1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/MemorySSA.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/Type.h" 120 #include "llvm/IR/Use.h" 121 #include "llvm/IR/User.h" 122 #include "llvm/IR/Value.h" 123 #include "llvm/IR/ValueHandle.h" 124 #include "llvm/IR/Verifier.h" 125 #include "llvm/InitializePasses.h" 126 #include "llvm/Pass.h" 127 #include "llvm/Support/Casting.h" 128 #include "llvm/Support/CommandLine.h" 129 #include "llvm/Support/Compiler.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/InstructionCost.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 #ifndef NDEBUG 161 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 162 #endif 163 164 /// @{ 165 /// Metadata attribute names 166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 167 const char LLVMLoopVectorizeFollowupVectorized[] = 168 "llvm.loop.vectorize.followup_vectorized"; 169 const char LLVMLoopVectorizeFollowupEpilogue[] = 170 "llvm.loop.vectorize.followup_epilogue"; 171 /// @} 172 173 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 176 177 static cl::opt<bool> EnableEpilogueVectorization( 178 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 179 cl::desc("Enable vectorization of epilogue loops.")); 180 181 static cl::opt<unsigned> EpilogueVectorizationForceVF( 182 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 183 cl::desc("When epilogue vectorization is enabled, and a value greater than " 184 "1 is specified, forces the given VF for all applicable epilogue " 185 "loops.")); 186 187 static cl::opt<unsigned> EpilogueVectorizationMinVF( 188 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 189 cl::desc("Only loops with vectorization factor equal to or larger than " 190 "the specified value are considered for epilogue vectorization.")); 191 192 /// Loops with a known constant trip count below this number are vectorized only 193 /// if no scalar iteration overheads are incurred. 194 static cl::opt<unsigned> TinyTripCountVectorThreshold( 195 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 196 cl::desc("Loops with a constant trip count that is smaller than this " 197 "value are vectorized only if no scalar iteration overheads " 198 "are incurred.")); 199 200 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 201 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 202 cl::desc("The maximum allowed number of runtime memory checks with a " 203 "vectorize(enable) pragma.")); 204 205 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 206 // that predication is preferred, and this lists all options. I.e., the 207 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 208 // and predicate the instructions accordingly. If tail-folding fails, there are 209 // different fallback strategies depending on these values: 210 namespace PreferPredicateTy { 211 enum Option { 212 ScalarEpilogue = 0, 213 PredicateElseScalarEpilogue, 214 PredicateOrDontVectorize 215 }; 216 } // namespace PreferPredicateTy 217 218 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 219 "prefer-predicate-over-epilogue", 220 cl::init(PreferPredicateTy::ScalarEpilogue), 221 cl::Hidden, 222 cl::desc("Tail-folding and predication preferences over creating a scalar " 223 "epilogue loop."), 224 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 225 "scalar-epilogue", 226 "Don't tail-predicate loops, create scalar epilogue"), 227 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 228 "predicate-else-scalar-epilogue", 229 "prefer tail-folding, create scalar epilogue if tail " 230 "folding fails."), 231 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 232 "predicate-dont-vectorize", 233 "prefers tail-folding, don't attempt vectorization if " 234 "tail-folding fails."))); 235 236 static cl::opt<bool> MaximizeBandwidth( 237 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 238 cl::desc("Maximize bandwidth when selecting vectorization factor which " 239 "will be determined by the smallest type in loop.")); 240 241 static cl::opt<bool> EnableInterleavedMemAccesses( 242 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 243 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 244 245 /// An interleave-group may need masking if it resides in a block that needs 246 /// predication, or in order to mask away gaps. 247 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 248 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 249 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 250 251 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 252 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 253 cl::desc("We don't interleave loops with a estimated constant trip count " 254 "below this number")); 255 256 static cl::opt<unsigned> ForceTargetNumScalarRegs( 257 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 258 cl::desc("A flag that overrides the target's number of scalar registers.")); 259 260 static cl::opt<unsigned> ForceTargetNumVectorRegs( 261 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 262 cl::desc("A flag that overrides the target's number of vector registers.")); 263 264 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 265 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 266 cl::desc("A flag that overrides the target's max interleave factor for " 267 "scalar loops.")); 268 269 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 270 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 271 cl::desc("A flag that overrides the target's max interleave factor for " 272 "vectorized loops.")); 273 274 static cl::opt<unsigned> ForceTargetInstructionCost( 275 "force-target-instruction-cost", cl::init(0), cl::Hidden, 276 cl::desc("A flag that overrides the target's expected cost for " 277 "an instruction to a single constant value. Mostly " 278 "useful for getting consistent testing.")); 279 280 static cl::opt<bool> ForceTargetSupportsScalableVectors( 281 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 282 cl::desc( 283 "Pretend that scalable vectors are supported, even if the target does " 284 "not support them. This flag should only be used for testing.")); 285 286 static cl::opt<unsigned> SmallLoopCost( 287 "small-loop-cost", cl::init(20), cl::Hidden, 288 cl::desc( 289 "The cost of a loop that is considered 'small' by the interleaver.")); 290 291 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 292 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 293 cl::desc("Enable the use of the block frequency analysis to access PGO " 294 "heuristics minimizing code growth in cold regions and being more " 295 "aggressive in hot regions.")); 296 297 // Runtime interleave loops for load/store throughput. 298 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 299 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 300 cl::desc( 301 "Enable runtime interleaving until load/store ports are saturated")); 302 303 /// Interleave small loops with scalar reductions. 304 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 305 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 306 cl::desc("Enable interleaving for loops with small iteration counts that " 307 "contain scalar reductions to expose ILP.")); 308 309 /// The number of stores in a loop that are allowed to need predication. 310 static cl::opt<unsigned> NumberOfStoresToPredicate( 311 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 312 cl::desc("Max number of stores to be predicated behind an if.")); 313 314 static cl::opt<bool> EnableIndVarRegisterHeur( 315 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 316 cl::desc("Count the induction variable only once when interleaving")); 317 318 static cl::opt<bool> EnableCondStoresVectorization( 319 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 320 cl::desc("Enable if predication of stores during vectorization.")); 321 322 static cl::opt<unsigned> MaxNestedScalarReductionIC( 323 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 324 cl::desc("The maximum interleave count to use when interleaving a scalar " 325 "reduction in a nested loop.")); 326 327 static cl::opt<bool> 328 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 329 cl::Hidden, 330 cl::desc("Prefer in-loop vector reductions, " 331 "overriding the targets preference.")); 332 333 cl::opt<bool> EnableStrictReductions( 334 "enable-strict-reductions", cl::init(false), cl::Hidden, 335 cl::desc("Enable the vectorisation of loops with in-order (strict) " 336 "FP reductions")); 337 338 static cl::opt<bool> PreferPredicatedReductionSelect( 339 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 340 cl::desc( 341 "Prefer predicating a reduction operation over an after loop select.")); 342 343 cl::opt<bool> EnableVPlanNativePath( 344 "enable-vplan-native-path", cl::init(false), cl::Hidden, 345 cl::desc("Enable VPlan-native vectorization path with " 346 "support for outer loop vectorization.")); 347 348 // FIXME: Remove this switch once we have divergence analysis. Currently we 349 // assume divergent non-backedge branches when this switch is true. 350 cl::opt<bool> EnableVPlanPredication( 351 "enable-vplan-predication", cl::init(false), cl::Hidden, 352 cl::desc("Enable VPlan-native vectorization path predicator with " 353 "support for outer loop vectorization.")); 354 355 // This flag enables the stress testing of the VPlan H-CFG construction in the 356 // VPlan-native vectorization path. It must be used in conjuction with 357 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 358 // verification of the H-CFGs built. 359 static cl::opt<bool> VPlanBuildStressTest( 360 "vplan-build-stress-test", cl::init(false), cl::Hidden, 361 cl::desc( 362 "Build VPlan for every supported loop nest in the function and bail " 363 "out right after the build (stress test the VPlan H-CFG construction " 364 "in the VPlan-native vectorization path).")); 365 366 cl::opt<bool> llvm::EnableLoopInterleaving( 367 "interleave-loops", cl::init(true), cl::Hidden, 368 cl::desc("Enable loop interleaving in Loop vectorization passes")); 369 cl::opt<bool> llvm::EnableLoopVectorization( 370 "vectorize-loops", cl::init(true), cl::Hidden, 371 cl::desc("Run the Loop vectorization passes")); 372 373 cl::opt<bool> PrintVPlansInDotFormat( 374 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 375 cl::desc("Use dot format instead of plain text when dumping VPlans")); 376 377 /// A helper function that returns the type of loaded or stored value. 378 static Type *getMemInstValueType(Value *I) { 379 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 380 "Expected Load or Store instruction"); 381 if (auto *LI = dyn_cast<LoadInst>(I)) 382 return LI->getType(); 383 return cast<StoreInst>(I)->getValueOperand()->getType(); 384 } 385 386 /// A helper function that returns true if the given type is irregular. The 387 /// type is irregular if its allocated size doesn't equal the store size of an 388 /// element of the corresponding vector type. 389 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 390 // Determine if an array of N elements of type Ty is "bitcast compatible" 391 // with a <N x Ty> vector. 392 // This is only true if there is no padding between the array elements. 393 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 394 } 395 396 /// A helper function that returns the reciprocal of the block probability of 397 /// predicated blocks. If we return X, we are assuming the predicated block 398 /// will execute once for every X iterations of the loop header. 399 /// 400 /// TODO: We should use actual block probability here, if available. Currently, 401 /// we always assume predicated blocks have a 50% chance of executing. 402 static unsigned getReciprocalPredBlockProb() { return 2; } 403 404 /// A helper function that returns an integer or floating-point constant with 405 /// value C. 406 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 407 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 408 : ConstantFP::get(Ty, C); 409 } 410 411 /// Returns "best known" trip count for the specified loop \p L as defined by 412 /// the following procedure: 413 /// 1) Returns exact trip count if it is known. 414 /// 2) Returns expected trip count according to profile data if any. 415 /// 3) Returns upper bound estimate if it is known. 416 /// 4) Returns None if all of the above failed. 417 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 418 // Check if exact trip count is known. 419 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 420 return ExpectedTC; 421 422 // Check if there is an expected trip count available from profile data. 423 if (LoopVectorizeWithBlockFrequency) 424 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 425 return EstimatedTC; 426 427 // Check if upper bound estimate is known. 428 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 429 return ExpectedTC; 430 431 return None; 432 } 433 434 // Forward declare GeneratedRTChecks. 435 class GeneratedRTChecks; 436 437 namespace llvm { 438 439 /// InnerLoopVectorizer vectorizes loops which contain only one basic 440 /// block to a specified vectorization factor (VF). 441 /// This class performs the widening of scalars into vectors, or multiple 442 /// scalars. This class also implements the following features: 443 /// * It inserts an epilogue loop for handling loops that don't have iteration 444 /// counts that are known to be a multiple of the vectorization factor. 445 /// * It handles the code generation for reduction variables. 446 /// * Scalarization (implementation using scalars) of un-vectorizable 447 /// instructions. 448 /// InnerLoopVectorizer does not perform any vectorization-legality 449 /// checks, and relies on the caller to check for the different legality 450 /// aspects. The InnerLoopVectorizer relies on the 451 /// LoopVectorizationLegality class to provide information about the induction 452 /// and reduction variables that were found to a given vectorization factor. 453 class InnerLoopVectorizer { 454 public: 455 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 456 LoopInfo *LI, DominatorTree *DT, 457 const TargetLibraryInfo *TLI, 458 const TargetTransformInfo *TTI, AssumptionCache *AC, 459 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 460 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 461 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 462 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 463 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 464 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 465 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 466 PSI(PSI), RTChecks(RTChecks) { 467 // Query this against the original loop and save it here because the profile 468 // of the original loop header may change as the transformation happens. 469 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 470 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 471 } 472 473 virtual ~InnerLoopVectorizer() = default; 474 475 /// Create a new empty loop that will contain vectorized instructions later 476 /// on, while the old loop will be used as the scalar remainder. Control flow 477 /// is generated around the vectorized (and scalar epilogue) loops consisting 478 /// of various checks and bypasses. Return the pre-header block of the new 479 /// loop. 480 /// In the case of epilogue vectorization, this function is overriden to 481 /// handle the more complex control flow around the loops. 482 virtual BasicBlock *createVectorizedLoopSkeleton(); 483 484 /// Widen a single instruction within the innermost loop. 485 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 486 VPTransformState &State); 487 488 /// Widen a single call instruction within the innermost loop. 489 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 490 VPTransformState &State); 491 492 /// Widen a single select instruction within the innermost loop. 493 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 494 bool InvariantCond, VPTransformState &State); 495 496 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 497 void fixVectorizedLoop(VPTransformState &State); 498 499 // Return true if any runtime check is added. 500 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 501 502 /// A type for vectorized values in the new loop. Each value from the 503 /// original loop, when vectorized, is represented by UF vector values in the 504 /// new unrolled loop, where UF is the unroll factor. 505 using VectorParts = SmallVector<Value *, 2>; 506 507 /// Vectorize a single GetElementPtrInst based on information gathered and 508 /// decisions taken during planning. 509 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 510 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 511 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 512 513 /// Vectorize a single PHINode in a block. This method handles the induction 514 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 515 /// arbitrary length vectors. 516 void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc, 517 VPValue *StartV, VPValue *Def, 518 VPTransformState &State); 519 520 /// A helper function to scalarize a single Instruction in the innermost loop. 521 /// Generates a sequence of scalar instances for each lane between \p MinLane 522 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 523 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 524 /// Instr's operands. 525 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 526 const VPIteration &Instance, bool IfPredicateInstr, 527 VPTransformState &State); 528 529 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 530 /// is provided, the integer induction variable will first be truncated to 531 /// the corresponding type. 532 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 533 VPValue *Def, VPValue *CastDef, 534 VPTransformState &State); 535 536 /// Construct the vector value of a scalarized value \p V one lane at a time. 537 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 538 VPTransformState &State); 539 540 /// Try to vectorize interleaved access group \p Group with the base address 541 /// given in \p Addr, optionally masking the vector operations if \p 542 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 543 /// values in the vectorized loop. 544 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 545 ArrayRef<VPValue *> VPDefs, 546 VPTransformState &State, VPValue *Addr, 547 ArrayRef<VPValue *> StoredValues, 548 VPValue *BlockInMask = nullptr); 549 550 /// Vectorize Load and Store instructions with the base address given in \p 551 /// Addr, optionally masking the vector operations if \p BlockInMask is 552 /// non-null. Use \p State to translate given VPValues to IR values in the 553 /// vectorized loop. 554 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 555 VPValue *Def, VPValue *Addr, 556 VPValue *StoredValue, VPValue *BlockInMask); 557 558 /// Set the debug location in the builder using the debug location in 559 /// the instruction. 560 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 561 562 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 563 void fixNonInductionPHIs(VPTransformState &State); 564 565 /// Create a broadcast instruction. This method generates a broadcast 566 /// instruction (shuffle) for loop invariant values and for the induction 567 /// value. If this is the induction variable then we extend it to N, N+1, ... 568 /// this is needed because each iteration in the loop corresponds to a SIMD 569 /// element. 570 virtual Value *getBroadcastInstrs(Value *V); 571 572 protected: 573 friend class LoopVectorizationPlanner; 574 575 /// A small list of PHINodes. 576 using PhiVector = SmallVector<PHINode *, 4>; 577 578 /// A type for scalarized values in the new loop. Each value from the 579 /// original loop, when scalarized, is represented by UF x VF scalar values 580 /// in the new unrolled loop, where UF is the unroll factor and VF is the 581 /// vectorization factor. 582 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 583 584 /// Set up the values of the IVs correctly when exiting the vector loop. 585 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 586 Value *CountRoundDown, Value *EndValue, 587 BasicBlock *MiddleBlock); 588 589 /// Create a new induction variable inside L. 590 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 591 Value *Step, Instruction *DL); 592 593 /// Handle all cross-iteration phis in the header. 594 void fixCrossIterationPHIs(VPTransformState &State); 595 596 /// Fix a first-order recurrence. This is the second phase of vectorizing 597 /// this phi node. 598 void fixFirstOrderRecurrence(PHINode *Phi, VPTransformState &State); 599 600 /// Fix a reduction cross-iteration phi. This is the second phase of 601 /// vectorizing this phi node. 602 void fixReduction(PHINode *Phi, VPTransformState &State); 603 604 /// Clear NSW/NUW flags from reduction instructions if necessary. 605 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc, 606 VPTransformState &State); 607 608 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 609 /// means we need to add the appropriate incoming value from the middle 610 /// block as exiting edges from the scalar epilogue loop (if present) are 611 /// already in place, and we exit the vector loop exclusively to the middle 612 /// block. 613 void fixLCSSAPHIs(VPTransformState &State); 614 615 /// Iteratively sink the scalarized operands of a predicated instruction into 616 /// the block that was created for it. 617 void sinkScalarOperands(Instruction *PredInst); 618 619 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 620 /// represented as. 621 void truncateToMinimalBitwidths(VPTransformState &State); 622 623 /// This function adds 624 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 625 /// to each vector element of Val. The sequence starts at StartIndex. 626 /// \p Opcode is relevant for FP induction variable. 627 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 628 Instruction::BinaryOps Opcode = 629 Instruction::BinaryOpsEnd); 630 631 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 632 /// variable on which to base the steps, \p Step is the size of the step, and 633 /// \p EntryVal is the value from the original loop that maps to the steps. 634 /// Note that \p EntryVal doesn't have to be an induction variable - it 635 /// can also be a truncate instruction. 636 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 637 const InductionDescriptor &ID, VPValue *Def, 638 VPValue *CastDef, VPTransformState &State); 639 640 /// Create a vector induction phi node based on an existing scalar one. \p 641 /// EntryVal is the value from the original loop that maps to the vector phi 642 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 643 /// truncate instruction, instead of widening the original IV, we widen a 644 /// version of the IV truncated to \p EntryVal's type. 645 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 646 Value *Step, Value *Start, 647 Instruction *EntryVal, VPValue *Def, 648 VPValue *CastDef, 649 VPTransformState &State); 650 651 /// Returns true if an instruction \p I should be scalarized instead of 652 /// vectorized for the chosen vectorization factor. 653 bool shouldScalarizeInstruction(Instruction *I) const; 654 655 /// Returns true if we should generate a scalar version of \p IV. 656 bool needsScalarInduction(Instruction *IV) const; 657 658 /// If there is a cast involved in the induction variable \p ID, which should 659 /// be ignored in the vectorized loop body, this function records the 660 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 661 /// cast. We had already proved that the casted Phi is equal to the uncasted 662 /// Phi in the vectorized loop (under a runtime guard), and therefore 663 /// there is no need to vectorize the cast - the same value can be used in the 664 /// vector loop for both the Phi and the cast. 665 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 666 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 667 /// 668 /// \p EntryVal is the value from the original loop that maps to the vector 669 /// phi node and is used to distinguish what is the IV currently being 670 /// processed - original one (if \p EntryVal is a phi corresponding to the 671 /// original IV) or the "newly-created" one based on the proof mentioned above 672 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 673 /// latter case \p EntryVal is a TruncInst and we must not record anything for 674 /// that IV, but it's error-prone to expect callers of this routine to care 675 /// about that, hence this explicit parameter. 676 void recordVectorLoopValueForInductionCast( 677 const InductionDescriptor &ID, const Instruction *EntryVal, 678 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 679 unsigned Part, unsigned Lane = UINT_MAX); 680 681 /// Generate a shuffle sequence that will reverse the vector Vec. 682 virtual Value *reverseVector(Value *Vec); 683 684 /// Returns (and creates if needed) the original loop trip count. 685 Value *getOrCreateTripCount(Loop *NewLoop); 686 687 /// Returns (and creates if needed) the trip count of the widened loop. 688 Value *getOrCreateVectorTripCount(Loop *NewLoop); 689 690 /// Returns a bitcasted value to the requested vector type. 691 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 692 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 693 const DataLayout &DL); 694 695 /// Emit a bypass check to see if the vector trip count is zero, including if 696 /// it overflows. 697 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 698 699 /// Emit a bypass check to see if all of the SCEV assumptions we've 700 /// had to make are correct. Returns the block containing the checks or 701 /// nullptr if no checks have been added. 