1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/Optional.h" 54 #include "llvm/ADT/SCCIterator.h" 55 #include "llvm/ADT/SetVector.h" 56 #include "llvm/ADT/SmallPtrSet.h" 57 #include "llvm/ADT/SmallSet.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/ADT/StringExtras.h" 61 #include "llvm/Analysis/CodeMetrics.h" 62 #include "llvm/Analysis/GlobalsModRef.h" 63 #include "llvm/Analysis/LoopInfo.h" 64 #include "llvm/Analysis/LoopIterator.h" 65 #include "llvm/Analysis/LoopPass.h" 66 #include "llvm/Analysis/ScalarEvolutionExpander.h" 67 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 68 #include "llvm/Analysis/ValueTracking.h" 69 #include "llvm/Analysis/VectorUtils.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfo.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/DiagnosticInfo.h" 75 #include "llvm/IR/Dominators.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/IR/IRBuilder.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/IR/ValueHandle.h" 87 #include "llvm/IR/Verifier.h" 88 #include "llvm/Pass.h" 89 #include "llvm/Support/BranchProbability.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Debug.h" 92 #include "llvm/Support/raw_ostream.h" 93 #include "llvm/Transforms/Scalar.h" 94 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 95 #include "llvm/Transforms/Utils/Local.h" 96 #include "llvm/Transforms/Utils/LoopSimplify.h" 97 #include "llvm/Transforms/Utils/LoopUtils.h" 98 #include "llvm/Transforms/Utils/LoopVersioning.h" 99 #include "llvm/Transforms/Vectorize.h" 100 #include <algorithm> 101 #include <map> 102 #include <tuple> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 107 #define LV_NAME "loop-vectorize" 108 #define DEBUG_TYPE LV_NAME 109 110 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 111 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 112 113 static cl::opt<bool> 114 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 115 cl::desc("Enable if-conversion during vectorization.")); 116 117 /// We don't vectorize loops with a known constant trip count below this number. 118 static cl::opt<unsigned> TinyTripCountVectorThreshold( 119 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 120 cl::desc("Don't vectorize loops with a constant " 121 "trip count that is smaller than this " 122 "value.")); 123 124 static cl::opt<bool> MaximizeBandwidth( 125 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 126 cl::desc("Maximize bandwidth when selecting vectorization factor which " 127 "will be determined by the smallest type in loop.")); 128 129 static cl::opt<bool> EnableInterleavedMemAccesses( 130 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 131 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 132 133 /// Maximum factor for an interleaved memory access. 134 static cl::opt<unsigned> MaxInterleaveGroupFactor( 135 "max-interleave-group-factor", cl::Hidden, 136 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 137 cl::init(8)); 138 139 /// We don't interleave loops with a known constant trip count below this 140 /// number. 141 static const unsigned TinyTripCountInterleaveThreshold = 128; 142 143 static cl::opt<unsigned> ForceTargetNumScalarRegs( 144 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 145 cl::desc("A flag that overrides the target's number of scalar registers.")); 146 147 static cl::opt<unsigned> ForceTargetNumVectorRegs( 148 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 149 cl::desc("A flag that overrides the target's number of vector registers.")); 150 151 /// Maximum vectorization interleave count. 152 static const unsigned MaxInterleaveFactor = 16; 153 154 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 155 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 156 cl::desc("A flag that overrides the target's max interleave factor for " 157 "scalar loops.")); 158 159 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 160 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 161 cl::desc("A flag that overrides the target's max interleave factor for " 162 "vectorized loops.")); 163 164 static cl::opt<unsigned> ForceTargetInstructionCost( 165 "force-target-instruction-cost", cl::init(0), cl::Hidden, 166 cl::desc("A flag that overrides the target's expected cost for " 167 "an instruction to a single constant value. Mostly " 168 "useful for getting consistent testing.")); 169 170 static cl::opt<unsigned> SmallLoopCost( 171 "small-loop-cost", cl::init(20), cl::Hidden, 172 cl::desc( 173 "The cost of a loop that is considered 'small' by the interleaver.")); 174 175 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 176 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 177 cl::desc("Enable the use of the block frequency analysis to access PGO " 178 "heuristics minimizing code growth in cold regions and being more " 179 "aggressive in hot regions.")); 180 181 // Runtime interleave loops for load/store throughput. 182 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 183 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 184 cl::desc( 185 "Enable runtime interleaving until load/store ports are saturated")); 186 187 /// The number of stores in a loop that are allowed to need predication. 188 static cl::opt<unsigned> NumberOfStoresToPredicate( 189 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 190 cl::desc("Max number of stores to be predicated behind an if.")); 191 192 static cl::opt<bool> EnableIndVarRegisterHeur( 193 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 194 cl::desc("Count the induction variable only once when interleaving")); 195 196 static cl::opt<bool> EnableCondStoresVectorization( 197 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 198 cl::desc("Enable if predication of stores during vectorization.")); 199 200 static cl::opt<unsigned> MaxNestedScalarReductionIC( 201 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 202 cl::desc("The maximum interleave count to use when interleaving a scalar " 203 "reduction in a nested loop.")); 204 205 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 206 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 207 cl::desc("The maximum allowed number of runtime memory checks with a " 208 "vectorize(enable) pragma.")); 209 210 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 211 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 212 cl::desc("The maximum number of SCEV checks allowed.")); 213 214 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 215 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 216 cl::desc("The maximum number of SCEV checks allowed with a " 217 "vectorize(enable) pragma")); 218 219 /// Create an analysis remark that explains why vectorization failed 220 /// 221 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 222 /// RemarkName is the identifier for the remark. If \p I is passed it is an 223 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 224 /// the location of the remark. \return the remark object that can be 225 /// streamed to. 226 static OptimizationRemarkAnalysis 227 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 228 Instruction *I = nullptr) { 229 Value *CodeRegion = TheLoop->getHeader(); 230 DebugLoc DL = TheLoop->getStartLoc(); 231 232 if (I) { 233 CodeRegion = I->getParent(); 234 // If there is no debug location attached to the instruction, revert back to 235 // using the loop's. 236 if (I->getDebugLoc()) 237 DL = I->getDebugLoc(); 238 } 239 240 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 241 R << "loop not vectorized: "; 242 return R; 243 } 244 245 namespace { 246 247 // Forward declarations. 248 class LoopVectorizeHints; 249 class LoopVectorizationLegality; 250 class LoopVectorizationCostModel; 251 class LoopVectorizationRequirements; 252 253 /// Returns true if the given loop body has a cycle, excluding the loop 254 /// itself. 255 static bool hasCyclesInLoopBody(const Loop &L) { 256 if (!L.empty()) 257 return true; 258 259 for (const auto &SCC : 260 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 261 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 262 if (SCC.size() > 1) { 263 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 264 DEBUG(L.dump()); 265 return true; 266 } 267 } 268 return false; 269 } 270 271 /// A helper function for converting Scalar types to vector types. 272 /// If the incoming type is void, we return void. If the VF is 1, we return 273 /// the scalar type. 274 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 275 if (Scalar->isVoidTy() || VF == 1) 276 return Scalar; 277 return VectorType::get(Scalar, VF); 278 } 279 280 /// A helper function that returns GEP instruction and knows to skip a 281 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 282 /// pointee types of the 'bitcast' have the same size. 283 /// For example: 284 /// bitcast double** %var to i64* - can be skipped 285 /// bitcast double** %var to i8* - can not 286 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 287 288 if (isa<GetElementPtrInst>(Ptr)) 289 return cast<GetElementPtrInst>(Ptr); 290 291 if (isa<BitCastInst>(Ptr) && 292 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 293 Type *BitcastTy = Ptr->getType(); 294 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 295 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 296 return nullptr; 297 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 298 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 299 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 300 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 301 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 302 } 303 return nullptr; 304 } 305 306 // FIXME: The following helper functions have multiple implementations 307 // in the project. They can be effectively organized in a common Load/Store 308 // utilities unit. 309 310 /// A helper function that returns the pointer operand of a load or store 311 /// instruction. 312 static Value *getPointerOperand(Value *I) { 313 if (auto *LI = dyn_cast<LoadInst>(I)) 314 return LI->getPointerOperand(); 315 if (auto *SI = dyn_cast<StoreInst>(I)) 316 return SI->getPointerOperand(); 317 return nullptr; 318 } 319 320 /// A helper function that returns the type of loaded or stored value. 321 static Type *getMemInstValueType(Value *I) { 322 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 323 "Expected Load or Store instruction"); 324 if (auto *LI = dyn_cast<LoadInst>(I)) 325 return LI->getType(); 326 return cast<StoreInst>(I)->getValueOperand()->getType(); 327 } 328 329 /// A helper function that returns the alignment of load or store instruction. 330 static unsigned getMemInstAlignment(Value *I) { 331 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 332 "Expected Load or Store instruction"); 333 if (auto *LI = dyn_cast<LoadInst>(I)) 334 return LI->getAlignment(); 335 return cast<StoreInst>(I)->getAlignment(); 336 } 337 338 /// A helper function that returns the address space of the pointer operand of 339 /// load or store instruction. 340 static unsigned getMemInstAddressSpace(Value *I) { 341 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 342 "Expected Load or Store instruction"); 343 if (auto *LI = dyn_cast<LoadInst>(I)) 344 return LI->getPointerAddressSpace(); 345 return cast<StoreInst>(I)->getPointerAddressSpace(); 346 } 347 348 /// A helper function that returns true if the given type is irregular. The 349 /// type is irregular if its allocated size doesn't equal the store size of an 350 /// element of the corresponding vector type at the given vectorization factor. 351 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 352 353 // Determine if an array of VF elements of type Ty is "bitcast compatible" 354 // with a <VF x Ty> vector. 355 if (VF > 1) { 356 auto *VectorTy = VectorType::get(Ty, VF); 357 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 358 } 359 360 // If the vectorization factor is one, we just check if an array of type Ty 361 // requires padding between elements. 362 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 363 } 364 365 /// A helper function that returns the reciprocal of the block probability of 366 /// predicated blocks. If we return X, we are assuming the predicated block 367 /// will execute once for for every X iterations of the loop header. 368 /// 369 /// TODO: We should use actual block probability here, if available. Currently, 370 /// we always assume predicated blocks have a 50% chance of executing. 371 static unsigned getReciprocalPredBlockProb() { return 2; } 372 373 /// A helper function that adds a 'fast' flag to floating-point operations. 374 static Value *addFastMathFlag(Value *V) { 375 if (isa<FPMathOperator>(V)) { 376 FastMathFlags Flags; 377 Flags.setUnsafeAlgebra(); 378 cast<Instruction>(V)->setFastMathFlags(Flags); 379 } 380 return V; 381 } 382 383 /// A helper function that returns an integer or floating-point constant with 384 /// value C. 385 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 386 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 387 : ConstantFP::get(Ty, C); 388 } 389 390 /// InnerLoopVectorizer vectorizes loops which contain only one basic 391 /// block to a specified vectorization factor (VF). 392 /// This class performs the widening of scalars into vectors, or multiple 393 /// scalars. This class also implements the following features: 394 /// * It inserts an epilogue loop for handling loops that don't have iteration 395 /// counts that are known to be a multiple of the vectorization factor. 396 /// * It handles the code generation for reduction variables. 397 /// * Scalarization (implementation using scalars) of un-vectorizable 398 /// instructions. 399 /// InnerLoopVectorizer does not perform any vectorization-legality 400 /// checks, and relies on the caller to check for the different legality 401 /// aspects. The InnerLoopVectorizer relies on the 402 /// LoopVectorizationLegality class to provide information about the induction 403 /// and reduction variables that were found to a given vectorization factor. 404 class InnerLoopVectorizer { 405 public: 406 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 407 LoopInfo *LI, DominatorTree *DT, 408 const TargetLibraryInfo *TLI, 409 const TargetTransformInfo *TTI, AssumptionCache *AC, 410 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 411 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 412 LoopVectorizationCostModel *CM) 413 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 414 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 415 Builder(PSE.getSE()->getContext()), Induction(nullptr), 416 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 417 TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM), 418 AddedSafetyChecks(false) {} 419 420 // Perform the actual loop widening (vectorization). 421 void vectorize() { 422 // Create a new empty loop. Unlink the old loop and connect the new one. 423 createEmptyLoop(); 424 // Widen each instruction in the old loop to a new one in the new loop. 425 vectorizeLoop(); 426 } 427 428 // Return true if any runtime check is added. 429 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 430 431 virtual ~InnerLoopVectorizer() {} 432 433 protected: 434 /// A small list of PHINodes. 435 typedef SmallVector<PHINode *, 4> PhiVector; 436 437 /// A type for vectorized values in the new loop. Each value from the 438 /// original loop, when vectorized, is represented by UF vector values in the 439 /// new unrolled loop, where UF is the unroll factor. 440 typedef SmallVector<Value *, 2> VectorParts; 441 442 /// A type for scalarized values in the new loop. Each value from the 443 /// original loop, when scalarized, is represented by UF x VF scalar values 444 /// in the new unrolled loop, where UF is the unroll factor and VF is the 445 /// vectorization factor. 446 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 447 448 // When we if-convert we need to create edge masks. We have to cache values 449 // so that we don't end up with exponential recursion/IR. 450 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 451 EdgeMaskCache; 452 453 /// Create an empty loop, based on the loop ranges of the old loop. 454 void createEmptyLoop(); 455 456 /// Set up the values of the IVs correctly when exiting the vector loop. 457 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 458 Value *CountRoundDown, Value *EndValue, 459 BasicBlock *MiddleBlock); 460 461 /// Create a new induction variable inside L. 462 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 463 Value *Step, Instruction *DL); 464 /// Copy and widen the instructions from the old loop. 465 virtual void vectorizeLoop(); 466 467 /// Handle all cross-iteration phis in the header. 468 void fixCrossIterationPHIs(); 469 470 /// Fix a first-order recurrence. This is the second phase of vectorizing 471 /// this phi node. 472 void fixFirstOrderRecurrence(PHINode *Phi); 473 474 /// Fix a reduction cross-iteration phi. This is the second phase of 475 /// vectorizing this phi node. 476 void fixReduction(PHINode *Phi); 477 478 /// \brief The Loop exit block may have single value PHI nodes where the 479 /// incoming value is 'Undef'. While vectorizing we only handled real values 480 /// that were defined inside the loop. Here we fix the 'undef case'. 481 /// See PR14725. 482 void fixLCSSAPHIs(); 483 484 /// Iteratively sink the scalarized operands of a predicated instruction into 485 /// the block that was created for it. 486 void sinkScalarOperands(Instruction *PredInst); 487 488 /// Predicate conditional instructions that require predication on their 489 /// respective conditions. 490 void predicateInstructions(); 491 492 /// Collect the instructions from the original loop that would be trivially 493 /// dead in the vectorized loop if generated. 494 void collectTriviallyDeadInstructions(); 495 496 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 497 /// represented as. 498 void truncateToMinimalBitwidths(); 499 500 /// A helper function that computes the predicate of the block BB, assuming 501 /// that the header block of the loop is set to True. It returns the *entry* 502 /// mask for the block BB. 503 VectorParts createBlockInMask(BasicBlock *BB); 504 /// A helper function that computes the predicate of the edge between SRC 505 /// and DST. 506 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 507 508 /// A helper function to vectorize a single BB within the innermost loop. 509 void vectorizeBlockInLoop(BasicBlock *BB); 510 511 /// Vectorize a single PHINode in a block. This method handles the induction 512 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 513 /// arbitrary length vectors. 514 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 515 516 /// Insert the new loop to the loop hierarchy and pass manager 517 /// and update the analysis passes. 518 void updateAnalysis(); 519 520 /// This instruction is un-vectorizable. Implement it as a sequence 521 /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each 522 /// scalarized instruction behind an if block predicated on the control 523 /// dependence of the instruction. 524 virtual void scalarizeInstruction(Instruction *Instr, 525 bool IfPredicateInstr = false); 526 527 /// Vectorize Load and Store instructions, 528 virtual void vectorizeMemoryInstruction(Instruction *Instr); 529 530 /// Create a broadcast instruction. This method generates a broadcast 531 /// instruction (shuffle) for loop invariant values and for the induction 532 /// value. If this is the induction variable then we extend it to N, N+1, ... 533 /// this is needed because each iteration in the loop corresponds to a SIMD 534 /// element. 535 virtual Value *getBroadcastInstrs(Value *V); 536 537 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 538 /// to each vector element of Val. The sequence starts at StartIndex. 539 /// \p Opcode is relevant for FP induction variable. 540 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 541 Instruction::BinaryOps Opcode = 542 Instruction::BinaryOpsEnd); 543 544 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 545 /// variable on which to base the steps, \p Step is the size of the step, and 546 /// \p EntryVal is the value from the original loop that maps to the steps. 547 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 548 /// can be a truncate instruction). 549 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 550 const InductionDescriptor &ID); 551 552 /// Create a vector induction phi node based on an existing scalar one. \p 553 /// EntryVal is the value from the original loop that maps to the vector phi 554 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 555 /// truncate instruction, instead of widening the original IV, we widen a 556 /// version of the IV truncated to \p EntryVal's type. 557 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 558 Value *Step, Instruction *EntryVal); 559 560 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 561 /// is provided, the integer induction variable will first be truncated to 562 /// the corresponding type. 563 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 564 565 /// Returns true if an instruction \p I should be scalarized instead of 566 /// vectorized for the chosen vectorization factor. 567 bool shouldScalarizeInstruction(Instruction *I) const; 568 569 /// Returns true if we should generate a scalar version of \p IV. 570 bool needsScalarInduction(Instruction *IV) const; 571 572 /// Return a constant reference to the VectorParts corresponding to \p V from 573 /// the original loop. If the value has already been vectorized, the 574 /// corresponding vector entry in VectorLoopValueMap is returned. If, 575 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 576 /// new vector values on-demand by inserting the scalar values into vectors 577 /// with an insertelement sequence. If the value has been neither vectorized 578 /// nor scalarized, it must be loop invariant, so we simply broadcast the 579 /// value into vectors. 580 const VectorParts &getVectorValue(Value *V); 581 582 /// Return a value in the new loop corresponding to \p V from the original 583 /// loop at unroll index \p Part and vector index \p Lane. If the value has 584 /// been vectorized but not scalarized, the necessary extractelement 585 /// instruction will be generated. 586 Value *getScalarValue(Value *V, unsigned Part, unsigned Lane); 587 588 /// Try to vectorize the interleaved access group that \p Instr belongs to. 589 void vectorizeInterleaveGroup(Instruction *Instr); 590 591 /// Generate a shuffle sequence that will reverse the vector Vec. 592 virtual Value *reverseVector(Value *Vec); 593 594 /// Returns (and creates if needed) the original loop trip count. 595 Value *getOrCreateTripCount(Loop *NewLoop); 596 597 /// Returns (and creates if needed) the trip count of the widened loop. 598 Value *getOrCreateVectorTripCount(Loop *NewLoop); 599 600 /// Emit a bypass check to see if the trip count would overflow, or we 601 /// wouldn't have enough iterations to execute one vector loop. 602 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 603 /// Emit a bypass check to see if the vector trip count is nonzero. 604 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 605 /// Emit a bypass check to see if all of the SCEV assumptions we've 606 /// had to make are correct. 607 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 608 /// Emit bypass checks to check any memory assumptions we may have made. 609 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 610 611 /// Add additional metadata to \p To that was not present on \p Orig. 612 /// 613 /// Currently this is used to add the noalias annotations based on the 614 /// inserted memchecks. Use this for instructions that are *cloned* into the 615 /// vector loop. 616 void addNewMetadata(Instruction *To, const Instruction *Orig); 617 618 /// Add metadata from one instruction to another. 619 /// 620 /// This includes both the original MDs from \p From and additional ones (\see 621 /// addNewMetadata). Use this for *newly created* instructions in the vector 622 /// loop. 623 void addMetadata(Instruction *To, Instruction *From); 624 625 /// \brief Similar to the previous function but it adds the metadata to a 626 /// vector of instructions. 627 void addMetadata(ArrayRef<Value *> To, Instruction *From); 628 629 /// \brief Set the debug location in the builder using the debug location in 630 /// the instruction. 631 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 632 633 /// This is a helper class for maintaining vectorization state. It's used for 634 /// mapping values from the original loop to their corresponding values in 635 /// the new loop. Two mappings are maintained: one for vectorized values and 636 /// one for scalarized values. Vectorized values are represented with UF 637 /// vector values in the new loop, and scalarized values are represented with 638 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 639 /// vectorization factors, respectively. 640 /// 641 /// Entries can be added to either map with initVector and initScalar, which 642 /// initialize and return a constant reference to the new entry. If a 643 /// non-constant reference to a vector entry is required, getVector can be 644 /// used to retrieve a mutable entry. We currently directly modify the mapped 645 /// values during "fix-up" operations that occur once the first phase of 646 /// widening is complete. These operations include type truncation and the 647 /// second phase of recurrence widening. 648 /// 649 /// Otherwise, entries from either map should be accessed using the 650 /// getVectorValue or getScalarValue functions from InnerLoopVectorizer. 651 /// getVectorValue and getScalarValue coordinate to generate a vector or 652 /// scalar value on-demand if one is not yet available. When vectorizing a 653 /// loop, we visit the definition of an instruction before its uses. When 654 /// visiting the definition, we either vectorize or scalarize the 655 /// instruction, creating an entry for it in the corresponding map. (In some 656 /// cases, such as induction variables, we will create both vector and scalar 657 /// entries.) Then, as we encounter uses of the definition, we derive values 658 /// for each scalar or vector use unless such a value is already available. 659 /// For example, if we scalarize a definition and one of its uses is vector, 660 /// we build the required vector on-demand with an insertelement sequence 661 /// when visiting the use. Otherwise, if the use is scalar, we can use the 662 /// existing scalar definition. 663 struct ValueMap { 664 665 /// Construct an empty map with the given unroll and vectorization factors. 666 ValueMap(unsigned UnrollFactor, unsigned VecWidth) 667 : UF(UnrollFactor), VF(VecWidth) { 668 // The unroll and vectorization factors are only used in asserts builds 669 // to verify map entries are sized appropriately. 670 (void)UF; 671 (void)VF; 672 } 673 674 /// \return True if the map has a vector entry for \p Key. 675 bool hasVector(Value *Key) const { return VectorMapStorage.count(Key); } 676 677 /// \return True if the map has a scalar entry for \p Key. 678 bool hasScalar(Value *Key) const { return ScalarMapStorage.count(Key); } 679 680 /// \brief Map \p Key to the given VectorParts \p Entry, and return a 681 /// constant reference to the new vector map entry. The given key should 682 /// not already be in the map, and the given VectorParts should be 683 /// correctly sized for the current unroll factor. 684 const VectorParts &initVector(Value *Key, const VectorParts &Entry) { 685 assert(!hasVector(Key) && "Vector entry already initialized"); 686 assert(Entry.size() == UF && "VectorParts has wrong dimensions"); 687 VectorMapStorage[Key] = Entry; 688 return VectorMapStorage[Key]; 689 } 690 691 /// \brief Map \p Key to the given ScalarParts \p Entry, and return a 692 /// constant reference to the new scalar map entry. The given key should 693 /// not already be in the map, and the given ScalarParts should be 694 /// correctly sized for the current unroll and vectorization factors. 695 const ScalarParts &initScalar(Value *Key, const ScalarParts &Entry) { 696 assert(!hasScalar(Key) && "Scalar entry already initialized"); 697 assert(Entry.size() == UF && 698 all_of(make_range(Entry.begin(), Entry.end()), 699 [&](const SmallVectorImpl<Value *> &Values) -> bool { 700 return Values.size() == VF; 701 }) && 702 "ScalarParts has wrong dimensions"); 703 ScalarMapStorage[Key] = Entry; 704 return ScalarMapStorage[Key]; 705 } 706 707 /// \return A reference to the vector map entry corresponding to \p Key. 708 /// The key should already be in the map. This function should only be used 709 /// when it's necessary to update values that have already been vectorized. 710 /// This is the case for "fix-up" operations including type truncation and 711 /// the second phase of recurrence vectorization. If a non-const reference 712 /// isn't required, getVectorValue should be used instead. 713 VectorParts &getVector(Value *Key) { 714 assert(hasVector(Key) && "Vector entry not initialized"); 715 return VectorMapStorage.find(Key)->second; 716 } 717 718 /// Retrieve an entry from the vector or scalar maps. The preferred way to 719 /// access an existing mapped entry is with getVectorValue or 720 /// getScalarValue from InnerLoopVectorizer. Until those functions can be 721 /// moved inside ValueMap, we have to declare them as friends. 722 friend const VectorParts &InnerLoopVectorizer::getVectorValue(Value *V); 723 friend Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 724 unsigned Lane); 725 726 private: 727 /// The unroll factor. Each entry in the vector map contains UF vector 728 /// values. 729 unsigned UF; 730 731 /// The vectorization factor. Each entry in the scalar map contains UF x VF 732 /// scalar values. 733 unsigned VF; 734 735 /// The vector and scalar map storage. We use std::map and not DenseMap 736 /// because insertions to DenseMap invalidate its iterators. 737 std::map<Value *, VectorParts> VectorMapStorage; 738 std::map<Value *, ScalarParts> ScalarMapStorage; 739 }; 740 741 /// The original loop. 742 Loop *OrigLoop; 743 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 744 /// dynamic knowledge to simplify SCEV expressions and converts them to a 745 /// more usable form. 746 PredicatedScalarEvolution &PSE; 747 /// Loop Info. 748 LoopInfo *LI; 749 /// Dominator Tree. 750 DominatorTree *DT; 751 /// Alias Analysis. 752 AliasAnalysis *AA; 753 /// Target Library Info. 754 const TargetLibraryInfo *TLI; 755 /// Target Transform Info. 756 const TargetTransformInfo *TTI; 757 /// Assumption Cache. 758 AssumptionCache *AC; 759 /// Interface to emit optimization remarks. 760 OptimizationRemarkEmitter *ORE; 761 762 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 763 /// used. 764 /// 765 /// This is currently only used to add no-alias metadata based on the 766 /// memchecks. The actually versioning is performed manually. 767 std::unique_ptr<LoopVersioning> LVer; 768 769 /// The vectorization SIMD factor to use. Each vector will have this many 770 /// vector elements. 771 unsigned VF; 772 773 protected: 774 /// The vectorization unroll factor to use. Each scalar is vectorized to this 775 /// many different vector instructions. 776 unsigned UF; 777 778 /// The builder that we use 779 IRBuilder<> Builder; 780 781 // --- Vectorization state --- 782 783 /// The vector-loop preheader. 784 BasicBlock *LoopVectorPreHeader; 785 /// The scalar-loop preheader. 786 BasicBlock *LoopScalarPreHeader; 787 /// Middle Block between the vector and the scalar. 788 BasicBlock *LoopMiddleBlock; 789 /// The ExitBlock of the scalar loop. 790 BasicBlock *LoopExitBlock; 791 /// The vector loop body. 792 BasicBlock *LoopVectorBody; 793 /// The scalar loop body. 794 BasicBlock *LoopScalarBody; 795 /// A list of all bypass blocks. The first block is the entry of the loop. 796 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 797 798 /// The new Induction variable which was added to the new block. 799 PHINode *Induction; 800 /// The induction variable of the old basic block. 801 PHINode *OldInduction; 802 803 /// Maps values from the original loop to their corresponding values in the 804 /// vectorized loop. A key value can map to either vector values, scalar 805 /// values or both kinds of values, depending on whether the key was 806 /// vectorized and scalarized. 807 ValueMap VectorLoopValueMap; 808 809 /// Store instructions that should be predicated, as a pair 810 /// <StoreInst, Predicate> 811 SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions; 812 EdgeMaskCache MaskCache; 813 /// Trip count of the original loop. 814 Value *TripCount; 815 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 816 Value *VectorTripCount; 817 818 /// The legality analysis. 819 LoopVectorizationLegality *Legal; 820 821 /// The profitablity analysis. 822 LoopVectorizationCostModel *Cost; 823 824 // Record whether runtime checks are added. 825 bool AddedSafetyChecks; 826 827 // Holds instructions from the original loop whose counterparts in the 828 // vectorized loop would be trivially dead if generated. For example, 829 // original induction update instructions can become dead because we 830 // separately emit induction "steps" when generating code for the new loop. 831 // Similarly, we create a new latch condition when setting up the structure 832 // of the new loop, so the old one can become dead. 833 SmallPtrSet<Instruction *, 4> DeadInstructions; 834 835 // Holds the end values for each induction variable. We save the end values 836 // so we can later fix-up the external users of the induction variables. 837 DenseMap<PHINode *, Value *> IVEndValues; 838 }; 839 840 class InnerLoopUnroller : public InnerLoopVectorizer { 841 public: 842 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 843 LoopInfo *LI, DominatorTree *DT, 844 const TargetLibraryInfo *TLI, 845 const TargetTransformInfo *TTI, AssumptionCache *AC, 846 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 847 LoopVectorizationLegality *LVL, 848 LoopVectorizationCostModel *CM) 849 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 850 UnrollFactor, LVL, CM) {} 851 852 private: 853 void vectorizeMemoryInstruction(Instruction *Instr) override; 854 Value *getBroadcastInstrs(Value *V) override; 855 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 856 Instruction::BinaryOps Opcode = 857 Instruction::BinaryOpsEnd) override; 858 Value *reverseVector(Value *Vec) override; 859 }; 860 861 /// \brief Look for a meaningful debug location on the instruction or it's 862 /// operands. 863 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 864 if (!I) 865 return I; 866 867 DebugLoc Empty; 868 if (I->getDebugLoc() != Empty) 869 return I; 870 871 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 872 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 873 if (OpInst->getDebugLoc() != Empty) 874 return OpInst; 875 } 876 877 return I; 878 } 879 880 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 881 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 882 const DILocation *DIL = Inst->getDebugLoc(); 883 if (DIL && Inst->getFunction()->isDebugInfoForProfiling()) 884 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 885 else 886 B.SetCurrentDebugLocation(DIL); 887 } else 888 B.SetCurrentDebugLocation(DebugLoc()); 889 } 890 891 #ifndef NDEBUG 892 /// \return string containing a file name and a line # for the given loop. 893 static std::string getDebugLocString(const Loop *L) { 894 std::string Result; 895 if (L) { 896 raw_string_ostream OS(Result); 897 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 898 LoopDbgLoc.print(OS); 899 else 900 // Just print the module name. 901 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 902 OS.flush(); 903 } 904 return Result; 905 } 906 #endif 907 908 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 909 const Instruction *Orig) { 910 // If the loop was versioned with memchecks, add the corresponding no-alias 911 // metadata. 912 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 913 LVer->annotateInstWithNoAlias(To, Orig); 914 } 915 916 void InnerLoopVectorizer::addMetadata(Instruction *To, 917 Instruction *From) { 918 propagateMetadata(To, From); 919 addNewMetadata(To, From); 920 } 921 922 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 923 Instruction *From) { 924 for (Value *V : To) { 925 if (Instruction *I = dyn_cast<Instruction>(V)) 926 addMetadata(I, From); 927 } 928 } 929 930 /// \brief The group of interleaved loads/stores sharing the same stride and 931 /// close to each other. 932 /// 933 /// Each member in this group has an index starting from 0, and the largest 934 /// index should be less than interleaved factor, which is equal to the absolute 935 /// value of the access's stride. 936 /// 937 /// E.g. An interleaved load group of factor 4: 938 /// for (unsigned i = 0; i < 1024; i+=4) { 939 /// a = A[i]; // Member of index 0 940 /// b = A[i+1]; // Member of index 1 941 /// d = A[i+3]; // Member of index 3 942 /// ... 943 /// } 944 /// 945 /// An interleaved store group of factor 4: 946 /// for (unsigned i = 0; i < 1024; i+=4) { 947 /// ... 948 /// A[i] = a; // Member of index 0 949 /// A[i+1] = b; // Member of index 1 950 /// A[i+2] = c; // Member of index 2 951 /// A[i+3] = d; // Member of index 3 952 /// } 953 /// 954 /// Note: the interleaved load group could have gaps (missing members), but 955 /// the interleaved store group doesn't allow gaps. 956 class InterleaveGroup { 957 public: 958 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 959 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 960 assert(Align && "The alignment should be non-zero"); 961 962 Factor = std::abs(Stride); 963 assert(Factor > 1 && "Invalid interleave factor"); 964 965 Reverse = Stride < 0; 966 Members[0] = Instr; 967 } 968 969 bool isReverse() const { return Reverse; } 970 unsigned getFactor() const { return Factor; } 971 unsigned getAlignment() const { return Align; } 972 unsigned getNumMembers() const { return Members.size(); } 973 974 /// \brief Try to insert a new member \p Instr with index \p Index and 975 /// alignment \p NewAlign. The index is related to the leader and it could be 976 /// negative if it is the new leader. 