1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallVector.h"
74 #include "llvm/ADT/Statistic.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/ADT/Twine.h"
77 #include "llvm/ADT/iterator_range.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/BasicAliasAnalysis.h"
80 #include "llvm/Analysis/BlockFrequencyInfo.h"
81 #include "llvm/Analysis/CFG.h"
82 #include "llvm/Analysis/CodeMetrics.h"
83 #include "llvm/Analysis/DemandedBits.h"
84 #include "llvm/Analysis/GlobalsModRef.h"
85 #include "llvm/Analysis/LoopAccessAnalysis.h"
86 #include "llvm/Analysis/LoopAnalysisManager.h"
87 #include "llvm/Analysis/LoopInfo.h"
88 #include "llvm/Analysis/LoopIterator.h"
89 #include "llvm/Analysis/MemorySSA.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 cl::opt<bool> EnableStrictReductions(
335     "enable-strict-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns the type of loaded or stored value.
379 static Type *getMemInstValueType(Value *I) {
380   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
381          "Expected Load or Store instruction");
382   if (auto *LI = dyn_cast<LoadInst>(I))
383     return LI->getType();
384   return cast<StoreInst>(I)->getValueOperand()->getType();
385 }
386 
387 /// A helper function that returns true if the given type is irregular. The
388 /// type is irregular if its allocated size doesn't equal the store size of an
389 /// element of the corresponding vector type.
390 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
391   // Determine if an array of N elements of type Ty is "bitcast compatible"
392   // with a <N x Ty> vector.
393   // This is only true if there is no padding between the array elements.
394   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
395 }
396 
397 /// A helper function that returns the reciprocal of the block probability of
398 /// predicated blocks. If we return X, we are assuming the predicated block
399 /// will execute once for every X iterations of the loop header.
400 ///
401 /// TODO: We should use actual block probability here, if available. Currently,
402 ///       we always assume predicated blocks have a 50% chance of executing.
403 static unsigned getReciprocalPredBlockProb() { return 2; }
404 
405 /// A helper function that returns an integer or floating-point constant with
406 /// value C.
407 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
408   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
409                            : ConstantFP::get(Ty, C);
410 }
411 
412 /// Returns "best known" trip count for the specified loop \p L as defined by
413 /// the following procedure:
414 ///   1) Returns exact trip count if it is known.
415 ///   2) Returns expected trip count according to profile data if any.
416 ///   3) Returns upper bound estimate if it is known.
417 ///   4) Returns None if all of the above failed.
418 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
419   // Check if exact trip count is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
421     return ExpectedTC;
422 
423   // Check if there is an expected trip count available from profile data.
424   if (LoopVectorizeWithBlockFrequency)
425     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
426       return EstimatedTC;
427 
428   // Check if upper bound estimate is known.
429   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
430     return ExpectedTC;
431 
432   return None;
433 }
434 
435 // Forward declare GeneratedRTChecks.
436 class GeneratedRTChecks;
437 
438 namespace llvm {
439 
440 /// InnerLoopVectorizer vectorizes loops which contain only one basic
441 /// block to a specified vectorization factor (VF).
442 /// This class performs the widening of scalars into vectors, or multiple
443 /// scalars. This class also implements the following features:
444 /// * It inserts an epilogue loop for handling loops that don't have iteration
445 ///   counts that are known to be a multiple of the vectorization factor.
446 /// * It handles the code generation for reduction variables.
447 /// * Scalarization (implementation using scalars) of un-vectorizable
448 ///   instructions.
449 /// InnerLoopVectorizer does not perform any vectorization-legality
450 /// checks, and relies on the caller to check for the different legality
451 /// aspects. The InnerLoopVectorizer relies on the
452 /// LoopVectorizationLegality class to provide information about the induction
453 /// and reduction variables that were found to a given vectorization factor.
454 class InnerLoopVectorizer {
455 public:
456   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
457                       LoopInfo *LI, DominatorTree *DT,
458                       const TargetLibraryInfo *TLI,
459                       const TargetTransformInfo *TTI, AssumptionCache *AC,
460                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
461                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
462                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
463                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
464       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
465         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
466         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
467         PSI(PSI), RTChecks(RTChecks) {
468     // Query this against the original loop and save it here because the profile
469     // of the original loop header may change as the transformation happens.
470     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
471         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
472   }
473 
474   virtual ~InnerLoopVectorizer() = default;
475 
476   /// Create a new empty loop that will contain vectorized instructions later
477   /// on, while the old loop will be used as the scalar remainder. Control flow
478   /// is generated around the vectorized (and scalar epilogue) loops consisting
479   /// of various checks and bypasses. Return the pre-header block of the new
480   /// loop.
481   /// In the case of epilogue vectorization, this function is overriden to
482   /// handle the more complex control flow around the loops.
483   virtual BasicBlock *createVectorizedLoopSkeleton();
484 
485   /// Widen a single instruction within the innermost loop.
486   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
487                         VPTransformState &State);
488 
489   /// Widen a single call instruction within the innermost loop.
490   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
491                             VPTransformState &State);
492 
493   /// Widen a single select instruction within the innermost loop.
494   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
495                               bool InvariantCond, VPTransformState &State);
496 
497   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
498   void fixVectorizedLoop(VPTransformState &State);
499 
500   // Return true if any runtime check is added.
501   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
502 
503   /// A type for vectorized values in the new loop. Each value from the
504   /// original loop, when vectorized, is represented by UF vector values in the
505   /// new unrolled loop, where UF is the unroll factor.
506   using VectorParts = SmallVector<Value *, 2>;
507 
508   /// Vectorize a single GetElementPtrInst based on information gathered and
509   /// decisions taken during planning.
510   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
511                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
512                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
513 
514   /// Vectorize a single PHINode in a block. This method handles the induction
515   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
516   /// arbitrary length vectors.
517   void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc,
518                            VPWidenPHIRecipe *PhiR, VPTransformState &State);
519 
520   /// A helper function to scalarize a single Instruction in the innermost loop.
521   /// Generates a sequence of scalar instances for each lane between \p MinLane
522   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
523   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
524   /// Instr's operands.
525   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
526                             const VPIteration &Instance, bool IfPredicateInstr,
527                             VPTransformState &State);
528 
529   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
530   /// is provided, the integer induction variable will first be truncated to
531   /// the corresponding type.
532   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
533                              VPValue *Def, VPValue *CastDef,
534                              VPTransformState &State);
535 
536   /// Construct the vector value of a scalarized value \p V one lane at a time.
537   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
538                                  VPTransformState &State);
539 
540   /// Try to vectorize interleaved access group \p Group with the base address
541   /// given in \p Addr, optionally masking the vector operations if \p
542   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
543   /// values in the vectorized loop.
544   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
545                                 ArrayRef<VPValue *> VPDefs,
546                                 VPTransformState &State, VPValue *Addr,
547                                 ArrayRef<VPValue *> StoredValues,
548                                 VPValue *BlockInMask = nullptr);
549 
550   /// Vectorize Load and Store instructions with the base address given in \p
551   /// Addr, optionally masking the vector operations if \p BlockInMask is
552   /// non-null. Use \p State to translate given VPValues to IR values in the
553   /// vectorized loop.
554   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
555                                   VPValue *Def, VPValue *Addr,
556                                   VPValue *StoredValue, VPValue *BlockInMask);
557 
558   /// Set the debug location in the builder using the debug location in
559   /// the instruction.
560   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
561 
562   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
563   void fixNonInductionPHIs(VPTransformState &State);
564 
565   /// Create a broadcast instruction. This method generates a broadcast
566   /// instruction (shuffle) for loop invariant values and for the induction
567   /// value. If this is the induction variable then we extend it to N, N+1, ...
568   /// this is needed because each iteration in the loop corresponds to a SIMD
569   /// element.
570   virtual Value *getBroadcastInstrs(Value *V);
571 
572 protected:
573   friend class LoopVectorizationPlanner;
574 
575   /// A small list of PHINodes.
576   using PhiVector = SmallVector<PHINode *, 4>;
577 
578   /// A type for scalarized values in the new loop. Each value from the
579   /// original loop, when scalarized, is represented by UF x VF scalar values
580   /// in the new unrolled loop, where UF is the unroll factor and VF is the
581   /// vectorization factor.
582   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
583 
584   /// Set up the values of the IVs correctly when exiting the vector loop.
585   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
586                     Value *CountRoundDown, Value *EndValue,
587                     BasicBlock *MiddleBlock);
588 
589   /// Create a new induction variable inside L.
590   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
591                                    Value *Step, Instruction *DL);
592 
593   /// Handle all cross-iteration phis in the header.
594   void fixCrossIterationPHIs(VPTransformState &State);
595 
596   /// Fix a first-order recurrence. This is the second phase of vectorizing
597   /// this phi node.
598   void fixFirstOrderRecurrence(PHINode *Phi, VPTransformState &State);
599 
600   /// Fix a reduction cross-iteration phi. This is the second phase of
601   /// vectorizing this phi node.
602   void fixReduction(VPWidenPHIRecipe *Phi, VPTransformState &State);
603 
604   /// Clear NSW/NUW flags from reduction instructions if necessary.
605   void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc,
606                                VPTransformState &State);
607 
608   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
609   /// means we need to add the appropriate incoming value from the middle
610   /// block as exiting edges from the scalar epilogue loop (if present) are
611   /// already in place, and we exit the vector loop exclusively to the middle
612   /// block.
613   void fixLCSSAPHIs(VPTransformState &State);
614 
615   /// Iteratively sink the scalarized operands of a predicated instruction into
616   /// the block that was created for it.
617   void sinkScalarOperands(Instruction *PredInst);
618 
619   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
620   /// represented as.
621   void truncateToMinimalBitwidths(VPTransformState &State);
622 
623   /// This function adds
624   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
625   /// to each vector element of Val. The sequence starts at StartIndex.
626   /// \p Opcode is relevant for FP induction variable.
627   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
628                                Instruction::BinaryOps Opcode =
629                                Instruction::BinaryOpsEnd);
630 
631   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
632   /// variable on which to base the steps, \p Step is the size of the step, and
633   /// \p EntryVal is the value from the original loop that maps to the steps.
634   /// Note that \p EntryVal doesn't have to be an induction variable - it
635   /// can also be a truncate instruction.
636   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
637                         const InductionDescriptor &ID, VPValue *Def,
638                         VPValue *CastDef, VPTransformState &State);
639 
640   /// Create a vector induction phi node based on an existing scalar one. \p
641   /// EntryVal is the value from the original loop that maps to the vector phi
642   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
643   /// truncate instruction, instead of widening the original IV, we widen a
644   /// version of the IV truncated to \p EntryVal's type.
645   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
646                                        Value *Step, Value *Start,
647                                        Instruction *EntryVal, VPValue *Def,
648                                        VPValue *CastDef,
649                                        VPTransformState &State);
650 
651   /// Returns true if an instruction \p I should be scalarized instead of
652   /// vectorized for the chosen vectorization factor.
653   bool shouldScalarizeInstruction(Instruction *I) const;
654 
655   /// Returns true if we should generate a scalar version of \p IV.
656   bool needsScalarInduction(Instruction *IV) const;
657 
658   /// If there is a cast involved in the induction variable \p ID, which should
659   /// be ignored in the vectorized loop body, this function records the
660   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
661   /// cast. We had already proved that the casted Phi is equal to the uncasted
662   /// Phi in the vectorized loop (under a runtime guard), and therefore
663   /// there is no need to vectorize the cast - the same value can be used in the
664   /// vector loop for both the Phi and the cast.
665   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
666   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
667   ///
668   /// \p EntryVal is the value from the original loop that maps to the vector
669   /// phi node and is used to distinguish what is the IV currently being
670   /// processed - original one (if \p EntryVal is a phi corresponding to the
671   /// original IV) or the "newly-created" one based on the proof mentioned above
672   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
673   /// latter case \p EntryVal is a TruncInst and we must not record anything for
674   /// that IV, but it's error-prone to expect callers of this routine to care
675   /// about that, hence this explicit parameter.
676   void recordVectorLoopValueForInductionCast(
677       const InductionDescriptor &ID, const Instruction *EntryVal,
678       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
679       unsigned Part, unsigned Lane = UINT_MAX);
680 
681   /// Generate a shuffle sequence that will reverse the vector Vec.
682   virtual Value *reverseVector(Value *Vec);
683 
684   /// Returns (and creates if needed) the original loop trip count.
685   Value *getOrCreateTripCount(Loop *NewLoop);
686 
687   /// Returns (and creates if needed) the trip count of the widened loop.
688   Value *getOrCreateVectorTripCount(Loop *NewLoop);
689 
690   /// Returns a bitcasted value to the requested vector type.
691   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
692   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
693                                 const DataLayout &DL);
694 
695   /// Emit a bypass check to see if the vector trip count is zero, including if
696   /// it overflows.
697   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
698 
699   /// Emit a bypass check to see if all of the SCEV assumptions we've
700   /// had to make are correct. Returns the block containing the checks or
701   /// nullptr if no checks have been added.
702   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
703 
704   /// Emit bypass checks to check any memory assumptions we may have made.
705   /// Returns the block containing the checks or nullptr if no checks have been
706   /// added.
707   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
708 
709   /// Compute the transformed value of Index at offset StartValue using step
710   /// StepValue.
711   /// For integer induction, returns StartValue + Index * StepValue.
712   /// For pointer induction, returns StartValue[Index * StepValue].
713   /// FIXME: The newly created binary instructions should contain nsw/nuw
714   /// flags, which can be found from the original scalar operations.
715   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
716                               const DataLayout &DL,
717                               const InductionDescriptor &ID) const;
718 
719   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
720   /// vector loop preheader, middle block and scalar preheader. Also
721   /// allocate a loop object for the new vector loop and return it.
722   Loop *createVectorLoopSkeleton(StringRef Prefix);
723 
724   /// Create new phi nodes for the induction variables to resume iteration count
725   /// in the scalar epilogue, from where the vectorized loop left off (given by
726   /// \p VectorTripCount).
727   /// In cases where the loop skeleton is more complicated (eg. epilogue
728   /// vectorization) and the resume values can come from an additional bypass
729   /// block, the \p AdditionalBypass pair provides information about the bypass
730   /// block and the end value on the edge from bypass to this loop.
731   void createInductionResumeValues(
732       Loop *L, Value *VectorTripCount,
733       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
734 
735   /// Complete the loop skeleton by adding debug MDs, creating appropriate
736   /// conditional branches in the middle block, preparing the builder and
737   /// running the verifier. Take in the vector loop \p L as argument, and return
738   /// the preheader of the completed vector loop.
739   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
740 
741   /// Add additional metadata to \p To that was not present on \p Orig.
742   ///
743   /// Currently this is used to add the noalias annotations based on the
744   /// inserted memchecks.  Use this for instructions that are *cloned* into the
745   /// vector loop.
746   void addNewMetadata(Instruction *To, const Instruction *Orig);
747 
748   /// Add metadata from one instruction to another.
749   ///
750   /// This includes both the original MDs from \p From and additional ones (\see
751   /// addNewMetadata).  Use this for *newly created* instructions in the vector
752   /// loop.
753   void addMetadata(Instruction *To, Instruction *From);
754 
755   /// Similar to the previous function but it adds the metadata to a
756   /// vector of instructions.
757   void addMetadata(ArrayRef<Value *> To, Instruction *From);
758 
759   /// Allow subclasses to override and print debug traces before/after vplan
760   /// execution, when trace information is requested.
761   virtual void printDebugTracesAtStart(){};
762   virtual void printDebugTracesAtEnd(){};
763 
764   /// The original loop.
765   Loop *OrigLoop;
766 
767   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
768   /// dynamic knowledge to simplify SCEV expressions and converts them to a
769   /// more usable form.
770   PredicatedScalarEvolution &PSE;
771 
772   /// Loop Info.
773   LoopInfo *LI;
774 
775   /// Dominator Tree.
776   DominatorTree *DT;
777 
778   /// Alias Analysis.
779   AAResults *AA;
780 
781   /// Target Library Info.
782   const TargetLibraryInfo *TLI;
783 
784   /// Target Transform Info.
785   const TargetTransformInfo *TTI;
786 
787   /// Assumption Cache.
788   AssumptionCache *AC;
789 
790   /// Interface to emit optimization remarks.
791   OptimizationRemarkEmitter *ORE;
792 
793   /// LoopVersioning.  It's only set up (non-null) if memchecks were
794   /// used.
795   ///
796   /// This is currently only used to add no-alias metadata based on the
797   /// memchecks.  The actually versioning is performed manually.
798   std::unique_ptr<LoopVersioning> LVer;
799 
800   /// The vectorization SIMD factor to use. Each vector will have this many
801   /// vector elements.
802   ElementCount VF;
803 
804   /// The vectorization unroll factor to use. Each scalar is vectorized to this
805   /// many different vector instructions.
806   unsigned UF;
807 
808   /// The builder that we use
809   IRBuilder<> Builder;
810 
811   // --- Vectorization state ---
812 
813   /// The vector-loop preheader.
814   BasicBlock *LoopVectorPreHeader;
815 
816   /// The scalar-loop preheader.
817   BasicBlock *LoopScalarPreHeader;
818 
819   /// Middle Block between the vector and the scalar.
820   BasicBlock *LoopMiddleBlock;
821 
822   /// The (unique) ExitBlock of the scalar loop.  Note that
823   /// there can be multiple exiting edges reaching this block.
824   BasicBlock *LoopExitBlock;
825 
826   /// The vector loop body.
827   BasicBlock *LoopVectorBody;
828 
829   /// The scalar loop body.
830   BasicBlock *LoopScalarBody;
831 
832   /// A list of all bypass blocks. The first block is the entry of the loop.
833   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
834 
835   /// The new Induction variable which was added to the new block.
836   PHINode *Induction = nullptr;
837 
838   /// The induction variable of the old basic block.
839   PHINode *OldInduction = nullptr;
840 
841   /// Store instructions that were predicated.
842   SmallVector<Instruction *, 4> PredicatedInstructions;
843 
844   /// Trip count of the original loop.
845   Value *TripCount = nullptr;
846 
847   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
848   Value *VectorTripCount = nullptr;
849 
850   /// The legality analysis.
851   LoopVectorizationLegality *Legal;
852 
853   /// The profitablity analysis.
854   LoopVectorizationCostModel *Cost;
855 
856   // Record whether runtime checks are added.
857   bool AddedSafetyChecks = false;
858 
859   // Holds the end values for each induction variable. We save the end values
860   // so we can later fix-up the external users of the induction variables.
861   DenseMap<PHINode *, Value *> IVEndValues;
862 
863   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
864   // fixed up at the end of vector code generation.
865   SmallVector<PHINode *, 8> OrigPHIsToFix;
866 
867   /// BFI and PSI are used to check for profile guided size optimizations.
868   BlockFrequencyInfo *BFI;
869   ProfileSummaryInfo *PSI;
870 
871   // Whether this loop should be optimized for size based on profile guided size
872   // optimizatios.
873   bool OptForSizeBasedOnProfile;
874 
875   /// Structure to hold information about generated runtime checks, responsible
876   /// for cleaning the checks, if vectorization turns out unprofitable.
877   GeneratedRTChecks &RTChecks;
878 };
879 
880 class InnerLoopUnroller : public InnerLoopVectorizer {
881 public:
882   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
883                     LoopInfo *LI, DominatorTree *DT,
884                     const TargetLibraryInfo *TLI,
885                     const TargetTransformInfo *TTI, AssumptionCache *AC,
886                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
887                     LoopVectorizationLegality *LVL,
888                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
889                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
890       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
891                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
892                             BFI, PSI, Check) {}
893 
894 private:
895   Value *getBroadcastInstrs(Value *V) override;
896   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
897                        Instruction::BinaryOps Opcode =
898                        Instruction::BinaryOpsEnd) override;
899   Value *reverseVector(Value *Vec) override;
900 };
901 
902 /// Encapsulate information regarding vectorization of a loop and its epilogue.
903 /// This information is meant to be updated and used across two stages of
904 /// epilogue vectorization.
905 struct EpilogueLoopVectorizationInfo {
906   ElementCount MainLoopVF = ElementCount::getFixed(0);
907   unsigned MainLoopUF = 0;
908   ElementCount EpilogueVF = ElementCount::getFixed(0);
909   unsigned EpilogueUF = 0;
910   BasicBlock *MainLoopIterationCountCheck = nullptr;
911   BasicBlock *EpilogueIterationCountCheck = nullptr;
912   BasicBlock *SCEVSafetyCheck = nullptr;
913   BasicBlock *MemSafetyCheck = nullptr;
914   Value *TripCount = nullptr;
915   Value *VectorTripCount = nullptr;
916 
917   EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF,
918                                 unsigned EUF)
919       : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF),
920         EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) {
921     assert(EUF == 1 &&
922            "A high UF for the epilogue loop is likely not beneficial.");
923   }
924 };
925 
926 /// An extension of the inner loop vectorizer that creates a skeleton for a
927 /// vectorized loop that has its epilogue (residual) also vectorized.
928 /// The idea is to run the vplan on a given loop twice, firstly to setup the
929 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
930 /// from the first step and vectorize the epilogue.  This is achieved by
931 /// deriving two concrete strategy classes from this base class and invoking
932 /// them in succession from the loop vectorizer planner.
933 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
934 public:
935   InnerLoopAndEpilogueVectorizer(
936       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
937       DominatorTree *DT, const TargetLibraryInfo *TLI,
938       const TargetTransformInfo *TTI, AssumptionCache *AC,
939       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
940       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
941       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
942       GeneratedRTChecks &Checks)
943       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
944                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
945                             Checks),
946         EPI(EPI) {}
947 
948   // Override this function to handle the more complex control flow around the
949   // three loops.
950   BasicBlock *createVectorizedLoopSkeleton() final override {
951     return createEpilogueVectorizedLoopSkeleton();
952   }
953 
954   /// The interface for creating a vectorized skeleton using one of two
955   /// different strategies, each corresponding to one execution of the vplan
956   /// as described above.
957   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
958 
959   /// Holds and updates state information required to vectorize the main loop
960   /// and its epilogue in two separate passes. This setup helps us avoid
961   /// regenerating and recomputing runtime safety checks. It also helps us to
962   /// shorten the iteration-count-check path length for the cases where the
963   /// iteration count of the loop is so small that the main vector loop is
964   /// completely skipped.
965   EpilogueLoopVectorizationInfo &EPI;
966 };
967 
968 /// A specialized derived class of inner loop vectorizer that performs
969 /// vectorization of *main* loops in the process of vectorizing loops and their
970 /// epilogues.
971 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
972 public:
973   EpilogueVectorizerMainLoop(
974       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
975       DominatorTree *DT, const TargetLibraryInfo *TLI,
976       const TargetTransformInfo *TTI, AssumptionCache *AC,
977       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
978       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
979       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
980       GeneratedRTChecks &Check)
981       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
982                                        EPI, LVL, CM, BFI, PSI, Check) {}
983   /// Implements the interface for creating a vectorized skeleton using the
984   /// *main loop* strategy (ie the first pass of vplan execution).
985   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
986 
987 protected:
988   /// Emits an iteration count bypass check once for the main loop (when \p
989   /// ForEpilogue is false) and once for the epilogue loop (when \p
990   /// ForEpilogue is true).
991   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
992                                              bool ForEpilogue);
993   void printDebugTracesAtStart() override;
994   void printDebugTracesAtEnd() override;
995 };
996 
997 // A specialized derived class of inner loop vectorizer that performs
998 // vectorization of *epilogue* loops in the process of vectorizing loops and
999 // their epilogues.
1000 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
1001 public:
1002   EpilogueVectorizerEpilogueLoop(
1003       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
1004       DominatorTree *DT, const TargetLibraryInfo *TLI,
1005       const TargetTransformInfo *TTI, AssumptionCache *AC,
1006       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1007       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1008       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1009       GeneratedRTChecks &Checks)
1010       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1011                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1012   /// Implements the interface for creating a vectorized skeleton using the
1013   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1014   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1015 
1016 protected:
1017   /// Emits an iteration count bypass check after the main vector loop has
1018   /// finished to see if there are any iterations left to execute by either
1019   /// the vector epilogue or the scalar epilogue.
1020   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1021                                                       BasicBlock *Bypass,
1022                                                       BasicBlock *Insert);
1023   void printDebugTracesAtStart() override;
1024   void printDebugTracesAtEnd() override;
1025 };
1026 } // end namespace llvm
1027 
1028 /// Look for a meaningful debug location on the instruction or it's
1029 /// operands.
1030 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1031   if (!I)
1032     return I;
1033 
1034   DebugLoc Empty;
1035   if (I->getDebugLoc() != Empty)
1036     return I;
1037 
1038   for (Use &Op : I->operands()) {
1039     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1040       if (OpInst->getDebugLoc() != Empty)
1041         return OpInst;
1042   }
1043 
1044   return I;
1045 }
1046 
1047 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
1048   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
1049     const DILocation *DIL = Inst->getDebugLoc();
1050     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1051         !isa<DbgInfoIntrinsic>(Inst)) {
1052       assert(!VF.isScalable() && "scalable vectors not yet supported.");
1053       auto NewDIL =
1054           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1055       if (NewDIL)
1056         B.SetCurrentDebugLocation(NewDIL.getValue());
1057       else
1058         LLVM_DEBUG(dbgs()
1059                    << "Failed to create new discriminator: "
1060                    << DIL->getFilename() << " Line: " << DIL->getLine());
1061     }
1062     else
1063       B.SetCurrentDebugLocation(DIL);
1064   } else
1065     B.SetCurrentDebugLocation(DebugLoc());
1066 }
1067 
1068 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1069 /// is passed, the message relates to that particular instruction.
1070 #ifndef NDEBUG
1071 static void debugVectorizationMessage(const StringRef Prefix,
1072                                       const StringRef DebugMsg,
1073                                       Instruction *I) {
1074   dbgs() << "LV: " << Prefix << DebugMsg;
1075   if (I != nullptr)
1076     dbgs() << " " << *I;
1077   else
1078     dbgs() << '.';
1079   dbgs() << '\n';
1080 }
1081 #endif
1082 
1083 /// Create an analysis remark that explains why vectorization failed
1084 ///
1085 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1086 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1087 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1088 /// the location of the remark.  \return the remark object that can be
1089 /// streamed to.
1090 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1091     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1092   Value *CodeRegion = TheLoop->getHeader();
1093   DebugLoc DL = TheLoop->getStartLoc();
1094 
1095   if (I) {
1096     CodeRegion = I->getParent();
1097     // If there is no debug location attached to the instruction, revert back to
1098     // using the loop's.
1099     if (I->getDebugLoc())
1100       DL = I->getDebugLoc();
1101   }
1102 
1103   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1104 }
1105 
1106 /// Return a value for Step multiplied by VF.
1107 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1108   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1109   Constant *StepVal = ConstantInt::get(
1110       Step->getType(),
1111       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1112   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1113 }
1114 
1115 namespace llvm {
1116 
1117 /// Return the runtime value for VF.
1118 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1119   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1120   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1121 }
1122 
1123 void reportVectorizationFailure(const StringRef DebugMsg,
1124                                 const StringRef OREMsg, const StringRef ORETag,
1125                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1126                                 Instruction *I) {
1127   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1128   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1129   ORE->emit(
1130       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1131       << "loop not vectorized: " << OREMsg);
1132 }
1133 
1134 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1135                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1136                              Instruction *I) {
1137   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1138   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1139   ORE->emit(
1140       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1141       << Msg);
1142 }
1143 
1144 } // end namespace llvm
1145 
1146 #ifndef NDEBUG
1147 /// \return string containing a file name and a line # for the given loop.
1148 static std::string getDebugLocString(const Loop *L) {
1149   std::string Result;
1150   if (L) {
1151     raw_string_ostream OS(Result);
1152     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1153       LoopDbgLoc.print(OS);
1154     else
1155       // Just print the module name.
1156       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1157     OS.flush();
1158   }
1159   return Result;
1160 }
1161 #endif
1162 
1163 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1164                                          const Instruction *Orig) {
1165   // If the loop was versioned with memchecks, add the corresponding no-alias
1166   // metadata.
1167   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1168     LVer->annotateInstWithNoAlias(To, Orig);
1169 }
1170 
1171 void InnerLoopVectorizer::addMetadata(Instruction *To,
1172                                       Instruction *From) {
1173   propagateMetadata(To, From);
1174   addNewMetadata(To, From);
1175 }
1176 
1177 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1178                                       Instruction *From) {
1179   for (Value *V : To) {
1180     if (Instruction *I = dyn_cast<Instruction>(V))
1181       addMetadata(I, From);
1182   }
1183 }
1184 
1185 namespace llvm {
1186 
1187 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1188 // lowered.
1189 enum ScalarEpilogueLowering {
1190 
1191   // The default: allowing scalar epilogues.
1192   CM_ScalarEpilogueAllowed,
1193 
1194   // Vectorization with OptForSize: don't allow epilogues.
1195   CM_ScalarEpilogueNotAllowedOptSize,
1196 
1197   // A special case of vectorisation with OptForSize: loops with a very small
1198   // trip count are considered for vectorization under OptForSize, thereby
1199   // making sure the cost of their loop body is dominant, free of runtime
1200   // guards and scalar iteration overheads.
1201   CM_ScalarEpilogueNotAllowedLowTripLoop,
1202 
1203   // Loop hint predicate indicating an epilogue is undesired.
1204   CM_ScalarEpilogueNotNeededUsePredicate,
1205 
1206   // Directive indicating we must either tail fold or not vectorize
1207   CM_ScalarEpilogueNotAllowedUsePredicate
1208 };
1209 
1210 /// LoopVectorizationCostModel - estimates the expected speedups due to
1211 /// vectorization.
1212 /// In many cases vectorization is not profitable. This can happen because of
1213 /// a number of reasons. In this class we mainly attempt to predict the
1214 /// expected speedup/slowdowns due to the supported instruction set. We use the
1215 /// TargetTransformInfo to query the different backends for the cost of
1216 /// different operations.
1217 class LoopVectorizationCostModel {
1218 public:
1219   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1220                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1221                              LoopVectorizationLegality *Legal,
1222                              const TargetTransformInfo &TTI,
1223                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1224                              AssumptionCache *AC,
1225                              OptimizationRemarkEmitter *ORE, const Function *F,
1226                              const LoopVectorizeHints *Hints,
1227                              InterleavedAccessInfo &IAI)
1228       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1229         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1230         Hints(Hints), InterleaveInfo(IAI) {}
1231 
1232   /// \return An upper bound for the vectorization factor, or None if
1233   /// vectorization and interleaving should be avoided up front.
1234   Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC);
1235 
1236   /// \return True if runtime checks are required for vectorization, and false
1237   /// otherwise.
1238   bool runtimeChecksRequired();
1239 
1240   /// \return The most profitable vectorization factor and the cost of that VF.
1241   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
1242   /// then this vectorization factor will be selected if vectorization is
1243   /// possible.
1244   VectorizationFactor selectVectorizationFactor(ElementCount MaxVF);
1245   VectorizationFactor
1246   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1247                                     const LoopVectorizationPlanner &LVP);
1248 
1249   /// Setup cost-based decisions for user vectorization factor.
1250   void selectUserVectorizationFactor(ElementCount UserVF) {
1251     collectUniformsAndScalars(UserVF);
1252     collectInstsToScalarize(UserVF);
1253   }
1254 
1255   /// \return The size (in bits) of the smallest and widest types in the code
1256   /// that needs to be vectorized. We ignore values that remain scalar such as
1257   /// 64 bit loop indices.
1258   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1259 
1260   /// \return The desired interleave count.
1261   /// If interleave count has been specified by metadata it will be returned.
1262   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1263   /// are the selected vectorization factor and the cost of the selected VF.
1264   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1265 
1266   /// Memory access instruction may be vectorized in more than one way.
1267   /// Form of instruction after vectorization depends on cost.
1268   /// This function takes cost-based decisions for Load/Store instructions
1269   /// and collects them in a map. This decisions map is used for building
1270   /// the lists of loop-uniform and loop-scalar instructions.
1271   /// The calculated cost is saved with widening decision in order to
1272   /// avoid redundant calculations.
1273   void setCostBasedWideningDecision(ElementCount VF);
1274 
1275   /// A struct that represents some properties of the register usage
1276   /// of a loop.
1277   struct RegisterUsage {
1278     /// Holds the number of loop invariant values that are used in the loop.
1279     /// The key is ClassID of target-provided register class.
1280     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1281     /// Holds the maximum number of concurrent live intervals in the loop.
1282     /// The key is ClassID of target-provided register class.
1283     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1284   };
1285 
1286   /// \return Returns information about the register usages of the loop for the
1287   /// given vectorization factors.
1288   SmallVector<RegisterUsage, 8>
1289   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1290 
1291   /// Collect values we want to ignore in the cost model.
1292   void collectValuesToIgnore();
1293 
1294   /// Split reductions into those that happen in the loop, and those that happen
1295   /// outside. In loop reductions are collected into InLoopReductionChains.
1296   void collectInLoopReductions();
1297 
1298   /// \returns The smallest bitwidth each instruction can be represented with.
1299   /// The vector equivalents of these instructions should be truncated to this
1300   /// type.
1301   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1302     return MinBWs;
1303   }
1304 
1305   /// \returns True if it is more profitable to scalarize instruction \p I for
1306   /// vectorization factor \p VF.
1307   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1308     assert(VF.isVector() &&
1309            "Profitable to scalarize relevant only for VF > 1.");
1310 
1311     // Cost model is not run in the VPlan-native path - return conservative
1312     // result until this changes.
1313     if (EnableVPlanNativePath)
1314       return false;
1315 
1316     auto Scalars = InstsToScalarize.find(VF);
1317     assert(Scalars != InstsToScalarize.end() &&
1318            "VF not yet analyzed for scalarization profitability");
1319     return Scalars->second.find(I) != Scalars->second.end();
1320   }
1321 
1322   /// Returns true if \p I is known to be uniform after vectorization.
1323   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1324     if (VF.isScalar())
1325       return true;
1326 
1327     // Cost model is not run in the VPlan-native path - return conservative
1328     // result until this changes.
1329     if (EnableVPlanNativePath)
1330       return false;
1331 
1332     auto UniformsPerVF = Uniforms.find(VF);
1333     assert(UniformsPerVF != Uniforms.end() &&
1334            "VF not yet analyzed for uniformity");
1335     return UniformsPerVF->second.count(I);
1336   }
1337 
1338   /// Returns true if \p I is known to be scalar after vectorization.
1339   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1340     if (VF.isScalar())
1341       return true;
1342 
1343     // Cost model is not run in the VPlan-native path - return conservative
1344     // result until this changes.
1345     if (EnableVPlanNativePath)
1346       return false;
1347 
1348     auto ScalarsPerVF = Scalars.find(VF);
1349     assert(ScalarsPerVF != Scalars.end() &&
1350            "Scalar values are not calculated for VF");
1351     return ScalarsPerVF->second.count(I);
1352   }
1353 
1354   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1355   /// for vectorization factor \p VF.
1356   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1357     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1358            !isProfitableToScalarize(I, VF) &&
1359            !isScalarAfterVectorization(I, VF);
1360   }
1361 
1362   /// Decision that was taken during cost calculation for memory instruction.
1363   enum InstWidening {
1364     CM_Unknown,
1365     CM_Widen,         // For consecutive accesses with stride +1.
1366     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1367     CM_Interleave,
1368     CM_GatherScatter,
1369     CM_Scalarize
1370   };
1371 
1372   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1373   /// instruction \p I and vector width \p VF.
1374   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1375                            InstructionCost Cost) {
1376     assert(VF.isVector() && "Expected VF >=2");
1377     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1378   }
1379 
1380   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1381   /// interleaving group \p Grp and vector width \p VF.
1382   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1383                            ElementCount VF, InstWidening W,
1384                            InstructionCost Cost) {
1385     assert(VF.isVector() && "Expected VF >=2");
1386     /// Broadcast this decicion to all instructions inside the group.
1387     /// But the cost will be assigned to one instruction only.
1388     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1389       if (auto *I = Grp->getMember(i)) {
1390         if (Grp->getInsertPos() == I)
1391           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1392         else
1393           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1394       }
1395     }
1396   }
1397 
1398   /// Return the cost model decision for the given instruction \p I and vector
1399   /// width \p VF. Return CM_Unknown if this instruction did not pass
1400   /// through the cost modeling.
1401   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1402     assert(VF.isVector() && "Expected VF to be a vector VF");
1403     // Cost model is not run in the VPlan-native path - return conservative
1404     // result until this changes.
1405     if (EnableVPlanNativePath)
1406       return CM_GatherScatter;
1407 
1408     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1409     auto Itr = WideningDecisions.find(InstOnVF);
1410     if (Itr == WideningDecisions.end())
1411       return CM_Unknown;
1412     return Itr->second.first;
1413   }
1414 
1415   /// Return the vectorization cost for the given instruction \p I and vector
1416   /// width \p VF.
1417   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1418     assert(VF.isVector() && "Expected VF >=2");
1419     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1420     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1421            "The cost is not calculated");
1422     return WideningDecisions[InstOnVF].second;
1423   }
1424 
1425   /// Return True if instruction \p I is an optimizable truncate whose operand
1426   /// is an induction variable. Such a truncate will be removed by adding a new
1427   /// induction variable with the destination type.
1428   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1429     // If the instruction is not a truncate, return false.
1430     auto *Trunc = dyn_cast<TruncInst>(I);
1431     if (!Trunc)
1432       return false;
1433 
1434     // Get the source and destination types of the truncate.
1435     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1436     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1437 
1438     // If the truncate is free for the given types, return false. Replacing a
1439     // free truncate with an induction variable would add an induction variable
1440     // update instruction to each iteration of the loop. We exclude from this
1441     // check the primary induction variable since it will need an update
1442     // instruction regardless.
1443     Value *Op = Trunc->getOperand(0);
1444     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1445       return false;
1446 
1447     // If the truncated value is not an induction variable, return false.
1448     return Legal->isInductionPhi(Op);
1449   }
1450 
1451   /// Collects the instructions to scalarize for each predicated instruction in
1452   /// the loop.
1453   void collectInstsToScalarize(ElementCount VF);
1454 
1455   /// Collect Uniform and Scalar values for the given \p VF.
1456   /// The sets depend on CM decision for Load/Store instructions
1457   /// that may be vectorized as interleave, gather-scatter or scalarized.
1458   void collectUniformsAndScalars(ElementCount VF) {
1459     // Do the analysis once.
1460     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1461       return;
1462     setCostBasedWideningDecision(VF);
1463     collectLoopUniforms(VF);
1464     collectLoopScalars(VF);
1465   }
1466 
1467   /// Returns true if the target machine supports masked store operation
1468   /// for the given \p DataType and kind of access to \p Ptr.
1469   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1470     return Legal->isConsecutivePtr(Ptr) &&
1471            TTI.isLegalMaskedStore(DataType, Alignment);
1472   }
1473 
1474   /// Returns true if the target machine supports masked load operation
1475   /// for the given \p DataType and kind of access to \p Ptr.
1476   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1477     return Legal->isConsecutivePtr(Ptr) &&
1478            TTI.isLegalMaskedLoad(DataType, Alignment);
1479   }
1480 
1481   /// Returns true if the target machine supports masked scatter operation
1482   /// for the given \p DataType.
1483   bool isLegalMaskedScatter(Type *DataType, Align Alignment) const {
1484     return TTI.isLegalMaskedScatter(DataType, Alignment);
1485   }
1486 
1487   /// Returns true if the target machine supports masked gather operation
1488   /// for the given \p DataType.
1489   bool isLegalMaskedGather(Type *DataType, Align Alignment) const {
1490     return TTI.isLegalMaskedGather(DataType, Alignment);
1491   }
1492 
1493   /// Returns true if the target machine can represent \p V as a masked gather
1494   /// or scatter operation.
1495   bool isLegalGatherOrScatter(Value *V) {
1496     bool LI = isa<LoadInst>(V);
1497     bool SI = isa<StoreInst>(V);
1498     if (!LI && !SI)
1499       return false;
1500     auto *Ty = getMemInstValueType(V);
1501     Align Align = getLoadStoreAlignment(V);
1502     return (LI && isLegalMaskedGather(Ty, Align)) ||
1503            (SI && isLegalMaskedScatter(Ty, Align));
1504   }
1505 
1506   /// Returns true if the target machine supports all of the reduction
1507   /// variables found for the given VF.
1508   bool canVectorizeReductions(ElementCount VF) {
1509     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1510       RecurrenceDescriptor RdxDesc = Reduction.second;
1511       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1512     }));
1513   }
1514 
1515   /// Returns true if \p I is an instruction that will be scalarized with
1516   /// predication. Such instructions include conditional stores and
1517   /// instructions that may divide by zero.
1518   /// If a non-zero VF has been calculated, we check if I will be scalarized
1519   /// predication for that VF.
1520   bool
1521   isScalarWithPredication(Instruction *I,
1522                           ElementCount VF = ElementCount::getFixed(1)) const;
1523 
1524   // Returns true if \p I is an instruction that will be predicated either
1525   // through scalar predication or masked load/store or masked gather/scatter.
1526   // Superset of instructions that return true for isScalarWithPredication.
1527   bool isPredicatedInst(Instruction *I, ElementCount VF) {
1528     if (!blockNeedsPredication(I->getParent()))
1529       return false;
1530     // Loads and stores that need some form of masked operation are predicated
1531     // instructions.
1532     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1533       return Legal->isMaskRequired(I);
1534     return isScalarWithPredication(I, VF);
1535   }
1536 
1537   /// Returns true if \p I is a memory instruction with consecutive memory
1538   /// access that can be widened.
1539   bool
1540   memoryInstructionCanBeWidened(Instruction *I,
1541                                 ElementCount VF = ElementCount::getFixed(1));
1542 
1543   /// Returns true if \p I is a memory instruction in an interleaved-group
1544   /// of memory accesses that can be vectorized with wide vector loads/stores
1545   /// and shuffles.
1546   bool
1547   interleavedAccessCanBeWidened(Instruction *I,
1548                                 ElementCount VF = ElementCount::getFixed(1));
1549 
1550   /// Check if \p Instr belongs to any interleaved access group.