702 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 703 704 /// Emit bypass checks to check any memory assumptions we may have made. 705 /// Returns the block containing the checks or nullptr if no checks have been 706 /// added. 707 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 708 709 /// Compute the transformed value of Index at offset StartValue using step 710 /// StepValue. 711 /// For integer induction, returns StartValue + Index * StepValue. 712 /// For pointer induction, returns StartValue[Index * StepValue]. 713 /// FIXME: The newly created binary instructions should contain nsw/nuw 714 /// flags, which can be found from the original scalar operations. 715 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 716 const DataLayout &DL, 717 const InductionDescriptor &ID) const; 718 719 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 720 /// vector loop preheader, middle block and scalar preheader. Also 721 /// allocate a loop object for the new vector loop and return it. 722 Loop *createVectorLoopSkeleton(StringRef Prefix); 723 724 /// Create new phi nodes for the induction variables to resume iteration count 725 /// in the scalar epilogue, from where the vectorized loop left off (given by 726 /// \p VectorTripCount). 727 /// In cases where the loop skeleton is more complicated (eg. epilogue 728 /// vectorization) and the resume values can come from an additional bypass 729 /// block, the \p AdditionalBypass pair provides information about the bypass 730 /// block and the end value on the edge from bypass to this loop. 731 void createInductionResumeValues( 732 Loop *L, Value *VectorTripCount, 733 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 734 735 /// Complete the loop skeleton by adding debug MDs, creating appropriate 736 /// conditional branches in the middle block, preparing the builder and 737 /// running the verifier. Take in the vector loop \p L as argument, and return 738 /// the preheader of the completed vector loop. 739 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 740 741 /// Add additional metadata to \p To that was not present on \p Orig. 742 /// 743 /// Currently this is used to add the noalias annotations based on the 744 /// inserted memchecks. Use this for instructions that are *cloned* into the 745 /// vector loop. 746 void addNewMetadata(Instruction *To, const Instruction *Orig); 747 748 /// Add metadata from one instruction to another. 749 /// 750 /// This includes both the original MDs from \p From and additional ones (\see 751 /// addNewMetadata). Use this for *newly created* instructions in the vector 752 /// loop. 753 void addMetadata(Instruction *To, Instruction *From); 754 755 /// Similar to the previous function but it adds the metadata to a 756 /// vector of instructions. 757 void addMetadata(ArrayRef<Value *> To, Instruction *From); 758 759 /// Allow subclasses to override and print debug traces before/after vplan 760 /// execution, when trace information is requested. 761 virtual void printDebugTracesAtStart(){}; 762 virtual void printDebugTracesAtEnd(){}; 763 764 /// The original loop. 765 Loop *OrigLoop; 766 767 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 768 /// dynamic knowledge to simplify SCEV expressions and converts them to a 769 /// more usable form. 770 PredicatedScalarEvolution &PSE; 771 772 /// Loop Info. 773 LoopInfo *LI; 774 775 /// Dominator Tree. 776 DominatorTree *DT; 777 778 /// Alias Analysis. 779 AAResults *AA; 780 781 /// Target Library Info. 782 const TargetLibraryInfo *TLI; 783 784 /// Target Transform Info. 785 const TargetTransformInfo *TTI; 786 787 /// Assumption Cache. 788 AssumptionCache *AC; 789 790 /// Interface to emit optimization remarks. 791 OptimizationRemarkEmitter *ORE; 792 793 /// LoopVersioning. It's only set up (non-null) if memchecks were 794 /// used. 795 /// 796 /// This is currently only used to add no-alias metadata based on the 797 /// memchecks. The actually versioning is performed manually. 798 std::unique_ptr<LoopVersioning> LVer; 799 800 /// The vectorization SIMD factor to use. Each vector will have this many 801 /// vector elements. 802 ElementCount VF; 803 804 /// The vectorization unroll factor to use. Each scalar is vectorized to this 805 /// many different vector instructions. 806 unsigned UF; 807 808 /// The builder that we use 809 IRBuilder<> Builder; 810 811 // --- Vectorization state --- 812 813 /// The vector-loop preheader. 814 BasicBlock *LoopVectorPreHeader; 815 816 /// The scalar-loop preheader. 817 BasicBlock *LoopScalarPreHeader; 818 819 /// Middle Block between the vector and the scalar. 820 BasicBlock *LoopMiddleBlock; 821 822 /// The (unique) ExitBlock of the scalar loop. Note that 823 /// there can be multiple exiting edges reaching this block. 824 BasicBlock *LoopExitBlock; 825 826 /// The vector loop body. 827 BasicBlock *LoopVectorBody; 828 829 /// The scalar loop body. 830 BasicBlock *LoopScalarBody; 831 832 /// A list of all bypass blocks. The first block is the entry of the loop. 833 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 834 835 /// The new Induction variable which was added to the new block. 836 PHINode *Induction = nullptr; 837 838 /// The induction variable of the old basic block. 839 PHINode *OldInduction = nullptr; 840 841 /// Store instructions that were predicated. 842 SmallVector<Instruction *, 4> PredicatedInstructions; 843 844 /// Trip count of the original loop. 845 Value *TripCount = nullptr; 846 847 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 848 Value *VectorTripCount = nullptr; 849 850 /// The legality analysis. 851 LoopVectorizationLegality *Legal; 852 853 /// The profitablity analysis. 854 LoopVectorizationCostModel *Cost; 855 856 // Record whether runtime checks are added. 857 bool AddedSafetyChecks = false; 858 859 // Holds the end values for each induction variable. We save the end values 860 // so we can later fix-up the external users of the induction variables. 861 DenseMap<PHINode *, Value *> IVEndValues; 862 863 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 864 // fixed up at the end of vector code generation. 865 SmallVector<PHINode *, 8> OrigPHIsToFix; 866 867 /// BFI and PSI are used to check for profile guided size optimizations. 868 BlockFrequencyInfo *BFI; 869 ProfileSummaryInfo *PSI; 870 871 // Whether this loop should be optimized for size based on profile guided size 872 // optimizatios. 873 bool OptForSizeBasedOnProfile; 874 875 /// Structure to hold information about generated runtime checks, responsible 876 /// for cleaning the checks, if vectorization turns out unprofitable. 877 GeneratedRTChecks &RTChecks; 878 }; 879 880 class InnerLoopUnroller : public InnerLoopVectorizer { 881 public: 882 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 883 LoopInfo *LI, DominatorTree *DT, 884 const TargetLibraryInfo *TLI, 885 const TargetTransformInfo *TTI, AssumptionCache *AC, 886 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 887 LoopVectorizationLegality *LVL, 888 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 889 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 890 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 891 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 892 BFI, PSI, Check) {} 893 894 private: 895 Value *getBroadcastInstrs(Value *V) override; 896 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 897 Instruction::BinaryOps Opcode = 898 Instruction::BinaryOpsEnd) override; 899 Value *reverseVector(Value *Vec) override; 900 }; 901 902 /// Encapsulate information regarding vectorization of a loop and its epilogue. 903 /// This information is meant to be updated and used across two stages of 904 /// epilogue vectorization. 905 struct EpilogueLoopVectorizationInfo { 906 ElementCount MainLoopVF = ElementCount::getFixed(0); 907 unsigned MainLoopUF = 0; 908 ElementCount EpilogueVF = ElementCount::getFixed(0); 909 unsigned EpilogueUF = 0; 910 BasicBlock *MainLoopIterationCountCheck = nullptr; 911 BasicBlock *EpilogueIterationCountCheck = nullptr; 912 BasicBlock *SCEVSafetyCheck = nullptr; 913 BasicBlock *MemSafetyCheck = nullptr; 914 Value *TripCount = nullptr; 915 Value *VectorTripCount = nullptr; 916 917 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 918 unsigned EUF) 919 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 920 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 921 assert(EUF == 1 && 922 "A high UF for the epilogue loop is likely not beneficial."); 923 } 924 }; 925 926 /// An extension of the inner loop vectorizer that creates a skeleton for a 927 /// vectorized loop that has its epilogue (residual) also vectorized. 928 /// The idea is to run the vplan on a given loop twice, firstly to setup the 929 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 930 /// from the first step and vectorize the epilogue. This is achieved by 931 /// deriving two concrete strategy classes from this base class and invoking 932 /// them in succession from the loop vectorizer planner. 933 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 934 public: 935 InnerLoopAndEpilogueVectorizer( 936 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 937 DominatorTree *DT, const TargetLibraryInfo *TLI, 938 const TargetTransformInfo *TTI, AssumptionCache *AC, 939 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 940 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 941 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 942 GeneratedRTChecks &Checks) 943 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 944 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 945 Checks), 946 EPI(EPI) {} 947 948 // Override this function to handle the more complex control flow around the 949 // three loops. 950 BasicBlock *createVectorizedLoopSkeleton() final override { 951 return createEpilogueVectorizedLoopSkeleton(); 952 } 953 954 /// The interface for creating a vectorized skeleton using one of two 955 /// different strategies, each corresponding to one execution of the vplan 956 /// as described above. 957 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 958 959 /// Holds and updates state information required to vectorize the main loop 960 /// and its epilogue in two separate passes. This setup helps us avoid 961 /// regenerating and recomputing runtime safety checks. It also helps us to 962 /// shorten the iteration-count-check path length for the cases where the 963 /// iteration count of the loop is so small that the main vector loop is 964 /// completely skipped. 965 EpilogueLoopVectorizationInfo &EPI; 966 }; 967 968 /// A specialized derived class of inner loop vectorizer that performs 969 /// vectorization of *main* loops in the process of vectorizing loops and their 970 /// epilogues. 971 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 972 public: 973 EpilogueVectorizerMainLoop( 974 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 975 DominatorTree *DT, const TargetLibraryInfo *TLI, 976 const TargetTransformInfo *TTI, AssumptionCache *AC, 977 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 978 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 979 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 980 GeneratedRTChecks &Check) 981 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 982 EPI, LVL, CM, BFI, PSI, Check) {} 983 /// Implements the interface for creating a vectorized skeleton using the 984 /// *main loop* strategy (ie the first pass of vplan execution). 985 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 986 987 protected: 988 /// Emits an iteration count bypass check once for the main loop (when \p 989 /// ForEpilogue is false) and once for the epilogue loop (when \p 990 /// ForEpilogue is true). 991 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 992 bool ForEpilogue); 993 void printDebugTracesAtStart() override; 994 void printDebugTracesAtEnd() override; 995 }; 996 997 // A specialized derived class of inner loop vectorizer that performs 998 // vectorization of *epilogue* loops in the process of vectorizing loops and 999 // their epilogues. 1000 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 1001 public: 1002 EpilogueVectorizerEpilogueLoop( 1003 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 1004 DominatorTree *DT, const TargetLibraryInfo *TLI, 1005 const TargetTransformInfo *TTI, AssumptionCache *AC, 1006 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1007 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1008 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1009 GeneratedRTChecks &Checks) 1010 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1011 EPI, LVL, CM, BFI, PSI, Checks) {} 1012 /// Implements the interface for creating a vectorized skeleton using the 1013 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1014 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1015 1016 protected: 1017 /// Emits an iteration count bypass check after the main vector loop has 1018 /// finished to see if there are any iterations left to execute by either 1019 /// the vector epilogue or the scalar epilogue. 1020 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1021 BasicBlock *Bypass, 1022 BasicBlock *Insert); 1023 void printDebugTracesAtStart() override; 1024 void printDebugTracesAtEnd() override; 1025 }; 1026 } // end namespace llvm 1027 1028 /// Look for a meaningful debug location on the instruction or it's 1029 /// operands. 1030 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1031 if (!I) 1032 return I; 1033 1034 DebugLoc Empty; 1035 if (I->getDebugLoc() != Empty) 1036 return I; 1037 1038 for (Use &Op : I->operands()) { 1039 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1040 if (OpInst->getDebugLoc() != Empty) 1041 return OpInst; 1042 } 1043 1044 return I; 1045 } 1046 1047 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 1048 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 1049 const DILocation *DIL = Inst->getDebugLoc(); 1050 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1051 !isa<DbgInfoIntrinsic>(Inst)) { 1052 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1053 auto NewDIL = 1054 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1055 if (NewDIL) 1056 B.SetCurrentDebugLocation(NewDIL.getValue()); 1057 else 1058 LLVM_DEBUG(dbgs() 1059 << "Failed to create new discriminator: " 1060 << DIL->getFilename() << " Line: " << DIL->getLine()); 1061 } 1062 else 1063 B.SetCurrentDebugLocation(DIL); 1064 } else 1065 B.SetCurrentDebugLocation(DebugLoc()); 1066 } 1067 1068 /// Write a record \p DebugMsg about vectorization failure to the debug 1069 /// output stream. If \p I is passed, it is an instruction that prevents 1070 /// vectorization. 1071 #ifndef NDEBUG 1072 static void debugVectorizationFailure(const StringRef DebugMsg, 1073 Instruction *I) { 1074 dbgs() << "LV: Not vectorizing: " << DebugMsg; 1075 if (I != nullptr) 1076 dbgs() << " " << *I; 1077 else 1078 dbgs() << '.'; 1079 dbgs() << '\n'; 1080 } 1081 #endif 1082 1083 /// Create an analysis remark that explains why vectorization failed 1084 /// 1085 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1086 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1087 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1088 /// the location of the remark. \return the remark object that can be 1089 /// streamed to. 1090 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1091 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1092 Value *CodeRegion = TheLoop->getHeader(); 1093 DebugLoc DL = TheLoop->getStartLoc(); 1094 1095 if (I) { 1096 CodeRegion = I->getParent(); 1097 // If there is no debug location attached to the instruction, revert back to 1098 // using the loop's. 1099 if (I->getDebugLoc()) 1100 DL = I->getDebugLoc(); 1101 } 1102 1103 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 1104 R << "loop not vectorized: "; 1105 return R; 1106 } 1107 1108 /// Return a value for Step multiplied by VF. 1109 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1110 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1111 Constant *StepVal = ConstantInt::get( 1112 Step->getType(), 1113 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1114 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1115 } 1116 1117 namespace llvm { 1118 1119 /// Return the runtime value for VF. 1120 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1121 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1122 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1123 } 1124 1125 void reportVectorizationFailure(const StringRef DebugMsg, 1126 const StringRef OREMsg, const StringRef ORETag, 1127 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 1128 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 1129 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1130 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 1131 ORETag, TheLoop, I) << OREMsg); 1132 } 1133 1134 } // end namespace llvm 1135 1136 #ifndef NDEBUG 1137 /// \return string containing a file name and a line # for the given loop. 1138 static std::string getDebugLocString(const Loop *L) { 1139 std::string Result; 1140 if (L) { 1141 raw_string_ostream OS(Result); 1142 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1143 LoopDbgLoc.print(OS); 1144 else 1145 // Just print the module name. 1146 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1147 OS.flush(); 1148 } 1149 return Result; 1150 } 1151 #endif 1152 1153 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1154 const Instruction *Orig) { 1155 // If the loop was versioned with memchecks, add the corresponding no-alias 1156 // metadata. 1157 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1158 LVer->annotateInstWithNoAlias(To, Orig); 1159 } 1160 1161 void InnerLoopVectorizer::addMetadata(Instruction *To, 1162 Instruction *From) { 1163 propagateMetadata(To, From); 1164 addNewMetadata(To, From); 1165 } 1166 1167 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1168 Instruction *From) { 1169 for (Value *V : To) { 1170 if (Instruction *I = dyn_cast<Instruction>(V)) 1171 addMetadata(I, From); 1172 } 1173 } 1174 1175 namespace llvm { 1176 1177 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1178 // lowered. 1179 enum ScalarEpilogueLowering { 1180 1181 // The default: allowing scalar epilogues. 1182 CM_ScalarEpilogueAllowed, 1183 1184 // Vectorization with OptForSize: don't allow epilogues. 1185 CM_ScalarEpilogueNotAllowedOptSize, 1186 1187 // A special case of vectorisation with OptForSize: loops with a very small 1188 // trip count are considered for vectorization under OptForSize, thereby 1189 // making sure the cost of their loop body is dominant, free of runtime 1190 // guards and scalar iteration overheads. 1191 CM_ScalarEpilogueNotAllowedLowTripLoop, 1192 1193 // Loop hint predicate indicating an epilogue is undesired. 1194 CM_ScalarEpilogueNotNeededUsePredicate, 1195 1196 // Directive indicating we must either tail fold or not vectorize 1197 CM_ScalarEpilogueNotAllowedUsePredicate 1198 }; 1199 1200 /// LoopVectorizationCostModel - estimates the expected speedups due to 1201 /// vectorization. 1202 /// In many cases vectorization is not profitable. This can happen because of 1203 /// a number of reasons. In this class we mainly attempt to predict the 1204 /// expected speedup/slowdowns due to the supported instruction set. We use the 1205 /// TargetTransformInfo to query the different backends for the cost of 1206 /// different operations. 1207 class LoopVectorizationCostModel { 1208 public: 1209 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1210 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1211 LoopVectorizationLegality *Legal, 1212 const TargetTransformInfo &TTI, 1213 const TargetLibraryInfo *TLI, DemandedBits *DB, 1214 AssumptionCache *AC, 1215 OptimizationRemarkEmitter *ORE, const Function *F, 1216 const LoopVectorizeHints *Hints, 1217 InterleavedAccessInfo &IAI) 1218 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1219 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1220 Hints(Hints), InterleaveInfo(IAI) {} 1221 1222 /// \return An upper bound for the vectorization factor, or None if 1223 /// vectorization and interleaving should be avoided up front. 1224 Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC); 1225 1226 /// \return True if runtime checks are required for vectorization, and false 1227 /// otherwise. 1228 bool runtimeChecksRequired(); 1229 1230 /// \return The most profitable vectorization factor and the cost of that VF. 1231 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1232 /// then this vectorization factor will be selected if vectorization is 1233 /// possible. 1234 VectorizationFactor selectVectorizationFactor(ElementCount MaxVF); 1235 VectorizationFactor 1236 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1237 const LoopVectorizationPlanner &LVP); 1238 1239 /// Setup cost-based decisions for user vectorization factor. 1240 void selectUserVectorizationFactor(ElementCount UserVF) { 1241 collectUniformsAndScalars(UserVF); 1242 collectInstsToScalarize(UserVF); 1243 } 1244 1245 /// \return The size (in bits) of the smallest and widest types in the code 1246 /// that needs to be vectorized. We ignore values that remain scalar such as 1247 /// 64 bit loop indices. 1248 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1249 1250 /// \return The desired interleave count. 1251 /// If interleave count has been specified by metadata it will be returned. 1252 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1253 /// are the selected vectorization factor and the cost of the selected VF. 1254 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1255 1256 /// Memory access instruction may be vectorized in more than one way. 1257 /// Form of instruction after vectorization depends on cost. 1258 /// This function takes cost-based decisions for Load/Store instructions 1259 /// and collects them in a map. This decisions map is used for building 1260 /// the lists of loop-uniform and loop-scalar instructions. 1261 /// The calculated cost is saved with widening decision in order to 1262 /// avoid redundant calculations. 1263 void setCostBasedWideningDecision(ElementCount VF); 1264 1265 /// A struct that represents some properties of the register usage 1266 /// of a loop. 1267 struct RegisterUsage { 1268 /// Holds the number of loop invariant values that are used in the loop. 1269 /// The key is ClassID of target-provided register class. 1270 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1271 /// Holds the maximum number of concurrent live intervals in the loop. 1272 /// The key is ClassID of target-provided register class. 1273 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1274 }; 1275 1276 /// \return Returns information about the register usages of the loop for the 1277 /// given vectorization factors. 1278 SmallVector<RegisterUsage, 8> 1279 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1280 1281 /// Collect values we want to ignore in the cost model. 1282 void collectValuesToIgnore(); 1283 1284 /// Split reductions into those that happen in the loop, and those that happen 1285 /// outside. In loop reductions are collected into InLoopReductionChains. 1286 void collectInLoopReductions(); 1287 1288 /// \returns The smallest bitwidth each instruction can be represented with. 1289 /// The vector equivalents of these instructions should be truncated to this 1290 /// type. 1291 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1292 return MinBWs; 1293 } 1294 1295 /// \returns True if it is more profitable to scalarize instruction \p I for 1296 /// vectorization factor \p VF. 1297 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1298 assert(VF.isVector() && 1299 "Profitable to scalarize relevant only for VF > 1."); 1300 1301 // Cost model is not run in the VPlan-native path - return conservative 1302 // result until this changes. 1303 if (EnableVPlanNativePath) 1304 return false; 1305 1306 auto Scalars = InstsToScalarize.find(VF); 1307 assert(Scalars != InstsToScalarize.end() && 1308 "VF not yet analyzed for scalarization profitability"); 1309 return Scalars->second.find(I) != Scalars->second.end(); 1310 } 1311 1312 /// Returns true if \p I is known to be uniform after vectorization. 1313 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1314 if (VF.isScalar()) 1315 return true; 1316 1317 // Cost model is not run in the VPlan-native path - return conservative 1318 // result until this changes. 1319 if (EnableVPlanNativePath) 1320 return false; 1321 1322 auto UniformsPerVF = Uniforms.find(VF); 1323 assert(UniformsPerVF != Uniforms.end() && 1324 "VF not yet analyzed for uniformity"); 1325 return UniformsPerVF->second.count(I); 1326 } 1327 1328 /// Returns true if \p I is known to be scalar after vectorization. 1329 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1330 if (VF.isScalar()) 1331 return true; 1332 1333 // Cost model is not run in the VPlan-native path - return conservative 1334 // result until this changes. 1335 if (EnableVPlanNativePath) 1336 return false; 1337 1338 auto ScalarsPerVF = Scalars.find(VF); 1339 assert(ScalarsPerVF != Scalars.end() && 1340 "Scalar values are not calculated for VF"); 1341 return ScalarsPerVF->second.count(I); 1342 } 1343 1344 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1345 /// for vectorization factor \p VF. 1346 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1347 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1348 !isProfitableToScalarize(I, VF) && 1349 !isScalarAfterVectorization(I, VF); 1350 } 1351 1352 /// Decision that was taken during cost calculation for memory instruction. 