977 /// 978 /// \returns false if the instruction doesn't belong to the group. 979 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 980 assert(NewAlign && "The new member's alignment should be non-zero"); 981 982 int Key = Index + SmallestKey; 983 984 // Skip if there is already a member with the same index. 985 if (Members.count(Key)) 986 return false; 987 988 if (Key > LargestKey) { 989 // The largest index is always less than the interleave factor. 990 if (Index >= static_cast<int>(Factor)) 991 return false; 992 993 LargestKey = Key; 994 } else if (Key < SmallestKey) { 995 // The largest index is always less than the interleave factor. 996 if (LargestKey - Key >= static_cast<int>(Factor)) 997 return false; 998 999 SmallestKey = Key; 1000 } 1001 1002 // It's always safe to select the minimum alignment. 1003 Align = std::min(Align, NewAlign); 1004 Members[Key] = Instr; 1005 return true; 1006 } 1007 1008 /// \brief Get the member with the given index \p Index 1009 /// 1010 /// \returns nullptr if contains no such member. 1011 Instruction *getMember(unsigned Index) const { 1012 int Key = SmallestKey + Index; 1013 if (!Members.count(Key)) 1014 return nullptr; 1015 1016 return Members.find(Key)->second; 1017 } 1018 1019 /// \brief Get the index for the given member. Unlike the key in the member 1020 /// map, the index starts from 0. 1021 unsigned getIndex(Instruction *Instr) const { 1022 for (auto I : Members) 1023 if (I.second == Instr) 1024 return I.first - SmallestKey; 1025 1026 llvm_unreachable("InterleaveGroup contains no such member"); 1027 } 1028 1029 Instruction *getInsertPos() const { return InsertPos; } 1030 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 1031 1032 private: 1033 unsigned Factor; // Interleave Factor. 1034 bool Reverse; 1035 unsigned Align; 1036 DenseMap<int, Instruction *> Members; 1037 int SmallestKey; 1038 int LargestKey; 1039 1040 // To avoid breaking dependences, vectorized instructions of an interleave 1041 // group should be inserted at either the first load or the last store in 1042 // program order. 1043 // 1044 // E.g. %even = load i32 // Insert Position 1045 // %add = add i32 %even // Use of %even 1046 // %odd = load i32 1047 // 1048 // store i32 %even 1049 // %odd = add i32 // Def of %odd 1050 // store i32 %odd // Insert Position 1051 Instruction *InsertPos; 1052 }; 1053 1054 /// \brief Drive the analysis of interleaved memory accesses in the loop. 1055 /// 1056 /// Use this class to analyze interleaved accesses only when we can vectorize 1057 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 1058 /// on interleaved accesses is unsafe. 1059 /// 1060 /// The analysis collects interleave groups and records the relationships 1061 /// between the member and the group in a map. 1062 class InterleavedAccessInfo { 1063 public: 1064 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1065 DominatorTree *DT, LoopInfo *LI) 1066 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 1067 RequiresScalarEpilogue(false) {} 1068 1069 ~InterleavedAccessInfo() { 1070 SmallSet<InterleaveGroup *, 4> DelSet; 1071 // Avoid releasing a pointer twice. 1072 for (auto &I : InterleaveGroupMap) 1073 DelSet.insert(I.second); 1074 for (auto *Ptr : DelSet) 1075 delete Ptr; 1076 } 1077 1078 /// \brief Analyze the interleaved accesses and collect them in interleave 1079 /// groups. Substitute symbolic strides using \p Strides. 1080 void analyzeInterleaving(const ValueToValueMap &Strides); 1081 1082 /// \brief Check if \p Instr belongs to any interleave group. 1083 bool isInterleaved(Instruction *Instr) const { 1084 return InterleaveGroupMap.count(Instr); 1085 } 1086 1087 /// \brief Return the maximum interleave factor of all interleaved groups. 1088 unsigned getMaxInterleaveFactor() const { 1089 unsigned MaxFactor = 1; 1090 for (auto &Entry : InterleaveGroupMap) 1091 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 1092 return MaxFactor; 1093 } 1094 1095 /// \brief Get the interleave group that \p Instr belongs to. 1096 /// 1097 /// \returns nullptr if doesn't have such group. 1098 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1099 if (InterleaveGroupMap.count(Instr)) 1100 return InterleaveGroupMap.find(Instr)->second; 1101 return nullptr; 1102 } 1103 1104 /// \brief Returns true if an interleaved group that may access memory 1105 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1106 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1107 1108 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1109 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1110 1111 private: 1112 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1113 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1114 /// The interleaved access analysis can also add new predicates (for example 1115 /// by versioning strides of pointers). 1116 PredicatedScalarEvolution &PSE; 1117 Loop *TheLoop; 1118 DominatorTree *DT; 1119 LoopInfo *LI; 1120 const LoopAccessInfo *LAI; 1121 1122 /// True if the loop may contain non-reversed interleaved groups with 1123 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1124 /// out-of-bounds by executing at least one scalar epilogue iteration. 1125 bool RequiresScalarEpilogue; 1126 1127 /// Holds the relationships between the members and the interleave group. 1128 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1129 1130 /// Holds dependences among the memory accesses in the loop. It maps a source 1131 /// access to a set of dependent sink accesses. 1132 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1133 1134 /// \brief The descriptor for a strided memory access. 1135 struct StrideDescriptor { 1136 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1137 unsigned Align) 1138 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1139 1140 StrideDescriptor() = default; 1141 1142 // The access's stride. It is negative for a reverse access. 1143 int64_t Stride = 0; 1144 const SCEV *Scev = nullptr; // The scalar expression of this access 1145 uint64_t Size = 0; // The size of the memory object. 1146 unsigned Align = 0; // The alignment of this access. 1147 }; 1148 1149 /// \brief A type for holding instructions and their stride descriptors. 1150 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1151 1152 /// \brief Create a new interleave group with the given instruction \p Instr, 1153 /// stride \p Stride and alignment \p Align. 1154 /// 1155 /// \returns the newly created interleave group. 1156 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1157 unsigned Align) { 1158 assert(!InterleaveGroupMap.count(Instr) && 1159 "Already in an interleaved access group"); 1160 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1161 return InterleaveGroupMap[Instr]; 1162 } 1163 1164 /// \brief Release the group and remove all the relationships. 1165 void releaseGroup(InterleaveGroup *Group) { 1166 for (unsigned i = 0; i < Group->getFactor(); i++) 1167 if (Instruction *Member = Group->getMember(i)) 1168 InterleaveGroupMap.erase(Member); 1169 1170 delete Group; 1171 } 1172 1173 /// \brief Collect all the accesses with a constant stride in program order. 1174 void collectConstStrideAccesses( 1175 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1176 const ValueToValueMap &Strides); 1177 1178 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1179 static bool isStrided(int Stride) { 1180 unsigned Factor = std::abs(Stride); 1181 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1182 } 1183 1184 /// \brief Returns true if \p BB is a predicated block. 1185 bool isPredicated(BasicBlock *BB) const { 1186 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1187 } 1188 1189 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1190 bool areDependencesValid() const { 1191 return LAI && LAI->getDepChecker().getDependences(); 1192 } 1193 1194 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1195 /// necessary, when constructing interleaved groups. 1196 /// 1197 /// \p A must precede \p B in program order. We return false if reordering is 1198 /// not necessary or is prevented because \p A and \p B may be dependent. 1199 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1200 StrideEntry *B) const { 1201 1202 // Code motion for interleaved accesses can potentially hoist strided loads 1203 // and sink strided stores. The code below checks the legality of the 1204 // following two conditions: 1205 // 1206 // 1. Potentially moving a strided load (B) before any store (A) that 1207 // precedes B, or 1208 // 1209 // 2. Potentially moving a strided store (A) after any load or store (B) 1210 // that A precedes. 1211 // 1212 // It's legal to reorder A and B if we know there isn't a dependence from A 1213 // to B. Note that this determination is conservative since some 1214 // dependences could potentially be reordered safely. 1215 1216 // A is potentially the source of a dependence. 1217 auto *Src = A->first; 1218 auto SrcDes = A->second; 1219 1220 // B is potentially the sink of a dependence. 1221 auto *Sink = B->first; 1222 auto SinkDes = B->second; 1223 1224 // Code motion for interleaved accesses can't violate WAR dependences. 1225 // Thus, reordering is legal if the source isn't a write. 1226 if (!Src->mayWriteToMemory()) 1227 return true; 1228 1229 // At least one of the accesses must be strided. 1230 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1231 return true; 1232 1233 // If dependence information is not available from LoopAccessInfo, 1234 // conservatively assume the instructions can't be reordered. 1235 if (!areDependencesValid()) 1236 return false; 1237 1238 // If we know there is a dependence from source to sink, assume the 1239 // instructions can't be reordered. Otherwise, reordering is legal. 1240 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1241 } 1242 1243 /// \brief Collect the dependences from LoopAccessInfo. 1244 /// 1245 /// We process the dependences once during the interleaved access analysis to 1246 /// enable constant-time dependence queries. 1247 void collectDependences() { 1248 if (!areDependencesValid()) 1249 return; 1250 auto *Deps = LAI->getDepChecker().getDependences(); 1251 for (auto Dep : *Deps) 1252 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1253 } 1254 }; 1255 1256 /// Utility class for getting and setting loop vectorizer hints in the form 1257 /// of loop metadata. 1258 /// This class keeps a number of loop annotations locally (as member variables) 1259 /// and can, upon request, write them back as metadata on the loop. It will 1260 /// initially scan the loop for existing metadata, and will update the local 1261 /// values based on information in the loop. 1262 /// We cannot write all values to metadata, as the mere presence of some info, 1263 /// for example 'force', means a decision has been made. So, we need to be 1264 /// careful NOT to add them if the user hasn't specifically asked so. 1265 class LoopVectorizeHints { 1266 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1267 1268 /// Hint - associates name and validation with the hint value. 1269 struct Hint { 1270 const char *Name; 1271 unsigned Value; // This may have to change for non-numeric values. 1272 HintKind Kind; 1273 1274 Hint(const char *Name, unsigned Value, HintKind Kind) 1275 : Name(Name), Value(Value), Kind(Kind) {} 1276 1277 bool validate(unsigned Val) { 1278 switch (Kind) { 1279 case HK_WIDTH: 1280 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1281 case HK_UNROLL: 1282 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1283 case HK_FORCE: 1284 return (Val <= 1); 1285 } 1286 return false; 1287 } 1288 }; 1289 1290 /// Vectorization width. 1291 Hint Width; 1292 /// Vectorization interleave factor. 1293 Hint Interleave; 1294 /// Vectorization forced 1295 Hint Force; 1296 1297 /// Return the loop metadata prefix. 1298 static StringRef Prefix() { return "llvm.loop."; } 1299 1300 /// True if there is any unsafe math in the loop. 1301 bool PotentiallyUnsafe; 1302 1303 public: 1304 enum ForceKind { 1305 FK_Undefined = -1, ///< Not selected. 1306 FK_Disabled = 0, ///< Forcing disabled. 1307 FK_Enabled = 1, ///< Forcing enabled. 1308 }; 1309 1310 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1311 OptimizationRemarkEmitter &ORE) 1312 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1313 HK_WIDTH), 1314 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1315 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1316 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1317 // Populate values with existing loop metadata. 1318 getHintsFromMetadata(); 1319 1320 // force-vector-interleave overrides DisableInterleaving. 1321 if (VectorizerParams::isInterleaveForced()) 1322 Interleave.Value = VectorizerParams::VectorizationInterleave; 1323 1324 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1325 << "LV: Interleaving disabled by the pass manager\n"); 1326 } 1327 1328 /// Mark the loop L as already vectorized by setting the width to 1. 1329 void setAlreadyVectorized() { 1330 Width.Value = Interleave.Value = 1; 1331 Hint Hints[] = {Width, Interleave}; 1332 writeHintsToMetadata(Hints); 1333 } 1334 1335 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1336 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1337 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1338 emitRemarkWithHints(); 1339 return false; 1340 } 1341 1342 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1343 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1344 emitRemarkWithHints(); 1345 return false; 1346 } 1347 1348 if (getWidth() == 1 && getInterleave() == 1) { 1349 // FIXME: Add a separate metadata to indicate when the loop has already 1350 // been vectorized instead of setting width and count to 1. 1351 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1352 // FIXME: Add interleave.disable metadata. This will allow 1353 // vectorize.disable to be used without disabling the pass and errors 1354 // to differentiate between disabled vectorization and a width of 1. 1355 ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1356 "AllDisabled", L->getStartLoc(), 1357 L->getHeader()) 1358 << "loop not vectorized: vectorization and interleaving are " 1359 "explicitly disabled, or vectorize width and interleave " 1360 "count are both set to 1"); 1361 return false; 1362 } 1363 1364 return true; 1365 } 1366 1367 /// Dumps all the hint information. 1368 void emitRemarkWithHints() const { 1369 using namespace ore; 1370 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1371 ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1372 TheLoop->getStartLoc(), 1373 TheLoop->getHeader()) 1374 << "loop not vectorized: vectorization is explicitly disabled"); 1375 else { 1376 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1377 TheLoop->getStartLoc(), TheLoop->getHeader()); 1378 R << "loop not vectorized"; 1379 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1380 R << " (Force=" << NV("Force", true); 1381 if (Width.Value != 0) 1382 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1383 if (Interleave.Value != 0) 1384 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 1385 R << ")"; 1386 } 1387 ORE.emit(R); 1388 } 1389 } 1390 1391 unsigned getWidth() const { return Width.Value; } 1392 unsigned getInterleave() const { return Interleave.Value; } 1393 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1394 1395 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1396 /// pass name to force the frontend to print the diagnostic. 1397 const char *vectorizeAnalysisPassName() const { 1398 if (getWidth() == 1) 1399 return LV_NAME; 1400 if (getForce() == LoopVectorizeHints::FK_Disabled) 1401 return LV_NAME; 1402 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1403 return LV_NAME; 1404 return OptimizationRemarkAnalysis::AlwaysPrint; 1405 } 1406 1407 bool allowReordering() const { 1408 // When enabling loop hints are provided we allow the vectorizer to change 1409 // the order of operations that is given by the scalar loop. This is not 1410 // enabled by default because can be unsafe or inefficient. For example, 1411 // reordering floating-point operations will change the way round-off 1412 // error accumulates in the loop. 1413 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1414 } 1415 1416 bool isPotentiallyUnsafe() const { 1417 // Avoid FP vectorization if the target is unsure about proper support. 1418 // This may be related to the SIMD unit in the target not handling 1419 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1420 // Otherwise, a sequence of vectorized loops, even without reduction, 1421 // could lead to different end results on the destination vectors. 1422 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1423 } 1424 1425 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1426 1427 private: 1428 /// Find hints specified in the loop metadata and update local values. 1429 void getHintsFromMetadata() { 1430 MDNode *LoopID = TheLoop->getLoopID(); 1431 if (!LoopID) 1432 return; 1433 1434 // First operand should refer to the loop id itself. 1435 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1436 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1437 1438 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1439 const MDString *S = nullptr; 1440 SmallVector<Metadata *, 4> Args; 1441 1442 // The expected hint is either a MDString or a MDNode with the first 1443 // operand a MDString. 1444 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1445 if (!MD || MD->getNumOperands() == 0) 1446 continue; 1447 S = dyn_cast<MDString>(MD->getOperand(0)); 1448 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1449 Args.push_back(MD->getOperand(i)); 1450 } else { 1451 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1452 assert(Args.size() == 0 && "too many arguments for MDString"); 1453 } 1454 1455 if (!S) 1456 continue; 1457 1458 // Check if the hint starts with the loop metadata prefix. 1459 StringRef Name = S->getString(); 1460 if (Args.size() == 1) 1461 setHint(Name, Args[0]); 1462 } 1463 } 1464 1465 /// Checks string hint with one operand and set value if valid. 1466 void setHint(StringRef Name, Metadata *Arg) { 1467 if (!Name.startswith(Prefix())) 1468 return; 1469 Name = Name.substr(Prefix().size(), StringRef::npos); 1470 1471 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1472 if (!C) 1473 return; 1474 unsigned Val = C->getZExtValue(); 1475 1476 Hint *Hints[] = {&Width, &Interleave, &Force}; 1477 for (auto H : Hints) { 1478 if (Name == H->Name) { 1479 if (H->validate(Val)) 1480 H->Value = Val; 1481 else 1482 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1483 break; 1484 } 1485 } 1486 } 1487 1488 /// Create a new hint from name / value pair. 1489 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1490 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1491 Metadata *MDs[] = {MDString::get(Context, Name), 1492 ConstantAsMetadata::get( 1493 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1494 return MDNode::get(Context, MDs); 1495 } 1496 1497 /// Matches metadata with hint name. 1498 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1499 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1500 if (!Name) 1501 return false; 1502 1503 for (auto H : HintTypes) 1504 if (Name->getString().endswith(H.Name)) 1505 return true; 1506 return false; 1507 } 1508 1509 /// Sets current hints into loop metadata, keeping other values intact. 1510 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1511 if (HintTypes.size() == 0) 1512 return; 1513 1514 // Reserve the first element to LoopID (see below). 1515 SmallVector<Metadata *, 4> MDs(1); 1516 // If the loop already has metadata, then ignore the existing operands. 1517 MDNode *LoopID = TheLoop->getLoopID(); 1518 if (LoopID) { 1519 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1520 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1521 // If node in update list, ignore old value. 1522 if (!matchesHintMetadataName(Node, HintTypes)) 1523 MDs.push_back(Node); 1524 } 1525 } 1526 1527 // Now, add the missing hints. 1528 for (auto H : HintTypes) 1529 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1530 1531 // Replace current metadata node with new one. 1532 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1533 MDNode *NewLoopID = MDNode::get(Context, MDs); 1534 // Set operand 0 to refer to the loop id itself. 1535 NewLoopID->replaceOperandWith(0, NewLoopID); 1536 1537 TheLoop->setLoopID(NewLoopID); 1538 } 1539 1540 /// The loop these hints belong to. 1541 const Loop *TheLoop; 1542 1543 /// Interface to emit optimization remarks. 1544 OptimizationRemarkEmitter &ORE; 1545 }; 1546 1547 static void emitMissedWarning(Function *F, Loop *L, 1548 const LoopVectorizeHints &LH, 1549 OptimizationRemarkEmitter *ORE) { 1550 LH.emitRemarkWithHints(); 1551 1552 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1553 if (LH.getWidth() != 1) 1554 ORE->emit(DiagnosticInfoOptimizationFailure( 1555 DEBUG_TYPE, "FailedRequestedVectorization", 1556 L->getStartLoc(), L->getHeader()) 1557 << "loop not vectorized: " 1558 << "failed explicitly specified loop vectorization"); 1559 else if (LH.getInterleave() != 1) 1560 ORE->emit(DiagnosticInfoOptimizationFailure( 1561 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1562 L->getHeader()) 1563 << "loop not interleaved: " 1564 << "failed explicitly specified loop interleaving"); 1565 } 1566 } 1567 1568 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1569 /// to what vectorization factor. 1570 /// This class does not look at the profitability of vectorization, only the 1571 /// legality. This class has two main kinds of checks: 1572 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1573 /// will change the order of memory accesses in a way that will change the 1574 /// correctness of the program. 1575 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1576 /// checks for a number of different conditions, such as the availability of a 1577 /// single induction variable, that all types are supported and vectorize-able, 1578 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1579 /// This class is also used by InnerLoopVectorizer for identifying 1580 /// induction variable and the different reduction variables. 1581 class LoopVectorizationLegality { 1582 public: 1583 LoopVectorizationLegality( 1584 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1585 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1586 const TargetTransformInfo *TTI, 1587 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1588 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1589 LoopVectorizeHints *H) 1590 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1591 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1592 PrimaryInduction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1593 Requirements(R), Hints(H) {} 1594 1595 /// ReductionList contains the reduction descriptors for all 1596 /// of the reductions that were found in the loop. 1597 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1598 1599 /// InductionList saves induction variables and maps them to the 1600 /// induction descriptor. 1601 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1602 1603 /// RecurrenceSet contains the phi nodes that are recurrences other than 1604 /// inductions and reductions. 1605 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1606 1607 /// Returns true if it is legal to vectorize this loop. 1608 /// This does not mean that it is profitable to vectorize this 1609 /// loop, only that it is legal to do so. 1610 bool canVectorize(); 1611 1612 /// Returns the primary induction variable. 1613 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1614 1615 /// Returns the reduction variables found in the loop. 1616 ReductionList *getReductionVars() { return &Reductions; } 1617 1618 /// Returns the induction variables found in the loop. 1619 InductionList *getInductionVars() { return &Inductions; } 1620 1621 /// Return the first-order recurrences found in the loop. 1622 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1623 1624 /// Returns the widest induction type. 1625 Type *getWidestInductionType() { return WidestIndTy; } 1626 1627 /// Returns True if V is an induction variable in this loop. 1628 bool isInductionVariable(const Value *V); 1629 1630 /// Returns True if PN is a reduction variable in this loop. 1631 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1632 1633 /// Returns True if Phi is a first-order recurrence in this loop. 1634 bool isFirstOrderRecurrence(const PHINode *Phi); 1635 1636 /// Return true if the block BB needs to be predicated in order for the loop 1637 /// to be vectorized. 1638 bool blockNeedsPredication(BasicBlock *BB); 1639 1640 /// Check if this pointer is consecutive when vectorizing. This happens 1641 /// when the last index of the GEP is the induction variable, or that the 1642 /// pointer itself is an induction variable. 1643 /// This check allows us to vectorize A[idx] into a wide load/store. 1644 /// Returns: 1645 /// 0 - Stride is unknown or non-consecutive. 1646 /// 1 - Address is consecutive. 1647 /// -1 - Address is consecutive, and decreasing. 1648 int isConsecutivePtr(Value *Ptr); 1649 1650 /// Returns true if the value V is uniform within the loop. 1651 bool isUniform(Value *V); 1652 1653 /// Returns the information that we collected about runtime memory check. 1654 const RuntimePointerChecking *getRuntimePointerChecking() const { 1655 return LAI->getRuntimePointerChecking(); 1656 } 1657 1658 const LoopAccessInfo *getLAI() const { return LAI; } 1659 1660 /// \brief Check if \p Instr belongs to any interleaved access group. 1661 bool isAccessInterleaved(Instruction *Instr) { 1662 return InterleaveInfo.isInterleaved(Instr); 1663 } 1664 1665 /// \brief Return the maximum interleave factor of all interleaved groups. 1666 unsigned getMaxInterleaveFactor() const { 1667 return InterleaveInfo.getMaxInterleaveFactor(); 1668 } 1669 1670 /// \brief Get the interleaved access group that \p Instr belongs to. 1671 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1672 return InterleaveInfo.getInterleaveGroup(Instr); 1673 } 1674 1675 /// \brief Returns true if an interleaved group requires a scalar iteration 1676 /// to handle accesses with gaps. 1677 bool requiresScalarEpilogue() const { 1678 return InterleaveInfo.requiresScalarEpilogue(); 1679 } 1680 1681 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1682 1683 bool hasStride(Value *V) { return LAI->hasStride(V); } 1684 1685 /// Returns true if the target machine supports masked store operation 1686 /// for the given \p DataType and kind of access to \p Ptr. 1687 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1688 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1689 } 1690 /// Returns true if the target machine supports masked load operation 1691 /// for the given \p DataType and kind of access to \p Ptr. 1692 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1693 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1694 } 1695 /// Returns true if the target machine supports masked scatter operation 1696 /// for the given \p DataType. 1697 bool isLegalMaskedScatter(Type *DataType) { 1698 return TTI->isLegalMaskedScatter(DataType); 1699 } 1700 /// Returns true if the target machine supports masked gather operation 1701 /// for the given \p DataType. 1702 bool isLegalMaskedGather(Type *DataType) { 1703 return TTI->isLegalMaskedGather(DataType); 1704 } 1705 /// Returns true if the target machine can represent \p V as a masked gather 1706 /// or scatter operation. 1707 bool isLegalGatherOrScatter(Value *V) { 1708 auto *LI = dyn_cast<LoadInst>(V); 1709 auto *SI = dyn_cast<StoreInst>(V); 1710 if (!LI && !SI) 1711 return false; 1712 auto *Ptr = getPointerOperand(V); 1713 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1714 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1715 } 1716 1717 /// Returns true if vector representation of the instruction \p I 1718 /// requires mask. 1719 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1720 unsigned getNumStores() const { return LAI->getNumStores(); } 1721 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1722 unsigned getNumPredStores() const { return NumPredStores; } 1723 1724 /// Returns true if \p I is an instruction that will be scalarized with 1725 /// predication. Such instructions include conditional stores and 1726 /// instructions that may divide by zero. 1727 bool isScalarWithPredication(Instruction *I); 1728 1729 /// Returns true if \p I is a memory instruction with consecutive memory 1730 /// access that can be widened. 1731 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1732 1733 private: 1734 /// Check if a single basic block loop is vectorizable. 1735 /// At this point we know that this is a loop with a constant trip count 1736 /// and we only need to check individual instructions. 1737 bool canVectorizeInstrs(); 1738 1739 /// When we vectorize loops we may change the order in which 1740 /// we read and write from memory. This method checks if it is 1741 /// legal to vectorize the code, considering only memory constrains. 1742 /// Returns true if the loop is vectorizable 1743 bool canVectorizeMemory(); 1744 1745 /// Return true if we can vectorize this loop using the IF-conversion 1746 /// transformation. 1747 bool canVectorizeWithIfConvert(); 1748 1749 /// Return true if all of the instructions in the block can be speculatively 1750 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1751 /// and we know that we can read from them without segfault. 1752 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1753 1754 /// Updates the vectorization state by adding \p Phi to the inductions list. 1755 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1756 /// better choice for the main induction than the existing one. 1757 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1758 SmallPtrSetImpl<Value *> &AllowedExit); 1759 1760 /// Create an analysis remark that explains why vectorization failed 1761 /// 1762 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1763 /// an instruction that prevents vectorization. Otherwise the loop is used 1764 /// for the location of the remark. \return the remark object that can be 1765 /// streamed to. 1766 OptimizationRemarkAnalysis 1767 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1768 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1769 RemarkName, TheLoop, I); 1770 } 1771 1772 /// \brief If an access has a symbolic strides, this maps the pointer value to 1773 /// the stride symbol. 1774 const ValueToValueMap *getSymbolicStrides() { 1775 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1776 // it's collected. This happens from canVectorizeWithIfConvert, when the 1777 // pointer is checked to reference consecutive elements suitable for a 1778 // masked access. 1779 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1780 } 1781 1782 unsigned NumPredStores; 1783 1784 /// The loop that we evaluate. 1785 Loop *TheLoop; 1786 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1787 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1788 /// of existing SCEV assumptions. The analysis will also add a minimal set 1789 /// of new predicates if this is required to enable vectorization and 1790 /// unrolling. 1791 PredicatedScalarEvolution &PSE; 1792 /// Target Library Info. 1793 TargetLibraryInfo *TLI; 1794 /// Target Transform Info 1795 const TargetTransformInfo *TTI; 1796 /// Dominator Tree. 1797 DominatorTree *DT; 1798 // LoopAccess analysis. 1799 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1800 // And the loop-accesses info corresponding to this loop. This pointer is 1801 // null until canVectorizeMemory sets it up. 1802 const LoopAccessInfo *LAI; 1803 /// Interface to emit optimization remarks. 1804 OptimizationRemarkEmitter *ORE; 1805 1806 /// The interleave access information contains groups of interleaved accesses 1807 /// with the same stride and close to each other. 1808 InterleavedAccessInfo InterleaveInfo; 1809 1810 // --- vectorization state --- // 1811 1812 /// Holds the primary induction variable. This is the counter of the 1813 /// loop. 1814 PHINode *PrimaryInduction; 1815 /// Holds the reduction variables. 1816 ReductionList Reductions; 1817 /// Holds all of the induction variables that we found in the loop. 1818 /// Notice that inductions don't need to start at zero and that induction 1819 /// variables can be pointers. 1820 InductionList Inductions; 1821 /// Holds the phi nodes that are first-order recurrences. 1822 RecurrenceSet FirstOrderRecurrences; 1823 /// Holds the widest induction type encountered. 1824 Type *WidestIndTy; 1825 1826 /// Allowed outside users. This holds the induction and reduction 1827 /// vars which can be accessed from outside the loop. 1828 SmallPtrSet<Value *, 4> AllowedExit; 1829 1830 /// Can we assume the absence of NaNs. 1831 bool HasFunNoNaNAttr; 1832 1833 /// Vectorization requirements that will go through late-evaluation. 1834 LoopVectorizationRequirements *Requirements; 1835 1836 /// Used to emit an analysis of any legality issues. 1837 LoopVectorizeHints *Hints; 1838 1839 /// While vectorizing these instructions we have to generate a 1840 /// call to the appropriate masked intrinsic 1841 SmallPtrSet<const Instruction *, 8> MaskedOp; 1842 }; 1843 1844 /// LoopVectorizationCostModel - estimates the expected speedups due to 1845 /// vectorization. 1846 /// In many cases vectorization is not profitable. This can happen because of 1847 /// a number of reasons. In this class we mainly attempt to predict the 1848 /// expected speedup/slowdowns due to the supported instruction set. We use the 1849 /// TargetTransformInfo to query the different backends for the cost of 1850 /// different operations. 1851 class LoopVectorizationCostModel { 1852 public: 1853 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1854 LoopInfo *LI, LoopVectorizationLegality *Legal, 1855 const TargetTransformInfo &TTI, 1856 const TargetLibraryInfo *TLI, DemandedBits *DB, 1857 AssumptionCache *AC, 1858 OptimizationRemarkEmitter *ORE, const Function *F, 1859 const LoopVectorizeHints *Hints) 1860 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1861 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1862 1863 /// \return An upper bound for the vectorization factor, or None if 1864 /// vectorization should be avoided up front. 1865 Optional<unsigned> computeMaxVF(bool OptForSize); 1866 1867 /// Information about vectorization costs 1868 struct VectorizationFactor { 1869 unsigned Width; // Vector width with best cost 1870 unsigned Cost; // Cost of the loop with that width 1871 }; 1872 /// \return The most profitable vectorization factor and the cost of that VF. 1873 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1874 /// then this vectorization factor will be selected if vectorization is 1875 /// possible. 1876 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1877 1878 /// Setup cost-based decisions for user vectorization factor. 1879 void selectUserVectorizationFactor(unsigned UserVF) { 1880 collectUniformsAndScalars(UserVF); 1881 collectInstsToScalarize(UserVF); 1882 } 1883 1884 /// \return The size (in bits) of the smallest and widest types in the code 1885 /// that needs to be vectorized. We ignore values that remain scalar such as 1886 /// 64 bit loop indices. 1887 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1888 1889 /// \return The desired interleave count. 1890 /// If interleave count has been specified by metadata it will be returned. 1891 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1892 /// are the selected vectorization factor and the cost of the selected VF. 1893 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1894 unsigned LoopCost); 1895 1896 /// Memory access instruction may be vectorized in more than one way. 1897 /// Form of instruction after vectorization depends on cost. 1898 /// This function takes cost-based decisions for Load/Store instructions 1899 /// and collects them in a map. This decisions map is used for building 1900 /// the lists of loop-uniform and loop-scalar instructions. 1901 /// The calculated cost is saved with widening decision in order to 1902 /// avoid redundant calculations. 1903 void setCostBasedWideningDecision(unsigned VF); 1904 1905 /// \brief A struct that represents some properties of the register usage 1906 /// of a loop. 1907 struct RegisterUsage { 1908 /// Holds the number of loop invariant values that are used in the loop. 1909 unsigned LoopInvariantRegs; 1910 /// Holds the maximum number of concurrent live intervals in the loop. 1911 unsigned MaxLocalUsers; 1912 /// Holds the number of instructions in the loop. 1913 unsigned NumInstructions; 1914 }; 1915 1916 /// \return Returns information about the register usages of the loop for the 1917 /// given vectorization factors. 1918 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1919 1920 /// Collect values we want to ignore in the cost model. 1921 void collectValuesToIgnore(); 1922 1923 /// \returns The smallest bitwidth each instruction can be represented with. 1924 /// The vector equivalents of these instructions should be truncated to this 1925 /// type. 1926 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1927 return MinBWs; 1928 } 1929 1930 /// \returns True if it is more profitable to scalarize instruction \p I for 1931 /// vectorization factor \p VF. 1932 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1933 auto Scalars = InstsToScalarize.find(VF); 1934 assert(Scalars != InstsToScalarize.end() && 1935 "VF not yet analyzed for scalarization profitability"); 1936 return Scalars->second.count(I); 1937 } 1938 1939 /// Returns true if \p I is known to be uniform after vectorization. 1940 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1941 if (VF == 1) 1942 return true; 1943 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1944 auto UniformsPerVF = Uniforms.find(VF); 1945 return UniformsPerVF->second.count(I); 1946 } 1947 1948 /// Returns true if \p I is known to be scalar after vectorization. 