handling this instruction until after we've handled the instruction it 6896 // should follow. 6897 auto SAIt = SinkAfter.find(Instr); 6898 if (SAIt != SinkAfter.end()) { 6899 LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" 6900 << *SAIt->second 6901 << " to vectorize a 1st order recurrence.\n"); 6902 SinkAfterInverse[SAIt->second] = Instr; 6903 continue; 6904 } 6905 6906 Ingredients.push_back(Instr); 6907 6908 // Move instructions to handle first-order recurrences, step 2: push the 6909 // instruction to be sunk at its insertion point. 6910 auto SAInvIt = SinkAfterInverse.find(Instr); 6911 if (SAInvIt != SinkAfterInverse.end()) 6912 Ingredients.push_back(SAInvIt->second); 6913 } 6914 6915 // Introduce each ingredient into VPlan. 6916 for (Instruction *Instr : Ingredients) { 6917 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 6918 continue; 6919 6920 // Otherwise, if all widening options failed, Instruction is to be 6921 // replicated. This may create a successor for VPBB. 6922 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 6923 Instr, Range, VPBB, PredInst2Recipe, Plan); 6924 if (NextVPBB != VPBB) { 6925 VPBB = NextVPBB; 6926 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 6927 : ""); 6928 } 6929 } 6930 } 6931 6932 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 6933 // may also be empty, such as the last one VPBB, reflecting original 6934 // basic-blocks with no recipes. 6935 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 6936 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 6937 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 6938 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 6939 delete PreEntry; 6940 6941 std::string PlanName; 6942 raw_string_ostream RSO(PlanName); 6943 unsigned VF = Range.Start; 6944 Plan->addVF(VF); 6945 RSO << "Initial VPlan for VF={" << VF; 6946 for (VF *= 2; VF < Range.End; VF *= 2) { 6947 Plan->addVF(VF); 6948 RSO << "," << VF; 6949 } 6950 RSO << "},UF>=1"; 6951 RSO.flush(); 6952 Plan->setName(PlanName); 6953 6954 return Plan; 6955 } 6956 6957 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 6958 // Outer loop handling: They may require CFG and instruction level 6959 // transformations before even evaluating whether vectorization is profitable. 6960 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6961 // the vectorization pipeline. 6962 assert(!OrigLoop->empty()); 6963 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6964 6965 // Create new empty VPlan 6966 auto Plan = llvm::make_unique<VPlan>(); 6967 6968 // Build hierarchical CFG 6969 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 6970 HCFGBuilder.buildHierarchicalCFG(); 6971 6972 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 6973 Plan->addVF(VF); 6974 6975 if (EnableVPlanPredication) { 6976 VPlanPredicator VPP(*Plan); 6977 VPP.predicate(); 6978 6979 // Avoid running transformation to recipes until masked code generation in 6980 // VPlan-native path is in place. 6981 return Plan; 6982 } 6983 6984 SmallPtrSet<Instruction *, 1> DeadInstructions; 6985 VPlanHCFGTransforms::VPInstructionsToVPRecipes( 6986 Plan, Legal->getInductionVars(), DeadInstructions); 6987 6988 return Plan; 6989 } 6990 6991 Value* LoopVectorizationPlanner::VPCallbackILV:: 6992 getOrCreateVectorValues(Value *V, unsigned Part) { 6993 return ILV.getOrCreateVectorValue(V, Part); 6994 } 6995 6996 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 6997 O << " +\n" 6998 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 6999 IG->getInsertPos()->printAsOperand(O, false); 7000 if (User) { 7001 O << ", "; 7002 User->getOperand(0)->printAsOperand(O); 7003 } 7004 O << "\\l\""; 7005 for (unsigned i = 0; i < IG->getFactor(); ++i) 7006 if (Instruction *I = IG->getMember(i)) 7007 O << " +\n" 7008 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 7009 } 7010 7011 void VPWidenRecipe::execute(VPTransformState &State) { 7012 for (auto &Instr : make_range(Begin, End)) 7013 State.ILV->widenInstruction(Instr); 7014 } 7015 7016 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7017 assert(!State.Instance && "Int or FP induction being replicated."); 7018 State.ILV->widenIntOrFpInduction(IV, Trunc); 7019 } 7020 7021 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7022 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7023 } 7024 7025 void VPBlendRecipe::execute(VPTransformState &State) { 7026 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7027 // We know that all PHIs in non-header blocks are converted into 7028 // selects, so we don't have to worry about the insertion order and we 7029 // can just use the builder. 7030 // At this point we generate the predication tree. There may be 7031 // duplications since this is a simple recursive scan, but future 7032 // optimizations will clean it up. 7033 7034 unsigned NumIncoming = Phi->getNumIncomingValues(); 7035 7036 assert((User || NumIncoming == 1) && 7037 "Multiple predecessors with predecessors having a full mask"); 7038 // Generate a sequence of selects of the form: 7039 // SELECT(Mask3, In3, 7040 // SELECT(Mask2, In2, 7041 // ( ...))) 