1353 enum InstWidening { 1354 CM_Unknown, 1355 CM_Widen, // For consecutive accesses with stride +1. 1356 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1357 CM_Interleave, 1358 CM_GatherScatter, 1359 CM_Scalarize 1360 }; 1361 1362 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1363 /// instruction \p I and vector width \p VF. 1364 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1365 InstructionCost Cost) { 1366 assert(VF.isVector() && "Expected VF >=2"); 1367 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1368 } 1369 1370 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1371 /// interleaving group \p Grp and vector width \p VF. 1372 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1373 ElementCount VF, InstWidening W, 1374 InstructionCost Cost) { 1375 assert(VF.isVector() && "Expected VF >=2"); 1376 /// Broadcast this decicion to all instructions inside the group. 1377 /// But the cost will be assigned to one instruction only. 1378 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1379 if (auto *I = Grp->getMember(i)) { 1380 if (Grp->getInsertPos() == I) 1381 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1382 else 1383 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1384 } 1385 } 1386 } 1387 1388 /// Return the cost model decision for the given instruction \p I and vector 1389 /// width \p VF. Return CM_Unknown if this instruction did not pass 1390 /// through the cost modeling. 1391 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1392 assert(VF.isVector() && "Expected VF to be a vector VF"); 1393 // Cost model is not run in the VPlan-native path - return conservative 1394 // result until this changes. 1395 if (EnableVPlanNativePath) 1396 return CM_GatherScatter; 1397 1398 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1399 auto Itr = WideningDecisions.find(InstOnVF); 1400 if (Itr == WideningDecisions.end()) 1401 return CM_Unknown; 1402 return Itr->second.first; 1403 } 1404 1405 /// Return the vectorization cost for the given instruction \p I and vector 1406 /// width \p VF. 1407 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1408 assert(VF.isVector() && "Expected VF >=2"); 1409 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1410 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1411 "The cost is not calculated"); 1412 return WideningDecisions[InstOnVF].second; 1413 } 1414 1415 /// Return True if instruction \p I is an optimizable truncate whose operand 1416 /// is an induction variable. Such a truncate will be removed by adding a new 1417 /// induction variable with the destination type. 1418 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1419 // If the instruction is not a truncate, return false. 1420 auto *Trunc = dyn_cast<TruncInst>(I); 1421 if (!Trunc) 1422 return false; 1423 1424 // Get the source and destination types of the truncate. 1425 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1426 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1427 1428 // If the truncate is free for the given types, return false. Replacing a 1429 // free truncate with an induction variable would add an induction variable 1430 // update instruction to each iteration of the loop. We exclude from this 1431 // check the primary induction variable since it will need an update 1432 // instruction regardless. 1433 Value *Op = Trunc->getOperand(0); 1434 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1435 return false; 1436 1437 // If the truncated value is not an induction variable, return false. 1438 return Legal->isInductionPhi(Op); 1439 } 1440 1441 /// Collects the instructions to scalarize for each predicated instruction in 1442 /// the loop. 1443 void collectInstsToScalarize(ElementCount VF); 1444 1445 /// Collect Uniform and Scalar values for the given \p VF. 1446 /// The sets depend on CM decision for Load/Store instructions 1447 /// that may be vectorized as interleave, gather-scatter or scalarized. 1448 void collectUniformsAndScalars(ElementCount VF) { 1449 // Do the analysis once. 1450 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1451 return; 1452 setCostBasedWideningDecision(VF); 1453 collectLoopUniforms(VF); 1454 collectLoopScalars(VF); 1455 } 1456 1457 /// Returns true if the target machine supports masked store operation 1458 /// for the given \p DataType and kind of access to \p Ptr. 1459 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1460 return Legal->isConsecutivePtr(Ptr) && 1461 TTI.isLegalMaskedStore(DataType, Alignment); 1462 } 1463 1464 /// Returns true if the target machine supports masked load operation 1465 /// for the given \p DataType and kind of access to \p Ptr. 1466 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1467 return Legal->isConsecutivePtr(Ptr) && 1468 TTI.isLegalMaskedLoad(DataType, Alignment); 1469 } 1470 1471 /// Returns true if the target machine supports masked scatter operation 1472 /// for the given \p DataType. 1473 bool isLegalMaskedScatter(Type *DataType, Align Alignment) const { 1474 return TTI.isLegalMaskedScatter(DataType, Alignment); 1475 } 1476 1477 /// Returns true if the target machine supports masked gather operation 1478 /// for the given \p DataType. 1479 bool isLegalMaskedGather(Type *DataType, Align Alignment) const { 1480 return TTI.isLegalMaskedGather(DataType, Alignment); 1481 } 1482 1483 /// Returns true if the target machine can represent \p V as a masked gather 1484 /// or scatter operation. 1485 bool isLegalGatherOrScatter(Value *V) { 1486 bool LI = isa<LoadInst>(V); 1487 bool SI = isa<StoreInst>(V); 1488 if (!LI && !SI) 1489 return false; 1490 auto *Ty = getMemInstValueType(V); 1491 Align Align = getLoadStoreAlignment(V); 1492 return (LI && isLegalMaskedGather(Ty, Align)) || 1493 (SI && isLegalMaskedScatter(Ty, Align)); 1494 } 1495 1496 /// Returns true if the target machine supports all of the reduction 1497 /// variables found for the given VF. 1498 bool canVectorizeReductions(ElementCount VF) { 1499 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1500 RecurrenceDescriptor RdxDesc = Reduction.second; 1501 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1502 })); 1503 } 1504 1505 /// Returns true if \p I is an instruction that will be scalarized with 1506 /// predication. Such instructions include conditional stores and 1507 /// instructions that may divide by zero. 1508 /// If a non-zero VF has been calculated, we check if I will be scalarized 1509 /// predication for that VF. 1510 bool 1511 isScalarWithPredication(Instruction *I, 1512 ElementCount VF = ElementCount::getFixed(1)) const; 1513 1514 // Returns true if \p I is an instruction that will be predicated either 1515 // through scalar predication or masked load/store or masked gather/scatter. 1516 // Superset of instructions that return true for isScalarWithPredication. 1517 bool isPredicatedInst(Instruction *I) { 1518 if (!blockNeedsPredication(I->getParent())) 1519 return false; 1520 // Loads and stores that need some form of masked operation are predicated 1521 // instructions. 1522 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1523 return Legal->isMaskRequired(I); 1524 return isScalarWithPredication(I); 1525 } 1526 1527 /// Returns true if \p I is a memory instruction with consecutive memory 1528 /// access that can be widened. 1529 bool 1530 memoryInstructionCanBeWidened(Instruction *I, 1531 ElementCount VF = ElementCount::getFixed(1)); 1532 1533 /// Returns true if \p I is a memory instruction in an interleaved-group 1534 /// of memory accesses that can be vectorized with wide vector loads/stores 1535 /// and shuffles. 1536 bool 1537 interleavedAccessCanBeWidened(Instruction *I, 1538 ElementCount VF = ElementCount::getFixed(1)); 1539 1540 /// Check if \p Instr belongs to any interleaved access group. 1541 bool isAccessInterleaved(Instruction *Instr) { 1542 return InterleaveInfo.isInterleaved(Instr); 1543 } 1544 1545 /// Get the interleaved access group that \p Instr belongs to. 1546 const InterleaveGroup<Instruction> * 1547 getInterleavedAccessGroup(Instruction *Instr) { 1548 return InterleaveInfo.getInterleaveGroup(Instr); 1549 } 1550 1551 /// Returns true if we're required to use a scalar epilogue for at least 1552 /// the final iteration of the original loop. 1553 bool requiresScalarEpilogue() const { 1554 if (!isScalarEpilogueAllowed()) 1555 return false; 1556 // If we might exit from anywhere but the latch, must run the exiting 1557 // iteration in scalar form. 1558 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1559 return true; 1560 return InterleaveInfo.requiresScalarEpilogue(); 1561 } 1562 1563 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1564 /// loop hint annotation. 1565 bool isScalarEpilogueAllowed() const { 1566 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1567 } 1568 1569 /// Returns true if all loop blocks should be masked to fold tail loop. 1570 bool foldTailByMasking() const { return FoldTailByMasking; } 1571 1572 bool blockNeedsPredication(BasicBlock *BB) const { 1573 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1574 } 1575 1576 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1577 /// nodes to the chain of instructions representing the reductions. Uses a 1578 /// MapVector to ensure deterministic iteration order. 1579 using ReductionChainMap = 1580 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1581 1582 /// Return the chain of instructions representing an inloop reduction. 1583 const ReductionChainMap &getInLoopReductionChains() const { 1584 return InLoopReductionChains; 1585 } 1586 1587 /// Returns true if the Phi is part of an inloop reduction. 1588 bool isInLoopReduction(PHINode *Phi) const { 1589 return InLoopReductionChains.count(Phi); 1590 } 1591 1592 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1593 /// with factor VF. Return the cost of the instruction, including 1594 /// scalarization overhead if it's needed. 1595 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1596 1597 /// Estimate cost of a call instruction CI if it were vectorized with factor 1598 /// VF. Return the cost of the instruction, including scalarization overhead 1599 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1600 /// scalarized - 1601 /// i.e. either vector version isn't available, or is too expensive. 1602 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1603 bool &NeedToScalarize) const; 1604 1605 /// Invalidates decisions already taken by the cost model. 1606 void invalidateCostModelingDecisions() { 1607 WideningDecisions.clear(); 1608 Uniforms.clear(); 1609 Scalars.clear(); 1610 } 1611 1612 private: 1613 unsigned NumPredStores = 0; 1614 1615 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1616 /// than zero. One is returned if vectorization should best be avoided due 1617 /// to cost. 1618 ElementCount computeFeasibleMaxVF(unsigned ConstTripCount, 1619 ElementCount UserVF); 1620 1621 /// The vectorization cost is a combination of the cost itself and a boolean 1622 /// indicating whether any of the contributing operations will actually 1623 /// operate on 1624 /// vector values after type legalization in the backend. If this latter value 1625 /// is 1626 /// false, then all operations will be scalarized (i.e. no vectorization has 1627 /// actually taken place). 1628 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1629 1630 /// Returns the expected execution cost. The unit of the cost does 1631 /// not matter because we use the 'cost' units to compare different 1632 /// vector widths. The cost that is returned is *not* normalized by 1633 /// the factor width. 1634 VectorizationCostTy expectedCost(ElementCount VF); 1635 1636 /// Returns the execution time cost of an instruction for a given vector 1637 /// width. Vector width of one means scalar. 1638 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1639 1640 /// The cost-computation logic from getInstructionCost which provides 1641 /// the vector type as an output parameter. 1642 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1643 Type *&VectorTy); 1644 1645 /// Return the cost of instructions in an inloop reduction pattern, if I is 1646 /// part of that pattern. 1647 InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF, 1648 Type *VectorTy, 1649 TTI::TargetCostKind CostKind); 1650 1651 /// Calculate vectorization cost of memory instruction \p I. 1652 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1653 1654 /// The cost computation for scalarized memory instruction. 1655 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1656 1657 /// The cost computation for interleaving group of memory instructions. 1658 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1659 1660 /// The cost computation for Gather/Scatter instruction. 1661 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1662 1663 /// The cost computation for widening instruction \p I with consecutive 1664 /// memory access. 1665 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1666 1667 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1668 /// Load: scalar load + broadcast. 1669 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1670 /// element) 1671 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1672 1673 /// Estimate the overhead of scalarizing an instruction. This is a 1674 /// convenience wrapper for the type-based getScalarizationOverhead API. 1675 InstructionCost getScalarizationOverhead(Instruction *I, 1676 ElementCount VF) const; 1677 1678 /// Returns whether the instruction is a load or store and will be a emitted 1679 /// as a vector operation. 1680 bool isConsecutiveLoadOrStore(Instruction *I); 1681 1682 /// Returns true if an artificially high cost for emulated masked memrefs 1683 /// should be used. 1684 bool useEmulatedMaskMemRefHack(Instruction *I); 1685 1686 /// Map of scalar integer values to the smallest bitwidth they can be legally 1687 /// represented as. The vector equivalents of these values should be truncated 1688 /// to this type. 1689 MapVector<Instruction *, uint64_t> MinBWs; 1690 1691 /// A type representing the costs for instructions if they were to be 1692 /// scalarized rather than vectorized. The entries are Instruction-Cost 1693 /// pairs. 1694 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1695 1696 /// A set containing all BasicBlocks that are known to present after 1697 /// vectorization as a predicated block. 1698 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1699 1700 /// Records whether it is allowed to have the original scalar loop execute at 1701 /// least once. This may be needed as a fallback loop in case runtime 1702 /// aliasing/dependence checks fail, or to handle the tail/remainder 1703 /// iterations when the trip count is unknown or doesn't divide by the VF, 1704 /// or as a peel-loop to handle gaps in interleave-groups. 1705 /// Under optsize and when the trip count is very small we don't allow any 1706 /// iterations to execute in the scalar loop. 1707 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1708 1709 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1710 bool FoldTailByMasking = false; 1711 1712 /// A map holding scalar costs for different vectorization factors. The 1713 /// presence of a cost for an instruction in the mapping indicates that the 1714 /// instruction will be scalarized when vectorizing with the associated 1715 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1716 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1717 1718 /// Holds the instructions known to be uniform after vectorization. 1719 /// The data is collected per VF. 1720 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1721 1722 /// Holds the instructions known to be scalar after vectorization. 1723 /// The data is collected per VF. 1724 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1725 1726 /// Holds the instructions (address computations) that are forced to be 1727 /// scalarized. 1728 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1729 1730 /// PHINodes of the reductions that should be expanded in-loop along with 1731 /// their associated chains of reduction operations, in program order from top 1732 /// (PHI) to bottom 1733 ReductionChainMap InLoopReductionChains; 1734 1735 /// A Map of inloop reduction operations and their immediate chain operand. 1736 /// FIXME: This can be removed once reductions can be costed correctly in 1737 /// vplan. This was added to allow quick lookup to the inloop operations, 1738 /// without having to loop through InLoopReductionChains. 1739 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1740 1741 /// Returns the expected difference in cost from scalarizing the expression 1742 /// feeding a predicated instruction \p PredInst. The instructions to 1743 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1744 /// non-negative return value implies the expression will be scalarized. 1745 /// Currently, only single-use chains are considered for scalarization. 1746 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1747 ElementCount VF); 1748 1749 /// Collect the instructions that are uniform after vectorization. An 1750 /// instruction is uniform if we represent it with a single scalar value in 1751 /// the vectorized loop corresponding to each vector iteration. Examples of 1752 /// uniform instructions include pointer operands of consecutive or 1753 /// interleaved memory accesses. Note that although uniformity implies an 1754 /// instruction will be scalar, the reverse is not true. In general, a 1755 /// scalarized instruction will be represented by VF scalar values in the 1756 /// vectorized loop, each corresponding to an iteration of the original 1757 /// scalar loop. 1758 void collectLoopUniforms(ElementCount VF); 1759 1760 /// Collect the instructions that are scalar after vectorization. An 1761 /// instruction is scalar if it is known to be uniform or will be scalarized 1762 /// during vectorization. Non-uniform scalarized instructions will be 1763 /// represented by VF values in the vectorized loop, each corresponding to an 1764 /// iteration of the original scalar loop. 1765 void collectLoopScalars(ElementCount VF); 1766 1767 /// Keeps cost model vectorization decision and cost for instructions. 1768 /// Right now it is used for memory instructions only. 1769 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1770 std::pair<InstWidening, InstructionCost>>; 1771 1772 DecisionList WideningDecisions; 1773 1774 /// Returns true if \p V is expected to be vectorized and it needs to be 1775 /// extracted. 1776 bool needsExtract(Value *V, ElementCount VF) const { 1777 Instruction *I = dyn_cast<Instruction>(V); 1778 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1779 TheLoop->isLoopInvariant(I)) 1780 return false; 1781 1782 // Assume we can vectorize V (and hence we need extraction) if the 1783 // scalars are not computed yet. This can happen, because it is called 1784 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1785 // the scalars are collected. That should be a safe assumption in most 1786 // cases, because we check if the operands have vectorizable types 1787 // beforehand in LoopVectorizationLegality. 1788 return Scalars.find(VF) == Scalars.end() || 1789 !isScalarAfterVectorization(I, VF); 1790 }; 1791 1792 /// Returns a range containing only operands needing to be extracted. 1793 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1794 ElementCount VF) const { 1795 return SmallVector<Value *, 4>(make_filter_range( 1796 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1797 } 1798 1799 /// Determines if we have the infrastructure to vectorize loop \p L and its 1800 /// epilogue, assuming the main loop is vectorized by \p VF. 1801 bool isCandidateForEpilogueVectorization(const Loop &L, 1802 const ElementCount VF) const; 1803 1804 /// Returns true if epilogue vectorization is considered profitable, and 1805 /// false otherwise. 1806 /// \p VF is the vectorization factor chosen for the original loop. 1807 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1808 1809 public: 1810 /// The loop that we evaluate. 1811 Loop *TheLoop; 1812 1813 /// Predicated scalar evolution analysis. 1814 PredicatedScalarEvolution &PSE; 1815 1816 /// Loop Info analysis. 1817 LoopInfo *LI; 1818 1819 /// Vectorization legality. 1820 LoopVectorizationLegality *Legal; 1821 1822 /// Vector target information. 1823 const TargetTransformInfo &TTI; 1824 1825 /// Target Library Info. 1826 const TargetLibraryInfo *TLI; 1827 1828 /// Demanded bits analysis. 1829 DemandedBits *DB; 1830 1831 /// Assumption cache. 1832 AssumptionCache *AC; 1833 1834 /// Interface to emit optimization remarks. 1835 OptimizationRemarkEmitter *ORE; 1836 1837 const Function *TheFunction; 1838 1839 /// Loop Vectorize Hint. 1840 const LoopVectorizeHints *Hints; 1841 1842 /// The interleave access information contains groups of interleaved accesses 1843 /// with the same stride and close to each other. 1844 InterleavedAccessInfo &InterleaveInfo; 1845 1846 /// Values to ignore in the cost model. 1847 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1848 1849 /// Values to ignore in the cost model when VF > 1. 1850 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1851 1852 /// Profitable vector factors. 1853 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1854 }; 1855 } // end namespace llvm 1856 1857 /// Helper struct to manage generating runtime checks for vectorization. 1858 /// 1859 /// The runtime checks are created up-front in temporary blocks to allow better 1860 /// estimating the cost and un-linked from the existing IR. After deciding to 1861 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1862 /// temporary blocks are completely removed. 1863 class GeneratedRTChecks { 1864 /// Basic block which contains the generated SCEV checks, if any. 1865 BasicBlock *SCEVCheckBlock = nullptr; 1866 1867 /// The value representing the result of the generated SCEV checks. If it is 1868 /// nullptr, either no SCEV checks have been generated or they have been used. 1869 Value *SCEVCheckCond = nullptr; 1870 1871 /// Basic block which contains the generated memory runtime checks, if any. 1872 BasicBlock *MemCheckBlock = nullptr; 1873 1874 /// The value representing the result of the generated memory runtime checks. 1875 /// If it is nullptr, either no memory runtime checks have been generated or 1876 /// they have been used. 1877 Instruction *MemRuntimeCheckCond = nullptr; 1878 1879 DominatorTree *DT; 1880 LoopInfo *LI; 1881 1882 SCEVExpander SCEVExp; 1883 SCEVExpander MemCheckExp; 1884 1885 public: 1886 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1887 const DataLayout &DL) 1888 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1889 MemCheckExp(SE, DL, "scev.check") {} 1890 1891 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1892 /// accurately estimate the cost of the runtime checks. The blocks are 1893 /// un-linked from the IR and is added back during vector code generation. If 1894 /// there is no vector code generation, the check blocks are removed 1895 /// completely. 1896 void Create(Loop *L, const LoopAccessInfo &LAI, 1897 const SCEVUnionPredicate &UnionPred) { 1898 1899 BasicBlock *LoopHeader = L->getHeader(); 1900 BasicBlock *Preheader = L->getLoopPreheader(); 1901 1902 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1903 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1904 // may be used by SCEVExpander. The blocks will be un-linked from their 1905 // predecessors and removed from LI & DT at the end of the function. 1906 if (!UnionPred.isAlwaysTrue()) { 1907 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1908 nullptr, "vector.scevcheck"); 1909 1910 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1911 &UnionPred, SCEVCheckBlock->getTerminator()); 1912 } 1913 1914 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1915 if (RtPtrChecking.Need) { 1916 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1917 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1918 "vector.memcheck"); 1919 1920 std::tie(std::ignore, MemRuntimeCheckCond) = 1921 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1922 RtPtrChecking.getChecks(), MemCheckExp); 1923 assert(MemRuntimeCheckCond && 1924 "no RT checks generated although RtPtrChecking " 1925 "claimed checks are required"); 1926 } 1927 1928 if (!MemCheckBlock && !SCEVCheckBlock) 1929 return; 1930 1931 // Unhook the temporary block with the checks, update various places 1932 // accordingly. 1933 if (SCEVCheckBlock) 1934 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1935 if (MemCheckBlock) 1936 MemCheckBlock->replaceAllUsesWith(Preheader); 1937 1938 if (SCEVCheckBlock) { 1939 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1940 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1941 Preheader->getTerminator()->eraseFromParent(); 1942 } 1943 if (MemCheckBlock) { 1944 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1945 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1946 Preheader->getTerminator()->eraseFromParent(); 1947 } 1948 1949 DT->changeImmediateDominator(LoopHeader, Preheader); 1950 if (MemCheckBlock) { 1951 DT->eraseNode(MemCheckBlock); 1952 LI->removeBlock(MemCheckBlock); 1953 } 1954 if (SCEVCheckBlock) { 1955 DT->eraseNode(SCEVCheckBlock); 1956 LI->removeBlock(SCEVCheckBlock); 1957 } 1958 } 1959 1960 /// Remove the created SCEV & memory runtime check blocks & instructions, if 1961 /// unused. 1962 ~GeneratedRTChecks() { 1963 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 1964 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 1965 if (!SCEVCheckCond) 1966 SCEVCleaner.markResultUsed(); 1967 1968 if (!MemRuntimeCheckCond) 1969 MemCheckCleaner.markResultUsed(); 1970 1971 if (MemRuntimeCheckCond) { 1972 auto &SE = *MemCheckExp.getSE(); 1973 // Memory runtime check generation creates compares that use expanded 1974 // values. Remove them before running the SCEVExpanderCleaners. 