1949 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1950 if (VF == 1) 1951 return true; 1952 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1953 auto ScalarsPerVF = Scalars.find(VF); 1954 return ScalarsPerVF->second.count(I); 1955 } 1956 1957 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1958 /// for vectorization factor \p VF. 1959 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1960 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1961 !isScalarAfterVectorization(I, VF); 1962 } 1963 1964 /// Decision that was taken during cost calculation for memory instruction. 1965 enum InstWidening { 1966 CM_Unknown, 1967 CM_Widen, 1968 CM_Interleave, 1969 CM_GatherScatter, 1970 CM_Scalarize 1971 }; 1972 1973 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1974 /// instruction \p I and vector width \p VF. 1975 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1976 unsigned Cost) { 1977 assert(VF >= 2 && "Expected VF >=2"); 1978 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1979 } 1980 1981 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1982 /// interleaving group \p Grp and vector width \p VF. 1983 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1984 InstWidening W, unsigned Cost) { 1985 assert(VF >= 2 && "Expected VF >=2"); 1986 /// Broadcast this decicion to all instructions inside the group. 1987 /// But the cost will be assigned to one instruction only. 1988 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1989 if (auto *I = Grp->getMember(i)) { 1990 if (Grp->getInsertPos() == I) 1991 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1992 else 1993 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1994 } 1995 } 1996 } 1997 1998 /// Return the cost model decision for the given instruction \p I and vector 1999 /// width \p VF. Return CM_Unknown if this instruction did not pass 2000 /// through the cost modeling. 2001 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 2002 assert(VF >= 2 && "Expected VF >=2"); 2003 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 2004 auto Itr = WideningDecisions.find(InstOnVF); 2005 if (Itr == WideningDecisions.end()) 2006 return CM_Unknown; 2007 return Itr->second.first; 2008 } 2009 2010 /// Return the vectorization cost for the given instruction \p I and vector 2011 /// width \p VF. 2012 unsigned getWideningCost(Instruction *I, unsigned VF) { 2013 assert(VF >= 2 && "Expected VF >=2"); 2014 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 2015 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 2016 return WideningDecisions[InstOnVF].second; 2017 } 2018 2019 /// Return True if instruction \p I is an optimizable truncate whose operand 2020 /// is an induction variable. Such a truncate will be removed by adding a new 2021 /// induction variable with the destination type. 2022 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 2023 2024 // If the instruction is not a truncate, return false. 2025 auto *Trunc = dyn_cast<TruncInst>(I); 2026 if (!Trunc) 2027 return false; 2028 2029 // Get the source and destination types of the truncate. 2030 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 2031 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 2032 2033 // If the truncate is free for the given types, return false. Replacing a 2034 // free truncate with an induction variable would add an induction variable 2035 // update instruction to each iteration of the loop. We exclude from this 2036 // check the primary induction variable since it will need an update 2037 // instruction regardless. 2038 Value *Op = Trunc->getOperand(0); 2039 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 2040 return false; 2041 2042 // If the truncated value is not an induction variable, return false. 2043 return Legal->isInductionVariable(Op); 2044 } 2045 2046 private: 2047 /// \return An upper bound for the vectorization factor, larger than zero. 2048 /// One is returned if vectorization should best be avoided due to cost. 2049 unsigned computeFeasibleMaxVF(bool OptForSize); 2050 2051 /// The vectorization cost is a combination of the cost itself and a boolean 2052 /// indicating whether any of the contributing operations will actually 2053 /// operate on 2054 /// vector values after type legalization in the backend. If this latter value 2055 /// is 2056 /// false, then all operations will be scalarized (i.e. no vectorization has 2057 /// actually taken place). 2058 typedef std::pair<unsigned, bool> VectorizationCostTy; 2059 2060 /// Returns the expected execution cost. The unit of the cost does 2061 /// not matter because we use the 'cost' units to compare different 2062 /// vector widths. The cost that is returned is *not* normalized by 2063 /// the factor width. 2064 VectorizationCostTy expectedCost(unsigned VF); 2065 2066 /// Returns the execution time cost of an instruction for a given vector 2067 /// width. Vector width of one means scalar. 2068 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2069 2070 /// The cost-computation logic from getInstructionCost which provides 2071 /// the vector type as an output parameter. 2072 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2073 2074 /// Calculate vectorization cost of memory instruction \p I. 2075 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2076 2077 /// The cost computation for scalarized memory instruction. 2078 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2079 2080 /// The cost computation for interleaving group of memory instructions. 2081 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2082 2083 /// The cost computation for Gather/Scatter instruction. 2084 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2085 2086 /// The cost computation for widening instruction \p I with consecutive 2087 /// memory access. 2088 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2089 2090 /// The cost calculation for Load instruction \p I with uniform pointer - 2091 /// scalar load + broadcast. 2092 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2093 2094 /// Returns whether the instruction is a load or store and will be a emitted 2095 /// as a vector operation. 2096 bool isConsecutiveLoadOrStore(Instruction *I); 2097 2098 /// Create an analysis remark that explains why vectorization failed 2099 /// 2100 /// \p RemarkName is the identifier for the remark. \return the remark object 2101 /// that can be streamed to. 2102 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2103 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2104 RemarkName, TheLoop); 2105 } 2106 2107 /// Map of scalar integer values to the smallest bitwidth they can be legally 2108 /// represented as. The vector equivalents of these values should be truncated 2109 /// to this type. 2110 MapVector<Instruction *, uint64_t> MinBWs; 2111 2112 /// A type representing the costs for instructions if they were to be 2113 /// scalarized rather than vectorized. The entries are Instruction-Cost 2114 /// pairs. 2115 typedef DenseMap<Instruction *, unsigned> ScalarCostsTy; 2116 2117 /// A map holding scalar costs for different vectorization factors. The 2118 /// presence of a cost for an instruction in the mapping indicates that the 2119 /// instruction will be scalarized when vectorizing with the associated 2120 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2121 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2122 2123 /// Holds the instructions known to be uniform after vectorization. 2124 /// The data is collected per VF. 2125 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2126 2127 /// Holds the instructions known to be scalar after vectorization. 2128 /// The data is collected per VF. 2129 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2130 2131 /// Returns the expected difference in cost from scalarizing the expression 2132 /// feeding a predicated instruction \p PredInst. The instructions to 2133 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2134 /// non-negative return value implies the expression will be scalarized. 2135 /// Currently, only single-use chains are considered for scalarization. 2136 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2137 unsigned VF); 2138 2139 /// Collects the instructions to scalarize for each predicated instruction in 2140 /// the loop. 2141 void collectInstsToScalarize(unsigned VF); 2142 2143 /// Collect the instructions that are uniform after vectorization. An 2144 /// instruction is uniform if we represent it with a single scalar value in 2145 /// the vectorized loop corresponding to each vector iteration. Examples of 2146 /// uniform instructions include pointer operands of consecutive or 2147 /// interleaved memory accesses. Note that although uniformity implies an 2148 /// instruction will be scalar, the reverse is not true. In general, a 2149 /// scalarized instruction will be represented by VF scalar values in the 2150 /// vectorized loop, each corresponding to an iteration of the original 2151 /// scalar loop. 2152 void collectLoopUniforms(unsigned VF); 2153 2154 /// Collect the instructions that are scalar after vectorization. An 2155 /// instruction is scalar if it is known to be uniform or will be scalarized 2156 /// during vectorization. Non-uniform scalarized instructions will be 2157 /// represented by VF values in the vectorized loop, each corresponding to an 2158 /// iteration of the original scalar loop. 2159 void collectLoopScalars(unsigned VF); 2160 2161 /// Collect Uniform and Scalar values for the given \p VF. 2162 /// The sets depend on CM decision for Load/Store instructions 2163 /// that may be vectorized as interleave, gather-scatter or scalarized. 2164 void collectUniformsAndScalars(unsigned VF) { 2165 // Do the analysis once. 2166 if (VF == 1 || Uniforms.count(VF)) 2167 return; 2168 setCostBasedWideningDecision(VF); 2169 collectLoopUniforms(VF); 2170 collectLoopScalars(VF); 2171 } 2172 2173 /// Keeps cost model vectorization decision and cost for instructions. 2174 /// Right now it is used for memory instructions only. 2175 typedef DenseMap<std::pair<Instruction *, unsigned>, 2176 std::pair<InstWidening, unsigned>> 2177 DecisionList; 2178 2179 DecisionList WideningDecisions; 2180 2181 public: 2182 /// The loop that we evaluate. 2183 Loop *TheLoop; 2184 /// Predicated scalar evolution analysis. 2185 PredicatedScalarEvolution &PSE; 2186 /// Loop Info analysis. 2187 LoopInfo *LI; 2188 /// Vectorization legality. 2189 LoopVectorizationLegality *Legal; 2190 /// Vector target information. 2191 const TargetTransformInfo &TTI; 2192 /// Target Library Info. 2193 const TargetLibraryInfo *TLI; 2194 /// Demanded bits analysis. 2195 DemandedBits *DB; 2196 /// Assumption cache. 2197 AssumptionCache *AC; 2198 /// Interface to emit optimization remarks. 2199 OptimizationRemarkEmitter *ORE; 2200 2201 const Function *TheFunction; 2202 /// Loop Vectorize Hint. 2203 const LoopVectorizeHints *Hints; 2204 /// Values to ignore in the cost model. 2205 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2206 /// Values to ignore in the cost model when VF > 1. 2207 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2208 }; 2209 2210 /// LoopVectorizationPlanner - drives the vectorization process after having 2211 /// passed Legality checks. 2212 class LoopVectorizationPlanner { 2213 public: 2214 LoopVectorizationPlanner(LoopVectorizationCostModel &CM) : CM(CM) {} 2215 2216 ~LoopVectorizationPlanner() {} 2217 2218 /// Plan how to best vectorize, return the best VF and its cost. 2219 LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize, 2220 unsigned UserVF); 2221 2222 private: 2223 /// The profitablity analysis. 2224 LoopVectorizationCostModel &CM; 2225 }; 2226 2227 /// \brief This holds vectorization requirements that must be verified late in 2228 /// the process. The requirements are set by legalize and costmodel. Once 2229 /// vectorization has been determined to be possible and profitable the 2230 /// requirements can be verified by looking for metadata or compiler options. 2231 /// For example, some loops require FP commutativity which is only allowed if 2232 /// vectorization is explicitly specified or if the fast-math compiler option 2233 /// has been provided. 2234 /// Late evaluation of these requirements allows helpful diagnostics to be 2235 /// composed that tells the user what need to be done to vectorize the loop. For 2236 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2237 /// evaluation should be used only when diagnostics can generated that can be 2238 /// followed by a non-expert user. 2239 class LoopVectorizationRequirements { 2240 public: 2241 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 2242 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 2243 2244 void addUnsafeAlgebraInst(Instruction *I) { 2245 // First unsafe algebra instruction. 2246 if (!UnsafeAlgebraInst) 2247 UnsafeAlgebraInst = I; 2248 } 2249 2250 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2251 2252 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2253 const char *PassName = Hints.vectorizeAnalysisPassName(); 2254 bool Failed = false; 2255 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2256 ORE.emit( 2257 OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps", 2258 UnsafeAlgebraInst->getDebugLoc(), 2259 UnsafeAlgebraInst->getParent()) 2260 << "loop not vectorized: cannot prove it is safe to reorder " 2261 "floating-point operations"); 2262 Failed = true; 2263 } 2264 2265 // Test if runtime memcheck thresholds are exceeded. 2266 bool PragmaThresholdReached = 2267 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2268 bool ThresholdReached = 2269 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2270 if ((ThresholdReached && !Hints.allowReordering()) || 2271 PragmaThresholdReached) { 2272 ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2273 L->getStartLoc(), 2274 L->getHeader()) 2275 << "loop not vectorized: cannot prove it is safe to reorder " 2276 "memory operations"); 2277 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2278 Failed = true; 2279 } 2280 2281 return Failed; 2282 } 2283 2284 private: 2285 unsigned NumRuntimePointerChecks; 2286 Instruction *UnsafeAlgebraInst; 2287 2288 /// Interface to emit optimization remarks. 2289 OptimizationRemarkEmitter &ORE; 2290 }; 2291 2292 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2293 if (L.empty()) { 2294 if (!hasCyclesInLoopBody(L)) 2295 V.push_back(&L); 2296 return; 2297 } 2298 for (Loop *InnerL : L) 2299 addAcyclicInnerLoop(*InnerL, V); 2300 } 2301 2302 /// The LoopVectorize Pass. 2303 struct LoopVectorize : public FunctionPass { 2304 /// Pass identification, replacement for typeid 2305 static char ID; 2306 2307 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2308 : FunctionPass(ID) { 2309 Impl.DisableUnrolling = NoUnrolling; 2310 Impl.AlwaysVectorize = AlwaysVectorize; 2311 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2312 } 2313 2314 LoopVectorizePass Impl; 2315 2316 bool runOnFunction(Function &F) override { 2317 if (skipFunction(F)) 2318 return false; 2319 2320 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2321 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2322 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2323 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2324 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2325 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2326 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2327 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2328 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2329 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2330 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2331 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2332 2333 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2334 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2335 2336 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2337 GetLAA, *ORE); 2338 } 2339 2340 void getAnalysisUsage(AnalysisUsage &AU) const override { 2341 AU.addRequired<AssumptionCacheTracker>(); 2342 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2343 AU.addRequired<DominatorTreeWrapperPass>(); 2344 AU.addRequired<LoopInfoWrapperPass>(); 2345 AU.addRequired<ScalarEvolutionWrapperPass>(); 2346 AU.addRequired<TargetTransformInfoWrapperPass>(); 2347 AU.addRequired<AAResultsWrapperPass>(); 2348 AU.addRequired<LoopAccessLegacyAnalysis>(); 2349 AU.addRequired<DemandedBitsWrapperPass>(); 2350 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2351 AU.addPreserved<LoopInfoWrapperPass>(); 2352 AU.addPreserved<DominatorTreeWrapperPass>(); 2353 AU.addPreserved<BasicAAWrapperPass>(); 2354 AU.addPreserved<GlobalsAAWrapperPass>(); 2355 } 2356 }; 2357 2358 } // end anonymous namespace 2359 2360 //===----------------------------------------------------------------------===// 2361 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2362 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2363 //===----------------------------------------------------------------------===// 2364 2365 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2366 // We need to place the broadcast of invariant variables outside the loop. 2367 Instruction *Instr = dyn_cast<Instruction>(V); 2368 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2369 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2370 2371 // Place the code for broadcasting invariant variables in the new preheader. 2372 IRBuilder<>::InsertPointGuard Guard(Builder); 2373 if (Invariant) 2374 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2375 2376 // Broadcast the scalar into all locations in the vector. 2377 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2378 2379 return Shuf; 2380 } 2381 2382 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2383 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2384 Value *Start = II.getStartValue(); 2385 2386 // Construct the initial value of the vector IV in the vector loop preheader 2387 auto CurrIP = Builder.saveIP(); 2388 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2389 if (isa<TruncInst>(EntryVal)) { 2390 assert(Start->getType()->isIntegerTy() && 2391 "Truncation requires an integer type"); 2392 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2393 Step = Builder.CreateTrunc(Step, TruncType); 2394 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2395 } 2396 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2397 Value *SteppedStart = 2398 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2399 2400 // We create vector phi nodes for both integer and floating-point induction 2401 // variables. Here, we determine the kind of arithmetic we will perform. 2402 Instruction::BinaryOps AddOp; 2403 Instruction::BinaryOps MulOp; 2404 if (Step->getType()->isIntegerTy()) { 2405 AddOp = Instruction::Add; 2406 MulOp = Instruction::Mul; 2407 } else { 2408 AddOp = II.getInductionOpcode(); 2409 MulOp = Instruction::FMul; 2410 } 2411 2412 // Multiply the vectorization factor by the step using integer or 2413 // floating-point arithmetic as appropriate. 2414 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2415 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2416 2417 // Create a vector splat to use in the induction update. 2418 // 2419 // FIXME: If the step is non-constant, we create the vector splat with 2420 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2421 // handle a constant vector splat. 2422 Value *SplatVF = isa<Constant>(Mul) 2423 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2424 : Builder.CreateVectorSplat(VF, Mul); 2425 Builder.restoreIP(CurrIP); 2426 2427 // We may need to add the step a number of times, depending on the unroll 2428 // factor. The last of those goes into the PHI. 2429 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2430 &*LoopVectorBody->getFirstInsertionPt()); 2431 Instruction *LastInduction = VecInd; 2432 VectorParts Entry(UF); 2433 for (unsigned Part = 0; Part < UF; ++Part) { 2434 Entry[Part] = LastInduction; 2435 LastInduction = cast<Instruction>(addFastMathFlag( 2436 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2437 } 2438 VectorLoopValueMap.initVector(EntryVal, Entry); 2439 if (isa<TruncInst>(EntryVal)) 2440 addMetadata(Entry, EntryVal); 2441 2442 // Move the last step to the end of the latch block. This ensures consistent 2443 // placement of all induction updates. 2444 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2445 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2446 auto *ICmp = cast<Instruction>(Br->getCondition()); 2447 LastInduction->moveBefore(ICmp); 2448 LastInduction->setName("vec.ind.next"); 2449 2450 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2451 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2452 } 2453 2454 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2455 return Cost->isScalarAfterVectorization(I, VF) || 2456 Cost->isProfitableToScalarize(I, VF); 2457 } 2458 2459 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2460 if (shouldScalarizeInstruction(IV)) 2461 return true; 2462 auto isScalarInst = [&](User *U) -> bool { 2463 auto *I = cast<Instruction>(U); 2464 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2465 }; 2466 return any_of(IV->users(), isScalarInst); 2467 } 2468 2469 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2470 2471 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2472 "Primary induction variable must have an integer type"); 2473 2474 auto II = Legal->getInductionVars()->find(IV); 2475 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2476 2477 auto ID = II->second; 2478 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2479 2480 // The scalar value to broadcast. This will be derived from the canonical 2481 // induction variable. 2482 Value *ScalarIV = nullptr; 2483 2484 // The value from the original loop to which we are mapping the new induction 2485 // variable. 2486 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2487 2488 // True if we have vectorized the induction variable. 2489 auto VectorizedIV = false; 2490 2491 // Determine if we want a scalar version of the induction variable. This is 2492 // true if the induction variable itself is not widened, or if it has at 2493 // least one user in the loop that is not widened. 2494 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2495 2496 // Generate code for the induction step. Note that induction steps are 2497 // required to be loop-invariant 2498 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2499 "Induction step should be loop invariant"); 2500 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2501 Value *Step = nullptr; 2502 if (PSE.getSE()->isSCEVable(IV->getType())) { 2503 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2504 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2505 LoopVectorPreHeader->getTerminator()); 2506 } else { 2507 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2508 } 2509 2510 // Try to create a new independent vector induction variable. If we can't 2511 // create the phi node, we will splat the scalar induction variable in each 2512 // loop iteration. 2513 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2514 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2515 VectorizedIV = true; 2516 } 2517 2518 // If we haven't yet vectorized the induction variable, or if we will create 2519 // a scalar one, we need to define the scalar induction variable and step 2520 // values. If we were given a truncation type, truncate the canonical 2521 // induction variable and step. Otherwise, derive these values from the 2522 // induction descriptor. 2523 if (!VectorizedIV || NeedsScalarIV) { 2524 if (Trunc) { 2525 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2526 assert(Step->getType()->isIntegerTy() && 2527 "Truncation requires an integer step"); 2528 ScalarIV = Builder.CreateCast(Instruction::Trunc, Induction, TruncType); 2529 Step = Builder.CreateTrunc(Step, TruncType); 2530 } else { 2531 ScalarIV = Induction; 2532 if (IV != OldInduction) { 2533 ScalarIV = IV->getType()->isIntegerTy() 2534 ? Builder.CreateSExtOrTrunc(ScalarIV, IV->getType()) 2535 : Builder.CreateCast(Instruction::SIToFP, Induction, 2536 IV->getType()); 2537 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2538 ScalarIV->setName("offset.idx"); 2539 } 2540 } 2541 } 2542 2543 // If we haven't yet vectorized the induction variable, splat the scalar 2544 // induction variable, and build the necessary step vectors. 2545 if (!VectorizedIV) { 2546 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2547 VectorParts Entry(UF); 2548 for (unsigned Part = 0; Part < UF; ++Part) 2549 Entry[Part] = 2550 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2551 VectorLoopValueMap.initVector(EntryVal, Entry); 2552 if (Trunc) 2553 addMetadata(Entry, Trunc); 2554 } 2555 2556 // If an induction variable is only used for counting loop iterations or 2557 // calculating addresses, it doesn't need to be widened. Create scalar steps 2558 // that can be used by instructions we will later scalarize. Note that the 2559 // addition of the scalar steps will not increase the number of instructions 2560 // in the loop in the common case prior to InstCombine. We will be trading 2561 // one vector extract for each scalar step. 2562 if (NeedsScalarIV) 2563 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2564 } 2565 2566 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2567 Instruction::BinaryOps BinOp) { 2568 // Create and check the types. 2569 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2570 int VLen = Val->getType()->getVectorNumElements(); 2571 2572 Type *STy = Val->getType()->getScalarType(); 2573 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2574 "Induction Step must be an integer or FP"); 2575 assert(Step->getType() == STy && "Step has wrong type"); 2576 2577 SmallVector<Constant *, 8> Indices; 2578 2579 if (STy->isIntegerTy()) { 2580 // Create a vector of consecutive numbers from zero to VF. 2581 for (int i = 0; i < VLen; ++i) 2582 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2583 2584 // Add the consecutive indices to the vector value. 2585 Constant *Cv = ConstantVector::get(Indices); 2586 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2587 Step = Builder.CreateVectorSplat(VLen, Step); 2588 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2589 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2590 // which can be found from the original scalar operations. 2591 Step = Builder.CreateMul(Cv, Step); 2592 return Builder.CreateAdd(Val, Step, "induction"); 2593 } 2594 2595 // Floating point induction. 2596 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2597 "Binary Opcode should be specified for FP induction"); 2598 // Create a vector of consecutive numbers from zero to VF. 2599 for (int i = 0; i < VLen; ++i) 2600 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2601 2602 // Add the consecutive indices to the vector value. 2603 Constant *Cv = ConstantVector::get(Indices); 2604 2605 Step = Builder.CreateVectorSplat(VLen, Step); 2606 2607 // Floating point operations had to be 'fast' to enable the induction. 2608 FastMathFlags Flags; 2609 Flags.setUnsafeAlgebra(); 2610 2611 Value *MulOp = Builder.CreateFMul(Cv, Step); 2612 if (isa<Instruction>(MulOp)) 2613 // Have to check, MulOp may be a constant 2614 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2615 2616 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2617 if (isa<Instruction>(BOp)) 2618 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2619 return BOp; 2620 } 2621 2622 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2623 Value *EntryVal, 2624 const InductionDescriptor &ID) { 2625 2626 // We shouldn't have to build scalar steps if we aren't vectorizing. 2627 assert(VF > 1 && "VF should be greater than one"); 2628 2629 // Get the value type and ensure it and the step have the same integer type. 2630 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2631 assert(ScalarIVTy == Step->getType() && 2632 "Val and Step should have the same type"); 2633 2634 // We build scalar steps for both integer and floating-point induction 2635 // variables. Here, we determine the kind of arithmetic we will perform. 2636 Instruction::BinaryOps AddOp; 2637 Instruction::BinaryOps MulOp; 2638 if (ScalarIVTy->isIntegerTy()) { 2639 AddOp = Instruction::Add; 2640 MulOp = Instruction::Mul; 2641 } else { 2642 AddOp = ID.getInductionOpcode(); 2643 MulOp = Instruction::FMul; 2644 } 2645 2646 // Determine the number of scalars we need to generate for each unroll 2647 // iteration. If EntryVal is uniform, we only need to generate the first 2648 // lane. Otherwise, we generate all VF values. 2649 unsigned Lanes = 2650 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 : VF; 2651 2652 // Compute the scalar steps and save the results in VectorLoopValueMap. 2653 ScalarParts Entry(UF); 2654 for (unsigned Part = 0; Part < UF; ++Part) { 2655 Entry[Part].resize(VF); 2656 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2657 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2658 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2659 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2660 Entry[Part][Lane] = Add; 2661 } 2662 } 2663 VectorLoopValueMap.initScalar(EntryVal, Entry); 2664 } 2665 2666 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2667 2668 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2669 ValueToValueMap(); 2670 2671 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2672 if (Stride == 1 || Stride == -1) 2673 return Stride; 2674 return 0; 2675 } 2676 2677 bool LoopVectorizationLegality::isUniform(Value *V) { 2678 return LAI->isUniform(V); 2679 } 2680 2681 const InnerLoopVectorizer::VectorParts & 2682 InnerLoopVectorizer::getVectorValue(Value *V) { 2683 assert(V != Induction && "The new induction variable should not be used."); 2684 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2685 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2686 2687 // If we have a stride that is replaced by one, do it here. 2688 if (Legal->hasStride(V)) 2689 V = ConstantInt::get(V->getType(), 1); 2690 2691 // If we have this scalar in the map, return it. 2692 if (VectorLoopValueMap.hasVector(V)) 2693 return VectorLoopValueMap.VectorMapStorage[V]; 2694 2695 // If the value has not been vectorized, check if it has been scalarized 2696 // instead. If it has been scalarized, and we actually need the value in 2697 // vector form, we will construct the vector values on demand. 2698 if (VectorLoopValueMap.hasScalar(V)) { 2699 2700 // Initialize a new vector map entry. 2701 VectorParts Entry(UF); 2702 2703 // If we've scalarized a value, that value should be an instruction. 2704 auto *I = cast<Instruction>(V); 2705 2706 // If we aren't vectorizing, we can just copy the scalar map values over to 2707 // the vector map. 2708 if (VF == 1) { 2709 for (unsigned Part = 0; Part < UF; ++Part) 2710 Entry[Part] = getScalarValue(V, Part, 0); 2711 return VectorLoopValueMap.initVector(V, Entry); 2712 } 2713 2714 // Get the last scalar instruction we generated for V. If the value is 2715 // known to be uniform after vectorization, this corresponds to lane zero 2716 // of the last unroll iteration. Otherwise, the last instruction is the one 2717 // we created for the last vector lane of the last unroll iteration. 2718 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2719 auto *LastInst = cast<Instruction>(getScalarValue(V, UF - 1, LastLane)); 2720 2721 // Set the insert point after the last scalarized instruction. This ensures 2722 // the insertelement sequence will directly follow the scalar definitions. 2723 auto OldIP = Builder.saveIP(); 2724 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2725 Builder.SetInsertPoint(&*NewIP); 2726 2727 // However, if we are vectorizing, we need to construct the vector values. 2728 // If the value is known to be uniform after vectorization, we can just 2729 // broadcast the scalar value corresponding to lane zero for each unroll 2730 // iteration. Otherwise, we construct the vector values using insertelement 2731 // instructions. Since the resulting vectors are stored in 2732 // VectorLoopValueMap, we will only generate the insertelements once. 2733 for (unsigned Part = 0; Part < UF; ++Part) { 2734 Value *VectorValue = nullptr; 2735 if (Cost->isUniformAfterVectorization(I, VF)) { 2736 VectorValue = getBroadcastInstrs(getScalarValue(V, Part, 0)); 2737 } else { 2738 VectorValue = UndefValue::get(VectorType::get(V->getType(), VF)); 2739 for (unsigned Lane = 0; Lane < VF; ++Lane) 2740 VectorValue = Builder.CreateInsertElement( 2741 VectorValue, getScalarValue(V, Part, Lane), 2742 Builder.getInt32(Lane)); 2743 } 2744 Entry[Part] = VectorValue; 2745 } 2746 Builder.restoreIP(OldIP); 2747 return VectorLoopValueMap.initVector(V, Entry); 2748 } 2749 2750 // If this scalar is unknown, assume that it is a constant or that it is 2751 // loop invariant. Broadcast V and save the value for future uses. 2752 Value *B = getBroadcastInstrs(V); 2753 return VectorLoopValueMap.initVector(V, VectorParts(UF, B)); 2754 } 2755 2756 Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 2757 unsigned Lane) { 2758 2759 // If the value is not an instruction contained in the loop, it should 2760 // already be scalar. 2761 if (OrigLoop->isLoopInvariant(V)) 2762 return V; 2763 2764 assert(Lane > 0 ? 2765 !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2766 : true && "Uniform values only have lane zero"); 2767 2768 // If the value from the original loop has not been vectorized, it is 2769 // represented by UF x VF scalar values in the new loop. Return the requested 2770 // scalar value. 2771 if (VectorLoopValueMap.hasScalar(V)) 2772 return VectorLoopValueMap.ScalarMapStorage[V][Part][Lane]; 2773 2774 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2775 // for the given unroll part. If this entry is not a vector type (i.e., the 2776 // vectorization factor is one), there is no need to generate an 2777 // extractelement instruction. 2778 auto *U = getVectorValue(V)[Part]; 2779 if (!U->getType()->isVectorTy()) { 2780 assert(VF == 1 && "Value not scalarized has non-vector type"); 2781 return U; 2782 } 2783 2784 // Otherwise, the value from the original loop has been vectorized and is 2785 // represented by UF vector values. Extract and return the requested scalar 2786 // value from the appropriate vector lane. 2787 return Builder.CreateExtractElement(U, Builder.getInt32(Lane)); 2788 } 2789 2790 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2791 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2792 SmallVector<Constant *, 8> ShuffleMask; 2793 for (unsigned i = 0; i < VF; ++i) 2794 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2795 2796 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2797 ConstantVector::get(ShuffleMask), 2798 "reverse"); 2799 } 2800 2801 // Try to vectorize the interleave group that \p Instr belongs to. 2802 // 2803 // E.g. Translate following interleaved load group (factor = 3): 2804 // for (i = 0; i < N; i+=3) { 2805 // R = Pic[i]; // Member of index 0 2806 // G = Pic[i+1]; // Member of index 1 2807 // B = Pic[i+2]; // Member of index 2 2808 // ... // do something to R, G, B 2809 // } 2810 // To: 2811 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2812 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2813 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2814 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2815 // 2816 // Or translate following interleaved store group (factor = 3): 2817 // for (i = 0; i < N; i+=3) { 2818 // ... do something to R, G, B 2819 // Pic[i] = R; // Member of index 0 2820 // Pic[i+1] = G; // Member of index 1 2821 // Pic[i+2] = B; // Member of index 2 2822 // } 2823 // To: 2824 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2825 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2826 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2827 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2828 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2829 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2830 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2831 assert(Group && "Fail to get an interleaved access group."); 2832 2833 // Skip if current instruction is not the insert position. 2834 if (Instr != Group->getInsertPos()) 2835 return; 2836 2837 Value *Ptr = getPointerOperand(Instr); 2838 2839 // Prepare for the vector type of the interleaved load/store. 2840 Type *ScalarTy = getMemInstValueType(Instr); 2841 unsigned InterleaveFactor = Group->getFactor(); 2842 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2843 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2844 2845 // Prepare for the new pointers. 2846 setDebugLocFromInst(Builder, Ptr); 2847 SmallVector<Value *, 2> NewPtrs; 2848 unsigned Index = Group->getIndex(Instr); 2849 2850 // If the group is reverse, adjust the index to refer to the last vector lane 2851 // instead of the first. We adjust the index from the first vector lane, 2852 // rather than directly getting the pointer for lane VF - 1, because the 2853 // pointer operand of the interleaved access is supposed to be uniform. For 2854 // uniform instructions, we're only required to generate a value for the 2855 // first vector lane in each unroll iteration. 2856 if (Group->isReverse()) 2857 Index += (VF - 1) * Group->getFactor(); 2858 2859 for (unsigned Part = 0; Part < UF; Part++) { 2860 Value *NewPtr = getScalarValue(Ptr, Part, 0); 2861 2862 // Notice current instruction could be any index. Need to adjust the address 2863 // to the member of index 0. 2864 // 2865 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2866 // b = A[i]; // Member of index 0 2867 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2868 // 2869 // E.g. A[i+1] = a; // Member of index 1 2870 // A[i] = b; // Member of index 0 2871 // A[i+2] = c; // Member of index 2 (Current instruction) 2872 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2873 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2874 2875 // Cast to the vector pointer type. 2876 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2877 } 2878 2879 setDebugLocFromInst(Builder, Instr); 2880 Value *UndefVec = UndefValue::get(VecTy); 2881 2882 // Vectorize the interleaved load group. 2883 if (isa<LoadInst>(Instr)) { 2884 2885 // For each unroll part, create a wide load for the group. 