7042 InnerLoopVectorizer::VectorParts Entry(State.UF); 7043 for (unsigned In = 0; In < NumIncoming; ++In) { 7044 for (unsigned Part = 0; Part < State.UF; ++Part) { 7045 // We might have single edge PHIs (blocks) - use an identity 7046 // 'select' for the first PHI operand. 7047 Value *In0 = 7048 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 7049 if (In == 0) 7050 Entry[Part] = In0; // Initialize with the first incoming value. 7051 else { 7052 // Select between the current value and the previous incoming edge 7053 // based on the incoming mask. 7054 Value *Cond = State.get(User->getOperand(In), Part); 7055 Entry[Part] = 7056 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7057 } 7058 } 7059 } 7060 for (unsigned Part = 0; Part < State.UF; ++Part) 7061 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7062 } 7063 7064 void VPInterleaveRecipe::execute(VPTransformState &State) { 7065 assert(!State.Instance && "Interleave group being replicated."); 7066 if (!User) 7067 return State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7068 7069 // Last (and currently only) operand is a mask. 7070 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7071 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7072 for (unsigned Part = 0; Part < State.UF; ++Part) 7073 MaskValues[Part] = State.get(Mask, Part); 7074 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos(), &MaskValues); 7075 } 7076 7077 void VPReplicateRecipe::execute(VPTransformState &State) { 7078 if (State.Instance) { // Generate a single instance. 7079 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 7080 // Insert scalar instance packing it into a vector. 7081 if (AlsoPack && State.VF > 1) { 7082 // If we're constructing lane 0, initialize to start from undef. 7083 if (State.Instance->Lane == 0) { 7084 Value *Undef = 7085 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 7086 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7087 } 7088 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7089 } 7090 return; 7091 } 7092 7093 // Generate scalar instances for all VF lanes of all UF parts, unless the 7094 // instruction is uniform inwhich case generate only the first lane for each 7095 // of the UF parts. 7096 unsigned EndLane = IsUniform ? 1 : State.VF; 7097 for (unsigned Part = 0; Part < State.UF; ++Part) 7098 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7099 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 7100 } 7101 7102 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7103 assert(State.Instance && "Branch on Mask works only on single instance."); 7104 7105 unsigned Part = State.Instance->Part; 7106 unsigned Lane = State.Instance->Lane; 7107 7108 Value *ConditionBit = nullptr; 7109 if (!User) // Block in mask is all-one. 7110 ConditionBit = State.Builder.getTrue(); 7111 else { 7112 VPValue *BlockInMask = User->getOperand(0); 7113 ConditionBit = State.get(BlockInMask, Part); 7114 if (ConditionBit->getType()->isVectorTy()) 7115 ConditionBit = State.Builder.CreateExtractElement( 7116 ConditionBit, State.Builder.getInt32(Lane)); 7117 } 7118 7119 // Replace the temporary unreachable terminator with a new conditional branch, 7120 // whose two destinations will be set later when they are created. 7121 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7122 assert(isa<UnreachableInst>(CurrentTerminator) && 7123 "Expected to replace unreachable terminator with conditional branch."); 7124 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7125 CondBr->setSuccessor(0, nullptr); 7126 ReplaceInstWithInst(CurrentTerminator, CondBr); 7127 } 7128 7129 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7130 assert(State.Instance && "Predicated instruction PHI works per instance."); 7131 Instruction *ScalarPredInst = cast<Instruction>( 7132 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7133 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7134 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7135 assert(PredicatingBB && "Predicated block has no single predecessor."); 7136 7137 // By current pack/unpack logic we need to generate only a single phi node: if 7138 // a vector value for the predicated instruction exists at this point it means 7139 // the instruction has vector users only, and a phi for the vector value is 7140 // needed. In this case the recipe of the predicated instruction is marked to 7141 // also do that packing, thereby "hoisting" the insert-element sequence. 7142 // Otherwise, a phi node for the scalar value is needed. 