1975 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 1976 if (MemCheckExp.isInsertedInstruction(&I)) 1977 continue; 1978 SE.forgetValue(&I); 1979 SE.eraseValueFromMap(&I); 1980 I.eraseFromParent(); 1981 } 1982 } 1983 MemCheckCleaner.cleanup(); 1984 SCEVCleaner.cleanup(); 1985 1986 if (SCEVCheckCond) 1987 SCEVCheckBlock->eraseFromParent(); 1988 if (MemRuntimeCheckCond) 1989 MemCheckBlock->eraseFromParent(); 1990 } 1991 1992 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 1993 /// adjusts the branches to branch to the vector preheader or \p Bypass, 1994 /// depending on the generated condition. 1995 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 1996 BasicBlock *LoopVectorPreHeader, 1997 BasicBlock *LoopExitBlock) { 1998 if (!SCEVCheckCond) 1999 return nullptr; 2000 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2001 if (C->isZero()) 2002 return nullptr; 2003 2004 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2005 2006 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2007 // Create new preheader for vector loop. 2008 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2009 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2010 2011 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2012 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2013 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2014 SCEVCheckBlock); 2015 2016 DT->addNewBlock(SCEVCheckBlock, Pred); 2017 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2018 2019 ReplaceInstWithInst( 2020 SCEVCheckBlock->getTerminator(), 2021 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2022 // Mark the check as used, to prevent it from being removed during cleanup. 2023 SCEVCheckCond = nullptr; 2024 return SCEVCheckBlock; 2025 } 2026 2027 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2028 /// the branches to branch to the vector preheader or \p Bypass, depending on 2029 /// the generated condition. 2030 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2031 BasicBlock *LoopVectorPreHeader) { 2032 // Check if we generated code that checks in runtime if arrays overlap. 2033 if (!MemRuntimeCheckCond) 2034 return nullptr; 2035 2036 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2037 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2038 MemCheckBlock); 2039 2040 DT->addNewBlock(MemCheckBlock, Pred); 2041 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2042 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2043 2044 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2045 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2046 2047 ReplaceInstWithInst( 2048 MemCheckBlock->getTerminator(), 2049 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2050 MemCheckBlock->getTerminator()->setDebugLoc( 2051 Pred->getTerminator()->getDebugLoc()); 2052 2053 // Mark the check as used, to prevent it from being removed during cleanup. 2054 MemRuntimeCheckCond = nullptr; 2055 return MemCheckBlock; 2056 } 2057 }; 2058 2059 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2060 // vectorization. The loop needs to be annotated with #pragma omp simd 2061 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2062 // vector length information is not provided, vectorization is not considered 2063 // explicit. Interleave hints are not allowed either. These limitations will be 2064 // relaxed in the future. 2065 // Please, note that we are currently forced to abuse the pragma 'clang 2066 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2067 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2068 // provides *explicit vectorization hints* (LV can bypass legal checks and 2069 // assume that vectorization is legal). However, both hints are implemented 2070 // using the same metadata (llvm.loop.vectorize, processed by 2071 // LoopVectorizeHints). This will be fixed in the future when the native IR 2072 // representation for pragma 'omp simd' is introduced. 2073 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2074 OptimizationRemarkEmitter *ORE) { 2075 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2076 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2077 2078 // Only outer loops with an explicit vectorization hint are supported. 2079 // Unannotated outer loops are ignored. 2080 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2081 return false; 2082 2083 Function *Fn = OuterLp->getHeader()->getParent(); 2084 if (!Hints.allowVectorization(Fn, OuterLp, 2085 true /*VectorizeOnlyWhenForced*/)) { 2086 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2087 return false; 2088 } 2089 2090 if (Hints.getInterleave() > 1) { 2091 // TODO: Interleave support is future work. 2092 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2093 "outer loops.\n"); 2094 Hints.emitRemarkWithHints(); 2095 return false; 2096 } 2097 2098 return true; 2099 } 2100 2101 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2102 OptimizationRemarkEmitter *ORE, 2103 SmallVectorImpl<Loop *> &V) { 2104 // Collect inner loops and outer loops without irreducible control flow. For 2105 // now, only collect outer loops that have explicit vectorization hints. If we 2106 // are stress testing the VPlan H-CFG construction, we collect the outermost 2107 // loop of every loop nest. 2108 if (L.isInnermost() || VPlanBuildStressTest || 2109 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2110 LoopBlocksRPO RPOT(&L); 2111 RPOT.perform(LI); 2112 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2113 V.push_back(&L); 2114 // TODO: Collect inner loops inside marked outer loops in case 2115 // vectorization fails for the outer loop. Do not invoke 2116 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2117 // already known to be reducible. We can use an inherited attribute for 2118 // that. 2119 return; 2120 } 2121 } 2122 for (Loop *InnerL : L) 2123 collectSupportedLoops(*InnerL, LI, ORE, V); 2124 } 2125 2126 namespace { 2127 2128 /// The LoopVectorize Pass. 2129 struct LoopVectorize : public FunctionPass { 2130 /// Pass identification, replacement for typeid 2131 static char ID; 2132 2133 LoopVectorizePass Impl; 2134 2135 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2136 bool VectorizeOnlyWhenForced = false) 2137 : FunctionPass(ID), 2138 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2139 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2140 } 2141 2142 bool runOnFunction(Function &F) override { 2143 if (skipFunction(F)) 2144 return false; 2145 2146 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2147 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2148 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2149 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2150 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2151 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2152 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2153 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2154 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2155 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2156 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2157 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2158 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2159 2160 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2161 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2162 2163 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2164 GetLAA, *ORE, PSI).MadeAnyChange; 2165 } 2166 2167 void getAnalysisUsage(AnalysisUsage &AU) const override { 2168 AU.addRequired<AssumptionCacheTracker>(); 2169 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2170 AU.addRequired<DominatorTreeWrapperPass>(); 2171 AU.addRequired<LoopInfoWrapperPass>(); 2172 AU.addRequired<ScalarEvolutionWrapperPass>(); 2173 AU.addRequired<TargetTransformInfoWrapperPass>(); 2174 AU.addRequired<AAResultsWrapperPass>(); 2175 AU.addRequired<LoopAccessLegacyAnalysis>(); 2176 AU.addRequired<DemandedBitsWrapperPass>(); 2177 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2178 AU.addRequired<InjectTLIMappingsLegacy>(); 2179 2180 // We currently do not preserve loopinfo/dominator analyses with outer loop 2181 // vectorization. Until this is addressed, mark these analyses as preserved 2182 // only for non-VPlan-native path. 2183 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2184 if (!EnableVPlanNativePath) { 2185 AU.addPreserved<LoopInfoWrapperPass>(); 2186 AU.addPreserved<DominatorTreeWrapperPass>(); 2187 } 2188 2189 AU.addPreserved<BasicAAWrapperPass>(); 2190 AU.addPreserved<GlobalsAAWrapperPass>(); 2191 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2192 } 2193 }; 2194 2195 } // end anonymous namespace 2196 2197 //===----------------------------------------------------------------------===// 2198 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2199 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2200 //===----------------------------------------------------------------------===// 2201 2202 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2203 // We need to place the broadcast of invariant variables outside the loop, 2204 // but only if it's proven safe to do so. Else, broadcast will be inside 2205 // vector loop body. 2206 Instruction *Instr = dyn_cast<Instruction>(V); 2207 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2208 (!Instr || 2209 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2210 // Place the code for broadcasting invariant variables in the new preheader. 2211 IRBuilder<>::InsertPointGuard Guard(Builder); 2212 if (SafeToHoist) 2213 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2214 2215 // Broadcast the scalar into all locations in the vector. 2216 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2217 2218 return Shuf; 2219 } 2220 2221 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2222 const InductionDescriptor &II, Value *Step, Value *Start, 2223 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2224 VPTransformState &State) { 2225 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2226 "Expected either an induction phi-node or a truncate of it!"); 2227 2228 // Construct the initial value of the vector IV in the vector loop preheader 2229 auto CurrIP = Builder.saveIP(); 2230 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2231 if (isa<TruncInst>(EntryVal)) { 2232 assert(Start->getType()->isIntegerTy() && 2233 "Truncation requires an integer type"); 2234 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2235 Step = Builder.CreateTrunc(Step, TruncType); 2236 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2237 } 2238 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2239 Value *SteppedStart = 2240 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2241 2242 // We create vector phi nodes for both integer and floating-point induction 2243 // variables. Here, we determine the kind of arithmetic we will perform. 2244 Instruction::BinaryOps AddOp; 2245 Instruction::BinaryOps MulOp; 2246 if (Step->getType()->isIntegerTy()) { 2247 AddOp = Instruction::Add; 2248 MulOp = Instruction::Mul; 2249 } else { 2250 AddOp = II.getInductionOpcode(); 2251 MulOp = Instruction::FMul; 2252 } 2253 2254 // Multiply the vectorization factor by the step using integer or 2255 // floating-point arithmetic as appropriate. 2256 Type *StepType = Step->getType(); 2257 if (Step->getType()->isFloatingPointTy()) 2258 StepType = IntegerType::get(StepType->getContext(), 2259 StepType->getScalarSizeInBits()); 2260 Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2261 if (Step->getType()->isFloatingPointTy()) 2262 RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType()); 2263 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2264 2265 // Create a vector splat to use in the induction update. 2266 // 2267 // FIXME: If the step is non-constant, we create the vector splat with 2268 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2269 // handle a constant vector splat. 2270 Value *SplatVF = isa<Constant>(Mul) 2271 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2272 : Builder.CreateVectorSplat(VF, Mul); 2273 Builder.restoreIP(CurrIP); 2274 2275 // We may need to add the step a number of times, depending on the unroll 2276 // factor. The last of those goes into the PHI. 2277 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2278 &*LoopVectorBody->getFirstInsertionPt()); 2279 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2280 Instruction *LastInduction = VecInd; 2281 for (unsigned Part = 0; Part < UF; ++Part) { 2282 State.set(Def, LastInduction, Part); 2283 2284 if (isa<TruncInst>(EntryVal)) 2285 addMetadata(LastInduction, EntryVal); 2286 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2287 State, Part); 2288 2289 LastInduction = cast<Instruction>( 2290 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2291 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2292 } 2293 2294 // Move the last step to the end of the latch block. This ensures consistent 2295 // placement of all induction updates. 2296 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2297 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2298 auto *ICmp = cast<Instruction>(Br->getCondition()); 2299 LastInduction->moveBefore(ICmp); 2300 LastInduction->setName("vec.ind.next"); 2301 2302 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2303 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2304 } 2305 2306 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2307 return Cost->isScalarAfterVectorization(I, VF) || 2308 Cost->isProfitableToScalarize(I, VF); 2309 } 2310 2311 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2312 if (shouldScalarizeInstruction(IV)) 2313 return true; 2314 auto isScalarInst = [&](User *U) -> bool { 2315 auto *I = cast<Instruction>(U); 2316 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2317 }; 2318 return llvm::any_of(IV->users(), isScalarInst); 2319 } 2320 2321 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2322 const InductionDescriptor &ID, const Instruction *EntryVal, 2323 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2324 unsigned Part, unsigned Lane) { 2325 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2326 "Expected either an induction phi-node or a truncate of it!"); 2327 2328 // This induction variable is not the phi from the original loop but the 2329 // newly-created IV based on the proof that casted Phi is equal to the 2330 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2331 // re-uses the same InductionDescriptor that original IV uses but we don't 2332 // have to do any recording in this case - that is done when original IV is 2333 // processed. 2334 if (isa<TruncInst>(EntryVal)) 2335 return; 2336 2337 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2338 if (Casts.empty()) 2339 return; 2340 // Only the first Cast instruction in the Casts vector is of interest. 2341 // The rest of the Casts (if exist) have no uses outside the 2342 // induction update chain itself. 2343 if (Lane < UINT_MAX) 2344 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2345 else 2346 State.set(CastDef, VectorLoopVal, Part); 2347 } 2348 2349 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2350 TruncInst *Trunc, VPValue *Def, 2351 VPValue *CastDef, 2352 VPTransformState &State) { 2353 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2354 "Primary induction variable must have an integer type"); 2355 2356 auto II = Legal->getInductionVars().find(IV); 2357 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2358 2359 auto ID = II->second; 2360 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2361 2362 // The value from the original loop to which we are mapping the new induction 2363 // variable. 2364 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2365 2366 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2367 2368 // Generate code for the induction step. Note that induction steps are 2369 // required to be loop-invariant 2370 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2371 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2372 "Induction step should be loop invariant"); 2373 if (PSE.getSE()->isSCEVable(IV->getType())) { 2374 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2375 return Exp.expandCodeFor(Step, Step->getType(), 2376 LoopVectorPreHeader->getTerminator()); 2377 } 2378 return cast<SCEVUnknown>(Step)->getValue(); 2379 }; 2380 2381 // The scalar value to broadcast. This is derived from the canonical 2382 // induction variable. If a truncation type is given, truncate the canonical 2383 // induction variable and step. Otherwise, derive these values from the 2384 // induction descriptor. 2385 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2386 Value *ScalarIV = Induction; 2387 if (IV != OldInduction) { 2388 ScalarIV = IV->getType()->isIntegerTy() 2389 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2390 : Builder.CreateCast(Instruction::SIToFP, Induction, 2391 IV->getType()); 2392 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2393 ScalarIV->setName("offset.idx"); 2394 } 2395 if (Trunc) { 2396 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2397 assert(Step->getType()->isIntegerTy() && 2398 "Truncation requires an integer step"); 2399 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2400 Step = Builder.CreateTrunc(Step, TruncType); 2401 } 2402 return ScalarIV; 2403 }; 2404 2405 // Create the vector values from the scalar IV, in the absence of creating a 2406 // vector IV. 2407 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2408 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2409 for (unsigned Part = 0; Part < UF; ++Part) { 2410 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2411 Value *EntryPart = 2412 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2413 ID.getInductionOpcode()); 2414 State.set(Def, EntryPart, Part); 2415 if (Trunc) 2416 addMetadata(EntryPart, Trunc); 2417 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2418 State, Part); 2419 } 2420 }; 2421 2422 // Fast-math-flags propagate from the original induction instruction. 2423 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2424 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2425 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2426 2427 // Now do the actual transformations, and start with creating the step value. 2428 Value *Step = CreateStepValue(ID.getStep()); 2429 if (VF.isZero() || VF.isScalar()) { 2430 Value *ScalarIV = CreateScalarIV(Step); 2431 CreateSplatIV(ScalarIV, Step); 2432 return; 2433 } 2434 2435 // Determine if we want a scalar version of the induction variable. This is 2436 // true if the induction variable itself is not widened, or if it has at 2437 // least one user in the loop that is not widened. 2438 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2439 if (!NeedsScalarIV) { 2440 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2441 State); 2442 return; 2443 } 2444 2445 // Try to create a new independent vector induction variable. If we can't 2446 // create the phi node, we will splat the scalar induction variable in each 2447 // loop iteration. 2448 if (!shouldScalarizeInstruction(EntryVal)) { 2449 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2450 State); 2451 Value *ScalarIV = CreateScalarIV(Step); 2452 // Create scalar steps that can be used by instructions we will later 2453 // scalarize. Note that the addition of the scalar steps will not increase 2454 // the number of instructions in the loop in the common case prior to 2455 // InstCombine. We will be trading one vector extract for each scalar step. 2456 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2457 return; 2458 } 2459 2460 // All IV users are scalar instructions, so only emit a scalar IV, not a 2461 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2462 // predicate used by the masked loads/stores. 2463 Value *ScalarIV = CreateScalarIV(Step); 2464 if (!Cost->isScalarEpilogueAllowed()) 2465 CreateSplatIV(ScalarIV, Step); 2466 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2467 } 2468 2469 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2470 Instruction::BinaryOps BinOp) { 2471 // Create and check the types. 2472 auto *ValVTy = cast<VectorType>(Val->getType()); 2473 ElementCount VLen = ValVTy->getElementCount(); 2474 2475 Type *STy = Val->getType()->getScalarType(); 2476 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2477 "Induction Step must be an integer or FP"); 2478 assert(Step->getType() == STy && "Step has wrong type"); 2479 2480 SmallVector<Constant *, 8> Indices; 2481 2482 // Create a vector of consecutive numbers from zero to VF. 2483 VectorType *InitVecValVTy = ValVTy; 2484 Type *InitVecValSTy = STy; 2485 if (STy->isFloatingPointTy()) { 2486 InitVecValSTy = 2487 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2488 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2489 } 2490 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2491 2492 // Add on StartIdx 2493 Value *StartIdxSplat = Builder.CreateVectorSplat( 2494 VLen, ConstantInt::get(InitVecValSTy, StartIdx)); 2495 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2496 2497 if (STy->isIntegerTy()) { 2498 Step = Builder.CreateVectorSplat(VLen, Step); 2499 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2500 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2501 // which can be found from the original scalar operations. 2502 Step = Builder.CreateMul(InitVec, Step); 2503 return Builder.CreateAdd(Val, Step, "induction"); 2504 } 2505 2506 // Floating point induction. 2507 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2508 "Binary Opcode should be specified for FP induction"); 2509 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2510 Step = Builder.CreateVectorSplat(VLen, Step); 2511 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2512 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2513 } 2514 2515 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2516 Instruction *EntryVal, 2517 const InductionDescriptor &ID, 2518 VPValue *Def, VPValue *CastDef, 2519 VPTransformState &State) { 2520 // We shouldn't have to build scalar steps if we aren't vectorizing. 2521 assert(VF.isVector() && "VF should be greater than one"); 2522 // Get the value type and ensure it and the step have the same integer type. 2523 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2524 assert(ScalarIVTy == Step->getType() && 2525 "Val and Step should have the same type"); 2526 2527 // We build scalar steps for both integer and floating-point induction 2528 // variables. Here, we determine the kind of arithmetic we will perform. 2529 Instruction::BinaryOps AddOp; 2530 Instruction::BinaryOps MulOp; 2531 if (ScalarIVTy->isIntegerTy()) { 2532 AddOp = Instruction::Add; 2533 MulOp = Instruction::Mul; 2534 } else { 2535 AddOp = ID.getInductionOpcode(); 2536 MulOp = Instruction::FMul; 2537 } 2538 2539 // Determine the number of scalars we need to generate for each unroll 2540 // iteration. If EntryVal is uniform, we only need to generate the first 2541 // lane. Otherwise, we generate all VF values. 2542 bool IsUniform = 2543 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2544 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2545 // Compute the scalar steps and save the results in State. 2546 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2547 ScalarIVTy->getScalarSizeInBits()); 2548 Type *VecIVTy = nullptr; 2549 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2550 if (!IsUniform && VF.isScalable()) { 2551 VecIVTy = VectorType::get(ScalarIVTy, VF); 2552 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2553 SplatStep = Builder.CreateVectorSplat(VF, Step); 2554 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2555 } 2556 2557 for (unsigned Part = 0; Part < UF; ++Part) { 2558 Value *StartIdx0 = 2559 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2560 2561 if (!IsUniform && VF.isScalable()) { 2562 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2563 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2564 if (ScalarIVTy->isFloatingPointTy()) 2565 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2566 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2567 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2568 State.set(Def, Add, Part); 2569 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2570 Part); 2571 // It's useful to record the lane values too for the known minimum number 2572 // of elements so we do those below. This improves the code quality when 2573 // trying to extract the first element, for example. 2574 } 2575 2576 if (ScalarIVTy->isFloatingPointTy()) 2577 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2578 2579 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2580 Value *StartIdx = Builder.CreateBinOp( 2581 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2582 // The step returned by `createStepForVF` is a runtime-evaluated value 2583 // when VF is scalable. Otherwise, it should be folded into a Constant. 