2886 SmallVector<Value *, 2> NewLoads; 2887 for (unsigned Part = 0; Part < UF; Part++) { 2888 auto *NewLoad = Builder.CreateAlignedLoad( 2889 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2890 addMetadata(NewLoad, Instr); 2891 NewLoads.push_back(NewLoad); 2892 } 2893 2894 // For each member in the group, shuffle out the appropriate data from the 2895 // wide loads. 2896 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2897 Instruction *Member = Group->getMember(I); 2898 2899 // Skip the gaps in the group. 2900 if (!Member) 2901 continue; 2902 2903 VectorParts Entry(UF); 2904 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2905 for (unsigned Part = 0; Part < UF; Part++) { 2906 Value *StridedVec = Builder.CreateShuffleVector( 2907 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2908 2909 // If this member has different type, cast the result type. 2910 if (Member->getType() != ScalarTy) { 2911 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2912 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2913 } 2914 2915 Entry[Part] = 2916 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2917 } 2918 VectorLoopValueMap.initVector(Member, Entry); 2919 } 2920 return; 2921 } 2922 2923 // The sub vector type for current instruction. 2924 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2925 2926 // Vectorize the interleaved store group. 2927 for (unsigned Part = 0; Part < UF; Part++) { 2928 // Collect the stored vector from each member. 2929 SmallVector<Value *, 4> StoredVecs; 2930 for (unsigned i = 0; i < InterleaveFactor; i++) { 2931 // Interleaved store group doesn't allow a gap, so each index has a member 2932 Instruction *Member = Group->getMember(i); 2933 assert(Member && "Fail to get a member from an interleaved store group"); 2934 2935 Value *StoredVec = 2936 getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part]; 2937 if (Group->isReverse()) 2938 StoredVec = reverseVector(StoredVec); 2939 2940 // If this member has different type, cast it to an unified type. 2941 if (StoredVec->getType() != SubVT) 2942 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2943 2944 StoredVecs.push_back(StoredVec); 2945 } 2946 2947 // Concatenate all vectors into a wide vector. 2948 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2949 2950 // Interleave the elements in the wide vector. 2951 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2952 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2953 "interleaved.vec"); 2954 2955 Instruction *NewStoreInstr = 2956 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2957 addMetadata(NewStoreInstr, Instr); 2958 } 2959 } 2960 2961 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2962 // Attempt to issue a wide load. 2963 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2964 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2965 2966 assert((LI || SI) && "Invalid Load/Store instruction"); 2967 2968 LoopVectorizationCostModel::InstWidening Decision = 2969 Cost->getWideningDecision(Instr, VF); 2970 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2971 "CM decision should be taken at this point"); 2972 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2973 return vectorizeInterleaveGroup(Instr); 2974 2975 Type *ScalarDataTy = getMemInstValueType(Instr); 2976 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2977 Value *Ptr = getPointerOperand(Instr); 2978 unsigned Alignment = getMemInstAlignment(Instr); 2979 // An alignment of 0 means target abi alignment. We need to use the scalar's 2980 // target abi alignment in such a case. 2981 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2982 if (!Alignment) 2983 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2984 unsigned AddressSpace = getMemInstAddressSpace(Instr); 2985 2986 // Scalarize the memory instruction if necessary. 2987 if (Decision == LoopVectorizationCostModel::CM_Scalarize) 2988 return scalarizeInstruction(Instr, Legal->isScalarWithPredication(Instr)); 2989 2990 // Determine if the pointer operand of the access is either consecutive or 2991 // reverse consecutive. 2992 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2993 bool Reverse = ConsecutiveStride < 0; 2994 bool CreateGatherScatter = 2995 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2996 2997 VectorParts VectorGep; 2998 2999 // Handle consecutive loads/stores. 3000 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 3001 if (ConsecutiveStride) { 3002 if (Gep) { 3003 unsigned NumOperands = Gep->getNumOperands(); 3004 #ifndef NDEBUG 3005 // The original GEP that identified as a consecutive memory access 3006 // should have only one loop-variant operand. 3007 unsigned NumOfLoopVariantOps = 0; 3008 for (unsigned i = 0; i < NumOperands; ++i) 3009 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), 3010 OrigLoop)) 3011 NumOfLoopVariantOps++; 3012 assert(NumOfLoopVariantOps == 1 && 3013 "Consecutive GEP should have only one loop-variant operand"); 3014 #endif 3015 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 3016 Gep2->setName("gep.indvar"); 3017 3018 // A new GEP is created for a 0-lane value of the first unroll iteration. 3019 // The GEPs for the rest of the unroll iterations are computed below as an 3020 // offset from this GEP. 3021 for (unsigned i = 0; i < NumOperands; ++i) 3022 // We can apply getScalarValue() for all GEP indices. It returns an 3023 // original value for loop-invariant operand and 0-lane for consecutive 3024 // operand. 3025 Gep2->setOperand(i, getScalarValue(Gep->getOperand(i), 3026 0, /* First unroll iteration */ 3027 0 /* 0-lane of the vector */ )); 3028 setDebugLocFromInst(Builder, Gep); 3029 Ptr = Builder.Insert(Gep2); 3030 3031 } else { // No GEP 3032 setDebugLocFromInst(Builder, Ptr); 3033 Ptr = getScalarValue(Ptr, 0, 0); 3034 } 3035 } else { 3036 // At this point we should vector version of GEP for Gather or Scatter 3037 assert(CreateGatherScatter && "The instruction should be scalarized"); 3038 if (Gep) { 3039 // Vectorizing GEP, across UF parts. We want to get a vector value for base 3040 // and each index that's defined inside the loop, even if it is 3041 // loop-invariant but wasn't hoisted out. Otherwise we want to keep them 3042 // scalar. 3043 SmallVector<VectorParts, 4> OpsV; 3044 for (Value *Op : Gep->operands()) { 3045 Instruction *SrcInst = dyn_cast<Instruction>(Op); 3046 if (SrcInst && OrigLoop->contains(SrcInst)) 3047 OpsV.push_back(getVectorValue(Op)); 3048 else 3049 OpsV.push_back(VectorParts(UF, Op)); 3050 } 3051 for (unsigned Part = 0; Part < UF; ++Part) { 3052 SmallVector<Value *, 4> Ops; 3053 Value *GEPBasePtr = OpsV[0][Part]; 3054 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 3055 Ops.push_back(OpsV[i][Part]); 3056 Value *NewGep = Builder.CreateGEP(GEPBasePtr, Ops, "VectorGep"); 3057 cast<GetElementPtrInst>(NewGep)->setIsInBounds(Gep->isInBounds()); 3058 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 3059 3060 NewGep = 3061 Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF)); 3062 VectorGep.push_back(NewGep); 3063 } 3064 } else 3065 VectorGep = getVectorValue(Ptr); 3066 } 3067 3068 VectorParts Mask = createBlockInMask(Instr->getParent()); 3069 // Handle Stores: 3070 if (SI) { 3071 assert(!Legal->isUniform(SI->getPointerOperand()) && 3072 "We do not allow storing to uniform addresses"); 3073 setDebugLocFromInst(Builder, SI); 3074 // We don't want to update the value in the map as it might be used in 3075 // another expression. So don't use a reference type for "StoredVal". 3076 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 3077 3078 for (unsigned Part = 0; Part < UF; ++Part) { 3079 Instruction *NewSI = nullptr; 3080 if (CreateGatherScatter) { 3081 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 3082 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 3083 Alignment, MaskPart); 3084 } else { 3085 // Calculate the pointer for the specific unroll-part. 3086 Value *PartPtr = 3087 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3088 3089 if (Reverse) { 3090 // If we store to reverse consecutive memory locations, then we need 3091 // to reverse the order of elements in the stored value. 3092 StoredVal[Part] = reverseVector(StoredVal[Part]); 3093 // If the address is consecutive but reversed, then the 3094 // wide store needs to start at the last vector element. 3095 PartPtr = 3096 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3097 PartPtr = 3098 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3099 Mask[Part] = reverseVector(Mask[Part]); 3100 } 3101 3102 Value *VecPtr = 3103 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3104 3105 if (Legal->isMaskRequired(SI)) 3106 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 3107 Mask[Part]); 3108 else 3109 NewSI = 3110 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 3111 } 3112 addMetadata(NewSI, SI); 3113 } 3114 return; 3115 } 3116 3117 // Handle loads. 3118 assert(LI && "Must have a load instruction"); 3119 setDebugLocFromInst(Builder, LI); 3120 VectorParts Entry(UF); 3121 for (unsigned Part = 0; Part < UF; ++Part) { 3122 Instruction *NewLI; 3123 if (CreateGatherScatter) { 3124 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 3125 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 3126 0, "wide.masked.gather"); 3127 Entry[Part] = NewLI; 3128 } else { 3129 // Calculate the pointer for the specific unroll-part. 3130 Value *PartPtr = 3131 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3132 3133 if (Reverse) { 3134 // If the address is consecutive but reversed, then the 3135 // wide load needs to start at the last vector element. 3136 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3137 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3138 Mask[Part] = reverseVector(Mask[Part]); 3139 } 3140 3141 Value *VecPtr = 3142 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3143 if (Legal->isMaskRequired(LI)) 3144 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3145 UndefValue::get(DataTy), 3146 "wide.masked.load"); 3147 else 3148 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3149 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 3150 } 3151 addMetadata(NewLI, LI); 3152 } 3153 VectorLoopValueMap.initVector(Instr, Entry); 3154 } 3155 3156 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3157 bool IfPredicateInstr) { 3158 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3159 DEBUG(dbgs() << "LV: Scalarizing" 3160 << (IfPredicateInstr ? " and predicating:" : ":") << *Instr 3161 << '\n'); 3162 // Holds vector parameters or scalars, in case of uniform vals. 3163 SmallVector<VectorParts, 4> Params; 3164 3165 setDebugLocFromInst(Builder, Instr); 3166 3167 // Does this instruction return a value ? 3168 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3169 3170 // Initialize a new scalar map entry. 3171 ScalarParts Entry(UF); 3172 3173 VectorParts Cond; 3174 if (IfPredicateInstr) 3175 Cond = createBlockInMask(Instr->getParent()); 3176 3177 // Determine the number of scalars we need to generate for each unroll 3178 // iteration. If the instruction is uniform, we only need to generate the 3179 // first lane. Otherwise, we generate all VF values. 3180 unsigned Lanes = Cost->isUniformAfterVectorization(Instr, VF) ? 1 : VF; 3181 3182 // For each vector unroll 'part': 3183 for (unsigned Part = 0; Part < UF; ++Part) { 3184 Entry[Part].resize(VF); 3185 // For each scalar that we create: 3186 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3187 3188 // Start if-block. 3189 Value *Cmp = nullptr; 3190 if (IfPredicateInstr) { 3191 Cmp = Cond[Part]; 3192 if (Cmp->getType()->isVectorTy()) 3193 Cmp = Builder.CreateExtractElement(Cmp, Builder.getInt32(Lane)); 3194 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 3195 ConstantInt::get(Cmp->getType(), 1)); 3196 } 3197 3198 Instruction *Cloned = Instr->clone(); 3199 if (!IsVoidRetTy) 3200 Cloned->setName(Instr->getName() + ".cloned"); 3201 3202 // Replace the operands of the cloned instructions with their scalar 3203 // equivalents in the new loop. 3204 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3205 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, Lane); 3206 Cloned->setOperand(op, NewOp); 3207 } 3208 addNewMetadata(Cloned, Instr); 3209 3210 // Place the cloned scalar in the new loop. 3211 Builder.Insert(Cloned); 3212 3213 // Add the cloned scalar to the scalar map entry. 3214 Entry[Part][Lane] = Cloned; 3215 3216 // If we just cloned a new assumption, add it the assumption cache. 3217 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3218 if (II->getIntrinsicID() == Intrinsic::assume) 3219 AC->registerAssumption(II); 3220 3221 // End if-block. 3222 if (IfPredicateInstr) 3223 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 3224 } 3225 } 3226 VectorLoopValueMap.initScalar(Instr, Entry); 3227 } 3228 3229 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3230 Value *End, Value *Step, 3231 Instruction *DL) { 3232 BasicBlock *Header = L->getHeader(); 3233 BasicBlock *Latch = L->getLoopLatch(); 3234 // As we're just creating this loop, it's possible no latch exists 3235 // yet. If so, use the header as this will be a single block loop. 3236 if (!Latch) 3237 Latch = Header; 3238 3239 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3240 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3241 setDebugLocFromInst(Builder, OldInst); 3242 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3243 3244 Builder.SetInsertPoint(Latch->getTerminator()); 3245 setDebugLocFromInst(Builder, OldInst); 3246 3247 // Create i+1 and fill the PHINode. 3248 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3249 Induction->addIncoming(Start, L->getLoopPreheader()); 3250 Induction->addIncoming(Next, Latch); 3251 // Create the compare. 3252 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3253 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3254 3255 // Now we have two terminators. Remove the old one from the block. 3256 Latch->getTerminator()->eraseFromParent(); 3257 3258 return Induction; 3259 } 3260 3261 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3262 if (TripCount) 3263 return TripCount; 3264 3265 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3266 // Find the loop boundaries. 3267 ScalarEvolution *SE = PSE.getSE(); 3268 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3269 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3270 "Invalid loop count"); 3271 3272 Type *IdxTy = Legal->getWidestInductionType(); 3273 3274 // The exit count might have the type of i64 while the phi is i32. This can 3275 // happen if we have an induction variable that is sign extended before the 3276 // compare. The only way that we get a backedge taken count is that the 3277 // induction variable was signed and as such will not overflow. In such a case 3278 // truncation is legal. 3279 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3280 IdxTy->getPrimitiveSizeInBits()) 3281 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3282 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3283 3284 // Get the total trip count from the count by adding 1. 3285 const SCEV *ExitCount = SE->getAddExpr( 3286 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3287 3288 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3289 3290 // Expand the trip count and place the new instructions in the preheader. 3291 // Notice that the pre-header does not change, only the loop body. 3292 SCEVExpander Exp(*SE, DL, "induction"); 3293 3294 // Count holds the overall loop count (N). 3295 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3296 L->getLoopPreheader()->getTerminator()); 3297 3298 if (TripCount->getType()->isPointerTy()) 3299 TripCount = 3300 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3301 L->getLoopPreheader()->getTerminator()); 3302 3303 return TripCount; 3304 } 3305 3306 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3307 if (VectorTripCount) 3308 return VectorTripCount; 3309 3310 Value *TC = getOrCreateTripCount(L); 3311 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3312 3313 // Now we need to generate the expression for the part of the loop that the 3314 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3315 // iterations are not required for correctness, or N - Step, otherwise. Step 3316 // is equal to the vectorization factor (number of SIMD elements) times the 3317 // unroll factor (number of SIMD instructions). 3318 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3319 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3320 3321 // If there is a non-reversed interleaved group that may speculatively access 3322 // memory out-of-bounds, we need to ensure that there will be at least one 3323 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3324 // the trip count, we set the remainder to be equal to the step. If the step 3325 // does not evenly divide the trip count, no adjustment is necessary since 3326 // there will already be scalar iterations. Note that the minimum iterations 3327 // check ensures that N >= Step. 3328 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3329 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3330 R = Builder.CreateSelect(IsZero, Step, R); 3331 } 3332 3333 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3334 3335 return VectorTripCount; 3336 } 3337 3338 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3339 BasicBlock *Bypass) { 3340 Value *Count = getOrCreateTripCount(L); 3341 BasicBlock *BB = L->getLoopPreheader(); 3342 IRBuilder<> Builder(BB->getTerminator()); 3343 3344 // Generate code to check that the loop's trip count that we computed by 3345 // adding one to the backedge-taken count will not overflow. 3346 Value *CheckMinIters = Builder.CreateICmpULT( 3347 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3348 3349 BasicBlock *NewBB = 3350 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 3351 // Update dominator tree immediately if the generated block is a 3352 // LoopBypassBlock because SCEV expansions to generate loop bypass 3353 // checks may query it before the current function is finished. 3354 DT->addNewBlock(NewBB, BB); 3355 if (L->getParentLoop()) 3356 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3357 ReplaceInstWithInst(BB->getTerminator(), 3358 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3359 LoopBypassBlocks.push_back(BB); 3360 } 3361 3362 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 3363 BasicBlock *Bypass) { 3364 Value *TC = getOrCreateVectorTripCount(L); 3365 BasicBlock *BB = L->getLoopPreheader(); 3366 IRBuilder<> Builder(BB->getTerminator()); 3367 3368 // Now, compare the new count to zero. If it is zero skip the vector loop and 3369 // jump to the scalar loop. 3370 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3371 "cmp.zero"); 3372 3373 // Generate code to check that the loop's trip count that we computed by 3374 // adding one to the backedge-taken count will not overflow. 3375 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3376 // Update dominator tree immediately if the generated block is a 3377 // LoopBypassBlock because SCEV expansions to generate loop bypass 3378 // checks may query it before the current function is finished. 3379 DT->addNewBlock(NewBB, BB); 3380 if (L->getParentLoop()) 3381 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3382 ReplaceInstWithInst(BB->getTerminator(), 3383 BranchInst::Create(Bypass, NewBB, Cmp)); 3384 LoopBypassBlocks.push_back(BB); 3385 } 3386 3387 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3388 BasicBlock *BB = L->getLoopPreheader(); 3389 3390 // Generate the code to check that the SCEV assumptions that we made. 3391 // We want the new basic block to start at the first instruction in a 3392 // sequence of instructions that form a check. 3393 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3394 "scev.check"); 3395 Value *SCEVCheck = 3396 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3397 3398 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3399 if (C->isZero()) 3400 return; 3401 3402 // Create a new block containing the stride check. 3403 BB->setName("vector.scevcheck"); 3404 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3405 // Update dominator tree immediately if the generated block is a 3406 // LoopBypassBlock because SCEV expansions to generate loop bypass 3407 // checks may query it before the current function is finished. 3408 DT->addNewBlock(NewBB, BB); 3409 if (L->getParentLoop()) 3410 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3411 ReplaceInstWithInst(BB->getTerminator(), 3412 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3413 LoopBypassBlocks.push_back(BB); 3414 AddedSafetyChecks = true; 3415 } 3416 3417 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3418 BasicBlock *BB = L->getLoopPreheader(); 3419 3420 // Generate the code that checks in runtime if arrays overlap. We put the 3421 // checks into a separate block to make the more common case of few elements 3422 // faster. 3423 Instruction *FirstCheckInst; 3424 Instruction *MemRuntimeCheck; 3425 std::tie(FirstCheckInst, MemRuntimeCheck) = 3426 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3427 if (!MemRuntimeCheck) 3428 return; 3429 3430 // Create a new block containing the memory check. 3431 BB->setName("vector.memcheck"); 3432 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3433 // Update dominator tree immediately if the generated block is a 3434 // LoopBypassBlock because SCEV expansions to generate loop bypass 3435 // checks may query it before the current function is finished. 3436 DT->addNewBlock(NewBB, BB); 3437 if (L->getParentLoop()) 3438 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3439 ReplaceInstWithInst(BB->getTerminator(), 3440 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3441 LoopBypassBlocks.push_back(BB); 3442 AddedSafetyChecks = true; 3443 3444 // We currently don't use LoopVersioning for the actual loop cloning but we 3445 // still use it to add the noalias metadata. 3446 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3447 PSE.getSE()); 3448 LVer->prepareNoAliasMetadata(); 3449 } 3450 3451 void InnerLoopVectorizer::createEmptyLoop() { 3452 /* 3453 In this function we generate a new loop. The new loop will contain 3454 the vectorized instructions while the old loop will continue to run the 3455 scalar remainder. 3456 3457 [ ] <-- loop iteration number check. 3458 / | 3459 / v 3460 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3461 | / | 3462 | / v 3463 || [ ] <-- vector pre header. 3464 |/ | 3465 | v 3466 | [ ] \ 3467 | [ ]_| <-- vector loop. 3468 | | 3469 | v 3470 | -[ ] <--- middle-block. 3471 | / | 3472 | / v 3473 -|- >[ ] <--- new preheader. 3474 | | 3475 | v 3476 | [ ] \ 3477 | [ ]_| <-- old scalar loop to handle remainder. 3478 \ | 3479 \ v 3480 >[ ] <-- exit block. 3481 ... 3482 */ 3483 3484 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3485 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3486 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3487 assert(VectorPH && "Invalid loop structure"); 3488 assert(ExitBlock && "Must have an exit block"); 3489 3490 // Some loops have a single integer induction variable, while other loops 3491 // don't. One example is c++ iterators that often have multiple pointer 3492 // induction variables. In the code below we also support a case where we 3493 // don't have a single induction variable. 3494 // 3495 // We try to obtain an induction variable from the original loop as hard 3496 // as possible. However if we don't find one that: 3497 // - is an integer 3498 // - counts from zero, stepping by one 3499 // - is the size of the widest induction variable type 3500 // then we create a new one. 3501 OldInduction = Legal->getPrimaryInduction(); 3502 Type *IdxTy = Legal->getWidestInductionType(); 3503 3504 // Split the single block loop into the two loop structure described above. 3505 BasicBlock *VecBody = 3506 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3507 BasicBlock *MiddleBlock = 3508 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3509 BasicBlock *ScalarPH = 3510 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3511 3512 // Create and register the new vector loop. 3513 Loop *Lp = new Loop(); 3514 Loop *ParentLoop = OrigLoop->getParentLoop(); 3515 3516 // Insert the new loop into the loop nest and register the new basic blocks 3517 // before calling any utilities such as SCEV that require valid LoopInfo. 3518 if (ParentLoop) { 3519 ParentLoop->addChildLoop(Lp); 3520 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3521 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3522 } else { 3523 LI->addTopLevelLoop(Lp); 3524 } 3525 Lp->addBasicBlockToLoop(VecBody, *LI); 3526 3527 // Find the loop boundaries. 3528 Value *Count = getOrCreateTripCount(Lp); 3529 3530 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3531 3532 // We need to test whether the backedge-taken count is uint##_max. Adding one 3533 // to it will cause overflow and an incorrect loop trip count in the vector 3534 // body. In case of overflow we want to directly jump to the scalar remainder 3535 // loop. 3536 emitMinimumIterationCountCheck(Lp, ScalarPH); 3537 // Now, compare the new count to zero. If it is zero skip the vector loop and 3538 // jump to the scalar loop. 3539 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3540 // Generate the code to check any assumptions that we've made for SCEV 3541 // expressions. 3542 emitSCEVChecks(Lp, ScalarPH); 3543 3544 // Generate the code that checks in runtime if arrays overlap. We put the 3545 // checks into a separate block to make the more common case of few elements 3546 // faster. 3547 emitMemRuntimeChecks(Lp, ScalarPH); 3548 3549 // Generate the induction variable. 3550 // The loop step is equal to the vectorization factor (num of SIMD elements) 3551 // times the unroll factor (num of SIMD instructions). 3552 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3553 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3554 Induction = 3555 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3556 getDebugLocFromInstOrOperands(OldInduction)); 3557 3558 // We are going to resume the execution of the scalar loop. 3559 // Go over all of the induction variables that we found and fix the 3560 // PHIs that are left in the scalar version of the loop. 3561 // The starting values of PHI nodes depend on the counter of the last 3562 // iteration in the vectorized loop. 3563 // If we come from a bypass edge then we need to start from the original 3564 // start value. 3565 3566 // This variable saves the new starting index for the scalar loop. It is used 3567 // to test if there are any tail iterations left once the vector loop has 3568 // completed. 3569 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3570 for (auto &InductionEntry : *List) { 3571 PHINode *OrigPhi = InductionEntry.first; 3572 InductionDescriptor II = InductionEntry.second; 3573 3574 // Create phi nodes to merge from the backedge-taken check block. 3575 PHINode *BCResumeVal = PHINode::Create( 3576 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3577 Value *&EndValue = IVEndValues[OrigPhi]; 3578 if (OrigPhi == OldInduction) { 3579 // We know what the end value is. 3580 EndValue = CountRoundDown; 3581 } else { 3582 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3583 Type *StepType = II.getStep()->getType(); 3584 Instruction::CastOps CastOp = 3585 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3586 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3587 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3588 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3589 EndValue->setName("ind.end"); 3590 } 3591 3592 // The new PHI merges the original incoming value, in case of a bypass, 3593 // or the value at the end of the vectorized loop. 3594 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3595 3596 // Fix the scalar body counter (PHI node). 3597 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3598 3599 // The old induction's phi node in the scalar body needs the truncated 3600 // value. 3601 for (BasicBlock *BB : LoopBypassBlocks) 3602 BCResumeVal->addIncoming(II.getStartValue(), BB); 3603 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3604 } 3605 3606 // Add a check in the middle block to see if we have completed 3607 // all of the iterations in the first vector loop. 3608 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3609 Value *CmpN = 3610 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3611 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3612 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3613 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3614 3615 // Get ready to start creating new instructions into the vectorized body. 3616 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3617 3618 // Save the state. 3619 LoopVectorPreHeader = Lp->getLoopPreheader(); 3620 LoopScalarPreHeader = ScalarPH; 3621 LoopMiddleBlock = MiddleBlock; 3622 LoopExitBlock = ExitBlock; 3623 LoopVectorBody = VecBody; 3624 LoopScalarBody = OldBasicBlock; 3625 3626 // Keep all loop hints from the original loop on the vector loop (we'll 3627 // replace the vectorizer-specific hints below). 3628 if (MDNode *LID = OrigLoop->getLoopID()) 3629 Lp->setLoopID(LID); 3630 3631 LoopVectorizeHints Hints(Lp, true, *ORE); 3632 Hints.setAlreadyVectorized(); 3633 } 3634 3635 // Fix up external users of the induction variable. At this point, we are 3636 // in LCSSA form, with all external PHIs that use the IV having one input value, 3637 // coming from the remainder loop. We need those PHIs to also have a correct 3638 // value for the IV when arriving directly from the middle block. 3639 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3640 const InductionDescriptor &II, 3641 Value *CountRoundDown, Value *EndValue, 3642 BasicBlock *MiddleBlock) { 3643 // There are two kinds of external IV usages - those that use the value 3644 // computed in the last iteration (the PHI) and those that use the penultimate 3645 // value (the value that feeds into the phi from the loop latch). 3646 // We allow both, but they, obviously, have different values. 3647 3648 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3649 3650 DenseMap<Value *, Value *> MissingVals; 3651 3652 // An external user of the last iteration's value should see the value that 3653 // the remainder loop uses to initialize its own IV. 3654 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3655 for (User *U : PostInc->users()) { 3656 Instruction *UI = cast<Instruction>(U); 3657 if (!OrigLoop->contains(UI)) { 3658 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3659 MissingVals[UI] = EndValue; 3660 } 3661 } 3662 3663 // An external user of the penultimate value need to see EndValue - Step. 3664 // The simplest way to get this is to recompute it from the constituent SCEVs, 3665 // that is Start + (Step * (CRD - 1)). 3666 for (User *U : OrigPhi->users()) { 3667 auto *UI = cast<Instruction>(U); 3668 if (!OrigLoop->contains(UI)) { 3669 const DataLayout &DL = 3670 OrigLoop->getHeader()->getModule()->getDataLayout(); 3671 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3672 3673 IRBuilder<> B(MiddleBlock->getTerminator()); 3674 Value *CountMinusOne = B.CreateSub( 3675 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3676 Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(), 3677 "cast.cmo"); 3678 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3679 Escape->setName("ind.escape"); 3680 MissingVals[UI] = Escape; 3681 } 3682 } 3683 3684 for (auto &I : MissingVals) { 3685 PHINode *PHI = cast<PHINode>(I.first); 3686 // One corner case we have to handle is two IVs "chasing" each-other, 3687 // that is %IV2 = phi [...], [ %IV1, %latch ] 3688 // In this case, if IV1 has an external use, we need to avoid adding both 3689 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3690 // don't already have an incoming value for the middle block. 3691 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3692 PHI->addIncoming(I.second, MiddleBlock); 3693 } 3694 } 3695 3696 namespace { 3697 struct CSEDenseMapInfo { 3698 static bool canHandle(const Instruction *I) { 3699 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3700 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3701 } 3702 static inline Instruction *getEmptyKey() { 3703 return DenseMapInfo<Instruction *>::getEmptyKey(); 3704 } 3705 static inline Instruction *getTombstoneKey() { 3706 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3707 } 3708 static unsigned getHashValue(const Instruction *I) { 3709 assert(canHandle(I) && "Unknown instruction!"); 3710 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3711 I->value_op_end())); 3712 } 3713 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3714 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3715 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3716 return LHS == RHS; 3717 return LHS->isIdenticalTo(RHS); 3718 } 3719 }; 3720 } 3721 3722 ///\brief Perform cse of induction variable instructions. 3723 static void cse(BasicBlock *BB) { 3724 // Perform simple cse. 3725 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3726 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3727 Instruction *In = &*I++; 3728 3729 if (!CSEDenseMapInfo::canHandle(In)) 3730 continue; 3731 3732 // Check if we can replace this instruction with any of the 3733 // visited instructions. 3734 if (Instruction *V = CSEMap.lookup(In)) { 3735 In->replaceAllUsesWith(V); 3736 In->eraseFromParent(); 3737 continue; 3738 } 3739 3740 CSEMap[In] = In; 3741 } 3742 } 3743 3744 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3745 /// convenience wrapper for the type-based getScalarizationOverhead API. 3746 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3747 const TargetTransformInfo &TTI) { 3748 if (VF == 1) 3749 return 0; 3750 3751 unsigned Cost = 0; 3752 Type *RetTy = ToVectorTy(I->getType(), VF); 3753 if (!RetTy->isVoidTy()) 3754 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3755 3756 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3757 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3758 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3759 } else { 3760 SmallVector<const Value *, 4> Operands(I->operand_values()); 3761 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3762 } 3763 3764 return Cost; 3765 } 3766 3767 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3768 // Return the cost of the instruction, including scalarization overhead if it's 3769 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3770 // i.e. either vector version isn't available, or is too expensive. 3771 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3772 const TargetTransformInfo &TTI, 3773 const TargetLibraryInfo *TLI, 3774 bool &NeedToScalarize) { 3775 Function *F = CI->getCalledFunction(); 3776 StringRef FnName = CI->getCalledFunction()->getName(); 3777 Type *ScalarRetTy = CI->getType(); 3778 SmallVector<Type *, 4> Tys, ScalarTys; 3779 for (auto &ArgOp : CI->arg_operands()) 3780 ScalarTys.push_back(ArgOp->getType()); 3781 3782 // Estimate cost of scalarized vector call. The source operands are assumed 3783 // to be vectors, so we need to extract individual elements from there, 3784 // execute VF scalar calls, and then gather the result into the vector return 3785 // value. 3786 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3787 if (VF == 1) 3788 return ScalarCallCost; 3789 3790 // Compute corresponding vector type for return value and arguments. 3791 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3792 for (Type *ScalarTy : ScalarTys) 3793 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3794 3795 // Compute costs of unpacking argument values for the scalar calls and 3796 // packing the return values to a vector. 3797 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3798 3799 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3800 3801 // If we can't emit a vector call for this function, then the currently found 3802 // cost is the cost we need to return. 3803 NeedToScalarize = true; 3804 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3805 return Cost; 3806 3807 // If the corresponding vector cost is cheaper, return its cost. 3808 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3809 if (VectorCallCost < Cost) { 3810 NeedToScalarize = false; 3811 return VectorCallCost; 3812 } 3813 return Cost; 3814 } 3815 3816 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3817 // factor VF. Return the cost of the instruction, including scalarization 3818 // overhead if it's needed. 3819 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3820 const TargetTransformInfo &TTI, 3821 const TargetLibraryInfo *TLI) { 3822 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3823 assert(ID && "Expected intrinsic call!"); 3824 3825 FastMathFlags FMF; 3826 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3827 FMF = FPMO->getFastMathFlags(); 3828 3829 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3830 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3831 } 3832 3833 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3834 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3835 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3836 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3837 } 3838 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3839 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3840 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3841 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3842 } 3843 3844 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3845 // For every instruction `I` in MinBWs, truncate the operands, create a 3846 // truncated version of `I` and reextend its result. InstCombine runs 3847 // later and will remove any ext/trunc pairs. 3848 // 3849 SmallPtrSet<Value *, 4> Erased; 3850 for (const auto &KV : Cost->getMinimalBitwidths()) { 3851 // If the value wasn't vectorized, we must maintain the original scalar 3852 // type. The absence of the value from VectorLoopValueMap indicates that it 3853 // wasn't vectorized. 