1551   bool isAccessInterleaved(Instruction *Instr) {
1552     return InterleaveInfo.isInterleaved(Instr);
1553   }
1554 
1555   /// Get the interleaved access group that \p Instr belongs to.
1556   const InterleaveGroup<Instruction> *
1557   getInterleavedAccessGroup(Instruction *Instr) {
1558     return InterleaveInfo.getInterleaveGroup(Instr);
1559   }
1560 
1561   /// Returns true if we're required to use a scalar epilogue for at least
1562   /// the final iteration of the original loop.
1563   bool requiresScalarEpilogue() const {
1564     if (!isScalarEpilogueAllowed())
1565       return false;
1566     // If we might exit from anywhere but the latch, must run the exiting
1567     // iteration in scalar form.
1568     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1569       return true;
1570     return InterleaveInfo.requiresScalarEpilogue();
1571   }
1572 
1573   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1574   /// loop hint annotation.
1575   bool isScalarEpilogueAllowed() const {
1576     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1577   }
1578 
1579   /// Returns true if all loop blocks should be masked to fold tail loop.
1580   bool foldTailByMasking() const { return FoldTailByMasking; }
1581 
1582   bool blockNeedsPredication(BasicBlock *BB) const {
1583     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1584   }
1585 
1586   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1587   /// nodes to the chain of instructions representing the reductions. Uses a
1588   /// MapVector to ensure deterministic iteration order.
1589   using ReductionChainMap =
1590       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1591 
1592   /// Return the chain of instructions representing an inloop reduction.
1593   const ReductionChainMap &getInLoopReductionChains() const {
1594     return InLoopReductionChains;
1595   }
1596 
1597   /// Returns true if the Phi is part of an inloop reduction.
1598   bool isInLoopReduction(PHINode *Phi) const {
1599     return InLoopReductionChains.count(Phi);
1600   }
1601 
1602   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1603   /// with factor VF.  Return the cost of the instruction, including
1604   /// scalarization overhead if it's needed.
1605   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1606 
1607   /// Estimate cost of a call instruction CI if it were vectorized with factor
1608   /// VF. Return the cost of the instruction, including scalarization overhead
1609   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1610   /// scalarized -
1611   /// i.e. either vector version isn't available, or is too expensive.
1612   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1613                                     bool &NeedToScalarize) const;
1614 
1615   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1616   /// that of B.
1617   bool isMoreProfitable(const VectorizationFactor &A,
1618                         const VectorizationFactor &B) const;
1619 
1620   /// Invalidates decisions already taken by the cost model.
1621   void invalidateCostModelingDecisions() {
1622     WideningDecisions.clear();
1623     Uniforms.clear();
1624     Scalars.clear();
1625   }
1626 
1627 private:
1628   unsigned NumPredStores = 0;
1629 
1630   /// \return An upper bound for the vectorization factor, a power-of-2 larger
1631   /// than zero. One is returned if vectorization should best be avoided due
1632   /// to cost.
1633   ElementCount computeFeasibleMaxVF(unsigned ConstTripCount,
1634                                     ElementCount UserVF);
1635 
1636   /// \return the maximized element count based on the targets vector
1637   /// registers and the loop trip-count, but limited to a maximum safe VF.
1638   /// This is a helper function of computeFeasibleMaxVF.
1639   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1640   /// issue that occurred on one of the buildbots which cannot be reproduced
1641   /// without having access to the properietary compiler (see comments on
1642   /// D98509). The issue is currently under investigation and this workaround
1643   /// will be removed as soon as possible.
1644   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1645                                        unsigned SmallestType,
1646                                        unsigned WidestType,
1647                                        const ElementCount &MaxSafeVF);
1648 
1649   /// \return the maximum legal scalable VF, based on the safe max number
1650   /// of elements.
1651   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1652 
1653   /// The vectorization cost is a combination of the cost itself and a boolean
1654   /// indicating whether any of the contributing operations will actually
1655   /// operate on
1656   /// vector values after type legalization in the backend. If this latter value
1657   /// is
1658   /// false, then all operations will be scalarized (i.e. no vectorization has
1659   /// actually taken place).
1660   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1661 
1662   /// Returns the expected execution cost. The unit of the cost does
1663   /// not matter because we use the 'cost' units to compare different
1664   /// vector widths. The cost that is returned is *not* normalized by
1665   /// the factor width.
1666   VectorizationCostTy expectedCost(ElementCount VF);
1667 
1668   /// Returns the execution time cost of an instruction for a given vector
1669   /// width. Vector width of one means scalar.
1670   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1671 
1672   /// The cost-computation logic from getInstructionCost which provides
1673   /// the vector type as an output parameter.
1674   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1675                                      Type *&VectorTy);
1676 
1677   /// Return the cost of instructions in an inloop reduction pattern, if I is
1678   /// part of that pattern.
1679   InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF,
1680                                           Type *VectorTy,
1681                                           TTI::TargetCostKind CostKind);
1682 
1683   /// Calculate vectorization cost of memory instruction \p I.
1684   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1685 
1686   /// The cost computation for scalarized memory instruction.
1687   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1688 
1689   /// The cost computation for interleaving group of memory instructions.
1690   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1691 
1692   /// The cost computation for Gather/Scatter instruction.
1693   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1694 
1695   /// The cost computation for widening instruction \p I with consecutive
1696   /// memory access.
1697   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1698 
1699   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1700   /// Load: scalar load + broadcast.
1701   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1702   /// element)
1703   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1704 
1705   /// Estimate the overhead of scalarizing an instruction. This is a
1706   /// convenience wrapper for the type-based getScalarizationOverhead API.
1707   InstructionCost getScalarizationOverhead(Instruction *I,
1708                                            ElementCount VF) const;
1709 
1710   /// Returns whether the instruction is a load or store and will be a emitted
1711   /// as a vector operation.
1712   bool isConsecutiveLoadOrStore(Instruction *I);
1713 
1714   /// Returns true if an artificially high cost for emulated masked memrefs
1715   /// should be used.
1716   bool useEmulatedMaskMemRefHack(Instruction *I);
1717 
1718   /// Map of scalar integer values to the smallest bitwidth they can be legally
1719   /// represented as. The vector equivalents of these values should be truncated
1720   /// to this type.
1721   MapVector<Instruction *, uint64_t> MinBWs;
1722 
1723   /// A type representing the costs for instructions if they were to be
1724   /// scalarized rather than vectorized. The entries are Instruction-Cost
1725   /// pairs.
1726   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1727 
1728   /// A set containing all BasicBlocks that are known to present after
1729   /// vectorization as a predicated block.
1730   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1731 
1732   /// Records whether it is allowed to have the original scalar loop execute at
1733   /// least once. This may be needed as a fallback loop in case runtime
1734   /// aliasing/dependence checks fail, or to handle the tail/remainder
1735   /// iterations when the trip count is unknown or doesn't divide by the VF,
1736   /// or as a peel-loop to handle gaps in interleave-groups.
1737   /// Under optsize and when the trip count is very small we don't allow any
1738   /// iterations to execute in the scalar loop.
1739   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1740 
1741   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1742   bool FoldTailByMasking = false;
1743 
1744   /// A map holding scalar costs for different vectorization factors. The
1745   /// presence of a cost for an instruction in the mapping indicates that the
1746   /// instruction will be scalarized when vectorizing with the associated
1747   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1748   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1749 
1750   /// Holds the instructions known to be uniform after vectorization.
1751   /// The data is collected per VF.
1752   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1753 
1754   /// Holds the instructions known to be scalar after vectorization.
1755   /// The data is collected per VF.
1756   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1757 
1758   /// Holds the instructions (address computations) that are forced to be
1759   /// scalarized.
1760   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1761 
1762   /// PHINodes of the reductions that should be expanded in-loop along with
1763   /// their associated chains of reduction operations, in program order from top
1764   /// (PHI) to bottom
1765   ReductionChainMap InLoopReductionChains;
1766 
1767   /// A Map of inloop reduction operations and their immediate chain operand.
1768   /// FIXME: This can be removed once reductions can be costed correctly in
1769   /// vplan. This was added to allow quick lookup to the inloop operations,
1770   /// without having to loop through InLoopReductionChains.
1771   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1772 
1773   /// Returns the expected difference in cost from scalarizing the expression
1774   /// feeding a predicated instruction \p PredInst. The instructions to
1775   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1776   /// non-negative return value implies the expression will be scalarized.
1777   /// Currently, only single-use chains are considered for scalarization.
1778   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1779                               ElementCount VF);
1780 
1781   /// Collect the instructions that are uniform after vectorization. An
1782   /// instruction is uniform if we represent it with a single scalar value in
1783   /// the vectorized loop corresponding to each vector iteration. Examples of
1784   /// uniform instructions include pointer operands of consecutive or
1785   /// interleaved memory accesses. Note that although uniformity implies an
1786   /// instruction will be scalar, the reverse is not true. In general, a
1787   /// scalarized instruction will be represented by VF scalar values in the
1788   /// vectorized loop, each corresponding to an iteration of the original
1789   /// scalar loop.
1790   void collectLoopUniforms(ElementCount VF);
1791 
1792   /// Collect the instructions that are scalar after vectorization. An
1793   /// instruction is scalar if it is known to be uniform or will be scalarized
1794   /// during vectorization. Non-uniform scalarized instructions will be
1795   /// represented by VF values in the vectorized loop, each corresponding to an
1796   /// iteration of the original scalar loop.
1797   void collectLoopScalars(ElementCount VF);
1798 
1799   /// Keeps cost model vectorization decision and cost for instructions.
1800   /// Right now it is used for memory instructions only.
1801   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1802                                 std::pair<InstWidening, InstructionCost>>;
1803 
1804   DecisionList WideningDecisions;
1805 
1806   /// Returns true if \p V is expected to be vectorized and it needs to be
1807   /// extracted.
1808   bool needsExtract(Value *V, ElementCount VF) const {
1809     Instruction *I = dyn_cast<Instruction>(V);
1810     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1811         TheLoop->isLoopInvariant(I))
1812       return false;
1813 
1814     // Assume we can vectorize V (and hence we need extraction) if the
1815     // scalars are not computed yet. This can happen, because it is called
1816     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1817     // the scalars are collected. That should be a safe assumption in most
1818     // cases, because we check if the operands have vectorizable types
1819     // beforehand in LoopVectorizationLegality.
1820     return Scalars.find(VF) == Scalars.end() ||
1821            !isScalarAfterVectorization(I, VF);
1822   };
1823 
1824   /// Returns a range containing only operands needing to be extracted.
1825   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1826                                                    ElementCount VF) const {
1827     return SmallVector<Value *, 4>(make_filter_range(
1828         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1829   }
1830 
1831   /// Determines if we have the infrastructure to vectorize loop \p L and its
1832   /// epilogue, assuming the main loop is vectorized by \p VF.
1833   bool isCandidateForEpilogueVectorization(const Loop &L,
1834                                            const ElementCount VF) const;
1835 
1836   /// Returns true if epilogue vectorization is considered profitable, and
1837   /// false otherwise.
1838   /// \p VF is the vectorization factor chosen for the original loop.
1839   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1840 
1841 public:
1842   /// The loop that we evaluate.
1843   Loop *TheLoop;
1844 
1845   /// Predicated scalar evolution analysis.
1846   PredicatedScalarEvolution &PSE;
1847 
1848   /// Loop Info analysis.
1849   LoopInfo *LI;
1850 
1851   /// Vectorization legality.
1852   LoopVectorizationLegality *Legal;
1853 
1854   /// Vector target information.
1855   const TargetTransformInfo &TTI;
1856 
1857   /// Target Library Info.
1858   const TargetLibraryInfo *TLI;
1859 
1860   /// Demanded bits analysis.
1861   DemandedBits *DB;
1862 
1863   /// Assumption cache.
1864   AssumptionCache *AC;
1865 
1866   /// Interface to emit optimization remarks.
1867   OptimizationRemarkEmitter *ORE;
1868 
1869   const Function *TheFunction;
1870 
1871   /// Loop Vectorize Hint.
1872   const LoopVectorizeHints *Hints;
1873 
1874   /// The interleave access information contains groups of interleaved accesses
1875   /// with the same stride and close to each other.
1876   InterleavedAccessInfo &InterleaveInfo;
1877 
1878   /// Values to ignore in the cost model.
1879   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1880 
1881   /// Values to ignore in the cost model when VF > 1.
1882   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1883 
1884   /// Profitable vector factors.
1885   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1886 };
1887 } // end namespace llvm
1888 
1889 /// Helper struct to manage generating runtime checks for vectorization.
1890 ///
1891 /// The runtime checks are created up-front in temporary blocks to allow better
1892 /// estimating the cost and un-linked from the existing IR. After deciding to
1893 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1894 /// temporary blocks are completely removed.
1895 class GeneratedRTChecks {
1896   /// Basic block which contains the generated SCEV checks, if any.
1897   BasicBlock *SCEVCheckBlock = nullptr;
1898 
1899   /// The value representing the result of the generated SCEV checks. If it is
1900   /// nullptr, either no SCEV checks have been generated or they have been used.
1901   Value *SCEVCheckCond = nullptr;
1902 
1903   /// Basic block which contains the generated memory runtime checks, if any.
1904   BasicBlock *MemCheckBlock = nullptr;
1905 
1906   /// The value representing the result of the generated memory runtime checks.
1907   /// If it is nullptr, either no memory runtime checks have been generated or
1908   /// they have been used.
1909   Instruction *MemRuntimeCheckCond = nullptr;
1910 
1911   DominatorTree *DT;
1912   LoopInfo *LI;
1913 
1914   SCEVExpander SCEVExp;
1915   SCEVExpander MemCheckExp;
1916 
1917 public:
1918   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1919                     const DataLayout &DL)
1920       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1921         MemCheckExp(SE, DL, "scev.check") {}
1922 
1923   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1924   /// accurately estimate the cost of the runtime checks. The blocks are
1925   /// un-linked from the IR and is added back during vector code generation. If
1926   /// there is no vector code generation, the check blocks are removed
1927   /// completely.
1928   void Create(Loop *L, const LoopAccessInfo &LAI,
1929               const SCEVUnionPredicate &UnionPred) {
1930 
1931     BasicBlock *LoopHeader = L->getHeader();
1932     BasicBlock *Preheader = L->getLoopPreheader();
1933 
1934     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1935     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1936     // may be used by SCEVExpander. The blocks will be un-linked from their
1937     // predecessors and removed from LI & DT at the end of the function.
1938     if (!UnionPred.isAlwaysTrue()) {
1939       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1940                                   nullptr, "vector.scevcheck");
1941 
1942       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1943           &UnionPred, SCEVCheckBlock->getTerminator());
1944     }
1945 
1946     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1947     if (RtPtrChecking.Need) {
1948       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1949       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1950                                  "vector.memcheck");
1951 
1952       std::tie(std::ignore, MemRuntimeCheckCond) =
1953           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1954                            RtPtrChecking.getChecks(), MemCheckExp);
1955       assert(MemRuntimeCheckCond &&
1956              "no RT checks generated although RtPtrChecking "
1957              "claimed checks are required");
1958     }
1959 
1960     if (!MemCheckBlock && !SCEVCheckBlock)
1961       return;
1962 
1963     // Unhook the temporary block with the checks, update various places
1964     // accordingly.
1965     if (SCEVCheckBlock)
1966       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1967     if (MemCheckBlock)
1968       MemCheckBlock->replaceAllUsesWith(Preheader);
1969 
1970     if (SCEVCheckBlock) {
1971       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1972       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1973       Preheader->getTerminator()->eraseFromParent();
1974     }
1975     if (MemCheckBlock) {
1976       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1977       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1978       Preheader->getTerminator()->eraseFromParent();
1979     }
1980 
1981     DT->changeImmediateDominator(LoopHeader, Preheader);
1982     if (MemCheckBlock) {
1983       DT->eraseNode(MemCheckBlock);
1984       LI->removeBlock(MemCheckBlock);
1985     }
1986     if (SCEVCheckBlock) {
1987       DT->eraseNode(SCEVCheckBlock);
1988       LI->removeBlock(SCEVCheckBlock);
1989     }
1990   }
1991 
1992   /// Remove the created SCEV & memory runtime check blocks & instructions, if
1993   /// unused.
1994   ~GeneratedRTChecks() {
1995     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
1996     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
1997     if (!SCEVCheckCond)
1998       SCEVCleaner.markResultUsed();
1999 
2000     if (!MemRuntimeCheckCond)
2001       MemCheckCleaner.markResultUsed();
2002 
2003     if (MemRuntimeCheckCond) {
2004       auto &SE = *MemCheckExp.getSE();
2005       // Memory runtime check generation creates compares that use expanded
2006       // values. Remove them before running the SCEVExpanderCleaners.
2007       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2008         if (MemCheckExp.isInsertedInstruction(&I))
2009           continue;
2010         SE.forgetValue(&I);
2011         SE.eraseValueFromMap(&I);
2012         I.eraseFromParent();
2013       }
2014     }
2015     MemCheckCleaner.cleanup();
2016     SCEVCleaner.cleanup();
2017 
2018     if (SCEVCheckCond)
2019       SCEVCheckBlock->eraseFromParent();
2020     if (MemRuntimeCheckCond)
2021       MemCheckBlock->eraseFromParent();
2022   }
2023 
2024   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2025   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2026   /// depending on the generated condition.
2027   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2028                              BasicBlock *LoopVectorPreHeader,
2029                              BasicBlock *LoopExitBlock) {
2030     if (!SCEVCheckCond)
2031       return nullptr;
2032     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2033       if (C->isZero())
2034         return nullptr;
2035 
2036     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2037 
2038     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2039     // Create new preheader for vector loop.
2040     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2041       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2042 
2043     SCEVCheckBlock->getTerminator()->eraseFromParent();
2044     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2045     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2046                                                 SCEVCheckBlock);
2047 
2048     DT->addNewBlock(SCEVCheckBlock, Pred);
2049     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2050 
2051     ReplaceInstWithInst(
2052         SCEVCheckBlock->getTerminator(),
2053         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2054     // Mark the check as used, to prevent it from being removed during cleanup.
2055     SCEVCheckCond = nullptr;
2056     return SCEVCheckBlock;
2057   }
2058 
2059   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2060   /// the branches to branch to the vector preheader or \p Bypass, depending on
2061   /// the generated condition.
2062   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2063                                    BasicBlock *LoopVectorPreHeader) {
2064     // Check if we generated code that checks in runtime if arrays overlap.
2065     if (!MemRuntimeCheckCond)
2066       return nullptr;
2067 
2068     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2069     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2070                                                 MemCheckBlock);
2071 
2072     DT->addNewBlock(MemCheckBlock, Pred);
2073     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2074     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2075 
2076     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2077       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2078 
2079     ReplaceInstWithInst(
2080         MemCheckBlock->getTerminator(),
2081         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2082     MemCheckBlock->getTerminator()->setDebugLoc(
2083         Pred->getTerminator()->getDebugLoc());
2084 
2085     // Mark the check as used, to prevent it from being removed during cleanup.
2086     MemRuntimeCheckCond = nullptr;
2087     return MemCheckBlock;
2088   }
2089 };
2090 
2091 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2092 // vectorization. The loop needs to be annotated with #pragma omp simd
2093 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2094 // vector length information is not provided, vectorization is not considered
2095 // explicit. Interleave hints are not allowed either. These limitations will be
2096 // relaxed in the future.
2097 // Please, note that we are currently forced to abuse the pragma 'clang
2098 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2099 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2100 // provides *explicit vectorization hints* (LV can bypass legal checks and
2101 // assume that vectorization is legal). However, both hints are implemented
2102 // using the same metadata (llvm.loop.vectorize, processed by
2103 // LoopVectorizeHints). This will be fixed in the future when the native IR
2104 // representation for pragma 'omp simd' is introduced.
2105 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2106                                    OptimizationRemarkEmitter *ORE) {
2107   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2108   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2109 
2110   // Only outer loops with an explicit vectorization hint are supported.
2111   // Unannotated outer loops are ignored.
2112   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2113     return false;
2114 
2115   Function *Fn = OuterLp->getHeader()->getParent();
2116   if (!Hints.allowVectorization(Fn, OuterLp,
2117                                 true /*VectorizeOnlyWhenForced*/)) {
2118     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2119     return false;
2120   }
2121 
2122   if (Hints.getInterleave() > 1) {
2123     // TODO: Interleave support is future work.
2124     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2125                          "outer loops.\n");
2126     Hints.emitRemarkWithHints();
2127     return false;
2128   }
2129 
2130   return true;
2131 }
2132 
2133 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2134                                   OptimizationRemarkEmitter *ORE,
2135                                   SmallVectorImpl<Loop *> &V) {
2136   // Collect inner loops and outer loops without irreducible control flow. For
2137   // now, only collect outer loops that have explicit vectorization hints. If we
2138   // are stress testing the VPlan H-CFG construction, we collect the outermost
2139   // loop of every loop nest.
2140   if (L.isInnermost() || VPlanBuildStressTest ||
2141       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2142     LoopBlocksRPO RPOT(&L);
2143     RPOT.perform(LI);
2144     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2145       V.push_back(&L);
2146       // TODO: Collect inner loops inside marked outer loops in case
2147       // vectorization fails for the outer loop. Do not invoke
2148       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2149       // already known to be reducible. We can use an inherited attribute for
2150       // that.
2151       return;
2152     }
2153   }
2154   for (Loop *InnerL : L)
2155     collectSupportedLoops(*InnerL, LI, ORE, V);
2156 }
2157 
2158 namespace {
2159 
2160 /// The LoopVectorize Pass.
2161 struct LoopVectorize : public FunctionPass {
2162   /// Pass identification, replacement for typeid
2163   static char ID;
2164 
2165   LoopVectorizePass Impl;
2166 
2167   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2168                          bool VectorizeOnlyWhenForced = false)
2169       : FunctionPass(ID),
2170         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2171     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2172   }
2173 
2174   bool runOnFunction(Function &F) override {
2175     if (skipFunction(F))
2176       return false;
2177 
2178     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2179     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2180     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2181     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2182     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2183     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2184     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2185     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2186     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2187     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2188     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2189     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2190     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2191 
2192     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2193         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2194 
2195     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2196                         GetLAA, *ORE, PSI).MadeAnyChange;
2197   }
2198 
2199   void getAnalysisUsage(AnalysisUsage &AU) const override {
2200     AU.addRequired<AssumptionCacheTracker>();
2201     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2202     AU.addRequired<DominatorTreeWrapperPass>();
2203     AU.addRequired<LoopInfoWrapperPass>();
2204     AU.addRequired<ScalarEvolutionWrapperPass>();
2205     AU.addRequired<TargetTransformInfoWrapperPass>();
2206     AU.addRequired<AAResultsWrapperPass>();
2207     AU.addRequired<LoopAccessLegacyAnalysis>();
2208     AU.addRequired<DemandedBitsWrapperPass>();
2209     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2210     AU.addRequired<InjectTLIMappingsLegacy>();
2211 
2212     // We currently do not preserve loopinfo/dominator analyses with outer loop
2213     // vectorization. Until this is addressed, mark these analyses as preserved
2214     // only for non-VPlan-native path.
2215     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2216     if (!EnableVPlanNativePath) {
2217       AU.addPreserved<LoopInfoWrapperPass>();
2218       AU.addPreserved<DominatorTreeWrapperPass>();
2219     }
2220 
2221     AU.addPreserved<BasicAAWrapperPass>();
2222     AU.addPreserved<GlobalsAAWrapperPass>();
2223     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2224   }
2225 };
2226 
2227 } // end anonymous namespace
2228 
2229 //===----------------------------------------------------------------------===//
2230 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2231 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2232 //===----------------------------------------------------------------------===//
2233 
2234 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2235   // We need to place the broadcast of invariant variables outside the loop,
2236   // but only if it's proven safe to do so. Else, broadcast will be inside
2237   // vector loop body.
2238   Instruction *Instr = dyn_cast<Instruction>(V);
2239   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2240                      (!Instr ||
2241                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2242   // Place the code for broadcasting invariant variables in the new preheader.
2243   IRBuilder<>::InsertPointGuard Guard(Builder);
2244   if (SafeToHoist)
2245     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2246 
2247   // Broadcast the scalar into all locations in the vector.
2248   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2249 
2250   return Shuf;
2251 }
2252 
2253 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2254     const InductionDescriptor &II, Value *Step, Value *Start,
2255     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2256     VPTransformState &State) {
2257   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2258          "Expected either an induction phi-node or a truncate of it!");
2259 
2260   // Construct the initial value of the vector IV in the vector loop preheader
2261   auto CurrIP = Builder.saveIP();
2262   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2263   if (isa<TruncInst>(EntryVal)) {
2264     assert(Start->getType()->isIntegerTy() &&
2265            "Truncation requires an integer type");
2266     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2267     Step = Builder.CreateTrunc(Step, TruncType);
2268     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2269   }
2270   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2271   Value *SteppedStart =
2272       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2273 
2274   // We create vector phi nodes for both integer and floating-point induction
2275   // variables. Here, we determine the kind of arithmetic we will perform.
2276   Instruction::BinaryOps AddOp;
2277   Instruction::BinaryOps MulOp;
2278   if (Step->getType()->isIntegerTy()) {
2279     AddOp = Instruction::Add;
2280     MulOp = Instruction::Mul;
2281   } else {
2282     AddOp = II.getInductionOpcode();
2283     MulOp = Instruction::FMul;
2284   }
2285 
2286   // Multiply the vectorization factor by the step using integer or
2287   // floating-point arithmetic as appropriate.
2288   Type *StepType = Step->getType();
2289   if (Step->getType()->isFloatingPointTy())
2290     StepType = IntegerType::get(StepType->getContext(),
2291                                 StepType->getScalarSizeInBits());
2292   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2293   if (Step->getType()->isFloatingPointTy())
2294     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2295   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2296 
2297   // Create a vector splat to use in the induction update.
2298   //
2299   // FIXME: If the step is non-constant, we create the vector splat with
2300   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2301   //        handle a constant vector splat.
2302   Value *SplatVF = isa<Constant>(Mul)
2303                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2304                        : Builder.CreateVectorSplat(VF, Mul);
2305   Builder.restoreIP(CurrIP);
2306 
2307   // We may need to add the step a number of times, depending on the unroll
2308   // factor. The last of those goes into the PHI.
2309   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2310                                     &*LoopVectorBody->getFirstInsertionPt());
2311   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2312   Instruction *LastInduction = VecInd;
2313   for (unsigned Part = 0; Part < UF; ++Part) {
2314     State.set(Def, LastInduction, Part);
2315 
2316     if (isa<TruncInst>(EntryVal))
2317       addMetadata(LastInduction, EntryVal);
2318     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2319                                           State, Part);
2320 
2321     LastInduction = cast<Instruction>(
2322         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2323     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2324   }
2325 
2326   // Move the last step to the end of the latch block. This ensures consistent
2327   // placement of all induction updates.
2328   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2329   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2330   auto *ICmp = cast<Instruction>(Br->getCondition());
2331   LastInduction->moveBefore(ICmp);
2332   LastInduction->setName("vec.ind.next");
2333 
2334   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2335   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2336 }
2337 
2338 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2339   return Cost->isScalarAfterVectorization(I, VF) ||
2340          Cost->isProfitableToScalarize(I, VF);
2341 }
2342 
2343 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2344   if (shouldScalarizeInstruction(IV))
2345     return true;
2346   auto isScalarInst = [&](User *U) -> bool {
2347     auto *I = cast<Instruction>(U);
2348     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2349   };
2350   return llvm::any_of(IV->users(), isScalarInst);
2351 }
2352 
2353 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2354     const InductionDescriptor &ID, const Instruction *EntryVal,
2355     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2356     unsigned Part, unsigned Lane) {
2357   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2358          "Expected either an induction phi-node or a truncate of it!");
2359 
2360   // This induction variable is not the phi from the original loop but the
2361   // newly-created IV based on the proof that casted Phi is equal to the
2362   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2363   // re-uses the same InductionDescriptor that original IV uses but we don't
2364   // have to do any recording in this case - that is done when original IV is
2365   // processed.
2366   if (isa<TruncInst>(EntryVal))
2367     return;
2368 
2369   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2370   if (Casts.empty())
2371     return;
2372   // Only the first Cast instruction in the Casts vector is of interest.
2373   // The rest of the Casts (if exist) have no uses outside the
2374   // induction update chain itself.
2375   if (Lane < UINT_MAX)
2376     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2377   else
2378     State.set(CastDef, VectorLoopVal, Part);
2379 }
2380 
2381 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2382                                                 TruncInst *Trunc, VPValue *Def,
2383                                                 VPValue *CastDef,
2384                                                 VPTransformState &State) {
2385   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2386          "Primary induction variable must have an integer type");
2387 
2388   auto II = Legal->getInductionVars().find(IV);
2389   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2390 
2391   auto ID = II->second;
2392   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2393 
2394   // The value from the original loop to which we are mapping the new induction
2395   // variable.
2396   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2397 
2398   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2399 
2400   // Generate code for the induction step. Note that induction steps are
2401   // required to be loop-invariant
2402   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2403     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2404            "Induction step should be loop invariant");
2405     if (PSE.getSE()->isSCEVable(IV->getType())) {
2406       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2407       return Exp.expandCodeFor(Step, Step->getType(),
2408                                LoopVectorPreHeader->getTerminator());
2409     }
2410     return cast<SCEVUnknown>(Step)->getValue();
2411   };
2412 
2413   // The scalar value to broadcast. This is derived from the canonical
2414   // induction variable. If a truncation type is given, truncate the canonical
2415   // induction variable and step. Otherwise, derive these values from the
2416   // induction descriptor.
2417   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2418     Value *ScalarIV = Induction;
2419     if (IV != OldInduction) {
2420       ScalarIV = IV->getType()->isIntegerTy()
2421                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2422                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2423                                           IV->getType());
2424       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2425       ScalarIV->setName("offset.idx");
2426     }
2427     if (Trunc) {
2428       auto *TruncType = cast<IntegerType>(Trunc->getType());
2429       assert(Step->getType()->isIntegerTy() &&
2430              "Truncation requires an integer step");
2431       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2432       Step = Builder.CreateTrunc(Step, TruncType);
2433     }
2434     return ScalarIV;
2435   };
2436 
2437   // Create the vector values from the scalar IV, in the absence of creating a
2438   // vector IV.
2439   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2440     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2441     for (unsigned Part = 0; Part < UF; ++Part) {
2442       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2443       Value *EntryPart =
2444           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2445                         ID.getInductionOpcode());
2446       State.set(Def, EntryPart, Part);
2447       if (Trunc)
2448         addMetadata(EntryPart, Trunc);
2449       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2450                                             State, Part);
2451     }
2452   };
2453 
2454   // Fast-math-flags propagate from the original induction instruction.
2455   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2456   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2457     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2458 
2459   // Now do the actual transformations, and start with creating the step value.
2460   Value *Step = CreateStepValue(ID.getStep());
2461   if (VF.isZero() || VF.isScalar()) {
2462     Value *ScalarIV = CreateScalarIV(Step);
2463     CreateSplatIV(ScalarIV, Step);
2464     return;
2465   }
2466 
2467   // Determine if we want a scalar version of the induction variable. This is
2468   // true if the induction variable itself is not widened, or if it has at
2469   // least one user in the loop that is not widened.
2470   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2471   if (!NeedsScalarIV) {
2472     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2473                                     State);
2474     return;
2475   }
2476 
2477   // Try to create a new independent vector induction variable. If we can't
2478   // create the phi node, we will splat the scalar induction variable in each
2479   // loop iteration.
2480   if (!shouldScalarizeInstruction(EntryVal)) {
2481     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2482                                     State);
2483     Value *ScalarIV = CreateScalarIV(Step);
2484     // Create scalar steps that can be used by instructions we will later
2485     // scalarize. Note that the addition of the scalar steps will not increase
2486     // the number of instructions in the loop in the common case prior to
2487     // InstCombine. We will be trading one vector extract for each scalar step.
2488     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2489     return;
2490   }
2491 
2492   // All IV users are scalar instructions, so only emit a scalar IV, not a
2493   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2494   // predicate used by the masked loads/stores.
2495   Value *ScalarIV = CreateScalarIV(Step);
2496   if (!Cost->isScalarEpilogueAllowed())
2497     CreateSplatIV(ScalarIV, Step);
2498   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2499 }
2500 
2501 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2502                                           Instruction::BinaryOps BinOp) {
2503   // Create and check the types.
2504   auto *ValVTy = cast<VectorType>(Val->getType());
2505   ElementCount VLen = ValVTy->getElementCount();
2506 
2507   Type *STy = Val->getType()->getScalarType();
2508   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2509          "Induction Step must be an integer or FP");
2510   assert(Step->getType() == STy && "Step has wrong type");
2511 
2512   SmallVector<Constant *, 8> Indices;
2513 
2514   // Create a vector of consecutive numbers from zero to VF.
2515   VectorType *InitVecValVTy = ValVTy;
2516   Type *InitVecValSTy = STy;
2517   if (STy->isFloatingPointTy()) {
2518     InitVecValSTy =
2519         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2520     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2521   }
2522   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2523 
2524   // Add on StartIdx
2525   Value *StartIdxSplat = Builder.CreateVectorSplat(
2526       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2527   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2528 
2529   if (STy->isIntegerTy()) {
2530     Step = Builder.CreateVectorSplat(VLen, Step);
2531     assert(Step->getType() == Val->getType() && "Invalid step vec");
2532     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2533     // which can be found from the original scalar operations.
2534     Step = Builder.CreateMul(InitVec, Step);
2535     return Builder.CreateAdd(Val, Step, "induction");
2536   }
2537 
2538   // Floating point induction.
2539   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2540          "Binary Opcode should be specified for FP induction");
2541   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2542   Step = Builder.CreateVectorSplat(VLen, Step);
2543   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2544   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2545 }
2546 
2547 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2548                                            Instruction *EntryVal,
2549                                            const InductionDescriptor &ID,
2550                                            VPValue *Def, VPValue *CastDef,
2551                                            VPTransformState &State) {
2552   // We shouldn't have to build scalar steps if we aren't vectorizing.
2553   assert(VF.isVector() && "VF should be greater than one");
2554   // Get the value type and ensure it and the step have the same integer type.
2555   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2556   assert(ScalarIVTy == Step->getType() &&
2557          "Val and Step should have the same type");
2558 
2559   // We build scalar steps for both integer and floating-point induction
2560   // variables. Here, we determine the kind of arithmetic we will perform.
2561   Instruction::BinaryOps AddOp;
2562   Instruction::BinaryOps MulOp;
2563   if (ScalarIVTy->isIntegerTy()) {
2564     AddOp = Instruction::Add;
2565     MulOp = Instruction::Mul;
2566   } else {
2567     AddOp = ID.getInductionOpcode();
2568     MulOp = Instruction::FMul;
2569   }
2570 
2571   // Determine the number of scalars we need to generate for each unroll
2572   // iteration. If EntryVal is uniform, we only need to generate the first
2573   // lane. Otherwise, we generate all VF values.
2574   bool IsUniform =
2575       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2576   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2577   // Compute the scalar steps and save the results in State.
2578   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2579                                      ScalarIVTy->getScalarSizeInBits());
2580   Type *VecIVTy = nullptr;
2581   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2582   if (!IsUniform && VF.isScalable()) {
2583     VecIVTy = VectorType::get(ScalarIVTy, VF);
2584     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2585     SplatStep = Builder.CreateVectorSplat(VF, Step);
2586     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2587   }
2588 
2589   for (unsigned Part = 0; Part < UF; ++Part) {
2590     Value *StartIdx0 =
2591         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2592 
2593     if (!IsUniform && VF.isScalable()) {
2594       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2595       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2596       if (ScalarIVTy->isFloatingPointTy())
2597         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2598       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2599       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2600       State.set(Def, Add, Part);
2601       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2602                                             Part);
2603       // It's useful to record the lane values too for the known minimum number
2604       // of elements so we do those below. This improves the code quality when
2605       // trying to extract the first element, for example.
2606     }
2607 
2608     if (ScalarIVTy->isFloatingPointTy())
2609       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2610 
2611     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2612       Value *StartIdx = Builder.CreateBinOp(
2613           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2614       // The step returned by `createStepForVF` is a runtime-evaluated value
2615       // when VF is scalable. Otherwise, it should be folded into a Constant.
2616       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2617              "Expected StartIdx to be folded to a constant when VF is not "
2618              "scalable");
2619       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2620       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2621       State.set(Def, Add, VPIteration(Part, Lane));
2622       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2623                                             Part, Lane);
2624     }
2625   }
2626 }
2627 
2628 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2629                                                     const VPIteration &Instance,
2630                                                     VPTransformState &State) {
2631   Value *ScalarInst = State.get(Def, Instance);
2632   Value *VectorValue = State.get(Def, Instance.Part);
2633   VectorValue = Builder.CreateInsertElement(
2634       VectorValue, ScalarInst,
2635       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2636   State.set(Def, VectorValue, Instance.Part);
2637 }
2638 
2639 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2640   assert(Vec->getType()->isVectorTy() && "Invalid type");
2641   return Builder.CreateVectorReverse(Vec, "reverse");
2642 }
2643 
2644 // Return whether we allow using masked interleave-groups (for dealing with
2645 // strided loads/stores that reside in predicated blocks, or for dealing
2646 // with gaps).
2647 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2648   // If an override option has been passed in for interleaved accesses, use it.
2649   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2650     return EnableMaskedInterleavedMemAccesses;
2651 
2652   return TTI.enableMaskedInterleavedAccessVectorization();
2653 }
2654 
2655 // Try to vectorize the interleave group that \p Instr belongs to.
2656 //
2657 // E.g. Translate following interleaved load group (factor = 3):
2658 //   for (i = 0; i < N; i+=3) {
2659 //     R = Pic[i];             // Member of index 0
2660 //     G = Pic[i+1];           // Member of index 1
2661 //     B = Pic[i+2];           // Member of index 2
2662 //     ... // do something to R, G, B
2663 //   }
2664 // To:
2665 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2666 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2667 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2668 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2669 //
2670 // Or translate following interleaved store group (factor = 3):
2671 //   for (i = 0; i < N; i+=3) {
2672 //     ... do something to R, G, B
2673 //     Pic[i]   = R;           // Member of index 0
2674 //     Pic[i+1] = G;           // Member of index 1
2675 //     Pic[i+2] = B;           // Member of index 2
2676 //   }
2677 // To:
2678 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2679 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2680 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2681 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2682 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2683 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2684     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2685     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2686     VPValue *BlockInMask) {
2687   Instruction *Instr = Group->getInsertPos();
2688   const DataLayout &DL = Instr->getModule()->getDataLayout();
2689 
2690   // Prepare for the vector type of the interleaved load/store.
2691   Type *ScalarTy = getMemInstValueType(Instr);
2692   unsigned InterleaveFactor = Group->getFactor();
2693   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2694   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2695 
2696   // Prepare for the new pointers.
2697   SmallVector<Value *, 2> AddrParts;
2698   unsigned Index = Group->getIndex(Instr);
2699 
2700   // TODO: extend the masked interleaved-group support to reversed access.
2701   assert((!BlockInMask || !Group->isReverse()) &&
2702          "Reversed masked interleave-group not supported.");
2703 
2704   // If the group is reverse, adjust the index to refer to the last vector lane
2705   // instead of the first. We adjust the index from the first vector lane,
2706   // rather than directly getting the pointer for lane VF - 1, because the
2707   // pointer operand of the interleaved access is supposed to be uniform. For
2708   // uniform instructions, we're only required to generate a value for the
2709   // first vector lane in each unroll iteration.
2710   if (Group->isReverse())
2711     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2712 
2713   for (unsigned Part = 0; Part < UF; Part++) {
2714     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2715     setDebugLocFromInst(Builder, AddrPart);
2716 
2717     // Notice current instruction could be any index. Need to adjust the address
2718     // to the member of index 0.
2719     //
2720     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2721     //       b = A[i];       // Member of index 0
2722     // Current pointer is pointed to A[i+1], adjust it to A[i].
2723     //
2724     // E.g.  A[i+1] = a;     // Member of index 1
2725     //       A[i]   = b;     // Member of index 0
2726     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2727     // Current pointer is pointed to A[i+2], adjust it to A[i].
2728 
2729     bool InBounds = false;
2730     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2731       InBounds = gep->isInBounds();
2732     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2733     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2734 
2735     // Cast to the vector pointer type.
2736     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2737     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2738     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2739   }
2740 
2741   setDebugLocFromInst(Builder, Instr);
2742   Value *PoisonVec = PoisonValue::get(VecTy);
2743 
2744   Value *MaskForGaps = nullptr;
2745   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2746     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2747     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2748   }
2749 
2750   // Vectorize the interleaved load group.
2751   if (isa<LoadInst>(Instr)) {
2752     // For each unroll part, create a wide load for the group.
2753     SmallVector<Value *, 2> NewLoads;
2754     for (unsigned Part = 0; Part < UF; Part++) {
2755       Instruction *NewLoad;
2756       if (BlockInMask || MaskForGaps) {
2757         assert(useMaskedInterleavedAccesses(*TTI) &&
2758                "masked interleaved groups are not allowed.");
2759         Value *GroupMask = MaskForGaps;
2760         if (BlockInMask) {
2761           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2762           Value *ShuffledMask = Builder.CreateShuffleVector(
2763               BlockInMaskPart,
2764               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2765               "interleaved.mask");
2766           GroupMask = MaskForGaps
2767                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2768                                                 MaskForGaps)
2769                           : ShuffledMask;
2770         }
2771         NewLoad =
2772             Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(),
2773                                      GroupMask, PoisonVec, "wide.masked.vec");
2774       }
2775       else
2776         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2777                                             Group->getAlign(), "wide.vec");
2778       Group->addMetadata(NewLoad);
2779       NewLoads.push_back(NewLoad);
2780     }
2781 
2782     // For each member in the group, shuffle out the appropriate data from the
2783     // wide loads.
2784     unsigned J = 0;
2785     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2786       Instruction *Member = Group->getMember(I);
2787 
2788       // Skip the gaps in the group.