2584 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2585 "Expected StartIdx to be folded to a constant when VF is not " 2586 "scalable"); 2587 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2588 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2589 State.set(Def, Add, VPIteration(Part, Lane)); 2590 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2591 Part, Lane); 2592 } 2593 } 2594 } 2595 2596 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2597 const VPIteration &Instance, 2598 VPTransformState &State) { 2599 Value *ScalarInst = State.get(Def, Instance); 2600 Value *VectorValue = State.get(Def, Instance.Part); 2601 VectorValue = Builder.CreateInsertElement( 2602 VectorValue, ScalarInst, 2603 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2604 State.set(Def, VectorValue, Instance.Part); 2605 } 2606 2607 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2608 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2609 return Builder.CreateVectorReverse(Vec, "reverse"); 2610 } 2611 2612 // Return whether we allow using masked interleave-groups (for dealing with 2613 // strided loads/stores that reside in predicated blocks, or for dealing 2614 // with gaps). 2615 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2616 // If an override option has been passed in for interleaved accesses, use it. 2617 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2618 return EnableMaskedInterleavedMemAccesses; 2619 2620 return TTI.enableMaskedInterleavedAccessVectorization(); 2621 } 2622 2623 // Try to vectorize the interleave group that \p Instr belongs to. 2624 // 2625 // E.g. Translate following interleaved load group (factor = 3): 2626 // for (i = 0; i < N; i+=3) { 2627 // R = Pic[i]; // Member of index 0 2628 // G = Pic[i+1]; // Member of index 1 2629 // B = Pic[i+2]; // Member of index 2 2630 // ... // do something to R, G, B 2631 // } 2632 // To: 2633 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2634 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2635 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2636 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2637 // 2638 // Or translate following interleaved store group (factor = 3): 2639 // for (i = 0; i < N; i+=3) { 2640 // ... do something to R, G, B 2641 // Pic[i] = R; // Member of index 0 2642 // Pic[i+1] = G; // Member of index 1 2643 // Pic[i+2] = B; // Member of index 2 2644 // } 2645 // To: 2646 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2647 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2648 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2649 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2650 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2651 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2652 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2653 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2654 VPValue *BlockInMask) { 2655 Instruction *Instr = Group->getInsertPos(); 2656 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2657 2658 // Prepare for the vector type of the interleaved load/store. 2659 Type *ScalarTy = getMemInstValueType(Instr); 2660 unsigned InterleaveFactor = Group->getFactor(); 2661 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2662 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2663 2664 // Prepare for the new pointers. 2665 SmallVector<Value *, 2> AddrParts; 2666 unsigned Index = Group->getIndex(Instr); 2667 2668 // TODO: extend the masked interleaved-group support to reversed access. 2669 assert((!BlockInMask || !Group->isReverse()) && 2670 "Reversed masked interleave-group not supported."); 2671 2672 // If the group is reverse, adjust the index to refer to the last vector lane 2673 // instead of the first. We adjust the index from the first vector lane, 2674 // rather than directly getting the pointer for lane VF - 1, because the 2675 // pointer operand of the interleaved access is supposed to be uniform. For 2676 // uniform instructions, we're only required to generate a value for the 2677 // first vector lane in each unroll iteration. 2678 assert(!VF.isScalable() && 2679 "scalable vector reverse operation is not implemented"); 2680 if (Group->isReverse()) 2681 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2682 2683 for (unsigned Part = 0; Part < UF; Part++) { 2684 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2685 setDebugLocFromInst(Builder, AddrPart); 2686 2687 // Notice current instruction could be any index. Need to adjust the address 2688 // to the member of index 0. 2689 // 2690 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2691 // b = A[i]; // Member of index 0 2692 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2693 // 2694 // E.g. A[i+1] = a; // Member of index 1 2695 // A[i] = b; // Member of index 0 2696 // A[i+2] = c; // Member of index 2 (Current instruction) 2697 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2698 2699 bool InBounds = false; 2700 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2701 InBounds = gep->isInBounds(); 2702 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2703 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2704 2705 // Cast to the vector pointer type. 2706 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2707 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2708 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2709 } 2710 2711 setDebugLocFromInst(Builder, Instr); 2712 Value *PoisonVec = PoisonValue::get(VecTy); 2713 2714 Value *MaskForGaps = nullptr; 2715 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2716 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2717 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2718 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2719 } 2720 2721 // Vectorize the interleaved load group. 2722 if (isa<LoadInst>(Instr)) { 2723 // For each unroll part, create a wide load for the group. 2724 SmallVector<Value *, 2> NewLoads; 2725 for (unsigned Part = 0; Part < UF; Part++) { 2726 Instruction *NewLoad; 2727 if (BlockInMask || MaskForGaps) { 2728 assert(useMaskedInterleavedAccesses(*TTI) && 2729 "masked interleaved groups are not allowed."); 2730 Value *GroupMask = MaskForGaps; 2731 if (BlockInMask) { 2732 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2733 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2734 Value *ShuffledMask = Builder.CreateShuffleVector( 2735 BlockInMaskPart, 2736 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2737 "interleaved.mask"); 2738 GroupMask = MaskForGaps 2739 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2740 MaskForGaps) 2741 : ShuffledMask; 2742 } 2743 NewLoad = 2744 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2745 GroupMask, PoisonVec, "wide.masked.vec"); 2746 } 2747 else 2748 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2749 Group->getAlign(), "wide.vec"); 2750 Group->addMetadata(NewLoad); 2751 NewLoads.push_back(NewLoad); 2752 } 2753 2754 // For each member in the group, shuffle out the appropriate data from the 2755 // wide loads. 2756 unsigned J = 0; 2757 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2758 Instruction *Member = Group->getMember(I); 2759 2760 // Skip the gaps in the group. 2761 if (!Member) 2762 continue; 2763 2764 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2765 auto StrideMask = 2766 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2767 for (unsigned Part = 0; Part < UF; Part++) { 2768 Value *StridedVec = Builder.CreateShuffleVector( 2769 NewLoads[Part], StrideMask, "strided.vec"); 2770 2771 // If this member has different type, cast the result type. 2772 if (Member->getType() != ScalarTy) { 2773 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2774 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2775 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2776 } 2777 2778 if (Group->isReverse()) 2779 StridedVec = reverseVector(StridedVec); 2780 2781 State.set(VPDefs[J], StridedVec, Part); 2782 } 2783 ++J; 2784 } 2785 return; 2786 } 2787 2788 // The sub vector type for current instruction. 2789 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2790 auto *SubVT = VectorType::get(ScalarTy, VF); 2791 2792 // Vectorize the interleaved store group. 2793 for (unsigned Part = 0; Part < UF; Part++) { 2794 // Collect the stored vector from each member. 2795 SmallVector<Value *, 4> StoredVecs; 2796 for (unsigned i = 0; i < InterleaveFactor; i++) { 2797 // Interleaved store group doesn't allow a gap, so each index has a member 2798 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2799 2800 Value *StoredVec = State.get(StoredValues[i], Part); 2801 2802 if (Group->isReverse()) 2803 StoredVec = reverseVector(StoredVec); 2804 2805 // If this member has different type, cast it to a unified type. 2806 2807 if (StoredVec->getType() != SubVT) 2808 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2809 2810 StoredVecs.push_back(StoredVec); 2811 } 2812 2813 // Concatenate all vectors into a wide vector. 2814 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2815 2816 // Interleave the elements in the wide vector. 2817 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2818 Value *IVec = Builder.CreateShuffleVector( 2819 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2820 "interleaved.vec"); 2821 2822 Instruction *NewStoreInstr; 2823 if (BlockInMask) { 2824 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2825 Value *ShuffledMask = Builder.CreateShuffleVector( 2826 BlockInMaskPart, 2827 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2828 "interleaved.mask"); 2829 NewStoreInstr = Builder.CreateMaskedStore( 2830 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2831 } 2832 else 2833 NewStoreInstr = 2834 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2835 2836 Group->addMetadata(NewStoreInstr); 2837 } 2838 } 2839 2840 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2841 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2842 VPValue *StoredValue, VPValue *BlockInMask) { 2843 // Attempt to issue a wide load. 2844 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2845 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2846 2847 assert((LI || SI) && "Invalid Load/Store instruction"); 2848 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2849 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2850 2851 LoopVectorizationCostModel::InstWidening Decision = 2852 Cost->getWideningDecision(Instr, VF); 2853 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2854 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2855 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2856 "CM decision is not to widen the memory instruction"); 2857 2858 Type *ScalarDataTy = getMemInstValueType(Instr); 2859 2860 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2861 const Align Alignment = getLoadStoreAlignment(Instr); 2862 2863 // Determine if the pointer operand of the access is either consecutive or 2864 // reverse consecutive. 2865 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2866 bool ConsecutiveStride = 2867 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2868 bool CreateGatherScatter = 2869 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2870 2871 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2872 // gather/scatter. Otherwise Decision should have been to Scalarize. 2873 assert((ConsecutiveStride || CreateGatherScatter) && 2874 "The instruction should be scalarized"); 2875 (void)ConsecutiveStride; 2876 2877 VectorParts BlockInMaskParts(UF); 2878 bool isMaskRequired = BlockInMask; 2879 if (isMaskRequired) 2880 for (unsigned Part = 0; Part < UF; ++Part) 2881 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2882 2883 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2884 // Calculate the pointer for the specific unroll-part. 2885 GetElementPtrInst *PartPtr = nullptr; 2886 2887 bool InBounds = false; 2888 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2889 InBounds = gep->isInBounds(); 2890 if (Reverse) { 2891 // If the address is consecutive but reversed, then the 2892 // wide store needs to start at the last vector element. 2893 // RunTimeVF = VScale * VF.getKnownMinValue() 2894 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 2895 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF); 2896 // NumElt = -Part * RunTimeVF 2897 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 2898 // LastLane = 1 - RunTimeVF 2899 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 2900 PartPtr = 2901 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 2902 PartPtr->setIsInBounds(InBounds); 2903 PartPtr = cast<GetElementPtrInst>( 2904 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 2905 PartPtr->setIsInBounds(InBounds); 2906 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2907 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2908 } else { 2909 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2910 PartPtr = cast<GetElementPtrInst>( 2911 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2912 PartPtr->setIsInBounds(InBounds); 2913 } 2914 2915 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2916 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2917 }; 2918 2919 // Handle Stores: 2920 if (SI) { 2921 setDebugLocFromInst(Builder, SI); 2922 2923 for (unsigned Part = 0; Part < UF; ++Part) { 2924 Instruction *NewSI = nullptr; 2925 Value *StoredVal = State.get(StoredValue, Part); 2926 if (CreateGatherScatter) { 2927 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2928 Value *VectorGep = State.get(Addr, Part); 2929 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2930 MaskPart); 2931 } else { 2932 if (Reverse) { 2933 // If we store to reverse consecutive memory locations, then we need 2934 // to reverse the order of elements in the stored value. 2935 StoredVal = reverseVector(StoredVal); 2936 // We don't want to update the value in the map as it might be used in 2937 // another expression. So don't call resetVectorValue(StoredVal). 2938 } 2939 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2940 if (isMaskRequired) 2941 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2942 BlockInMaskParts[Part]); 2943 else 2944 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2945 } 2946 addMetadata(NewSI, SI); 2947 } 2948 return; 2949 } 2950 2951 // Handle loads. 2952 assert(LI && "Must have a load instruction"); 2953 setDebugLocFromInst(Builder, LI); 2954 for (unsigned Part = 0; Part < UF; ++Part) { 2955 Value *NewLI; 2956 if (CreateGatherScatter) { 2957 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2958 Value *VectorGep = State.get(Addr, Part); 2959 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2960 nullptr, "wide.masked.gather"); 2961 addMetadata(NewLI, LI); 2962 } else { 2963 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2964 if (isMaskRequired) 2965 NewLI = Builder.CreateMaskedLoad( 2966 VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy), 2967 "wide.masked.load"); 2968 else 2969 NewLI = 2970 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2971 2972 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2973 addMetadata(NewLI, LI); 2974 if (Reverse) 2975 NewLI = reverseVector(NewLI); 2976 } 2977 2978 State.set(Def, NewLI, Part); 2979 } 2980 } 2981 2982 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 2983 VPUser &User, 2984 const VPIteration &Instance, 2985 bool IfPredicateInstr, 2986 VPTransformState &State) { 2987 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2988 2989 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2990 // the first lane and part. 2991 if (isa<NoAliasScopeDeclInst>(Instr)) 2992 if (!Instance.isFirstIteration()) 2993 return; 2994 2995 setDebugLocFromInst(Builder, Instr); 2996 2997 // Does this instruction return a value ? 2998 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2999 3000 Instruction *Cloned = Instr->clone(); 3001 if (!IsVoidRetTy) 3002 Cloned->setName(Instr->getName() + ".cloned"); 3003 3004 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3005 Builder.GetInsertPoint()); 3006 // Replace the operands of the cloned instructions with their scalar 3007 // equivalents in the new loop. 3008 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 3009 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 3010 auto InputInstance = Instance; 3011 if (!Operand || !OrigLoop->contains(Operand) || 3012 (Cost->isUniformAfterVectorization(Operand, State.VF))) 3013 InputInstance.Lane = VPLane::getFirstLane(); 3014 auto *NewOp = State.get(User.getOperand(op), InputInstance); 3015 Cloned->setOperand(op, NewOp); 3016 } 3017 addNewMetadata(Cloned, Instr); 3018 3019 // Place the cloned scalar in the new loop. 3020 Builder.Insert(Cloned); 3021 3022 State.set(Def, Cloned, Instance); 3023 3024 // If we just cloned a new assumption, add it the assumption cache. 3025 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3026 AC->registerAssumption(II); 3027 3028 // End if-block. 3029 if (IfPredicateInstr) 3030 PredicatedInstructions.push_back(Cloned); 3031 } 3032 3033 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3034 Value *End, Value *Step, 3035 Instruction *DL) { 3036 BasicBlock *Header = L->getHeader(); 3037 BasicBlock *Latch = L->getLoopLatch(); 3038 // As we're just creating this loop, it's possible no latch exists 3039 // yet. If so, use the header as this will be a single block loop. 3040 if (!Latch) 3041 Latch = Header; 3042 3043 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3044 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3045 setDebugLocFromInst(Builder, OldInst); 3046 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3047 3048 Builder.SetInsertPoint(Latch->getTerminator()); 3049 setDebugLocFromInst(Builder, OldInst); 3050 3051 // Create i+1 and fill the PHINode. 3052 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3053 Induction->addIncoming(Start, L->getLoopPreheader()); 3054 Induction->addIncoming(Next, Latch); 3055 // Create the compare. 3056 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3057 Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3058 3059 // Now we have two terminators. Remove the old one from the block. 3060 Latch->getTerminator()->eraseFromParent(); 3061 3062 return Induction; 3063 } 3064 3065 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3066 if (TripCount) 3067 return TripCount; 3068 3069 assert(L && "Create Trip Count for null loop."); 3070 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3071 // Find the loop boundaries. 3072 ScalarEvolution *SE = PSE.getSE(); 3073 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3074 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3075 "Invalid loop count"); 3076 3077 Type *IdxTy = Legal->getWidestInductionType(); 3078 assert(IdxTy && "No type for induction"); 3079 3080 // The exit count might have the type of i64 while the phi is i32. This can 3081 // happen if we have an induction variable that is sign extended before the 3082 // compare. The only way that we get a backedge taken count is that the 3083 // induction variable was signed and as such will not overflow. In such a case 3084 // truncation is legal. 3085 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3086 IdxTy->getPrimitiveSizeInBits()) 3087 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3088 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3089 3090 // Get the total trip count from the count by adding 1. 3091 const SCEV *ExitCount = SE->getAddExpr( 3092 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3093 3094 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3095 3096 // Expand the trip count and place the new instructions in the preheader. 3097 // Notice that the pre-header does not change, only the loop body. 3098 SCEVExpander Exp(*SE, DL, "induction"); 3099 3100 // Count holds the overall loop count (N). 3101 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3102 L->getLoopPreheader()->getTerminator()); 3103 3104 if (TripCount->getType()->isPointerTy()) 3105 TripCount = 3106 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3107 L->getLoopPreheader()->getTerminator()); 3108 3109 return TripCount; 3110 } 3111 3112 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3113 if (VectorTripCount) 3114 return VectorTripCount; 3115 3116 Value *TC = getOrCreateTripCount(L); 3117 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3118 3119 Type *Ty = TC->getType(); 3120 // This is where we can make the step a runtime constant. 3121 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3122 3123 // If the tail is to be folded by masking, round the number of iterations N 3124 // up to a multiple of Step instead of rounding down. This is done by first 3125 // adding Step-1 and then rounding down. Note that it's ok if this addition 3126 // overflows: the vector induction variable will eventually wrap to zero given 3127 // that it starts at zero and its Step is a power of two; the loop will then 3128 // exit, with the last early-exit vector comparison also producing all-true. 3129 if (Cost->foldTailByMasking()) { 3130 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3131 "VF*UF must be a power of 2 when folding tail by masking"); 3132 assert(!VF.isScalable() && 3133 "Tail folding not yet supported for scalable vectors"); 3134 TC = Builder.CreateAdd( 3135 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3136 } 3137 3138 // Now we need to generate the expression for the part of the loop that the 3139 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3140 // iterations are not required for correctness, or N - Step, otherwise. Step 3141 // is equal to the vectorization factor (number of SIMD elements) times the 3142 // unroll factor (number of SIMD instructions). 3143 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3144 3145 // There are two cases where we need to ensure (at least) the last iteration 3146 // runs in the scalar remainder loop. Thus, if the step evenly divides 3147 // the trip count, we set the remainder to be equal to the step. If the step 3148 // does not evenly divide the trip count, no adjustment is necessary since 3149 // there will already be scalar iterations. Note that the minimum iterations 3150 // check ensures that N >= Step. The cases are: 3151 // 1) If there is a non-reversed interleaved group that may speculatively 3152 // access memory out-of-bounds. 3153 // 2) If any instruction may follow a conditionally taken exit. That is, if 3154 // the loop contains multiple exiting blocks, or a single exiting block 3155 // which is not the latch. 3156 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 3157 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3158 R = Builder.CreateSelect(IsZero, Step, R); 3159 } 3160 3161 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3162 3163 return VectorTripCount; 3164 } 3165 3166 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3167 const DataLayout &DL) { 3168 // Verify that V is a vector type with same number of elements as DstVTy. 3169 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3170 unsigned VF = DstFVTy->getNumElements(); 3171 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3172 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3173 Type *SrcElemTy = SrcVecTy->getElementType(); 3174 Type *DstElemTy = DstFVTy->getElementType(); 3175 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3176 "Vector elements must have same size"); 3177 3178 // Do a direct cast if element types are castable. 3179 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3180 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3181 } 3182 // V cannot be directly casted to desired vector type. 3183 // May happen when V is a floating point vector but DstVTy is a vector of 3184 // pointers or vice-versa. Handle this using a two-step bitcast using an 3185 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3186 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3187 "Only one type should be a pointer type"); 3188 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3189 "Only one type should be a floating point type"); 3190 Type *IntTy = 3191 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3192 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3193 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3194 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3195 } 3196 3197 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3198 BasicBlock *Bypass) { 3199 Value *Count = getOrCreateTripCount(L); 3200 // Reuse existing vector loop preheader for TC checks. 3201 // Note that new preheader block is generated for vector loop. 3202 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3203 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3204 3205 // Generate code to check if the loop's trip count is less than VF * UF, or 3206 // equal to it in case a scalar epilogue is required; this implies that the 3207 // vector trip count is zero. This check also covers the case where adding one 3208 // to the backedge-taken count overflowed leading to an incorrect trip count 3209 // of zero. In this case we will also jump to the scalar loop. 3210 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3211 : ICmpInst::ICMP_ULT; 3212 3213 // If tail is to be folded, vector loop takes care of all iterations. 3214 Value *CheckMinIters = Builder.getFalse(); 3215 if (!Cost->foldTailByMasking()) { 3216 Value *Step = 3217 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3218 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3219 } 3220 // Create new preheader for vector loop. 3221 LoopVectorPreHeader = 3222 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3223 "vector.ph"); 3224 3225 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3226 DT->getNode(Bypass)->getIDom()) && 3227 "TC check is expected to dominate Bypass"); 3228 3229 // Update dominator for Bypass & LoopExit. 