3854 if (!VectorLoopValueMap.hasVector(KV.first)) 3855 continue; 3856 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3857 for (Value *&I : Parts) { 3858 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3859 continue; 3860 Type *OriginalTy = I->getType(); 3861 Type *ScalarTruncatedTy = 3862 IntegerType::get(OriginalTy->getContext(), KV.second); 3863 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3864 OriginalTy->getVectorNumElements()); 3865 if (TruncatedTy == OriginalTy) 3866 continue; 3867 3868 IRBuilder<> B(cast<Instruction>(I)); 3869 auto ShrinkOperand = [&](Value *V) -> Value * { 3870 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3871 if (ZI->getSrcTy() == TruncatedTy) 3872 return ZI->getOperand(0); 3873 return B.CreateZExtOrTrunc(V, TruncatedTy); 3874 }; 3875 3876 // The actual instruction modification depends on the instruction type, 3877 // unfortunately. 3878 Value *NewI = nullptr; 3879 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3880 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3881 ShrinkOperand(BO->getOperand(1))); 3882 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3883 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3884 NewI = 3885 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3886 ShrinkOperand(CI->getOperand(1))); 3887 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3888 NewI = B.CreateSelect(SI->getCondition(), 3889 ShrinkOperand(SI->getTrueValue()), 3890 ShrinkOperand(SI->getFalseValue())); 3891 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3892 switch (CI->getOpcode()) { 3893 default: 3894 llvm_unreachable("Unhandled cast!"); 3895 case Instruction::Trunc: 3896 NewI = ShrinkOperand(CI->getOperand(0)); 3897 break; 3898 case Instruction::SExt: 3899 NewI = B.CreateSExtOrTrunc( 3900 CI->getOperand(0), 3901 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3902 break; 3903 case Instruction::ZExt: 3904 NewI = B.CreateZExtOrTrunc( 3905 CI->getOperand(0), 3906 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3907 break; 3908 } 3909 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3910 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3911 auto *O0 = B.CreateZExtOrTrunc( 3912 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3913 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3914 auto *O1 = B.CreateZExtOrTrunc( 3915 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3916 3917 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3918 } else if (isa<LoadInst>(I)) { 3919 // Don't do anything with the operands, just extend the result. 3920 continue; 3921 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3922 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3923 auto *O0 = B.CreateZExtOrTrunc( 3924 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3925 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3926 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3927 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3928 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3929 auto *O0 = B.CreateZExtOrTrunc( 3930 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3931 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3932 } else { 3933 llvm_unreachable("Unhandled instruction type!"); 3934 } 3935 3936 // Lastly, extend the result. 3937 NewI->takeName(cast<Instruction>(I)); 3938 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3939 I->replaceAllUsesWith(Res); 3940 cast<Instruction>(I)->eraseFromParent(); 3941 Erased.insert(I); 3942 I = Res; 3943 } 3944 } 3945 3946 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3947 for (const auto &KV : Cost->getMinimalBitwidths()) { 3948 // If the value wasn't vectorized, we must maintain the original scalar 3949 // type. The absence of the value from VectorLoopValueMap indicates that it 3950 // wasn't vectorized. 3951 if (!VectorLoopValueMap.hasVector(KV.first)) 3952 continue; 3953 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3954 for (Value *&I : Parts) { 3955 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3956 if (Inst && Inst->use_empty()) { 3957 Value *NewI = Inst->getOperand(0); 3958 Inst->eraseFromParent(); 3959 I = NewI; 3960 } 3961 } 3962 } 3963 } 3964 3965 void InnerLoopVectorizer::vectorizeLoop() { 3966 //===------------------------------------------------===// 3967 // 3968 // Notice: any optimization or new instruction that go 3969 // into the code below should be also be implemented in 3970 // the cost-model. 3971 // 3972 //===------------------------------------------------===// 3973 3974 // Collect instructions from the original loop that will become trivially 3975 // dead in the vectorized loop. We don't need to vectorize these 3976 // instructions. 3977 collectTriviallyDeadInstructions(); 3978 3979 // Scan the loop in a topological order to ensure that defs are vectorized 3980 // before users. 3981 LoopBlocksDFS DFS(OrigLoop); 3982 DFS.perform(LI); 3983 3984 // Vectorize all of the blocks in the original loop. 3985 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 3986 vectorizeBlockInLoop(BB); 3987 3988 // Insert truncates and extends for any truncated instructions as hints to 3989 // InstCombine. 3990 if (VF > 1) 3991 truncateToMinimalBitwidths(); 3992 3993 // At this point every instruction in the original loop is widened to a 3994 // vector form. Now we need to fix the recurrences in the loop. These PHI 3995 // nodes are currently empty because we did not want to introduce cycles. 3996 // This is the second stage of vectorizing recurrences. 3997 fixCrossIterationPHIs(); 3998 3999 // Update the dominator tree. 4000 // 4001 // FIXME: After creating the structure of the new loop, the dominator tree is 4002 // no longer up-to-date, and it remains that way until we update it 4003 // here. An out-of-date dominator tree is problematic for SCEV, 4004 // because SCEVExpander uses it to guide code generation. The 4005 // vectorizer use SCEVExpanders in several places. Instead, we should 4006 // keep the dominator tree up-to-date as we go. 4007 updateAnalysis(); 4008 4009 // Fix-up external users of the induction variables. 4010 for (auto &Entry : *Legal->getInductionVars()) 4011 fixupIVUsers(Entry.first, Entry.second, 4012 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4013 IVEndValues[Entry.first], LoopMiddleBlock); 4014 4015 fixLCSSAPHIs(); 4016 predicateInstructions(); 4017 4018 // Remove redundant induction instructions. 4019 cse(LoopVectorBody); 4020 } 4021 4022 void InnerLoopVectorizer::fixCrossIterationPHIs() { 4023 // In order to support recurrences we need to be able to vectorize Phi nodes. 4024 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4025 // stage #2: We now need to fix the recurrences by adding incoming edges to 4026 // the currently empty PHI nodes. At this point every instruction in the 4027 // original loop is widened to a vector form so we can use them to construct 4028 // the incoming edges. 4029 for (Instruction &I : *OrigLoop->getHeader()) { 4030 PHINode *Phi = dyn_cast<PHINode>(&I); 4031 if (!Phi) 4032 break; 4033 // Handle first-order recurrences and reductions that need to be fixed. 4034 if (Legal->isFirstOrderRecurrence(Phi)) 4035 fixFirstOrderRecurrence(Phi); 4036 else if (Legal->isReductionVariable(Phi)) 4037 fixReduction(Phi); 4038 } 4039 } 4040 4041 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 4042 4043 // This is the second phase of vectorizing first-order recurrences. An 4044 // overview of the transformation is described below. Suppose we have the 4045 // following loop. 4046 // 4047 // for (int i = 0; i < n; ++i) 4048 // b[i] = a[i] - a[i - 1]; 4049 // 4050 // There is a first-order recurrence on "a". For this loop, the shorthand 4051 // scalar IR looks like: 4052 // 4053 // scalar.ph: 4054 // s_init = a[-1] 4055 // br scalar.body 4056 // 4057 // scalar.body: 4058 // i = phi [0, scalar.ph], [i+1, scalar.body] 4059 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4060 // s2 = a[i] 4061 // b[i] = s2 - s1 4062 // br cond, scalar.body, ... 4063 // 4064 // In this example, s1 is a recurrence because it's value depends on the 4065 // previous iteration. In the first phase of vectorization, we created a 4066 // temporary value for s1. We now complete the vectorization and produce the 4067 // shorthand vector IR shown below (for VF = 4, UF = 1). 4068 // 4069 // vector.ph: 4070 // v_init = vector(..., ..., ..., a[-1]) 4071 // br vector.body 4072 // 4073 // vector.body 4074 // i = phi [0, vector.ph], [i+4, vector.body] 4075 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4076 // v2 = a[i, i+1, i+2, i+3]; 4077 // v3 = vector(v1(3), v2(0, 1, 2)) 4078 // b[i, i+1, i+2, i+3] = v2 - v3 4079 // br cond, vector.body, middle.block 4080 // 4081 // middle.block: 4082 // x = v2(3) 4083 // br scalar.ph 4084 // 4085 // scalar.ph: 4086 // s_init = phi [x, middle.block], [a[-1], otherwise] 4087 // br scalar.body 4088 // 4089 // After execution completes the vector loop, we extract the next value of 4090 // the recurrence (x) to use as the initial value in the scalar loop. 4091 4092 // Get the original loop preheader and single loop latch. 4093 auto *Preheader = OrigLoop->getLoopPreheader(); 4094 auto *Latch = OrigLoop->getLoopLatch(); 4095 4096 // Get the initial and previous values of the scalar recurrence. 4097 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4098 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4099 4100 // Create a vector from the initial value. 4101 auto *VectorInit = ScalarInit; 4102 if (VF > 1) { 4103 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4104 VectorInit = Builder.CreateInsertElement( 4105 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4106 Builder.getInt32(VF - 1), "vector.recur.init"); 4107 } 4108 4109 // We constructed a temporary phi node in the first phase of vectorization. 4110 // This phi node will eventually be deleted. 4111 VectorParts &PhiParts = VectorLoopValueMap.getVector(Phi); 4112 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 4113 4114 // Create a phi node for the new recurrence. The current value will either be 4115 // the initial value inserted into a vector or loop-varying vector value. 4116 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4117 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4118 4119 // Get the vectorized previous value. 4120 auto &PreviousParts = getVectorValue(Previous); 4121 4122 // Set the insertion point after the previous value if it is an instruction. 4123 // Note that the previous value may have been constant-folded so it is not 4124 // guaranteed to be an instruction in the vector loop. 4125 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousParts[UF - 1])) 4126 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4127 else 4128 Builder.SetInsertPoint( 4129 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 4130 4131 // We will construct a vector for the recurrence by combining the values for 4132 // the current and previous iterations. This is the required shuffle mask. 4133 SmallVector<Constant *, 8> ShuffleMask(VF); 4134 ShuffleMask[0] = Builder.getInt32(VF - 1); 4135 for (unsigned I = 1; I < VF; ++I) 4136 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4137 4138 // The vector from which to take the initial value for the current iteration 4139 // (actual or unrolled). Initially, this is the vector phi node. 4140 Value *Incoming = VecPhi; 4141 4142 // Shuffle the current and previous vector and update the vector parts. 4143 for (unsigned Part = 0; Part < UF; ++Part) { 4144 auto *Shuffle = 4145 VF > 1 4146 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 4147 ConstantVector::get(ShuffleMask)) 4148 : Incoming; 4149 PhiParts[Part]->replaceAllUsesWith(Shuffle); 4150 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 4151 PhiParts[Part] = Shuffle; 4152 Incoming = PreviousParts[Part]; 4153 } 4154 4155 // Fix the latch value of the new recurrence in the vector loop. 4156 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4157 4158 // Extract the last vector element in the middle block. This will be the 4159 // initial value for the recurrence when jumping to the scalar loop. 4160 auto *Extract = Incoming; 4161 if (VF > 1) { 4162 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4163 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 4164 "vector.recur.extract"); 4165 } 4166 4167 // Fix the initial value of the original recurrence in the scalar loop. 4168 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4169 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4170 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4171 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 4172 Start->addIncoming(Incoming, BB); 4173 } 4174 4175 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4176 Phi->setName("scalar.recur"); 4177 4178 // Finally, fix users of the recurrence outside the loop. The users will need 4179 // either the last value of the scalar recurrence or the last value of the 4180 // vector recurrence we extracted in the middle block. Since the loop is in 4181 // LCSSA form, we just need to find the phi node for the original scalar 4182 // recurrence in the exit block, and then add an edge for the middle block. 4183 for (auto &I : *LoopExitBlock) { 4184 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4185 if (!LCSSAPhi) 4186 break; 4187 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4188 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 4189 break; 4190 } 4191 } 4192 } 4193 4194 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4195 Constant *Zero = Builder.getInt32(0); 4196 4197 // Get it's reduction variable descriptor. 4198 assert(Legal->isReductionVariable(Phi) && 4199 "Unable to find the reduction variable"); 4200 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4201 4202 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4203 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4204 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4205 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4206 RdxDesc.getMinMaxRecurrenceKind(); 4207 setDebugLocFromInst(Builder, ReductionStartValue); 4208 4209 // We need to generate a reduction vector from the incoming scalar. 4210 // To do so, we need to generate the 'identity' vector and override 4211 // one of the elements with the incoming scalar reduction. We need 4212 // to do it in the vector-loop preheader. 4213 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 4214 4215 // This is the vector-clone of the value that leaves the loop. 4216 const VectorParts &VectorExit = getVectorValue(LoopExitInst); 4217 Type *VecTy = VectorExit[0]->getType(); 4218 4219 // Find the reduction identity variable. Zero for addition, or, xor, 4220 // one for multiplication, -1 for And. 4221 Value *Identity; 4222 Value *VectorStart; 4223 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4224 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4225 // MinMax reduction have the start value as their identify. 4226 if (VF == 1) { 4227 VectorStart = Identity = ReductionStartValue; 4228 } else { 4229 VectorStart = Identity = 4230 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4231 } 4232 } else { 4233 // Handle other reduction kinds: 4234 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4235 RK, VecTy->getScalarType()); 4236 if (VF == 1) { 4237 Identity = Iden; 4238 // This vector is the Identity vector where the first element is the 4239 // incoming scalar reduction. 4240 VectorStart = ReductionStartValue; 4241 } else { 4242 Identity = ConstantVector::getSplat(VF, Iden); 4243 4244 // This vector is the Identity vector where the first element is the 4245 // incoming scalar reduction. 4246 VectorStart = 4247 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4248 } 4249 } 4250 4251 // Fix the vector-loop phi. 4252 4253 // Reductions do not have to start at zero. They can start with 4254 // any loop invariant values. 4255 const VectorParts &VecRdxPhi = getVectorValue(Phi); 4256 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4257 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4258 const VectorParts &Val = getVectorValue(LoopVal); 4259 for (unsigned part = 0; part < UF; ++part) { 4260 // Make sure to add the reduction stat value only to the 4261 // first unroll part. 4262 Value *StartVal = (part == 0) ? VectorStart : Identity; 4263 cast<PHINode>(VecRdxPhi[part]) 4264 ->addIncoming(StartVal, LoopVectorPreHeader); 4265 cast<PHINode>(VecRdxPhi[part]) 4266 ->addIncoming(Val[part], LoopVectorBody); 4267 } 4268 4269 // Before each round, move the insertion point right between 4270 // the PHIs and the values we are going to write. 4271 // This allows us to write both PHINodes and the extractelement 4272 // instructions. 4273 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4274 4275 VectorParts &RdxParts = VectorLoopValueMap.getVector(LoopExitInst); 4276 setDebugLocFromInst(Builder, LoopExitInst); 4277 4278 // If the vector reduction can be performed in a smaller type, we truncate 4279 // then extend the loop exit value to enable InstCombine to evaluate the 4280 // entire expression in the smaller type. 4281 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4282 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4283 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 4284 for (unsigned part = 0; part < UF; ++part) { 4285 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4286 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4287 : Builder.CreateZExt(Trunc, VecTy); 4288 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 4289 UI != RdxParts[part]->user_end();) 4290 if (*UI != Trunc) { 4291 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 4292 RdxParts[part] = Extnd; 4293 } else { 4294 ++UI; 4295 } 4296 } 4297 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4298 for (unsigned part = 0; part < UF; ++part) 4299 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4300 } 4301 4302 // Reduce all of the unrolled parts into a single vector. 4303 Value *ReducedPartRdx = RdxParts[0]; 4304 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4305 setDebugLocFromInst(Builder, ReducedPartRdx); 4306 for (unsigned part = 1; part < UF; ++part) { 4307 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4308 // Floating point operations had to be 'fast' to enable the reduction. 4309 ReducedPartRdx = addFastMathFlag( 4310 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 4311 ReducedPartRdx, "bin.rdx")); 4312 else 4313 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4314 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 4315 } 4316 4317 if (VF > 1) { 4318 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 4319 // and vector ops, reducing the set of values being computed by half each 4320 // round. 4321 assert(isPowerOf2_32(VF) && 4322 "Reduction emission only supported for pow2 vectors!"); 4323 Value *TmpVec = ReducedPartRdx; 4324 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 4325 for (unsigned i = VF; i != 1; i >>= 1) { 4326 // Move the upper half of the vector to the lower half. 4327 for (unsigned j = 0; j != i / 2; ++j) 4328 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 4329 4330 // Fill the rest of the mask with undef. 4331 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 4332 UndefValue::get(Builder.getInt32Ty())); 4333 4334 Value *Shuf = Builder.CreateShuffleVector( 4335 TmpVec, UndefValue::get(TmpVec->getType()), 4336 ConstantVector::get(ShuffleMask), "rdx.shuf"); 4337 4338 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4339 // Floating point operations had to be 'fast' to enable the reduction. 4340 TmpVec = addFastMathFlag(Builder.CreateBinOp( 4341 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 4342 else 4343 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 4344 TmpVec, Shuf); 4345 } 4346 4347 // The result is in the first element of the vector. 4348 ReducedPartRdx = 4349 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4350 4351 // If the reduction can be performed in a smaller type, we need to extend 4352 // the reduction to the wider type before we branch to the original loop. 4353 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4354 ReducedPartRdx = 4355 RdxDesc.isSigned() 4356 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4357 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4358 } 4359 4360 // Create a phi node that merges control-flow from the backedge-taken check 4361 // block and the middle block. 4362 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4363 LoopScalarPreHeader->getTerminator()); 4364 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4365 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4366 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4367 4368 // Now, we need to fix the users of the reduction variable 4369 // inside and outside of the scalar remainder loop. 4370 // We know that the loop is in LCSSA form. We need to update the 4371 // PHI nodes in the exit blocks. 4372 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4373 LEE = LoopExitBlock->end(); 4374 LEI != LEE; ++LEI) { 4375 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4376 if (!LCSSAPhi) 4377 break; 4378 4379 // All PHINodes need to have a single entry edge, or two if 4380 // we already fixed them. 4381 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4382 4383 // We found a reduction value exit-PHI. Update it with the 4384 // incoming bypass edge. 4385 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) 4386 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4387 } // end of the LCSSA phi scan. 4388 4389 // Fix the scalar loop reduction variable with the incoming reduction sum 4390 // from the vector body and from the backedge value. 4391 int IncomingEdgeBlockIdx = 4392 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4393 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4394 // Pick the other block. 4395 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4396 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4397 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4398 } 4399 4400 void InnerLoopVectorizer::fixLCSSAPHIs() { 4401 for (Instruction &LEI : *LoopExitBlock) { 4402 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4403 if (!LCSSAPhi) 4404 break; 4405 if (LCSSAPhi->getNumIncomingValues() == 1) 4406 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 4407 LoopMiddleBlock); 4408 } 4409 } 4410 4411 void InnerLoopVectorizer::collectTriviallyDeadInstructions() { 4412 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4413 4414 // We create new control-flow for the vectorized loop, so the original 4415 // condition will be dead after vectorization if it's only used by the 4416 // branch. 4417 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4418 if (Cmp && Cmp->hasOneUse()) 4419 DeadInstructions.insert(Cmp); 4420 4421 // We create new "steps" for induction variable updates to which the original 4422 // induction variables map. An original update instruction will be dead if 4423 // all its users except the induction variable are dead. 4424 for (auto &Induction : *Legal->getInductionVars()) { 4425 PHINode *Ind = Induction.first; 4426 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4427 if (all_of(IndUpdate->users(), [&](User *U) -> bool { 4428 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 4429 })) 4430 DeadInstructions.insert(IndUpdate); 4431 } 4432 } 4433 4434 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4435 4436 // The basic block and loop containing the predicated instruction. 4437 auto *PredBB = PredInst->getParent(); 4438 auto *VectorLoop = LI->getLoopFor(PredBB); 4439 4440 // Initialize a worklist with the operands of the predicated instruction. 4441 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4442 4443 // Holds instructions that we need to analyze again. An instruction may be 4444 // reanalyzed if we don't yet know if we can sink it or not. 4445 SmallVector<Instruction *, 8> InstsToReanalyze; 4446 4447 // Returns true if a given use occurs in the predicated block. Phi nodes use 4448 // their operands in their corresponding predecessor blocks. 4449 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4450 auto *I = cast<Instruction>(U.getUser()); 4451 BasicBlock *BB = I->getParent(); 4452 if (auto *Phi = dyn_cast<PHINode>(I)) 4453 BB = Phi->getIncomingBlock( 4454 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4455 return BB == PredBB; 4456 }; 4457 4458 // Iteratively sink the scalarized operands of the predicated instruction 4459 // into the block we created for it. When an instruction is sunk, it's 4460 // operands are then added to the worklist. The algorithm ends after one pass 4461 // through the worklist doesn't sink a single instruction. 4462 bool Changed; 4463 do { 4464 4465 // Add the instructions that need to be reanalyzed to the worklist, and 4466 // reset the changed indicator. 4467 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4468 InstsToReanalyze.clear(); 4469 Changed = false; 4470 4471 while (!Worklist.empty()) { 4472 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4473 4474 // We can't sink an instruction if it is a phi node, is already in the 4475 // predicated block, is not in the loop, or may have side effects. 4476 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4477 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4478 continue; 4479 4480 // It's legal to sink the instruction if all its uses occur in the 4481 // predicated block. Otherwise, there's nothing to do yet, and we may 4482 // need to reanalyze the instruction. 4483 if (!all_of(I->uses(), isBlockOfUsePredicated)) { 4484 InstsToReanalyze.push_back(I); 4485 continue; 4486 } 4487 4488 // Move the instruction to the beginning of the predicated block, and add 4489 // it's operands to the worklist. 4490 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4491 Worklist.insert(I->op_begin(), I->op_end()); 4492 4493 // The sinking may have enabled other instructions to be sunk, so we will 4494 // need to iterate. 4495 Changed = true; 4496 } 4497 } while (Changed); 4498 } 4499 4500 void InnerLoopVectorizer::predicateInstructions() { 4501 4502 // For each instruction I marked for predication on value C, split I into its 4503 // own basic block to form an if-then construct over C. Since I may be fed by 4504 // an extractelement instruction or other scalar operand, we try to 4505 // iteratively sink its scalar operands into the predicated block. If I feeds 4506 // an insertelement instruction, we try to move this instruction into the 4507 // predicated block as well. For non-void types, a phi node will be created 4508 // for the resulting value (either vector or scalar). 4509 // 4510 // So for some predicated instruction, e.g. the conditional sdiv in: 4511 // 4512 // for.body: 4513 // ... 4514 // %add = add nsw i32 %mul, %0 4515 // %cmp5 = icmp sgt i32 %2, 7 4516 // br i1 %cmp5, label %if.then, label %if.end 4517 // 4518 // if.then: 4519 // %div = sdiv i32 %0, %1 4520 // br label %if.end 4521 // 4522 // if.end: 4523 // %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ] 4524 // 4525 // the sdiv at this point is scalarized and if-converted using a select. 4526 // The inactive elements in the vector are not used, but the predicated 4527 // instruction is still executed for all vector elements, essentially: 4528 // 4529 // vector.body: 4530 // ... 4531 // %17 = add nsw <2 x i32> %16, %wide.load 4532 // %29 = extractelement <2 x i32> %wide.load, i32 0 4533 // %30 = extractelement <2 x i32> %wide.load51, i32 0 4534 // %31 = sdiv i32 %29, %30 4535 // %32 = insertelement <2 x i32> undef, i32 %31, i32 0 4536 // %35 = extractelement <2 x i32> %wide.load, i32 1 4537 // %36 = extractelement <2 x i32> %wide.load51, i32 1 4538 // %37 = sdiv i32 %35, %36 4539 // %38 = insertelement <2 x i32> %32, i32 %37, i32 1 4540 // %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17 4541 // 4542 // Predication will now re-introduce the original control flow to avoid false 4543 // side-effects by the sdiv instructions on the inactive elements, yielding 4544 // (after cleanup): 4545 // 4546 // vector.body: 4547 // ... 4548 // %5 = add nsw <2 x i32> %4, %wide.load 4549 // %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7> 4550 // %9 = extractelement <2 x i1> %8, i32 0 4551 // br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue 4552 // 4553 // pred.sdiv.if: 4554 // %10 = extractelement <2 x i32> %wide.load, i32 0 4555 // %11 = extractelement <2 x i32> %wide.load51, i32 0 4556 // %12 = sdiv i32 %10, %11 4557 // %13 = insertelement <2 x i32> undef, i32 %12, i32 0 4558 // br label %pred.sdiv.continue 4559 // 4560 // pred.sdiv.continue: 4561 // %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ] 4562 // %15 = extractelement <2 x i1> %8, i32 1 4563 // br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55 4564 // 4565 // pred.sdiv.if54: 4566 // %16 = extractelement <2 x i32> %wide.load, i32 1 4567 // %17 = extractelement <2 x i32> %wide.load51, i32 1 4568 // %18 = sdiv i32 %16, %17 4569 // %19 = insertelement <2 x i32> %14, i32 %18, i32 1 4570 // br label %pred.sdiv.continue55 4571 // 4572 // pred.sdiv.continue55: 4573 // %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ] 4574 // %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5 4575 4576 for (auto KV : PredicatedInstructions) { 4577 BasicBlock::iterator I(KV.first); 4578 BasicBlock *Head = I->getParent(); 4579 auto *BB = SplitBlock(Head, &*std::next(I), DT, LI); 4580 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 4581 /*BranchWeights=*/nullptr, DT, LI); 4582 I->moveBefore(T); 4583 sinkScalarOperands(&*I); 4584 4585 I->getParent()->setName(Twine("pred.") + I->getOpcodeName() + ".if"); 4586 BB->setName(Twine("pred.") + I->getOpcodeName() + ".continue"); 4587 4588 // If the instruction is non-void create a Phi node at reconvergence point. 4589 if (!I->getType()->isVoidTy()) { 4590 Value *IncomingTrue = nullptr; 4591 Value *IncomingFalse = nullptr; 4592 4593 if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) { 4594 // If the predicated instruction is feeding an insert-element, move it 4595 // into the Then block; Phi node will be created for the vector. 4596 InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin()); 4597 IEI->moveBefore(T); 4598 IncomingTrue = IEI; // the new vector with the inserted element. 4599 IncomingFalse = IEI->getOperand(0); // the unmodified vector 4600 } else { 4601 // Phi node will be created for the scalar predicated instruction. 4602 IncomingTrue = &*I; 4603 IncomingFalse = UndefValue::get(I->getType()); 4604 } 4605 4606 BasicBlock *PostDom = I->getParent()->getSingleSuccessor(); 4607 assert(PostDom && "Then block has multiple successors"); 4608 PHINode *Phi = 4609 PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front()); 4610 IncomingTrue->replaceAllUsesWith(Phi); 4611 Phi->addIncoming(IncomingFalse, Head); 4612 Phi->addIncoming(IncomingTrue, I->getParent()); 4613 } 4614 } 4615 4616 DEBUG(DT->verifyDomTree()); 4617 } 4618 4619 InnerLoopVectorizer::VectorParts 4620 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4621 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4622 4623 // Look for cached value. 4624 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4625 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 4626 if (ECEntryIt != MaskCache.end()) 4627 return ECEntryIt->second; 4628 4629 VectorParts SrcMask = createBlockInMask(Src); 4630 4631 // The terminator has to be a branch inst! 4632 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4633 assert(BI && "Unexpected terminator found"); 4634 4635 if (BI->isConditional()) { 4636 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 4637 4638 if (BI->getSuccessor(0) != Dst) 4639 for (unsigned part = 0; part < UF; ++part) 4640 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4641 4642 for (unsigned part = 0; part < UF; ++part) 4643 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4644 4645 MaskCache[Edge] = EdgeMask; 4646 return EdgeMask; 4647 } 4648 4649 MaskCache[Edge] = SrcMask; 4650 return SrcMask; 4651 } 4652 4653 InnerLoopVectorizer::VectorParts 4654 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4655 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4656 4657 // Loop incoming mask is all-one. 4658 if (OrigLoop->getHeader() == BB) { 4659 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4660 return getVectorValue(C); 4661 } 4662 4663 // This is the block mask. We OR all incoming edges, and with zero. 4664 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4665 VectorParts BlockMask = getVectorValue(Zero); 4666 4667 // For each pred: 4668 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4669 VectorParts EM = createEdgeMask(*it, BB); 4670 for (unsigned part = 0; part < UF; ++part) 4671 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4672 } 4673 4674 return BlockMask; 4675 } 4676 4677 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4678 unsigned VF) { 4679 PHINode *P = cast<PHINode>(PN); 4680 // In order to support recurrences we need to be able to vectorize Phi nodes. 4681 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4682 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4683 // this value when we vectorize all of the instructions that use the PHI. 4684 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4685 VectorParts Entry(UF); 4686 for (unsigned part = 0; part < UF; ++part) { 4687 // This is phase one of vectorizing PHIs. 4688 Type *VecTy = 4689 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4690 Entry[part] = PHINode::Create( 4691 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4692 } 4693 VectorLoopValueMap.initVector(P, Entry); 4694 return; 4695 } 4696 4697 setDebugLocFromInst(Builder, P); 4698 // Check for PHI nodes that are lowered to vector selects. 4699 if (P->getParent() != OrigLoop->getHeader()) { 4700 // We know that all PHIs in non-header blocks are converted into 4701 // selects, so we don't have to worry about the insertion order and we 4702 // can just use the builder. 4703 // At this point we generate the predication tree. There may be 4704 // duplications since this is a simple recursive scan, but future 4705 // optimizations will clean it up. 4706 4707 unsigned NumIncoming = P->getNumIncomingValues(); 4708 4709 // Generate a sequence of selects of the form: 4710 // SELECT(Mask3, In3, 4711 // SELECT(Mask2, In2, 4712 // ( ...))) 4713 VectorParts Entry(UF); 4714 for (unsigned In = 0; In < NumIncoming; In++) { 4715 VectorParts Cond = 4716 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4717 const VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4718 4719 for (unsigned part = 0; part < UF; ++part) { 4720 // We might have single edge PHIs (blocks) - use an identity 4721 // 'select' for the first PHI operand. 4722 if (In == 0) 4723 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4724 else 4725 // Select between the current value and the previous incoming edge 4726 // based on the incoming mask. 4727 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4728 "predphi"); 4729 } 4730 } 4731 VectorLoopValueMap.initVector(P, Entry); 4732 return; 4733 } 4734 4735 // This PHINode must be an induction variable. 4736 // Make sure that we know about it. 4737 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4738 4739 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4740 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4741 4742 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4743 // which can be found from the original scalar operations. 4744 switch (II.getKind()) { 4745 case InductionDescriptor::IK_NoInduction: 4746 llvm_unreachable("Unknown induction"); 4747 case InductionDescriptor::IK_IntInduction: 4748 case InductionDescriptor::IK_FpInduction: 4749 return widenIntOrFpInduction(P); 4750 case InductionDescriptor::IK_PtrInduction: { 4751 // Handle the pointer induction variable case. 4752 assert(P->getType()->isPointerTy() && "Unexpected type."); 4753 // This is the normalized GEP that starts counting at zero. 4754 Value *PtrInd = Induction; 4755 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4756 // Determine the number of scalars we need to generate for each unroll 4757 // iteration. If the instruction is uniform, we only need to generate the 4758 // first lane. Otherwise, we generate all VF values. 4759 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4760 // These are the scalar results. Notice that we don't generate vector GEPs 4761 // because scalar GEPs result in better code. 4762 ScalarParts Entry(UF); 4763 for (unsigned Part = 0; Part < UF; ++Part) { 4764 Entry[Part].resize(VF); 4765 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4766 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4767 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4768 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4769 SclrGep->setName("next.gep"); 4770 Entry[Part][Lane] = SclrGep; 4771 } 4772 } 4773 VectorLoopValueMap.initScalar(P, Entry); 4774 return; 4775 } 4776 } 4777 } 4778 4779 /// A helper function for checking whether an integer division-related 4780 /// instruction may divide by zero (in which case it must be predicated if 4781 /// executed conditionally in the scalar code). 4782 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4783 /// Non-zero divisors that are non compile-time constants will not be 4784 /// converted into multiplication, so we will still end up scalarizing 4785 /// the division, but can do so w/o predication. 4786 static bool mayDivideByZero(Instruction &I) { 4787 assert((I.getOpcode() == Instruction::UDiv || 4788 I.getOpcode() == Instruction::SDiv || 4789 I.getOpcode() == Instruction::URem || 4790 I.getOpcode() == Instruction::SRem) && 4791 "Unexpected instruction"); 4792 Value *Divisor = I.getOperand(1); 4793 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4794 return !CInt || CInt->isZero(); 4795 } 4796 4797 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB) { 4798 // For each instruction in the old loop. 4799 for (Instruction &I : *BB) { 4800 4801 // If the instruction will become trivially dead when vectorized, we don't 4802 // need to generate it. 4803 if (DeadInstructions.count(&I)) 4804 continue; 4805 4806 // Scalarize instructions that should remain scalar after vectorization. 4807 if (VF > 1 && 4808 !