2789       if (!Member)
2790         continue;
2791 
2792       auto StrideMask =
2793           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2794       for (unsigned Part = 0; Part < UF; Part++) {
2795         Value *StridedVec = Builder.CreateShuffleVector(
2796             NewLoads[Part], StrideMask, "strided.vec");
2797 
2798         // If this member has different type, cast the result type.
2799         if (Member->getType() != ScalarTy) {
2800           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2801           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2802           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2803         }
2804 
2805         if (Group->isReverse())
2806           StridedVec = reverseVector(StridedVec);
2807 
2808         State.set(VPDefs[J], StridedVec, Part);
2809       }
2810       ++J;
2811     }
2812     return;
2813   }
2814 
2815   // The sub vector type for current instruction.
2816   auto *SubVT = VectorType::get(ScalarTy, VF);
2817 
2818   // Vectorize the interleaved store group.
2819   for (unsigned Part = 0; Part < UF; Part++) {
2820     // Collect the stored vector from each member.
2821     SmallVector<Value *, 4> StoredVecs;
2822     for (unsigned i = 0; i < InterleaveFactor; i++) {
2823       // Interleaved store group doesn't allow a gap, so each index has a member
2824       assert(Group->getMember(i) && "Fail to get a member from an interleaved store group");
2825 
2826       Value *StoredVec = State.get(StoredValues[i], Part);
2827 
2828       if (Group->isReverse())
2829         StoredVec = reverseVector(StoredVec);
2830 
2831       // If this member has different type, cast it to a unified type.
2832 
2833       if (StoredVec->getType() != SubVT)
2834         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2835 
2836       StoredVecs.push_back(StoredVec);
2837     }
2838 
2839     // Concatenate all vectors into a wide vector.
2840     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2841 
2842     // Interleave the elements in the wide vector.
2843     Value *IVec = Builder.CreateShuffleVector(
2844         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2845         "interleaved.vec");
2846 
2847     Instruction *NewStoreInstr;
2848     if (BlockInMask) {
2849       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2850       Value *ShuffledMask = Builder.CreateShuffleVector(
2851           BlockInMaskPart,
2852           createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2853           "interleaved.mask");
2854       NewStoreInstr = Builder.CreateMaskedStore(
2855           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2856     }
2857     else
2858       NewStoreInstr =
2859           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2860 
2861     Group->addMetadata(NewStoreInstr);
2862   }
2863 }
2864 
2865 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2866     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2867     VPValue *StoredValue, VPValue *BlockInMask) {
2868   // Attempt to issue a wide load.
2869   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2870   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2871 
2872   assert((LI || SI) && "Invalid Load/Store instruction");
2873   assert((!SI || StoredValue) && "No stored value provided for widened store");
2874   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2875 
2876   LoopVectorizationCostModel::InstWidening Decision =
2877       Cost->getWideningDecision(Instr, VF);
2878   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2879           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2880           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2881          "CM decision is not to widen the memory instruction");
2882 
2883   Type *ScalarDataTy = getMemInstValueType(Instr);
2884 
2885   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2886   const Align Alignment = getLoadStoreAlignment(Instr);
2887 
2888   // Determine if the pointer operand of the access is either consecutive or
2889   // reverse consecutive.
2890   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2891   bool ConsecutiveStride =
2892       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2893   bool CreateGatherScatter =
2894       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2895 
2896   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2897   // gather/scatter. Otherwise Decision should have been to Scalarize.
2898   assert((ConsecutiveStride || CreateGatherScatter) &&
2899          "The instruction should be scalarized");
2900   (void)ConsecutiveStride;
2901 
2902   VectorParts BlockInMaskParts(UF);
2903   bool isMaskRequired = BlockInMask;
2904   if (isMaskRequired)
2905     for (unsigned Part = 0; Part < UF; ++Part)
2906       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2907 
2908   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2909     // Calculate the pointer for the specific unroll-part.
2910     GetElementPtrInst *PartPtr = nullptr;
2911 
2912     bool InBounds = false;
2913     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2914       InBounds = gep->isInBounds();
2915     if (Reverse) {
2916       // If the address is consecutive but reversed, then the
2917       // wide store needs to start at the last vector element.
2918       // RunTimeVF =  VScale * VF.getKnownMinValue()
2919       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2920       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2921       // NumElt = -Part * RunTimeVF
2922       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2923       // LastLane = 1 - RunTimeVF
2924       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2925       PartPtr =
2926           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2927       PartPtr->setIsInBounds(InBounds);
2928       PartPtr = cast<GetElementPtrInst>(
2929           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2930       PartPtr->setIsInBounds(InBounds);
2931       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2932         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2933     } else {
2934       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2935       PartPtr = cast<GetElementPtrInst>(
2936           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2937       PartPtr->setIsInBounds(InBounds);
2938     }
2939 
2940     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2941     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2942   };
2943 
2944   // Handle Stores:
2945   if (SI) {
2946     setDebugLocFromInst(Builder, SI);
2947 
2948     for (unsigned Part = 0; Part < UF; ++Part) {
2949       Instruction *NewSI = nullptr;
2950       Value *StoredVal = State.get(StoredValue, Part);
2951       if (CreateGatherScatter) {
2952         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2953         Value *VectorGep = State.get(Addr, Part);
2954         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2955                                             MaskPart);
2956       } else {
2957         if (Reverse) {
2958           // If we store to reverse consecutive memory locations, then we need
2959           // to reverse the order of elements in the stored value.
2960           StoredVal = reverseVector(StoredVal);
2961           // We don't want to update the value in the map as it might be used in
2962           // another expression. So don't call resetVectorValue(StoredVal).
2963         }
2964         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2965         if (isMaskRequired)
2966           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2967                                             BlockInMaskParts[Part]);
2968         else
2969           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2970       }
2971       addMetadata(NewSI, SI);
2972     }
2973     return;
2974   }
2975 
2976   // Handle loads.
2977   assert(LI && "Must have a load instruction");
2978   setDebugLocFromInst(Builder, LI);
2979   for (unsigned Part = 0; Part < UF; ++Part) {
2980     Value *NewLI;
2981     if (CreateGatherScatter) {
2982       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2983       Value *VectorGep = State.get(Addr, Part);
2984       NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
2985                                          nullptr, "wide.masked.gather");
2986       addMetadata(NewLI, LI);
2987     } else {
2988       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2989       if (isMaskRequired)
2990         NewLI = Builder.CreateMaskedLoad(
2991             VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy),
2992             "wide.masked.load");
2993       else
2994         NewLI =
2995             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
2996 
2997       // Add metadata to the load, but setVectorValue to the reverse shuffle.
2998       addMetadata(NewLI, LI);
2999       if (Reverse)
3000         NewLI = reverseVector(NewLI);
3001     }
3002 
3003     State.set(Def, NewLI, Part);
3004   }
3005 }
3006 
3007 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3008                                                VPUser &User,
3009                                                const VPIteration &Instance,
3010                                                bool IfPredicateInstr,
3011                                                VPTransformState &State) {
3012   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3013 
3014   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3015   // the first lane and part.
3016   if (isa<NoAliasScopeDeclInst>(Instr))
3017     if (!Instance.isFirstIteration())
3018       return;
3019 
3020   setDebugLocFromInst(Builder, Instr);
3021 
3022   // Does this instruction return a value ?
3023   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3024 
3025   Instruction *Cloned = Instr->clone();
3026   if (!IsVoidRetTy)
3027     Cloned->setName(Instr->getName() + ".cloned");
3028 
3029   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3030                                Builder.GetInsertPoint());
3031   // Replace the operands of the cloned instructions with their scalar
3032   // equivalents in the new loop.
3033   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3034     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3035     auto InputInstance = Instance;
3036     if (!Operand || !OrigLoop->contains(Operand) ||
3037         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3038       InputInstance.Lane = VPLane::getFirstLane();
3039     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3040     Cloned->setOperand(op, NewOp);
3041   }
3042   addNewMetadata(Cloned, Instr);
3043 
3044   // Place the cloned scalar in the new loop.
3045   Builder.Insert(Cloned);
3046 
3047   State.set(Def, Cloned, Instance);
3048 
3049   // If we just cloned a new assumption, add it the assumption cache.
3050   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3051     AC->registerAssumption(II);
3052 
3053   // End if-block.
3054   if (IfPredicateInstr)
3055     PredicatedInstructions.push_back(Cloned);
3056 }
3057 
3058 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3059                                                       Value *End, Value *Step,
3060                                                       Instruction *DL) {
3061   BasicBlock *Header = L->getHeader();
3062   BasicBlock *Latch = L->getLoopLatch();
3063   // As we're just creating this loop, it's possible no latch exists
3064   // yet. If so, use the header as this will be a single block loop.
3065   if (!Latch)
3066     Latch = Header;
3067 
3068   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
3069   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3070   setDebugLocFromInst(Builder, OldInst);
3071   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
3072 
3073   Builder.SetInsertPoint(Latch->getTerminator());
3074   setDebugLocFromInst(Builder, OldInst);
3075 
3076   // Create i+1 and fill the PHINode.
3077   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
3078   Induction->addIncoming(Start, L->getLoopPreheader());
3079   Induction->addIncoming(Next, Latch);
3080   // Create the compare.
3081   Value *ICmp = Builder.CreateICmpEQ(Next, End);
3082   Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3083 
3084   // Now we have two terminators. Remove the old one from the block.
3085   Latch->getTerminator()->eraseFromParent();
3086 
3087   return Induction;
3088 }
3089 
3090 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3091   if (TripCount)
3092     return TripCount;
3093 
3094   assert(L && "Create Trip Count for null loop.");
3095   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3096   // Find the loop boundaries.
3097   ScalarEvolution *SE = PSE.getSE();
3098   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3099   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3100          "Invalid loop count");
3101 
3102   Type *IdxTy = Legal->getWidestInductionType();
3103   assert(IdxTy && "No type for induction");
3104 
3105   // The exit count might have the type of i64 while the phi is i32. This can
3106   // happen if we have an induction variable that is sign extended before the
3107   // compare. The only way that we get a backedge taken count is that the
3108   // induction variable was signed and as such will not overflow. In such a case
3109   // truncation is legal.
3110   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3111       IdxTy->getPrimitiveSizeInBits())
3112     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3113   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3114 
3115   // Get the total trip count from the count by adding 1.
3116   const SCEV *ExitCount = SE->getAddExpr(
3117       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3118 
3119   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3120 
3121   // Expand the trip count and place the new instructions in the preheader.
3122   // Notice that the pre-header does not change, only the loop body.
3123   SCEVExpander Exp(*SE, DL, "induction");
3124 
3125   // Count holds the overall loop count (N).
3126   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3127                                 L->getLoopPreheader()->getTerminator());
3128 
3129   if (TripCount->getType()->isPointerTy())
3130     TripCount =
3131         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3132                                     L->getLoopPreheader()->getTerminator());
3133 
3134   return TripCount;
3135 }
3136 
3137 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3138   if (VectorTripCount)
3139     return VectorTripCount;
3140 
3141   Value *TC = getOrCreateTripCount(L);
3142   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3143 
3144   Type *Ty = TC->getType();
3145   // This is where we can make the step a runtime constant.
3146   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3147 
3148   // If the tail is to be folded by masking, round the number of iterations N
3149   // up to a multiple of Step instead of rounding down. This is done by first
3150   // adding Step-1 and then rounding down. Note that it's ok if this addition
3151   // overflows: the vector induction variable will eventually wrap to zero given
3152   // that it starts at zero and its Step is a power of two; the loop will then
3153   // exit, with the last early-exit vector comparison also producing all-true.
3154   if (Cost->foldTailByMasking()) {
3155     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3156            "VF*UF must be a power of 2 when folding tail by masking");
3157     assert(!VF.isScalable() &&
3158            "Tail folding not yet supported for scalable vectors");
3159     TC = Builder.CreateAdd(
3160         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3161   }
3162 
3163   // Now we need to generate the expression for the part of the loop that the
3164   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3165   // iterations are not required for correctness, or N - Step, otherwise. Step
3166   // is equal to the vectorization factor (number of SIMD elements) times the
3167   // unroll factor (number of SIMD instructions).
3168   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3169 
3170   // There are two cases where we need to ensure (at least) the last iteration
3171   // runs in the scalar remainder loop. Thus, if the step evenly divides
3172   // the trip count, we set the remainder to be equal to the step. If the step
3173   // does not evenly divide the trip count, no adjustment is necessary since
3174   // there will already be scalar iterations. Note that the minimum iterations
3175   // check ensures that N >= Step. The cases are:
3176   // 1) If there is a non-reversed interleaved group that may speculatively
3177   //    access memory out-of-bounds.
3178   // 2) If any instruction may follow a conditionally taken exit. That is, if
3179   //    the loop contains multiple exiting blocks, or a single exiting block
3180   //    which is not the latch.
3181   if (VF.isVector() && Cost->requiresScalarEpilogue()) {
3182     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3183     R = Builder.CreateSelect(IsZero, Step, R);
3184   }
3185 
3186   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3187 
3188   return VectorTripCount;
3189 }
3190 
3191 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3192                                                    const DataLayout &DL) {
3193   // Verify that V is a vector type with same number of elements as DstVTy.
3194   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3195   unsigned VF = DstFVTy->getNumElements();
3196   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3197   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3198   Type *SrcElemTy = SrcVecTy->getElementType();
3199   Type *DstElemTy = DstFVTy->getElementType();
3200   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3201          "Vector elements must have same size");
3202 
3203   // Do a direct cast if element types are castable.
3204   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3205     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3206   }
3207   // V cannot be directly casted to desired vector type.
3208   // May happen when V is a floating point vector but DstVTy is a vector of
3209   // pointers or vice-versa. Handle this using a two-step bitcast using an
3210   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3211   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3212          "Only one type should be a pointer type");
3213   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3214          "Only one type should be a floating point type");
3215   Type *IntTy =
3216       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3217   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3218   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3219   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3220 }
3221 
3222 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3223                                                          BasicBlock *Bypass) {
3224   Value *Count = getOrCreateTripCount(L);
3225   // Reuse existing vector loop preheader for TC checks.
3226   // Note that new preheader block is generated for vector loop.
3227   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3228   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3229 
3230   // Generate code to check if the loop's trip count is less than VF * UF, or
3231   // equal to it in case a scalar epilogue is required; this implies that the
3232   // vector trip count is zero. This check also covers the case where adding one
3233   // to the backedge-taken count overflowed leading to an incorrect trip count
3234   // of zero. In this case we will also jump to the scalar loop.
3235   auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
3236                                           : ICmpInst::ICMP_ULT;
3237 
3238   // If tail is to be folded, vector loop takes care of all iterations.
3239   Value *CheckMinIters = Builder.getFalse();
3240   if (!Cost->foldTailByMasking()) {
3241     Value *Step =
3242         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3243     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3244   }
3245   // Create new preheader for vector loop.
3246   LoopVectorPreHeader =
3247       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3248                  "vector.ph");
3249 
3250   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3251                                DT->getNode(Bypass)->getIDom()) &&
3252          "TC check is expected to dominate Bypass");
3253 
3254   // Update dominator for Bypass & LoopExit.
3255   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3256   DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3257 
3258   ReplaceInstWithInst(
3259       TCCheckBlock->getTerminator(),
3260       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3261   LoopBypassBlocks.push_back(TCCheckBlock);
3262 }
3263 
3264 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3265 
3266   BasicBlock *const SCEVCheckBlock =
3267       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3268   if (!SCEVCheckBlock)
3269     return nullptr;
3270 
3271   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3272            (OptForSizeBasedOnProfile &&
3273             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3274          "Cannot SCEV check stride or overflow when optimizing for size");
3275 
3276 
3277   // Update dominator only if this is first RT check.
3278   if (LoopBypassBlocks.empty()) {
3279     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3280     DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3281   }
3282 
3283   LoopBypassBlocks.push_back(SCEVCheckBlock);
3284   AddedSafetyChecks = true;
3285   return SCEVCheckBlock;
3286 }
3287 
3288 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3289                                                       BasicBlock *Bypass) {
3290   // VPlan-native path does not do any analysis for runtime checks currently.
3291   if (EnableVPlanNativePath)
3292     return nullptr;
3293 
3294   BasicBlock *const MemCheckBlock =
3295       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3296 
3297   // Check if we generated code that checks in runtime if arrays overlap. We put
3298   // the checks into a separate block to make the more common case of few
3299   // elements faster.
3300   if (!MemCheckBlock)
3301     return nullptr;
3302 
3303   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3304     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3305            "Cannot emit memory checks when optimizing for size, unless forced "
3306            "to vectorize.");
3307     ORE->emit([&]() {
3308       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3309                                         L->getStartLoc(), L->getHeader())
3310              << "Code-size may be reduced by not forcing "
3311                 "vectorization, or by source-code modifications "
3312                 "eliminating the need for runtime checks "
3313                 "(e.g., adding 'restrict').";
3314     });
3315   }
3316 
3317   LoopBypassBlocks.push_back(MemCheckBlock);
3318 
3319   AddedSafetyChecks = true;
3320 
3321   // We currently don't use LoopVersioning for the actual loop cloning but we
3322   // still use it to add the noalias metadata.
3323   LVer = std::make_unique<LoopVersioning>(
3324       *Legal->getLAI(),
3325       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3326       DT, PSE.getSE());
3327   LVer->prepareNoAliasMetadata();
3328   return MemCheckBlock;
3329 }
3330 
3331 Value *InnerLoopVectorizer::emitTransformedIndex(
3332     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3333     const InductionDescriptor &ID) const {
3334 
3335   SCEVExpander Exp(*SE, DL, "induction");
3336   auto Step = ID.getStep();
3337   auto StartValue = ID.getStartValue();
3338   assert(Index->getType() == Step->getType() &&
3339          "Index type does not match StepValue type");
3340 
3341   // Note: the IR at this point is broken. We cannot use SE to create any new
3342   // SCEV and then expand it, hoping that SCEV's simplification will give us
3343   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3344   // lead to various SCEV crashes. So all we can do is to use builder and rely
3345   // on InstCombine for future simplifications. Here we handle some trivial
3346   // cases only.
3347   auto CreateAdd = [&B](Value *X, Value *Y) {
3348     assert(X->getType() == Y->getType() && "Types don't match!");
3349     if (auto *CX = dyn_cast<ConstantInt>(X))
3350       if (CX->isZero())
3351         return Y;
3352     if (auto *CY = dyn_cast<ConstantInt>(Y))
3353       if (CY->isZero())
3354         return X;
3355     return B.CreateAdd(X, Y);
3356   };
3357 
3358   auto CreateMul = [&B](Value *X, Value *Y) {
3359     assert(X->getType() == Y->getType() && "Types don't match!");
3360     if (auto *CX = dyn_cast<ConstantInt>(X))
3361       if (CX->isOne())
3362         return Y;
3363     if (auto *CY = dyn_cast<ConstantInt>(Y))
3364       if (CY->isOne())
3365         return X;
3366     return B.CreateMul(X, Y);
3367   };
3368 
3369   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3370   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3371   // the DomTree is not kept up-to-date for additional blocks generated in the
3372   // vector loop. By using the header as insertion point, we guarantee that the
3373   // expanded instructions dominate all their uses.
3374   auto GetInsertPoint = [this, &B]() {
3375     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3376     if (InsertBB != LoopVectorBody &&
3377         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3378       return LoopVectorBody->getTerminator();
3379     return &*B.GetInsertPoint();
3380   };
3381 
3382   switch (ID.getKind()) {
3383   case InductionDescriptor::IK_IntInduction: {
3384     assert(Index->getType() == StartValue->getType() &&
3385            "Index type does not match StartValue type");
3386     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3387       return B.CreateSub(StartValue, Index);
3388     auto *Offset = CreateMul(
3389         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3390     return CreateAdd(StartValue, Offset);
3391   }
3392   case InductionDescriptor::IK_PtrInduction: {
3393     assert(isa<SCEVConstant>(Step) &&
3394            "Expected constant step for pointer induction");
3395     return B.CreateGEP(
3396         StartValue->getType()->getPointerElementType(), StartValue,
3397         CreateMul(Index,
3398                   Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())));
3399   }
3400   case InductionDescriptor::IK_FpInduction: {
3401     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3402     auto InductionBinOp = ID.getInductionBinOp();
3403     assert(InductionBinOp &&
3404            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3405             InductionBinOp->getOpcode() == Instruction::FSub) &&
3406            "Original bin op should be defined for FP induction");
3407 
3408     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3409     Value *MulExp = B.CreateFMul(StepValue, Index);
3410     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3411                          "induction");
3412   }
3413   case InductionDescriptor::IK_NoInduction:
3414     return nullptr;
3415   }
3416   llvm_unreachable("invalid enum");
3417 }
3418 
3419 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3420   LoopScalarBody = OrigLoop->getHeader();
3421   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3422   LoopExitBlock = OrigLoop->getUniqueExitBlock();
3423   assert(LoopExitBlock && "Must have an exit block");
3424   assert(LoopVectorPreHeader && "Invalid loop structure");
3425 
3426   LoopMiddleBlock =
3427       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3428                  LI, nullptr, Twine(Prefix) + "middle.block");
3429   LoopScalarPreHeader =
3430       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3431                  nullptr, Twine(Prefix) + "scalar.ph");
3432 
3433   // Set up branch from middle block to the exit and scalar preheader blocks.
3434   // completeLoopSkeleton will update the condition to use an iteration check,
3435   // if required to decide whether to execute the remainder.
3436   BranchInst *BrInst =
3437       BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue());
3438   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3439   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3440   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3441 
3442   // We intentionally don't let SplitBlock to update LoopInfo since
3443   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3444   // LoopVectorBody is explicitly added to the correct place few lines later.
3445   LoopVectorBody =
3446       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3447                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3448 
3449   // Update dominator for loop exit.
3450   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3451 
3452   // Create and register the new vector loop.
3453   Loop *Lp = LI->AllocateLoop();
3454   Loop *ParentLoop = OrigLoop->getParentLoop();
3455 
3456   // Insert the new loop into the loop nest and register the new basic blocks
3457   // before calling any utilities such as SCEV that require valid LoopInfo.
3458   if (ParentLoop) {
3459     ParentLoop->addChildLoop(Lp);
3460   } else {
3461     LI->addTopLevelLoop(Lp);
3462   }
3463   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3464   return Lp;
3465 }
3466 
3467 void InnerLoopVectorizer::createInductionResumeValues(
3468     Loop *L, Value *VectorTripCount,
3469     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3470   assert(VectorTripCount && L && "Expected valid arguments");
3471   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3472           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3473          "Inconsistent information about additional bypass.");
3474   // We are going to resume the execution of the scalar loop.
3475   // Go over all of the induction variables that we found and fix the
3476   // PHIs that are left in the scalar version of the loop.
3477   // The starting values of PHI nodes depend on the counter of the last
3478   // iteration in the vectorized loop.
3479   // If we come from a bypass edge then we need to start from the original
3480   // start value.
3481   for (auto &InductionEntry : Legal->getInductionVars()) {
3482     PHINode *OrigPhi = InductionEntry.first;
3483     InductionDescriptor II = InductionEntry.second;
3484 
3485     // Create phi nodes to merge from the  backedge-taken check block.
3486     PHINode *BCResumeVal =
3487         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3488                         LoopScalarPreHeader->getTerminator());
3489     // Copy original phi DL over to the new one.
3490     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3491     Value *&EndValue = IVEndValues[OrigPhi];
3492     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3493     if (OrigPhi == OldInduction) {
3494       // We know what the end value is.
3495       EndValue = VectorTripCount;
3496     } else {
3497       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3498 
3499       // Fast-math-flags propagate from the original induction instruction.
3500       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3501         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3502 
3503       Type *StepType = II.getStep()->getType();
3504       Instruction::CastOps CastOp =
3505           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3506       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3507       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3508       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3509       EndValue->setName("ind.end");
3510 
3511       // Compute the end value for the additional bypass (if applicable).
3512       if (AdditionalBypass.first) {
3513         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3514         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3515                                          StepType, true);
3516         CRD =
3517             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3518         EndValueFromAdditionalBypass =
3519             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3520         EndValueFromAdditionalBypass->setName("ind.end");
3521       }
3522     }
3523     // The new PHI merges the original incoming value, in case of a bypass,
3524     // or the value at the end of the vectorized loop.
3525     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3526 
3527     // Fix the scalar body counter (PHI node).
3528     // The old induction's phi node in the scalar body needs the truncated
3529     // value.
3530     for (BasicBlock *BB : LoopBypassBlocks)
3531       BCResumeVal->addIncoming(II.getStartValue(), BB);
3532 
3533     if (AdditionalBypass.first)
3534       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3535                                             EndValueFromAdditionalBypass);
3536 
3537     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3538   }
3539 }
3540 
3541 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3542                                                       MDNode *OrigLoopID) {
3543   assert(L && "Expected valid loop.");
3544 
3545   // The trip counts should be cached by now.
3546   Value *Count = getOrCreateTripCount(L);
3547   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3548 
3549   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3550 
3551   // Add a check in the middle block to see if we have completed
3552   // all of the iterations in the first vector loop.
3553   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3554   // If tail is to be folded, we know we don't need to run the remainder.
3555   if (!Cost->foldTailByMasking()) {
3556     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3557                                         Count, VectorTripCount, "cmp.n",
3558                                         LoopMiddleBlock->getTerminator());
3559 
3560     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3561     // of the corresponding compare because they may have ended up with
3562     // different line numbers and we want to avoid awkward line stepping while
3563     // debugging. Eg. if the compare has got a line number inside the loop.
3564     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3565     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3566   }
3567 
3568   // Get ready to start creating new instructions into the vectorized body.
3569   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3570          "Inconsistent vector loop preheader");
3571   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3572 
3573   Optional<MDNode *> VectorizedLoopID =
3574       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3575                                       LLVMLoopVectorizeFollowupVectorized});
3576   if (VectorizedLoopID.hasValue()) {
3577     L->setLoopID(VectorizedLoopID.getValue());
3578 
3579     // Do not setAlreadyVectorized if loop attributes have been defined
3580     // explicitly.
3581     return LoopVectorPreHeader;
3582   }
3583 
3584   // Keep all loop hints from the original loop on the vector loop (we'll
3585   // replace the vectorizer-specific hints below).
3586   if (MDNode *LID = OrigLoop->getLoopID())
3587     L->setLoopID(LID);
3588 
3589   LoopVectorizeHints Hints(L, true, *ORE);
3590   Hints.setAlreadyVectorized();
3591 
3592 #ifdef EXPENSIVE_CHECKS
3593   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3594   LI->verify(*DT);
3595 #endif
3596 
3597   return LoopVectorPreHeader;
3598 }
3599 
3600 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3601   /*
3602    In this function we generate a new loop. The new loop will contain
3603    the vectorized instructions while the old loop will continue to run the
3604    scalar remainder.
3605 
3606        [ ] <-- loop iteration number check.
3607     /   |
3608    /    v
3609   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3610   |  /  |
3611   | /   v
3612   ||   [ ]     <-- vector pre header.
3613   |/    |
3614   |     v
3615   |    [  ] \
3616   |    [  ]_|   <-- vector loop.
3617   |     |
3618   |     v
3619   |   -[ ]   <--- middle-block.
3620   |  /  |
3621   | /   v
3622   -|- >[ ]     <--- new preheader.
3623    |    |
3624    |    v
3625    |   [ ] \
3626    |   [ ]_|   <-- old scalar loop to handle remainder.
3627     \   |
3628      \  v
3629       >[ ]     <-- exit block.
3630    ...
3631    */
3632 
3633   // Get the metadata of the original loop before it gets modified.
3634   MDNode *OrigLoopID = OrigLoop->getLoopID();
3635 
3636   // Create an empty vector loop, and prepare basic blocks for the runtime
3637   // checks.
3638   Loop *Lp = createVectorLoopSkeleton("");
3639 
3640   // Now, compare the new count to zero. If it is zero skip the vector loop and
3641   // jump to the scalar loop. This check also covers the case where the
3642   // backedge-taken count is uint##_max: adding one to it will overflow leading
3643   // to an incorrect trip count of zero. In this (rare) case we will also jump
3644   // to the scalar loop.
3645   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3646 
3647   // Generate the code to check any assumptions that we've made for SCEV
3648   // expressions.
3649   emitSCEVChecks(Lp, LoopScalarPreHeader);
3650 
3651   // Generate the code that checks in runtime if arrays overlap. We put the
3652   // checks into a separate block to make the more common case of few elements
3653   // faster.
3654   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3655 
3656   // Some loops have a single integer induction variable, while other loops
3657   // don't. One example is c++ iterators that often have multiple pointer
3658   // induction variables. In the code below we also support a case where we
3659   // don't have a single induction variable.
3660   //
3661   // We try to obtain an induction variable from the original loop as hard
3662   // as possible. However if we don't find one that:
3663   //   - is an integer
3664   //   - counts from zero, stepping by one
3665   //   - is the size of the widest induction variable type
3666   // then we create a new one.
3667   OldInduction = Legal->getPrimaryInduction();
3668   Type *IdxTy = Legal->getWidestInductionType();
3669   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3670   // The loop step is equal to the vectorization factor (num of SIMD elements)
3671   // times the unroll factor (num of SIMD instructions).
3672   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3673   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3674   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3675   Induction =
3676       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3677                               getDebugLocFromInstOrOperands(OldInduction));
3678 
3679   // Emit phis for the new starting index of the scalar loop.
3680   createInductionResumeValues(Lp, CountRoundDown);
3681 
3682   return completeLoopSkeleton(Lp, OrigLoopID);
3683 }
3684 
3685 // Fix up external users of the induction variable. At this point, we are
3686 // in LCSSA form, with all external PHIs that use the IV having one input value,
3687 // coming from the remainder loop. We need those PHIs to also have a correct
3688 // value for the IV when arriving directly from the middle block.
3689 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3690                                        const InductionDescriptor &II,
3691                                        Value *CountRoundDown, Value *EndValue,
3692                                        BasicBlock *MiddleBlock) {
3693   // There are two kinds of external IV usages - those that use the value
3694   // computed in the last iteration (the PHI) and those that use the penultimate
3695   // value (the value that feeds into the phi from the loop latch).
3696   // We allow both, but they, obviously, have different values.
3697 
3698   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3699 
3700   DenseMap<Value *, Value *> MissingVals;
3701 
3702   // An external user of the last iteration's value should see the value that
3703   // the remainder loop uses to initialize its own IV.
3704   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3705   for (User *U : PostInc->users()) {
3706     Instruction *UI = cast<Instruction>(U);
3707     if (!OrigLoop->contains(UI)) {
3708       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3709       MissingVals[UI] = EndValue;
3710     }
3711   }
3712 
3713   // An external user of the penultimate value need to see EndValue - Step.
3714   // The simplest way to get this is to recompute it from the constituent SCEVs,
3715   // that is Start + (Step * (CRD - 1)).
3716   for (User *U : OrigPhi->users()) {
3717     auto *UI = cast<Instruction>(U);
3718     if (!OrigLoop->contains(UI)) {
3719       const DataLayout &DL =
3720           OrigLoop->getHeader()->getModule()->getDataLayout();
3721       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3722 
3723       IRBuilder<> B(MiddleBlock->getTerminator());
3724 
3725       // Fast-math-flags propagate from the original induction instruction.
3726       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3727         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3728 
3729       Value *CountMinusOne = B.CreateSub(
3730           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3731       Value *CMO =
3732           !II.getStep()->getType()->isIntegerTy()
3733               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3734                              II.getStep()->getType())
3735               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3736       CMO->setName("cast.cmo");
3737       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3738       Escape->setName("ind.escape");
3739       MissingVals[UI] = Escape;
3740     }
3741   }
3742 
3743   for (auto &I : MissingVals) {
3744     PHINode *PHI = cast<PHINode>(I.first);
3745     // One corner case we have to handle is two IVs "chasing" each-other,
3746     // that is %IV2 = phi [...], [ %IV1, %latch ]
3747     // In this case, if IV1 has an external use, we need to avoid adding both
3748     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3749     // don't already have an incoming value for the middle block.
3750     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3751       PHI->addIncoming(I.second, MiddleBlock);
3752   }
3753 }
3754 
3755 namespace {
3756 
3757 struct CSEDenseMapInfo {
3758   static bool canHandle(const Instruction *I) {
3759     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3760            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3761   }
3762 
3763   static inline Instruction *getEmptyKey() {
3764     return DenseMapInfo<Instruction *>::getEmptyKey();
3765   }
3766 
3767   static inline Instruction *getTombstoneKey() {
3768     return DenseMapInfo<Instruction *>::getTombstoneKey();
3769   }
3770 
3771   static unsigned getHashValue(const Instruction *I) {
3772     assert(canHandle(I) && "Unknown instruction!");
3773     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3774                                                            I->value_op_end()));
3775   }
3776 
3777   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3778     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3779         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3780       return LHS == RHS;
3781     return LHS->isIdenticalTo(RHS);
3782   }
3783 };
3784 
3785 } // end anonymous namespace
3786 
3787 ///Perform cse of induction variable instructions.
3788 static void cse(BasicBlock *BB) {
3789   // Perform simple cse.
3790   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3791   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3792     Instruction *In = &*I++;
3793 
3794     if (!CSEDenseMapInfo::canHandle(In))
3795       continue;
3796 
3797     // Check if we can replace this instruction with any of the
3798     // visited instructions.
3799     if (Instruction *V = CSEMap.lookup(In)) {
3800       In->replaceAllUsesWith(V);
3801       In->eraseFromParent();
3802       continue;
3803     }
3804 
3805     CSEMap[In] = In;
3806   }
3807 }
3808 
3809 InstructionCost
3810 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3811                                               bool &NeedToScalarize) const {
3812   Function *F = CI->getCalledFunction();
3813   Type *ScalarRetTy = CI->getType();
3814   SmallVector<Type *, 4> Tys, ScalarTys;
3815   for (auto &ArgOp : CI->arg_operands())
3816     ScalarTys.push_back(ArgOp->getType());
3817 
3818   // Estimate cost of scalarized vector call. The source operands are assumed
3819   // to be vectors, so we need to extract individual elements from there,
3820   // execute VF scalar calls, and then gather the result into the vector return
3821   // value.
3822   InstructionCost ScalarCallCost =
3823       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3824   if (VF.isScalar())
3825     return ScalarCallCost;
3826 
3827   // Compute corresponding vector type for return value and arguments.
3828   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3829   for (Type *ScalarTy : ScalarTys)
3830     Tys.push_back(ToVectorTy(ScalarTy, VF));
3831 
3832   // Compute costs of unpacking argument values for the scalar calls and
3833   // packing the return values to a vector.
3834   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3835 
3836   InstructionCost Cost =
3837       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3838 
3839   // If we can't emit a vector call for this function, then the currently found
3840   // cost is the cost we need to return.
3841   NeedToScalarize = true;
3842   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3843   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3844 
3845   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3846     return Cost;
3847 
3848   // If the corresponding vector cost is cheaper, return its cost.
3849   InstructionCost VectorCallCost =
3850       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3851   if (VectorCallCost < Cost) {
3852     NeedToScalarize = false;
3853     Cost = VectorCallCost;
3854   }
3855   return Cost;
3856 }
3857 
3858 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3859   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3860     return Elt;
3861   return VectorType::get(Elt, VF);
3862 }
3863 
3864 InstructionCost
3865 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3866                                                    ElementCount VF) const {
3867   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3868   assert(ID && "Expected intrinsic call!");
3869   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3870   FastMathFlags FMF;
3871   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3872     FMF = FPMO->getFastMathFlags();
3873 
3874   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3875   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3876   SmallVector<Type *> ParamTys;
3877   std::transform(FTy->param_begin(), FTy->param_end(),
3878                  std::back_inserter(ParamTys),
3879                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3880 
3881   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3882                                     dyn_cast<IntrinsicInst>(CI));
3883   return TTI.getIntrinsicInstrCost(CostAttrs,
3884                                    TargetTransformInfo::TCK_RecipThroughput);
3885 }
3886 
3887 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3888   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3889   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3890   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3891 }
3892 
3893 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3894   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3895   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3896   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3897 }
3898 
3899 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3900   // For every instruction `I` in MinBWs, truncate the operands, create a
3901   // truncated version of `I` and reextend its result. InstCombine runs
3902   // later and will remove any ext/trunc pairs.
3903   SmallPtrSet<Value *, 4> Erased;
3904   for (const auto &KV : Cost->getMinimalBitwidths()) {
3905     // If the value wasn't vectorized, we must maintain the original scalar
3906     // type. The absence of the value from State indicates that it
3907     // wasn't vectorized.
3908     VPValue *Def = State.Plan->getVPValue(KV.first);
3909     if (!State.hasAnyVectorValue(Def))
3910       continue;
3911     for (unsigned Part = 0; Part < UF; ++Part) {
3912       Value *I = State.get(Def, Part);
3913       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3914         continue;
3915       Type *OriginalTy = I->getType();
3916       Type *ScalarTruncatedTy =
3917           IntegerType::get(OriginalTy->getContext(), KV.second);
3918       auto *TruncatedTy = FixedVectorType::get(
3919           ScalarTruncatedTy,
3920           cast<FixedVectorType>(OriginalTy)->getNumElements());
3921       if (TruncatedTy == OriginalTy)
3922         continue;
3923 
3924       IRBuilder<> B(cast<Instruction>(I));
3925       auto ShrinkOperand = [&](Value *V) -> Value * {
3926         if (auto *ZI = dyn_cast<ZExtInst>(V))
3927           if (ZI->getSrcTy() == TruncatedTy)
3928             return ZI->getOperand(0);
3929         return B.CreateZExtOrTrunc(V, TruncatedTy);
3930       };
3931 
3932       // The actual instruction modification depends on the instruction type,
3933       // unfortunately.
3934       Value *NewI = nullptr;
3935       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3936         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3937                              ShrinkOperand(BO->getOperand(1)));
3938 
3939         // Any wrapping introduced by shrinking this operation shouldn't be
3940         // considered undefined behavior. So, we can't unconditionally copy
3941         // arithmetic wrapping flags to NewI.
3942         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3943       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3944         NewI =
3945             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3946                          ShrinkOperand(CI->getOperand(1)));
3947       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3948         NewI = B.CreateSelect(SI->getCondition(),
3949                               ShrinkOperand(SI->getTrueValue()),
3950                               ShrinkOperand(SI->getFalseValue()));
3951       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3952         switch (CI->getOpcode()) {
3953         default:
3954           llvm_unreachable("Unhandled cast!");
3955         case Instruction::Trunc:
3956           NewI = ShrinkOperand(CI->getOperand(0));
3957           break;
3958         case Instruction::SExt:
3959           NewI = B.CreateSExtOrTrunc(
3960               CI->getOperand(0),
3961               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3962           break;
3963         case Instruction::ZExt:
3964           NewI = B.CreateZExtOrTrunc(
3965               CI->getOperand(0),
3966               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3967           break;
3968         }
3969       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3970         auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType())
3971                              ->getNumElements();
3972         auto *O0 = B.CreateZExtOrTrunc(
3973             SI->getOperand(0),
3974             FixedVectorType::get(ScalarTruncatedTy, Elements0));
3975         auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType())
3976                              ->getNumElements();
3977         auto *O1 = B.CreateZExtOrTrunc(
3978             SI->getOperand(1),
3979             FixedVectorType::get(ScalarTruncatedTy, Elements1));
3980 
3981         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3982       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3983         // Don't do anything with the operands, just extend the result.
3984         continue;
3985       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3986         auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType())
3987                             ->getNumElements();
3988         auto *O0 = B.CreateZExtOrTrunc(
3989             IE->getOperand(0),
3990             FixedVectorType::get(ScalarTruncatedTy, Elements));
3991         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3992         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3993       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3994         auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType())
3995                             ->getNumElements();
3996         auto *O0 = B.CreateZExtOrTrunc(
3997             EE->getOperand(0),
3998             FixedVectorType::get(ScalarTruncatedTy, Elements));
3999         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4000       } else {
4001         // If we don't know what to do, be conservative and don't do anything.
4002         continue;
4003       }
4004 
4005       // Lastly, extend the result.
4006       NewI->takeName(cast<Instruction>(I));
4007       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4008       I->replaceAllUsesWith(Res);
4009       cast<Instruction>(I)->eraseFromParent();
4010       Erased.insert(I);
4011       State.reset(Def, Res, Part);
4012     }
4013   }
4014 
4015   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4016   for (const auto &KV : Cost->getMinimalBitwidths()) {
4017     // If the value wasn't vectorized, we must maintain the original scalar
4018     // type. The absence of the value from State indicates that it
4019     // wasn't vectorized.
4020     VPValue *Def = State.Plan->getVPValue(KV.first);
4021     if (!State.hasAnyVectorValue(Def))
4022       continue;
4023     for (unsigned Part = 0; Part < UF; ++Part) {
4024       Value *I = State.get(Def, Part);
4025       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4026       if (Inst && Inst->use_empty()) {
4027         Value *NewI = Inst->getOperand(0);
4028         Inst->eraseFromParent();
4029         State.reset(Def, NewI, Part);
4030       }
4031     }
4032   }
4033 }
4034 
4035 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4036   // Insert truncates and extends for any truncated instructions as hints to
4037   // InstCombine.
4038   if (VF.isVector())
4039     truncateToMinimalBitwidths(State);
4040 
4041   // Fix widened non-induction PHIs by setting up the PHI operands.
4042   if (OrigPHIsToFix.size()) {
4043     assert(EnableVPlanNativePath &&
4044            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4045     fixNonInductionPHIs(State);
4046   }
4047 
4048   // At this point every instruction in the original loop is widened to a
4049   // vector form. Now we need to fix the recurrences in the loop. These PHI
4050   // nodes are currently empty because we did not want to introduce cycles.
4051   // This is the second stage of vectorizing recurrences.
4052   fixCrossIterationPHIs(State);
4053 
4054   // Forget the original basic block.
4055   PSE.getSE()->forgetLoop(OrigLoop);
4056 
4057   // Fix-up external users of the induction variables.
4058   for (auto &Entry : Legal->getInductionVars())
4059     fixupIVUsers(Entry.first, Entry.second,
4060                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4061                  IVEndValues[Entry.first], LoopMiddleBlock);
4062 
4063   fixLCSSAPHIs(State);
4064   for (Instruction *PI : PredicatedInstructions)
4065     sinkScalarOperands(&*PI);
4066 
4067   // Remove redundant induction instructions.