7143 unsigned Part = State.Instance->Part; 7144 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7145 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7146 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7147 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7148 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7149 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7150 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7151 } else { 7152 Type *PredInstType = PredInst->getType(); 7153 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7154 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7155 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7156 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7157 } 7158 } 7159 7160 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7161 if (!User) 7162 return State.ILV->vectorizeMemoryInstruction(&Instr); 7163 7164 // Last (and currently only) operand is a mask. 7165 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 7166 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 7167 for (unsigned Part = 0; Part < State.UF; ++Part) 7168 MaskValues[Part] = State.get(Mask, Part); 7169 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 7170 } 7171 7172 // Process the loop in the VPlan-native vectorization path. This path builds 7173 // VPlan upfront in the vectorization pipeline, which allows to apply 7174 // VPlan-to-VPlan transformations from the very beginning without modifying the 7175 // input LLVM IR. 7176 static bool processLoopInVPlanNativePath( 7177 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7178 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7179 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7180 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7181 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7182 7183 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7184 Function *F = L->getHeader()->getParent(); 7185 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7186 LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7187 &Hints, IAI); 7188 // Use the planner for outer loop vectorization. 7189 // TODO: CM is not used at this point inside the planner. Turn CM into an 7190 // optional argument if we don't need it in the future. 7191 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); 7192 7193 // Get user vectorization factor. 7194 const unsigned UserVF = Hints.getWidth(); 7195 7196 // Check the function attributes and profiles to find out if this function 7197 // should be optimized for size. 7198 bool OptForSize = 7199 Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7200 (F->hasOptSize() || 7201 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI)); 7202 7203 // Plan how to best vectorize, return the best VF and its cost. 7204 const VectorizationFactor VF = LVP.planInVPlanNativePath(OptForSize, UserVF); 7205 7206 // If we are stress testing VPlan builds, do not attempt to generate vector 7207 // code. Masked vector code generation support will follow soon. 7208 // Also, do not attempt to vectorize if no vector code will be produced. 7209 if (VPlanBuildStressTest || EnableVPlanPredication || 7210 VectorizationFactor::Disabled() == VF) 7211 return false; 7212 7213 LVP.setBestPlan(VF.Width, 1); 7214 7215 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7216 &CM); 7217 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7218 << L->getHeader()->getParent()->getName() << "\"\n"); 7219 LVP.executePlan(LB, DT); 7220 7221 // Mark the loop as already vectorized to avoid vectorizing again. 7222 Hints.setAlreadyVectorized(); 7223 7224 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7225 return true; 7226 } 7227 7228 bool LoopVectorizePass::processLoop(Loop *L) { 7229 assert((EnableVPlanNativePath || L->empty()) && 7230 "VPlan-native path is not enabled. Only process inner loops."); 7231 7232 #ifndef NDEBUG 7233 const std::string DebugLocStr = getDebugLocString(L); 7234 #endif /* NDEBUG */ 7235 7236 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7237 << L->getHeader()->getParent()->getName() << "\" from " 7238 << DebugLocStr << "\n"); 7239 7240 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7241 7242 LLVM_DEBUG( 7243 dbgs() << "LV: Loop hints:" 7244 << " force=" 7245 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7246 ? "disabled" 7247 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7248 ? "enabled" 7249 : "?")) 7250 << " width=" << Hints.getWidth() 7251 << " unroll=" << Hints.getInterleave() << "\n"); 7252 7253 // Function containing loop 7254 Function *F = L->getHeader()->getParent(); 7255 7256 // Looking at the diagnostic output is the only way to determine if a loop 7257 // was vectorized (other than looking at the IR or machine code), so it 7258 // is important to generate an optimization remark for each loop. Most of 7259 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7260 // generated as OptimizationRemark and OptimizationRemarkMissed are 7261 // less verbose reporting vectorized loops and unvectorized loops that may 7262 // benefit from vectorization, respectively. 