(isa<BranchInst>(&I) || isa<PHINode>(&I) || 4809 isa<DbgInfoIntrinsic>(&I)) && 4810 shouldScalarizeInstruction(&I)) { 4811 scalarizeInstruction(&I, Legal->isScalarWithPredication(&I)); 4812 continue; 4813 } 4814 4815 switch (I.getOpcode()) { 4816 case Instruction::Br: 4817 // Nothing to do for PHIs and BR, since we already took care of the 4818 // loop control flow instructions. 4819 continue; 4820 case Instruction::PHI: { 4821 // Vectorize PHINodes. 4822 widenPHIInstruction(&I, UF, VF); 4823 continue; 4824 } // End of PHI. 4825 4826 case Instruction::UDiv: 4827 case Instruction::SDiv: 4828 case Instruction::SRem: 4829 case Instruction::URem: 4830 // Scalarize with predication if this instruction may divide by zero and 4831 // block execution is conditional, otherwise fallthrough. 4832 if (Legal->isScalarWithPredication(&I)) { 4833 scalarizeInstruction(&I, true); 4834 continue; 4835 } 4836 case Instruction::Add: 4837 case Instruction::FAdd: 4838 case Instruction::Sub: 4839 case Instruction::FSub: 4840 case Instruction::Mul: 4841 case Instruction::FMul: 4842 case Instruction::FDiv: 4843 case Instruction::FRem: 4844 case Instruction::Shl: 4845 case Instruction::LShr: 4846 case Instruction::AShr: 4847 case Instruction::And: 4848 case Instruction::Or: 4849 case Instruction::Xor: { 4850 // Just widen binops. 4851 auto *BinOp = cast<BinaryOperator>(&I); 4852 setDebugLocFromInst(Builder, BinOp); 4853 const VectorParts &A = getVectorValue(BinOp->getOperand(0)); 4854 const VectorParts &B = getVectorValue(BinOp->getOperand(1)); 4855 4856 // Use this vector value for all users of the original instruction. 4857 VectorParts Entry(UF); 4858 for (unsigned Part = 0; Part < UF; ++Part) { 4859 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4860 4861 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4862 VecOp->copyIRFlags(BinOp); 4863 4864 Entry[Part] = V; 4865 } 4866 4867 VectorLoopValueMap.initVector(&I, Entry); 4868 addMetadata(Entry, BinOp); 4869 break; 4870 } 4871 case Instruction::Select: { 4872 // Widen selects. 4873 // If the selector is loop invariant we can create a select 4874 // instruction with a scalar condition. Otherwise, use vector-select. 4875 auto *SE = PSE.getSE(); 4876 bool InvariantCond = 4877 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4878 setDebugLocFromInst(Builder, &I); 4879 4880 // The condition can be loop invariant but still defined inside the 4881 // loop. This means that we can't just use the original 'cond' value. 4882 // We have to take the 'vectorized' value and pick the first lane. 4883 // Instcombine will make this a no-op. 4884 const VectorParts &Cond = getVectorValue(I.getOperand(0)); 4885 const VectorParts &Op0 = getVectorValue(I.getOperand(1)); 4886 const VectorParts &Op1 = getVectorValue(I.getOperand(2)); 4887 4888 auto *ScalarCond = getScalarValue(I.getOperand(0), 0, 0); 4889 4890 VectorParts Entry(UF); 4891 for (unsigned Part = 0; Part < UF; ++Part) { 4892 Entry[Part] = Builder.CreateSelect( 4893 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4894 } 4895 4896 VectorLoopValueMap.initVector(&I, Entry); 4897 addMetadata(Entry, &I); 4898 break; 4899 } 4900 4901 case Instruction::ICmp: 4902 case Instruction::FCmp: { 4903 // Widen compares. Generate vector compares. 4904 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4905 auto *Cmp = dyn_cast<CmpInst>(&I); 4906 setDebugLocFromInst(Builder, Cmp); 4907 const VectorParts &A = getVectorValue(Cmp->getOperand(0)); 4908 const VectorParts &B = getVectorValue(Cmp->getOperand(1)); 4909 VectorParts Entry(UF); 4910 for (unsigned Part = 0; Part < UF; ++Part) { 4911 Value *C = nullptr; 4912 if (FCmp) { 4913 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4914 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4915 } else { 4916 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4917 } 4918 Entry[Part] = C; 4919 } 4920 4921 VectorLoopValueMap.initVector(&I, Entry); 4922 addMetadata(Entry, &I); 4923 break; 4924 } 4925 4926 case Instruction::Store: 4927 case Instruction::Load: 4928 vectorizeMemoryInstruction(&I); 4929 break; 4930 case Instruction::ZExt: 4931 case Instruction::SExt: 4932 case Instruction::FPToUI: 4933 case Instruction::FPToSI: 4934 case Instruction::FPExt: 4935 case Instruction::PtrToInt: 4936 case Instruction::IntToPtr: 4937 case Instruction::SIToFP: 4938 case Instruction::UIToFP: 4939 case Instruction::Trunc: 4940 case Instruction::FPTrunc: 4941 case Instruction::BitCast: { 4942 auto *CI = dyn_cast<CastInst>(&I); 4943 setDebugLocFromInst(Builder, CI); 4944 4945 // Optimize the special case where the source is a constant integer 4946 // induction variable. Notice that we can only optimize the 'trunc' case 4947 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4948 // (c) other casts depend on pointer size. 4949 if (Cost->isOptimizableIVTruncate(CI, VF)) { 4950 widenIntOrFpInduction(cast<PHINode>(CI->getOperand(0)), 4951 cast<TruncInst>(CI)); 4952 break; 4953 } 4954 4955 /// Vectorize casts. 4956 Type *DestTy = 4957 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4958 4959 const VectorParts &A = getVectorValue(CI->getOperand(0)); 4960 VectorParts Entry(UF); 4961 for (unsigned Part = 0; Part < UF; ++Part) 4962 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4963 VectorLoopValueMap.initVector(&I, Entry); 4964 addMetadata(Entry, &I); 4965 break; 4966 } 4967 4968 case Instruction::Call: { 4969 // Ignore dbg intrinsics. 4970 if (isa<DbgInfoIntrinsic>(I)) 4971 break; 4972 setDebugLocFromInst(Builder, &I); 4973 4974 Module *M = BB->getParent()->getParent(); 4975 auto *CI = cast<CallInst>(&I); 4976 4977 StringRef FnName = CI->getCalledFunction()->getName(); 4978 Function *F = CI->getCalledFunction(); 4979 Type *RetTy = ToVectorTy(CI->getType(), VF); 4980 SmallVector<Type *, 4> Tys; 4981 for (Value *ArgOperand : CI->arg_operands()) 4982 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4983 4984 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4985 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4986 ID == Intrinsic::lifetime_start)) { 4987 scalarizeInstruction(&I); 4988 break; 4989 } 4990 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4991 // version of the instruction. 4992 // Is it beneficial to perform intrinsic call compared to lib call? 4993 bool NeedToScalarize; 4994 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4995 bool UseVectorIntrinsic = 4996 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4997 if (!UseVectorIntrinsic && NeedToScalarize) { 4998 scalarizeInstruction(&I); 4999 break; 5000 } 5001 5002 VectorParts Entry(UF); 5003 for (unsigned Part = 0; Part < UF; ++Part) { 5004 SmallVector<Value *, 4> Args; 5005 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 5006 Value *Arg = CI->getArgOperand(i); 5007 // Some intrinsics have a scalar argument - don't replace it with a 5008 // vector. 5009 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 5010 const VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 5011 Arg = VectorArg[Part]; 5012 } 5013 Args.push_back(Arg); 5014 } 5015 5016 Function *VectorF; 5017 if (UseVectorIntrinsic) { 5018 // Use vector version of the intrinsic. 5019 Type *TysForDecl[] = {CI->getType()}; 5020 if (VF > 1) 5021 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5022 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5023 } else { 5024 // Use vector version of the library call. 5025 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 5026 assert(!VFnName.empty() && "Vector function name is empty."); 5027 VectorF = M->getFunction(VFnName); 5028 if (!VectorF) { 5029 // Generate a declaration 5030 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 5031 VectorF = 5032 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 5033 VectorF->copyAttributesFrom(F); 5034 } 5035 } 5036 assert(VectorF && "Can't create vector function."); 5037 5038 SmallVector<OperandBundleDef, 1> OpBundles; 5039 CI->getOperandBundlesAsDefs(OpBundles); 5040 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5041 5042 if (isa<FPMathOperator>(V)) 5043 V->copyFastMathFlags(CI); 5044 5045 Entry[Part] = V; 5046 } 5047 5048 VectorLoopValueMap.initVector(&I, Entry); 5049 addMetadata(Entry, &I); 5050 break; 5051 } 5052 5053 default: 5054 // All other instructions are unsupported. Scalarize them. 5055 scalarizeInstruction(&I); 5056 break; 5057 } // end of switch. 5058 } // end of for_each instr. 5059 } 5060 5061 void InnerLoopVectorizer::updateAnalysis() { 5062 // Forget the original basic block. 5063 PSE.getSE()->forgetLoop(OrigLoop); 5064 5065 // Update the dominator tree information. 5066 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 5067 "Entry does not dominate exit."); 5068 5069 // We don't predicate stores by this point, so the vector body should be a 5070 // single loop. 5071 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 5072 5073 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody); 5074 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 5075 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 5076 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 5077 5078 DEBUG(DT->verifyDomTree()); 5079 } 5080 5081 /// \brief Check whether it is safe to if-convert this phi node. 5082 /// 5083 /// Phi nodes with constant expressions that can trap are not safe to if 5084 /// convert. 5085 static bool canIfConvertPHINodes(BasicBlock *BB) { 5086 for (Instruction &I : *BB) { 5087 auto *Phi = dyn_cast<PHINode>(&I); 5088 if (!Phi) 5089 return true; 5090 for (Value *V : Phi->incoming_values()) 5091 if (auto *C = dyn_cast<Constant>(V)) 5092 if (C->canTrap()) 5093 return false; 5094 } 5095 return true; 5096 } 5097 5098 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 5099 if (!EnableIfConversion) { 5100 ORE->emit(createMissedAnalysis("IfConversionDisabled") 5101 << "if-conversion is disabled"); 5102 return false; 5103 } 5104 5105 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 5106 5107 // A list of pointers that we can safely read and write to. 5108 SmallPtrSet<Value *, 8> SafePointes; 5109 5110 // Collect safe addresses. 5111 for (BasicBlock *BB : TheLoop->blocks()) { 5112 if (blockNeedsPredication(BB)) 5113 continue; 5114 5115 for (Instruction &I : *BB) 5116 if (auto *Ptr = getPointerOperand(&I)) 5117 SafePointes.insert(Ptr); 5118 } 5119 5120 // Collect the blocks that need predication. 5121 BasicBlock *Header = TheLoop->getHeader(); 5122 for (BasicBlock *BB : TheLoop->blocks()) { 5123 // We don't support switch statements inside loops. 5124 if (!isa<BranchInst>(BB->getTerminator())) { 5125 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 5126 << "loop contains a switch statement"); 5127 return false; 5128 } 5129 5130 // We must be able to predicate all blocks that need to be predicated. 5131 if (blockNeedsPredication(BB)) { 5132 if (!blockCanBePredicated(BB, SafePointes)) { 5133 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5134 << "control flow cannot be substituted for a select"); 5135 return false; 5136 } 5137 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 5138 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5139 << "control flow cannot be substituted for a select"); 5140 return false; 5141 } 5142 } 5143 5144 // We can if-convert this loop. 5145 return true; 5146 } 5147 5148 bool LoopVectorizationLegality::canVectorize() { 5149 // We must have a loop in canonical form. Loops with indirectbr in them cannot 5150 // be canonicalized. 5151 if (!TheLoop->getLoopPreheader()) { 5152 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5153 << "loop control flow is not understood by vectorizer"); 5154 return false; 5155 } 5156 5157 // FIXME: The code is currently dead, since the loop gets sent to 5158 // LoopVectorizationLegality is already an innermost loop. 5159 // 5160 // We can only vectorize innermost loops. 5161 if (!TheLoop->empty()) { 5162 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5163 << "loop is not the innermost loop"); 5164 return false; 5165 } 5166 5167 // We must have a single backedge. 5168 if (TheLoop->getNumBackEdges() != 1) { 5169 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5170 << "loop control flow is not understood by vectorizer"); 5171 return false; 5172 } 5173 5174 // We must have a single exiting block. 5175 if (!TheLoop->getExitingBlock()) { 5176 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5177 << "loop control flow is not understood by vectorizer"); 5178 return false; 5179 } 5180 5181 // We only handle bottom-tested loops, i.e. loop in which the condition is 5182 // checked at the end of each iteration. With that we can assume that all 5183 // instructions in the loop are executed the same number of times. 5184 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5185 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5186 << "loop control flow is not understood by vectorizer"); 5187 return false; 5188 } 5189 5190 // We need to have a loop header. 5191 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5192 << '\n'); 5193 5194 // Check if we can if-convert non-single-bb loops. 5195 unsigned NumBlocks = TheLoop->getNumBlocks(); 5196 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5197 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5198 return false; 5199 } 5200 5201 // ScalarEvolution needs to be able to find the exit count. 5202 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 5203 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 5204 ORE->emit(createMissedAnalysis("CantComputeNumberOfIterations") 5205 << "could not determine number of loop iterations"); 5206 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 5207 return false; 5208 } 5209 5210 // Check if we can vectorize the instructions and CFG in this loop. 5211 if (!canVectorizeInstrs()) { 5212 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5213 return false; 5214 } 5215 5216 // Go over each instruction and look at memory deps. 5217 if (!canVectorizeMemory()) { 5218 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5219 return false; 5220 } 5221 5222 DEBUG(dbgs() << "LV: We can vectorize this loop" 5223 << (LAI->getRuntimePointerChecking()->Need 5224 ? " (with a runtime bound check)" 5225 : "") 5226 << "!\n"); 5227 5228 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5229 5230 // If an override option has been passed in for interleaved accesses, use it. 5231 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5232 UseInterleaved = EnableInterleavedMemAccesses; 5233 5234 // Analyze interleaved memory accesses. 5235 if (UseInterleaved) 5236 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5237 5238 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5239 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5240 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5241 5242 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5243 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5244 << "Too many SCEV assumptions need to be made and checked " 5245 << "at runtime"); 5246 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5247 return false; 5248 } 5249 5250 // Okay! We can vectorize. At this point we don't have any other mem analysis 5251 // which may limit our maximum vectorization factor, so just return true with 5252 // no restrictions. 5253 return true; 5254 } 5255 5256 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5257 if (Ty->isPointerTy()) 5258 return DL.getIntPtrType(Ty); 5259 5260 // It is possible that char's or short's overflow when we ask for the loop's 5261 // trip count, work around this by changing the type size. 5262 if (Ty->getScalarSizeInBits() < 32) 5263 return Type::getInt32Ty(Ty->getContext()); 5264 5265 return Ty; 5266 } 5267 5268 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5269 Ty0 = convertPointerToIntegerType(DL, Ty0); 5270 Ty1 = convertPointerToIntegerType(DL, Ty1); 5271 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5272 return Ty0; 5273 return Ty1; 5274 } 5275 5276 /// \brief Check that the instruction has outside loop users and is not an 5277 /// identified reduction variable. 5278 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5279 SmallPtrSetImpl<Value *> &AllowedExit) { 5280 // Reduction and Induction instructions are allowed to have exit users. All 5281 // other instructions must not have external users. 5282 if (!AllowedExit.count(Inst)) 5283 // Check that all of the users of the loop are inside the BB. 5284 for (User *U : Inst->users()) { 5285 Instruction *UI = cast<Instruction>(U); 5286 // This user may be a reduction exit value. 5287 if (!TheLoop->contains(UI)) { 5288 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5289 return true; 5290 } 5291 } 5292 return false; 5293 } 5294 5295 void LoopVectorizationLegality::addInductionPhi( 5296 PHINode *Phi, const InductionDescriptor &ID, 5297 SmallPtrSetImpl<Value *> &AllowedExit) { 5298 Inductions[Phi] = ID; 5299 Type *PhiTy = Phi->getType(); 5300 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5301 5302 // Get the widest type. 5303 if (!PhiTy->isFloatingPointTy()) { 5304 if (!WidestIndTy) 5305 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5306 else 5307 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5308 } 5309 5310 // Int inductions are special because we only allow one IV. 5311 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5312 ID.getConstIntStepValue() && 5313 ID.getConstIntStepValue()->isOne() && 5314 isa<Constant>(ID.getStartValue()) && 5315 cast<Constant>(ID.getStartValue())->isNullValue()) { 5316 5317 // Use the phi node with the widest type as induction. Use the last 5318 // one if there are multiple (no good reason for doing this other 5319 // than it is expedient). We've checked that it begins at zero and 5320 // steps by one, so this is a canonical induction variable. 5321 if (!PrimaryInduction || PhiTy == WidestIndTy) 5322 PrimaryInduction = Phi; 5323 } 5324 5325 // Both the PHI node itself, and the "post-increment" value feeding 5326 // back into the PHI node may have external users. 5327 AllowedExit.insert(Phi); 5328 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5329 5330 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5331 return; 5332 } 5333 5334 bool LoopVectorizationLegality::canVectorizeInstrs() { 5335 BasicBlock *Header = TheLoop->getHeader(); 5336 5337 // Look for the attribute signaling the absence of NaNs. 5338 Function &F = *Header->getParent(); 5339 HasFunNoNaNAttr = 5340 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5341 5342 // For each block in the loop. 5343 for (BasicBlock *BB : TheLoop->blocks()) { 5344 // Scan the instructions in the block and look for hazards. 5345 for (Instruction &I : *BB) { 5346 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5347 Type *PhiTy = Phi->getType(); 5348 // Check that this PHI type is allowed. 5349 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5350 !PhiTy->isPointerTy()) { 5351 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5352 << "loop control flow is not understood by vectorizer"); 5353 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5354 return false; 5355 } 5356 5357 // If this PHINode is not in the header block, then we know that we 5358 // can convert it to select during if-conversion. No need to check if 5359 // the PHIs in this block are induction or reduction variables. 5360 if (BB != Header) { 5361 // Check that this instruction has no outside users or is an 5362 // identified reduction value with an outside user. 5363 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5364 continue; 5365 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5366 << "value could not be identified as " 5367 "an induction or reduction variable"); 5368 return false; 5369 } 5370 5371 // We only allow if-converted PHIs with exactly two incoming values. 5372 if (Phi->getNumIncomingValues() != 2) { 5373 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5374 << "control flow not understood by vectorizer"); 5375 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5376 return false; 5377 } 5378 5379 RecurrenceDescriptor RedDes; 5380 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5381 if (RedDes.hasUnsafeAlgebra()) 5382 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5383 AllowedExit.insert(RedDes.getLoopExitInstr()); 5384 Reductions[Phi] = RedDes; 5385 continue; 5386 } 5387 5388 InductionDescriptor ID; 5389 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5390 addInductionPhi(Phi, ID, AllowedExit); 5391 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5392 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5393 continue; 5394 } 5395 5396 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 5397 FirstOrderRecurrences.insert(Phi); 5398 continue; 5399 } 5400 5401 // As a last resort, coerce the PHI to a AddRec expression 5402 // and re-try classifying it a an induction PHI. 5403 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5404 addInductionPhi(Phi, ID, AllowedExit); 5405 continue; 5406 } 5407 5408 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5409 << "value that could not be identified as " 5410 "reduction is used outside the loop"); 5411 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5412 return false; 5413 } // end of PHI handling 5414 5415 // We handle calls that: 5416 // * Are debug info intrinsics. 5417 // * Have a mapping to an IR intrinsic. 5418 // * Have a vector version available. 5419 auto *CI = dyn_cast<CallInst>(&I); 5420 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5421 !isa<DbgInfoIntrinsic>(CI) && 5422 !(CI->getCalledFunction() && TLI && 5423 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5424 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5425 << "call instruction cannot be vectorized"); 5426 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5427 return false; 5428 } 5429 5430 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5431 // second argument is the same (i.e. loop invariant) 5432 if (CI && hasVectorInstrinsicScalarOpd( 5433 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5434 auto *SE = PSE.getSE(); 5435 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5436 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5437 << "intrinsic instruction cannot be vectorized"); 5438 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5439 return false; 5440 } 5441 } 5442 5443 // Check that the instruction return type is vectorizable. 5444 // Also, we can't vectorize extractelement instructions. 5445 if ((!VectorType::isValidElementType(I.getType()) && 5446 !I.getType()->isVoidTy()) || 5447 isa<ExtractElementInst>(I)) { 5448 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5449 << "instruction return type cannot be vectorized"); 5450 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5451 return false; 5452 } 5453 5454 // Check that the stored type is vectorizable. 5455 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5456 Type *T = ST->getValueOperand()->getType(); 5457 if (!VectorType::isValidElementType(T)) { 5458 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5459 << "store instruction cannot be vectorized"); 5460 return false; 5461 } 5462 5463 // FP instructions can allow unsafe algebra, thus vectorizable by 5464 // non-IEEE-754 compliant SIMD units. 5465 // This applies to floating-point math operations and calls, not memory 5466 // operations, shuffles, or casts, as they don't change precision or 5467 // semantics. 5468 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5469 !I.hasUnsafeAlgebra()) { 5470 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5471 Hints->setPotentiallyUnsafe(); 5472 } 5473 5474 // Reduction instructions are allowed to have exit users. 5475 // All other instructions must not have external users. 5476 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5477 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5478 << "value cannot be used outside the loop"); 5479 return false; 5480 } 5481 5482 } // next instr. 5483 } 5484 5485 if (!PrimaryInduction) { 5486 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5487 if (Inductions.empty()) { 5488 ORE->emit(createMissedAnalysis("NoInductionVariable") 5489 << "loop induction variable could not be identified"); 5490 return false; 5491 } 5492 } 5493 5494 // Now we know the widest induction type, check if our found induction 5495 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5496 // will create another. 5497 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5498 PrimaryInduction = nullptr; 5499 5500 return true; 5501 } 5502 5503 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5504 5505 // We should not collect Scalars more than once per VF. Right now, 5506 // this function is called from collectUniformsAndScalars(), which 5507 // already does this check. Collecting Scalars for VF=1 does not make any 5508 // sense. 5509 5510 assert(VF >= 2 && !Scalars.count(VF) && 5511 "This function should not be visited twice for the same VF"); 5512 5513 // If an instruction is uniform after vectorization, it will remain scalar. 5514 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5515 5516 // Collect the getelementptr instructions that will not be vectorized. A 5517 // getelementptr instruction is only vectorized if it is used for a legal 5518 // gather or scatter operation. 5519 for (auto *BB : TheLoop->blocks()) 5520 for (auto &I : *BB) { 5521 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5522 Scalars[VF].insert(GEP); 5523 continue; 5524 } 5525 auto *Ptr = getPointerOperand(&I); 5526 if (!Ptr) 5527 continue; 5528 auto *GEP = getGEPInstruction(Ptr); 5529 if (GEP && getWideningDecision(&I, VF) == CM_GatherScatter) 5530 Scalars[VF].erase(GEP); 5531 } 5532 5533 // An induction variable will remain scalar if all users of the induction 5534 // variable and induction variable update remain scalar. 5535 auto *Latch = TheLoop->getLoopLatch(); 5536 for (auto &Induction : *Legal->getInductionVars()) { 5537 auto *Ind = Induction.first; 5538 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5539 5540 // Determine if all users of the induction variable are scalar after 5541 // vectorization. 5542 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5543 auto *I = cast<Instruction>(U); 5544 return I == IndUpdate || !TheLoop->contains(I) || Scalars[VF].count(I); 5545 }); 5546 if (!ScalarInd) 5547 continue; 5548 5549 // Determine if all users of the induction variable update instruction are 5550 // scalar after vectorization. 5551 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5552 auto *I = cast<Instruction>(U); 5553 return I == Ind || !TheLoop->contains(I) || Scalars[VF].count(I); 5554 }); 5555 if (!ScalarIndUpdate) 5556 continue; 5557 5558 // The induction variable and its update instruction will remain scalar. 5559 Scalars[VF].insert(Ind); 5560 Scalars[VF].insert(IndUpdate); 5561 } 5562 } 5563 5564 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5565 if (!blockNeedsPredication(I->getParent())) 5566 return false; 5567 switch(I->getOpcode()) { 5568 default: 5569 break; 5570 case Instruction::Store: 5571 return !isMaskRequired(I); 5572 case Instruction::UDiv: 5573 case Instruction::SDiv: 5574 case Instruction::SRem: 5575 case Instruction::URem: 5576 return mayDivideByZero(*I); 5577 } 5578 return false; 5579 } 5580 5581 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5582 unsigned VF) { 5583 // Get and ensure we have a valid memory instruction. 5584 LoadInst *LI = dyn_cast<LoadInst>(I); 5585 StoreInst *SI = dyn_cast<StoreInst>(I); 5586 assert((LI || SI) && "Invalid memory instruction"); 5587 5588 auto *Ptr = getPointerOperand(I); 5589 5590 // In order to be widened, the pointer should be consecutive, first of all. 5591 if (!isConsecutivePtr(Ptr)) 5592 return false; 5593 5594 // If the instruction is a store located in a predicated block, it will be 5595 // scalarized. 5596 if (isScalarWithPredication(I)) 5597 return false; 5598 5599 // If the instruction's allocated size doesn't equal it's type size, it 5600 // requires padding and will be scalarized. 5601 auto &DL = I->getModule()->getDataLayout(); 5602 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5603 if (hasIrregularType(ScalarTy, DL, VF)) 5604 return false; 5605 5606 return true; 5607 } 5608 5609 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5610 5611 // We should not collect Uniforms more than once per VF. Right now, 5612 // this function is called from collectUniformsAndScalars(), which 5613 // already does this check. Collecting Uniforms for VF=1 does not make any 5614 // sense. 5615 5616 assert(VF >= 2 && !Uniforms.count(VF) && 5617 "This function should not be visited twice for the same VF"); 5618 5619 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5620 // not analyze again. Uniforms.count(VF) will return 1. 5621 Uniforms[VF].clear(); 5622 5623 // We now know that the loop is vectorizable! 5624 // Collect instructions inside the loop that will remain uniform after 5625 // vectorization. 5626 5627 // Global values, params and instructions outside of current loop are out of 5628 // scope. 5629 auto isOutOfScope = [&](Value *V) -> bool { 5630 Instruction *I = dyn_cast<Instruction>(V); 5631 return (!I || !TheLoop->contains(I)); 5632 }; 5633 5634 SetVector<Instruction *> Worklist; 5635 BasicBlock *Latch = TheLoop->getLoopLatch(); 5636 5637 // Start with the conditional branch. If the branch condition is an 5638 // instruction contained in the loop that is only used by the branch, it is 5639 // uniform. 5640 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5641 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5642 Worklist.insert(Cmp); 5643 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5644 } 5645 5646 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5647 // are pointers that are treated like consecutive pointers during 5648 // vectorization. The pointer operands of interleaved accesses are an 5649 // example. 5650 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5651 5652 // Holds pointer operands of instructions that are possibly non-uniform. 5653 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5654 5655 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5656 InstWidening WideningDecision = getWideningDecision(I, VF); 5657 assert(WideningDecision != CM_Unknown && 5658 "Widening decision should be ready at this moment"); 5659 5660 return (WideningDecision == CM_Widen || 5661 WideningDecision == CM_Interleave); 5662 }; 5663 // Iterate over the instructions in the loop, and collect all 5664 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5665 // that a consecutive-like pointer operand will be scalarized, we collect it 5666 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5667 // getelementptr instruction can be used by both vectorized and scalarized 5668 // memory instructions. For example, if a loop loads and stores from the same 5669 // location, but the store is conditional, the store will be scalarized, and 5670 // the getelementptr won't remain uniform. 5671 for (auto *BB : TheLoop->blocks()) 5672 for (auto &I : *BB) { 5673 5674 // If there's no pointer operand, there's nothing to do. 5675 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5676 if (!Ptr) 5677 continue; 5678 5679 // True if all users of Ptr are memory accesses that have Ptr as their 5680 // pointer operand. 5681 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5682 return getPointerOperand(U) == Ptr; 5683 }); 5684 5685 // Ensure the memory instruction will not be scalarized or used by 5686 // gather/scatter, making its pointer operand non-uniform. If the pointer 5687 // operand is used by any instruction other than a memory access, we 5688 // conservatively assume the pointer operand may be non-uniform. 5689 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5690 PossibleNonUniformPtrs.insert(Ptr); 5691 5692 // If the memory instruction will be vectorized and its pointer operand 5693 // is consecutive-like, or interleaving - the pointer operand should 5694 // remain uniform. 5695 else 5696 ConsecutiveLikePtrs.insert(Ptr); 5697 } 5698 5699 // Add to the Worklist all consecutive and consecutive-like pointers that 5700 // aren't also identified as possibly non-uniform. 5701 for (auto *V : ConsecutiveLikePtrs) 5702 if (!PossibleNonUniformPtrs.count(V)) { 5703 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5704 Worklist.insert(V); 5705 } 5706 5707 // Expand Worklist in topological order: whenever a new instruction 5708 // is added , its users should be either already inside Worklist, or 5709 // out of scope. It ensures a uniform instruction will only be used 5710 // by uniform instructions or out of scope instructions. 5711 unsigned idx = 0; 5712 while (idx != Worklist.size()) { 5713 Instruction *I = Worklist[idx++]; 5714 5715 for (auto OV : I->operand_values()) { 5716 if (isOutOfScope(OV)) 5717 continue; 5718 auto *OI = cast<Instruction>(OV); 5719 if (all_of(OI->users(), [&](User *U) -> bool { 5720 auto *J = cast<Instruction>(U); 5721 return !TheLoop->contains(J) || Worklist.count(J) || 5722 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5723 })) { 5724 Worklist.insert(OI); 5725 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5726 } 5727 } 5728 } 5729 5730 // Returns true if Ptr is the pointer operand of a memory access instruction 5731 // I, and I is known to not require scalarization. 5732 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5733 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5734 }; 5735 5736 // For an instruction to be added into Worklist above, all its users inside 5737 // the loop should also be in Worklist. However, this condition cannot be 5738 // true for phi nodes that form a cyclic dependence. We must process phi 5739 // nodes separately. An induction variable will remain uniform if all users 5740 // of the induction variable and induction variable update remain uniform. 5741 // The code below handles both pointer and non-pointer induction variables. 5742 for (auto &Induction : *Legal->getInductionVars()) { 5743 auto *Ind = Induction.first; 5744 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5745 5746 // Determine if all users of the induction variable are uniform after 5747 // vectorization. 5748 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5749 auto *I = cast<Instruction>(U); 5750 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5751 isVectorizedMemAccessUse(I, Ind); 5752 }); 5753 if (!UniformInd) 5754 continue; 5755 5756 // Determine if all users of the induction variable update instruction are 5757 // uniform after vectorization. 5758 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5759 auto *I = cast<Instruction>(U); 5760 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5761 isVectorizedMemAccessUse(I, IndUpdate); 5762 }); 5763 if (!UniformIndUpdate) 5764 continue; 5765 5766 // The induction variable and its update instruction will remain uniform. 5767 Worklist.insert(Ind); 5768 Worklist.insert(IndUpdate); 5769 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5770 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5771 } 5772 5773 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5774 } 5775 5776 bool LoopVectorizationLegality::canVectorizeMemory() { 5777 LAI = &(*GetLAA)(*TheLoop); 5778 InterleaveInfo.setLAI(LAI); 5779 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5780 if (LAR) { 5781 OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(), 5782 "loop not vectorized: ", *LAR); 5783 ORE->emit(VR); 5784 } 5785 if (!LAI->canVectorizeMemory()) 5786 return false; 5787 5788 if (LAI->hasStoreToLoopInvariantAddress()) { 5789 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5790 << "write to a loop invariant address could not be vectorized"); 5791 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5792 return false; 5793 } 5794 5795 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5796 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5797 5798 return true; 5799 } 5800 5801 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5802 Value *In0 = const_cast<Value *>(V); 5803 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5804 if (!PN) 5805 return false; 5806 5807 return Inductions.count(PN); 5808 } 5809 5810 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5811 return FirstOrderRecurrences.count(Phi); 5812 } 5813 5814 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5815 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5816 } 5817 5818 bool LoopVectorizationLegality::blockCanBePredicated( 5819 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5820 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5821 5822 for (Instruction &I : *BB) { 5823 // Check that we don't have a constant expression that can trap as operand. 5824 for (Value *Operand : I.operands()) { 5825 if (auto *C = dyn_cast<Constant>(Operand)) 5826 if (C->canTrap()) 5827 return false; 5828 } 5829 // We might be able to hoist the load. 5830 if (I.mayReadFromMemory()) { 5831 auto *LI = dyn_cast<LoadInst>(&I); 5832 if (!LI) 5833 return false; 5834 if (!SafePtrs.count(LI->getPointerOperand())) { 5835 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5836 isLegalMaskedGather(LI->getType())) { 5837 MaskedOp.insert(LI); 5838 continue; 5839 } 5840 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5841 if (IsAnnotatedParallel) 5842 continue; 5843 return false; 5844 } 5845 } 5846 5847 if (I.mayWriteToMemory()) { 5848 auto *SI = dyn_cast<StoreInst>(&I); 5849 // We only support predication of stores in basic blocks with one 5850 // predecessor. 5851 if (!SI) 5852 return false; 5853 5854 // Build a masked store if it is legal for the target. 5855 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5856 SI->getPointerOperand()) || 5857 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5858 MaskedOp.insert(SI); 5859 continue; 5860 } 5861 5862 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5863 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5864 5865 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5866 !isSinglePredecessor) 5867 return false; 5868 } 5869 if (I.mayThrow()) 5870 return false; 5871 } 5872 5873 return true; 5874 } 5875 5876 void InterleavedAccessInfo::collectConstStrideAccesses( 5877 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5878 const ValueToValueMap &Strides) { 5879 5880 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5881 5882 // Since it's desired that the load/store instructions be maintained in 5883 // "program order" for the interleaved access analysis, we have to visit the 5884 // blocks in the loop in reverse postorder (i.e., in a topological order). 