4068   cse(LoopVectorBody);
4069 
4070   // Set/update profile weights for the vector and remainder loops as original
4071   // loop iterations are now distributed among them. Note that original loop
4072   // represented by LoopScalarBody becomes remainder loop after vectorization.
4073   //
4074   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4075   // end up getting slightly roughened result but that should be OK since
4076   // profile is not inherently precise anyway. Note also possible bypass of
4077   // vector code caused by legality checks is ignored, assigning all the weight
4078   // to the vector loop, optimistically.
4079   //
4080   // For scalable vectorization we can't know at compile time how many iterations
4081   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4082   // vscale of '1'.
4083   setProfileInfoAfterUnrolling(
4084       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4085       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4086 }
4087 
4088 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4089   // In order to support recurrences we need to be able to vectorize Phi nodes.
4090   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4091   // stage #2: We now need to fix the recurrences by adding incoming edges to
4092   // the currently empty PHI nodes. At this point every instruction in the
4093   // original loop is widened to a vector form so we can use them to construct
4094   // the incoming edges.
4095   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4096   for (VPRecipeBase &R : Header->phis()) {
4097     auto *PhiR = dyn_cast<VPWidenPHIRecipe>(&R);
4098     if (!PhiR)
4099       continue;
4100     auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4101     if (PhiR->getRecurrenceDescriptor()) {
4102       fixReduction(PhiR, State);
4103     } else if (Legal->isFirstOrderRecurrence(OrigPhi))
4104       fixFirstOrderRecurrence(OrigPhi, State);
4105   }
4106 }
4107 
4108 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi,
4109                                                   VPTransformState &State) {
4110   // This is the second phase of vectorizing first-order recurrences. An
4111   // overview of the transformation is described below. Suppose we have the
4112   // following loop.
4113   //
4114   //   for (int i = 0; i < n; ++i)
4115   //     b[i] = a[i] - a[i - 1];
4116   //
4117   // There is a first-order recurrence on "a". For this loop, the shorthand
4118   // scalar IR looks like:
4119   //
4120   //   scalar.ph:
4121   //     s_init = a[-1]
4122   //     br scalar.body
4123   //
4124   //   scalar.body:
4125   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4126   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4127   //     s2 = a[i]
4128   //     b[i] = s2 - s1
4129   //     br cond, scalar.body, ...
4130   //
4131   // In this example, s1 is a recurrence because it's value depends on the
4132   // previous iteration. In the first phase of vectorization, we created a
4133   // temporary value for s1. We now complete the vectorization and produce the
4134   // shorthand vector IR shown below (for VF = 4, UF = 1).
4135   //
4136   //   vector.ph:
4137   //     v_init = vector(..., ..., ..., a[-1])
4138   //     br vector.body
4139   //
4140   //   vector.body
4141   //     i = phi [0, vector.ph], [i+4, vector.body]
4142   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4143   //     v2 = a[i, i+1, i+2, i+3];
4144   //     v3 = vector(v1(3), v2(0, 1, 2))
4145   //     b[i, i+1, i+2, i+3] = v2 - v3
4146   //     br cond, vector.body, middle.block
4147   //
4148   //   middle.block:
4149   //     x = v2(3)
4150   //     br scalar.ph
4151   //
4152   //   scalar.ph:
4153   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4154   //     br scalar.body
4155   //
4156   // After execution completes the vector loop, we extract the next value of
4157   // the recurrence (x) to use as the initial value in the scalar loop.
4158 
4159   // Get the original loop preheader and single loop latch.
4160   auto *Preheader = OrigLoop->getLoopPreheader();
4161   auto *Latch = OrigLoop->getLoopLatch();
4162 
4163   // Get the initial and previous values of the scalar recurrence.
4164   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
4165   auto *Previous = Phi->getIncomingValueForBlock(Latch);
4166 
4167   // Create a vector from the initial value.
4168   auto *VectorInit = ScalarInit;
4169   if (VF.isVector()) {
4170     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4171     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
4172     VectorInit = Builder.CreateInsertElement(
4173         PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
4174         Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init");
4175   }
4176 
4177   VPValue *PhiDef = State.Plan->getVPValue(Phi);
4178   VPValue *PreviousDef = State.Plan->getVPValue(Previous);
4179   // We constructed a temporary phi node in the first phase of vectorization.
4180   // This phi node will eventually be deleted.
4181   Builder.SetInsertPoint(cast<Instruction>(State.get(PhiDef, 0)));
4182 
4183   // Create a phi node for the new recurrence. The current value will either be
4184   // the initial value inserted into a vector or loop-varying vector value.
4185   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
4186   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
4187 
4188   // Get the vectorized previous value of the last part UF - 1. It appears last
4189   // among all unrolled iterations, due to the order of their construction.
4190   Value *PreviousLastPart = State.get(PreviousDef, UF - 1);
4191 
4192   // Find and set the insertion point after the previous value if it is an
4193   // instruction.
4194   BasicBlock::iterator InsertPt;
4195   // Note that the previous value may have been constant-folded so it is not
4196   // guaranteed to be an instruction in the vector loop.
4197   // FIXME: Loop invariant values do not form recurrences. We should deal with
4198   //        them earlier.
4199   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart))
4200     InsertPt = LoopVectorBody->getFirstInsertionPt();
4201   else {
4202     Instruction *PreviousInst = cast<Instruction>(PreviousLastPart);
4203     if (isa<PHINode>(PreviousLastPart))
4204       // If the previous value is a phi node, we should insert after all the phi
4205       // nodes in the block containing the PHI to avoid breaking basic block
4206       // verification. Note that the basic block may be different to
4207       // LoopVectorBody, in case we predicate the loop.
4208       InsertPt = PreviousInst->getParent()->getFirstInsertionPt();
4209     else
4210       InsertPt = ++PreviousInst->getIterator();
4211   }
4212   Builder.SetInsertPoint(&*InsertPt);
4213 
4214   // We will construct a vector for the recurrence by combining the values for
4215   // the current and previous iterations. This is the required shuffle mask.
4216   assert(!VF.isScalable());
4217   SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue());
4218   ShuffleMask[0] = VF.getKnownMinValue() - 1;
4219   for (unsigned I = 1; I < VF.getKnownMinValue(); ++I)
4220     ShuffleMask[I] = I + VF.getKnownMinValue() - 1;
4221 
4222   // The vector from which to take the initial value for the current iteration
4223   // (actual or unrolled). Initially, this is the vector phi node.
4224   Value *Incoming = VecPhi;
4225 
4226   // Shuffle the current and previous vector and update the vector parts.
4227   for (unsigned Part = 0; Part < UF; ++Part) {
4228     Value *PreviousPart = State.get(PreviousDef, Part);
4229     Value *PhiPart = State.get(PhiDef, Part);
4230     auto *Shuffle =
4231         VF.isVector()
4232             ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask)
4233             : Incoming;
4234     PhiPart->replaceAllUsesWith(Shuffle);
4235     cast<Instruction>(PhiPart)->eraseFromParent();
4236     State.reset(PhiDef, Shuffle, Part);
4237     Incoming = PreviousPart;
4238   }
4239 
4240   // Fix the latch value of the new recurrence in the vector loop.
4241   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4242 
4243   // Extract the last vector element in the middle block. This will be the
4244   // initial value for the recurrence when jumping to the scalar loop.
4245   auto *ExtractForScalar = Incoming;
4246   if (VF.isVector()) {
4247     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4248     ExtractForScalar = Builder.CreateExtractElement(
4249         ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1),
4250         "vector.recur.extract");
4251   }
4252   // Extract the second last element in the middle block if the
4253   // Phi is used outside the loop. We need to extract the phi itself
4254   // and not the last element (the phi update in the current iteration). This
4255   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4256   // when the scalar loop is not run at all.
4257   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4258   if (VF.isVector())
4259     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4260         Incoming, Builder.getInt32(VF.getKnownMinValue() - 2),
4261         "vector.recur.extract.for.phi");
4262   // When loop is unrolled without vectorizing, initialize
4263   // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
4264   // `Incoming`. This is analogous to the vectorized case above: extracting the
4265   // second last element when VF > 1.
4266   else if (UF > 1)
4267     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4268 
4269   // Fix the initial value of the original recurrence in the scalar loop.
4270   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4271   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4272   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4273     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4274     Start->addIncoming(Incoming, BB);
4275   }
4276 
4277   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4278   Phi->setName("scalar.recur");
4279 
4280   // Finally, fix users of the recurrence outside the loop. The users will need
4281   // either the last value of the scalar recurrence or the last value of the
4282   // vector recurrence we extracted in the middle block. Since the loop is in
4283   // LCSSA form, we just need to find all the phi nodes for the original scalar
4284   // recurrence in the exit block, and then add an edge for the middle block.
4285   // Note that LCSSA does not imply single entry when the original scalar loop
4286   // had multiple exiting edges (as we always run the last iteration in the
4287   // scalar epilogue); in that case, the exiting path through middle will be
4288   // dynamically dead and the value picked for the phi doesn't matter.
4289   for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4290     if (any_of(LCSSAPhi.incoming_values(),
4291                [Phi](Value *V) { return V == Phi; }))
4292       LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4293 }
4294 
4295 static bool useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4296   return EnableStrictReductions && RdxDesc.isOrdered();
4297 }
4298 
4299 void InnerLoopVectorizer::fixReduction(VPWidenPHIRecipe *PhiR,
4300                                        VPTransformState &State) {
4301   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4302   // Get it's reduction variable descriptor.
4303   assert(Legal->isReductionVariable(OrigPhi) &&
4304          "Unable to find the reduction variable");
4305   RecurrenceDescriptor RdxDesc = *PhiR->getRecurrenceDescriptor();
4306 
4307   RecurKind RK = RdxDesc.getRecurrenceKind();
4308   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4309   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4310   setDebugLocFromInst(Builder, ReductionStartValue);
4311   bool IsInLoopReductionPhi = Cost->isInLoopReduction(OrigPhi);
4312 
4313   VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst);
4314   // This is the vector-clone of the value that leaves the loop.
4315   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4316 
4317   // Wrap flags are in general invalid after vectorization, clear them.
4318   clearReductionWrapFlags(RdxDesc, State);
4319 
4320   // Fix the vector-loop phi.
4321 
4322   // Reductions do not have to start at zero. They can start with
4323   // any loop invariant values.
4324   BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4325 
4326   bool IsOrdered = State.VF.isVector() && IsInLoopReductionPhi &&
4327                    useOrderedReductions(RdxDesc);
4328 
4329   for (unsigned Part = 0; Part < UF; ++Part) {
4330     if (IsOrdered && Part > 0)
4331       break;
4332     Value *VecRdxPhi = State.get(PhiR->getVPSingleValue(), Part);
4333     Value *Val = State.get(PhiR->getBackedgeValue(), Part);
4334     if (IsOrdered)
4335       Val = State.get(PhiR->getBackedgeValue(), UF - 1);
4336 
4337     cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch);
4338   }
4339 
4340   // Before each round, move the insertion point right between
4341   // the PHIs and the values we are going to write.
4342   // This allows us to write both PHINodes and the extractelement
4343   // instructions.
4344   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4345 
4346   setDebugLocFromInst(Builder, LoopExitInst);
4347 
4348   Type *PhiTy = OrigPhi->getType();
4349   // If tail is folded by masking, the vector value to leave the loop should be
4350   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4351   // instead of the former. For an inloop reduction the reduction will already
4352   // be predicated, and does not need to be handled here.
4353   if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) {
4354     for (unsigned Part = 0; Part < UF; ++Part) {
4355       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4356       Value *Sel = nullptr;
4357       for (User *U : VecLoopExitInst->users()) {
4358         if (isa<SelectInst>(U)) {
4359           assert(!Sel && "Reduction exit feeding two selects");
4360           Sel = U;
4361         } else
4362           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4363       }
4364       assert(Sel && "Reduction exit feeds no select");
4365       State.reset(LoopExitInstDef, Sel, Part);
4366 
4367       // If the target can create a predicated operator for the reduction at no
4368       // extra cost in the loop (for example a predicated vadd), it can be
4369       // cheaper for the select to remain in the loop than be sunk out of it,
4370       // and so use the select value for the phi instead of the old
4371       // LoopExitValue.
4372       if (PreferPredicatedReductionSelect ||
4373           TTI->preferPredicatedReductionSelect(
4374               RdxDesc.getOpcode(), PhiTy,
4375               TargetTransformInfo::ReductionFlags())) {
4376         auto *VecRdxPhi =
4377             cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part));
4378         VecRdxPhi->setIncomingValueForBlock(
4379             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4380       }
4381     }
4382   }
4383 
4384   // If the vector reduction can be performed in a smaller type, we truncate
4385   // then extend the loop exit value to enable InstCombine to evaluate the
4386   // entire expression in the smaller type.
4387   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4388     assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!");
4389     assert(!VF.isScalable() && "scalable vectors not yet supported.");
4390     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4391     Builder.SetInsertPoint(
4392         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4393     VectorParts RdxParts(UF);
4394     for (unsigned Part = 0; Part < UF; ++Part) {
4395       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4396       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4397       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4398                                         : Builder.CreateZExt(Trunc, VecTy);
4399       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4400            UI != RdxParts[Part]->user_end();)
4401         if (*UI != Trunc) {
4402           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4403           RdxParts[Part] = Extnd;
4404         } else {
4405           ++UI;
4406         }
4407     }
4408     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4409     for (unsigned Part = 0; Part < UF; ++Part) {
4410       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4411       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4412     }
4413   }
4414 
4415   // Reduce all of the unrolled parts into a single vector.
4416   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4417   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4418 
4419   // The middle block terminator has already been assigned a DebugLoc here (the
4420   // OrigLoop's single latch terminator). We want the whole middle block to
4421   // appear to execute on this line because: (a) it is all compiler generated,
4422   // (b) these instructions are always executed after evaluating the latch
4423   // conditional branch, and (c) other passes may add new predecessors which
4424   // terminate on this line. This is the easiest way to ensure we don't
4425   // accidentally cause an extra step back into the loop while debugging.
4426   setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator());
4427   if (IsOrdered)
4428     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4429   else {
4430     // Floating-point operations should have some FMF to enable the reduction.
4431     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4432     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4433     for (unsigned Part = 1; Part < UF; ++Part) {
4434       Value *RdxPart = State.get(LoopExitInstDef, Part);
4435       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4436         ReducedPartRdx = Builder.CreateBinOp(
4437             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4438       } else {
4439         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4440       }
4441     }
4442   }
4443 
4444   // Create the reduction after the loop. Note that inloop reductions create the
4445   // target reduction in the loop using a Reduction recipe.
4446   if (VF.isVector() && !IsInLoopReductionPhi) {
4447     ReducedPartRdx =
4448         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4449     // If the reduction can be performed in a smaller type, we need to extend
4450     // the reduction to the wider type before we branch to the original loop.
4451     if (PhiTy != RdxDesc.getRecurrenceType())
4452       ReducedPartRdx = RdxDesc.isSigned()
4453                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4454                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4455   }
4456 
4457   // Create a phi node that merges control-flow from the backedge-taken check
4458   // block and the middle block.
4459   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4460                                         LoopScalarPreHeader->getTerminator());
4461   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4462     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4463   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4464 
4465   // Now, we need to fix the users of the reduction variable
4466   // inside and outside of the scalar remainder loop.
4467 
4468   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4469   // in the exit blocks.  See comment on analogous loop in
4470   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4471   for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4472     if (any_of(LCSSAPhi.incoming_values(),
4473                [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4474       LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4475 
4476   // Fix the scalar loop reduction variable with the incoming reduction sum
4477   // from the vector body and from the backedge value.
4478   int IncomingEdgeBlockIdx =
4479       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4480   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4481   // Pick the other block.
4482   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4483   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4484   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4485 }
4486 
4487 void InnerLoopVectorizer::clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc,
4488                                                   VPTransformState &State) {
4489   RecurKind RK = RdxDesc.getRecurrenceKind();
4490   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4491     return;
4492 
4493   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4494   assert(LoopExitInstr && "null loop exit instruction");
4495   SmallVector<Instruction *, 8> Worklist;
4496   SmallPtrSet<Instruction *, 8> Visited;
4497   Worklist.push_back(LoopExitInstr);
4498   Visited.insert(LoopExitInstr);
4499 
4500   while (!Worklist.empty()) {
4501     Instruction *Cur = Worklist.pop_back_val();
4502     if (isa<OverflowingBinaryOperator>(Cur))
4503       for (unsigned Part = 0; Part < UF; ++Part) {
4504         Value *V = State.get(State.Plan->getVPValue(Cur), Part);
4505         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4506       }
4507 
4508     for (User *U : Cur->users()) {
4509       Instruction *UI = cast<Instruction>(U);
4510       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4511           Visited.insert(UI).second)
4512         Worklist.push_back(UI);
4513     }
4514   }
4515 }
4516 
4517 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4518   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4519     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4520       // Some phis were already hand updated by the reduction and recurrence
4521       // code above, leave them alone.
4522       continue;
4523 
4524     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4525     // Non-instruction incoming values will have only one value.
4526 
4527     VPLane Lane = VPLane::getFirstLane();
4528     if (isa<Instruction>(IncomingValue) &&
4529         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4530                                            VF))
4531       Lane = VPLane::getLastLaneForVF(VF);
4532 
4533     // Can be a loop invariant incoming value or the last scalar value to be
4534     // extracted from the vectorized loop.
4535     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4536     Value *lastIncomingValue =
4537         OrigLoop->isLoopInvariant(IncomingValue)
4538             ? IncomingValue
4539             : State.get(State.Plan->getVPValue(IncomingValue),
4540                         VPIteration(UF - 1, Lane));
4541     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4542   }
4543 }
4544 
4545 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4546   // The basic block and loop containing the predicated instruction.
4547   auto *PredBB = PredInst->getParent();
4548   auto *VectorLoop = LI->getLoopFor(PredBB);
4549 
4550   // Initialize a worklist with the operands of the predicated instruction.
4551   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4552 
4553   // Holds instructions that we need to analyze again. An instruction may be
4554   // reanalyzed if we don't yet know if we can sink it or not.
4555   SmallVector<Instruction *, 8> InstsToReanalyze;
4556 
4557   // Returns true if a given use occurs in the predicated block. Phi nodes use
4558   // their operands in their corresponding predecessor blocks.
4559   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4560     auto *I = cast<Instruction>(U.getUser());
4561     BasicBlock *BB = I->getParent();
4562     if (auto *Phi = dyn_cast<PHINode>(I))
4563       BB = Phi->getIncomingBlock(
4564           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4565     return BB == PredBB;
4566   };
4567 
4568   // Iteratively sink the scalarized operands of the predicated instruction
4569   // into the block we created for it. When an instruction is sunk, it's
4570   // operands are then added to the worklist. The algorithm ends after one pass
4571   // through the worklist doesn't sink a single instruction.
4572   bool Changed;
4573   do {
4574     // Add the instructions that need to be reanalyzed to the worklist, and
4575     // reset the changed indicator.
4576     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4577     InstsToReanalyze.clear();
4578     Changed = false;
4579 
4580     while (!Worklist.empty()) {
4581       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4582 
4583       // We can't sink an instruction if it is a phi node, is already in the
4584       // predicated block, is not in the loop, or may have side effects.
4585       if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4586           !VectorLoop->contains(I) || I->mayHaveSideEffects())
4587         continue;
4588 
4589       // It's legal to sink the instruction if all its uses occur in the
4590       // predicated block. Otherwise, there's nothing to do yet, and we may
4591       // need to reanalyze the instruction.
4592       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4593         InstsToReanalyze.push_back(I);
4594         continue;
4595       }
4596 
4597       // Move the instruction to the beginning of the predicated block, and add
4598       // it's operands to the worklist.
4599       I->moveBefore(&*PredBB->getFirstInsertionPt());
4600       Worklist.insert(I->op_begin(), I->op_end());
4601 
4602       // The sinking may have enabled other instructions to be sunk, so we will
4603       // need to iterate.
4604       Changed = true;
4605     }
4606   } while (Changed);
4607 }
4608 
4609 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4610   for (PHINode *OrigPhi : OrigPHIsToFix) {
4611     VPWidenPHIRecipe *VPPhi =
4612         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4613     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4614     // Make sure the builder has a valid insert point.
4615     Builder.SetInsertPoint(NewPhi);
4616     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4617       VPValue *Inc = VPPhi->getIncomingValue(i);
4618       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4619       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4620     }
4621   }
4622 }
4623 
4624 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4625                                    VPUser &Operands, unsigned UF,
4626                                    ElementCount VF, bool IsPtrLoopInvariant,
4627                                    SmallBitVector &IsIndexLoopInvariant,
4628                                    VPTransformState &State) {
4629   // Construct a vector GEP by widening the operands of the scalar GEP as
4630   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4631   // results in a vector of pointers when at least one operand of the GEP
4632   // is vector-typed. Thus, to keep the representation compact, we only use
4633   // vector-typed operands for loop-varying values.
4634 
4635   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4636     // If we are vectorizing, but the GEP has only loop-invariant operands,
4637     // the GEP we build (by only using vector-typed operands for
4638     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4639     // produce a vector of pointers, we need to either arbitrarily pick an
4640     // operand to broadcast, or broadcast a clone of the original GEP.
4641     // Here, we broadcast a clone of the original.
4642     //
4643     // TODO: If at some point we decide to scalarize instructions having
4644     //       loop-invariant operands, this special case will no longer be
4645     //       required. We would add the scalarization decision to
4646     //       collectLoopScalars() and teach getVectorValue() to broadcast
4647     //       the lane-zero scalar value.
4648     auto *Clone = Builder.Insert(GEP->clone());
4649     for (unsigned Part = 0; Part < UF; ++Part) {
4650       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4651       State.set(VPDef, EntryPart, Part);
4652       addMetadata(EntryPart, GEP);
4653     }
4654   } else {
4655     // If the GEP has at least one loop-varying operand, we are sure to
4656     // produce a vector of pointers. But if we are only unrolling, we want
4657     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4658     // produce with the code below will be scalar (if VF == 1) or vector
4659     // (otherwise). Note that for the unroll-only case, we still maintain
4660     // values in the vector mapping with initVector, as we do for other
4661     // instructions.
4662     for (unsigned Part = 0; Part < UF; ++Part) {
4663       // The pointer operand of the new GEP. If it's loop-invariant, we
4664       // won't broadcast it.
4665       auto *Ptr = IsPtrLoopInvariant
4666                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4667                       : State.get(Operands.getOperand(0), Part);
4668 
4669       // Collect all the indices for the new GEP. If any index is
4670       // loop-invariant, we won't broadcast it.
4671       SmallVector<Value *, 4> Indices;
4672       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4673         VPValue *Operand = Operands.getOperand(I);
4674         if (IsIndexLoopInvariant[I - 1])
4675           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4676         else
4677           Indices.push_back(State.get(Operand, Part));
4678       }
4679 
4680       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4681       // but it should be a vector, otherwise.
4682       auto *NewGEP =
4683           GEP->isInBounds()
4684               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4685                                           Indices)
4686               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4687       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4688              "NewGEP is not a pointer vector");
4689       State.set(VPDef, NewGEP, Part);
4690       addMetadata(NewGEP, GEP);
4691     }
4692   }
4693 }
4694 
4695 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4696                                               RecurrenceDescriptor *RdxDesc,
4697                                               VPWidenPHIRecipe *PhiR,
4698                                               VPTransformState &State) {
4699   PHINode *P = cast<PHINode>(PN);
4700   if (EnableVPlanNativePath) {
4701     // Currently we enter here in the VPlan-native path for non-induction
4702     // PHIs where all control flow is uniform. We simply widen these PHIs.
4703     // Create a vector phi with no operands - the vector phi operands will be
4704     // set at the end of vector code generation.
4705     Type *VecTy = (State.VF.isScalar())
4706                       ? PN->getType()
4707                       : VectorType::get(PN->getType(), State.VF);
4708     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4709     State.set(PhiR, VecPhi, 0);
4710     OrigPHIsToFix.push_back(P);
4711 
4712     return;
4713   }
4714 
4715   assert(PN->getParent() == OrigLoop->getHeader() &&
4716          "Non-header phis should have been handled elsewhere");
4717 
4718   VPValue *StartVPV = PhiR->getStartValue();
4719   Value *StartV = StartVPV ? StartVPV->getLiveInIRValue() : nullptr;
4720   // In order to support recurrences we need to be able to vectorize Phi nodes.
4721   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4722   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4723   // this value when we vectorize all of the instructions that use the PHI.
4724   if (RdxDesc || Legal->isFirstOrderRecurrence(P)) {
4725     Value *Iden = nullptr;
4726     bool ScalarPHI =
4727         (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN));
4728     Type *VecTy =
4729         ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF);
4730 
4731     if (RdxDesc) {
4732       assert(Legal->isReductionVariable(P) && StartV &&
4733              "RdxDesc should only be set for reduction variables; in that case "
4734              "a StartV is also required");
4735       RecurKind RK = RdxDesc->getRecurrenceKind();
4736       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) {
4737         // MinMax reduction have the start value as their identify.
4738         if (ScalarPHI) {
4739           Iden = StartV;
4740         } else {
4741           IRBuilderBase::InsertPointGuard IPBuilder(Builder);
4742           Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4743           StartV = Iden =
4744               Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident");
4745         }
4746       } else {
4747         Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity(
4748             RK, VecTy->getScalarType(), RdxDesc->getFastMathFlags());
4749         Iden = IdenC;
4750 
4751         if (!ScalarPHI) {
4752           Iden = ConstantVector::getSplat(State.VF, IdenC);
4753           IRBuilderBase::InsertPointGuard IPBuilder(Builder);
4754           Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4755           Constant *Zero = Builder.getInt32(0);
4756           StartV = Builder.CreateInsertElement(Iden, StartV, Zero);
4757         }
4758       }
4759     }
4760 
4761     bool IsOrdered = State.VF.isVector() &&
4762                      Cost->isInLoopReduction(cast<PHINode>(PN)) &&
4763                      useOrderedReductions(*RdxDesc);
4764 
4765     for (unsigned Part = 0; Part < State.UF; ++Part) {
4766       // This is phase one of vectorizing PHIs.
4767       if (Part > 0 && IsOrdered)
4768         return;
4769       Value *EntryPart = PHINode::Create(
4770           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4771       State.set(PhiR, EntryPart, Part);
4772       if (StartV) {
4773         // Make sure to add the reduction start value only to the
4774         // first unroll part.
4775         Value *StartVal = (Part == 0) ? StartV : Iden;
4776         cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader);
4777       }
4778     }
4779     return;
4780   }
4781 
4782   assert(!Legal->isReductionVariable(P) &&
4783          "reductions should be handled above");
4784 
4785   setDebugLocFromInst(Builder, P);
4786 
4787   // This PHINode must be an induction variable.
4788   // Make sure that we know about it.
4789   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4790 
4791   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4792   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4793 
4794   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4795   // which can be found from the original scalar operations.
4796   switch (II.getKind()) {
4797   case InductionDescriptor::IK_NoInduction:
4798     llvm_unreachable("Unknown induction");
4799   case InductionDescriptor::IK_IntInduction:
4800   case InductionDescriptor::IK_FpInduction:
4801     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4802   case InductionDescriptor::IK_PtrInduction: {
4803     // Handle the pointer induction variable case.
4804     assert(P->getType()->isPointerTy() && "Unexpected type.");
4805 
4806     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4807       // This is the normalized GEP that starts counting at zero.
4808       Value *PtrInd =
4809           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4810       // Determine the number of scalars we need to generate for each unroll
4811       // iteration. If the instruction is uniform, we only need to generate the
4812       // first lane. Otherwise, we generate all VF values.
4813       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4814       assert((IsUniform || !VF.isScalable()) &&
4815              "Currently unsupported for scalable vectors");
4816       unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
4817 
4818       for (unsigned Part = 0; Part < UF; ++Part) {
4819         Value *PartStart = createStepForVF(
4820             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4821         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4822           Value *Idx = Builder.CreateAdd(
4823               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4824           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4825           Value *SclrGep =
4826               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4827           SclrGep->setName("next.gep");
4828           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4829         }
4830       }
4831       return;
4832     }
4833     assert(isa<SCEVConstant>(II.getStep()) &&
4834            "Induction step not a SCEV constant!");
4835     Type *PhiType = II.getStep()->getType();
4836 
4837     // Build a pointer phi
4838     Value *ScalarStartValue = II.getStartValue();
4839     Type *ScStValueType = ScalarStartValue->getType();
4840     PHINode *NewPointerPhi =
4841         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4842     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4843 
4844     // A pointer induction, performed by using a gep
4845     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4846     Instruction *InductionLoc = LoopLatch->getTerminator();
4847     const SCEV *ScalarStep = II.getStep();
4848     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4849     Value *ScalarStepValue =
4850         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4851     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4852     Value *NumUnrolledElems =
4853         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4854     Value *InductionGEP = GetElementPtrInst::Create(
4855         ScStValueType->getPointerElementType(), NewPointerPhi,
4856         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4857         InductionLoc);
4858     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4859 
4860     // Create UF many actual address geps that use the pointer
4861     // phi as base and a vectorized version of the step value
4862     // (<step*0, ..., step*N>) as offset.
4863     for (unsigned Part = 0; Part < State.UF; ++Part) {
4864       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4865       Value *StartOffsetScalar =
4866           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4867       Value *StartOffset =
4868           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4869       // Create a vector of consecutive numbers from zero to VF.
4870       StartOffset =
4871           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4872 
4873       Value *GEP = Builder.CreateGEP(
4874           ScStValueType->getPointerElementType(), NewPointerPhi,
4875           Builder.CreateMul(
4876               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4877               "vector.gep"));
4878       State.set(PhiR, GEP, Part);
4879     }
4880   }
4881   }
4882 }
4883 
4884 /// A helper function for checking whether an integer division-related
4885 /// instruction may divide by zero (in which case it must be predicated if
4886 /// executed conditionally in the scalar code).
4887 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4888 /// Non-zero divisors that are non compile-time constants will not be
4889 /// converted into multiplication, so we will still end up scalarizing
4890 /// the division, but can do so w/o predication.
4891 static bool mayDivideByZero(Instruction &I) {
4892   assert((I.getOpcode() == Instruction::UDiv ||
4893           I.getOpcode() == Instruction::SDiv ||
4894           I.getOpcode() == Instruction::URem ||
4895           I.getOpcode() == Instruction::SRem) &&
4896          "Unexpected instruction");
4897   Value *Divisor = I.getOperand(1);
4898   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4899   return !CInt || CInt->isZero();
4900 }
4901 
4902 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4903                                            VPUser &User,
4904                                            VPTransformState &State) {
4905   switch (I.getOpcode()) {
4906   case Instruction::Call:
4907   case Instruction::Br:
4908   case Instruction::PHI:
4909   case Instruction::GetElementPtr:
4910   case Instruction::Select:
4911     llvm_unreachable("This instruction is handled by a different recipe.");
4912   case Instruction::UDiv:
4913   case Instruction::SDiv:
4914   case Instruction::SRem:
4915   case Instruction::URem:
4916   case Instruction::Add:
4917   case Instruction::FAdd:
4918   case Instruction::Sub:
4919   case Instruction::FSub:
4920   case Instruction::FNeg:
4921   case Instruction::Mul:
4922   case Instruction::FMul:
4923   case Instruction::FDiv:
4924   case Instruction::FRem:
4925   case Instruction::Shl:
4926   case Instruction::LShr:
4927   case Instruction::AShr:
4928   case Instruction::And:
4929   case Instruction::Or:
4930   case Instruction::Xor: {
4931     // Just widen unops and binops.
4932     setDebugLocFromInst(Builder, &I);
4933 
4934     for (unsigned Part = 0; Part < UF; ++Part) {
4935       SmallVector<Value *, 2> Ops;
4936       for (VPValue *VPOp : User.operands())
4937         Ops.push_back(State.get(VPOp, Part));
4938 
4939       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4940 
4941       if (auto *VecOp = dyn_cast<Instruction>(V))
4942         VecOp->copyIRFlags(&I);
4943 
4944       // Use this vector value for all users of the original instruction.
4945       State.set(Def, V, Part);
4946       addMetadata(V, &I);
4947     }
4948 
4949     break;
4950   }
4951   case Instruction::ICmp:
4952   case Instruction::FCmp: {
4953     // Widen compares. Generate vector compares.
4954     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4955     auto *Cmp = cast<CmpInst>(&I);
4956     setDebugLocFromInst(Builder, Cmp);
4957     for (unsigned Part = 0; Part < UF; ++Part) {
4958       Value *A = State.get(User.getOperand(0), Part);
4959       Value *B = State.get(User.getOperand(1), Part);
4960       Value *C = nullptr;
4961       if (FCmp) {
4962         // Propagate fast math flags.
4963         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4964         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4965         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4966       } else {
4967         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4968       }
4969       State.set(Def, C, Part);
4970       addMetadata(C, &I);
4971     }
4972 
4973     break;
4974   }
4975 
4976   case Instruction::ZExt:
4977   case Instruction::SExt:
4978   case Instruction::FPToUI:
4979   case Instruction::FPToSI:
4980   case Instruction::FPExt:
4981   case Instruction::PtrToInt:
4982   case Instruction::IntToPtr:
4983   case Instruction::SIToFP:
4984   case Instruction::UIToFP:
4985   case Instruction::Trunc:
4986   case Instruction::FPTrunc:
4987   case Instruction::BitCast: {
4988     auto *CI = cast<CastInst>(&I);
4989     setDebugLocFromInst(Builder, CI);
4990 
4991     /// Vectorize casts.
4992     Type *DestTy =
4993         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4994 
4995     for (unsigned Part = 0; Part < UF; ++Part) {
4996       Value *A = State.get(User.getOperand(0), Part);
4997       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4998       State.set(Def, Cast, Part);
4999       addMetadata(Cast, &I);
5000     }
5001     break;
5002   }
5003   default:
5004     // This instruction is not vectorized by simple widening.
5005     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
5006     llvm_unreachable("Unhandled instruction!");
5007   } // end of switch.
5008 }
5009 
5010 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
5011                                                VPUser &ArgOperands,
5012                                                VPTransformState &State) {
5013   assert(!isa<DbgInfoIntrinsic>(I) &&
5014          "DbgInfoIntrinsic should have been dropped during VPlan construction");
5015   setDebugLocFromInst(Builder, &I);
5016 
5017   Module *M = I.getParent()->getParent()->getParent();
5018   auto *CI = cast<CallInst>(&I);
5019 
5020   SmallVector<Type *, 4> Tys;
5021   for (Value *ArgOperand : CI->arg_operands())
5022     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
5023 
5024   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5025 
5026   // The flag shows whether we use Intrinsic or a usual Call for vectorized
5027   // version of the instruction.
5028   // Is it beneficial to perform intrinsic call compared to lib call?
5029   bool NeedToScalarize = false;
5030   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
5031   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
5032   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
5033   assert((UseVectorIntrinsic || !NeedToScalarize) &&
5034          "Instruction should be scalarized elsewhere.");
5035   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
5036          "Either the intrinsic cost or vector call cost must be valid");
5037 
5038   for (unsigned Part = 0; Part < UF; ++Part) {
5039     SmallVector<Value *, 4> Args;
5040     for (auto &I : enumerate(ArgOperands.operands())) {
5041       // Some intrinsics have a scalar argument - don't replace it with a
5042       // vector.
5043       Value *Arg;
5044       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5045         Arg = State.get(I.value(), Part);
5046       else
5047         Arg = State.get(I.value(), VPIteration(0, 0));
5048       Args.push_back(Arg);
5049     }
5050 
5051     Function *VectorF;
5052     if (UseVectorIntrinsic) {
5053       // Use vector version of the intrinsic.
5054       Type *TysForDecl[] = {CI->getType()};
5055       if (VF.isVector())
5056         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5057       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5058       assert(VectorF && "Can't retrieve vector intrinsic.");
5059     } else {
5060       // Use vector version of the function call.
5061       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5062 #ifndef NDEBUG
5063       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5064              "Can't create vector function.");
5065 #endif
5066         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5067     }
5068       SmallVector<OperandBundleDef, 1> OpBundles;
5069       CI->getOperandBundlesAsDefs(OpBundles);
5070       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5071 
5072       if (isa<FPMathOperator>(V))
5073         V->copyFastMathFlags(CI);
5074 
5075       State.set(Def, V, Part);
5076       addMetadata(V, &I);
5077   }
5078 }
5079 
5080 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5081                                                  VPUser &Operands,
5082                                                  bool InvariantCond,
5083                                                  VPTransformState &State) {
5084   setDebugLocFromInst(Builder, &I);
5085 
5086   // The condition can be loop invariant  but still defined inside the
5087   // loop. This means that we can't just use the original 'cond' value.
5088   // We have to take the 'vectorized' value and pick the first lane.
5089   // Instcombine will make this a no-op.
5090   auto *InvarCond = InvariantCond
5091                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5092                         : nullptr;
5093 
5094   for (unsigned Part = 0; Part < UF; ++Part) {
5095     Value *Cond =
5096         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5097     Value *Op0 = State.get(Operands.getOperand(1), Part);
5098     Value *Op1 = State.get(Operands.getOperand(2), Part);
5099     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5100     State.set(VPDef, Sel, Part);
5101     addMetadata(Sel, &I);
5102   }
5103 }
5104 
5105 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5106   // We should not collect Scalars more than once per VF. Right now, this
5107   // function is called from collectUniformsAndScalars(), which already does
5108   // this check. Collecting Scalars for VF=1 does not make any sense.
5109   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5110          "This function should not be visited twice for the same VF");
5111 
5112   SmallSetVector<Instruction *, 8> Worklist;
5113 
5114   // These sets are used to seed the analysis with pointers used by memory
5115   // accesses that will remain scalar.
5116   SmallSetVector<Instruction *, 8> ScalarPtrs;
5117   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5118   auto *Latch = TheLoop->getLoopLatch();
5119 
5120   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5121   // The pointer operands of loads and stores will be scalar as long as the
5122   // memory access is not a gather or scatter operation. The value operand of a
5123   // store will remain scalar if the store is scalarized.
5124   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5125     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5126     assert(WideningDecision != CM_Unknown &&
5127            "Widening decision should be ready at this moment");
5128     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5129       if (Ptr == Store->getValueOperand())
5130         return WideningDecision == CM_Scalarize;
5131     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5132            "Ptr is neither a value or pointer operand");
5133     return WideningDecision != CM_GatherScatter;
5134   };
5135 
5136   // A helper that returns true if the given value is a bitcast or
5137   // getelementptr instruction contained in the loop.
5138   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5139     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5140             isa<GetElementPtrInst>(V)) &&
5141            !TheLoop->isLoopInvariant(V);
5142   };
5143 
5144   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5145     if (!isa<PHINode>(Ptr) ||
5146         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5147       return false;
5148     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5149     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5150       return false;
5151     return isScalarUse(MemAccess, Ptr);
5152   };
5153 
5154   // A helper that evaluates a memory access's use of a pointer. If the
5155   // pointer is actually the pointer induction of a loop, it is being
5156   // inserted into Worklist. If the use will be a scalar use, and the
5157   // pointer is only used by memory accesses, we place the pointer in
5158   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5159   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5160     if (isScalarPtrInduction(MemAccess, Ptr)) {
5161       Worklist.insert(cast<Instruction>(Ptr));
5162       Instruction *Update = cast<Instruction>(
5163           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5164       Worklist.insert(Update);
5165       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5166                         << "\n");
5167       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update
5168                         << "\n");
5169       return;
5170     }
5171     // We only care about bitcast and getelementptr instructions contained in
5172     // the loop.
5173     if (!isLoopVaryingBitCastOrGEP(Ptr))
5174       return;
5175 
5176     // If the pointer has already been identified as scalar (e.g., if it was
5177     // also identified as uniform), there's nothing to do.
5178     auto *I = cast<Instruction>(Ptr);
5179     if (Worklist.count(I))
5180       return;
5181 
5182     // If the use of the pointer will be a scalar use, and all users of the
5183     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5184     // place the pointer in PossibleNonScalarPtrs.
5185     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5186           return isa<LoadInst>(U) || isa<StoreInst>(U);
5187         }))
5188       ScalarPtrs.insert(I);
5189     else
5190       PossibleNonScalarPtrs.insert(I);
5191   };
5192 
5193   // We seed the scalars analysis with three classes of instructions: (1)
5194   // instructions marked uniform-after-vectorization and (2) bitcast,
5195   // getelementptr and (pointer) phi instructions used by memory accesses
5196   // requiring a scalar use.
5197   //
5198   // (1) Add to the worklist all instructions that have been identified as
5199   // uniform-after-vectorization.
5200   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5201 
5202   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5203   // memory accesses requiring a scalar use. The pointer operands of loads and
5204   // stores will be scalar as long as the memory accesses is not a gather or
5205   // scatter operation. The value operand of a store will remain scalar if the
5206   // store is scalarized.
5207   for (auto *BB : TheLoop->blocks())
5208     for (auto &I : *BB) {
5209       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5210         evaluatePtrUse(Load, Load->getPointerOperand());
5211       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5212         evaluatePtrUse(Store, Store->getPointerOperand());
5213         evaluatePtrUse(Store, Store->getValueOperand());
5214       }
5215     }
5216   for (auto *I : ScalarPtrs)
5217     if (!PossibleNonScalarPtrs.count(I)) {
5218       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5219       Worklist.insert(I);
5220     }
5221 
5222   // Insert the forced scalars.
5223   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5224   // induction variable when the PHI user is scalarized.
5225   auto ForcedScalar = ForcedScalars.find(VF);
5226   if (ForcedScalar != ForcedScalars.end())
5227     for (auto *I : ForcedScalar->second)
5228       Worklist.insert(I);
5229 
5230   // Expand the worklist by looking through any bitcasts and getelementptr
5231   // instructions we've already identified as scalar. This is similar to the
5232   // expansion step in collectLoopUniforms(); however, here we're only
5233   // expanding to include additional bitcasts and getelementptr instructions.