7263 7264 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7265 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7266 return false; 7267 } 7268 7269 PredicatedScalarEvolution PSE(*SE, *L); 7270 7271 // Check if it is legal to vectorize the loop. 7272 LoopVectorizationRequirements Requirements(*ORE); 7273 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE, 7274 &Requirements, &Hints, DB, AC); 7275 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7276 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7277 Hints.emitRemarkWithHints(); 7278 return false; 7279 } 7280 7281 // Check the function attributes and profiles to find out if this function 7282 // should be optimized for size. 7283 bool OptForSize = 7284 Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7285 (F->hasOptSize() || 7286 llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI)); 7287 7288 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7289 // here. They may require CFG and instruction level transformations before 7290 // even evaluating whether vectorization is profitable. Since we cannot modify 7291 // the incoming IR, we need to build VPlan upfront in the vectorization 7292 // pipeline. 7293 if (!L->empty()) 7294 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7295 ORE, BFI, PSI, Hints); 7296 7297 assert(L->empty() && "Inner loop expected."); 7298 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7299 // count by optimizing for size, to minimize overheads. 7300 // Prefer constant trip counts over profile data, over upper bound estimate. 7301 unsigned ExpectedTC = 0; 7302 bool HasExpectedTC = false; 7303 if (const SCEVConstant *ConstExits = 7304 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 7305 const APInt &ExitsCount = ConstExits->getAPInt(); 7306 // We are interested in small values for ExpectedTC. Skip over those that 7307 // can't fit an unsigned. 7308 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 7309 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 7310 HasExpectedTC = true; 7311 } 7312 } 7313 // ExpectedTC may be large because it's bound by a variable. Check 7314 // profiling information to validate we should vectorize. 7315 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 7316 auto EstimatedTC = getLoopEstimatedTripCount(L); 7317 if (EstimatedTC) { 7318 ExpectedTC = *EstimatedTC; 7319 HasExpectedTC = true; 7320 } 7321 } 7322 if (!HasExpectedTC) { 7323 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 7324 HasExpectedTC = (ExpectedTC > 0); 7325 } 7326 7327 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 7328 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7329 << "This loop is worth vectorizing only if no scalar " 7330 << "iteration overheads are incurred."); 7331 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7332 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7333 else { 7334 LLVM_DEBUG(dbgs() << "\n"); 7335 // Loops with a very small trip count are considered for vectorization 7336 // under OptForSize, thereby making sure the cost of their loop body is 7337 // dominant, free of runtime guards and scalar iteration overheads. 7338 OptForSize = true; 7339 } 7340 } 7341 7342 // Check the function attributes to see if implicit floats are allowed. 7343 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7344 // an integer loop and the vector instructions selected are purely integer 7345 // vector instructions? 7346 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7347 LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7348 "attribute is used.\n"); 7349 ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7350 "NoImplicitFloat", L) 7351 << "loop not vectorized due to NoImplicitFloat attribute"); 7352 Hints.emitRemarkWithHints(); 7353 return false; 7354 } 7355 7356 // Check if the target supports potentially unsafe FP vectorization. 7357 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7358 // for the target we're vectorizing for, to make sure none of the 7359 // additional fp-math flags can help. 7360 if (Hints.isPotentiallyUnsafe() && 7361 TTI->isFPVectorizationPotentiallyUnsafe()) { 7362 LLVM_DEBUG( 7363 dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7364 ORE->emit( 7365 createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7366 << "loop not vectorized due to unsafe FP support."); 7367 Hints.emitRemarkWithHints(); 7368 return false; 7369 } 7370 7371 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7372 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7373 7374 // If an override option has been passed in for interleaved accesses, use it. 7375 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7376 UseInterleaved = EnableInterleavedMemAccesses; 7377 7378 // Analyze interleaved memory accesses. 7379 if (UseInterleaved) { 7380 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7381 } 7382 7383 // Use the cost model. 7384 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7385 &Hints, IAI); 7386 CM.collectValuesToIgnore(); 7387 7388 // Use the planner for vectorization. 7389 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 7390 7391 // Get user vectorization factor. 