5885 // Such an ordering will ensure that any load/store that may be executed 5886 // before a second load/store will precede the second load/store in 5887 // AccessStrideInfo. 5888 LoopBlocksDFS DFS(TheLoop); 5889 DFS.perform(LI); 5890 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5891 for (auto &I : *BB) { 5892 auto *LI = dyn_cast<LoadInst>(&I); 5893 auto *SI = dyn_cast<StoreInst>(&I); 5894 if (!LI && !SI) 5895 continue; 5896 5897 Value *Ptr = getPointerOperand(&I); 5898 // We don't check wrapping here because we don't know yet if Ptr will be 5899 // part of a full group or a group with gaps. Checking wrapping for all 5900 // pointers (even those that end up in groups with no gaps) will be overly 5901 // conservative. For full groups, wrapping should be ok since if we would 5902 // wrap around the address space we would do a memory access at nullptr 5903 // even without the transformation. The wrapping checks are therefore 5904 // deferred until after we've formed the interleaved groups. 5905 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5906 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5907 5908 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5909 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5910 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5911 5912 // An alignment of 0 means target ABI alignment. 5913 unsigned Align = getMemInstAlignment(&I); 5914 if (!Align) 5915 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5916 5917 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5918 } 5919 } 5920 5921 // Analyze interleaved accesses and collect them into interleaved load and 5922 // store groups. 5923 // 5924 // When generating code for an interleaved load group, we effectively hoist all 5925 // loads in the group to the location of the first load in program order. When 5926 // generating code for an interleaved store group, we sink all stores to the 5927 // location of the last store. This code motion can change the order of load 5928 // and store instructions and may break dependences. 5929 // 5930 // The code generation strategy mentioned above ensures that we won't violate 5931 // any write-after-read (WAR) dependences. 5932 // 5933 // E.g., for the WAR dependence: a = A[i]; // (1) 5934 // A[i] = b; // (2) 5935 // 5936 // The store group of (2) is always inserted at or below (2), and the load 5937 // group of (1) is always inserted at or above (1). Thus, the instructions will 5938 // never be reordered. All other dependences are checked to ensure the 5939 // correctness of the instruction reordering. 5940 // 5941 // The algorithm visits all memory accesses in the loop in bottom-up program 5942 // order. Program order is established by traversing the blocks in the loop in 5943 // reverse postorder when collecting the accesses. 5944 // 5945 // We visit the memory accesses in bottom-up order because it can simplify the 5946 // construction of store groups in the presence of write-after-write (WAW) 5947 // dependences. 5948 // 5949 // E.g., for the WAW dependence: A[i] = a; // (1) 5950 // A[i] = b; // (2) 5951 // A[i + 1] = c; // (3) 5952 // 5953 // We will first create a store group with (3) and (2). (1) can't be added to 5954 // this group because it and (2) are dependent. However, (1) can be grouped 5955 // with other accesses that may precede it in program order. Note that a 5956 // bottom-up order does not imply that WAW dependences should not be checked. 5957 void InterleavedAccessInfo::analyzeInterleaving( 5958 const ValueToValueMap &Strides) { 5959 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5960 5961 // Holds all accesses with a constant stride. 5962 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5963 collectConstStrideAccesses(AccessStrideInfo, Strides); 5964 5965 if (AccessStrideInfo.empty()) 5966 return; 5967 5968 // Collect the dependences in the loop. 5969 collectDependences(); 5970 5971 // Holds all interleaved store groups temporarily. 5972 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5973 // Holds all interleaved load groups temporarily. 5974 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5975 5976 // Search in bottom-up program order for pairs of accesses (A and B) that can 5977 // form interleaved load or store groups. In the algorithm below, access A 5978 // precedes access B in program order. We initialize a group for B in the 5979 // outer loop of the algorithm, and then in the inner loop, we attempt to 5980 // insert each A into B's group if: 5981 // 5982 // 1. A and B have the same stride, 5983 // 2. A and B have the same memory object size, and 5984 // 3. A belongs in B's group according to its distance from B. 5985 // 5986 // Special care is taken to ensure group formation will not break any 5987 // dependences. 5988 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5989 BI != E; ++BI) { 5990 Instruction *B = BI->first; 5991 StrideDescriptor DesB = BI->second; 5992 5993 // Initialize a group for B if it has an allowable stride. Even if we don't 5994 // create a group for B, we continue with the bottom-up algorithm to ensure 5995 // we don't break any of B's dependences. 5996 InterleaveGroup *Group = nullptr; 5997 if (isStrided(DesB.Stride)) { 5998 Group = getInterleaveGroup(B); 5999 if (!Group) { 6000 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 6001 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 6002 } 6003 if (B->mayWriteToMemory()) 6004 StoreGroups.insert(Group); 6005 else 6006 LoadGroups.insert(Group); 6007 } 6008 6009 for (auto AI = std::next(BI); AI != E; ++AI) { 6010 Instruction *A = AI->first; 6011 StrideDescriptor DesA = AI->second; 6012 6013 // Our code motion strategy implies that we can't have dependences 6014 // between accesses in an interleaved group and other accesses located 6015 // between the first and last member of the group. Note that this also 6016 // means that a group can't have more than one member at a given offset. 6017 // The accesses in a group can have dependences with other accesses, but 6018 // we must ensure we don't extend the boundaries of the group such that 6019 // we encompass those dependent accesses. 6020 // 6021 // For example, assume we have the sequence of accesses shown below in a 6022 // stride-2 loop: 6023 // 6024 // (1, 2) is a group | A[i] = a; // (1) 6025 // | A[i-1] = b; // (2) | 6026 // A[i-3] = c; // (3) 6027 // A[i] = d; // (4) | (2, 4) is not a group 6028 // 6029 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 6030 // but not with (4). If we did, the dependent access (3) would be within 6031 // the boundaries of the (2, 4) group. 6032 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 6033 6034 // If a dependence exists and A is already in a group, we know that A 6035 // must be a store since A precedes B and WAR dependences are allowed. 6036 // Thus, A would be sunk below B. We release A's group to prevent this 6037 // illegal code motion. A will then be free to form another group with 6038 // instructions that precede it. 6039 if (isInterleaved(A)) { 6040 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 6041 StoreGroups.remove(StoreGroup); 6042 releaseGroup(StoreGroup); 6043 } 6044 6045 // If a dependence exists and A is not already in a group (or it was 6046 // and we just released it), B might be hoisted above A (if B is a 6047 // load) or another store might be sunk below A (if B is a store). In 6048 // either case, we can't add additional instructions to B's group. B 6049 // will only form a group with instructions that it precedes. 6050 break; 6051 } 6052 6053 // At this point, we've checked for illegal code motion. If either A or B 6054 // isn't strided, there's nothing left to do. 6055 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 6056 continue; 6057 6058 // Ignore A if it's already in a group or isn't the same kind of memory 6059 // operation as B. 6060 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 6061 continue; 6062 6063 // Check rules 1 and 2. Ignore A if its stride or size is different from 6064 // that of B. 6065 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 6066 continue; 6067 6068 // Ignore A if the memory object of A and B don't belong to the same 6069 // address space 6070 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 6071 continue; 6072 6073 // Calculate the distance from A to B. 6074 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6075 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6076 if (!DistToB) 6077 continue; 6078 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6079 6080 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6081 // size. 6082 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6083 continue; 6084 6085 // Ignore A if either A or B is in a predicated block. Although we 6086 // currently prevent group formation for predicated accesses, we may be 6087 // able to relax this limitation in the future once we handle more 6088 // complicated blocks. 6089 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6090 continue; 6091 6092 // The index of A is the index of B plus A's distance to B in multiples 6093 // of the size. 6094 int IndexA = 6095 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6096 6097 // Try to insert A into B's group. 6098 if (Group->insertMember(A, IndexA, DesA.Align)) { 6099 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6100 << " into the interleave group with" << *B << '\n'); 6101 InterleaveGroupMap[A] = Group; 6102 6103 // Set the first load in program order as the insert position. 6104 if (A->mayReadFromMemory()) 6105 Group->setInsertPos(A); 6106 } 6107 } // Iteration over A accesses. 6108 } // Iteration over B accesses. 6109 6110 // Remove interleaved store groups with gaps. 6111 for (InterleaveGroup *Group : StoreGroups) 6112 if (Group->getNumMembers() != Group->getFactor()) 6113 releaseGroup(Group); 6114 6115 // Remove interleaved groups with gaps (currently only loads) whose memory 6116 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6117 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6118 // not check wrapping (see documentation there). 6119 // FORNOW we use Assume=false; 6120 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6121 // of runtime SCEV assumptions checks (thereby potentially failing to 6122 // vectorize altogether). 6123 // Additional optional optimizations: 6124 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6125 // wrap then we can deduce that all pointers in the group don't wrap. 6126 // This means that we can forcefully peel the loop in order to only have to 6127 // check the first pointer for no-wrap. When we'll change to use Assume=true 6128 // we'll only need at most one runtime check per interleaved group. 6129 // 6130 for (InterleaveGroup *Group : LoadGroups) { 6131 6132 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6133 // load would wrap around the address space we would do a memory access at 6134 // nullptr even without the transformation. 6135 if (Group->getNumMembers() == Group->getFactor()) 6136 continue; 6137 6138 // Case 2: If first and last members of the group don't wrap this implies 6139 // that all the pointers in the group don't wrap. 6140 // So we check only group member 0 (which is always guaranteed to exist), 6141 // and group member Factor - 1; If the latter doesn't exist we rely on 6142 // peeling (if it is a non-reveresed accsess -- see Case 3). 6143 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6144 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6145 /*ShouldCheckWrap=*/true)) { 6146 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6147 "first group member potentially pointer-wrapping.\n"); 6148 releaseGroup(Group); 6149 continue; 6150 } 6151 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6152 if (LastMember) { 6153 Value *LastMemberPtr = getPointerOperand(LastMember); 6154 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6155 /*ShouldCheckWrap=*/true)) { 6156 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6157 "last group member potentially pointer-wrapping.\n"); 6158 releaseGroup(Group); 6159 } 6160 } else { 6161 // Case 3: A non-reversed interleaved load group with gaps: We need 6162 // to execute at least one scalar epilogue iteration. This will ensure 6163 // we don't speculatively access memory out-of-bounds. We only need 6164 // to look for a member at index factor - 1, since every group must have 6165 // a member at index zero. 6166 if (Group->isReverse()) { 6167 releaseGroup(Group); 6168 continue; 6169 } 6170 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6171 RequiresScalarEpilogue = true; 6172 } 6173 } 6174 } 6175 6176 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6177 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6178 ORE->emit(createMissedAnalysis("ConditionalStore") 6179 << "store that is conditionally executed prevents vectorization"); 6180 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6181 return None; 6182 } 6183 6184 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6185 return computeFeasibleMaxVF(OptForSize); 6186 6187 if (Legal->getRuntimePointerChecking()->Need) { 6188 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6189 << "runtime pointer checks needed. Enable vectorization of this " 6190 "loop with '#pragma clang loop vectorize(enable)' when " 6191 "compiling with -Os/-Oz"); 6192 DEBUG(dbgs() 6193 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6194 return None; 6195 } 6196 6197 // If we optimize the program for size, avoid creating the tail loop. 6198 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6199 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6200 6201 // If we don't know the precise trip count, don't try to vectorize. 6202 if (TC < 2) { 6203 ORE->emit( 6204 createMissedAnalysis("UnknownLoopCountComplexCFG") 6205 << "unable to calculate the loop count due to complex control flow"); 6206 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6207 return None; 6208 } 6209 6210 unsigned MaxVF = computeFeasibleMaxVF(OptForSize); 6211 6212 if (TC % MaxVF != 0) { 6213 // If the trip count that we found modulo the vectorization factor is not 6214 // zero then we require a tail. 6215 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6216 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6217 // smaller MaxVF that does not require a scalar epilog. 6218 6219 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6220 << "cannot optimize for size and vectorize at the " 6221 "same time. Enable vectorization of this loop " 6222 "with '#pragma clang loop vectorize(enable)' " 6223 "when compiling with -Os/-Oz"); 6224 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6225 return None; 6226 } 6227 6228 return MaxVF; 6229 } 6230 6231 unsigned LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize) { 6232 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6233 unsigned SmallestType, WidestType; 6234 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6235 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6236 unsigned MaxSafeDepDist = -1U; 6237 6238 // Get the maximum safe dependence distance in bits computed by LAA. If the 6239 // loop contains any interleaved accesses, we divide the dependence distance 6240 // by the maximum interleave factor of all interleaved groups. Note that 6241 // although the division ensures correctness, this is a fairly conservative 6242 // computation because the maximum distance computed by LAA may not involve 6243 // any of the interleaved accesses. 6244 if (Legal->getMaxSafeDepDistBytes() != -1U) 6245 MaxSafeDepDist = 6246 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 6247 6248 WidestRegister = 6249 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 6250 unsigned MaxVectorSize = WidestRegister / WidestType; 6251 6252 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6253 << WidestType << " bits.\n"); 6254 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 6255 << " bits.\n"); 6256 6257 if (MaxVectorSize == 0) { 6258 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6259 MaxVectorSize = 1; 6260 } 6261 6262 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6263 " into one vector!"); 6264 6265 unsigned MaxVF = MaxVectorSize; 6266 if (MaximizeBandwidth && !OptForSize) { 6267 // Collect all viable vectorization factors. 6268 SmallVector<unsigned, 8> VFs; 6269 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6270 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 6271 VFs.push_back(VS); 6272 6273 // For each VF calculate its register usage. 6274 auto RUs = calculateRegisterUsage(VFs); 6275 6276 // Select the largest VF which doesn't require more registers than existing 6277 // ones. 6278 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6279 for (int i = RUs.size() - 1; i >= 0; --i) { 6280 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6281 MaxVF = VFs[i]; 6282 break; 6283 } 6284 } 6285 } 6286 return MaxVF; 6287 } 6288 6289 LoopVectorizationCostModel::VectorizationFactor 6290 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6291 float Cost = expectedCost(1).first; 6292 #ifndef NDEBUG 6293 const float ScalarCost = Cost; 6294 #endif /* NDEBUG */ 6295 unsigned Width = 1; 6296 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6297 6298 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6299 // Ignore scalar width, because the user explicitly wants vectorization. 6300 if (ForceVectorization && MaxVF > 1) { 6301 Width = 2; 6302 Cost = expectedCost(Width).first / (float)Width; 6303 } 6304 6305 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6306 // Notice that the vector loop needs to be executed less times, so 6307 // we need to divide the cost of the vector loops by the width of 6308 // the vector elements. 6309 VectorizationCostTy C = expectedCost(i); 6310 float VectorCost = C.first / (float)i; 6311 DEBUG(dbgs() << "LV: Vector loop of width " << i 6312 << " costs: " << (int)VectorCost << ".\n"); 6313 if (!C.second && !ForceVectorization) { 6314 DEBUG( 6315 dbgs() << "LV: Not considering vector loop of width " << i 6316 << " because it will not generate any vector instructions.\n"); 6317 continue; 6318 } 6319 if (VectorCost < Cost) { 6320 Cost = VectorCost; 6321 Width = i; 6322 } 6323 } 6324 6325 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6326 << "LV: Vectorization seems to be not beneficial, " 6327 << "but was forced by a user.\n"); 6328 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6329 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6330 return Factor; 6331 } 6332 6333 std::pair<unsigned, unsigned> 6334 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6335 unsigned MinWidth = -1U; 6336 unsigned MaxWidth = 8; 6337 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6338 6339 // For each block. 6340 for (BasicBlock *BB : TheLoop->blocks()) { 6341 // For each instruction in the loop. 6342 for (Instruction &I : *BB) { 6343 Type *T = I.getType(); 6344 6345 // Skip ignored values. 6346 if (ValuesToIgnore.count(&I)) 6347 continue; 6348 6349 // Only examine Loads, Stores and PHINodes. 6350 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6351 continue; 6352 6353 // Examine PHI nodes that are reduction variables. Update the type to 6354 // account for the recurrence type. 6355 if (auto *PN = dyn_cast<PHINode>(&I)) { 6356 if (!Legal->isReductionVariable(PN)) 6357 continue; 6358 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6359 T = RdxDesc.getRecurrenceType(); 6360 } 6361 6362 // Examine the stored values. 6363 if (auto *ST = dyn_cast<StoreInst>(&I)) 6364 T = ST->getValueOperand()->getType(); 6365 6366 // Ignore loaded pointer types and stored pointer types that are not 6367 // vectorizable. 6368 // 6369 // FIXME: The check here attempts to predict whether a load or store will 6370 // be vectorized. We only know this for certain after a VF has 6371 // been selected. Here, we assume that if an access can be 6372 // vectorized, it will be. We should also look at extending this 6373 // optimization to non-pointer types. 6374 // 6375 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6376 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6377 continue; 6378 6379 MinWidth = std::min(MinWidth, 6380 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6381 MaxWidth = std::max(MaxWidth, 6382 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6383 } 6384 } 6385 6386 return {MinWidth, MaxWidth}; 6387 } 6388 6389 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6390 unsigned VF, 6391 unsigned LoopCost) { 6392 6393 // -- The interleave heuristics -- 6394 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6395 // There are many micro-architectural considerations that we can't predict 6396 // at this level. For example, frontend pressure (on decode or fetch) due to 6397 // code size, or the number and capabilities of the execution ports. 6398 // 6399 // We use the following heuristics to select the interleave count: 6400 // 1. If the code has reductions, then we interleave to break the cross 6401 // iteration dependency. 6402 // 2. If the loop is really small, then we interleave to reduce the loop 6403 // overhead. 6404 // 3. We don't interleave if we think that we will spill registers to memory 6405 // due to the increased register pressure. 6406 6407 // When we optimize for size, we don't interleave. 6408 if (OptForSize) 6409 return 1; 6410 6411 // We used the distance for the interleave count. 6412 if (Legal->getMaxSafeDepDistBytes() != -1U) 6413 return 1; 6414 6415 // Do not interleave loops with a relatively small trip count. 6416 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6417 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6418 return 1; 6419 6420 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6421 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6422 << " registers\n"); 6423 6424 if (VF == 1) { 6425 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6426 TargetNumRegisters = ForceTargetNumScalarRegs; 6427 } else { 6428 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6429 TargetNumRegisters = ForceTargetNumVectorRegs; 6430 } 6431 6432 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6433 // We divide by these constants so assume that we have at least one 6434 // instruction that uses at least one register. 6435 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6436 R.NumInstructions = std::max(R.NumInstructions, 1U); 6437 6438 // We calculate the interleave count using the following formula. 6439 // Subtract the number of loop invariants from the number of available 6440 // registers. These registers are used by all of the interleaved instances. 6441 // Next, divide the remaining registers by the number of registers that is 6442 // required by the loop, in order to estimate how many parallel instances 6443 // fit without causing spills. All of this is rounded down if necessary to be 6444 // a power of two. We want power of two interleave count to simplify any 6445 // addressing operations or alignment considerations. 6446 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6447 R.MaxLocalUsers); 6448 6449 // Don't count the induction variable as interleaved. 6450 if (EnableIndVarRegisterHeur) 6451 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6452 std::max(1U, (R.MaxLocalUsers - 1))); 6453 6454 // Clamp the interleave ranges to reasonable counts. 6455 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6456 6457 // Check if the user has overridden the max. 6458 if (VF == 1) { 6459 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6460 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6461 } else { 6462 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6463 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6464 } 6465 6466 // If we did not calculate the cost for VF (because the user selected the VF) 6467 // then we calculate the cost of VF here. 6468 if (LoopCost == 0) 6469 LoopCost = expectedCost(VF).first; 6470 6471 // Clamp the calculated IC to be between the 1 and the max interleave count 6472 // that the target allows. 6473 if (IC > MaxInterleaveCount) 6474 IC = MaxInterleaveCount; 6475 else if (IC < 1) 6476 IC = 1; 6477 6478 // Interleave if we vectorized this loop and there is a reduction that could 6479 // benefit from interleaving. 6480 if (VF > 1 && Legal->getReductionVars()->size()) { 6481 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6482 return IC; 6483 } 6484 6485 // Note that if we've already vectorized the loop we will have done the 6486 // runtime check and so interleaving won't require further checks. 6487 bool InterleavingRequiresRuntimePointerCheck = 6488 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6489 6490 // We want to interleave small loops in order to reduce the loop overhead and 6491 // potentially expose ILP opportunities. 6492 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6493 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6494 // We assume that the cost overhead is 1 and we use the cost model 6495 // to estimate the cost of the loop and interleave until the cost of the 6496 // loop overhead is about 5% of the cost of the loop. 6497 unsigned SmallIC = 6498 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6499 6500 // Interleave until store/load ports (estimated by max interleave count) are 6501 // saturated. 6502 unsigned NumStores = Legal->getNumStores(); 6503 unsigned NumLoads = Legal->getNumLoads(); 6504 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6505 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6506 6507 // If we have a scalar reduction (vector reductions are already dealt with 6508 // by this point), we can increase the critical path length if the loop 6509 // we're interleaving is inside another loop. Limit, by default to 2, so the 6510 // critical path only gets increased by one reduction operation. 6511 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6512 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6513 SmallIC = std::min(SmallIC, F); 6514 StoresIC = std::min(StoresIC, F); 6515 LoadsIC = std::min(LoadsIC, F); 6516 } 6517 6518 if (EnableLoadStoreRuntimeInterleave && 6519 std::max(StoresIC, LoadsIC) > SmallIC) { 6520 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6521 return std::max(StoresIC, LoadsIC); 6522 } 6523 6524 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6525 return SmallIC; 6526 } 6527 6528 // Interleave if this is a large loop (small loops are already dealt with by 6529 // this point) that could benefit from interleaving. 6530 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6531 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6532 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6533 return IC; 6534 } 6535 6536 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6537 return 1; 6538 } 6539 6540 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6541 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6542 // This function calculates the register usage by measuring the highest number 6543 // of values that are alive at a single location. Obviously, this is a very 6544 // rough estimation. We scan the loop in a topological order in order and 6545 // assign a number to each instruction. We use RPO to ensure that defs are 6546 // met before their users. We assume that each instruction that has in-loop 6547 // users starts an interval. We record every time that an in-loop value is 6548 // used, so we have a list of the first and last occurrences of each 6549 // instruction. Next, we transpose this data structure into a multi map that 6550 // holds the list of intervals that *end* at a specific location. This multi 6551 // map allows us to perform a linear search. We scan the instructions linearly 6552 // and record each time that a new interval starts, by placing it in a set. 6553 // If we find this value in the multi-map then we remove it from the set. 6554 // The max register usage is the maximum size of the set. 6555 // We also search for instructions that are defined outside the loop, but are 6556 // used inside the loop. We need this number separately from the max-interval 6557 // usage number because when we unroll, loop-invariant values do not take 6558 // more register. 6559 LoopBlocksDFS DFS(TheLoop); 6560 DFS.perform(LI); 6561 6562 RegisterUsage RU; 6563 RU.NumInstructions = 0; 6564 6565 // Each 'key' in the map opens a new interval. The values 6566 // of the map are the index of the 'last seen' usage of the 6567 // instruction that is the key. 6568 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6569 // Maps instruction to its index. 6570 DenseMap<unsigned, Instruction *> IdxToInstr; 6571 // Marks the end of each interval. 6572 IntervalMap EndPoint; 6573 // Saves the list of instruction indices that are used in the loop. 6574 SmallSet<Instruction *, 8> Ends; 6575 // Saves the list of values that are used in the loop but are 6576 // defined outside the loop, such as arguments and constants. 6577 SmallPtrSet<Value *, 8> LoopInvariants; 6578 6579 unsigned Index = 0; 6580 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6581 RU.NumInstructions += BB->size(); 6582 for (Instruction &I : *BB) { 6583 IdxToInstr[Index++] = &I; 6584 6585 // Save the end location of each USE. 6586 for (Value *U : I.operands()) { 6587 auto *Instr = dyn_cast<Instruction>(U); 6588 6589 // Ignore non-instruction values such as arguments, constants, etc. 6590 if (!Instr) 6591 continue; 6592 6593 // If this instruction is outside the loop then record it and continue. 6594 if (!TheLoop->contains(Instr)) { 6595 LoopInvariants.insert(Instr); 6596 continue; 6597 } 6598 6599 // Overwrite previous end points. 6600 EndPoint[Instr] = Index; 6601 Ends.insert(Instr); 6602 } 6603 } 6604 } 6605 6606 // Saves the list of intervals that end with the index in 'key'. 6607 typedef SmallVector<Instruction *, 2> InstrList; 6608 DenseMap<unsigned, InstrList> TransposeEnds; 6609 6610 // Transpose the EndPoints to a list of values that end at each index. 6611 for (auto &Interval : EndPoint) 6612 TransposeEnds[Interval.second].push_back(Interval.first); 6613 6614 SmallSet<Instruction *, 8> OpenIntervals; 6615 6616 // Get the size of the widest register. 6617 unsigned MaxSafeDepDist = -1U; 6618 if (Legal->getMaxSafeDepDistBytes() != -1U) 6619 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6620 unsigned WidestRegister = 6621 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6622 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6623 6624 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6625 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6626 6627 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6628 6629 // A lambda that gets the register usage for the given type and VF. 6630 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6631 if (Ty->isTokenTy()) 6632 return 0U; 6633 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6634 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6635 }; 6636 6637 for (unsigned int i = 0; i < Index; ++i) { 6638 Instruction *I = IdxToInstr[i]; 6639 6640 // Remove all of the instructions that end at this location. 6641 InstrList &List = TransposeEnds[i]; 6642 for (Instruction *ToRemove : List) 6643 OpenIntervals.erase(ToRemove); 6644 6645 // Ignore instructions that are never used within the loop. 6646 if (!Ends.count(I)) 6647 continue; 6648 6649 // Skip ignored values. 6650 if (ValuesToIgnore.count(I)) 6651 continue; 6652 6653 // For each VF find the maximum usage of registers. 6654 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6655 if (VFs[j] == 1) { 6656 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6657 continue; 6658 } 6659 collectUniformsAndScalars(VFs[j]); 6660 // Count the number of live intervals. 6661 unsigned RegUsage = 0; 6662 for (auto Inst : OpenIntervals) { 6663 // Skip ignored values for VF > 1. 6664 if (VecValuesToIgnore.count(Inst) || 6665 isScalarAfterVectorization(Inst, VFs[j])) 6666 continue; 6667 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6668 } 6669 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6670 } 6671 6672 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6673 << OpenIntervals.size() << '\n'); 6674 6675 // Add the current instruction to the list of open intervals. 6676 OpenIntervals.insert(I); 6677 } 6678 6679 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6680 unsigned Invariant = 0; 6681 if (VFs[i] == 1) 6682 Invariant = LoopInvariants.size(); 6683 else { 6684 for (auto Inst : LoopInvariants) 6685 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6686 } 6687 6688 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6689 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6690 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6691 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6692 6693 RU.LoopInvariantRegs = Invariant; 6694 RU.MaxLocalUsers = MaxUsages[i]; 6695 RUs[i] = RU; 6696 } 6697 6698 return RUs; 6699 } 6700 6701 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6702 6703 // If we aren't vectorizing the loop, or if we've already collected the 6704 // instructions to scalarize, there's nothing to do. Collection may already 6705 // have occurred if we have a user-selected VF and are now computing the 6706 // expected cost for interleaving. 6707 if (VF < 2 || InstsToScalarize.count(VF)) 6708 return; 6709 6710 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6711 // not profitable to scalarize any instructions, the presence of VF in the 6712 // map will indicate that we've analyzed it already. 6713 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6714 6715 // Find all the instructions that are scalar with predication in the loop and 6716 // determine if it would be better to not if-convert the blocks they are in. 6717 // If so, we also record the instructions to scalarize. 6718 for (BasicBlock *BB : TheLoop->blocks()) { 6719 if (!Legal->blockNeedsPredication(BB)) 6720 continue; 6721 for (Instruction &I : *BB) 6722 if (Legal->isScalarWithPredication(&I)) { 6723 ScalarCostsTy ScalarCosts; 6724 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6725 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6726 } 6727 } 6728 } 6729 6730 int LoopVectorizationCostModel::computePredInstDiscount( 6731 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6732 unsigned VF) { 6733 6734 assert(!isUniformAfterVectorization(PredInst, VF) && 6735 "Instruction marked uniform-after-vectorization will be predicated"); 6736 6737 // Initialize the discount to zero, meaning that the scalar version and the 6738 // vector version cost the same. 6739 int Discount = 0; 6740 6741 // Holds instructions to analyze. The instructions we visit are mapped in 6742 // ScalarCosts. Those instructions are the ones that would be scalarized if 6743 // we find that the scalar version costs less. 6744 SmallVector<Instruction *, 8> Worklist; 6745 6746 // Returns true if the given instruction can be scalarized. 6747 auto canBeScalarized = [&](Instruction *I) -> bool { 6748 6749 // We only attempt to scalarize instructions forming a single-use chain 6750 // from the original predicated block that would otherwise be vectorized. 6751 // Although not strictly necessary, we give up on instructions we know will 6752 // already be scalar to avoid traversing chains that are unlikely to be 6753 // beneficial. 6754 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6755 isScalarAfterVectorization(I, VF)) 6756 return false; 6757 6758 // If the instruction is scalar with predication, it will be analyzed 6759 // separately. We ignore it within the context of PredInst. 6760 if (Legal->isScalarWithPredication(I)) 6761 return false; 6762 6763 // If any of the instruction's operands are uniform after vectorization, 6764 // the instruction cannot be scalarized. This prevents, for example, a 6765 // masked load from being scalarized. 6766 // 6767 // We assume we will only emit a value for lane zero of an instruction 6768 // marked uniform after vectorization, rather than VF identical values. 6769 // Thus, if we scalarize an instruction that uses a uniform, we would 6770 // create uses of values corresponding to the lanes we aren't emitting code 6771 // for. This behavior can be changed by allowing getScalarValue to clone 6772 // the lane zero values for uniforms rather than asserting. 6773 for (Use &U : I->operands()) 6774 if (auto *J = dyn_cast<Instruction>(U.get())) 6775 if (isUniformAfterVectorization(J, VF)) 6776 return false; 6777 6778 // Otherwise, we can scalarize the instruction. 6779 return true; 6780 }; 6781 6782 // Returns true if an operand that cannot be scalarized must be extracted 6783 // from a vector. We will account for this scalarization overhead below. Note 6784 // that the non-void predicated instructions are placed in their own blocks, 6785 // and their return values are inserted into vectors. Thus, an extract would 6786 // still be required. 6787 auto needsExtract = [&](Instruction *I) -> bool { 6788 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6789 }; 6790 6791 // Compute the expected cost discount from scalarizing the entire expression 6792 // feeding the predicated instruction. We currently only consider expressions 6793 // that are single-use instruction chains. 6794 Worklist.push_back(PredInst); 6795 while (!Worklist.empty()) { 6796 Instruction *I = Worklist.pop_back_val(); 6797 6798 // If we've already analyzed the instruction, there's nothing to do. 6799 if (ScalarCosts.count(I)) 6800 continue; 6801 6802 // Compute the cost of the vector instruction. Note that this cost already 6803 // includes the scalarization overhead of the predicated instruction. 6804 unsigned VectorCost = getInstructionCost(I, VF).first; 6805 6806 // Compute the cost of the scalarized instruction. This cost is the cost of 6807 // the instruction as if it wasn't if-converted and instead remained in the 6808 // predicated block. We will scale this cost by block probability after 6809 // computing the scalarization overhead. 