5234   unsigned Idx = 0;
5235   while (Idx != Worklist.size()) {
5236     Instruction *Dst = Worklist[Idx++];
5237     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5238       continue;
5239     auto *Src = cast<Instruction>(Dst->getOperand(0));
5240     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5241           auto *J = cast<Instruction>(U);
5242           return !TheLoop->contains(J) || Worklist.count(J) ||
5243                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5244                   isScalarUse(J, Src));
5245         })) {
5246       Worklist.insert(Src);
5247       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5248     }
5249   }
5250 
5251   // An induction variable will remain scalar if all users of the induction
5252   // variable and induction variable update remain scalar.
5253   for (auto &Induction : Legal->getInductionVars()) {
5254     auto *Ind = Induction.first;
5255     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5256 
5257     // If tail-folding is applied, the primary induction variable will be used
5258     // to feed a vector compare.
5259     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5260       continue;
5261 
5262     // Determine if all users of the induction variable are scalar after
5263     // vectorization.
5264     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5265       auto *I = cast<Instruction>(U);
5266       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5267     });
5268     if (!ScalarInd)
5269       continue;
5270 
5271     // Determine if all users of the induction variable update instruction are
5272     // scalar after vectorization.
5273     auto ScalarIndUpdate =
5274         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5275           auto *I = cast<Instruction>(U);
5276           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5277         });
5278     if (!ScalarIndUpdate)
5279       continue;
5280 
5281     // The induction variable and its update instruction will remain scalar.
5282     Worklist.insert(Ind);
5283     Worklist.insert(IndUpdate);
5284     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5285     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5286                       << "\n");
5287   }
5288 
5289   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5290 }
5291 
5292 bool LoopVectorizationCostModel::isScalarWithPredication(
5293     Instruction *I, ElementCount VF) const {
5294   if (!blockNeedsPredication(I->getParent()))
5295     return false;
5296   switch(I->getOpcode()) {
5297   default:
5298     break;
5299   case Instruction::Load:
5300   case Instruction::Store: {
5301     if (!Legal->isMaskRequired(I))
5302       return false;
5303     auto *Ptr = getLoadStorePointerOperand(I);
5304     auto *Ty = getMemInstValueType(I);
5305     // We have already decided how to vectorize this instruction, get that
5306     // result.
5307     if (VF.isVector()) {
5308       InstWidening WideningDecision = getWideningDecision(I, VF);
5309       assert(WideningDecision != CM_Unknown &&
5310              "Widening decision should be ready at this moment");
5311       return WideningDecision == CM_Scalarize;
5312     }
5313     const Align Alignment = getLoadStoreAlignment(I);
5314     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5315                                 isLegalMaskedGather(Ty, Alignment))
5316                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5317                                 isLegalMaskedScatter(Ty, Alignment));
5318   }
5319   case Instruction::UDiv:
5320   case Instruction::SDiv:
5321   case Instruction::SRem:
5322   case Instruction::URem:
5323     return mayDivideByZero(*I);
5324   }
5325   return false;
5326 }
5327 
5328 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5329     Instruction *I, ElementCount VF) {
5330   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5331   assert(getWideningDecision(I, VF) == CM_Unknown &&
5332          "Decision should not be set yet.");
5333   auto *Group = getInterleavedAccessGroup(I);
5334   assert(Group && "Must have a group.");
5335 
5336   // If the instruction's allocated size doesn't equal it's type size, it
5337   // requires padding and will be scalarized.
5338   auto &DL = I->getModule()->getDataLayout();
5339   auto *ScalarTy = getMemInstValueType(I);
5340   if (hasIrregularType(ScalarTy, DL))
5341     return false;
5342 
5343   // Check if masking is required.
5344   // A Group may need masking for one of two reasons: it resides in a block that
5345   // needs predication, or it was decided to use masking to deal with gaps.
5346   bool PredicatedAccessRequiresMasking =
5347       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5348   bool AccessWithGapsRequiresMasking =
5349       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5350   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
5351     return true;
5352 
5353   // If masked interleaving is required, we expect that the user/target had
5354   // enabled it, because otherwise it either wouldn't have been created or
5355   // it should have been invalidated by the CostModel.
5356   assert(useMaskedInterleavedAccesses(TTI) &&
5357          "Masked interleave-groups for predicated accesses are not enabled.");
5358 
5359   auto *Ty = getMemInstValueType(I);
5360   const Align Alignment = getLoadStoreAlignment(I);
5361   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5362                           : TTI.isLegalMaskedStore(Ty, Alignment);
5363 }
5364 
5365 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5366     Instruction *I, ElementCount VF) {
5367   // Get and ensure we have a valid memory instruction.
5368   LoadInst *LI = dyn_cast<LoadInst>(I);
5369   StoreInst *SI = dyn_cast<StoreInst>(I);
5370   assert((LI || SI) && "Invalid memory instruction");
5371 
5372   auto *Ptr = getLoadStorePointerOperand(I);
5373 
5374   // In order to be widened, the pointer should be consecutive, first of all.
5375   if (!Legal->isConsecutivePtr(Ptr))
5376     return false;
5377 
5378   // If the instruction is a store located in a predicated block, it will be
5379   // scalarized.
5380   if (isScalarWithPredication(I))
5381     return false;
5382 
5383   // If the instruction's allocated size doesn't equal it's type size, it
5384   // requires padding and will be scalarized.
5385   auto &DL = I->getModule()->getDataLayout();
5386   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5387   if (hasIrregularType(ScalarTy, DL))
5388     return false;
5389 
5390   return true;
5391 }
5392 
5393 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5394   // We should not collect Uniforms more than once per VF. Right now,
5395   // this function is called from collectUniformsAndScalars(), which
5396   // already does this check. Collecting Uniforms for VF=1 does not make any
5397   // sense.
5398 
5399   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5400          "This function should not be visited twice for the same VF");
5401 
5402   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5403   // not analyze again.  Uniforms.count(VF) will return 1.
5404   Uniforms[VF].clear();
5405 
5406   // We now know that the loop is vectorizable!
5407   // Collect instructions inside the loop that will remain uniform after
5408   // vectorization.
5409 
5410   // Global values, params and instructions outside of current loop are out of
5411   // scope.
5412   auto isOutOfScope = [&](Value *V) -> bool {
5413     Instruction *I = dyn_cast<Instruction>(V);
5414     return (!I || !TheLoop->contains(I));
5415   };
5416 
5417   SetVector<Instruction *> Worklist;
5418   BasicBlock *Latch = TheLoop->getLoopLatch();
5419 
5420   // Instructions that are scalar with predication must not be considered
5421   // uniform after vectorization, because that would create an erroneous
5422   // replicating region where only a single instance out of VF should be formed.
5423   // TODO: optimize such seldom cases if found important, see PR40816.
5424   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5425     if (isOutOfScope(I)) {
5426       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5427                         << *I << "\n");
5428       return;
5429     }
5430     if (isScalarWithPredication(I, VF)) {
5431       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5432                         << *I << "\n");
5433       return;
5434     }
5435     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5436     Worklist.insert(I);
5437   };
5438 
5439   // Start with the conditional branch. If the branch condition is an
5440   // instruction contained in the loop that is only used by the branch, it is
5441   // uniform.
5442   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5443   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5444     addToWorklistIfAllowed(Cmp);
5445 
5446   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5447     InstWidening WideningDecision = getWideningDecision(I, VF);
5448     assert(WideningDecision != CM_Unknown &&
5449            "Widening decision should be ready at this moment");
5450 
5451     // A uniform memory op is itself uniform.  We exclude uniform stores
5452     // here as they demand the last lane, not the first one.
5453     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5454       assert(WideningDecision == CM_Scalarize);
5455       return true;
5456     }
5457 
5458     return (WideningDecision == CM_Widen ||
5459             WideningDecision == CM_Widen_Reverse ||
5460             WideningDecision == CM_Interleave);
5461   };
5462 
5463 
5464   // Returns true if Ptr is the pointer operand of a memory access instruction
5465   // I, and I is known to not require scalarization.
5466   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5467     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5468   };
5469 
5470   // Holds a list of values which are known to have at least one uniform use.
5471   // Note that there may be other uses which aren't uniform.  A "uniform use"
5472   // here is something which only demands lane 0 of the unrolled iterations;
5473   // it does not imply that all lanes produce the same value (e.g. this is not
5474   // the usual meaning of uniform)
5475   SetVector<Value *> HasUniformUse;
5476 
5477   // Scan the loop for instructions which are either a) known to have only
5478   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5479   for (auto *BB : TheLoop->blocks())
5480     for (auto &I : *BB) {
5481       // If there's no pointer operand, there's nothing to do.
5482       auto *Ptr = getLoadStorePointerOperand(&I);
5483       if (!Ptr)
5484         continue;
5485 
5486       // A uniform memory op is itself uniform.  We exclude uniform stores
5487       // here as they demand the last lane, not the first one.
5488       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5489         addToWorklistIfAllowed(&I);
5490 
5491       if (isUniformDecision(&I, VF)) {
5492         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5493         HasUniformUse.insert(Ptr);
5494       }
5495     }
5496 
5497   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5498   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5499   // disallows uses outside the loop as well.
5500   for (auto *V : HasUniformUse) {
5501     if (isOutOfScope(V))
5502       continue;
5503     auto *I = cast<Instruction>(V);
5504     auto UsersAreMemAccesses =
5505       llvm::all_of(I->users(), [&](User *U) -> bool {
5506         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5507       });
5508     if (UsersAreMemAccesses)
5509       addToWorklistIfAllowed(I);
5510   }
5511 
5512   // Expand Worklist in topological order: whenever a new instruction
5513   // is added , its users should be already inside Worklist.  It ensures
5514   // a uniform instruction will only be used by uniform instructions.
5515   unsigned idx = 0;
5516   while (idx != Worklist.size()) {
5517     Instruction *I = Worklist[idx++];
5518 
5519     for (auto OV : I->operand_values()) {
5520       // isOutOfScope operands cannot be uniform instructions.
5521       if (isOutOfScope(OV))
5522         continue;
5523       // First order recurrence Phi's should typically be considered
5524       // non-uniform.
5525       auto *OP = dyn_cast<PHINode>(OV);
5526       if (OP && Legal->isFirstOrderRecurrence(OP))
5527         continue;
5528       // If all the users of the operand are uniform, then add the
5529       // operand into the uniform worklist.
5530       auto *OI = cast<Instruction>(OV);
5531       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5532             auto *J = cast<Instruction>(U);
5533             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5534           }))
5535         addToWorklistIfAllowed(OI);
5536     }
5537   }
5538 
5539   // For an instruction to be added into Worklist above, all its users inside
5540   // the loop should also be in Worklist. However, this condition cannot be
5541   // true for phi nodes that form a cyclic dependence. We must process phi
5542   // nodes separately. An induction variable will remain uniform if all users
5543   // of the induction variable and induction variable update remain uniform.
5544   // The code below handles both pointer and non-pointer induction variables.
5545   for (auto &Induction : Legal->getInductionVars()) {
5546     auto *Ind = Induction.first;
5547     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5548 
5549     // Determine if all users of the induction variable are uniform after
5550     // vectorization.
5551     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5552       auto *I = cast<Instruction>(U);
5553       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5554              isVectorizedMemAccessUse(I, Ind);
5555     });
5556     if (!UniformInd)
5557       continue;
5558 
5559     // Determine if all users of the induction variable update instruction are
5560     // uniform after vectorization.
5561     auto UniformIndUpdate =
5562         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5563           auto *I = cast<Instruction>(U);
5564           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5565                  isVectorizedMemAccessUse(I, IndUpdate);
5566         });
5567     if (!UniformIndUpdate)
5568       continue;
5569 
5570     // The induction variable and its update instruction will remain uniform.
5571     addToWorklistIfAllowed(Ind);
5572     addToWorklistIfAllowed(IndUpdate);
5573   }
5574 
5575   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5576 }
5577 
5578 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5579   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5580 
5581   if (Legal->getRuntimePointerChecking()->Need) {
5582     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5583         "runtime pointer checks needed. Enable vectorization of this "
5584         "loop with '#pragma clang loop vectorize(enable)' when "
5585         "compiling with -Os/-Oz",
5586         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5587     return true;
5588   }
5589 
5590   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5591     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5592         "runtime SCEV checks needed. Enable vectorization of this "
5593         "loop with '#pragma clang loop vectorize(enable)' when "
5594         "compiling with -Os/-Oz",
5595         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5596     return true;
5597   }
5598 
5599   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5600   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5601     reportVectorizationFailure("Runtime stride check for small trip count",
5602         "runtime stride == 1 checks needed. Enable vectorization of "
5603         "this loop without such check by compiling with -Os/-Oz",
5604         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5605     return true;
5606   }
5607 
5608   return false;
5609 }
5610 
5611 ElementCount
5612 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5613   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5614     reportVectorizationInfo(
5615         "Disabling scalable vectorization, because target does not "
5616         "support scalable vectors.",
5617         "ScalableVectorsUnsupported", ORE, TheLoop);
5618     return ElementCount::getScalable(0);
5619   }
5620 
5621   auto MaxScalableVF = ElementCount::getScalable(
5622       std::numeric_limits<ElementCount::ScalarTy>::max());
5623 
5624   // Disable scalable vectorization if the loop contains unsupported reductions.
5625   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5626   // FIXME: While for scalable vectors this is currently sufficient, this should
5627   // be replaced by a more detailed mechanism that filters out specific VFs,
5628   // instead of invalidating vectorization for a whole set of VFs based on the
5629   // MaxVF.
5630   if (!canVectorizeReductions(MaxScalableVF)) {
5631     reportVectorizationInfo(
5632         "Scalable vectorization not supported for the reduction "
5633         "operations found in this loop.",
5634         "ScalableVFUnfeasible", ORE, TheLoop);
5635     return ElementCount::getScalable(0);
5636   }
5637 
5638   if (Legal->isSafeForAnyVectorWidth())
5639     return MaxScalableVF;
5640 
5641   // Limit MaxScalableVF by the maximum safe dependence distance.
5642   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5643   MaxScalableVF = ElementCount::getScalable(
5644       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5645   if (!MaxScalableVF)
5646     reportVectorizationInfo(
5647         "Max legal vector width too small, scalable vectorization "
5648         "unfeasible.",
5649         "ScalableVFUnfeasible", ORE, TheLoop);
5650 
5651   return MaxScalableVF;
5652 }
5653 
5654 ElementCount
5655 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5656                                                  ElementCount UserVF) {
5657   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5658   unsigned SmallestType, WidestType;
5659   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5660 
5661   // Get the maximum safe dependence distance in bits computed by LAA.
5662   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5663   // the memory accesses that is most restrictive (involved in the smallest
5664   // dependence distance).
5665   unsigned MaxSafeElements =
5666       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5667 
5668   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5669   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5670 
5671   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5672                     << ".\n");
5673   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5674                     << ".\n");
5675 
5676   // First analyze the UserVF, fall back if the UserVF should be ignored.
5677   if (UserVF) {
5678     auto MaxSafeUserVF =
5679         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5680 
5681     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF))
5682       return UserVF;
5683 
5684     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5685 
5686     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5687     // is better to ignore the hint and let the compiler choose a suitable VF.
5688     if (!UserVF.isScalable()) {
5689       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5690                         << " is unsafe, clamping to max safe VF="
5691                         << MaxSafeFixedVF << ".\n");
5692       ORE->emit([&]() {
5693         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5694                                           TheLoop->getStartLoc(),
5695                                           TheLoop->getHeader())
5696                << "User-specified vectorization factor "
5697                << ore::NV("UserVectorizationFactor", UserVF)
5698                << " is unsafe, clamping to maximum safe vectorization factor "
5699                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5700       });
5701       return MaxSafeFixedVF;
5702     }
5703 
5704     LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5705                       << " is unsafe. Ignoring scalable UserVF.\n");
5706     ORE->emit([&]() {
5707       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5708                                         TheLoop->getStartLoc(),
5709                                         TheLoop->getHeader())
5710              << "User-specified vectorization factor "
5711              << ore::NV("UserVectorizationFactor", UserVF)
5712              << " is unsafe. Ignoring the hint to let the compiler pick a "
5713                 "suitable VF.";
5714     });
5715   }
5716 
5717   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5718                     << " / " << WidestType << " bits.\n");
5719 
5720   ElementCount MaxFixedVF = ElementCount::getFixed(1);
5721   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5722                                            WidestType, MaxSafeFixedVF))
5723     MaxFixedVF = MaxVF;
5724 
5725   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5726                                            WidestType, MaxSafeScalableVF))
5727     // FIXME: Return scalable VF as well (to be added in future patch).
5728     if (MaxVF.isScalable())
5729       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5730                         << "\n");
5731 
5732   return MaxFixedVF;
5733 }
5734 
5735 Optional<ElementCount>
5736 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5737   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5738     // TODO: It may by useful to do since it's still likely to be dynamically
5739     // uniform if the target can skip.
5740     reportVectorizationFailure(
5741         "Not inserting runtime ptr check for divergent target",
5742         "runtime pointer checks needed. Not enabled for divergent target",
5743         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5744     return None;
5745   }
5746 
5747   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5748   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5749   if (TC == 1) {
5750     reportVectorizationFailure("Single iteration (non) loop",
5751         "loop trip count is one, irrelevant for vectorization",
5752         "SingleIterationLoop", ORE, TheLoop);
5753     return None;
5754   }
5755 
5756   switch (ScalarEpilogueStatus) {
5757   case CM_ScalarEpilogueAllowed:
5758     return computeFeasibleMaxVF(TC, UserVF);
5759   case CM_ScalarEpilogueNotAllowedUsePredicate:
5760     LLVM_FALLTHROUGH;
5761   case CM_ScalarEpilogueNotNeededUsePredicate:
5762     LLVM_DEBUG(
5763         dbgs() << "LV: vector predicate hint/switch found.\n"
5764                << "LV: Not allowing scalar epilogue, creating predicated "
5765                << "vector loop.\n");
5766     break;
5767   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5768     // fallthrough as a special case of OptForSize
5769   case CM_ScalarEpilogueNotAllowedOptSize:
5770     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5771       LLVM_DEBUG(
5772           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5773     else
5774       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5775                         << "count.\n");
5776 
5777     // Bail if runtime checks are required, which are not good when optimising
5778     // for size.
5779     if (runtimeChecksRequired())
5780       return None;
5781 
5782     break;
5783   }
5784 
5785   // The only loops we can vectorize without a scalar epilogue, are loops with
5786   // a bottom-test and a single exiting block. We'd have to handle the fact
5787   // that not every instruction executes on the last iteration.  This will
5788   // require a lane mask which varies through the vector loop body.  (TODO)
5789   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5790     // If there was a tail-folding hint/switch, but we can't fold the tail by
5791     // masking, fallback to a vectorization with a scalar epilogue.
5792     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5793       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5794                            "scalar epilogue instead.\n");
5795       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5796       return computeFeasibleMaxVF(TC, UserVF);
5797     }
5798     return None;
5799   }
5800 
5801   // Now try the tail folding
5802 
5803   // Invalidate interleave groups that require an epilogue if we can't mask
5804   // the interleave-group.
5805   if (!useMaskedInterleavedAccesses(TTI)) {
5806     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5807            "No decisions should have been taken at this point");
5808     // Note: There is no need to invalidate any cost modeling decisions here, as
5809     // non where taken so far.
5810     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5811   }
5812 
5813   ElementCount MaxVF = computeFeasibleMaxVF(TC, UserVF);
5814   assert(!MaxVF.isScalable() &&
5815          "Scalable vectors do not yet support tail folding");
5816   assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) &&
5817          "MaxVF must be a power of 2");
5818   unsigned MaxVFtimesIC =
5819       UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue();
5820   // Avoid tail folding if the trip count is known to be a multiple of any VF we
5821   // chose.
5822   ScalarEvolution *SE = PSE.getSE();
5823   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5824   const SCEV *ExitCount = SE->getAddExpr(
5825       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5826   const SCEV *Rem = SE->getURemExpr(
5827       SE->applyLoopGuards(ExitCount, TheLoop),
5828       SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5829   if (Rem->isZero()) {
5830     // Accept MaxVF if we do not have a tail.
5831     LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5832     return MaxVF;
5833   }
5834 
5835   // If we don't know the precise trip count, or if the trip count that we
5836   // found modulo the vectorization factor is not zero, try to fold the tail
5837   // by masking.
5838   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5839   if (Legal->prepareToFoldTailByMasking()) {
5840     FoldTailByMasking = true;
5841     return MaxVF;
5842   }
5843 
5844   // If there was a tail-folding hint/switch, but we can't fold the tail by
5845   // masking, fallback to a vectorization with a scalar epilogue.
5846   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5847     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5848                          "scalar epilogue instead.\n");
5849     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5850     return MaxVF;
5851   }
5852 
5853   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5854     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5855     return None;
5856   }
5857 
5858   if (TC == 0) {
5859     reportVectorizationFailure(
5860         "Unable to calculate the loop count due to complex control flow",
5861         "unable to calculate the loop count due to complex control flow",
5862         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5863     return None;
5864   }
5865 
5866   reportVectorizationFailure(
5867       "Cannot optimize for size and vectorize at the same time.",
5868       "cannot optimize for size and vectorize at the same time. "
5869       "Enable vectorization of this loop with '#pragma clang loop "
5870       "vectorize(enable)' when compiling with -Os/-Oz",
5871       "NoTailLoopWithOptForSize", ORE, TheLoop);
5872   return None;
5873 }
5874 
5875 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5876     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5877     const ElementCount &MaxSafeVF) {
5878   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5879   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5880       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5881                            : TargetTransformInfo::RGK_FixedWidthVector);
5882 
5883   // Convenience function to return the minimum of two ElementCounts.
5884   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5885     assert((LHS.isScalable() == RHS.isScalable()) &&
5886            "Scalable flags must match");
5887     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5888   };
5889 
5890   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5891   // Note that both WidestRegister and WidestType may not be a powers of 2.
5892   auto MaxVectorElementCount = ElementCount::get(
5893       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5894       ComputeScalableMaxVF);
5895   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5896   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5897                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5898 
5899   if (!MaxVectorElementCount) {
5900     LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5901     return ElementCount::getFixed(1);
5902   }
5903 
5904   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5905   if (ConstTripCount &&
5906       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5907       isPowerOf2_32(ConstTripCount)) {
5908     // We need to clamp the VF to be the ConstTripCount. There is no point in
5909     // choosing a higher viable VF as done in the loop below. If
5910     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5911     // the TC is less than or equal to the known number of lanes.
5912     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5913                       << ConstTripCount << "\n");
5914     return TripCountEC;
5915   }
5916 
5917   ElementCount MaxVF = MaxVectorElementCount;
5918   if (TTI.shouldMaximizeVectorBandwidth() ||
5919       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5920     auto MaxVectorElementCountMaxBW = ElementCount::get(
5921         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5922         ComputeScalableMaxVF);
5923     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5924 
5925     // Collect all viable vectorization factors larger than the default MaxVF
5926     // (i.e. MaxVectorElementCount).
5927     SmallVector<ElementCount, 8> VFs;
5928     for (ElementCount VS = MaxVectorElementCount * 2;
5929          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5930       VFs.push_back(VS);
5931 
5932     // For each VF calculate its register usage.
5933     auto RUs = calculateRegisterUsage(VFs);
5934 
5935     // Select the largest VF which doesn't require more registers than existing
5936     // ones.
5937     for (int i = RUs.size() - 1; i >= 0; --i) {
5938       bool Selected = true;
5939       for (auto &pair : RUs[i].MaxLocalUsers) {
5940         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5941         if (pair.second > TargetNumRegisters)
5942           Selected = false;
5943       }
5944       if (Selected) {
5945         MaxVF = VFs[i];
5946         break;
5947       }
5948     }
5949     if (ElementCount MinVF =
5950             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5951       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5952         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5953                           << ") with target's minimum: " << MinVF << '\n');
5954         MaxVF = MinVF;
5955       }
5956     }
5957   }
5958   return MaxVF;
5959 }
5960 
5961 bool LoopVectorizationCostModel::isMoreProfitable(
5962     const VectorizationFactor &A, const VectorizationFactor &B) const {
5963   InstructionCost::CostType CostA = *A.Cost.getValue();
5964   InstructionCost::CostType CostB = *B.Cost.getValue();
5965 
5966   // To avoid the need for FP division:
5967   //      (CostA / A.Width) < (CostB / B.Width)
5968   // <=>  (CostA * B.Width) < (CostB * A.Width)
5969   return (CostA * B.Width.getKnownMinValue()) <
5970          (CostB * A.Width.getKnownMinValue());
5971 }
5972 
5973 VectorizationFactor
5974 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) {
5975   // FIXME: This can be fixed for scalable vectors later, because at this stage
5976   // the LoopVectorizer will only consider vectorizing a loop with scalable
5977   // vectors when the loop has a hint to enable vectorization for a given VF.
5978   assert(!MaxVF.isScalable() && "scalable vectors not yet supported");
5979 
5980   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5981   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5982   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5983 
5984   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5985   VectorizationFactor ChosenFactor = ScalarCost;
5986 
5987   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5988   if (ForceVectorization && MaxVF.isVector()) {
5989     // Ignore scalar width, because the user explicitly wants vectorization.
5990     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5991     // evaluation.
5992     ChosenFactor.Cost = std::numeric_limits<InstructionCost::CostType>::max();
5993   }
5994 
5995   for (auto i = ElementCount::getFixed(2); ElementCount::isKnownLE(i, MaxVF);
5996        i *= 2) {
5997     // Notice that the vector loop needs to be executed less times, so
5998     // we need to divide the cost of the vector loops by the width of
5999     // the vector elements.
6000     VectorizationCostTy C = expectedCost(i);
6001 
6002     assert(C.first.isValid() && "Unexpected invalid cost for vector loop");
6003     VectorizationFactor Candidate(i, C.first);
6004     LLVM_DEBUG(
6005         dbgs() << "LV: Vector loop of width " << i << " costs: "
6006                << (*Candidate.Cost.getValue() / Candidate.Width.getFixedValue())
6007                << ".\n");
6008 
6009     if (!C.second && !ForceVectorization) {
6010       LLVM_DEBUG(
6011           dbgs() << "LV: Not considering vector loop of width " << i
6012                  << " because it will not generate any vector instructions.\n");
6013       continue;
6014     }
6015 
6016     // If profitable add it to ProfitableVF list.
6017     if (isMoreProfitable(Candidate, ScalarCost))
6018       ProfitableVFs.push_back(Candidate);
6019 
6020     if (isMoreProfitable(Candidate, ChosenFactor))
6021       ChosenFactor = Candidate;
6022   }
6023 
6024   if (!EnableCondStoresVectorization && NumPredStores) {
6025     reportVectorizationFailure("There are conditional stores.",
6026         "store that is conditionally executed prevents vectorization",
6027         "ConditionalStore", ORE, TheLoop);
6028     ChosenFactor = ScalarCost;
6029   }
6030 
6031   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6032                  *ChosenFactor.Cost.getValue() >= *ScalarCost.Cost.getValue())
6033                  dbgs()
6034              << "LV: Vectorization seems to be not beneficial, "
6035              << "but was forced by a user.\n");
6036   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6037   return ChosenFactor;
6038 }
6039 
6040 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6041     const Loop &L, ElementCount VF) const {
6042   // Cross iteration phis such as reductions need special handling and are
6043   // currently unsupported.
6044   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6045         return Legal->isFirstOrderRecurrence(&Phi) ||
6046                Legal->isReductionVariable(&Phi);
6047       }))
6048     return false;
6049 
6050   // Phis with uses outside of the loop require special handling and are
6051   // currently unsupported.
6052   for (auto &Entry : Legal->getInductionVars()) {
6053     // Look for uses of the value of the induction at the last iteration.
6054     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6055     for (User *U : PostInc->users())
6056       if (!L.contains(cast<Instruction>(U)))
6057         return false;
6058     // Look for uses of penultimate value of the induction.
6059     for (User *U : Entry.first->users())
6060       if (!L.contains(cast<Instruction>(U)))
6061         return false;
6062   }
6063 
6064   // Induction variables that are widened require special handling that is
6065   // currently not supported.
6066   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6067         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6068                  this->isProfitableToScalarize(Entry.first, VF));
6069       }))
6070     return false;
6071 
6072   return true;
6073 }
6074 
6075 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6076     const ElementCount VF) const {
6077   // FIXME: We need a much better cost-model to take different parameters such
6078   // as register pressure, code size increase and cost of extra branches into
6079   // account. For now we apply a very crude heuristic and only consider loops
6080   // with vectorization factors larger than a certain value.
6081   // We also consider epilogue vectorization unprofitable for targets that don't
6082   // consider interleaving beneficial (eg. MVE).
6083   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6084     return false;
6085   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6086     return true;
6087   return false;
6088 }
6089 
6090 VectorizationFactor
6091 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6092     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6093   VectorizationFactor Result = VectorizationFactor::Disabled();
6094   if (!EnableEpilogueVectorization) {
6095     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6096     return Result;
6097   }
6098 
6099   if (!isScalarEpilogueAllowed()) {
6100     LLVM_DEBUG(
6101         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6102                   "allowed.\n";);
6103     return Result;
6104   }
6105 
6106   // FIXME: This can be fixed for scalable vectors later, because at this stage
6107   // the LoopVectorizer will only consider vectorizing a loop with scalable
6108   // vectors when the loop has a hint to enable vectorization for a given VF.
6109   if (MainLoopVF.isScalable()) {
6110     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6111                          "yet supported.\n");
6112     return Result;
6113   }
6114 
6115   // Not really a cost consideration, but check for unsupported cases here to
6116   // simplify the logic.
6117   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6118     LLVM_DEBUG(
6119         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6120                   "not a supported candidate.\n";);
6121     return Result;
6122   }
6123 
6124   if (EpilogueVectorizationForceVF > 1) {
6125     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6126     if (LVP.hasPlanWithVFs(
6127             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
6128       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
6129     else {
6130       LLVM_DEBUG(
6131           dbgs()
6132               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6133       return Result;
6134     }
6135   }
6136 
6137   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6138       TheLoop->getHeader()->getParent()->hasMinSize()) {
6139     LLVM_DEBUG(
6140         dbgs()
6141             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6142     return Result;
6143   }
6144 
6145   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6146     return Result;
6147 
6148   for (auto &NextVF : ProfitableVFs)
6149     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6150         (Result.Width.getFixedValue() == 1 ||
6151          isMoreProfitable(NextVF, Result)) &&
6152         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6153       Result = NextVF;
6154 
6155   if (Result != VectorizationFactor::Disabled())
6156     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6157                       << Result.Width.getFixedValue() << "\n";);
6158   return Result;
6159 }
6160 
6161 std::pair<unsigned, unsigned>
6162 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6163   unsigned MinWidth = -1U;
6164   unsigned MaxWidth = 8;
6165   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6166 
6167   // For each block.
6168   for (BasicBlock *BB : TheLoop->blocks()) {
6169     // For each instruction in the loop.
6170     for (Instruction &I : BB->instructionsWithoutDebug()) {
6171       Type *T = I.getType();
6172 
6173       // Skip ignored values.
6174       if (ValuesToIgnore.count(&I))
6175         continue;
6176 
6177       // Only examine Loads, Stores and PHINodes.
6178       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6179         continue;
6180 
6181       // Examine PHI nodes that are reduction variables. Update the type to
6182       // account for the recurrence type.
6183       if (auto *PN = dyn_cast<PHINode>(&I)) {
6184         if (!Legal->isReductionVariable(PN))
6185           continue;
6186         RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN];
6187         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6188             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6189                                       RdxDesc.getRecurrenceType(),
6190                                       TargetTransformInfo::ReductionFlags()))
6191           continue;
6192         T = RdxDesc.getRecurrenceType();
6193       }
6194 
6195       // Examine the stored values.
6196       if (auto *ST = dyn_cast<StoreInst>(&I))
6197         T = ST->getValueOperand()->getType();
6198 
6199       // Ignore loaded pointer types and stored pointer types that are not
6200       // vectorizable.
6201       //
6202       // FIXME: The check here attempts to predict whether a load or store will
6203       //        be vectorized. We only know this for certain after a VF has
6204       //        been selected. Here, we assume that if an access can be
6205       //        vectorized, it will be. We should also look at extending this
6206       //        optimization to non-pointer types.
6207       //
6208       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6209           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6210         continue;
6211 
6212       MinWidth = std::min(MinWidth,
6213                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6214       MaxWidth = std::max(MaxWidth,
6215                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6216     }
6217   }
6218 
6219   return {MinWidth, MaxWidth};
6220 }
6221 
6222 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6223                                                            unsigned LoopCost) {
6224   // -- The interleave heuristics --
6225   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6226   // There are many micro-architectural considerations that we can't predict
6227   // at this level. For example, frontend pressure (on decode or fetch) due to
6228   // code size, or the number and capabilities of the execution ports.
6229   //
6230   // We use the following heuristics to select the interleave count:
6231   // 1. If the code has reductions, then we interleave to break the cross
6232   // iteration dependency.
6233   // 2. If the loop is really small, then we interleave to reduce the loop
6234   // overhead.
6235   // 3. We don't interleave if we think that we will spill registers to memory
6236   // due to the increased register pressure.
6237 
6238   if (!isScalarEpilogueAllowed())
6239     return 1;
6240 
6241   // We used the distance for the interleave count.
6242   if (Legal->getMaxSafeDepDistBytes() != -1U)
6243     return 1;
6244 
6245   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6246   const bool HasReductions = !Legal->getReductionVars().empty();
6247   // Do not interleave loops with a relatively small known or estimated trip
6248   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6249   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6250   // because with the above conditions interleaving can expose ILP and break
6251   // cross iteration dependences for reductions.
6252   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6253       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6254     return 1;
6255 
6256   RegisterUsage R = calculateRegisterUsage({VF})[0];
6257   // We divide by these constants so assume that we have at least one
6258   // instruction that uses at least one register.
6259   for (auto& pair : R.MaxLocalUsers) {
6260     pair.second = std::max(pair.second, 1U);
6261   }
6262 
6263   // We calculate the interleave count using the following formula.
6264   // Subtract the number of loop invariants from the number of available
6265   // registers. These registers are used by all of the interleaved instances.
6266   // Next, divide the remaining registers by the number of registers that is
6267   // required by the loop, in order to estimate how many parallel instances
6268   // fit without causing spills. All of this is rounded down if necessary to be
6269   // a power of two. We want power of two interleave count to simplify any
6270   // addressing operations or alignment considerations.
6271   // We also want power of two interleave counts to ensure that the induction
6272   // variable of the vector loop wraps to zero, when tail is folded by masking;
6273   // this currently happens when OptForSize, in which case IC is set to 1 above.
6274   unsigned IC = UINT_MAX;
6275 
6276   for (auto& pair : R.MaxLocalUsers) {
6277     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6278     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6279                       << " registers of "
6280                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6281     if (VF.isScalar()) {
6282       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6283         TargetNumRegisters = ForceTargetNumScalarRegs;
6284     } else {
6285       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6286         TargetNumRegisters = ForceTargetNumVectorRegs;
6287     }
6288     unsigned MaxLocalUsers = pair.second;
6289     unsigned LoopInvariantRegs = 0;
6290     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6291       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6292 
6293     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6294     // Don't count the induction variable as interleaved.
6295     if (EnableIndVarRegisterHeur) {
6296       TmpIC =
6297           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6298                         std::max(1U, (MaxLocalUsers - 1)));
6299     }
6300 
6301     IC = std::min(IC, TmpIC);
6302   }
6303 
6304   // Clamp the interleave ranges to reasonable counts.
6305   unsigned MaxInterleaveCount =
6306       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6307 
6308   // Check if the user has overridden the max.
6309   if (VF.isScalar()) {
6310     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6311       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6312   } else {
6313     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6314       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6315   }
6316 
6317   // If trip count is known or estimated compile time constant, limit the
6318   // interleave count to be less than the trip count divided by VF, provided it
6319   // is at least 1.
6320   //
6321   // For scalable vectors we can't know if interleaving is beneficial. It may
6322   // not be beneficial for small loops if none of the lanes in the second vector
6323   // iterations is enabled. However, for larger loops, there is likely to be a
6324   // similar benefit as for fixed-width vectors. For now, we choose to leave
6325   // the InterleaveCount as if vscale is '1', although if some information about
6326   // the vector is known (e.g. min vector size), we can make a better decision.
6327   if (BestKnownTC) {
6328     MaxInterleaveCount =
6329         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6330     // Make sure MaxInterleaveCount is greater than 0.
6331     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6332   }
6333 
6334   assert(MaxInterleaveCount > 0 &&
6335          "Maximum interleave count must be greater than 0");
6336 
6337   // Clamp the calculated IC to be between the 1 and the max interleave count
6338   // that the target and trip count allows.
6339   if (IC > MaxInterleaveCount)
6340     IC = MaxInterleaveCount;
6341   else
6342     // Make sure IC is greater than 0.
6343     IC = std::max(1u, IC);
6344 
6345   assert(IC > 0 && "Interleave count must be greater than 0.");
6346 
6347   // If we did not calculate the cost for VF (because the user selected the VF)
6348   // then we calculate the cost of VF here.
6349   if (LoopCost == 0) {
6350     assert(expectedCost(VF).first.isValid() && "Expected a valid cost");
6351     LoopCost = *expectedCost(VF).first.getValue();
6352   }
6353 
6354   assert(LoopCost && "Non-zero loop cost expected");
6355 
6356   // Interleave if we vectorized this loop and there is a reduction that could
6357   // benefit from interleaving.
6358   if (VF.isVector() && HasReductions) {
6359     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6360     return IC;
6361   }
6362 
6363   // Note that if we've already vectorized the loop we will have done the
6364   // runtime check and so interleaving won't require further checks.
6365   bool InterleavingRequiresRuntimePointerCheck =
6366       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6367 
6368   // We want to interleave small loops in order to reduce the loop overhead and
6369   // potentially expose ILP opportunities.
6370   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6371                     << "LV: IC is " << IC << '\n'
6372                     << "LV: VF is " << VF << '\n');
6373   const bool AggressivelyInterleaveReductions =
6374       TTI.enableAggressiveInterleaving(HasReductions);
6375   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6376     // We assume that the cost overhead is 1 and we use the cost model
6377     // to estimate the cost of the loop and interleave until the cost of the
6378     // loop overhead is about 5% of the cost of the loop.
6379     unsigned SmallIC =
6380         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6381 
6382     // Interleave until store/load ports (estimated by max interleave count) are
6383     // saturated.
6384     unsigned NumStores = Legal->getNumStores();
6385     unsigned NumLoads = Legal->getNumLoads();
6386     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6387     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6388 
6389     // If we have a scalar reduction (vector reductions are already dealt with
6390     // by this point), we can increase the critical path length if the loop
6391     // we're interleaving is inside another loop. Limit, by default to 2, so the
6392     // critical path only gets increased by one reduction operation.
6393     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6394       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6395       SmallIC = std::min(SmallIC, F);
6396       StoresIC = std::min(StoresIC, F);
6397       LoadsIC = std::min(LoadsIC, F);
6398     }
6399 
6400     if (EnableLoadStoreRuntimeInterleave &&
6401         std::max(StoresIC, LoadsIC) > SmallIC) {
6402       LLVM_DEBUG(
6403           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6404       return std::max(StoresIC, LoadsIC);
6405     }
6406 
6407     // If there are scalar reductions and TTI has enabled aggressive
6408     // interleaving for reductions, we will interleave to expose ILP.
6409     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6410         AggressivelyInterleaveReductions) {
6411       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6412       // Interleave no less than SmallIC but not as aggressive as the normal IC
6413       // to satisfy the rare situation when resources are too limited.
6414       return std::max(IC / 2, SmallIC);
6415     } else {
6416       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6417       return SmallIC;
6418     }
6419   }
6420 
6421   // Interleave if this is a large loop (small loops are already dealt with by
6422   // this point) that could benefit from interleaving.
6423   if (AggressivelyInterleaveReductions) {
6424     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6425     return IC;
6426   }
6427 
6428   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6429   return 1;
6430 }
6431 
6432 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6433 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6434   // This function calculates the register usage by measuring the highest number
6435   // of values that are alive at a single location. Obviously, this is a very
6436   // rough estimation. We scan the loop in a topological order in order and
6437   // assign a number to each instruction. We use RPO to ensure that defs are
6438   // met before their users. We assume that each instruction that has in-loop
6439   // users starts an interval. We record every time that an in-loop value is
6440   // used, so we have a list of the first and last occurrences of each
6441   // instruction. Next, we transpose this data structure into a multi map that
6442   // holds the list of intervals that *end* at a specific location. This multi
6443   // map allows us to perform a linear search. We scan the instructions linearly
6444   // and record each time that a new interval starts, by placing it in a set.
6445   // If we find this value in the multi-map then we remove it from the set.
6446   // The max register usage is the maximum size of the set.
6447   // We also search for instructions that are defined outside the loop, but are
6448   // used inside the loop. We need this number separately from the max-interval
6449   // usage number because when we unroll, loop-invariant values do not take
6450   // more register.
6451   LoopBlocksDFS DFS(TheLoop);
6452   DFS.perform(LI);
6453 
6454   RegisterUsage RU;
6455 
6456   // Each 'key' in the map opens a new interval. The values
6457   // of the map are the index of the 'last seen' usage of the
6458   // instruction that is the key.
6459   using IntervalMap = DenseMap<Instruction *, unsigned>;
6460 
6461   // Maps instruction to its index.
6462   SmallVector<Instruction *, 64> IdxToInstr;
6463   // Marks the end of each interval.
6464   IntervalMap EndPoint;
6465   // Saves the list of instruction indices that are used in the loop.
6466   SmallPtrSet<Instruction *, 8> Ends;
6467   // Saves the list of values that are used in the loop but are
6468   // defined outside the loop, such as arguments and constants.
6469   SmallPtrSet<Value *, 8> LoopInvariants;
6470 
6471   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6472     for (Instruction &I : BB->instructionsWithoutDebug()) {
6473       IdxToInstr.push_back(&I);
6474 
6475       // Save the end location of each USE.
6476       for (Value *U : I.operands()) {
6477         auto *Instr = dyn_cast<Instruction>(U);
6478 
6479         // Ignore non-instruction values such as arguments, constants, etc.