7392 unsigned UserVF = Hints.getWidth(); 7393 7394 // Plan how to best vectorize, return the best VF and its cost. 7395 Optional<VectorizationFactor> MaybeVF = LVP.plan(OptForSize, UserVF); 7396 7397 VectorizationFactor VF = VectorizationFactor::Disabled(); 7398 unsigned IC = 1; 7399 unsigned UserIC = Hints.getInterleave(); 7400 7401 if (MaybeVF) { 7402 VF = *MaybeVF; 7403 // Select the interleave count. 7404 IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7405 } 7406 7407 // Identify the diagnostic messages that should be produced. 7408 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7409 bool VectorizeLoop = true, InterleaveLoop = true; 7410 if (Requirements.doesNotMeet(F, L, Hints)) { 7411 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7412 "requirements.\n"); 7413 Hints.emitRemarkWithHints(); 7414 return false; 7415 } 7416 7417 if (VF.Width == 1) { 7418 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7419 VecDiagMsg = std::make_pair( 7420 "VectorizationNotBeneficial", 7421 "the cost-model indicates that vectorization is not beneficial"); 7422 VectorizeLoop = false; 7423 } 7424 7425 if (!MaybeVF && UserIC > 1) { 7426 // Tell the user interleaving was avoided up-front, despite being explicitly 7427 // requested. 7428 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7429 "interleaving should be avoided up front\n"); 7430 IntDiagMsg = std::make_pair( 7431 "InterleavingAvoided", 7432 "Ignoring UserIC, because interleaving was avoided up front"); 7433 InterleaveLoop = false; 7434 } else if (IC == 1 && UserIC <= 1) { 7435 // Tell the user interleaving is not beneficial. 7436 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7437 IntDiagMsg = std::make_pair( 7438 "InterleavingNotBeneficial", 7439 "the cost-model indicates that interleaving is not beneficial"); 7440 InterleaveLoop = false; 7441 if (UserIC == 1) { 7442 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7443 IntDiagMsg.second += 7444 " and is explicitly disabled or interleave count is set to 1"; 7445 } 7446 } else if (IC > 1 && UserIC == 1) { 7447 // Tell the user interleaving is beneficial, but it explicitly disabled. 7448 LLVM_DEBUG( 7449 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7450 IntDiagMsg = std::make_pair( 7451 "InterleavingBeneficialButDisabled", 7452 "the cost-model indicates that interleaving is beneficial " 7453 "but is explicitly disabled or interleave count is set to 1"); 7454 InterleaveLoop = false; 7455 } 7456 7457 // Override IC if user provided an interleave count. 7458 IC = UserIC > 0 ? UserIC : IC; 7459 7460 // Emit diagnostic messages, if any. 7461 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7462 if (!VectorizeLoop && !InterleaveLoop) { 7463 // Do not vectorize or interleaving the loop. 7464 ORE->emit([&]() { 7465 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7466 L->getStartLoc(), L->getHeader()) 7467 << VecDiagMsg.second; 7468 }); 7469 ORE->emit([&]() { 7470 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7471 L->getStartLoc(), L->getHeader()) 7472 << IntDiagMsg.second; 7473 }); 7474 return false; 7475 } else if (!VectorizeLoop && InterleaveLoop) { 7476 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7477 ORE->emit([&]() { 7478 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7479 L->getStartLoc(), L->getHeader()) 7480 << VecDiagMsg.second; 7481 }); 7482 } else if (VectorizeLoop && !InterleaveLoop) { 7483 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7484 << ") in " << DebugLocStr << '\n'); 7485 ORE->emit([&]() { 7486 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7487 L->getStartLoc(), L->getHeader()) 7488 << IntDiagMsg.second; 7489 }); 7490 } else if (VectorizeLoop && InterleaveLoop) { 7491 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7492 << ") in " << DebugLocStr << '\n'); 7493 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7494 } 7495 7496 LVP.setBestPlan(VF.Width, IC); 7497 7498 using namespace ore; 7499 bool DisableRuntimeUnroll = false; 7500 MDNode *OrigLoopID = L->getLoopID(); 7501 7502 if (!VectorizeLoop) { 7503 assert(IC > 1 && "interleave count should not be 1 or 0"); 7504 // If we decided that it is not legal to vectorize the loop, then 7505 // interleave it. 7506 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7507 &CM); 7508 LVP.executePlan(Unroller, DT); 7509 7510 ORE->emit([&]() { 7511 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7512 L->getHeader()) 7513 << "interleaved loop (interleaved count: " 7514 << NV("InterleaveCount", IC) << ")"; 7515 }); 7516 } else { 7517 // If we decided that it is *legal* to vectorize the loop, then do it. 7518 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7519 &LVL, &CM); 7520 LVP.executePlan(LB, DT); 7521 ++LoopsVectorized; 7522 7523 // Add metadata to disable runtime unrolling a scalar loop when there are 7524 // no runtime checks about strides and memory. A scalar loop that is 7525 // rarely used is not worth unrolling. 