6810 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6811 6812 // Compute the scalarization overhead of needed insertelement instructions 6813 // and phi nodes. 6814 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6815 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6816 true, false); 6817 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6818 } 6819 6820 // Compute the scalarization overhead of needed extractelement 6821 // instructions. For each of the instruction's operands, if the operand can 6822 // be scalarized, add it to the worklist; otherwise, account for the 6823 // overhead. 6824 for (Use &U : I->operands()) 6825 if (auto *J = dyn_cast<Instruction>(U.get())) { 6826 assert(VectorType::isValidElementType(J->getType()) && 6827 "Instruction has non-scalar type"); 6828 if (canBeScalarized(J)) 6829 Worklist.push_back(J); 6830 else if (needsExtract(J)) 6831 ScalarCost += TTI.getScalarizationOverhead( 6832 ToVectorTy(J->getType(),VF), false, true); 6833 } 6834 6835 // Scale the total scalar cost by block probability. 6836 ScalarCost /= getReciprocalPredBlockProb(); 6837 6838 // Compute the discount. A non-negative discount means the vector version 6839 // of the instruction costs more, and scalarizing would be beneficial. 6840 Discount += VectorCost - ScalarCost; 6841 ScalarCosts[I] = ScalarCost; 6842 } 6843 6844 return Discount; 6845 } 6846 6847 LoopVectorizationCostModel::VectorizationCostTy 6848 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6849 VectorizationCostTy Cost; 6850 6851 // Collect Uniform and Scalar instructions after vectorization with VF. 6852 collectUniformsAndScalars(VF); 6853 6854 // Collect the instructions (and their associated costs) that will be more 6855 // profitable to scalarize. 6856 collectInstsToScalarize(VF); 6857 6858 // For each block. 6859 for (BasicBlock *BB : TheLoop->blocks()) { 6860 VectorizationCostTy BlockCost; 6861 6862 // For each instruction in the old loop. 6863 for (Instruction &I : *BB) { 6864 // Skip dbg intrinsics. 6865 if (isa<DbgInfoIntrinsic>(I)) 6866 continue; 6867 6868 // Skip ignored values. 6869 if (ValuesToIgnore.count(&I)) 6870 continue; 6871 6872 VectorizationCostTy C = getInstructionCost(&I, VF); 6873 6874 // Check if we should override the cost. 6875 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6876 C.first = ForceTargetInstructionCost; 6877 6878 BlockCost.first += C.first; 6879 BlockCost.second |= C.second; 6880 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6881 << VF << " For instruction: " << I << '\n'); 6882 } 6883 6884 // If we are vectorizing a predicated block, it will have been 6885 // if-converted. This means that the block's instructions (aside from 6886 // stores and instructions that may divide by zero) will now be 6887 // unconditionally executed. For the scalar case, we may not always execute 6888 // the predicated block. Thus, scale the block's cost by the probability of 6889 // executing it. 6890 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6891 BlockCost.first /= getReciprocalPredBlockProb(); 6892 6893 Cost.first += BlockCost.first; 6894 Cost.second |= BlockCost.second; 6895 } 6896 6897 return Cost; 6898 } 6899 6900 /// \brief Gets Address Access SCEV after verifying that the access pattern 6901 /// is loop invariant except the induction variable dependence. 6902 /// 6903 /// This SCEV can be sent to the Target in order to estimate the address 6904 /// calculation cost. 6905 static const SCEV *getAddressAccessSCEV( 6906 Value *Ptr, 6907 LoopVectorizationLegality *Legal, 6908 ScalarEvolution *SE, 6909 const Loop *TheLoop) { 6910 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6911 if (!Gep) 6912 return nullptr; 6913 6914 // We are looking for a gep with all loop invariant indices except for one 6915 // which should be an induction variable. 6916 unsigned NumOperands = Gep->getNumOperands(); 6917 for (unsigned i = 1; i < NumOperands; ++i) { 6918 Value *Opd = Gep->getOperand(i); 6919 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6920 !Legal->isInductionVariable(Opd)) 6921 return nullptr; 6922 } 6923 6924 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6925 return SE->getSCEV(Ptr); 6926 } 6927 6928 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6929 return Legal->hasStride(I->getOperand(0)) || 6930 Legal->hasStride(I->getOperand(1)); 6931 } 6932 6933 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6934 unsigned VF) { 6935 Type *ValTy = getMemInstValueType(I); 6936 auto SE = PSE.getSE(); 6937 6938 unsigned Alignment = getMemInstAlignment(I); 6939 unsigned AS = getMemInstAddressSpace(I); 6940 Value *Ptr = getPointerOperand(I); 6941 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6942 6943 // Figure out whether the access is strided and get the stride value 6944 // if it's known in compile time 6945 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop); 6946 6947 // Get the cost of the scalar memory instruction and address computation. 6948 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6949 6950 Cost += VF * 6951 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6952 AS); 6953 6954 // Get the overhead of the extractelement and insertelement instructions 6955 // we might create due to scalarization. 6956 Cost += getScalarizationOverhead(I, VF, TTI); 6957 6958 // If we have a predicated store, it may not be executed for each vector 6959 // lane. Scale the cost by the probability of executing the predicated 6960 // block. 6961 if (Legal->isScalarWithPredication(I)) 6962 Cost /= getReciprocalPredBlockProb(); 6963 6964 return Cost; 6965 } 6966 6967 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6968 unsigned VF) { 6969 Type *ValTy = getMemInstValueType(I); 6970 Type *VectorTy = ToVectorTy(ValTy, VF); 6971 unsigned Alignment = getMemInstAlignment(I); 6972 Value *Ptr = getPointerOperand(I); 6973 unsigned AS = getMemInstAddressSpace(I); 6974 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6975 6976 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6977 "Stride should be 1 or -1 for consecutive memory access"); 6978 unsigned Cost = 0; 6979 if (Legal->isMaskRequired(I)) 6980 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6981 else 6982 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6983 6984 bool Reverse = ConsecutiveStride < 0; 6985 if (Reverse) 6986 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6987 return Cost; 6988 } 6989 6990 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6991 unsigned VF) { 6992 LoadInst *LI = cast<LoadInst>(I); 6993 Type *ValTy = LI->getType(); 6994 Type *VectorTy = ToVectorTy(ValTy, VF); 6995 unsigned Alignment = LI->getAlignment(); 6996 unsigned AS = LI->getPointerAddressSpace(); 6997 6998 return TTI.getAddressComputationCost(ValTy) + 6999 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 7000 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7001 } 7002 7003 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7004 unsigned VF) { 7005 Type *ValTy = getMemInstValueType(I); 7006 Type *VectorTy = ToVectorTy(ValTy, VF); 7007 unsigned Alignment = getMemInstAlignment(I); 7008 Value *Ptr = getPointerOperand(I); 7009 7010 return TTI.getAddressComputationCost(VectorTy) + 7011 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 7012 Legal->isMaskRequired(I), Alignment); 7013 } 7014 7015 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7016 unsigned VF) { 7017 Type *ValTy = getMemInstValueType(I); 7018 Type *VectorTy = ToVectorTy(ValTy, VF); 7019 unsigned AS = getMemInstAddressSpace(I); 7020 7021 auto Group = Legal->getInterleavedAccessGroup(I); 7022 assert(Group && "Fail to get an interleaved access group."); 7023 7024 unsigned InterleaveFactor = Group->getFactor(); 7025 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7026 7027 // Holds the indices of existing members in an interleaved load group. 7028 // An interleaved store group doesn't need this as it doesn't allow gaps. 7029 SmallVector<unsigned, 4> Indices; 7030 if (isa<LoadInst>(I)) { 7031 for (unsigned i = 0; i < InterleaveFactor; i++) 7032 if (Group->getMember(i)) 7033 Indices.push_back(i); 7034 } 7035 7036 // Calculate the cost of the whole interleaved group. 7037 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 7038 Group->getFactor(), Indices, 7039 Group->getAlignment(), AS); 7040 7041 if (Group->isReverse()) 7042 Cost += Group->getNumMembers() * 7043 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7044 return Cost; 7045 } 7046 7047 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7048 unsigned VF) { 7049 7050 // Calculate scalar cost only. Vectorization cost should be ready at this 7051 // moment. 7052 if (VF == 1) { 7053 Type *ValTy = getMemInstValueType(I); 7054 unsigned Alignment = getMemInstAlignment(I); 7055 unsigned AS = getMemInstAlignment(I); 7056 7057 return TTI.getAddressComputationCost(ValTy) + 7058 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS); 7059 } 7060 return getWideningCost(I, VF); 7061 } 7062 7063 LoopVectorizationCostModel::VectorizationCostTy 7064 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7065 // If we know that this instruction will remain uniform, check the cost of 7066 // the scalar version. 7067 if (isUniformAfterVectorization(I, VF)) 7068 VF = 1; 7069 7070 if (VF > 1 && isProfitableToScalarize(I, VF)) 7071 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7072 7073 Type *VectorTy; 7074 unsigned C = getInstructionCost(I, VF, VectorTy); 7075 7076 bool TypeNotScalarized = 7077 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 7078 return VectorizationCostTy(C, TypeNotScalarized); 7079 } 7080 7081 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7082 if (VF == 1) 7083 return; 7084 for (BasicBlock *BB : TheLoop->blocks()) { 7085 // For each instruction in the old loop. 7086 for (Instruction &I : *BB) { 7087 Value *Ptr = getPointerOperand(&I); 7088 if (!Ptr) 7089 continue; 7090 7091 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7092 // Scalar load + broadcast 7093 unsigned Cost = getUniformMemOpCost(&I, VF); 7094 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7095 continue; 7096 } 7097 7098 // We assume that widening is the best solution when possible. 7099 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7100 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7101 setWideningDecision(&I, VF, CM_Widen, Cost); 7102 continue; 7103 } 7104 7105 // Choose between Interleaving, Gather/Scatter or Scalarization. 7106 unsigned InterleaveCost = UINT_MAX; 7107 unsigned NumAccesses = 1; 7108 if (Legal->isAccessInterleaved(&I)) { 7109 auto Group = Legal->getInterleavedAccessGroup(&I); 7110 assert(Group && "Fail to get an interleaved access group."); 7111 7112 // Make one decision for the whole group. 7113 if (getWideningDecision(&I, VF) != CM_Unknown) 7114 continue; 7115 7116 NumAccesses = Group->getNumMembers(); 7117 InterleaveCost = getInterleaveGroupCost(&I, VF); 7118 } 7119 7120 unsigned GatherScatterCost = 7121 Legal->isLegalGatherOrScatter(&I) 7122 ? getGatherScatterCost(&I, VF) * NumAccesses 7123 : UINT_MAX; 7124 7125 unsigned ScalarizationCost = 7126 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7127 7128 // Choose better solution for the current VF, 7129 // write down this decision and use it during vectorization. 7130 unsigned Cost; 7131 InstWidening Decision; 7132 if (InterleaveCost <= GatherScatterCost && 7133 InterleaveCost < ScalarizationCost) { 7134 Decision = CM_Interleave; 7135 Cost = InterleaveCost; 7136 } else if (GatherScatterCost < ScalarizationCost) { 7137 Decision = CM_GatherScatter; 7138 Cost = GatherScatterCost; 7139 } else { 7140 Decision = CM_Scalarize; 7141 Cost = ScalarizationCost; 7142 } 7143 // If the instructions belongs to an interleave group, the whole group 7144 // receives the same decision. The whole group receives the cost, but 7145 // the cost will actually be assigned to one instruction. 7146 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7147 setWideningDecision(Group, VF, Decision, Cost); 7148 else 7149 setWideningDecision(&I, VF, Decision, Cost); 7150 } 7151 } 7152 } 7153 7154 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7155 unsigned VF, 7156 Type *&VectorTy) { 7157 Type *RetTy = I->getType(); 7158 if (canTruncateToMinimalBitwidth(I, VF)) 7159 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7160 VectorTy = ToVectorTy(RetTy, VF); 7161 auto SE = PSE.getSE(); 7162 7163 // TODO: We need to estimate the cost of intrinsic calls. 7164 switch (I->getOpcode()) { 7165 case Instruction::GetElementPtr: 7166 // We mark this instruction as zero-cost because the cost of GEPs in 7167 // vectorized code depends on whether the corresponding memory instruction 7168 // is scalarized or not. Therefore, we handle GEPs with the memory 7169 // instruction cost. 7170 return 0; 7171 case Instruction::Br: { 7172 return TTI.getCFInstrCost(I->getOpcode()); 7173 } 7174 case Instruction::PHI: { 7175 auto *Phi = cast<PHINode>(I); 7176 7177 // First-order recurrences are replaced by vector shuffles inside the loop. 7178 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7179 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7180 VectorTy, VF - 1, VectorTy); 7181 7182 // TODO: IF-converted IFs become selects. 7183 return 0; 7184 } 7185 case Instruction::UDiv: 7186 case Instruction::SDiv: 7187 case Instruction::URem: 7188 case Instruction::SRem: 7189 // If we have a predicated instruction, it may not be executed for each 7190 // vector lane. Get the scalarization cost and scale this amount by the 7191 // probability of executing the predicated block. If the instruction is not 7192 // predicated, we fall through to the next case. 7193 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7194 unsigned Cost = 0; 7195 7196 // These instructions have a non-void type, so account for the phi nodes 7197 // that we will create. This cost is likely to be zero. The phi node 7198 // cost, if any, should be scaled by the block probability because it 7199 // models a copy at the end of each predicated block. 7200 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7201 7202 // The cost of the non-predicated instruction. 7203 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7204 7205 // The cost of insertelement and extractelement instructions needed for 7206 // scalarization. 7207 Cost += getScalarizationOverhead(I, VF, TTI); 7208 7209 // Scale the cost by the probability of executing the predicated blocks. 7210 // This assumes the predicated block for each vector lane is equally 7211 // likely. 7212 return Cost / getReciprocalPredBlockProb(); 7213 } 7214 case Instruction::Add: 7215 case Instruction::FAdd: 7216 case Instruction::Sub: 7217 case Instruction::FSub: 7218 case Instruction::Mul: 7219 case Instruction::FMul: 7220 case Instruction::FDiv: 7221 case Instruction::FRem: 7222 case Instruction::Shl: 7223 case Instruction::LShr: 7224 case Instruction::AShr: 7225 case Instruction::And: 7226 case Instruction::Or: 7227 case Instruction::Xor: { 7228 // Since we will replace the stride by 1 the multiplication should go away. 7229 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7230 return 0; 7231 // Certain instructions can be cheaper to vectorize if they have a constant 7232 // second vector operand. One example of this are shifts on x86. 7233 TargetTransformInfo::OperandValueKind Op1VK = 7234 TargetTransformInfo::OK_AnyValue; 7235 TargetTransformInfo::OperandValueKind Op2VK = 7236 TargetTransformInfo::OK_AnyValue; 7237 TargetTransformInfo::OperandValueProperties Op1VP = 7238 TargetTransformInfo::OP_None; 7239 TargetTransformInfo::OperandValueProperties Op2VP = 7240 TargetTransformInfo::OP_None; 7241 Value *Op2 = I->getOperand(1); 7242 7243 // Check for a splat or for a non uniform vector of constants. 7244 if (isa<ConstantInt>(Op2)) { 7245 ConstantInt *CInt = cast<ConstantInt>(Op2); 7246 if (CInt && CInt->getValue().isPowerOf2()) 7247 Op2VP = TargetTransformInfo::OP_PowerOf2; 7248 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7249 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7250 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7251 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7252 if (SplatValue) { 7253 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7254 if (CInt && CInt->getValue().isPowerOf2()) 7255 Op2VP = TargetTransformInfo::OP_PowerOf2; 7256 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7257 } 7258 } else if (Legal->isUniform(Op2)) { 7259 Op2VK = TargetTransformInfo::OK_UniformValue; 7260 } 7261 SmallVector<const Value *, 4> Operands(I->operand_values()); 7262 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7263 Op2VK, Op1VP, Op2VP, Operands); 7264 } 7265 case Instruction::Select: { 7266 SelectInst *SI = cast<SelectInst>(I); 7267 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7268 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7269 Type *CondTy = SI->getCondition()->getType(); 7270 if (!ScalarCond) 7271 CondTy = VectorType::get(CondTy, VF); 7272 7273 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 7274 } 7275 case Instruction::ICmp: 7276 case Instruction::FCmp: { 7277 Type *ValTy = I->getOperand(0)->getType(); 7278 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7279 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7280 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7281 VectorTy = ToVectorTy(ValTy, VF); 7282 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 7283 } 7284 case Instruction::Store: 7285 case Instruction::Load: { 7286 VectorTy = ToVectorTy(getMemInstValueType(I), VF); 7287 return getMemoryInstructionCost(I, VF); 7288 } 7289 case Instruction::ZExt: 7290 case Instruction::SExt: 7291 case Instruction::FPToUI: 7292 case Instruction::FPToSI: 7293 case Instruction::FPExt: 7294 case Instruction::PtrToInt: 7295 case Instruction::IntToPtr: 7296 case Instruction::SIToFP: 7297 case Instruction::UIToFP: 7298 case Instruction::Trunc: 7299 case Instruction::FPTrunc: 7300 case Instruction::BitCast: { 7301 // We optimize the truncation of induction variables having constant 7302 // integer steps. The cost of these truncations is the same as the scalar 7303 // operation. 7304 if (isOptimizableIVTruncate(I, VF)) { 7305 auto *Trunc = cast<TruncInst>(I); 7306 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7307 Trunc->getSrcTy()); 7308 } 7309 7310 Type *SrcScalarTy = I->getOperand(0)->getType(); 7311 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 7312 if (canTruncateToMinimalBitwidth(I, VF)) { 7313 // This cast is going to be shrunk. This may remove the cast or it might 7314 // turn it into slightly different cast. For example, if MinBW == 16, 7315 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7316 // 7317 // Calculate the modified src and dest types. 7318 Type *MinVecTy = VectorTy; 7319 if (I->getOpcode() == Instruction::Trunc) { 7320 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7321 VectorTy = 7322 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7323 } else if (I->getOpcode() == Instruction::ZExt || 7324 I->getOpcode() == Instruction::SExt) { 7325 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7326 VectorTy = 7327 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7328 } 7329 } 7330 7331 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 7332 } 7333 case Instruction::Call: { 7334 bool NeedToScalarize; 7335 CallInst *CI = cast<CallInst>(I); 7336 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7337 if (getVectorIntrinsicIDForCall(CI, TLI)) 7338 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7339 return CallCost; 7340 } 7341 default: 7342 // The cost of executing VF copies of the scalar instruction. This opcode 7343 // is unknown. Assume that it is the same as 'mul'. 7344 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7345 getScalarizationOverhead(I, VF, TTI); 7346 } // end of switch. 7347 } 7348 7349 char LoopVectorize::ID = 0; 7350 static const char lv_name[] = "Loop Vectorization"; 7351 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7352 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7353 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7354 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7355 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7356 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7357 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7358 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7359 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7360 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7361 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7362 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7363 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7364 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7365 7366 namespace llvm { 7367 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7368 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7369 } 7370 } 7371 7372 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7373 7374 // Check if the pointer operand of a load or store instruction is 7375 // consecutive. 7376 if (auto *Ptr = getPointerOperand(Inst)) 7377 return Legal->isConsecutivePtr(Ptr); 7378 return false; 7379 } 7380 7381 void LoopVectorizationCostModel::collectValuesToIgnore() { 7382 // Ignore ephemeral values. 7383 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7384 7385 // Ignore type-promoting instructions we identified during reduction 7386 // detection. 7387 for (auto &Reduction : *Legal->getReductionVars()) { 7388 RecurrenceDescriptor &RedDes = Reduction.second; 7389 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7390 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7391 } 7392 } 7393 7394 LoopVectorizationCostModel::VectorizationFactor 7395 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7396 7397 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7398 const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U, 7399 0U}; 7400 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7401 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7402 return NoVectorization; 7403 7404 if (UserVF) { 7405 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7406 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7407 // Collect the instructions (and their associated costs) that will be more 7408 // profitable to scalarize. 7409 CM.selectUserVectorizationFactor(UserVF); 7410 return {UserVF, 0}; 7411 } 7412 7413 unsigned MaxVF = MaybeMaxVF.getValue(); 7414 assert(MaxVF != 0 && "MaxVF is zero."); 7415 if (MaxVF == 1) 7416 return NoVectorization; 7417 7418 // Select the optimal vectorization factor. 7419 return CM.selectVectorizationFactor(MaxVF); 7420 } 7421 7422 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 7423 auto *SI = dyn_cast<StoreInst>(Instr); 7424 bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent())); 7425 7426 return scalarizeInstruction(Instr, IfPredicateInstr); 7427 } 7428 7429 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7430 7431 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7432 7433 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7434 Instruction::BinaryOps BinOp) { 7435 // When unrolling and the VF is 1, we only need to add a simple scalar. 7436 Type *Ty = Val->getType(); 7437 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7438 7439 if (Ty->isFloatingPointTy()) { 7440 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7441 7442 // Floating point operations had to be 'fast' to enable the unrolling. 7443 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7444 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7445 } 7446 Constant *C = ConstantInt::get(Ty, StartIdx); 7447 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7448 } 7449 7450 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7451 SmallVector<Metadata *, 4> MDs; 7452 // Reserve first location for self reference to the LoopID metadata node. 7453 MDs.push_back(nullptr); 7454 bool IsUnrollMetadata = false; 7455 MDNode *LoopID = L->getLoopID(); 7456 if (LoopID) { 7457 // First find existing loop unrolling disable metadata. 7458 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7459 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7460 if (MD) { 7461 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7462 IsUnrollMetadata = 7463 S && S->getString().startswith("llvm.loop.unroll.disable"); 7464 } 7465 MDs.push_back(LoopID->getOperand(i)); 7466 } 7467 } 7468 7469 if (!IsUnrollMetadata) { 7470 // Add runtime unroll disable metadata. 7471 LLVMContext &Context = L->getHeader()->getContext(); 7472 SmallVector<Metadata *, 1> DisableOperands; 7473 DisableOperands.push_back( 7474 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7475 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7476 MDs.push_back(DisableNode); 7477 MDNode *NewLoopID = MDNode::get(Context, MDs); 7478 // Set operand 0 to refer to the loop id itself. 7479 NewLoopID->replaceOperandWith(0, NewLoopID); 7480 L->setLoopID(NewLoopID); 7481 } 7482 } 7483 7484 bool LoopVectorizePass::processLoop(Loop *L) { 7485 assert(L->empty() && "Only process inner loops."); 7486 7487 #ifndef NDEBUG 7488 const std::string DebugLocStr = getDebugLocString(L); 7489 #endif /* NDEBUG */ 7490 7491 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7492 << L->getHeader()->getParent()->getName() << "\" from " 7493 << DebugLocStr << "\n"); 7494 7495 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7496 7497 DEBUG(dbgs() << "LV: Loop hints:" 7498 << " force=" 7499 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7500 ? "disabled" 7501 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7502 ? "enabled" 7503 : "?")) 7504 << " width=" << Hints.getWidth() 7505 << " unroll=" << Hints.getInterleave() << "\n"); 7506 7507 // Function containing loop 7508 Function *F = L->getHeader()->getParent(); 7509 7510 // Looking at the diagnostic output is the only way to determine if a loop 7511 // was vectorized (other than looking at the IR or machine code), so it 7512 // is important to generate an optimization remark for each loop. Most of 7513 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7514 // generated as OptimizationRemark and OptimizationRemarkMissed are 7515 // less verbose reporting vectorized loops and unvectorized loops that may 7516 // benefit from vectorization, respectively. 7517 7518 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7519 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7520 return false; 7521 } 7522 7523 // Check the loop for a trip count threshold: 7524 // do not vectorize loops with a tiny trip count. 7525 const unsigned MaxTC = SE->getSmallConstantMaxTripCount(L); 7526 if (MaxTC > 0u && MaxTC < TinyTripCountVectorThreshold) { 7527 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7528 << "This loop is not worth vectorizing."); 7529 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7530 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7531 else { 7532 DEBUG(dbgs() << "\n"); 7533 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7534 "NotBeneficial", L) 7535 << "vectorization is not beneficial " 7536 "and is not explicitly forced"); 7537 return false; 7538 } 7539 } 7540 7541 PredicatedScalarEvolution PSE(*SE, *L); 7542 7543 // Check if it is legal to vectorize the loop. 7544 LoopVectorizationRequirements Requirements(*ORE); 7545 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 7546 &Requirements, &Hints); 7547 if (!LVL.canVectorize()) { 7548 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7549 emitMissedWarning(F, L, Hints, ORE); 7550 return false; 7551 } 7552 7553 // Check the function attributes to find out if this function should be 7554 // optimized for size. 7555 bool OptForSize = 7556 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7557 7558 // Compute the weighted frequency of this loop being executed and see if it 7559 // is less than 20% of the function entry baseline frequency. Note that we 7560 // always have a canonical loop here because we think we *can* vectorize. 7561 // FIXME: This is hidden behind a flag due to pervasive problems with 7562 // exactly what block frequency models. 7563 if (LoopVectorizeWithBlockFrequency) { 7564 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 7565 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7566 LoopEntryFreq < ColdEntryFreq) 7567 OptForSize = true; 7568 } 7569 7570 // Check the function attributes to see if implicit floats are allowed. 7571 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7572 // an integer loop and the vector instructions selected are purely integer 7573 // vector instructions? 7574 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7575 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7576 "attribute is used.\n"); 7577 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7578 "NoImplicitFloat", L) 7579 << "loop not vectorized due to NoImplicitFloat attribute"); 7580 emitMissedWarning(F, L, Hints, ORE); 7581 return false; 7582 } 7583 7584 // Check if the target supports potentially unsafe FP vectorization. 7585 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7586 // for the target we're vectorizing for, to make sure none of the 7587 // additional fp-math flags can help. 7588 if (Hints.isPotentiallyUnsafe() && 7589 TTI->isFPVectorizationPotentiallyUnsafe()) { 7590 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7591 ORE->emit( 7592 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7593 << "loop not vectorized due to unsafe FP support."); 7594 emitMissedWarning(F, L, Hints, ORE); 7595 return false; 7596 } 7597 7598 // Use the cost model. 7599 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7600 &Hints); 7601 CM.collectValuesToIgnore(); 7602 7603 // Use the planner for vectorization. 7604 LoopVectorizationPlanner LVP(CM); 7605 7606 // Get user vectorization factor. 7607 unsigned UserVF = Hints.getWidth(); 7608 7609 // Plan how to best vectorize, return the best VF and its cost. 7610 LoopVectorizationCostModel::VectorizationFactor VF = 7611 LVP.plan(OptForSize, UserVF); 7612 7613 // Select the interleave count. 7614 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7615 7616 // Get user interleave count. 7617 unsigned UserIC = Hints.getInterleave(); 7618 7619 // Identify the diagnostic messages that should be produced. 7620 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7621 bool VectorizeLoop = true, InterleaveLoop = true; 7622 if (Requirements.doesNotMeet(F, L, Hints)) { 7623 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7624 "requirements.\n"); 7625 emitMissedWarning(F, L, Hints, ORE); 7626 return false; 7627 } 7628 7629 if (VF.Width == 1) { 7630 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7631 VecDiagMsg = std::make_pair( 7632 "VectorizationNotBeneficial", 7633 "the cost-model indicates that vectorization is not beneficial"); 7634 VectorizeLoop = false; 7635 } 7636 7637 if (IC == 1 && UserIC <= 1) { 7638 // Tell the user interleaving is not beneficial. 7639 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7640 IntDiagMsg = std::make_pair( 7641 "InterleavingNotBeneficial", 7642 "the cost-model indicates that interleaving is not beneficial"); 7643 InterleaveLoop = false; 7644 if (UserIC == 1) { 7645 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7646 IntDiagMsg.second += 7647 " and is explicitly disabled or interleave count is set to 1"; 7648 } 7649 } else if (IC > 1 && UserIC == 1) { 7650 // Tell the user interleaving is beneficial, but it explicitly disabled. 7651 DEBUG(dbgs() 7652 << "LV: Interleaving is beneficial but is explicitly disabled."); 7653 IntDiagMsg = std::make_pair( 7654 "InterleavingBeneficialButDisabled", 7655 "the cost-model indicates that interleaving is beneficial " 7656 "but is explicitly disabled or interleave count is set to 1"); 7657 InterleaveLoop = false; 7658 } 7659 7660 // Override IC if user provided an interleave count. 7661 IC = UserIC > 0 ? UserIC : IC; 7662 7663 // Emit diagnostic messages, if any. 7664 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7665 if (!VectorizeLoop && !InterleaveLoop) { 7666 // Do not vectorize or interleaving the loop. 7667 ORE->emit(OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7668 L->getStartLoc(), L->getHeader()) 7669 << VecDiagMsg.second); 7670 ORE->emit(OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7671 L->getStartLoc(), L->getHeader()) 7672 << IntDiagMsg.second); 7673 return false; 7674 } else if (!VectorizeLoop && InterleaveLoop) { 7675 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7676 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7677 L->getStartLoc(), L->getHeader()) 7678 << VecDiagMsg.second); 7679 } else if (VectorizeLoop && !InterleaveLoop) { 7680 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7681 << DebugLocStr << '\n'); 7682 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7683 L->getStartLoc(), L->getHeader()) 7684 << IntDiagMsg.second); 7685 } else if (VectorizeLoop && InterleaveLoop) { 7686 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7687 << DebugLocStr << '\n'); 7688 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7689 } 7690 7691 using namespace ore; 7692 if (!VectorizeLoop) { 7693 assert(IC > 1 && "interleave count should not be 1 or 0"); 7694 // If we decided that it is not legal to vectorize the loop, then 7695 // interleave it. 7696 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7697 &CM); 7698 Unroller.vectorize(); 7699 7700 ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7701 L->getHeader()) 7702 << "interleaved loop (interleaved count: " 7703 << NV("InterleaveCount", IC) << ")"); 7704 } else { 7705 // If we decided that it is *legal* to vectorize the loop, then do it. 7706 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7707 &LVL, &CM); 7708 LB.vectorize(); 7709 ++LoopsVectorized; 7710 7711 // Add metadata to disable runtime unrolling a scalar loop when there are 7712 // no runtime checks about strides and memory. A scalar loop that is 7713 // rarely used is not worth unrolling. 7714 if (!LB.areSafetyChecksAdded()) 7715 AddRuntimeUnrollDisableMetaData(L); 7716 7717 // Report the vectorization decision. 7718 ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7719 L->getHeader()) 7720 << "vectorized loop (vectorization width: " 7721 << NV("VectorizationFactor", VF.Width) 7722 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"); 7723 } 7724 7725 // Mark the loop as already vectorized to avoid vectorizing again. 7726 Hints.setAlreadyVectorized(); 7727 7728 DEBUG(verifyFunction(*L->getHeader()->getParent())); 7729 return true; 7730 } 7731 7732 bool LoopVectorizePass::runImpl( 7733 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7734 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7735 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7736 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7737 OptimizationRemarkEmitter &ORE_) { 7738 7739 SE = &SE_; 7740 LI = &LI_; 7741 TTI = &TTI_; 7742 DT = &DT_; 7743 BFI = &BFI_; 7744 TLI = TLI_; 7745 AA = &AA_; 7746 AC = &AC_; 7747 GetLAA = &GetLAA_; 7748 DB = &DB_; 7749 ORE = &ORE_; 7750 7751 // Compute some weights outside of the loop over the loops. Compute this 7752 // using a BranchProbability to re-use its scaling math. 7753 const BranchProbability ColdProb(1, 5); // 20% 7754 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 7755 7756 // Don't attempt if 7757 // 1. the target claims to have no vector registers, and 7758 // 2. interleaving won't help ILP. 7759 // 7760 // The second condition is necessary because, even if the target has no 7761 // vector registers, loop vectorization may still enable scalar 7762 // interleaving. 7763 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7764 return false; 7765 7766 bool Changed = false; 7767 7768 // The vectorizer requires loops to be in simplified form. 7769 // Since simplification may add new inner loops, it has to run before the 7770 // legality and profitability checks. This means running the loop vectorizer 7771 // will simplify all loops, regardless of whether anything end up being 7772 // vectorized. 7773 for (auto &L : *LI) 7774 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 7775 7776 // Build up a worklist of inner-loops to vectorize. This is necessary as 7777 // the act of vectorizing or partially unrolling a loop creates new loops 7778 // and can invalidate iterators across the loops. 7779 SmallVector<Loop *, 8> Worklist; 7780 7781 for (Loop *L : *LI) 7782 addAcyclicInnerLoop(*L, Worklist); 7783 7784 LoopsAnalyzed += Worklist.size(); 7785 7786 // Now walk the identified inner loops. 7787 while (!Worklist.empty()) { 7788 Loop *L = Worklist.pop_back_val(); 7789 7790 // For the inner loops we actually process, form LCSSA to simplify the 7791 // transform. 7792 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7793 7794 Changed |= processLoop(L); 7795 } 7796 7797 // Process each loop nest in the function. 7798 return Changed; 7799 7800 } 7801 7802 7803 PreservedAnalyses LoopVectorizePass::run(Function &F, 7804 FunctionAnalysisManager &AM) { 7805 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7806 auto &LI = AM.getResult<LoopAnalysis>(F); 7807 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7808 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7809 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7810 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7811 auto &AA = AM.getResult<AAManager>(F); 7812 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7813 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7814 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7815 7816 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7817 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7818 [&](Loop &L) -> const LoopAccessInfo & { 7819 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI}; 7820 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7821 }; 7822 bool Changed = 7823 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7824 if (!Changed) 7825 return PreservedAnalyses::all(); 7826 PreservedAnalyses PA; 7827 PA.preserve<LoopAnalysis>(); 7828 PA.preserve<DominatorTreeAnalysis>(); 7829 PA.preserve<BasicAA>(); 7830 PA.preserve<GlobalsAA>(); 7831 return PA; 7832 } 7833