3230 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3231 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3232 3233 ReplaceInstWithInst( 3234 TCCheckBlock->getTerminator(), 3235 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3236 LoopBypassBlocks.push_back(TCCheckBlock); 3237 } 3238 3239 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3240 3241 BasicBlock *const SCEVCheckBlock = 3242 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3243 if (!SCEVCheckBlock) 3244 return nullptr; 3245 3246 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3247 (OptForSizeBasedOnProfile && 3248 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3249 "Cannot SCEV check stride or overflow when optimizing for size"); 3250 3251 3252 // Update dominator only if this is first RT check. 3253 if (LoopBypassBlocks.empty()) { 3254 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3255 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3256 } 3257 3258 LoopBypassBlocks.push_back(SCEVCheckBlock); 3259 AddedSafetyChecks = true; 3260 return SCEVCheckBlock; 3261 } 3262 3263 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3264 BasicBlock *Bypass) { 3265 // VPlan-native path does not do any analysis for runtime checks currently. 3266 if (EnableVPlanNativePath) 3267 return nullptr; 3268 3269 BasicBlock *const MemCheckBlock = 3270 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3271 3272 // Check if we generated code that checks in runtime if arrays overlap. We put 3273 // the checks into a separate block to make the more common case of few 3274 // elements faster. 3275 if (!MemCheckBlock) 3276 return nullptr; 3277 3278 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3279 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3280 "Cannot emit memory checks when optimizing for size, unless forced " 3281 "to vectorize."); 3282 ORE->emit([&]() { 3283 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3284 L->getStartLoc(), L->getHeader()) 3285 << "Code-size may be reduced by not forcing " 3286 "vectorization, or by source-code modifications " 3287 "eliminating the need for runtime checks " 3288 "(e.g., adding 'restrict')."; 3289 }); 3290 } 3291 3292 LoopBypassBlocks.push_back(MemCheckBlock); 3293 3294 AddedSafetyChecks = true; 3295 3296 // We currently don't use LoopVersioning for the actual loop cloning but we 3297 // still use it to add the noalias metadata. 3298 LVer = std::make_unique<LoopVersioning>( 3299 *Legal->getLAI(), 3300 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3301 DT, PSE.getSE()); 3302 LVer->prepareNoAliasMetadata(); 3303 return MemCheckBlock; 3304 } 3305 3306 Value *InnerLoopVectorizer::emitTransformedIndex( 3307 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3308 const InductionDescriptor &ID) const { 3309 3310 SCEVExpander Exp(*SE, DL, "induction"); 3311 auto Step = ID.getStep(); 3312 auto StartValue = ID.getStartValue(); 3313 assert(Index->getType() == Step->getType() && 3314 "Index type does not match StepValue type"); 3315 3316 // Note: the IR at this point is broken. We cannot use SE to create any new 3317 // SCEV and then expand it, hoping that SCEV's simplification will give us 3318 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3319 // lead to various SCEV crashes. So all we can do is to use builder and rely 3320 // on InstCombine for future simplifications. Here we handle some trivial 3321 // cases only. 3322 auto CreateAdd = [&B](Value *X, Value *Y) { 3323 assert(X->getType() == Y->getType() && "Types don't match!"); 3324 if (auto *CX = dyn_cast<ConstantInt>(X)) 3325 if (CX->isZero()) 3326 return Y; 3327 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3328 if (CY->isZero()) 3329 return X; 3330 return B.CreateAdd(X, Y); 3331 }; 3332 3333 auto CreateMul = [&B](Value *X, Value *Y) { 3334 assert(X->getType() == Y->getType() && "Types don't match!"); 3335 if (auto *CX = dyn_cast<ConstantInt>(X)) 3336 if (CX->isOne()) 3337 return Y; 3338 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3339 if (CY->isOne()) 3340 return X; 3341 return B.CreateMul(X, Y); 3342 }; 3343 3344 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3345 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3346 // the DomTree is not kept up-to-date for additional blocks generated in the 3347 // vector loop. By using the header as insertion point, we guarantee that the 3348 // expanded instructions dominate all their uses. 3349 auto GetInsertPoint = [this, &B]() { 3350 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3351 if (InsertBB != LoopVectorBody && 3352 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3353 return LoopVectorBody->getTerminator(); 3354 return &*B.GetInsertPoint(); 3355 }; 3356 3357 switch (ID.getKind()) { 3358 case InductionDescriptor::IK_IntInduction: { 3359 assert(Index->getType() == StartValue->getType() && 3360 "Index type does not match StartValue type"); 3361 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3362 return B.CreateSub(StartValue, Index); 3363 auto *Offset = CreateMul( 3364 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3365 return CreateAdd(StartValue, Offset); 3366 } 3367 case InductionDescriptor::IK_PtrInduction: { 3368 assert(isa<SCEVConstant>(Step) && 3369 "Expected constant step for pointer induction"); 3370 return B.CreateGEP( 3371 StartValue->getType()->getPointerElementType(), StartValue, 3372 CreateMul(Index, 3373 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 3374 } 3375 case InductionDescriptor::IK_FpInduction: { 3376 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3377 auto InductionBinOp = ID.getInductionBinOp(); 3378 assert(InductionBinOp && 3379 (InductionBinOp->getOpcode() == Instruction::FAdd || 3380 InductionBinOp->getOpcode() == Instruction::FSub) && 3381 "Original bin op should be defined for FP induction"); 3382 3383 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3384 Value *MulExp = B.CreateFMul(StepValue, Index); 3385 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3386 "induction"); 3387 } 3388 case InductionDescriptor::IK_NoInduction: 3389 return nullptr; 3390 } 3391 llvm_unreachable("invalid enum"); 3392 } 3393 3394 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3395 LoopScalarBody = OrigLoop->getHeader(); 3396 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3397 LoopExitBlock = OrigLoop->getUniqueExitBlock(); 3398 assert(LoopExitBlock && "Must have an exit block"); 3399 assert(LoopVectorPreHeader && "Invalid loop structure"); 3400 3401 LoopMiddleBlock = 3402 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3403 LI, nullptr, Twine(Prefix) + "middle.block"); 3404 LoopScalarPreHeader = 3405 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3406 nullptr, Twine(Prefix) + "scalar.ph"); 3407 3408 // Set up branch from middle block to the exit and scalar preheader blocks. 3409 // completeLoopSkeleton will update the condition to use an iteration check, 3410 // if required to decide whether to execute the remainder. 3411 BranchInst *BrInst = 3412 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue()); 3413 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3414 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3415 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3416 3417 // We intentionally don't let SplitBlock to update LoopInfo since 3418 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3419 // LoopVectorBody is explicitly added to the correct place few lines later. 3420 LoopVectorBody = 3421 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3422 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3423 3424 // Update dominator for loop exit. 3425 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3426 3427 // Create and register the new vector loop. 3428 Loop *Lp = LI->AllocateLoop(); 3429 Loop *ParentLoop = OrigLoop->getParentLoop(); 3430 3431 // Insert the new loop into the loop nest and register the new basic blocks 3432 // before calling any utilities such as SCEV that require valid LoopInfo. 3433 if (ParentLoop) { 3434 ParentLoop->addChildLoop(Lp); 3435 } else { 3436 LI->addTopLevelLoop(Lp); 3437 } 3438 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3439 return Lp; 3440 } 3441 3442 void InnerLoopVectorizer::createInductionResumeValues( 3443 Loop *L, Value *VectorTripCount, 3444 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3445 assert(VectorTripCount && L && "Expected valid arguments"); 3446 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3447 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3448 "Inconsistent information about additional bypass."); 3449 // We are going to resume the execution of the scalar loop. 3450 // Go over all of the induction variables that we found and fix the 3451 // PHIs that are left in the scalar version of the loop. 3452 // The starting values of PHI nodes depend on the counter of the last 3453 // iteration in the vectorized loop. 3454 // If we come from a bypass edge then we need to start from the original 3455 // start value. 3456 for (auto &InductionEntry : Legal->getInductionVars()) { 3457 PHINode *OrigPhi = InductionEntry.first; 3458 InductionDescriptor II = InductionEntry.second; 3459 3460 // Create phi nodes to merge from the backedge-taken check block. 3461 PHINode *BCResumeVal = 3462 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3463 LoopScalarPreHeader->getTerminator()); 3464 // Copy original phi DL over to the new one. 3465 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3466 Value *&EndValue = IVEndValues[OrigPhi]; 3467 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3468 if (OrigPhi == OldInduction) { 3469 // We know what the end value is. 3470 EndValue = VectorTripCount; 3471 } else { 3472 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3473 3474 // Fast-math-flags propagate from the original induction instruction. 3475 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3476 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3477 3478 Type *StepType = II.getStep()->getType(); 3479 Instruction::CastOps CastOp = 3480 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3481 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3482 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3483 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3484 EndValue->setName("ind.end"); 3485 3486 // Compute the end value for the additional bypass (if applicable). 3487 if (AdditionalBypass.first) { 3488 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3489 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3490 StepType, true); 3491 CRD = 3492 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3493 EndValueFromAdditionalBypass = 3494 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3495 EndValueFromAdditionalBypass->setName("ind.end"); 3496 } 3497 } 3498 // The new PHI merges the original incoming value, in case of a bypass, 3499 // or the value at the end of the vectorized loop. 3500 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3501 3502 // Fix the scalar body counter (PHI node). 3503 // The old induction's phi node in the scalar body needs the truncated 3504 // value. 3505 for (BasicBlock *BB : LoopBypassBlocks) 3506 BCResumeVal->addIncoming(II.getStartValue(), BB); 3507 3508 if (AdditionalBypass.first) 3509 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3510 EndValueFromAdditionalBypass); 3511 3512 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3513 } 3514 } 3515 3516 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3517 MDNode *OrigLoopID) { 3518 assert(L && "Expected valid loop."); 3519 3520 // The trip counts should be cached by now. 3521 Value *Count = getOrCreateTripCount(L); 3522 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3523 3524 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3525 3526 // Add a check in the middle block to see if we have completed 3527 // all of the iterations in the first vector loop. 3528 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3529 // If tail is to be folded, we know we don't need to run the remainder. 3530 if (!Cost->foldTailByMasking()) { 3531 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3532 Count, VectorTripCount, "cmp.n", 3533 LoopMiddleBlock->getTerminator()); 3534 3535 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3536 // of the corresponding compare because they may have ended up with 3537 // different line numbers and we want to avoid awkward line stepping while 3538 // debugging. Eg. if the compare has got a line number inside the loop. 3539 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3540 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3541 } 3542 3543 // Get ready to start creating new instructions into the vectorized body. 3544 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3545 "Inconsistent vector loop preheader"); 3546 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3547 3548 Optional<MDNode *> VectorizedLoopID = 3549 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3550 LLVMLoopVectorizeFollowupVectorized}); 3551 if (VectorizedLoopID.hasValue()) { 3552 L->setLoopID(VectorizedLoopID.getValue()); 3553 3554 // Do not setAlreadyVectorized if loop attributes have been defined 3555 // explicitly. 3556 return LoopVectorPreHeader; 3557 } 3558 3559 // Keep all loop hints from the original loop on the vector loop (we'll 3560 // replace the vectorizer-specific hints below). 3561 if (MDNode *LID = OrigLoop->getLoopID()) 3562 L->setLoopID(LID); 3563 3564 LoopVectorizeHints Hints(L, true, *ORE); 3565 Hints.setAlreadyVectorized(); 3566 3567 #ifdef EXPENSIVE_CHECKS 3568 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3569 LI->verify(*DT); 3570 #endif 3571 3572 return LoopVectorPreHeader; 3573 } 3574 3575 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3576 /* 3577 In this function we generate a new loop. The new loop will contain 3578 the vectorized instructions while the old loop will continue to run the 3579 scalar remainder. 3580 3581 [ ] <-- loop iteration number check. 3582 / | 3583 / v 3584 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3585 | / | 3586 | / v 3587 || [ ] <-- vector pre header. 3588 |/ | 3589 | v 3590 | [ ] \ 3591 | [ ]_| <-- vector loop. 3592 | | 3593 | v 3594 | -[ ] <--- middle-block. 3595 | / | 3596 | / v 3597 -|- >[ ] <--- new preheader. 3598 | | 3599 | v 3600 | [ ] \ 3601 | [ ]_| <-- old scalar loop to handle remainder. 3602 \ | 3603 \ v 3604 >[ ] <-- exit block. 3605 ... 3606 */ 3607 3608 // Get the metadata of the original loop before it gets modified. 3609 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3610 3611 // Create an empty vector loop, and prepare basic blocks for the runtime 3612 // checks. 3613 Loop *Lp = createVectorLoopSkeleton(""); 3614 3615 // Now, compare the new count to zero. If it is zero skip the vector loop and 3616 // jump to the scalar loop. This check also covers the case where the 3617 // backedge-taken count is uint##_max: adding one to it will overflow leading 3618 // to an incorrect trip count of zero. In this (rare) case we will also jump 3619 // to the scalar loop. 3620 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3621 3622 // Generate the code to check any assumptions that we've made for SCEV 3623 // expressions. 3624 emitSCEVChecks(Lp, LoopScalarPreHeader); 3625 3626 // Generate the code that checks in runtime if arrays overlap. We put the 3627 // checks into a separate block to make the more common case of few elements 3628 // faster. 3629 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3630 3631 // Some loops have a single integer induction variable, while other loops 3632 // don't. One example is c++ iterators that often have multiple pointer 3633 // induction variables. In the code below we also support a case where we 3634 // don't have a single induction variable. 3635 // 3636 // We try to obtain an induction variable from the original loop as hard 3637 // as possible. However if we don't find one that: 3638 // - is an integer 3639 // - counts from zero, stepping by one 3640 // - is the size of the widest induction variable type 3641 // then we create a new one. 3642 OldInduction = Legal->getPrimaryInduction(); 3643 Type *IdxTy = Legal->getWidestInductionType(); 3644 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3645 // The loop step is equal to the vectorization factor (num of SIMD elements) 3646 // times the unroll factor (num of SIMD instructions). 3647 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3648 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3649 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3650 Induction = 3651 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3652 getDebugLocFromInstOrOperands(OldInduction)); 3653 3654 // Emit phis for the new starting index of the scalar loop. 3655 createInductionResumeValues(Lp, CountRoundDown); 3656 3657 return completeLoopSkeleton(Lp, OrigLoopID); 3658 } 3659 3660 // Fix up external users of the induction variable. At this point, we are 3661 // in LCSSA form, with all external PHIs that use the IV having one input value, 3662 // coming from the remainder loop. We need those PHIs to also have a correct 3663 // value for the IV when arriving directly from the middle block. 3664 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3665 const InductionDescriptor &II, 3666 Value *CountRoundDown, Value *EndValue, 3667 BasicBlock *MiddleBlock) { 3668 // There are two kinds of external IV usages - those that use the value 3669 // computed in the last iteration (the PHI) and those that use the penultimate 3670 // value (the value that feeds into the phi from the loop latch). 3671 // We allow both, but they, obviously, have different values. 3672 3673 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3674 3675 DenseMap<Value *, Value *> MissingVals; 3676 3677 // An external user of the last iteration's value should see the value that 3678 // the remainder loop uses to initialize its own IV. 3679 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3680 for (User *U : PostInc->users()) { 3681 Instruction *UI = cast<Instruction>(U); 3682 if (!OrigLoop->contains(UI)) { 3683 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3684 MissingVals[UI] = EndValue; 3685 } 3686 } 3687 3688 // An external user of the penultimate value need to see EndValue - Step. 3689 // The simplest way to get this is to recompute it from the constituent SCEVs, 3690 // that is Start + (Step * (CRD - 1)). 3691 for (User *U : OrigPhi->users()) { 3692 auto *UI = cast<Instruction>(U); 3693 if (!OrigLoop->contains(UI)) { 3694 const DataLayout &DL = 3695 OrigLoop->getHeader()->getModule()->getDataLayout(); 3696 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3697 3698 IRBuilder<> B(MiddleBlock->getTerminator()); 3699 3700 // Fast-math-flags propagate from the original induction instruction. 3701 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3702 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3703 3704 Value *CountMinusOne = B.CreateSub( 3705 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3706 Value *CMO = 3707 !II.getStep()->getType()->isIntegerTy() 3708 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3709 II.getStep()->getType()) 3710 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3711 CMO->setName("cast.cmo"); 3712 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3713 Escape->setName("ind.escape"); 3714 MissingVals[UI] = Escape; 3715 } 3716 } 3717 3718 for (auto &I : MissingVals) { 3719 PHINode *PHI = cast<PHINode>(I.first); 3720 // One corner case we have to handle is two IVs "chasing" each-other, 3721 // that is %IV2 = phi [...], [ %IV1, %latch ] 3722 // In this case, if IV1 has an external use, we need to avoid adding both 3723 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3724 // don't already have an incoming value for the middle block. 3725 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3726 PHI->addIncoming(I.second, MiddleBlock); 3727 } 3728 } 3729 3730 namespace { 3731 3732 struct CSEDenseMapInfo { 3733 static bool canHandle(const Instruction *I) { 3734 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3735 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3736 } 3737 3738 static inline Instruction *getEmptyKey() { 3739 return DenseMapInfo<Instruction *>::getEmptyKey(); 3740 } 3741 3742 static inline Instruction *getTombstoneKey() { 3743 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3744 } 3745 3746 static unsigned getHashValue(const Instruction *I) { 3747 assert(canHandle(I) && "Unknown instruction!"); 3748 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3749 I->value_op_end())); 3750 } 3751 3752 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3753 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3754 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3755 return LHS == RHS; 3756 return LHS->isIdenticalTo(RHS); 3757 } 3758 }; 3759 3760 } // end anonymous namespace 3761 3762 ///Perform cse of induction variable instructions. 3763 static void cse(BasicBlock *BB) { 3764 // Perform simple cse. 3765 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3766 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3767 Instruction *In = &*I++; 3768 3769 if (!CSEDenseMapInfo::canHandle(In)) 3770 continue; 3771 3772 // Check if we can replace this instruction with any of the 3773 // visited instructions. 3774 if (Instruction *V = CSEMap.lookup(In)) { 3775 In->replaceAllUsesWith(V); 3776 In->eraseFromParent(); 3777 continue; 3778 } 3779 3780 CSEMap[In] = In; 3781 } 3782 } 3783 3784 InstructionCost 3785 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3786 bool &NeedToScalarize) const { 3787 Function *F = CI->getCalledFunction(); 3788 Type *ScalarRetTy = CI->getType(); 3789 SmallVector<Type *, 4> Tys, ScalarTys; 3790 for (auto &ArgOp : CI->arg_operands()) 3791 ScalarTys.push_back(ArgOp->getType()); 3792 3793 // Estimate cost of scalarized vector call. The source operands are assumed 3794 // to be vectors, so we need to extract individual elements from there, 3795 // execute VF scalar calls, and then gather the result into the vector return 3796 // value. 3797 InstructionCost ScalarCallCost = 3798 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3799 if (VF.isScalar()) 3800 return ScalarCallCost; 3801 3802 // Compute corresponding vector type for return value and arguments. 3803 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3804 for (Type *ScalarTy : ScalarTys) 3805 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3806 3807 // Compute costs of unpacking argument values for the scalar calls and 3808 // packing the return values to a vector. 3809 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3810 3811 InstructionCost Cost = 3812 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3813 3814 // If we can't emit a vector call for this function, then the currently found 3815 // cost is the cost we need to return. 3816 NeedToScalarize = true; 3817 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3818 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3819 3820 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3821 return Cost; 3822 3823 // If the corresponding vector cost is cheaper, return its cost. 3824 InstructionCost VectorCallCost = 3825 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3826 if (VectorCallCost < Cost) { 3827 NeedToScalarize = false; 3828 Cost = VectorCallCost; 3829 } 3830 return Cost; 3831 } 3832 3833 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3834 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3835 return Elt; 3836 return VectorType::get(Elt, VF); 3837 } 3838 3839 InstructionCost 3840 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3841 ElementCount VF) const { 3842 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3843 assert(ID && "Expected intrinsic call!"); 3844 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3845 FastMathFlags FMF; 3846 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3847 FMF = FPMO->getFastMathFlags(); 3848 3849 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3850 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3851 SmallVector<Type *> ParamTys; 3852 std::transform(FTy->param_begin(), FTy->param_end(), 3853 std::back_inserter(ParamTys), 3854 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3855 3856 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3857 dyn_cast<IntrinsicInst>(CI)); 3858 return TTI.getIntrinsicInstrCost(CostAttrs, 3859 TargetTransformInfo::TCK_RecipThroughput); 3860 } 3861 3862 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3863 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3864 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3865 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3866 } 3867 3868 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3869 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3870 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3871 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3872 } 3873 3874 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3875 // For every instruction `I` in MinBWs, truncate the operands, create a 3876 // truncated version of `I` and reextend its result. InstCombine runs 3877 // later and will remove any ext/trunc pairs. 3878 SmallPtrSet<Value *, 4> Erased; 3879 for (const auto &KV : Cost->getMinimalBitwidths()) { 3880 // If the value wasn't vectorized, we must maintain the original scalar 3881 // type. The absence of the value from State indicates that it 3882 // wasn't vectorized. 