7526 if (!LB.areSafetyChecksAdded()) 7527 DisableRuntimeUnroll = true; 7528 7529 // Report the vectorization decision. 7530 ORE->emit([&]() { 7531 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7532 L->getHeader()) 7533 << "vectorized loop (vectorization width: " 7534 << NV("VectorizationFactor", VF.Width) 7535 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7536 }); 7537 } 7538 7539 Optional<MDNode *> RemainderLoopID = 7540 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7541 LLVMLoopVectorizeFollowupEpilogue}); 7542 if (RemainderLoopID.hasValue()) { 7543 L->setLoopID(RemainderLoopID.getValue()); 7544 } else { 7545 if (DisableRuntimeUnroll) 7546 AddRuntimeUnrollDisableMetaData(L); 7547 7548 // Mark the loop as already vectorized to avoid vectorizing again. 7549 Hints.setAlreadyVectorized(); 7550 } 7551 7552 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7553 return true; 7554 } 7555 7556 bool LoopVectorizePass::runImpl( 7557 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7558 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7559 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7560 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7561 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 7562 SE = &SE_; 7563 LI = &LI_; 7564 TTI = &TTI_; 7565 DT = &DT_; 7566 BFI = &BFI_; 7567 TLI = TLI_; 7568 AA = &AA_; 7569 AC = &AC_; 7570 GetLAA = &GetLAA_; 7571 DB = &DB_; 7572 ORE = &ORE_; 7573 PSI = PSI_; 7574 7575 // Don't attempt if 7576 // 1. the target claims to have no vector registers, and 7577 // 2. interleaving won't help ILP. 7578 // 7579 // The second condition is necessary because, even if the target has no 7580 // vector registers, loop vectorization may still enable scalar 7581 // interleaving. 7582 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7583 return false; 7584 7585 bool Changed = false; 7586 7587 // The vectorizer requires loops to be in simplified form. 7588 // Since simplification may add new inner loops, it has to run before the 7589 // legality and profitability checks. This means running the loop vectorizer 7590 // will simplify all loops, regardless of whether anything end up being 7591 // vectorized. 7592 for (auto &L : *LI) 7593 Changed |= 7594 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 7595 7596 // Build up a worklist of inner-loops to vectorize. This is necessary as 7597 // the act of vectorizing or partially unrolling a loop creates new loops 7598 // and can invalidate iterators across the loops. 7599 SmallVector<Loop *, 8> Worklist; 7600 7601 for (Loop *L : *LI) 7602 collectSupportedLoops(*L, LI, ORE, Worklist); 7603 7604 LoopsAnalyzed += Worklist.size(); 7605 7606 // Now walk the identified inner loops. 7607 while (!Worklist.empty()) { 7608 Loop *L = Worklist.pop_back_val(); 7609 7610 // For the inner loops we actually process, form LCSSA to simplify the 7611 // transform. 7612 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7613 7614 Changed |= processLoop(L); 7615 } 7616 7617 // Process each loop nest in the function. 7618 return Changed; 7619 } 7620 7621 PreservedAnalyses LoopVectorizePass::run(Function &F, 7622 FunctionAnalysisManager &AM) { 7623 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7624 auto &LI = AM.getResult<LoopAnalysis>(F); 7625 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7626 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7627 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7628 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7629 auto &AA = AM.getResult<AAManager>(F); 7630 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7631 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7632 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7633 MemorySSA *MSSA = EnableMSSALoopDependency 7634 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 7635 : nullptr; 7636 7637 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7638 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7639 [&](Loop &L) -> const LoopAccessInfo & { 7640 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 7641 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7642 }; 7643 const ModuleAnalysisManager &MAM = 7644 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 7645 ProfileSummaryInfo *PSI = 7646 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 7647 bool Changed = 7648 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 7649 if (!Changed) 7650 return PreservedAnalyses::all(); 7651 PreservedAnalyses PA; 7652 7653 // We currently do not preserve loopinfo/dominator analyses with outer loop 7654 // vectorization. Until this is addressed, mark these analyses as preserved 7655 // only for non-VPlan-native path. 7656 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 7657 if (!EnableVPlanNativePath) { 7658 PA.preserve<LoopAnalysis>(); 7659 PA.preserve<DominatorTreeAnalysis>(); 7660 } 7661 PA.preserve<BasicAA>(); 7662 PA.preserve<GlobalsAA>(); 7663 return PA; 7664 } 7665