6480         if (!Instr)
6481           continue;
6482 
6483         // If this instruction is outside the loop then record it and continue.
6484         if (!TheLoop->contains(Instr)) {
6485           LoopInvariants.insert(Instr);
6486           continue;
6487         }
6488 
6489         // Overwrite previous end points.
6490         EndPoint[Instr] = IdxToInstr.size();
6491         Ends.insert(Instr);
6492       }
6493     }
6494   }
6495 
6496   // Saves the list of intervals that end with the index in 'key'.
6497   using InstrList = SmallVector<Instruction *, 2>;
6498   DenseMap<unsigned, InstrList> TransposeEnds;
6499 
6500   // Transpose the EndPoints to a list of values that end at each index.
6501   for (auto &Interval : EndPoint)
6502     TransposeEnds[Interval.second].push_back(Interval.first);
6503 
6504   SmallPtrSet<Instruction *, 8> OpenIntervals;
6505   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6506   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6507 
6508   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6509 
6510   // A lambda that gets the register usage for the given type and VF.
6511   const auto &TTICapture = TTI;
6512   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) {
6513     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6514       return 0U;
6515     return TTICapture.getRegUsageForType(VectorType::get(Ty, VF));
6516   };
6517 
6518   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6519     Instruction *I = IdxToInstr[i];
6520 
6521     // Remove all of the instructions that end at this location.
6522     InstrList &List = TransposeEnds[i];
6523     for (Instruction *ToRemove : List)
6524       OpenIntervals.erase(ToRemove);
6525 
6526     // Ignore instructions that are never used within the loop.
6527     if (!Ends.count(I))
6528       continue;
6529 
6530     // Skip ignored values.
6531     if (ValuesToIgnore.count(I))
6532       continue;
6533 
6534     // For each VF find the maximum usage of registers.
6535     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6536       // Count the number of live intervals.
6537       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6538 
6539       if (VFs[j].isScalar()) {
6540         for (auto Inst : OpenIntervals) {
6541           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6542           if (RegUsage.find(ClassID) == RegUsage.end())
6543             RegUsage[ClassID] = 1;
6544           else
6545             RegUsage[ClassID] += 1;
6546         }
6547       } else {
6548         collectUniformsAndScalars(VFs[j]);
6549         for (auto Inst : OpenIntervals) {
6550           // Skip ignored values for VF > 1.
6551           if (VecValuesToIgnore.count(Inst))
6552             continue;
6553           if (isScalarAfterVectorization(Inst, VFs[j])) {
6554             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6555             if (RegUsage.find(ClassID) == RegUsage.end())
6556               RegUsage[ClassID] = 1;
6557             else
6558               RegUsage[ClassID] += 1;
6559           } else {
6560             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6561             if (RegUsage.find(ClassID) == RegUsage.end())
6562               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6563             else
6564               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6565           }
6566         }
6567       }
6568 
6569       for (auto& pair : RegUsage) {
6570         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6571           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6572         else
6573           MaxUsages[j][pair.first] = pair.second;
6574       }
6575     }
6576 
6577     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6578                       << OpenIntervals.size() << '\n');
6579 
6580     // Add the current instruction to the list of open intervals.
6581     OpenIntervals.insert(I);
6582   }
6583 
6584   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6585     SmallMapVector<unsigned, unsigned, 4> Invariant;
6586 
6587     for (auto Inst : LoopInvariants) {
6588       unsigned Usage =
6589           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6590       unsigned ClassID =
6591           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6592       if (Invariant.find(ClassID) == Invariant.end())
6593         Invariant[ClassID] = Usage;
6594       else
6595         Invariant[ClassID] += Usage;
6596     }
6597 
6598     LLVM_DEBUG({
6599       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6600       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6601              << " item\n";
6602       for (const auto &pair : MaxUsages[i]) {
6603         dbgs() << "LV(REG): RegisterClass: "
6604                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6605                << " registers\n";
6606       }
6607       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6608              << " item\n";
6609       for (const auto &pair : Invariant) {
6610         dbgs() << "LV(REG): RegisterClass: "
6611                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6612                << " registers\n";
6613       }
6614     });
6615 
6616     RU.LoopInvariantRegs = Invariant;
6617     RU.MaxLocalUsers = MaxUsages[i];
6618     RUs[i] = RU;
6619   }
6620 
6621   return RUs;
6622 }
6623 
6624 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6625   // TODO: Cost model for emulated masked load/store is completely
6626   // broken. This hack guides the cost model to use an artificially
6627   // high enough value to practically disable vectorization with such
6628   // operations, except where previously deployed legality hack allowed
6629   // using very low cost values. This is to avoid regressions coming simply
6630   // from moving "masked load/store" check from legality to cost model.
6631   // Masked Load/Gather emulation was previously never allowed.
6632   // Limited number of Masked Store/Scatter emulation was allowed.
6633   assert(isPredicatedInst(I, ElementCount::getFixed(1)) &&
6634          "Expecting a scalar emulated instruction");
6635   return isa<LoadInst>(I) ||
6636          (isa<StoreInst>(I) &&
6637           NumPredStores > NumberOfStoresToPredicate);
6638 }
6639 
6640 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6641   // If we aren't vectorizing the loop, or if we've already collected the
6642   // instructions to scalarize, there's nothing to do. Collection may already
6643   // have occurred if we have a user-selected VF and are now computing the
6644   // expected cost for interleaving.
6645   if (VF.isScalar() || VF.isZero() ||
6646       InstsToScalarize.find(VF) != InstsToScalarize.end())
6647     return;
6648 
6649   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6650   // not profitable to scalarize any instructions, the presence of VF in the
6651   // map will indicate that we've analyzed it already.
6652   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6653 
6654   // Find all the instructions that are scalar with predication in the loop and
6655   // determine if it would be better to not if-convert the blocks they are in.
6656   // If so, we also record the instructions to scalarize.
6657   for (BasicBlock *BB : TheLoop->blocks()) {
6658     if (!blockNeedsPredication(BB))
6659       continue;
6660     for (Instruction &I : *BB)
6661       if (isScalarWithPredication(&I)) {
6662         ScalarCostsTy ScalarCosts;
6663         // Do not apply discount logic if hacked cost is needed
6664         // for emulated masked memrefs.
6665         if (!useEmulatedMaskMemRefHack(&I) &&
6666             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6667           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6668         // Remember that BB will remain after vectorization.
6669         PredicatedBBsAfterVectorization.insert(BB);
6670       }
6671   }
6672 }
6673 
6674 int LoopVectorizationCostModel::computePredInstDiscount(
6675     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6676   assert(!isUniformAfterVectorization(PredInst, VF) &&
6677          "Instruction marked uniform-after-vectorization will be predicated");
6678 
6679   // Initialize the discount to zero, meaning that the scalar version and the
6680   // vector version cost the same.
6681   InstructionCost Discount = 0;
6682 
6683   // Holds instructions to analyze. The instructions we visit are mapped in
6684   // ScalarCosts. Those instructions are the ones that would be scalarized if
6685   // we find that the scalar version costs less.
6686   SmallVector<Instruction *, 8> Worklist;
6687 
6688   // Returns true if the given instruction can be scalarized.
6689   auto canBeScalarized = [&](Instruction *I) -> bool {
6690     // We only attempt to scalarize instructions forming a single-use chain
6691     // from the original predicated block that would otherwise be vectorized.
6692     // Although not strictly necessary, we give up on instructions we know will
6693     // already be scalar to avoid traversing chains that are unlikely to be
6694     // beneficial.
6695     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6696         isScalarAfterVectorization(I, VF))
6697       return false;
6698 
6699     // If the instruction is scalar with predication, it will be analyzed
6700     // separately. We ignore it within the context of PredInst.
6701     if (isScalarWithPredication(I))
6702       return false;
6703 
6704     // If any of the instruction's operands are uniform after vectorization,
6705     // the instruction cannot be scalarized. This prevents, for example, a
6706     // masked load from being scalarized.
6707     //
6708     // We assume we will only emit a value for lane zero of an instruction
6709     // marked uniform after vectorization, rather than VF identical values.
6710     // Thus, if we scalarize an instruction that uses a uniform, we would
6711     // create uses of values corresponding to the lanes we aren't emitting code
6712     // for. This behavior can be changed by allowing getScalarValue to clone
6713     // the lane zero values for uniforms rather than asserting.
6714     for (Use &U : I->operands())
6715       if (auto *J = dyn_cast<Instruction>(U.get()))
6716         if (isUniformAfterVectorization(J, VF))
6717           return false;
6718 
6719     // Otherwise, we can scalarize the instruction.
6720     return true;
6721   };
6722 
6723   // Compute the expected cost discount from scalarizing the entire expression
6724   // feeding the predicated instruction. We currently only consider expressions
6725   // that are single-use instruction chains.
6726   Worklist.push_back(PredInst);
6727   while (!Worklist.empty()) {
6728     Instruction *I = Worklist.pop_back_val();
6729 
6730     // If we've already analyzed the instruction, there's nothing to do.
6731     if (ScalarCosts.find(I) != ScalarCosts.end())
6732       continue;
6733 
6734     // Compute the cost of the vector instruction. Note that this cost already
6735     // includes the scalarization overhead of the predicated instruction.
6736     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6737 
6738     // Compute the cost of the scalarized instruction. This cost is the cost of
6739     // the instruction as if it wasn't if-converted and instead remained in the
6740     // predicated block. We will scale this cost by block probability after
6741     // computing the scalarization overhead.
6742     assert(!VF.isScalable() && "scalable vectors not yet supported.");
6743     InstructionCost ScalarCost =
6744         VF.getKnownMinValue() *
6745         getInstructionCost(I, ElementCount::getFixed(1)).first;
6746 
6747     // Compute the scalarization overhead of needed insertelement instructions
6748     // and phi nodes.
6749     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6750       ScalarCost += TTI.getScalarizationOverhead(
6751           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6752           APInt::getAllOnesValue(VF.getKnownMinValue()), true, false);
6753       assert(!VF.isScalable() && "scalable vectors not yet supported.");
6754       ScalarCost +=
6755           VF.getKnownMinValue() *
6756           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6757     }
6758 
6759     // Compute the scalarization overhead of needed extractelement
6760     // instructions. For each of the instruction's operands, if the operand can
6761     // be scalarized, add it to the worklist; otherwise, account for the
6762     // overhead.
6763     for (Use &U : I->operands())
6764       if (auto *J = dyn_cast<Instruction>(U.get())) {
6765         assert(VectorType::isValidElementType(J->getType()) &&
6766                "Instruction has non-scalar type");
6767         if (canBeScalarized(J))
6768           Worklist.push_back(J);
6769         else if (needsExtract(J, VF)) {
6770           assert(!VF.isScalable() && "scalable vectors not yet supported.");
6771           ScalarCost += TTI.getScalarizationOverhead(
6772               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6773               APInt::getAllOnesValue(VF.getKnownMinValue()), false, true);
6774         }
6775       }
6776 
6777     // Scale the total scalar cost by block probability.
6778     ScalarCost /= getReciprocalPredBlockProb();
6779 
6780     // Compute the discount. A non-negative discount means the vector version
6781     // of the instruction costs more, and scalarizing would be beneficial.
6782     Discount += VectorCost - ScalarCost;
6783     ScalarCosts[I] = ScalarCost;
6784   }
6785 
6786   return *Discount.getValue();
6787 }
6788 
6789 LoopVectorizationCostModel::VectorizationCostTy
6790 LoopVectorizationCostModel::expectedCost(ElementCount VF) {
6791   VectorizationCostTy Cost;
6792 
6793   // For each block.
6794   for (BasicBlock *BB : TheLoop->blocks()) {
6795     VectorizationCostTy BlockCost;
6796 
6797     // For each instruction in the old loop.
6798     for (Instruction &I : BB->instructionsWithoutDebug()) {
6799       // Skip ignored values.
6800       if (ValuesToIgnore.count(&I) ||
6801           (VF.isVector() && VecValuesToIgnore.count(&I)))
6802         continue;
6803 
6804       VectorizationCostTy C = getInstructionCost(&I, VF);
6805 
6806       // Check if we should override the cost.
6807       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
6808         C.first = InstructionCost(ForceTargetInstructionCost);
6809 
6810       BlockCost.first += C.first;
6811       BlockCost.second |= C.second;
6812       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6813                         << " for VF " << VF << " For instruction: " << I
6814                         << '\n');
6815     }
6816 
6817     // If we are vectorizing a predicated block, it will have been
6818     // if-converted. This means that the block's instructions (aside from
6819     // stores and instructions that may divide by zero) will now be
6820     // unconditionally executed. For the scalar case, we may not always execute
6821     // the predicated block, if it is an if-else block. Thus, scale the block's
6822     // cost by the probability of executing it. blockNeedsPredication from
6823     // Legal is used so as to not include all blocks in tail folded loops.
6824     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6825       BlockCost.first /= getReciprocalPredBlockProb();
6826 
6827     Cost.first += BlockCost.first;
6828     Cost.second |= BlockCost.second;
6829   }
6830 
6831   return Cost;
6832 }
6833 
6834 /// Gets Address Access SCEV after verifying that the access pattern
6835 /// is loop invariant except the induction variable dependence.
6836 ///
6837 /// This SCEV can be sent to the Target in order to estimate the address
6838 /// calculation cost.
6839 static const SCEV *getAddressAccessSCEV(
6840               Value *Ptr,
6841               LoopVectorizationLegality *Legal,
6842               PredicatedScalarEvolution &PSE,
6843               const Loop *TheLoop) {
6844 
6845   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6846   if (!Gep)
6847     return nullptr;
6848 
6849   // We are looking for a gep with all loop invariant indices except for one
6850   // which should be an induction variable.
6851   auto SE = PSE.getSE();
6852   unsigned NumOperands = Gep->getNumOperands();
6853   for (unsigned i = 1; i < NumOperands; ++i) {
6854     Value *Opd = Gep->getOperand(i);
6855     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6856         !Legal->isInductionVariable(Opd))
6857       return nullptr;
6858   }
6859 
6860   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6861   return PSE.getSCEV(Ptr);
6862 }
6863 
6864 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6865   return Legal->hasStride(I->getOperand(0)) ||
6866          Legal->hasStride(I->getOperand(1));
6867 }
6868 
6869 InstructionCost
6870 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6871                                                         ElementCount VF) {
6872   assert(VF.isVector() &&
6873          "Scalarization cost of instruction implies vectorization.");
6874   if (VF.isScalable())
6875     return InstructionCost::getInvalid();
6876 
6877   Type *ValTy = getMemInstValueType(I);
6878   auto SE = PSE.getSE();
6879 
6880   unsigned AS = getLoadStoreAddressSpace(I);
6881   Value *Ptr = getLoadStorePointerOperand(I);
6882   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6883 
6884   // Figure out whether the access is strided and get the stride value
6885   // if it's known in compile time
6886   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6887 
6888   // Get the cost of the scalar memory instruction and address computation.
6889   InstructionCost Cost =
6890       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6891 
6892   // Don't pass *I here, since it is scalar but will actually be part of a
6893   // vectorized loop where the user of it is a vectorized instruction.
6894   const Align Alignment = getLoadStoreAlignment(I);
6895   Cost += VF.getKnownMinValue() *
6896           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6897                               AS, TTI::TCK_RecipThroughput);
6898 
6899   // Get the overhead of the extractelement and insertelement instructions
6900   // we might create due to scalarization.
6901   Cost += getScalarizationOverhead(I, VF);
6902 
6903   // If we have a predicated load/store, it will need extra i1 extracts and
6904   // conditional branches, but may not be executed for each vector lane. Scale
6905   // the cost by the probability of executing the predicated block.
6906   if (isPredicatedInst(I, ElementCount::getFixed(1))) {
6907     Cost /= getReciprocalPredBlockProb();
6908 
6909     // Add the cost of an i1 extract and a branch
6910     auto *Vec_i1Ty =
6911         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6912     Cost += TTI.getScalarizationOverhead(
6913         Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
6914         /*Insert=*/false, /*Extract=*/true);
6915     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6916 
6917     if (useEmulatedMaskMemRefHack(I))
6918       // Artificially setting to a high enough value to practically disable
6919       // vectorization with such operations.
6920       Cost = 3000000;
6921   }
6922 
6923   return Cost;
6924 }
6925 
6926 InstructionCost
6927 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6928                                                     ElementCount VF) {
6929   Type *ValTy = getMemInstValueType(I);
6930   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6931   Value *Ptr = getLoadStorePointerOperand(I);
6932   unsigned AS = getLoadStoreAddressSpace(I);
6933   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
6934   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6935 
6936   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6937          "Stride should be 1 or -1 for consecutive memory access");
6938   const Align Alignment = getLoadStoreAlignment(I);
6939   InstructionCost Cost = 0;
6940   if (Legal->isMaskRequired(I))
6941     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6942                                       CostKind);
6943   else
6944     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6945                                 CostKind, I);
6946 
6947   bool Reverse = ConsecutiveStride < 0;
6948   if (Reverse)
6949     Cost +=
6950         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6951   return Cost;
6952 }
6953 
6954 InstructionCost
6955 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6956                                                 ElementCount VF) {
6957   assert(Legal->isUniformMemOp(*I));
6958 
6959   Type *ValTy = getMemInstValueType(I);
6960   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6961   const Align Alignment = getLoadStoreAlignment(I);
6962   unsigned AS = getLoadStoreAddressSpace(I);
6963   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6964   if (isa<LoadInst>(I)) {
6965     return TTI.getAddressComputationCost(ValTy) +
6966            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6967                                CostKind) +
6968            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6969   }
6970   StoreInst *SI = cast<StoreInst>(I);
6971 
6972   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6973   return TTI.getAddressComputationCost(ValTy) +
6974          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6975                              CostKind) +
6976          (isLoopInvariantStoreValue
6977               ? 0
6978               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6979                                        VF.getKnownMinValue() - 1));
6980 }
6981 
6982 InstructionCost
6983 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6984                                                  ElementCount VF) {
6985   Type *ValTy = getMemInstValueType(I);
6986   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6987   const Align Alignment = getLoadStoreAlignment(I);
6988   const Value *Ptr = getLoadStorePointerOperand(I);
6989 
6990   return TTI.getAddressComputationCost(VectorTy) +
6991          TTI.getGatherScatterOpCost(
6992              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6993              TargetTransformInfo::TCK_RecipThroughput, I);
6994 }
6995 
6996 InstructionCost
6997 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6998                                                    ElementCount VF) {
6999   // TODO: Once we have support for interleaving with scalable vectors
7000   // we can calculate the cost properly here.
7001   if (VF.isScalable())
7002     return InstructionCost::getInvalid();
7003 
7004   Type *ValTy = getMemInstValueType(I);
7005   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7006   unsigned AS = getLoadStoreAddressSpace(I);
7007 
7008   auto Group = getInterleavedAccessGroup(I);
7009   assert(Group && "Fail to get an interleaved access group.");
7010 
7011   unsigned InterleaveFactor = Group->getFactor();
7012   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7013 
7014   // Holds the indices of existing members in an interleaved load group.
7015   // An interleaved store group doesn't need this as it doesn't allow gaps.
7016   SmallVector<unsigned, 4> Indices;
7017   if (isa<LoadInst>(I)) {
7018     for (unsigned i = 0; i < InterleaveFactor; i++)
7019       if (Group->getMember(i))
7020         Indices.push_back(i);
7021   }
7022 
7023   // Calculate the cost of the whole interleaved group.
7024   bool UseMaskForGaps =
7025       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
7026   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7027       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7028       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7029 
7030   if (Group->isReverse()) {
7031     // TODO: Add support for reversed masked interleaved access.
7032     assert(!Legal->isMaskRequired(I) &&
7033            "Reverse masked interleaved access not supported.");
7034     Cost +=
7035         Group->getNumMembers() *
7036         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7037   }
7038   return Cost;
7039 }
7040 
7041 InstructionCost LoopVectorizationCostModel::getReductionPatternCost(
7042     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7043   // Early exit for no inloop reductions
7044   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7045     return InstructionCost::getInvalid();
7046   auto *VectorTy = cast<VectorType>(Ty);
7047 
7048   // We are looking for a pattern of, and finding the minimal acceptable cost:
7049   //  reduce(mul(ext(A), ext(B))) or
7050   //  reduce(mul(A, B)) or
7051   //  reduce(ext(A)) or
7052   //  reduce(A).
7053   // The basic idea is that we walk down the tree to do that, finding the root
7054   // reduction instruction in InLoopReductionImmediateChains. From there we find
7055   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7056   // of the components. If the reduction cost is lower then we return it for the
7057   // reduction instruction and 0 for the other instructions in the pattern. If
7058   // it is not we return an invalid cost specifying the orignal cost method
7059   // should be used.
7060   Instruction *RetI = I;
7061   if ((RetI->getOpcode() == Instruction::SExt ||
7062        RetI->getOpcode() == Instruction::ZExt)) {
7063     if (!RetI->hasOneUser())
7064       return InstructionCost::getInvalid();
7065     RetI = RetI->user_back();
7066   }
7067   if (RetI->getOpcode() == Instruction::Mul &&
7068       RetI->user_back()->getOpcode() == Instruction::Add) {
7069     if (!RetI->hasOneUser())
7070       return InstructionCost::getInvalid();
7071     RetI = RetI->user_back();
7072   }
7073 
7074   // Test if the found instruction is a reduction, and if not return an invalid
7075   // cost specifying the parent to use the original cost modelling.
7076   if (!InLoopReductionImmediateChains.count(RetI))
7077     return InstructionCost::getInvalid();
7078 
7079   // Find the reduction this chain is a part of and calculate the basic cost of
7080   // the reduction on its own.
7081   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7082   Instruction *ReductionPhi = LastChain;
7083   while (!isa<PHINode>(ReductionPhi))
7084     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7085 
7086   RecurrenceDescriptor RdxDesc =
7087       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7088   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7089       RdxDesc.getOpcode(), VectorTy, false, CostKind);
7090 
7091   // Get the operand that was not the reduction chain and match it to one of the
7092   // patterns, returning the better cost if it is found.
7093   Instruction *RedOp = RetI->getOperand(1) == LastChain
7094                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7095                            : dyn_cast<Instruction>(RetI->getOperand(1));
7096 
7097   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7098 
7099   if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) &&
7100       !TheLoop->isLoopInvariant(RedOp)) {
7101     bool IsUnsigned = isa<ZExtInst>(RedOp);
7102     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7103     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7104         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7105         CostKind);
7106 
7107     InstructionCost ExtCost =
7108         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7109                              TTI::CastContextHint::None, CostKind, RedOp);
7110     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7111       return I == RetI ? *RedCost.getValue() : 0;
7112   } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) {
7113     Instruction *Mul = RedOp;
7114     Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0));
7115     Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1));
7116     if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) &&
7117         Op0->getOpcode() == Op1->getOpcode() &&
7118         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7119         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7120       bool IsUnsigned = isa<ZExtInst>(Op0);
7121       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7122       // reduce(mul(ext, ext))
7123       InstructionCost ExtCost =
7124           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7125                                TTI::CastContextHint::None, CostKind, Op0);
7126       InstructionCost MulCost =
7127           TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind);
7128 
7129       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7130           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7131           CostKind);
7132 
7133       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7134         return I == RetI ? *RedCost.getValue() : 0;
7135     } else {
7136       InstructionCost MulCost =
7137           TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind);
7138 
7139       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7140           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7141           CostKind);
7142 
7143       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7144         return I == RetI ? *RedCost.getValue() : 0;
7145     }
7146   }
7147 
7148   return I == RetI ? BaseCost : InstructionCost::getInvalid();
7149 }
7150 
7151 InstructionCost
7152 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7153                                                      ElementCount VF) {
7154   // Calculate scalar cost only. Vectorization cost should be ready at this
7155   // moment.
7156   if (VF.isScalar()) {
7157     Type *ValTy = getMemInstValueType(I);
7158     const Align Alignment = getLoadStoreAlignment(I);
7159     unsigned AS = getLoadStoreAddressSpace(I);
7160 
7161     return TTI.getAddressComputationCost(ValTy) +
7162            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7163                                TTI::TCK_RecipThroughput, I);
7164   }
7165   return getWideningCost(I, VF);
7166 }
7167 
7168 LoopVectorizationCostModel::VectorizationCostTy
7169 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7170                                                ElementCount VF) {
7171   // If we know that this instruction will remain uniform, check the cost of
7172   // the scalar version.
7173   if (isUniformAfterVectorization(I, VF))
7174     VF = ElementCount::getFixed(1);
7175 
7176   if (VF.isVector() && isProfitableToScalarize(I, VF))
7177     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7178 
7179   // Forced scalars do not have any scalarization overhead.
7180   auto ForcedScalar = ForcedScalars.find(VF);
7181   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7182     auto InstSet = ForcedScalar->second;
7183     if (InstSet.count(I))
7184       return VectorizationCostTy(
7185           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7186            VF.getKnownMinValue()),
7187           false);
7188   }
7189 
7190   Type *VectorTy;
7191   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7192 
7193   bool TypeNotScalarized =
7194       VF.isVector() && VectorTy->isVectorTy() &&
7195       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7196   return VectorizationCostTy(C, TypeNotScalarized);
7197 }
7198 
7199 InstructionCost
7200 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7201                                                      ElementCount VF) const {
7202 
7203   if (VF.isScalable())
7204     return InstructionCost::getInvalid();
7205 
7206   if (VF.isScalar())
7207     return 0;
7208 
7209   InstructionCost Cost = 0;
7210   Type *RetTy = ToVectorTy(I->getType(), VF);
7211   if (!RetTy->isVoidTy() &&
7212       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7213     Cost += TTI.getScalarizationOverhead(
7214         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()),
7215         true, false);
7216 
7217   // Some targets keep addresses scalar.
7218   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7219     return Cost;
7220 
7221   // Some targets support efficient element stores.
7222   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7223     return Cost;
7224 
7225   // Collect operands to consider.
7226   CallInst *CI = dyn_cast<CallInst>(I);
7227   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
7228 
7229   // Skip operands that do not require extraction/scalarization and do not incur
7230   // any overhead.
7231   SmallVector<Type *> Tys;
7232   for (auto *V : filterExtractingOperands(Ops, VF))
7233     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7234   return Cost + TTI.getOperandsScalarizationOverhead(
7235                     filterExtractingOperands(Ops, VF), Tys);
7236 }
7237 
7238 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7239   if (VF.isScalar())
7240     return;
7241   NumPredStores = 0;
7242   for (BasicBlock *BB : TheLoop->blocks()) {
7243     // For each instruction in the old loop.
7244     for (Instruction &I : *BB) {
7245       Value *Ptr =  getLoadStorePointerOperand(&I);
7246       if (!Ptr)
7247         continue;
7248 
7249       // TODO: We should generate better code and update the cost model for
7250       // predicated uniform stores. Today they are treated as any other
7251       // predicated store (see added test cases in
7252       // invariant-store-vectorization.ll).
7253       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7254         NumPredStores++;
7255 
7256       if (Legal->isUniformMemOp(I)) {
7257         // TODO: Avoid replicating loads and stores instead of
7258         // relying on instcombine to remove them.
7259         // Load: Scalar load + broadcast
7260         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7261         InstructionCost Cost = getUniformMemOpCost(&I, VF);
7262         setWideningDecision(&I, VF, CM_Scalarize, Cost);
7263         continue;
7264       }
7265 
7266       // We assume that widening is the best solution when possible.
7267       if (memoryInstructionCanBeWidened(&I, VF)) {
7268         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7269         int ConsecutiveStride =
7270                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
7271         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7272                "Expected consecutive stride.");
7273         InstWidening Decision =
7274             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7275         setWideningDecision(&I, VF, Decision, Cost);
7276         continue;
7277       }
7278 
7279       // Choose between Interleaving, Gather/Scatter or Scalarization.
7280       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7281       unsigned NumAccesses = 1;
7282       if (isAccessInterleaved(&I)) {
7283         auto Group = getInterleavedAccessGroup(&I);
7284         assert(Group && "Fail to get an interleaved access group.");
7285 
7286         // Make one decision for the whole group.
7287         if (getWideningDecision(&I, VF) != CM_Unknown)
7288           continue;
7289 
7290         NumAccesses = Group->getNumMembers();
7291         if (interleavedAccessCanBeWidened(&I, VF))
7292           InterleaveCost = getInterleaveGroupCost(&I, VF);
7293       }
7294 
7295       InstructionCost GatherScatterCost =
7296           isLegalGatherOrScatter(&I)
7297               ? getGatherScatterCost(&I, VF) * NumAccesses
7298               : InstructionCost::getInvalid();
7299 
7300       InstructionCost ScalarizationCost =
7301           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7302 
7303       // Choose better solution for the current VF,
7304       // write down this decision and use it during vectorization.
7305       InstructionCost Cost;
7306       InstWidening Decision;
7307       if (InterleaveCost <= GatherScatterCost &&
7308           InterleaveCost < ScalarizationCost) {
7309         Decision = CM_Interleave;
7310         Cost = InterleaveCost;
7311       } else if (GatherScatterCost < ScalarizationCost) {
7312         Decision = CM_GatherScatter;
7313         Cost = GatherScatterCost;
7314       } else {
7315         assert(!VF.isScalable() &&
7316                "We cannot yet scalarise for scalable vectors");
7317         Decision = CM_Scalarize;
7318         Cost = ScalarizationCost;
7319       }
7320       // If the instructions belongs to an interleave group, the whole group
7321       // receives the same decision. The whole group receives the cost, but
7322       // the cost will actually be assigned to one instruction.
7323       if (auto Group = getInterleavedAccessGroup(&I))
7324         setWideningDecision(Group, VF, Decision, Cost);
7325       else
7326         setWideningDecision(&I, VF, Decision, Cost);
7327     }
7328   }
7329 
7330   // Make sure that any load of address and any other address computation
7331   // remains scalar unless there is gather/scatter support. This avoids
7332   // inevitable extracts into address registers, and also has the benefit of
7333   // activating LSR more, since that pass can't optimize vectorized
7334   // addresses.
7335   if (TTI.prefersVectorizedAddressing())
7336     return;
7337 
7338   // Start with all scalar pointer uses.
7339   SmallPtrSet<Instruction *, 8> AddrDefs;
7340   for (BasicBlock *BB : TheLoop->blocks())
7341     for (Instruction &I : *BB) {
7342       Instruction *PtrDef =
7343         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7344       if (PtrDef && TheLoop->contains(PtrDef) &&
7345           getWideningDecision(&I, VF) != CM_GatherScatter)
7346         AddrDefs.insert(PtrDef);
7347     }
7348 
7349   // Add all instructions used to generate the addresses.
7350   SmallVector<Instruction *, 4> Worklist;
7351   append_range(Worklist, AddrDefs);
7352   while (!Worklist.empty()) {
7353     Instruction *I = Worklist.pop_back_val();
7354     for (auto &Op : I->operands())
7355       if (auto *InstOp = dyn_cast<Instruction>(Op))
7356         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7357             AddrDefs.insert(InstOp).second)
7358           Worklist.push_back(InstOp);
7359   }
7360 
7361   for (auto *I : AddrDefs) {
7362     if (isa<LoadInst>(I)) {
7363       // Setting the desired widening decision should ideally be handled in
7364       // by cost functions, but since this involves the task of finding out
7365       // if the loaded register is involved in an address computation, it is
7366       // instead changed here when we know this is the case.
7367       InstWidening Decision = getWideningDecision(I, VF);
7368       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7369         // Scalarize a widened load of address.
7370         setWideningDecision(
7371             I, VF, CM_Scalarize,
7372             (VF.getKnownMinValue() *
7373              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7374       else if (auto Group = getInterleavedAccessGroup(I)) {
7375         // Scalarize an interleave group of address loads.
7376         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7377           if (Instruction *Member = Group->getMember(I))
7378             setWideningDecision(
7379                 Member, VF, CM_Scalarize,
7380                 (VF.getKnownMinValue() *
7381                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7382         }
7383       }
7384     } else
7385       // Make sure I gets scalarized and a cost estimate without
7386       // scalarization overhead.
7387       ForcedScalars[VF].insert(I);
7388   }
7389 }
7390 
7391 InstructionCost
7392 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7393                                                Type *&VectorTy) {
7394   Type *RetTy = I->getType();
7395   if (canTruncateToMinimalBitwidth(I, VF))
7396     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7397   auto SE = PSE.getSE();
7398   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7399 
7400   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7401                                                 ElementCount VF) -> bool {
7402     if (VF.isScalar())
7403       return true;
7404 
7405     auto Scalarized = InstsToScalarize.find(VF);
7406     assert(Scalarized != InstsToScalarize.end() &&
7407            "VF not yet analyzed for scalarization profitability");
7408     return !Scalarized->second.count(I) &&
7409            llvm::all_of(I->users(), [&](User *U) {
7410              auto *UI = cast<Instruction>(U);
7411              return !Scalarized->second.count(UI);
7412            });
7413   };
7414   (void) hasSingleCopyAfterVectorization;
7415 
7416   if (isScalarAfterVectorization(I, VF)) {
7417     // With the exception of GEPs and PHIs, after scalarization there should
7418     // only be one copy of the instruction generated in the loop. This is
7419     // because the VF is either 1, or any instructions that need scalarizing
7420     // have already been dealt with by the the time we get here. As a result,
7421     // it means we don't have to multiply the instruction cost by VF.
7422     assert(I->getOpcode() == Instruction::GetElementPtr ||
7423            I->getOpcode() == Instruction::PHI ||
7424            (I->getOpcode() == Instruction::BitCast &&
7425             I->getType()->isPointerTy()) ||
7426            hasSingleCopyAfterVectorization(I, VF));
7427     VectorTy = RetTy;
7428   } else
7429     VectorTy = ToVectorTy(RetTy, VF);
7430 
7431   // TODO: We need to estimate the cost of intrinsic calls.
7432   switch (I->getOpcode()) {
7433   case Instruction::GetElementPtr:
7434     // We mark this instruction as zero-cost because the cost of GEPs in
7435     // vectorized code depends on whether the corresponding memory instruction
7436     // is scalarized or not. Therefore, we handle GEPs with the memory
7437     // instruction cost.
7438     return 0;
7439   case Instruction::Br: {
7440     // In cases of scalarized and predicated instructions, there will be VF
7441     // predicated blocks in the vectorized loop. Each branch around these
7442     // blocks requires also an extract of its vector compare i1 element.
7443     bool ScalarPredicatedBB = false;
7444     BranchInst *BI = cast<BranchInst>(I);
7445     if (VF.isVector() && BI->isConditional() &&
7446         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7447          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7448       ScalarPredicatedBB = true;
7449 
7450     if (ScalarPredicatedBB) {
7451       // Return cost for branches around scalarized and predicated blocks.
7452       assert(!VF.isScalable() && "scalable vectors not yet supported.");
7453       auto *Vec_i1Ty =
7454           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7455       return (TTI.getScalarizationOverhead(
7456                   Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
7457                   false, true) +
7458               (TTI.getCFInstrCost(Instruction::Br, CostKind) *
7459                VF.getKnownMinValue()));
7460     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7461       // The back-edge branch will remain, as will all scalar branches.
7462       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7463     else
7464       // This branch will be eliminated by if-conversion.
7465       return 0;
7466     // Note: We currently assume zero cost for an unconditional branch inside
7467     // a predicated block since it will become a fall-through, although we
7468     // may decide in the future to call TTI for all branches.
7469   }
7470   case Instruction::PHI: {
7471     auto *Phi = cast<PHINode>(I);
7472 
7473     // First-order recurrences are replaced by vector shuffles inside the loop.
7474     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7475     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7476       return TTI.getShuffleCost(
7477           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7478           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7479 
7480     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7481     // converted into select instructions. We require N - 1 selects per phi
7482     // node, where N is the number of incoming values.
7483     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7484       return (Phi->getNumIncomingValues() - 1) *
7485              TTI.getCmpSelInstrCost(
7486                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7487                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7488                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7489 
7490     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7491   }
7492   case Instruction::UDiv:
7493   case Instruction::SDiv:
7494   case Instruction::URem:
7495   case Instruction::SRem:
7496     // If we have a predicated instruction, it may not be executed for each
7497     // vector lane. Get the scalarization cost and scale this amount by the
7498     // probability of executing the predicated block. If the instruction is not
7499     // predicated, we fall through to the next case.
7500     if (VF.isVector() && isScalarWithPredication(I)) {
7501       InstructionCost Cost = 0;
7502 
7503       // These instructions have a non-void type, so account for the phi nodes
7504       // that we will create. This cost is likely to be zero. The phi node
7505       // cost, if any, should be scaled by the block probability because it
7506       // models a copy at the end of each predicated block.
7507       Cost += VF.getKnownMinValue() *
7508               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7509 
7510       // The cost of the non-predicated instruction.
7511       Cost += VF.getKnownMinValue() *
7512               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7513 
7514       // The cost of insertelement and extractelement instructions needed for
7515       // scalarization.
7516       Cost += getScalarizationOverhead(I, VF);
7517 
7518       // Scale the cost by the probability of executing the predicated blocks.
7519       // This assumes the predicated block for each vector lane is equally
7520       // likely.
7521       return Cost / getReciprocalPredBlockProb();
7522     }
7523     LLVM_FALLTHROUGH;
7524   case Instruction::Add:
7525   case Instruction::FAdd:
7526   case Instruction::Sub:
7527   case Instruction::FSub:
7528   case Instruction::Mul:
7529   case Instruction::FMul:
7530   case Instruction::FDiv:
7531   case Instruction::FRem:
7532   case Instruction::Shl:
7533   case Instruction::LShr:
7534   case Instruction::AShr:
7535   case Instruction::And:
7536   case Instruction::Or:
7537   case Instruction::Xor: {
7538     // Since we will replace the stride by 1 the multiplication should go away.
7539     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7540       return 0;
7541 
7542     // Detect reduction patterns
7543     InstructionCost RedCost;
7544     if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7545             .isValid())
7546       return RedCost;
7547 
7548     // Certain instructions can be cheaper to vectorize if they have a constant
7549     // second vector operand. One example of this are shifts on x86.
7550     Value *Op2 = I->getOperand(1);
7551     TargetTransformInfo::OperandValueProperties Op2VP;
7552     TargetTransformInfo::OperandValueKind Op2VK =
7553         TTI.getOperandInfo(Op2, Op2VP);
7554     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7555       Op2VK = TargetTransformInfo::OK_UniformValue;
7556 
7557     SmallVector<const Value *, 4> Operands(I->operand_values());
7558     return TTI.getArithmeticInstrCost(
7559         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7560         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7561   }
7562   case Instruction::FNeg: {
7563     return TTI.getArithmeticInstrCost(
7564         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7565         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7566         TargetTransformInfo::OP_None, I->getOperand(0), I);
7567   }
7568   case Instruction::Select: {
7569     SelectInst *SI = cast<SelectInst>(I);
7570     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7571     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7572 
7573     const Value *Op0, *Op1;
7574     using namespace llvm::PatternMatch;
7575     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7576                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7577       // select x, y, false --> x & y
7578       // select x, true, y --> x | y
7579       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7580       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7581       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7582       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7583       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7584               Op1->getType()->getScalarSizeInBits() == 1);
7585 
7586       SmallVector<const Value *, 2> Operands{Op0, Op1};
7587       return TTI.getArithmeticInstrCost(
7588           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7589           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7590     }
7591 
7592     Type *CondTy = SI->getCondition()->getType();
7593     if (!ScalarCond)
7594       CondTy = VectorType::get(CondTy, VF);
7595     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7596                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7597   }
7598   case Instruction::ICmp:
7599   case Instruction::FCmp: {
7600     Type *ValTy = I->getOperand(0)->getType();
7601     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7602     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7603       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7604     VectorTy = ToVectorTy(ValTy, VF);
7605     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7606                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7607   }
7608   case Instruction::Store:
7609   case Instruction::Load: {
7610     ElementCount Width = VF;
7611     if (Width.isVector()) {
7612       InstWidening Decision = getWideningDecision(I, Width);
7613       assert(Decision != CM_Unknown &&
7614              "CM decision should be taken at this point");
7615       if (Decision == CM_Scalarize)
7616         Width = ElementCount::getFixed(1);
7617     }
7618     VectorTy = ToVectorTy(getMemInstValueType(I), Width);
7619     return getMemoryInstructionCost(I, VF);
7620   }
7621   case Instruction::BitCast:
7622     if (I->getType()->isPointerTy())
7623       return 0;
7624     LLVM_FALLTHROUGH;
7625   case Instruction::ZExt:
7626   case Instruction::SExt:
7627   case Instruction::FPToUI:
7628   case Instruction::FPToSI:
7629   case Instruction::FPExt:
7630   case Instruction::PtrToInt:
7631   case Instruction::IntToPtr:
7632   case Instruction::SIToFP:
7633   case Instruction::UIToFP:
7634   case Instruction::Trunc:
7635   case Instruction::FPTrunc: {
7636     // Computes the CastContextHint from a Load/Store instruction.
7637     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7638       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7639              "Expected a load or a store!");
7640 
7641       if (VF.isScalar() || !TheLoop->contains(I))
7642         return TTI::CastContextHint::Normal;
7643 
7644       switch (getWideningDecision(I, VF)) {
7645       case LoopVectorizationCostModel::CM_GatherScatter:
7646         return TTI::CastContextHint::GatherScatter;
7647       case LoopVectorizationCostModel::CM_Interleave:
7648         return TTI::CastContextHint::Interleave;
7649       case LoopVectorizationCostModel::CM_Scalarize:
7650       case LoopVectorizationCostModel::CM_Widen:
7651         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7652                                         : TTI::CastContextHint::Normal;
7653       case LoopVectorizationCostModel::CM_Widen_Reverse:
7654         return TTI::CastContextHint::Reversed;
7655       case LoopVectorizationCostModel::CM_Unknown:
7656         llvm_unreachable("Instr did not go through cost modelling?");
7657       }
7658 
7659       llvm_unreachable("Unhandled case!");
7660     };
7661 
7662     unsigned Opcode = I->getOpcode();
7663     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7664     // For Trunc, the context is the only user, which must be a StoreInst.
7665     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7666       if (I->hasOneUse())
7667         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7668           CCH = ComputeCCH(Store);
7669     }
7670     // For Z/Sext, the context is the operand, which must be a LoadInst.