3883 VPValue *Def = State.Plan->getVPValue(KV.first); 3884 if (!State.hasAnyVectorValue(Def)) 3885 continue; 3886 for (unsigned Part = 0; Part < UF; ++Part) { 3887 Value *I = State.get(Def, Part); 3888 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3889 continue; 3890 Type *OriginalTy = I->getType(); 3891 Type *ScalarTruncatedTy = 3892 IntegerType::get(OriginalTy->getContext(), KV.second); 3893 auto *TruncatedTy = FixedVectorType::get( 3894 ScalarTruncatedTy, 3895 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3896 if (TruncatedTy == OriginalTy) 3897 continue; 3898 3899 IRBuilder<> B(cast<Instruction>(I)); 3900 auto ShrinkOperand = [&](Value *V) -> Value * { 3901 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3902 if (ZI->getSrcTy() == TruncatedTy) 3903 return ZI->getOperand(0); 3904 return B.CreateZExtOrTrunc(V, TruncatedTy); 3905 }; 3906 3907 // The actual instruction modification depends on the instruction type, 3908 // unfortunately. 3909 Value *NewI = nullptr; 3910 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3911 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3912 ShrinkOperand(BO->getOperand(1))); 3913 3914 // Any wrapping introduced by shrinking this operation shouldn't be 3915 // considered undefined behavior. So, we can't unconditionally copy 3916 // arithmetic wrapping flags to NewI. 3917 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3918 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3919 NewI = 3920 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3921 ShrinkOperand(CI->getOperand(1))); 3922 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3923 NewI = B.CreateSelect(SI->getCondition(), 3924 ShrinkOperand(SI->getTrueValue()), 3925 ShrinkOperand(SI->getFalseValue())); 3926 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3927 switch (CI->getOpcode()) { 3928 default: 3929 llvm_unreachable("Unhandled cast!"); 3930 case Instruction::Trunc: 3931 NewI = ShrinkOperand(CI->getOperand(0)); 3932 break; 3933 case Instruction::SExt: 3934 NewI = B.CreateSExtOrTrunc( 3935 CI->getOperand(0), 3936 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3937 break; 3938 case Instruction::ZExt: 3939 NewI = B.CreateZExtOrTrunc( 3940 CI->getOperand(0), 3941 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3942 break; 3943 } 3944 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3945 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3946 ->getNumElements(); 3947 auto *O0 = B.CreateZExtOrTrunc( 3948 SI->getOperand(0), 3949 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3950 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 3951 ->getNumElements(); 3952 auto *O1 = B.CreateZExtOrTrunc( 3953 SI->getOperand(1), 3954 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3955 3956 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3957 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3958 // Don't do anything with the operands, just extend the result. 3959 continue; 3960 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3961 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 3962 ->getNumElements(); 3963 auto *O0 = B.CreateZExtOrTrunc( 3964 IE->getOperand(0), 3965 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3966 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3967 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3968 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3969 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 3970 ->getNumElements(); 3971 auto *O0 = B.CreateZExtOrTrunc( 3972 EE->getOperand(0), 3973 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3974 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3975 } else { 3976 // If we don't know what to do, be conservative and don't do anything. 3977 continue; 3978 } 3979 3980 // Lastly, extend the result. 3981 NewI->takeName(cast<Instruction>(I)); 3982 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3983 I->replaceAllUsesWith(Res); 3984 cast<Instruction>(I)->eraseFromParent(); 3985 Erased.insert(I); 3986 State.reset(Def, Res, Part); 3987 } 3988 } 3989 3990 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3991 for (const auto &KV : Cost->getMinimalBitwidths()) { 3992 // If the value wasn't vectorized, we must maintain the original scalar 3993 // type. The absence of the value from State indicates that it 3994 // wasn't vectorized. 3995 VPValue *Def = State.Plan->getVPValue(KV.first); 3996 if (!State.hasAnyVectorValue(Def)) 3997 continue; 3998 for (unsigned Part = 0; Part < UF; ++Part) { 3999 Value *I = State.get(Def, Part); 4000 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4001 if (Inst && Inst->use_empty()) { 4002 Value *NewI = Inst->getOperand(0); 4003 Inst->eraseFromParent(); 4004 State.reset(Def, NewI, Part); 4005 } 4006 } 4007 } 4008 } 4009 4010 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4011 // Insert truncates and extends for any truncated instructions as hints to 4012 // InstCombine. 4013 if (VF.isVector()) 4014 truncateToMinimalBitwidths(State); 4015 4016 // Fix widened non-induction PHIs by setting up the PHI operands. 4017 if (OrigPHIsToFix.size()) { 4018 assert(EnableVPlanNativePath && 4019 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4020 fixNonInductionPHIs(State); 4021 } 4022 4023 // At this point every instruction in the original loop is widened to a 4024 // vector form. Now we need to fix the recurrences in the loop. These PHI 4025 // nodes are currently empty because we did not want to introduce cycles. 4026 // This is the second stage of vectorizing recurrences. 4027 fixCrossIterationPHIs(State); 4028 4029 // Forget the original basic block. 4030 PSE.getSE()->forgetLoop(OrigLoop); 4031 4032 // Fix-up external users of the induction variables. 4033 for (auto &Entry : Legal->getInductionVars()) 4034 fixupIVUsers(Entry.first, Entry.second, 4035 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4036 IVEndValues[Entry.first], LoopMiddleBlock); 4037 4038 fixLCSSAPHIs(State); 4039 for (Instruction *PI : PredicatedInstructions) 4040 sinkScalarOperands(&*PI); 4041 4042 // Remove redundant induction instructions. 4043 cse(LoopVectorBody); 4044 4045 // Set/update profile weights for the vector and remainder loops as original 4046 // loop iterations are now distributed among them. Note that original loop 4047 // represented by LoopScalarBody becomes remainder loop after vectorization. 4048 // 4049 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4050 // end up getting slightly roughened result but that should be OK since 4051 // profile is not inherently precise anyway. Note also possible bypass of 4052 // vector code caused by legality checks is ignored, assigning all the weight 4053 // to the vector loop, optimistically. 4054 // 4055 // For scalable vectorization we can't know at compile time how many iterations 4056 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4057 // vscale of '1'. 4058 setProfileInfoAfterUnrolling( 4059 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4060 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4061 } 4062 4063 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4064 // In order to support recurrences we need to be able to vectorize Phi nodes. 4065 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4066 // stage #2: We now need to fix the recurrences by adding incoming edges to 4067 // the currently empty PHI nodes. At this point every instruction in the 4068 // original loop is widened to a vector form so we can use them to construct 4069 // the incoming edges. 4070 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 4071 // Handle first-order recurrences and reductions that need to be fixed. 4072 if (Legal->isFirstOrderRecurrence(&Phi)) 4073 fixFirstOrderRecurrence(&Phi, State); 4074 else if (Legal->isReductionVariable(&Phi)) 4075 fixReduction(&Phi, State); 4076 } 4077 } 4078 4079 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi, 4080 VPTransformState &State) { 4081 // This is the second phase of vectorizing first-order recurrences. An 4082 // overview of the transformation is described below. Suppose we have the 4083 // following loop. 4084 // 4085 // for (int i = 0; i < n; ++i) 4086 // b[i] = a[i] - a[i - 1]; 4087 // 4088 // There is a first-order recurrence on "a". For this loop, the shorthand 4089 // scalar IR looks like: 4090 // 4091 // scalar.ph: 4092 // s_init = a[-1] 4093 // br scalar.body 4094 // 4095 // scalar.body: 4096 // i = phi [0, scalar.ph], [i+1, scalar.body] 4097 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4098 // s2 = a[i] 4099 // b[i] = s2 - s1 4100 // br cond, scalar.body, ... 4101 // 4102 // In this example, s1 is a recurrence because it's value depends on the 4103 // previous iteration. In the first phase of vectorization, we created a 4104 // temporary value for s1. We now complete the vectorization and produce the 4105 // shorthand vector IR shown below (for VF = 4, UF = 1). 4106 // 4107 // vector.ph: 4108 // v_init = vector(..., ..., ..., a[-1]) 4109 // br vector.body 4110 // 4111 // vector.body 4112 // i = phi [0, vector.ph], [i+4, vector.body] 4113 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4114 // v2 = a[i, i+1, i+2, i+3]; 4115 // v3 = vector(v1(3), v2(0, 1, 2)) 4116 // b[i, i+1, i+2, i+3] = v2 - v3 4117 // br cond, vector.body, middle.block 4118 // 4119 // middle.block: 4120 // x = v2(3) 4121 // br scalar.ph 4122 // 4123 // scalar.ph: 4124 // s_init = phi [x, middle.block], [a[-1], otherwise] 4125 // br scalar.body 4126 // 4127 // After execution completes the vector loop, we extract the next value of 4128 // the recurrence (x) to use as the initial value in the scalar loop. 4129 4130 // Get the original loop preheader and single loop latch. 4131 auto *Preheader = OrigLoop->getLoopPreheader(); 4132 auto *Latch = OrigLoop->getLoopLatch(); 4133 4134 // Get the initial and previous values of the scalar recurrence. 4135 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4136 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4137 4138 // Create a vector from the initial value. 4139 auto *VectorInit = ScalarInit; 4140 if (VF.isVector()) { 4141 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4142 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4143 VectorInit = Builder.CreateInsertElement( 4144 PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4145 Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init"); 4146 } 4147 4148 VPValue *PhiDef = State.Plan->getVPValue(Phi); 4149 VPValue *PreviousDef = State.Plan->getVPValue(Previous); 4150 // We constructed a temporary phi node in the first phase of vectorization. 4151 // This phi node will eventually be deleted. 4152 Builder.SetInsertPoint(cast<Instruction>(State.get(PhiDef, 0))); 4153 4154 // Create a phi node for the new recurrence. The current value will either be 4155 // the initial value inserted into a vector or loop-varying vector value. 4156 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4157 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4158 4159 // Get the vectorized previous value of the last part UF - 1. It appears last 4160 // among all unrolled iterations, due to the order of their construction. 4161 Value *PreviousLastPart = State.get(PreviousDef, UF - 1); 4162 4163 // Find and set the insertion point after the previous value if it is an 4164 // instruction. 4165 BasicBlock::iterator InsertPt; 4166 // Note that the previous value may have been constant-folded so it is not 4167 // guaranteed to be an instruction in the vector loop. 4168 // FIXME: Loop invariant values do not form recurrences. We should deal with 4169 // them earlier. 4170 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 4171 InsertPt = LoopVectorBody->getFirstInsertionPt(); 4172 else { 4173 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 4174 if (isa<PHINode>(PreviousLastPart)) 4175 // If the previous value is a phi node, we should insert after all the phi 4176 // nodes in the block containing the PHI to avoid breaking basic block 4177 // verification. Note that the basic block may be different to 4178 // LoopVectorBody, in case we predicate the loop. 4179 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 4180 else 4181 InsertPt = ++PreviousInst->getIterator(); 4182 } 4183 Builder.SetInsertPoint(&*InsertPt); 4184 4185 // We will construct a vector for the recurrence by combining the values for 4186 // the current and previous iterations. This is the required shuffle mask. 4187 assert(!VF.isScalable()); 4188 SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue()); 4189 ShuffleMask[0] = VF.getKnownMinValue() - 1; 4190 for (unsigned I = 1; I < VF.getKnownMinValue(); ++I) 4191 ShuffleMask[I] = I + VF.getKnownMinValue() - 1; 4192 4193 // The vector from which to take the initial value for the current iteration 4194 // (actual or unrolled). Initially, this is the vector phi node. 4195 Value *Incoming = VecPhi; 4196 4197 // Shuffle the current and previous vector and update the vector parts. 4198 for (unsigned Part = 0; Part < UF; ++Part) { 4199 Value *PreviousPart = State.get(PreviousDef, Part); 4200 Value *PhiPart = State.get(PhiDef, Part); 4201 auto *Shuffle = 4202 VF.isVector() 4203 ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask) 4204 : Incoming; 4205 PhiPart->replaceAllUsesWith(Shuffle); 4206 cast<Instruction>(PhiPart)->eraseFromParent(); 4207 State.reset(PhiDef, Shuffle, Part); 4208 Incoming = PreviousPart; 4209 } 4210 4211 // Fix the latch value of the new recurrence in the vector loop. 4212 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4213 4214 // Extract the last vector element in the middle block. This will be the 4215 // initial value for the recurrence when jumping to the scalar loop. 4216 auto *ExtractForScalar = Incoming; 4217 if (VF.isVector()) { 4218 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4219 ExtractForScalar = Builder.CreateExtractElement( 4220 ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1), 4221 "vector.recur.extract"); 4222 } 4223 // Extract the second last element in the middle block if the 4224 // Phi is used outside the loop. We need to extract the phi itself 4225 // and not the last element (the phi update in the current iteration). This 4226 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4227 // when the scalar loop is not run at all. 4228 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4229 if (VF.isVector()) 4230 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4231 Incoming, Builder.getInt32(VF.getKnownMinValue() - 2), 4232 "vector.recur.extract.for.phi"); 4233 // When loop is unrolled without vectorizing, initialize 4234 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4235 // `Incoming`. This is analogous to the vectorized case above: extracting the 4236 // second last element when VF > 1. 4237 else if (UF > 1) 4238 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4239 4240 // Fix the initial value of the original recurrence in the scalar loop. 4241 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4242 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4243 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4244 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4245 Start->addIncoming(Incoming, BB); 4246 } 4247 4248 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4249 Phi->setName("scalar.recur"); 4250 4251 // Finally, fix users of the recurrence outside the loop. The users will need 4252 // either the last value of the scalar recurrence or the last value of the 4253 // vector recurrence we extracted in the middle block. Since the loop is in 4254 // LCSSA form, we just need to find all the phi nodes for the original scalar 4255 // recurrence in the exit block, and then add an edge for the middle block. 4256 // Note that LCSSA does not imply single entry when the original scalar loop 4257 // had multiple exiting edges (as we always run the last iteration in the 4258 // scalar epilogue); in that case, the exiting path through middle will be 4259 // dynamically dead and the value picked for the phi doesn't matter. 4260 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4261 if (any_of(LCSSAPhi.incoming_values(), 4262 [Phi](Value *V) { return V == Phi; })) 4263 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4264 } 4265 4266 static bool useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4267 return EnableStrictReductions && RdxDesc.isOrdered(); 4268 } 4269 4270 void InnerLoopVectorizer::fixReduction(PHINode *Phi, VPTransformState &State) { 4271 // Get it's reduction variable descriptor. 4272 assert(Legal->isReductionVariable(Phi) && 4273 "Unable to find the reduction variable"); 4274 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4275 4276 RecurKind RK = RdxDesc.getRecurrenceKind(); 4277 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4278 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4279 setDebugLocFromInst(Builder, ReductionStartValue); 4280 bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi); 4281 4282 VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst); 4283 // This is the vector-clone of the value that leaves the loop. 4284 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4285 4286 // Wrap flags are in general invalid after vectorization, clear them. 4287 clearReductionWrapFlags(RdxDesc, State); 4288 4289 // Fix the vector-loop phi. 4290 4291 // Reductions do not have to start at zero. They can start with 4292 // any loop invariant values. 4293 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4294 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4295 4296 for (unsigned Part = 0; Part < UF; ++Part) { 4297 Value *VecRdxPhi = State.get(State.Plan->getVPValue(Phi), Part); 4298 Value *Val = State.get(State.Plan->getVPValue(LoopVal), Part); 4299 if (IsInLoopReductionPhi && useOrderedReductions(RdxDesc) && 4300 State.VF.isVector()) 4301 Val = State.get(State.Plan->getVPValue(LoopVal), UF - 1); 4302 cast<PHINode>(VecRdxPhi) 4303 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4304 } 4305 4306 // Before each round, move the insertion point right between 4307 // the PHIs and the values we are going to write. 4308 // This allows us to write both PHINodes and the extractelement 4309 // instructions. 4310 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4311 4312 setDebugLocFromInst(Builder, LoopExitInst); 4313 4314 Type *PhiTy = Phi->getType(); 4315 // If tail is folded by masking, the vector value to leave the loop should be 4316 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4317 // instead of the former. For an inloop reduction the reduction will already 4318 // be predicated, and does not need to be handled here. 4319 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4320 for (unsigned Part = 0; Part < UF; ++Part) { 4321 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4322 Value *Sel = nullptr; 4323 for (User *U : VecLoopExitInst->users()) { 4324 if (isa<SelectInst>(U)) { 4325 assert(!Sel && "Reduction exit feeding two selects"); 4326 Sel = U; 4327 } else 4328 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4329 } 4330 assert(Sel && "Reduction exit feeds no select"); 4331 State.reset(LoopExitInstDef, Sel, Part); 4332 4333 // If the target can create a predicated operator for the reduction at no 4334 // extra cost in the loop (for example a predicated vadd), it can be 4335 // cheaper for the select to remain in the loop than be sunk out of it, 4336 // and so use the select value for the phi instead of the old 4337 // LoopExitValue. 4338 if (PreferPredicatedReductionSelect || 4339 TTI->preferPredicatedReductionSelect( 4340 RdxDesc.getOpcode(), PhiTy, 4341 TargetTransformInfo::ReductionFlags())) { 4342 auto *VecRdxPhi = 4343 cast<PHINode>(State.get(State.Plan->getVPValue(Phi), Part)); 4344 VecRdxPhi->setIncomingValueForBlock( 4345 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4346 } 4347 } 4348 } 4349 4350 // If the vector reduction can be performed in a smaller type, we truncate 4351 // then extend the loop exit value to enable InstCombine to evaluate the 4352 // entire expression in the smaller type. 4353 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4354 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4355 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4356 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4357 Builder.SetInsertPoint( 4358 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4359 VectorParts RdxParts(UF); 4360 for (unsigned Part = 0; Part < UF; ++Part) { 4361 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4362 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4363 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4364 : Builder.CreateZExt(Trunc, VecTy); 4365 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4366 UI != RdxParts[Part]->user_end();) 4367 if (*UI != Trunc) { 4368 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4369 RdxParts[Part] = Extnd; 4370 } else { 4371 ++UI; 4372 } 4373 } 4374 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4375 for (unsigned Part = 0; Part < UF; ++Part) { 4376 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4377 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4378 } 4379 } 4380 4381 // Reduce all of the unrolled parts into a single vector. 4382 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4383 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4384 4385 // The middle block terminator has already been assigned a DebugLoc here (the 4386 // OrigLoop's single latch terminator). We want the whole middle block to 4387 // appear to execute on this line because: (a) it is all compiler generated, 4388 // (b) these instructions are always executed after evaluating the latch 4389 // conditional branch, and (c) other passes may add new predecessors which 4390 // terminate on this line. This is the easiest way to ensure we don't 4391 // accidentally cause an extra step back into the loop while debugging. 4392 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4393 if (IsInLoopReductionPhi && useOrderedReductions(RdxDesc)) 4394 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4395 else { 4396 // Floating-point operations should have some FMF to enable the reduction. 4397 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4398 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4399 for (unsigned Part = 1; Part < UF; ++Part) { 4400 Value *RdxPart = State.get(LoopExitInstDef, Part); 4401 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4402 ReducedPartRdx = Builder.CreateBinOp( 4403 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4404 } else { 4405 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4406 } 4407 } 4408 } 4409 4410 // Create the reduction after the loop. Note that inloop reductions create the 4411 // target reduction in the loop using a Reduction recipe. 4412 if (VF.isVector() && !IsInLoopReductionPhi) { 4413 ReducedPartRdx = 4414 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4415 // If the reduction can be performed in a smaller type, we need to extend 4416 // the reduction to the wider type before we branch to the original loop. 4417 if (PhiTy != RdxDesc.getRecurrenceType()) 4418 ReducedPartRdx = RdxDesc.isSigned() 4419 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4420 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4421 } 4422 4423 // Create a phi node that merges control-flow from the backedge-taken check 4424 // block and the middle block. 4425 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4426 LoopScalarPreHeader->getTerminator()); 4427 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4428 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4429 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4430 4431 // Now, we need to fix the users of the reduction variable 4432 // inside and outside of the scalar remainder loop. 4433 4434 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4435 // in the exit blocks. See comment on analogous loop in 4436 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4437 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4438 if (any_of(LCSSAPhi.incoming_values(), 4439 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4440 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4441 4442 // Fix the scalar loop reduction variable with the incoming reduction sum 4443 // from the vector body and from the backedge value. 4444 int IncomingEdgeBlockIdx = 4445 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4446 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4447 // Pick the other block. 4448 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4449 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4450 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4451 } 4452 4453 void InnerLoopVectorizer::clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc, 4454 VPTransformState &State) { 4455 RecurKind RK = RdxDesc.getRecurrenceKind(); 4456 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4457 return; 4458 4459 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4460 assert(LoopExitInstr && "null loop exit instruction"); 4461 SmallVector<Instruction *, 8> Worklist; 4462 SmallPtrSet<Instruction *, 8> Visited; 4463 Worklist.push_back(LoopExitInstr); 4464 Visited.insert(LoopExitInstr); 4465 4466 while (!Worklist.empty()) { 4467 Instruction *Cur = Worklist.pop_back_val(); 4468 if (isa<OverflowingBinaryOperator>(Cur)) 4469 for (unsigned Part = 0; Part < UF; ++Part) { 4470 Value *V = State.get(State.Plan->getVPValue(Cur), Part); 4471 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4472 } 4473 4474 for (User *U : Cur->users()) { 4475 Instruction *UI = cast<Instruction>(U); 4476 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4477 Visited.insert(UI).second) 4478 Worklist.push_back(UI); 4479 } 4480 } 4481 } 4482 4483 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4484 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4485 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4486 // Some phis were already hand updated by the reduction and recurrence 4487 // code above, leave them alone. 