7671     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7672              Opcode == Instruction::FPExt) {
7673       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7674         CCH = ComputeCCH(Load);
7675     }
7676 
7677     // We optimize the truncation of induction variables having constant
7678     // integer steps. The cost of these truncations is the same as the scalar
7679     // operation.
7680     if (isOptimizableIVTruncate(I, VF)) {
7681       auto *Trunc = cast<TruncInst>(I);
7682       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7683                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7684     }
7685 
7686     // Detect reduction patterns
7687     InstructionCost RedCost;
7688     if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7689             .isValid())
7690       return RedCost;
7691 
7692     Type *SrcScalarTy = I->getOperand(0)->getType();
7693     Type *SrcVecTy =
7694         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7695     if (canTruncateToMinimalBitwidth(I, VF)) {
7696       // This cast is going to be shrunk. This may remove the cast or it might
7697       // turn it into slightly different cast. For example, if MinBW == 16,
7698       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7699       //
7700       // Calculate the modified src and dest types.
7701       Type *MinVecTy = VectorTy;
7702       if (Opcode == Instruction::Trunc) {
7703         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7704         VectorTy =
7705             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7706       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7707         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7708         VectorTy =
7709             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7710       }
7711     }
7712 
7713     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7714   }
7715   case Instruction::Call: {
7716     bool NeedToScalarize;
7717     CallInst *CI = cast<CallInst>(I);
7718     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7719     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7720       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7721       return std::min(CallCost, IntrinsicCost);
7722     }
7723     return CallCost;
7724   }
7725   case Instruction::ExtractValue:
7726     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7727   default:
7728     // This opcode is unknown. Assume that it is the same as 'mul'.
7729     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7730   } // end of switch.
7731 }
7732 
7733 char LoopVectorize::ID = 0;
7734 
7735 static const char lv_name[] = "Loop Vectorization";
7736 
7737 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7738 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7739 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7740 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7741 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7742 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7743 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7744 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7745 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7746 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7747 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7748 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7749 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7750 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7751 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7752 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7753 
7754 namespace llvm {
7755 
7756 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7757 
7758 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7759                               bool VectorizeOnlyWhenForced) {
7760   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7761 }
7762 
7763 } // end namespace llvm
7764 
7765 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7766   // Check if the pointer operand of a load or store instruction is
7767   // consecutive.
7768   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7769     return Legal->isConsecutivePtr(Ptr);
7770   return false;
7771 }
7772 
7773 void LoopVectorizationCostModel::collectValuesToIgnore() {
7774   // Ignore ephemeral values.
7775   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7776 
7777   // Ignore type-promoting instructions we identified during reduction
7778   // detection.
7779   for (auto &Reduction : Legal->getReductionVars()) {
7780     RecurrenceDescriptor &RedDes = Reduction.second;
7781     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7782     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7783   }
7784   // Ignore type-casting instructions we identified during induction
7785   // detection.
7786   for (auto &Induction : Legal->getInductionVars()) {
7787     InductionDescriptor &IndDes = Induction.second;
7788     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7789     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7790   }
7791 }
7792 
7793 void LoopVectorizationCostModel::collectInLoopReductions() {
7794   for (auto &Reduction : Legal->getReductionVars()) {
7795     PHINode *Phi = Reduction.first;
7796     RecurrenceDescriptor &RdxDesc = Reduction.second;
7797 
7798     // We don't collect reductions that are type promoted (yet).
7799     if (RdxDesc.getRecurrenceType() != Phi->getType())
7800       continue;
7801 
7802     // If the target would prefer this reduction to happen "in-loop", then we
7803     // want to record it as such.
7804     unsigned Opcode = RdxDesc.getOpcode();
7805     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7806         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7807                                    TargetTransformInfo::ReductionFlags()))
7808       continue;
7809 
7810     // Check that we can correctly put the reductions into the loop, by
7811     // finding the chain of operations that leads from the phi to the loop
7812     // exit value.
7813     SmallVector<Instruction *, 4> ReductionOperations =
7814         RdxDesc.getReductionOpChain(Phi, TheLoop);
7815     bool InLoop = !ReductionOperations.empty();
7816     if (InLoop) {
7817       InLoopReductionChains[Phi] = ReductionOperations;
7818       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7819       Instruction *LastChain = Phi;
7820       for (auto *I : ReductionOperations) {
7821         InLoopReductionImmediateChains[I] = LastChain;
7822         LastChain = I;
7823       }
7824     }
7825     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7826                       << " reduction for phi: " << *Phi << "\n");
7827   }
7828 }
7829 
7830 // TODO: we could return a pair of values that specify the max VF and
7831 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7832 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7833 // doesn't have a cost model that can choose which plan to execute if
7834 // more than one is generated.
7835 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7836                                  LoopVectorizationCostModel &CM) {
7837   unsigned WidestType;
7838   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7839   return WidestVectorRegBits / WidestType;
7840 }
7841 
7842 VectorizationFactor
7843 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7844   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7845   ElementCount VF = UserVF;
7846   // Outer loop handling: They may require CFG and instruction level
7847   // transformations before even evaluating whether vectorization is profitable.
7848   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7849   // the vectorization pipeline.
7850   if (!OrigLoop->isInnermost()) {
7851     // If the user doesn't provide a vectorization factor, determine a
7852     // reasonable one.
7853     if (UserVF.isZero()) {
7854       VF = ElementCount::getFixed(determineVPlanVF(
7855           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7856               .getFixedSize(),
7857           CM));
7858       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7859 
7860       // Make sure we have a VF > 1 for stress testing.
7861       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7862         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7863                           << "overriding computed VF.\n");
7864         VF = ElementCount::getFixed(4);
7865       }
7866     }
7867     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7868     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7869            "VF needs to be a power of two");
7870     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7871                       << "VF " << VF << " to build VPlans.\n");
7872     buildVPlans(VF, VF);
7873 
7874     // For VPlan build stress testing, we bail out after VPlan construction.
7875     if (VPlanBuildStressTest)
7876       return VectorizationFactor::Disabled();
7877 
7878     return {VF, 0 /*Cost*/};
7879   }
7880 
7881   LLVM_DEBUG(
7882       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7883                 "VPlan-native path.\n");
7884   return VectorizationFactor::Disabled();
7885 }
7886 
7887 Optional<VectorizationFactor>
7888 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7889   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7890   Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC);
7891   if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved.
7892     return None;
7893 
7894   // Invalidate interleave groups if all blocks of loop will be predicated.
7895   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
7896       !useMaskedInterleavedAccesses(*TTI)) {
7897     LLVM_DEBUG(
7898         dbgs()
7899         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7900            "which requires masked-interleaved support.\n");
7901     if (CM.InterleaveInfo.invalidateGroups())
7902       // Invalidating interleave groups also requires invalidating all decisions
7903       // based on them, which includes widening decisions and uniform and scalar
7904       // values.
7905       CM.invalidateCostModelingDecisions();
7906   }
7907 
7908   ElementCount MaxVF = MaybeMaxVF.getValue();
7909   assert(MaxVF.isNonZero() && "MaxVF is zero.");
7910 
7911   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxVF);
7912   if (!UserVF.isZero() &&
7913       (UserVFIsLegal || (UserVF.isScalable() && MaxVF.isScalable()))) {
7914     // FIXME: MaxVF is temporarily used inplace of UserVF for illegal scalable
7915     // VFs here, this should be reverted to only use legal UserVFs once the
7916     // loop below supports scalable VFs.
7917     ElementCount VF = UserVFIsLegal ? UserVF : MaxVF;
7918     LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max")
7919                       << " VF " << VF << ".\n");
7920     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7921            "VF needs to be a power of two");
7922     // Collect the instructions (and their associated costs) that will be more
7923     // profitable to scalarize.
7924     CM.selectUserVectorizationFactor(VF);
7925     CM.collectInLoopReductions();
7926     buildVPlansWithVPRecipes(VF, VF);
7927     LLVM_DEBUG(printPlans(dbgs()));
7928     return {{VF, 0}};
7929   }
7930 
7931   assert(!MaxVF.isScalable() &&
7932          "Scalable vectors not yet supported beyond this point");
7933 
7934   for (ElementCount VF = ElementCount::getFixed(1);
7935        ElementCount::isKnownLE(VF, MaxVF); VF *= 2) {
7936     // Collect Uniform and Scalar instructions after vectorization with VF.
7937     CM.collectUniformsAndScalars(VF);
7938 
7939     // Collect the instructions (and their associated costs) that will be more
7940     // profitable to scalarize.
7941     if (VF.isVector())
7942       CM.collectInstsToScalarize(VF);
7943   }
7944 
7945   CM.collectInLoopReductions();
7946 
7947   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF);
7948   LLVM_DEBUG(printPlans(dbgs()));
7949   if (MaxVF.isScalar())
7950     return VectorizationFactor::Disabled();
7951 
7952   // Select the optimal vectorization factor.
7953   auto SelectedVF = CM.selectVectorizationFactor(MaxVF);
7954 
7955   // Check if it is profitable to vectorize with runtime checks.
7956   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7957   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
7958     bool PragmaThresholdReached =
7959         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7960     bool ThresholdReached =
7961         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
7962     if ((ThresholdReached && !Hints.allowReordering()) ||
7963         PragmaThresholdReached) {
7964       ORE->emit([&]() {
7965         return OptimizationRemarkAnalysisAliasing(
7966                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
7967                    OrigLoop->getHeader())
7968                << "loop not vectorized: cannot prove it is safe to reorder "
7969                   "memory operations";
7970       });
7971       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
7972       Hints.emitRemarkWithHints();
7973       return VectorizationFactor::Disabled();
7974     }
7975   }
7976   return SelectedVF;
7977 }
7978 
7979 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
7980   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
7981                     << '\n');
7982   BestVF = VF;
7983   BestUF = UF;
7984 
7985   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
7986     return !Plan->hasVF(VF);
7987   });
7988   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
7989 }
7990 
7991 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
7992                                            DominatorTree *DT) {
7993   // Perform the actual loop transformation.
7994 
7995   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7996   assert(BestVF.hasValue() && "Vectorization Factor is missing");
7997   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
7998 
7999   VPTransformState State{
8000       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
8001   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8002   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8003   State.CanonicalIV = ILV.Induction;
8004 
8005   ILV.printDebugTracesAtStart();
8006 
8007   //===------------------------------------------------===//
8008   //
8009   // Notice: any optimization or new instruction that go
8010   // into the code below should also be implemented in
8011   // the cost-model.
8012   //
8013   //===------------------------------------------------===//
8014 
8015   // 2. Copy and widen instructions from the old loop into the new loop.
8016   VPlans.front()->execute(&State);
8017 
8018   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8019   //    predication, updating analyses.
8020   ILV.fixVectorizedLoop(State);
8021 
8022   ILV.printDebugTracesAtEnd();
8023 }
8024 
8025 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8026 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8027   for (const auto &Plan : VPlans)
8028     if (PrintVPlansInDotFormat)
8029       Plan->printDOT(O);
8030     else
8031       Plan->print(O);
8032 }
8033 #endif
8034 
8035 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8036     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8037 
8038   // We create new control-flow for the vectorized loop, so the original exit
8039   // conditions will be dead after vectorization if it's only used by the
8040   // terminator
8041   SmallVector<BasicBlock*> ExitingBlocks;
8042   OrigLoop->getExitingBlocks(ExitingBlocks);
8043   for (auto *BB : ExitingBlocks) {
8044     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8045     if (!Cmp || !Cmp->hasOneUse())
8046       continue;
8047 
8048     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8049     if (!DeadInstructions.insert(Cmp).second)
8050       continue;
8051 
8052     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8053     // TODO: can recurse through operands in general
8054     for (Value *Op : Cmp->operands()) {
8055       if (isa<TruncInst>(Op) && Op->hasOneUse())
8056           DeadInstructions.insert(cast<Instruction>(Op));
8057     }
8058   }
8059 
8060   // We create new "steps" for induction variable updates to which the original
8061   // induction variables map. An original update instruction will be dead if
8062   // all its users except the induction variable are dead.
8063   auto *Latch = OrigLoop->getLoopLatch();
8064   for (auto &Induction : Legal->getInductionVars()) {
8065     PHINode *Ind = Induction.first;
8066     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8067 
8068     // If the tail is to be folded by masking, the primary induction variable,
8069     // if exists, isn't dead: it will be used for masking. Don't kill it.
8070     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8071       continue;
8072 
8073     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8074           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8075         }))
8076       DeadInstructions.insert(IndUpdate);
8077 
8078     // We record as "Dead" also the type-casting instructions we had identified
8079     // during induction analysis. We don't need any handling for them in the
8080     // vectorized loop because we have proven that, under a proper runtime
8081     // test guarding the vectorized loop, the value of the phi, and the casted
8082     // value of the phi, are the same. The last instruction in this casting chain
8083     // will get its scalar/vector/widened def from the scalar/vector/widened def
8084     // of the respective phi node. Any other casts in the induction def-use chain
8085     // have no other uses outside the phi update chain, and will be ignored.
8086     InductionDescriptor &IndDes = Induction.second;
8087     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8088     DeadInstructions.insert(Casts.begin(), Casts.end());
8089   }
8090 }
8091 
8092 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8093 
8094 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8095 
8096 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
8097                                         Instruction::BinaryOps BinOp) {
8098   // When unrolling and the VF is 1, we only need to add a simple scalar.
8099   Type *Ty = Val->getType();
8100   assert(!Ty->isVectorTy() && "Val must be a scalar");
8101 
8102   if (Ty->isFloatingPointTy()) {
8103     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
8104 
8105     // Floating-point operations inherit FMF via the builder's flags.
8106     Value *MulOp = Builder.CreateFMul(C, Step);
8107     return Builder.CreateBinOp(BinOp, Val, MulOp);
8108   }
8109   Constant *C = ConstantInt::get(Ty, StartIdx);
8110   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
8111 }
8112 
8113 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8114   SmallVector<Metadata *, 4> MDs;
8115   // Reserve first location for self reference to the LoopID metadata node.
8116   MDs.push_back(nullptr);
8117   bool IsUnrollMetadata = false;
8118   MDNode *LoopID = L->getLoopID();
8119   if (LoopID) {
8120     // First find existing loop unrolling disable metadata.
8121     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8122       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8123       if (MD) {
8124         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8125         IsUnrollMetadata =
8126             S && S->getString().startswith("llvm.loop.unroll.disable");
8127       }
8128       MDs.push_back(LoopID->getOperand(i));
8129     }
8130   }
8131 
8132   if (!IsUnrollMetadata) {
8133     // Add runtime unroll disable metadata.
8134     LLVMContext &Context = L->getHeader()->getContext();
8135     SmallVector<Metadata *, 1> DisableOperands;
8136     DisableOperands.push_back(
8137         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8138     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8139     MDs.push_back(DisableNode);
8140     MDNode *NewLoopID = MDNode::get(Context, MDs);
8141     // Set operand 0 to refer to the loop id itself.
8142     NewLoopID->replaceOperandWith(0, NewLoopID);
8143     L->setLoopID(NewLoopID);
8144   }
8145 }
8146 
8147 //===--------------------------------------------------------------------===//
8148 // EpilogueVectorizerMainLoop
8149 //===--------------------------------------------------------------------===//
8150 
8151 /// This function is partially responsible for generating the control flow
8152 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8153 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8154   MDNode *OrigLoopID = OrigLoop->getLoopID();
8155   Loop *Lp = createVectorLoopSkeleton("");
8156 
8157   // Generate the code to check the minimum iteration count of the vector
8158   // epilogue (see below).
8159   EPI.EpilogueIterationCountCheck =
8160       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8161   EPI.EpilogueIterationCountCheck->setName("iter.check");
8162 
8163   // Generate the code to check any assumptions that we've made for SCEV
8164   // expressions.
8165   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8166 
8167   // Generate the code that checks at runtime if arrays overlap. We put the
8168   // checks into a separate block to make the more common case of few elements
8169   // faster.
8170   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8171 
8172   // Generate the iteration count check for the main loop, *after* the check
8173   // for the epilogue loop, so that the path-length is shorter for the case
8174   // that goes directly through the vector epilogue. The longer-path length for
8175   // the main loop is compensated for, by the gain from vectorizing the larger
8176   // trip count. Note: the branch will get updated later on when we vectorize
8177   // the epilogue.
8178   EPI.MainLoopIterationCountCheck =
8179       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8180 
8181   // Generate the induction variable.
8182   OldInduction = Legal->getPrimaryInduction();
8183   Type *IdxTy = Legal->getWidestInductionType();
8184   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8185   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8186   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8187   EPI.VectorTripCount = CountRoundDown;
8188   Induction =
8189       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8190                               getDebugLocFromInstOrOperands(OldInduction));
8191 
8192   // Skip induction resume value creation here because they will be created in
8193   // the second pass. If we created them here, they wouldn't be used anyway,
8194   // because the vplan in the second pass still contains the inductions from the
8195   // original loop.
8196 
8197   return completeLoopSkeleton(Lp, OrigLoopID);
8198 }
8199 
8200 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8201   LLVM_DEBUG({
8202     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8203            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8204            << ", Main Loop UF:" << EPI.MainLoopUF
8205            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8206            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8207   });
8208 }
8209 
8210 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8211   DEBUG_WITH_TYPE(VerboseDebug, {
8212     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8213   });
8214 }
8215 
8216 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8217     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8218   assert(L && "Expected valid Loop.");
8219   assert(Bypass && "Expected valid bypass basic block.");
8220   unsigned VFactor =
8221       ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue();
8222   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8223   Value *Count = getOrCreateTripCount(L);
8224   // Reuse existing vector loop preheader for TC checks.
8225   // Note that new preheader block is generated for vector loop.
8226   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8227   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8228 
8229   // Generate code to check if the loop's trip count is less than VF * UF of the
8230   // main vector loop.
8231   auto P =
8232       Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8233 
8234   Value *CheckMinIters = Builder.CreateICmp(
8235       P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor),
8236       "min.iters.check");
8237 
8238   if (!ForEpilogue)
8239     TCCheckBlock->setName("vector.main.loop.iter.check");
8240 
8241   // Create new preheader for vector loop.
8242   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8243                                    DT, LI, nullptr, "vector.ph");
8244 
8245   if (ForEpilogue) {
8246     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8247                                  DT->getNode(Bypass)->getIDom()) &&
8248            "TC check is expected to dominate Bypass");
8249 
8250     // Update dominator for Bypass & LoopExit.
8251     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8252     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8253 
8254     LoopBypassBlocks.push_back(TCCheckBlock);
8255 
8256     // Save the trip count so we don't have to regenerate it in the
8257     // vec.epilog.iter.check. This is safe to do because the trip count
8258     // generated here dominates the vector epilog iter check.
8259     EPI.TripCount = Count;
8260   }
8261 
8262   ReplaceInstWithInst(
8263       TCCheckBlock->getTerminator(),
8264       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8265 
8266   return TCCheckBlock;
8267 }
8268 
8269 //===--------------------------------------------------------------------===//
8270 // EpilogueVectorizerEpilogueLoop
8271 //===--------------------------------------------------------------------===//
8272 
8273 /// This function is partially responsible for generating the control flow
8274 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8275 BasicBlock *
8276 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8277   MDNode *OrigLoopID = OrigLoop->getLoopID();
8278   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8279 
8280   // Now, compare the remaining count and if there aren't enough iterations to
8281   // execute the vectorized epilogue skip to the scalar part.
8282   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8283   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8284   LoopVectorPreHeader =
8285       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8286                  LI, nullptr, "vec.epilog.ph");
8287   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8288                                           VecEpilogueIterationCountCheck);
8289 
8290   // Adjust the control flow taking the state info from the main loop
8291   // vectorization into account.
8292   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8293          "expected this to be saved from the previous pass.");
8294   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8295       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8296 
8297   DT->changeImmediateDominator(LoopVectorPreHeader,
8298                                EPI.MainLoopIterationCountCheck);
8299 
8300   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8301       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8302 
8303   if (EPI.SCEVSafetyCheck)
8304     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8305         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8306   if (EPI.MemSafetyCheck)
8307     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8308         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8309 
8310   DT->changeImmediateDominator(
8311       VecEpilogueIterationCountCheck,
8312       VecEpilogueIterationCountCheck->getSinglePredecessor());
8313 
8314   DT->changeImmediateDominator(LoopScalarPreHeader,
8315                                EPI.EpilogueIterationCountCheck);
8316   DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck);
8317 
8318   // Keep track of bypass blocks, as they feed start values to the induction
8319   // phis in the scalar loop preheader.
8320   if (EPI.SCEVSafetyCheck)
8321     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8322   if (EPI.MemSafetyCheck)
8323     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8324   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8325 
8326   // Generate a resume induction for the vector epilogue and put it in the
8327   // vector epilogue preheader
8328   Type *IdxTy = Legal->getWidestInductionType();
8329   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8330                                          LoopVectorPreHeader->getFirstNonPHI());
8331   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8332   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8333                            EPI.MainLoopIterationCountCheck);
8334 
8335   // Generate the induction variable.
8336   OldInduction = Legal->getPrimaryInduction();
8337   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8338   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8339   Value *StartIdx = EPResumeVal;
8340   Induction =
8341       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8342                               getDebugLocFromInstOrOperands(OldInduction));
8343 
8344   // Generate induction resume values. These variables save the new starting
8345   // indexes for the scalar loop. They are used to test if there are any tail
8346   // iterations left once the vector loop has completed.
8347   // Note that when the vectorized epilogue is skipped due to iteration count
8348   // check, then the resume value for the induction variable comes from
8349   // the trip count of the main vector loop, hence passing the AdditionalBypass
8350   // argument.
8351   createInductionResumeValues(Lp, CountRoundDown,
8352                               {VecEpilogueIterationCountCheck,
8353                                EPI.VectorTripCount} /* AdditionalBypass */);
8354 
8355   AddRuntimeUnrollDisableMetaData(Lp);
8356   return completeLoopSkeleton(Lp, OrigLoopID);
8357 }
8358 
8359 BasicBlock *
8360 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8361     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8362 
8363   assert(EPI.TripCount &&
8364          "Expected trip count to have been safed in the first pass.");
8365   assert(
8366       (!isa<Instruction>(EPI.TripCount) ||
8367        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8368       "saved trip count does not dominate insertion point.");
8369   Value *TC = EPI.TripCount;
8370   IRBuilder<> Builder(Insert->getTerminator());
8371   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8372 
8373   // Generate code to check if the loop's trip count is less than VF * UF of the
8374   // vector epilogue loop.
8375   auto P =
8376       Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8377 
8378   Value *CheckMinIters = Builder.CreateICmp(
8379       P, Count,
8380       ConstantInt::get(Count->getType(),
8381                        EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF),
8382       "min.epilog.iters.check");
8383 
8384   ReplaceInstWithInst(
8385       Insert->getTerminator(),
8386       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8387 
8388   LoopBypassBlocks.push_back(Insert);
8389   return Insert;
8390 }
8391 
8392 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8393   LLVM_DEBUG({
8394     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8395            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8396            << ", Main Loop UF:" << EPI.MainLoopUF
8397            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8398            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8399   });
8400 }
8401 
8402 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8403   DEBUG_WITH_TYPE(VerboseDebug, {
8404     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8405   });
8406 }
8407 
8408 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8409     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8410   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8411   bool PredicateAtRangeStart = Predicate(Range.Start);
8412 
8413   for (ElementCount TmpVF = Range.Start * 2;
8414        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8415     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8416       Range.End = TmpVF;
8417       break;
8418     }
8419 
8420   return PredicateAtRangeStart;
8421 }
8422 
8423 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8424 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8425 /// of VF's starting at a given VF and extending it as much as possible. Each
8426 /// vectorization decision can potentially shorten this sub-range during
8427 /// buildVPlan().
8428 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8429                                            ElementCount MaxVF) {
8430   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8431   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8432     VFRange SubRange = {VF, MaxVFPlusOne};
8433     VPlans.push_back(buildVPlan(SubRange));
8434     VF = SubRange.End;
8435   }
8436 }
8437 
8438 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8439                                          VPlanPtr &Plan) {
8440   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8441 
8442   // Look for cached value.
8443   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8444   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8445   if (ECEntryIt != EdgeMaskCache.end())
8446     return ECEntryIt->second;
8447 
8448   VPValue *SrcMask = createBlockInMask(Src, Plan);
8449 
8450   // The terminator has to be a branch inst!
8451   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8452   assert(BI && "Unexpected terminator found");
8453 
8454   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8455     return EdgeMaskCache[Edge] = SrcMask;
8456 
8457   // If source is an exiting block, we know the exit edge is dynamically dead
8458   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8459   // adding uses of an otherwise potentially dead instruction.
8460   if (OrigLoop->isLoopExiting(Src))
8461     return EdgeMaskCache[Edge] = SrcMask;
8462 
8463   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8464   assert(EdgeMask && "No Edge Mask found for condition");
8465 
8466   if (BI->getSuccessor(0) != Dst)
8467     EdgeMask = Builder.createNot(EdgeMask);
8468 
8469   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8470     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8471     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8472     // The select version does not introduce new UB if SrcMask is false and
8473     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8474     VPValue *False = Plan->getOrAddVPValue(
8475         ConstantInt::getFalse(BI->getCondition()->getType()));
8476     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8477   }
8478 
8479   return EdgeMaskCache[Edge] = EdgeMask;
8480 }
8481 
8482 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8483   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8484 
8485   // Look for cached value.
8486   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8487   if (BCEntryIt != BlockMaskCache.end())
8488     return BCEntryIt->second;
8489 
8490   // All-one mask is modelled as no-mask following the convention for masked
8491   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8492   VPValue *BlockMask = nullptr;
8493 
8494   if (OrigLoop->getHeader() == BB) {
8495     if (!CM.blockNeedsPredication(BB))
8496       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8497 
8498     // Create the block in mask as the first non-phi instruction in the block.
8499     VPBuilder::InsertPointGuard Guard(Builder);
8500     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8501     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8502 
8503     // Introduce the early-exit compare IV <= BTC to form header block mask.
8504     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8505     // Start by constructing the desired canonical IV.
8506     VPValue *IV = nullptr;
8507     if (Legal->getPrimaryInduction())
8508       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8509     else {
8510       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8511       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8512       IV = IVRecipe->getVPSingleValue();
8513     }
8514     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8515     bool TailFolded = !CM.isScalarEpilogueAllowed();
8516 
8517     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8518       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8519       // as a second argument, we only pass the IV here and extract the
8520       // tripcount from the transform state where codegen of the VP instructions
8521       // happen.
8522       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8523     } else {
8524       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8525     }
8526     return BlockMaskCache[BB] = BlockMask;
8527   }
8528 
8529   // This is the block mask. We OR all incoming edges.
8530   for (auto *Predecessor : predecessors(BB)) {
8531     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8532     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8533       return BlockMaskCache[BB] = EdgeMask;
8534 
8535     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8536       BlockMask = EdgeMask;
8537       continue;
8538     }
8539 
8540     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8541   }
8542 
8543   return BlockMaskCache[BB] = BlockMask;
8544 }
8545 
8546 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8547                                                 ArrayRef<VPValue *> Operands,
8548                                                 VFRange &Range,
8549                                                 VPlanPtr &Plan) {
8550   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8551          "Must be called with either a load or store");
8552 
8553   auto willWiden = [&](ElementCount VF) -> bool {
8554     if (VF.isScalar())
8555       return false;
8556     LoopVectorizationCostModel::InstWidening Decision =
8557         CM.getWideningDecision(I, VF);
8558     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8559            "CM decision should be taken at this point.");
8560     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8561       return true;
8562     if (CM.isScalarAfterVectorization(I, VF) ||
8563         CM.isProfitableToScalarize(I, VF))
8564       return false;
8565     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8566   };
8567 
8568   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8569     return nullptr;
8570 
8571   VPValue *Mask = nullptr;
8572   if (Legal->isMaskRequired(I))
8573     Mask = createBlockInMask(I->getParent(), Plan);
8574 
8575   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8576     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8577 
8578   StoreInst *Store = cast<StoreInst>(I);
8579   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8580                                             Mask);
8581 }
8582 
8583 VPWidenIntOrFpInductionRecipe *
8584 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8585                                            ArrayRef<VPValue *> Operands) const {
8586   // Check if this is an integer or fp induction. If so, build the recipe that
8587   // produces its scalar and vector values.
8588   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8589   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8590       II.getKind() == InductionDescriptor::IK_FpInduction) {
8591     assert(II.getStartValue() ==
8592            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8593     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8594     return new VPWidenIntOrFpInductionRecipe(
8595         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8596   }
8597 
8598   return nullptr;
8599 }
8600 
8601 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8602     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8603     VPlan &Plan) const {
8604   // Optimize the special case where the source is a constant integer
8605   // induction variable. Notice that we can only optimize the 'trunc' case
8606   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8607   // (c) other casts depend on pointer size.
8608 
8609   // Determine whether \p K is a truncation based on an induction variable that
8610   // can be optimized.
8611   auto isOptimizableIVTruncate =
8612       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8613     return [=](ElementCount VF) -> bool {
8614       return CM.isOptimizableIVTruncate(K, VF);
8615     };
8616   };
8617 
8618   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8619           isOptimizableIVTruncate(I), Range)) {
8620 
8621     InductionDescriptor II =
8622         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8623     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8624     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8625                                              Start, nullptr, I);
8626   }
8627   return nullptr;
8628 }
8629 
8630 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8631                                                 ArrayRef<VPValue *> Operands,
8632                                                 VPlanPtr &Plan) {
8633   // If all incoming values are equal, the incoming VPValue can be used directly
8634   // instead of creating a new VPBlendRecipe.
8635   VPValue *FirstIncoming = Operands[0];
8636   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8637         return FirstIncoming == Inc;
8638       })) {
8639     return Operands[0];
8640   }
8641 
8642   // We know that all PHIs in non-header blocks are converted into selects, so
8643   // we don't have to worry about the insertion order and we can just use the
8644   // builder. At this point we generate the predication tree. There may be
8645   // duplications since this is a simple recursive scan, but future
8646   // optimizations will clean it up.
8647   SmallVector<VPValue *, 2> OperandsWithMask;
8648   unsigned NumIncoming = Phi->getNumIncomingValues();
8649 
8650   for (unsigned In = 0; In < NumIncoming; In++) {
8651     VPValue *EdgeMask =
8652       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8653     assert((EdgeMask || NumIncoming == 1) &&
8654            "Multiple predecessors with one having a full mask");
8655     OperandsWithMask.push_back(Operands[In]);
8656     if (EdgeMask)
8657       OperandsWithMask.push_back(EdgeMask);
8658   }
8659   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8660 }
8661 
8662 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8663                                                    ArrayRef<VPValue *> Operands,
8664                                                    VFRange &Range) const {
8665 
8666   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8667       [this, CI](ElementCount VF) {
8668         return CM.isScalarWithPredication(CI, VF);
8669       },
8670       Range);
8671 
8672   if (IsPredicated)
8673     return nullptr;
8674 
8675   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8676   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8677              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8678              ID == Intrinsic::pseudoprobe ||
8679              ID == Intrinsic::experimental_noalias_scope_decl))
8680     return nullptr;
8681 
8682   auto willWiden = [&](ElementCount VF) -> bool {
8683     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8684     // The following case may be scalarized depending on the VF.
8685     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8686     // version of the instruction.
8687     // Is it beneficial to perform intrinsic call compared to lib call?
8688     bool NeedToScalarize = false;
8689     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8690     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8691     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8692     assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
8693            "Either the intrinsic cost or vector call cost must be valid");
8694     return UseVectorIntrinsic || !NeedToScalarize;
8695   };
8696 
8697   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8698     return nullptr;
8699 
8700   ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands());
8701   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8702 }
8703 
8704 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8705   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8706          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8707   // Instruction should be widened, unless it is scalar after vectorization,
8708   // scalarization is profitable or it is predicated.
8709   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8710     return CM.isScalarAfterVectorization(I, VF) ||
8711            CM.isProfitableToScalarize(I, VF) ||
8712            CM.isScalarWithPredication(I, VF);
8713   };
8714   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8715                                                              Range);
8716 }
8717 
8718 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8719                                            ArrayRef<VPValue *> Operands) const {
8720   auto IsVectorizableOpcode = [](unsigned Opcode) {
8721     switch (Opcode) {
8722     case Instruction::Add:
8723     case Instruction::And:
8724     case Instruction::AShr:
8725     case Instruction::BitCast:
8726     case Instruction::FAdd:
8727     case Instruction::FCmp:
8728     case Instruction::FDiv:
8729     case Instruction::FMul:
8730     case Instruction::FNeg:
8731     case Instruction::FPExt:
8732     case Instruction::FPToSI:
8733     case Instruction::FPToUI:
8734     case Instruction::FPTrunc:
8735     case Instruction::FRem:
8736     case Instruction::FSub:
8737     case Instruction::ICmp:
8738     case Instruction::IntToPtr:
8739     case Instruction::LShr:
8740     case Instruction::Mul:
8741     case Instruction::Or:
8742     case Instruction::PtrToInt:
8743     case Instruction::SDiv:
8744     case Instruction::Select:
8745     case Instruction::SExt:
8746     case Instruction::Shl:
8747     case Instruction::SIToFP:
8748     case Instruction::SRem:
8749     case Instruction::Sub:
8750     case Instruction::Trunc:
8751     case Instruction::UDiv:
8752     case Instruction::UIToFP:
8753     case Instruction::URem:
8754     case Instruction::Xor:
8755     case Instruction::ZExt:
8756       return true;
8757     }
8758     return false;
8759   };
8760 
8761   if (!IsVectorizableOpcode(I->getOpcode()))
8762     return nullptr;
8763 
8764   // Success: widen this instruction.
8765   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8766 }
8767 
8768 void VPRecipeBuilder::fixHeaderPhis() {
8769   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8770   for (VPWidenPHIRecipe *R : PhisToFix) {
8771     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8772     VPRecipeBase *IncR =
8773         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8774     R->addOperand(IncR->getVPSingleValue());
8775   }
8776 }
8777 
8778 VPBasicBlock *VPRecipeBuilder::handleReplication(
8779     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8780     VPlanPtr &Plan) {
8781   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8782       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8783       Range);
8784 
8785   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8786       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF); }, Range);
8787 
8788   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8789                                        IsUniform, IsPredicated);
8790   setRecipe(I, Recipe);
8791   Plan->addVPValue(I, Recipe);
8792 
8793   // Find if I uses a predicated instruction. If so, it will use its scalar
8794   // value. Avoid hoisting the insert-element which packs the scalar value into
8795   // a vector value, as that happens iff all users use the vector value.
8796   for (VPValue *Op : Recipe->operands()) {
8797     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8798     if (!PredR)
8799       continue;
8800     auto *RepR =
8801         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8802     assert(RepR->isPredicated() &&
8803            "expected Replicate recipe to be predicated");
8804     RepR->setAlsoPack(false);
8805   }
8806 
8807   // Finalize the recipe for Instr, first if it is not predicated.
8808   if (!IsPredicated) {
8809     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8810     VPBB->appendRecipe(Recipe);
8811     return VPBB;
8812   }
8813   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8814   assert(VPBB->getSuccessors().empty() &&
8815          "VPBB has successors when handling predicated replication.");
8816   // Record predicated instructions for above packing optimizations.
8817   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8818   VPBlockUtils::insertBlockAfter(Region, VPBB);
8819   auto *RegSucc = new VPBasicBlock();
8820   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8821   return RegSucc;
8822 }
8823 
8824 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8825                                                       VPRecipeBase *PredRecipe,
8826                                                       VPlanPtr &Plan) {
8827   // Instructions marked for predication are replicated and placed under an
8828   // if-then construct to prevent side-effects.
8829 
8830   // Generate recipes to compute the block mask for this region.
8831   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8832 
8833   // Build the triangular if-then region.
8834   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8835   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8836   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8837   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8838   auto *PHIRecipe = Instr->getType()->isVoidTy()
8839                         ? nullptr
8840                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8841   if (PHIRecipe) {
8842     Plan->removeVPValueFor(Instr);
8843     Plan->addVPValue(Instr, PHIRecipe);
8844   }
8845   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8846   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8847   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8848 
8849   // Note: first set Entry as region entry and then connect successors starting
8850   // from it in order, to propagate the "parent" of each VPBasicBlock.
8851   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8852   VPBlockUtils::connectBlocks(Pred, Exit);
8853 
8854   return Region;
8855 }
8856 
8857 VPRecipeOrVPValueTy
8858 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8859                                         ArrayRef<VPValue *> Operands,
8860                                         VFRange &Range, VPlanPtr &Plan) {
8861   // First, check for specific widening recipes that deal with calls, memory
8862   // operations, inductions and Phi nodes.
8863   if (auto *CI = dyn_cast<CallInst>(Instr))
8864     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8865 
8866   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8867     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8868 
8869   VPRecipeBase *Recipe;
8870   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8871     if (Phi->getParent() != OrigLoop->getHeader())
8872       return tryToBlend(Phi, Operands, Plan);
8873     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
8874       return toVPRecipeResult(Recipe);
8875 
8876     if (Legal->isReductionVariable(Phi)) {
8877       RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
8878       assert(RdxDesc.getRecurrenceStartValue() ==
8879              Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8880       VPValue *StartV = Operands[0];
8881 
8882       // Record the PHI and the incoming value from the backedge, so we can add
8883       // the incoming value from the backedge after all recipes have been
8884       // created.
8885       auto *PhiRecipe = new VPWidenPHIRecipe(Phi, RdxDesc, *StartV);
8886       PhisToFix.push_back(PhiRecipe);
8887       recordRecipeOf(cast<Instruction>(
8888           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8889       return toVPRecipeResult(PhiRecipe);
8890     }
8891 
8892     return toVPRecipeResult(new VPWidenPHIRecipe(Phi));
8893   }
8894 
8895   if (isa<TruncInst>(Instr) &&
8896       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8897                                                Range, *Plan)))
8898     return toVPRecipeResult(Recipe);
8899 
8900   if (!shouldWiden(Instr, Range))
8901     return nullptr;
8902 
8903   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8904     return toVPRecipeResult(new VPWidenGEPRecipe(
8905         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8906 
8907   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8908     bool InvariantCond =
8909         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8910     return toVPRecipeResult(new VPWidenSelectRecipe(
8911         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8912   }
8913 
8914   return toVPRecipeResult(tryToWiden(Instr, Operands));
8915 }
8916 
8917 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8918                                                         ElementCount MaxVF) {
8919   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8920 
8921   // Collect instructions from the original loop that will become trivially dead
8922   // in the vectorized loop. We don't need to vectorize these instructions. For
8923   // example, original induction update instructions can become dead because we
8924   // separately emit induction "steps" when generating code for the new loop.
8925   // Similarly, we create a new latch condition when setting up the structure
8926   // of the new loop, so the old one can become dead.
8927   SmallPtrSet<Instruction *, 4> DeadInstructions;
8928   collectTriviallyDeadInstructions(DeadInstructions);
8929 
8930   // Add assume instructions we need to drop to DeadInstructions, to prevent
8931   // them from being added to the VPlan.
8932   // TODO: We only need to drop assumes in blocks that get flattend. If the
8933   // control flow is preserved, we should keep them.
8934   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8935   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8936 
8937   DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8938   // Dead instructions do not need sinking. Remove them from SinkAfter.
8939   for (Instruction *I : DeadInstructions)
8940     SinkAfter.erase(I);
8941 
8942   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8943   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8944     VFRange SubRange = {VF, MaxVFPlusOne};
8945     VPlans.push_back(
8946         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8947     VF = SubRange.End;
8948   }
8949 }
8950 
8951 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8952     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8953     const DenseMap<Instruction *, Instruction *> &SinkAfter) {
8954 
8955   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8956 
8957   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8958 
8959   // ---------------------------------------------------------------------------
8960   // Pre-construction: record ingredients whose recipes we'll need to further
8961   // process after constructing the initial VPlan.
8962   // ---------------------------------------------------------------------------
8963 
8964   // Mark instructions we'll need to sink later and their targets as
8965   // ingredients whose recipe we'll need to record.
8966   for (auto &Entry : SinkAfter) {
8967     RecipeBuilder.recordRecipeOf(Entry.first);
8968     RecipeBuilder.recordRecipeOf(Entry.second);
8969   }
8970   for (auto &Reduction : CM.getInLoopReductionChains()) {
8971     PHINode *Phi = Reduction.first;
8972     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
8973     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8974 
8975     RecipeBuilder.recordRecipeOf(Phi);
8976     for (auto &R : ReductionOperations) {
8977       RecipeBuilder.recordRecipeOf(R);
8978       // For min/max reducitons, where we have a pair of icmp/select, we also
8979       // need to record the ICmp recipe, so it can be removed later.
8980       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8981         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8982     }
8983   }
8984 
8985   // For each interleave group which is relevant for this (possibly trimmed)
8986   // Range, add it to the set of groups to be later applied to the VPlan and add
8987   // placeholders for its members' Recipes which we'll be replacing with a
8988   // single VPInterleaveRecipe.
8989   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8990     auto applyIG = [IG, this](ElementCount VF) -> bool {
8991       return (VF.isVector() && // Query is illegal for VF == 1
8992               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8993                   LoopVectorizationCostModel::CM_Interleave);
8994     };
8995     if (!getDecisionAndClampRange(applyIG, Range))
8996       continue;
8997     InterleaveGroups.insert(IG);
8998     for (unsigned i = 0; i < IG->getFactor(); i++)
8999       if (Instruction *Member = IG->getMember(i))
9000         RecipeBuilder.recordRecipeOf(Member);
9001   };
9002 
9003   // ---------------------------------------------------------------------------
9004   // Build initial VPlan: Scan the body of the loop in a topological order to
9005   // visit each basic block after having visited its predecessor basic blocks.
9006   // ---------------------------------------------------------------------------
9007 
9008   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9009   auto Plan = std::make_unique<VPlan>();
9010   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
9011   Plan->setEntry(VPBB);
9012 
9013   // Scan the body of the loop in a topological order to visit each basic block
9014   // after having visited its predecessor basic blocks.
9015   LoopBlocksDFS DFS(OrigLoop);
9016   DFS.perform(LI);
9017 
9018   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9019     // Relevant instructions from basic block BB will be grouped into VPRecipe
9020     // ingredients and fill a new VPBasicBlock.
9021     unsigned VPBBsForBB = 0;
9022     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9023     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9024     VPBB = FirstVPBBForBB;
9025     Builder.setInsertPoint(VPBB);
9026 
9027     // Introduce each ingredient into VPlan.
9028     // TODO: Model and preserve debug instrinsics in VPlan.
9029     for (Instruction &I : BB->instructionsWithoutDebug()) {
9030       Instruction *Instr = &I;
9031 
9032       // First filter out irrelevant instructions, to ensure no recipes are
9033       // built for them.
9034       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9035         continue;
9036 
9037       SmallVector<VPValue *, 4> Operands;
9038       auto *Phi = dyn_cast<PHINode>(Instr);
9039       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9040         Operands.push_back(Plan->getOrAddVPValue(
9041             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9042       } else {
9043         auto OpRange = Plan->mapToVPValues(Instr->operands());
9044         Operands = {OpRange.begin(), OpRange.end()};
9045       }
9046       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9047               Instr, Operands, Range, Plan)) {
9048         // If Instr can be simplified to an existing VPValue, use it.
9049         if (RecipeOrValue.is<VPValue *>()) {
9050           Plan->addVPValue(Instr, RecipeOrValue.get<VPValue *>());
9051           continue;
9052         }
9053         // Otherwise, add the new recipe.
9054         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9055         for (auto *Def : Recipe->definedValues()) {
9056           auto *UV = Def->getUnderlyingValue();
9057           Plan->addVPValue(UV, Def);
9058         }
9059 
9060         RecipeBuilder.setRecipe(Instr, Recipe);
9061         VPBB->appendRecipe(Recipe);
9062         continue;
9063       }
9064 
9065       // Otherwise, if all widening options failed, Instruction is to be
9066       // replicated. This may create a successor for VPBB.
9067       VPBasicBlock *NextVPBB =
9068           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9069       if (NextVPBB != VPBB) {
9070         VPBB = NextVPBB;
9071         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9072                                     : "");
9073       }
9074     }
9075   }
9076 
9077   RecipeBuilder.fixHeaderPhis();
9078 
9079   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
9080   // may also be empty, such as the last one VPBB, reflecting original
9081   // basic-blocks with no recipes.
9082   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
9083   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
9084   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
9085   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
9086   delete PreEntry;
9087 
9088   // ---------------------------------------------------------------------------
9089   // Transform initial VPlan: Apply previously taken decisions, in order, to
9090   // bring the VPlan to its final state.
9091   // ---------------------------------------------------------------------------
9092 
9093   // Apply Sink-After legal constraints.
9094   for (auto &Entry : SinkAfter) {
9095     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9096     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9097 
9098     // If the target is in a replication region, make sure to move Sink to the
9099     // block after it, not into the replication region itself.
9100     if (auto *Region =
9101             dyn_cast_or_null<VPRegionBlock>(Target->getParent()->getParent())) {
9102       if (Region->isReplicator()) {
9103         assert(Region->getNumSuccessors() == 1 && "Expected SESE region!");
9104         VPBasicBlock *NextBlock =
9105             cast<VPBasicBlock>(Region->getSuccessors().front());
9106         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9107         continue;
9108       }
9109     }
9110 
9111     auto *SinkRegion =
9112         dyn_cast_or_null<VPRegionBlock>(Sink->getParent()->getParent());
9113     // Unless the sink source is in a replicate region, sink the recipe
9114     // directly.
9115     if (!SinkRegion || !SinkRegion->isReplicator()) {
9116       Sink->moveAfter(Target);
9117       continue;
9118     }
9119 
9120     // If the sink source is in a replicate region, we need to move the whole
9121     // replicate region, which should only contain a single recipe in the main
9122     // block.
9123     assert(Sink->getParent()->size() == 1 &&
9124            "parent must be a replicator with a single recipe");
9125     auto *SplitBlock =
9126         Target->getParent()->splitAt(std::next(Target->getIterator()));
9127 
9128     auto *Pred = SinkRegion->getSinglePredecessor();
9129     auto *Succ = SinkRegion->getSingleSuccessor();
9130     VPBlockUtils::disconnectBlocks(Pred, SinkRegion);
9131     VPBlockUtils::disconnectBlocks(SinkRegion, Succ);
9132     VPBlockUtils::connectBlocks(Pred, Succ);
9133 
9134     auto *SplitPred = SplitBlock->getSinglePredecessor();
9135 
9136     VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9137     VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9138     VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9139     if (VPBB == SplitPred)
9140       VPBB = SplitBlock;
9141   }
9142 
9143   // Interleave memory: for each Interleave Group we marked earlier as relevant
9144   // for this VPlan, replace the Recipes widening its memory instructions with a
9145   // single VPInterleaveRecipe at its insertion point.
9146   for (auto IG : InterleaveGroups) {
9147     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9148         RecipeBuilder.getRecipe(IG->getInsertPos()));
9149     SmallVector<VPValue *, 4> StoredValues;
9150     for (unsigned i = 0; i < IG->getFactor(); ++i)
9151       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i)))
9152         StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0)));
9153 
9154     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9155                                         Recipe->getMask());
9156     VPIG->insertBefore(Recipe);
9157     unsigned J = 0;
9158     for (unsigned i = 0; i < IG->getFactor(); ++i)
9159       if (Instruction *Member = IG->getMember(i)) {
9160         if (!Member->getType()->isVoidTy()) {
9161           VPValue *OriginalV = Plan->getVPValue(Member);
9162           Plan->removeVPValueFor(Member);
9163           Plan->addVPValue(Member, VPIG->getVPValue(J));
9164           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9165           J++;
9166         }
9167         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9168       }
9169   }
9170 
9171   // Adjust the recipes for any inloop reductions.
9172   if (Range.Start.isVector())
9173     adjustRecipesForInLoopReductions(Plan, RecipeBuilder);
9174 
9175   // Finally, if tail is folded by masking, introduce selects between the phi
9176   // and the live-out instruction of each reduction, at the end of the latch.
9177   if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) {
9178     Builder.setInsertPoint(VPBB);
9179     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9180     for (auto &Reduction : Legal->getReductionVars()) {
9181       if (CM.isInLoopReduction(Reduction.first))
9182         continue;
9183       VPValue *Phi = Plan->getOrAddVPValue(Reduction.first);
9184       VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr());
9185       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
9186     }
9187   }
9188 
9189   std::string PlanName;
9190   raw_string_ostream RSO(PlanName);
9191   ElementCount VF = Range.Start;
9192   Plan->addVF(VF);
9193   RSO << "Initial VPlan for VF={" << VF;
9194   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9195     Plan->addVF(VF);
9196     RSO << "," << VF;
9197   }
9198   RSO << "},UF>=1";
9199   RSO.flush();
9200   Plan->setName(PlanName);
9201 
9202   return Plan;
9203 }
9204 
9205 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9206   // Outer loop handling: They may require CFG and instruction level
9207   // transformations before even evaluating whether vectorization is profitable.
9208   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9209   // the vectorization pipeline.
9210   assert(!OrigLoop->isInnermost());
9211   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9212 
9213   // Create new empty VPlan
9214   auto Plan = std::make_unique<VPlan>();
9215 
9216   // Build hierarchical CFG
9217   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9218   HCFGBuilder.buildHierarchicalCFG();
9219 
9220   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9221        VF *= 2)
9222     Plan->addVF(VF);
9223 
9224   if (EnableVPlanPredication) {
9225     VPlanPredicator VPP(*Plan);
9226     VPP.predicate();
9227 
9228     // Avoid running transformation to recipes until masked code generation in
9229     // VPlan-native path is in place.
9230     return Plan;
9231   }
9232 
9233   SmallPtrSet<Instruction *, 1> DeadInstructions;
9234   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9235                                              Legal->getInductionVars(),
9236                                              DeadInstructions, *PSE.getSE());
9237   return Plan;
9238 }
9239 
9240 // Adjust the recipes for any inloop reductions. The chain of instructions
9241 // leading from the loop exit instr to the phi need to be converted to
9242 // reductions, with one operand being vector and the other being the scalar
9243 // reduction chain.
9244 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions(
9245     VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) {
9246   for (auto &Reduction : CM.getInLoopReductionChains()) {
9247     PHINode *Phi = Reduction.first;
9248     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9249     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9250 
9251     // ReductionOperations are orders top-down from the phi's use to the
9252     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9253     // which of the two operands will remain scalar and which will be reduced.
9254     // For minmax the chain will be the select instructions.
9255     Instruction *Chain = Phi;
9256     for (Instruction *R : ReductionOperations) {
9257       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9258       RecurKind Kind = RdxDesc.getRecurrenceKind();
9259 
9260       VPValue *ChainOp = Plan->getVPValue(Chain);
9261       unsigned FirstOpId;
9262       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9263         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9264                "Expected to replace a VPWidenSelectSC");
9265         FirstOpId = 1;
9266       } else {
9267         assert(isa<VPWidenRecipe>(WidenRecipe) &&
9268                "Expected to replace a VPWidenSC");
9269         FirstOpId = 0;
9270       }
9271       unsigned VecOpId =
9272           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9273       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9274 
9275       auto *CondOp = CM.foldTailByMasking()
9276                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9277                          : nullptr;
9278       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9279           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9280       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9281       Plan->removeVPValueFor(R);
9282       Plan->addVPValue(R, RedRecipe);
9283       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9284       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9285       WidenRecipe->eraseFromParent();
9286 
9287       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9288         VPRecipeBase *CompareRecipe =
9289             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9290         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9291                "Expected to replace a VPWidenSC");
9292         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9293                "Expected no remaining users");
9294         CompareRecipe->eraseFromParent();
9295       }
9296       Chain = R;
9297     }
9298   }
9299 }
9300 
9301 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9302 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9303                                VPSlotTracker &SlotTracker) const {
9304   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9305   IG->getInsertPos()->printAsOperand(O, false);
9306   O << ", ";
9307   getAddr()->printAsOperand(O, SlotTracker);
9308   VPValue *Mask = getMask();
9309   if (Mask) {
9310     O << ", ";
9311     Mask->printAsOperand(O, SlotTracker);
9312   }
9313   for (unsigned i = 0; i < IG->getFactor(); ++i)
9314     if (Instruction *I = IG->getMember(i))
9315       O << "\n" << Indent << "  " << VPlanIngredient(I) << " " << i;
9316 }
9317 #endif
9318 
9319 void VPWidenCallRecipe::execute(VPTransformState &State) {
9320   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9321                                   *this, State);
9322 }
9323 
9324 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9325   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9326                                     this, *this, InvariantCond, State);
9327 }
9328 
9329 void VPWidenRecipe::execute(VPTransformState &State) {
9330   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9331 }
9332 
9333 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9334   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9335                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9336                       IsIndexLoopInvariant, State);
9337 }
9338 
9339 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9340   assert(!State.Instance && "Int or FP induction being replicated.");
9341   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9342                                    getTruncInst(), getVPValue(0),
9343                                    getCastValue(), State);
9344 }
9345 
9346 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9347   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc,
9348                                  this, State);
9349 }
9350 
9351 void VPBlendRecipe::execute(VPTransformState &State) {
9352   State.ILV->setDebugLocFromInst(State.Builder, Phi);
9353   // We know that all PHIs in non-header blocks are converted into
9354   // selects, so we don't have to worry about the insertion order and we
9355   // can just use the builder.
9356   // At this point we generate the predication tree. There may be
9357   // duplications since this is a simple recursive scan, but future
9358   // optimizations will clean it up.
9359 
9360   unsigned NumIncoming = getNumIncomingValues();
9361 
9362   // Generate a sequence of selects of the form:
9363   // SELECT(Mask3, In3,
9364   //        SELECT(Mask2, In2,
9365   //               SELECT(Mask1, In1,
9366   //                      In0)))
9367   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9368   // are essentially undef are taken from In0.
9369   InnerLoopVectorizer::VectorParts Entry(State.UF);
9370   for (unsigned In = 0; In < NumIncoming; ++In) {
9371     for (unsigned Part = 0; Part < State.UF; ++Part) {
9372       // We might have single edge PHIs (blocks) - use an identity
9373       // 'select' for the first PHI operand.
9374       Value *In0 = State.get(getIncomingValue(In), Part);
9375       if (In == 0)
9376         Entry[Part] = In0; // Initialize with the first incoming value.
9377       else {
9378         // Select between the current value and the previous incoming edge
9379         // based on the incoming mask.
9380         Value *Cond = State.get(getMask(In), Part);
9381         Entry[Part] =
9382             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9383       }
9384     }
9385   }
9386   for (unsigned Part = 0; Part < State.UF; ++Part)
9387     State.set(this, Entry[Part], Part);
9388 }
9389 
9390 void VPInterleaveRecipe::execute(VPTransformState &State) {
9391   assert(!State.Instance && "Interleave group being replicated.");
9392   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9393                                       getStoredValues(), getMask());
9394 }
9395 
9396 void VPReductionRecipe::execute(VPTransformState &State) {
9397   assert(!State.Instance && "Reduction being replicated.");
9398   Value *PrevInChain = State.get(getChainOp(), 0);
9399   for (unsigned Part = 0; Part < State.UF; ++Part) {
9400     RecurKind Kind = RdxDesc->getRecurrenceKind();
9401     bool IsOrdered = useOrderedReductions(*RdxDesc);
9402     Value *NewVecOp = State.get(getVecOp(), Part);
9403     if (VPValue *Cond = getCondOp()) {
9404       Value *NewCond = State.get(Cond, Part);
9405       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9406       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9407           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9408       Constant *IdenVec =
9409           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9410       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9411       NewVecOp = Select;
9412     }
9413     Value *NewRed;
9414     Value *NextInChain;
9415     if (IsOrdered) {
9416       NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9417                                       PrevInChain);
9418       PrevInChain = NewRed;
9419     } else {
9420       PrevInChain = State.get(getChainOp(), Part);
9421       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9422     }
9423     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9424       NextInChain =
9425           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9426                          NewRed, PrevInChain);
9427     } else if (IsOrdered)
9428       NextInChain = NewRed;
9429     else {
9430       NextInChain = State.Builder.CreateBinOp(
9431           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9432           PrevInChain);
9433     }
9434     State.set(this, NextInChain, Part);
9435   }
9436 }
9437 
9438 void VPReplicateRecipe::execute(VPTransformState &State) {
9439   if (State.Instance) { // Generate a single instance.
9440     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9441     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9442                                     *State.Instance, IsPredicated, State);
9443     // Insert scalar instance packing it into a vector.
9444     if (AlsoPack && State.VF.isVector()) {
9445       // If we're constructing lane 0, initialize to start from poison.
9446       if (State.Instance->Lane.isFirstLane()) {
9447         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9448         Value *Poison = PoisonValue::get(
9449             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9450         State.set(this, Poison, State.Instance->Part);
9451       }
9452       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9453     }
9454     return;
9455   }
9456 
9457   // Generate scalar instances for all VF lanes of all UF parts, unless the
9458   // instruction is uniform inwhich case generate only the first lane for each
9459   // of the UF parts.
9460   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9461   assert((!State.VF.isScalable() || IsUniform) &&
9462          "Can't scalarize a scalable vector");
9463   for (unsigned Part = 0; Part < State.UF; ++Part)
9464     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9465       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9466                                       VPIteration(Part, Lane), IsPredicated,
9467                                       State);
9468 }
9469 
9470 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9471   assert(State.Instance && "Branch on Mask works only on single instance.");
9472 
9473   unsigned Part = State.Instance->Part;
9474   unsigned Lane = State.Instance->Lane.getKnownLane();
9475 
9476   Value *ConditionBit = nullptr;
9477   VPValue *BlockInMask = getMask();
9478   if (BlockInMask) {
9479     ConditionBit = State.get(BlockInMask, Part);
9480     if (ConditionBit->getType()->isVectorTy())
9481       ConditionBit = State.Builder.CreateExtractElement(
9482           ConditionBit, State.Builder.getInt32(Lane));
9483   } else // Block in mask is all-one.
9484     ConditionBit = State.Builder.getTrue();
9485 
9486   // Replace the temporary unreachable terminator with a new conditional branch,
9487   // whose two destinations will be set later when they are created.
9488   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9489   assert(isa<UnreachableInst>(CurrentTerminator) &&
9490          "Expected to replace unreachable terminator with conditional branch.");
9491   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9492   CondBr->setSuccessor(0, nullptr);
9493   ReplaceInstWithInst(CurrentTerminator, CondBr);
9494 }
9495 
9496 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9497   assert(State.Instance && "Predicated instruction PHI works per instance.");
9498   Instruction *ScalarPredInst =
9499       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9500   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9501   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9502   assert(PredicatingBB && "Predicated block has no single predecessor.");
9503   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9504          "operand must be VPReplicateRecipe");
9505 
9506   // By current pack/unpack logic we need to generate only a single phi node: if
9507   // a vector value for the predicated instruction exists at this point it means
9508   // the instruction has vector users only, and a phi for the vector value is
9509   // needed. In this case the recipe of the predicated instruction is marked to
9510   // also do that packing, thereby "hoisting" the insert-element sequence.
9511   // Otherwise, a phi node for the scalar value is needed.
9512   unsigned Part = State.Instance->Part;
9513   if (State.hasVectorValue(getOperand(0), Part)) {
9514     Value *VectorValue = State.get(getOperand(0), Part);
9515     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9516     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9517     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9518     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9519     if (State.hasVectorValue(this, Part))
9520       State.reset(this, VPhi, Part);
9521     else
9522       State.set(this, VPhi, Part);
9523     // NOTE: Currently we need to update the value of the operand, so the next
9524     // predicated iteration inserts its generated value in the correct vector.
9525     State.reset(getOperand(0), VPhi, Part);
9526   } else {
9527     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9528     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9529     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9530                      PredicatingBB);
9531     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9532     if (State.hasScalarValue(this, *State.Instance))
9533       State.reset(this, Phi, *State.Instance);
9534     else
9535       State.set(this, Phi, *State.Instance);
9536     // NOTE: Currently we need to update the value of the operand, so the next
9537     // predicated iteration inserts its generated value in the correct vector.
9538     State.reset(getOperand(0), Phi, *State.Instance);
9539   }
9540 }
9541 
9542 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9543   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9544   State.ILV->vectorizeMemoryInstruction(
9545       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9546       StoredValue, getMask());
9547 }
9548 
9549 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9550 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9551 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9552 // for predication.
9553 static ScalarEpilogueLowering getScalarEpilogueLowering(
9554     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9555     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9556     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9557     LoopVectorizationLegality &LVL) {
9558   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9559   // don't look at hints or options, and don't request a scalar epilogue.
9560   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9561   // LoopAccessInfo (due to code dependency and not being able to reliably get
9562   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9563   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9564   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9565   // back to the old way and vectorize with versioning when forced. See D81345.)
9566   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9567                                                       PGSOQueryType::IRPass) &&
9568                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9569     return CM_ScalarEpilogueNotAllowedOptSize;
9570 
9571   // 2) If set, obey the directives
9572   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9573     switch (PreferPredicateOverEpilogue) {
9574     case PreferPredicateTy::ScalarEpilogue:
9575       return CM_ScalarEpilogueAllowed;
9576     case PreferPredicateTy::PredicateElseScalarEpilogue:
9577       return CM_ScalarEpilogueNotNeededUsePredicate;
9578     case PreferPredicateTy::PredicateOrDontVectorize:
9579       return CM_ScalarEpilogueNotAllowedUsePredicate;
9580     };
9581   }
9582 
9583   // 3) If set, obey the hints
9584   switch (Hints.getPredicate()) {
9585   case LoopVectorizeHints::FK_Enabled:
9586     return CM_ScalarEpilogueNotNeededUsePredicate;
9587   case LoopVectorizeHints::FK_Disabled:
9588     return CM_ScalarEpilogueAllowed;
9589   };
9590 
9591   // 4) if the TTI hook indicates this is profitable, request predication.
9592   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9593                                        LVL.getLAI()))
9594     return CM_ScalarEpilogueNotNeededUsePredicate;
9595 
9596   return CM_ScalarEpilogueAllowed;
9597 }
9598 
9599 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9600   // If Values have been set for this Def return the one relevant for \p Part.
9601   if (hasVectorValue(Def, Part))
9602     return Data.PerPartOutput[Def][Part];
9603 
9604   if (!hasScalarValue(Def, {Part, 0})) {
9605     Value *IRV = Def->getLiveInIRValue();
9606     Value *B = ILV->getBroadcastInstrs(IRV);
9607     set(Def, B, Part);
9608     return B;
9609   }
9610 
9611   Value *ScalarValue = get(Def, {Part, 0});
9612   // If we aren't vectorizing, we can just copy the scalar map values over
9613   // to the vector map.
9614   if (VF.isScalar()) {
9615     set(Def, ScalarValue, Part);
9616     return ScalarValue;
9617   }
9618 
9619   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9620   bool IsUniform = RepR && RepR->isUniform();
9621 
9622   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9623   // Check if there is a scalar value for the selected lane.
9624   if (!hasScalarValue(Def, {Part, LastLane})) {
9625     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9626     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9627            "unexpected recipe found to be invariant");
9628     IsUniform = true;
9629     LastLane = 0;
9630   }
9631 
9632   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9633 
9634   // Set the insert point after the last scalarized instruction. This
9635   // ensures the insertelement sequence will directly follow the scalar
9636   // definitions.
9637   auto OldIP = Builder.saveIP();
9638   auto NewIP = std::next(BasicBlock::iterator(LastInst));
9639   Builder.SetInsertPoint(&*NewIP);
9640 
9641   // However, if we are vectorizing, we need to construct the vector values.
9642   // If the value is known to be uniform after vectorization, we can just
9643   // broadcast the scalar value corresponding to lane zero for each unroll
9644   // iteration. Otherwise, we construct the vector values using
9645   // insertelement instructions. Since the resulting vectors are stored in
9646   // State, we will only generate the insertelements once.
9647   Value *VectorValue = nullptr;
9648   if (IsUniform) {
9649     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9650     set(Def, VectorValue, Part);
9651   } else {
9652     // Initialize packing with insertelements to start from undef.
9653     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9654     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
9655     set(Def, Undef, Part);
9656     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
9657       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
9658     VectorValue = get(Def, Part);
9659   }
9660   Builder.restoreIP(OldIP);
9661   return VectorValue;
9662 }
9663 
9664 // Process the loop in the VPlan-native vectorization path. This path builds
9665 // VPlan upfront in the vectorization pipeline, which allows to apply
9666 // VPlan-to-VPlan transformations from the very beginning without modifying the
9667 // input LLVM IR.
9668 static bool processLoopInVPlanNativePath(
9669     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
9670     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
9671     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
9672     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
9673     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
9674     LoopVectorizationRequirements &Requirements) {
9675 
9676   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
9677     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9678     return false;
9679   }
9680   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9681   Function *F = L->getHeader()->getParent();
9682   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9683 
9684   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9685       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
9686 
9687   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9688                                 &Hints, IAI);
9689   // Use the planner for outer loop vectorization.
9690   // TODO: CM is not used at this point inside the planner. Turn CM into an
9691   // optional argument if we don't need it in the future.
9692   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
9693                                Requirements, ORE);
9694 
9695   // Get user vectorization factor.
9696   ElementCount UserVF = Hints.getWidth();
9697 
9698   // Plan how to best vectorize, return the best VF and its cost.
9699   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9700 
9701   // If we are stress testing VPlan builds, do not attempt to generate vector
9702   // code. Masked vector code generation support will follow soon.
9703   // Also, do not attempt to vectorize if no vector code will be produced.
9704   if (VPlanBuildStressTest || EnableVPlanPredication ||
9705       VectorizationFactor::Disabled() == VF)
9706     return false;
9707 
9708   LVP.setBestPlan(VF.Width, 1);
9709 
9710   {
9711     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
9712                              F->getParent()->getDataLayout());
9713     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
9714                            &CM, BFI, PSI, Checks);
9715     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9716                       << L->getHeader()->getParent()->getName() << "\"\n");
9717     LVP.executePlan(LB, DT);
9718   }
9719 
9720   // Mark the loop as already vectorized to avoid vectorizing again.
9721   Hints.setAlreadyVectorized();
9722   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9723   return true;
9724 }
9725 
9726 // Emit a remark if there are stores to floats that required a floating point
9727 // extension. If the vectorized loop was generated with floating point there
9728 // will be a performance penalty from the conversion overhead and the change in
9729 // the vector width.
9730 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
9731   SmallVector<Instruction *, 4> Worklist;
9732   for (BasicBlock *BB : L->getBlocks()) {
9733     for (Instruction &Inst : *BB) {
9734       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9735         if (S->getValueOperand()->getType()->isFloatTy())
9736           Worklist.push_back(S);
9737       }
9738     }
9739   }
9740 
9741   // Traverse the floating point stores upwards searching, for floating point
9742   // conversions.
9743   SmallPtrSet<const Instruction *, 4> Visited;
9744   SmallPtrSet<const Instruction *, 4> EmittedRemark;
9745   while (!Worklist.empty()) {
9746     auto *I = Worklist.pop_back_val();
9747     if (!L->contains(I))
9748       continue;
9749     if (!Visited.insert(I).second)
9750       continue;
9751 
9752     // Emit a remark if the floating point store required a floating
9753     // point conversion.
9754     // TODO: More work could be done to identify the root cause such as a
9755     // constant or a function return type and point the user to it.
9756     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9757       ORE->emit([&]() {
9758         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9759                                           I->getDebugLoc(), L->getHeader())
9760                << "floating point conversion changes vector width. "
9761                << "Mixed floating point precision requires an up/down "
9762                << "cast that will negatively impact performance.";
9763       });
9764 
9765     for (Use &Op : I->operands())
9766       if (auto *OpI = dyn_cast<Instruction>(Op))
9767         Worklist.push_back(OpI);
9768   }
9769 }
9770 
9771 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
9772     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9773                                !EnableLoopInterleaving),
9774       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9775                               !EnableLoopVectorization) {}
9776 
9777 bool LoopVectorizePass::processLoop(Loop *L) {
9778   assert((EnableVPlanNativePath || L->isInnermost()) &&
9779          "VPlan-native path is not enabled. Only process inner loops.");
9780 
9781 #ifndef NDEBUG
9782   const std::string DebugLocStr = getDebugLocString(L);
9783 #endif /* NDEBUG */
9784 
9785   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
9786                     << L->getHeader()->getParent()->getName() << "\" from "
9787                     << DebugLocStr << "\n");
9788 
9789   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
9790 
9791   LLVM_DEBUG(
9792       dbgs() << "LV: Loop hints:"
9793              << " force="
9794              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
9795                      ? "disabled"
9796                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
9797                             ? "enabled"
9798                             : "?"))
9799              << " width=" << Hints.getWidth()
9800              << " interleave=" << Hints.getInterleave() << "\n");
9801 
9802   // Function containing loop
9803   Function *F = L->getHeader()->getParent();
9804 
9805   // Looking at the diagnostic output is the only way to determine if a loop
9806   // was vectorized (other than looking at the IR or machine code), so it
9807   // is important to generate an optimization remark for each loop. Most of
9808   // these messages are generated as OptimizationRemarkAnalysis. Remarks
9809   // generated as OptimizationRemark and OptimizationRemarkMissed are
9810   // less verbose reporting vectorized loops and unvectorized loops that may
9811   // benefit from vectorization, respectively.
9812 
9813   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
9814     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
9815     return false;
9816   }
9817 
9818   PredicatedScalarEvolution PSE(*SE, *L);
9819 
9820   // Check if it is legal to vectorize the loop.
9821   LoopVectorizationRequirements Requirements;
9822   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
9823                                 &Requirements, &Hints, DB, AC, BFI, PSI);
9824   if (!LVL.canVectorize(EnableVPlanNativePath)) {
9825     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
9826     Hints.emitRemarkWithHints();
9827     return false;
9828   }
9829 
9830   // Check the function attributes and profiles to find out if this function
9831   // should be optimized for size.
9832   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9833       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
9834 
9835   // Entrance to the VPlan-native vectorization path. Outer loops are processed
9836   // here. They may require CFG and instruction level transformations before
9837   // even evaluating whether vectorization is profitable. Since we cannot modify
9838   // the incoming IR, we need to build VPlan upfront in the vectorization
9839   // pipeline.
9840   if (!L->isInnermost())
9841     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
9842                                         ORE, BFI, PSI, Hints, Requirements);
9843 
9844   assert(L->isInnermost() && "Inner loop expected.");
9845 
9846   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
9847   // count by optimizing for size, to minimize overheads.
9848   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
9849   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
9850     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
9851                       << "This loop is worth vectorizing only if no scalar "
9852                       << "iteration overheads are incurred.");
9853     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
9854       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
9855     else {
9856       LLVM_DEBUG(dbgs() << "\n");
9857       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
9858     }
9859   }
9860 
9861   // Check the function attributes to see if implicit floats are allowed.
9862   // FIXME: This check doesn't seem possibly correct -- what if the loop is
9863   // an integer loop and the vector instructions selected are purely integer
9864   // vector instructions?
9865   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9866     reportVectorizationFailure(
9867         "Can't vectorize when the NoImplicitFloat attribute is used",
9868         "loop not vectorized due to NoImplicitFloat attribute",
9869         "NoImplicitFloat", ORE, L);
9870     Hints.emitRemarkWithHints();
9871     return false;
9872   }
9873 
9874   // Check if the target supports potentially unsafe FP vectorization.
9875   // FIXME: Add a check for the type of safety issue (denormal, signaling)
9876   // for the target we're vectorizing for, to make sure none of the
9877   // additional fp-math flags can help.
9878   if (Hints.isPotentiallyUnsafe() &&
9879       TTI->isFPVectorizationPotentiallyUnsafe()) {
9880     reportVectorizationFailure(
9881         "Potentially unsafe FP op prevents vectorization",
9882         "loop not vectorized due to unsafe FP support.",
9883         "UnsafeFP", ORE, L);
9884     Hints.emitRemarkWithHints();
9885     return false;
9886   }
9887 
9888   if (!Requirements.canVectorizeFPMath(Hints)) {
9889     ORE->emit([&]() {
9890       auto *ExactFPMathInst = Requirements.getExactFPInst();
9891       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
9892                                                  ExactFPMathInst->getDebugLoc(),
9893                                                  ExactFPMathInst->getParent())
9894              << "loop not vectorized: cannot prove it is safe to reorder "
9895                 "floating-point operations";
9896     });
9897     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
9898                          "reorder floating-point operations\n");
9899     Hints.emitRemarkWithHints();
9900     return false;
9901   }
9902 
9903   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
9904   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
9905 
9906   // If an override option has been passed in for interleaved accesses, use it.
9907   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
9908     UseInterleaved = EnableInterleavedMemAccesses;
9909 
9910   // Analyze interleaved memory accesses.
9911   if (UseInterleaved) {
9912     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
9913   }
9914 
9915   // Use the cost model.
9916   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
9917                                 F, &Hints, IAI);
9918   CM.collectValuesToIgnore();
9919 
9920   // Use the planner for vectorization.
9921   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
9922                                Requirements, ORE);
9923 
9924   // Get user vectorization factor and interleave count.
9925   ElementCount UserVF = Hints.getWidth();
9926   unsigned UserIC = Hints.getInterleave();
9927 
9928   // Plan how to best vectorize, return the best VF and its cost.
9929   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
9930 
9931   VectorizationFactor VF = VectorizationFactor::Disabled();
9932   unsigned IC = 1;
9933 
9934   if (MaybeVF) {
9935     VF = *MaybeVF;
9936     // Select the interleave count.
9937     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
9938   }
9939 
9940   // Identify the diagnostic messages that should be produced.
9941   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
9942   bool VectorizeLoop = true, InterleaveLoop = true;
9943   if (VF.Width.isScalar()) {
9944     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
9945     VecDiagMsg = std::make_pair(
9946         "VectorizationNotBeneficial",
9947         "the cost-model indicates that vectorization is not beneficial");
9948     VectorizeLoop = false;
9949   }
9950 
9951   if (!MaybeVF && UserIC > 1) {
9952     // Tell the user interleaving was avoided up-front, despite being explicitly
9953     // requested.
9954     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
9955                          "interleaving should be avoided up front\n");
9956     IntDiagMsg = std::make_pair(
9957         "InterleavingAvoided",
9958         "Ignoring UserIC, because interleaving was avoided up front");
9959     InterleaveLoop = false;
9960   } else if (IC == 1 && UserIC <= 1) {
9961     // Tell the user interleaving is not beneficial.
9962     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
9963     IntDiagMsg = std::make_pair(
9964         "InterleavingNotBeneficial",
9965         "the cost-model indicates that interleaving is not beneficial");
9966     InterleaveLoop = false;
9967     if (UserIC == 1) {
9968       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
9969       IntDiagMsg.second +=
9970           " and is explicitly disabled or interleave count is set to 1";
9971     }
9972   } else if (IC > 1 && UserIC == 1) {
9973     // Tell the user interleaving is beneficial, but it explicitly disabled.
9974     LLVM_DEBUG(
9975         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
9976     IntDiagMsg = std::make_pair(
9977         "InterleavingBeneficialButDisabled",
9978         "the cost-model indicates that interleaving is beneficial "
9979         "but is explicitly disabled or interleave count is set to 1");
9980     InterleaveLoop = false;
9981   }
9982 
9983   // Override IC if user provided an interleave count.
9984   IC = UserIC > 0 ? UserIC : IC;
9985 
9986   // Emit diagnostic messages, if any.
9987   const char *VAPassName = Hints.vectorizeAnalysisPassName();
9988   if (!VectorizeLoop && !InterleaveLoop) {
9989     // Do not vectorize or interleaving the loop.
9990     ORE->emit([&]() {
9991       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
9992                                       L->getStartLoc(), L->getHeader())
9993              << VecDiagMsg.second;
9994     });
9995     ORE->emit([&]() {
9996       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
9997                                       L->getStartLoc(), L->getHeader())
9998              << IntDiagMsg.second;
9999     });
10000     return false;
10001   } else if (!VectorizeLoop && InterleaveLoop) {
10002     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10003     ORE->emit([&]() {
10004       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10005                                         L->getStartLoc(), L->getHeader())
10006              << VecDiagMsg.second;
10007     });
10008   } else if (VectorizeLoop && !InterleaveLoop) {
10009     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10010                       << ") in " << DebugLocStr << '\n');
10011     ORE->emit([&]() {
10012       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10013                                         L->getStartLoc(), L->getHeader())
10014              << IntDiagMsg.second;
10015     });
10016   } else if (VectorizeLoop && InterleaveLoop) {
10017     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10018                       << ") in " << DebugLocStr << '\n');
10019     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10020   }
10021 
10022   bool DisableRuntimeUnroll = false;
10023   MDNode *OrigLoopID = L->getLoopID();
10024   {
10025     // Optimistically generate runtime checks. Drop them if they turn out to not
10026     // be profitable. Limit the scope of Checks, so the cleanup happens
10027     // immediately after vector codegeneration is done.
10028     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10029                              F->getParent()->getDataLayout());
10030     if (!VF.Width.isScalar() || IC > 1)
10031       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10032     LVP.setBestPlan(VF.Width, IC);
10033 
10034     using namespace ore;
10035     if (!VectorizeLoop) {
10036       assert(IC > 1 && "interleave count should not be 1 or 0");
10037       // If we decided that it is not legal to vectorize the loop, then
10038       // interleave it.
10039       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10040                                  &CM, BFI, PSI, Checks);
10041       LVP.executePlan(Unroller, DT);
10042 
10043       ORE->emit([&]() {
10044         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10045                                   L->getHeader())
10046                << "interleaved loop (interleaved count: "
10047                << NV("InterleaveCount", IC) << ")";
10048       });
10049     } else {
10050       // If we decided that it is *legal* to vectorize the loop, then do it.
10051 
10052       // Consider vectorizing the epilogue too if it's profitable.
10053       VectorizationFactor EpilogueVF =
10054           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10055       if (EpilogueVF.Width.isVector()) {
10056 
10057         // The first pass vectorizes the main loop and creates a scalar epilogue
10058         // to be vectorized by executing the plan (potentially with a different
10059         // factor) again shortly afterwards.
10060         EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC,
10061                                           EpilogueVF.Width.getKnownMinValue(),
10062                                           1);
10063         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10064                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10065 
10066         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
10067         LVP.executePlan(MainILV, DT);
10068         ++LoopsVectorized;
10069 
10070         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10071         formLCSSARecursively(*L, *DT, LI, SE);
10072 
10073         // Second pass vectorizes the epilogue and adjusts the control flow
10074         // edges from the first pass.
10075         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
10076         EPI.MainLoopVF = EPI.EpilogueVF;
10077         EPI.MainLoopUF = EPI.EpilogueUF;
10078         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10079                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10080                                                  Checks);
10081         LVP.executePlan(EpilogILV, DT);
10082         ++LoopsEpilogueVectorized;
10083 
10084         if (!MainILV.areSafetyChecksAdded())
10085           DisableRuntimeUnroll = true;
10086       } else {
10087         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10088                                &LVL, &CM, BFI, PSI, Checks);
10089         LVP.executePlan(LB, DT);
10090         ++LoopsVectorized;
10091 
10092         // Add metadata to disable runtime unrolling a scalar loop when there
10093         // are no runtime checks about strides and memory. A scalar loop that is
10094         // rarely used is not worth unrolling.
10095         if (!LB.areSafetyChecksAdded())
10096           DisableRuntimeUnroll = true;
10097       }
10098       // Report the vectorization decision.
10099       ORE->emit([&]() {
10100         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10101                                   L->getHeader())
10102                << "vectorized loop (vectorization width: "
10103                << NV("VectorizationFactor", VF.Width)
10104                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10105       });
10106     }
10107 
10108     if (ORE->allowExtraAnalysis(LV_NAME))
10109       checkMixedPrecision(L, ORE);
10110   }
10111 
10112   Optional<MDNode *> RemainderLoopID =
10113       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10114                                       LLVMLoopVectorizeFollowupEpilogue});
10115   if (RemainderLoopID.hasValue()) {
10116     L->setLoopID(RemainderLoopID.getValue());
10117   } else {
10118     if (DisableRuntimeUnroll)
10119       AddRuntimeUnrollDisableMetaData(L);
10120 
10121     // Mark the loop as already vectorized to avoid vectorizing again.
10122     Hints.setAlreadyVectorized();
10123   }
10124 
10125   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10126   return true;
10127 }
10128 
10129 LoopVectorizeResult LoopVectorizePass::runImpl(
10130     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10131     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10132     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10133     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10134     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10135   SE = &SE_;
10136   LI = &LI_;
10137   TTI = &TTI_;
10138   DT = &DT_;
10139   BFI = &BFI_;
10140   TLI = TLI_;
10141   AA = &AA_;
10142   AC = &AC_;
10143   GetLAA = &GetLAA_;
10144   DB = &DB_;
10145   ORE = &ORE_;
10146   PSI = PSI_;
10147 
10148   // Don't attempt if
10149   // 1. the target claims to have no vector registers, and
10150   // 2. interleaving won't help ILP.
10151   //
10152   // The second condition is necessary because, even if the target has no
10153   // vector registers, loop vectorization may still enable scalar
10154   // interleaving.
10155   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10156       TTI->getMaxInterleaveFactor(1) < 2)
10157     return LoopVectorizeResult(false, false);
10158 
10159   bool Changed = false, CFGChanged = false;
10160 
10161   // The vectorizer requires loops to be in simplified form.
10162   // Since simplification may add new inner loops, it has to run before the
10163   // legality and profitability checks. This means running the loop vectorizer
10164   // will simplify all loops, regardless of whether anything end up being
10165   // vectorized.
10166   for (auto &L : *LI)
10167     Changed |= CFGChanged |=
10168         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10169 
10170   // Build up a worklist of inner-loops to vectorize. This is necessary as
10171   // the act of vectorizing or partially unrolling a loop creates new loops
10172   // and can invalidate iterators across the loops.
10173   SmallVector<Loop *, 8> Worklist;
10174 
10175   for (Loop *L : *LI)
10176     collectSupportedLoops(*L, LI, ORE, Worklist);
10177 
10178   LoopsAnalyzed += Worklist.size();
10179 
10180   // Now walk the identified inner loops.
10181   while (!Worklist.empty()) {
10182     Loop *L = Worklist.pop_back_val();
10183 
10184     // For the inner loops we actually process, form LCSSA to simplify the
10185     // transform.
10186     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10187 
10188     Changed |= CFGChanged |= processLoop(L);
10189   }
10190 
10191   // Process each loop nest in the function.
10192   return LoopVectorizeResult(Changed, CFGChanged);
10193 }
10194 
10195 PreservedAnalyses LoopVectorizePass::run(Function &F,
10196                                          FunctionAnalysisManager &AM) {
10197     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10198     auto &LI = AM.getResult<LoopAnalysis>(F);
10199     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10200     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10201     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10202     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10203     auto &AA = AM.getResult<AAManager>(F);
10204     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10205     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10206     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10207     MemorySSA *MSSA = EnableMSSALoopDependency
10208                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
10209                           : nullptr;
10210 
10211     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10212     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10213         [&](Loop &L) -> const LoopAccessInfo & {
10214       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
10215                                         TLI, TTI, nullptr, MSSA};
10216       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10217     };
10218     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10219     ProfileSummaryInfo *PSI =
10220         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10221     LoopVectorizeResult Result =
10222         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10223     if (!Result.MadeAnyChange)
10224       return PreservedAnalyses::all();
10225     PreservedAnalyses PA;
10226 
10227     // We currently do not preserve loopinfo/dominator analyses with outer loop
10228     // vectorization. Until this is addressed, mark these analyses as preserved
10229     // only for non-VPlan-native path.
10230     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10231     if (!EnableVPlanNativePath) {
10232       PA.preserve<LoopAnalysis>();
10233       PA.preserve<DominatorTreeAnalysis>();
10234     }
10235     PA.preserve<BasicAA>();
10236     PA.preserve<GlobalsAA>();
10237     if (!Result.MadeCFGChange)
10238       PA.preserveSet<CFGAnalyses>();
10239     return PA;
10240 }
10241