4488 continue; 4489 4490 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4491 // Non-instruction incoming values will have only one value. 4492 4493 VPLane Lane = VPLane::getFirstLane(); 4494 if (isa<Instruction>(IncomingValue) && 4495 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4496 VF)) 4497 Lane = VPLane::getLastLaneForVF(VF); 4498 4499 // Can be a loop invariant incoming value or the last scalar value to be 4500 // extracted from the vectorized loop. 4501 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4502 Value *lastIncomingValue = 4503 OrigLoop->isLoopInvariant(IncomingValue) 4504 ? IncomingValue 4505 : State.get(State.Plan->getVPValue(IncomingValue), 4506 VPIteration(UF - 1, Lane)); 4507 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4508 } 4509 } 4510 4511 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4512 // The basic block and loop containing the predicated instruction. 4513 auto *PredBB = PredInst->getParent(); 4514 auto *VectorLoop = LI->getLoopFor(PredBB); 4515 4516 // Initialize a worklist with the operands of the predicated instruction. 4517 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4518 4519 // Holds instructions that we need to analyze again. An instruction may be 4520 // reanalyzed if we don't yet know if we can sink it or not. 4521 SmallVector<Instruction *, 8> InstsToReanalyze; 4522 4523 // Returns true if a given use occurs in the predicated block. Phi nodes use 4524 // their operands in their corresponding predecessor blocks. 4525 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4526 auto *I = cast<Instruction>(U.getUser()); 4527 BasicBlock *BB = I->getParent(); 4528 if (auto *Phi = dyn_cast<PHINode>(I)) 4529 BB = Phi->getIncomingBlock( 4530 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4531 return BB == PredBB; 4532 }; 4533 4534 // Iteratively sink the scalarized operands of the predicated instruction 4535 // into the block we created for it. When an instruction is sunk, it's 4536 // operands are then added to the worklist. The algorithm ends after one pass 4537 // through the worklist doesn't sink a single instruction. 4538 bool Changed; 4539 do { 4540 // Add the instructions that need to be reanalyzed to the worklist, and 4541 // reset the changed indicator. 4542 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4543 InstsToReanalyze.clear(); 4544 Changed = false; 4545 4546 while (!Worklist.empty()) { 4547 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4548 4549 // We can't sink an instruction if it is a phi node, is already in the 4550 // predicated block, is not in the loop, or may have side effects. 4551 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4552 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4553 continue; 4554 4555 // It's legal to sink the instruction if all its uses occur in the 4556 // predicated block. Otherwise, there's nothing to do yet, and we may 4557 // need to reanalyze the instruction. 4558 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4559 InstsToReanalyze.push_back(I); 4560 continue; 4561 } 4562 4563 // Move the instruction to the beginning of the predicated block, and add 4564 // it's operands to the worklist. 4565 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4566 Worklist.insert(I->op_begin(), I->op_end()); 4567 4568 // The sinking may have enabled other instructions to be sunk, so we will 4569 // need to iterate. 4570 Changed = true; 4571 } 4572 } while (Changed); 4573 } 4574 4575 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4576 for (PHINode *OrigPhi : OrigPHIsToFix) { 4577 VPWidenPHIRecipe *VPPhi = 4578 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4579 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4580 // Make sure the builder has a valid insert point. 4581 Builder.SetInsertPoint(NewPhi); 4582 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4583 VPValue *Inc = VPPhi->getIncomingValue(i); 4584 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4585 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4586 } 4587 } 4588 } 4589 4590 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4591 VPUser &Operands, unsigned UF, 4592 ElementCount VF, bool IsPtrLoopInvariant, 4593 SmallBitVector &IsIndexLoopInvariant, 4594 VPTransformState &State) { 4595 // Construct a vector GEP by widening the operands of the scalar GEP as 4596 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4597 // results in a vector of pointers when at least one operand of the GEP 4598 // is vector-typed. Thus, to keep the representation compact, we only use 4599 // vector-typed operands for loop-varying values. 4600 4601 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4602 // If we are vectorizing, but the GEP has only loop-invariant operands, 4603 // the GEP we build (by only using vector-typed operands for 4604 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4605 // produce a vector of pointers, we need to either arbitrarily pick an 4606 // operand to broadcast, or broadcast a clone of the original GEP. 4607 // Here, we broadcast a clone of the original. 4608 // 4609 // TODO: If at some point we decide to scalarize instructions having 4610 // loop-invariant operands, this special case will no longer be 4611 // required. We would add the scalarization decision to 4612 // collectLoopScalars() and teach getVectorValue() to broadcast 4613 // the lane-zero scalar value. 4614 auto *Clone = Builder.Insert(GEP->clone()); 4615 for (unsigned Part = 0; Part < UF; ++Part) { 4616 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4617 State.set(VPDef, EntryPart, Part); 4618 addMetadata(EntryPart, GEP); 4619 } 4620 } else { 4621 // If the GEP has at least one loop-varying operand, we are sure to 4622 // produce a vector of pointers. But if we are only unrolling, we want 4623 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4624 // produce with the code below will be scalar (if VF == 1) or vector 4625 // (otherwise). Note that for the unroll-only case, we still maintain 4626 // values in the vector mapping with initVector, as we do for other 4627 // instructions. 4628 for (unsigned Part = 0; Part < UF; ++Part) { 4629 // The pointer operand of the new GEP. If it's loop-invariant, we 4630 // won't broadcast it. 4631 auto *Ptr = IsPtrLoopInvariant 4632 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4633 : State.get(Operands.getOperand(0), Part); 4634 4635 // Collect all the indices for the new GEP. If any index is 4636 // loop-invariant, we won't broadcast it. 4637 SmallVector<Value *, 4> Indices; 4638 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4639 VPValue *Operand = Operands.getOperand(I); 4640 if (IsIndexLoopInvariant[I - 1]) 4641 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4642 else 4643 Indices.push_back(State.get(Operand, Part)); 4644 } 4645 4646 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4647 // but it should be a vector, otherwise. 4648 auto *NewGEP = 4649 GEP->isInBounds() 4650 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4651 Indices) 4652 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4653 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4654 "NewGEP is not a pointer vector"); 4655 State.set(VPDef, NewGEP, Part); 4656 addMetadata(NewGEP, GEP); 4657 } 4658 } 4659 } 4660 4661 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4662 RecurrenceDescriptor *RdxDesc, 4663 VPValue *StartVPV, VPValue *Def, 4664 VPTransformState &State) { 4665 PHINode *P = cast<PHINode>(PN); 4666 if (EnableVPlanNativePath) { 4667 // Currently we enter here in the VPlan-native path for non-induction 4668 // PHIs where all control flow is uniform. We simply widen these PHIs. 4669 // Create a vector phi with no operands - the vector phi operands will be 4670 // set at the end of vector code generation. 4671 Type *VecTy = (State.VF.isScalar()) 4672 ? PN->getType() 4673 : VectorType::get(PN->getType(), State.VF); 4674 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4675 State.set(Def, VecPhi, 0); 4676 OrigPHIsToFix.push_back(P); 4677 4678 return; 4679 } 4680 4681 assert(PN->getParent() == OrigLoop->getHeader() && 4682 "Non-header phis should have been handled elsewhere"); 4683 4684 Value *StartV = StartVPV ? StartVPV->getLiveInIRValue() : nullptr; 4685 // In order to support recurrences we need to be able to vectorize Phi nodes. 4686 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4687 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4688 // this value when we vectorize all of the instructions that use the PHI. 4689 if (RdxDesc || Legal->isFirstOrderRecurrence(P)) { 4690 Value *Iden = nullptr; 4691 bool ScalarPHI = 4692 (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4693 Type *VecTy = 4694 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 4695 4696 if (RdxDesc) { 4697 assert(Legal->isReductionVariable(P) && StartV && 4698 "RdxDesc should only be set for reduction variables; in that case " 4699 "a StartV is also required"); 4700 RecurKind RK = RdxDesc->getRecurrenceKind(); 4701 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) { 4702 // MinMax reduction have the start value as their identify. 4703 if (ScalarPHI) { 4704 Iden = StartV; 4705 } else { 4706 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4707 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4708 StartV = Iden = 4709 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 4710 } 4711 } else { 4712 Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity( 4713 RK, VecTy->getScalarType(), RdxDesc->getFastMathFlags()); 4714 Iden = IdenC; 4715 4716 if (!ScalarPHI) { 4717 Iden = ConstantVector::getSplat(State.VF, IdenC); 4718 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4719 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4720 Constant *Zero = Builder.getInt32(0); 4721 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 4722 } 4723 } 4724 } 4725 4726 for (unsigned Part = 0; Part < State.UF; ++Part) { 4727 // This is phase one of vectorizing PHIs. 4728 Value *EntryPart = PHINode::Create( 4729 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4730 State.set(Def, EntryPart, Part); 4731 if (StartV) { 4732 // Make sure to add the reduction start value only to the 4733 // first unroll part. 4734 Value *StartVal = (Part == 0) ? StartV : Iden; 4735 cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader); 4736 } 4737 } 4738 return; 4739 } 4740 4741 assert(!Legal->isReductionVariable(P) && 4742 "reductions should be handled above"); 4743 4744 setDebugLocFromInst(Builder, P); 4745 4746 // This PHINode must be an induction variable. 4747 // Make sure that we know about it. 4748 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4749 4750 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4751 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4752 4753 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4754 // which can be found from the original scalar operations. 4755 switch (II.getKind()) { 4756 case InductionDescriptor::IK_NoInduction: 4757 llvm_unreachable("Unknown induction"); 4758 case InductionDescriptor::IK_IntInduction: 4759 case InductionDescriptor::IK_FpInduction: 4760 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4761 case InductionDescriptor::IK_PtrInduction: { 4762 // Handle the pointer induction variable case. 4763 assert(P->getType()->isPointerTy() && "Unexpected type."); 4764 assert(!VF.isScalable() && "Currently unsupported for scalable vectors"); 4765 4766 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4767 // This is the normalized GEP that starts counting at zero. 4768 Value *PtrInd = 4769 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4770 // Determine the number of scalars we need to generate for each unroll 4771 // iteration. If the instruction is uniform, we only need to generate the 4772 // first lane. Otherwise, we generate all VF values. 4773 unsigned Lanes = Cost->isUniformAfterVectorization(P, State.VF) 4774 ? 1 4775 : State.VF.getKnownMinValue(); 4776 for (unsigned Part = 0; Part < UF; ++Part) { 4777 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4778 Constant *Idx = ConstantInt::get( 4779 PtrInd->getType(), Lane + Part * State.VF.getKnownMinValue()); 4780 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4781 Value *SclrGep = 4782 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4783 SclrGep->setName("next.gep"); 4784 State.set(Def, SclrGep, VPIteration(Part, Lane)); 4785 } 4786 } 4787 return; 4788 } 4789 assert(isa<SCEVConstant>(II.getStep()) && 4790 "Induction step not a SCEV constant!"); 4791 Type *PhiType = II.getStep()->getType(); 4792 4793 // Build a pointer phi 4794 Value *ScalarStartValue = II.getStartValue(); 4795 Type *ScStValueType = ScalarStartValue->getType(); 4796 PHINode *NewPointerPhi = 4797 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4798 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4799 4800 // A pointer induction, performed by using a gep 4801 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4802 Instruction *InductionLoc = LoopLatch->getTerminator(); 4803 const SCEV *ScalarStep = II.getStep(); 4804 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4805 Value *ScalarStepValue = 4806 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4807 Value *InductionGEP = GetElementPtrInst::Create( 4808 ScStValueType->getPointerElementType(), NewPointerPhi, 4809 Builder.CreateMul( 4810 ScalarStepValue, 4811 ConstantInt::get(PhiType, State.VF.getKnownMinValue() * State.UF)), 4812 "ptr.ind", InductionLoc); 4813 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4814 4815 // Create UF many actual address geps that use the pointer 4816 // phi as base and a vectorized version of the step value 4817 // (<step*0, ..., step*N>) as offset. 4818 for (unsigned Part = 0; Part < State.UF; ++Part) { 4819 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4820 Value *StartOffset = 4821 ConstantInt::get(VecPhiType, Part * State.VF.getKnownMinValue()); 4822 // Create a vector of consecutive numbers from zero to VF. 4823 StartOffset = 4824 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4825 4826 Value *GEP = Builder.CreateGEP( 4827 ScStValueType->getPointerElementType(), NewPointerPhi, 4828 Builder.CreateMul(StartOffset, 4829 Builder.CreateVectorSplat( 4830 State.VF.getKnownMinValue(), ScalarStepValue), 4831 "vector.gep")); 4832 State.set(Def, GEP, Part); 4833 } 4834 } 4835 } 4836 } 4837 4838 /// A helper function for checking whether an integer division-related 4839 /// instruction may divide by zero (in which case it must be predicated if 4840 /// executed conditionally in the scalar code). 4841 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4842 /// Non-zero divisors that are non compile-time constants will not be 4843 /// converted into multiplication, so we will still end up scalarizing 4844 /// the division, but can do so w/o predication. 4845 static bool mayDivideByZero(Instruction &I) { 4846 assert((I.getOpcode() == Instruction::UDiv || 4847 I.getOpcode() == Instruction::SDiv || 4848 I.getOpcode() == Instruction::URem || 4849 I.getOpcode() == Instruction::SRem) && 4850 "Unexpected instruction"); 4851 Value *Divisor = I.getOperand(1); 4852 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4853 return !CInt || CInt->isZero(); 4854 } 4855 4856 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4857 VPUser &User, 4858 VPTransformState &State) { 4859 switch (I.getOpcode()) { 4860 case Instruction::Call: 4861 case Instruction::Br: 4862 case Instruction::PHI: 4863 case Instruction::GetElementPtr: 4864 case Instruction::Select: 4865 llvm_unreachable("This instruction is handled by a different recipe."); 4866 case Instruction::UDiv: 4867 case Instruction::SDiv: 4868 case Instruction::SRem: 4869 case Instruction::URem: 4870 case Instruction::Add: 4871 case Instruction::FAdd: 4872 case Instruction::Sub: 4873 case Instruction::FSub: 4874 case Instruction::FNeg: 4875 case Instruction::Mul: 4876 case Instruction::FMul: 4877 case Instruction::FDiv: 4878 case Instruction::FRem: 4879 case Instruction::Shl: 4880 case Instruction::LShr: 4881 case Instruction::AShr: 4882 case Instruction::And: 4883 case Instruction::Or: 4884 case Instruction::Xor: { 4885 // Just widen unops and binops. 4886 setDebugLocFromInst(Builder, &I); 4887 4888 for (unsigned Part = 0; Part < UF; ++Part) { 4889 SmallVector<Value *, 2> Ops; 4890 for (VPValue *VPOp : User.operands()) 4891 Ops.push_back(State.get(VPOp, Part)); 4892 4893 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4894 4895 if (auto *VecOp = dyn_cast<Instruction>(V)) 4896 VecOp->copyIRFlags(&I); 4897 4898 // Use this vector value for all users of the original instruction. 4899 State.set(Def, V, Part); 4900 addMetadata(V, &I); 4901 } 4902 4903 break; 4904 } 4905 case Instruction::ICmp: 4906 case Instruction::FCmp: { 4907 // Widen compares. Generate vector compares. 4908 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4909 auto *Cmp = cast<CmpInst>(&I); 4910 setDebugLocFromInst(Builder, Cmp); 4911 for (unsigned Part = 0; Part < UF; ++Part) { 4912 Value *A = State.get(User.getOperand(0), Part); 4913 Value *B = State.get(User.getOperand(1), Part); 4914 Value *C = nullptr; 4915 if (FCmp) { 4916 // Propagate fast math flags. 4917 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4918 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4919 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4920 } else { 4921 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4922 } 4923 State.set(Def, C, Part); 4924 addMetadata(C, &I); 4925 } 4926 4927 break; 4928 } 4929 4930 case Instruction::ZExt: 4931 case Instruction::SExt: 4932 case Instruction::FPToUI: 4933 case Instruction::FPToSI: 4934 case Instruction::FPExt: 4935 case Instruction::PtrToInt: 4936 case Instruction::IntToPtr: 4937 case Instruction::SIToFP: 4938 case Instruction::UIToFP: 4939 case Instruction::Trunc: 4940 case Instruction::FPTrunc: 4941 case Instruction::BitCast: { 4942 auto *CI = cast<CastInst>(&I); 4943 setDebugLocFromInst(Builder, CI); 4944 4945 /// Vectorize casts. 4946 Type *DestTy = 4947 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4948 4949 for (unsigned Part = 0; Part < UF; ++Part) { 4950 Value *A = State.get(User.getOperand(0), Part); 4951 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4952 State.set(Def, Cast, Part); 4953 addMetadata(Cast, &I); 4954 } 4955 break; 4956 } 4957 default: 4958 // This instruction is not vectorized by simple widening. 4959 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4960 llvm_unreachable("Unhandled instruction!"); 4961 } // end of switch. 4962 } 4963 4964 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4965 VPUser &ArgOperands, 4966 VPTransformState &State) { 4967 assert(!isa<DbgInfoIntrinsic>(I) && 4968 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4969 setDebugLocFromInst(Builder, &I); 4970 4971 Module *M = I.getParent()->getParent()->getParent(); 4972 auto *CI = cast<CallInst>(&I); 4973 4974 SmallVector<Type *, 4> Tys; 4975 for (Value *ArgOperand : CI->arg_operands()) 4976 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4977 4978 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4979 4980 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4981 // version of the instruction. 4982 // Is it beneficial to perform intrinsic call compared to lib call? 4983 bool NeedToScalarize = false; 4984 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4985 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4986 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4987 assert((UseVectorIntrinsic || !NeedToScalarize) && 4988 "Instruction should be scalarized elsewhere."); 4989 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4990 "Either the intrinsic cost or vector call cost must be valid"); 4991 4992 for (unsigned Part = 0; Part < UF; ++Part) { 4993 SmallVector<Value *, 4> Args; 4994 for (auto &I : enumerate(ArgOperands.operands())) { 4995 // Some intrinsics have a scalar argument - don't replace it with a 4996 // vector. 4997 Value *Arg; 4998 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4999 Arg = State.get(I.value(), Part); 5000 else 5001 Arg = State.get(I.value(), VPIteration(0, 0)); 5002 Args.push_back(Arg); 5003 } 5004 5005 Function *VectorF; 5006 if (UseVectorIntrinsic) { 5007 // Use vector version of the intrinsic. 5008 Type *TysForDecl[] = {CI->getType()}; 5009 if (VF.isVector()) 5010 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5011 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5012 assert(VectorF && "Can't retrieve vector intrinsic."); 5013 } else { 5014 // Use vector version of the function call. 5015 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 5016 #ifndef NDEBUG 5017 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 5018 "Can't create vector function."); 5019 #endif 5020 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 5021 } 5022 SmallVector<OperandBundleDef, 1> OpBundles; 5023 CI->getOperandBundlesAsDefs(OpBundles); 5024 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5025 5026 if (isa<FPMathOperator>(V)) 5027 V->copyFastMathFlags(CI); 5028 5029 State.set(Def, V, Part); 5030 addMetadata(V, &I); 5031 } 5032 } 5033 5034 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5035 VPUser &Operands, 5036 bool InvariantCond, 5037 VPTransformState &State) { 5038 setDebugLocFromInst(Builder, &I); 5039 5040 // The condition can be loop invariant but still defined inside the 5041 // loop. This means that we can't just use the original 'cond' value. 5042 // We have to take the 'vectorized' value and pick the first lane. 5043 // Instcombine will make this a no-op. 5044 auto *InvarCond = InvariantCond 5045 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5046 : nullptr; 5047 5048 for (unsigned Part = 0; Part < UF; ++Part) { 5049 Value *Cond = 5050 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5051 Value *Op0 = State.get(Operands.getOperand(1), Part); 5052 Value *Op1 = State.get(Operands.getOperand(2), Part); 5053 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5054 State.set(VPDef, Sel, Part); 5055 addMetadata(Sel, &I); 5056 } 5057 } 5058 5059 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5060 // We should not collect Scalars more than once per VF. Right now, this 5061 // function is called from collectUniformsAndScalars(), which already does 5062 // this check. Collecting Scalars for VF=1 does not make any sense. 5063 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5064 "This function should not be visited twice for the same VF"); 5065 5066 SmallSetVector<Instruction *, 8> Worklist; 5067 5068 // These sets are used to seed the analysis with pointers used by memory 5069 // accesses that will remain scalar. 5070 SmallSetVector<Instruction *, 8> ScalarPtrs; 5071 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5072 auto *Latch = TheLoop->getLoopLatch(); 5073 5074 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5075 // The pointer operands of loads and stores will be scalar as long as the 5076 // memory access is not a gather or scatter operation. The value operand of a 5077 // store will remain scalar if the store is scalarized. 5078 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5079 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5080 assert(WideningDecision != CM_Unknown && 5081 "Widening decision should be ready at this moment"); 5082 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5083 if (Ptr == Store->getValueOperand()) 5084 return WideningDecision == CM_Scalarize; 5085 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5086 "Ptr is neither a value or pointer operand"); 5087 return WideningDecision != CM_GatherScatter; 5088 }; 5089 5090 // A helper that returns true if the given value is a bitcast or 5091 // getelementptr instruction contained in the loop. 5092 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5093 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5094 isa<GetElementPtrInst>(V)) && 5095 !TheLoop->isLoopInvariant(V); 5096 }; 5097 5098 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5099 if (!isa<PHINode>(Ptr) || 5100 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5101 return false; 5102 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5103 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5104 return false; 5105 return isScalarUse(MemAccess, Ptr); 5106 }; 5107 5108 // A helper that evaluates a memory access's use of a pointer. If the 5109 // pointer is actually the pointer induction of a loop, it is being 5110 // inserted into Worklist. If the use will be a scalar use, and the 5111 // pointer is only used by memory accesses, we place the pointer in 5112 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5113 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5114 if (isScalarPtrInduction(MemAccess, Ptr)) { 5115 Worklist.insert(cast<Instruction>(Ptr)); 5116 Instruction *Update = cast<Instruction>( 5117 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5118 Worklist.insert(Update); 5119 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5120 << "\n"); 5121 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 5122 << "\n"); 5123 return; 5124 } 5125 // We only care about bitcast and getelementptr instructions contained in 5126 // the loop. 5127 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5128 return; 5129 5130 // If the pointer has already been identified as scalar (e.g., if it was 5131 // also identified as uniform), there's nothing to do. 5132 auto *I = cast<Instruction>(Ptr); 5133 if (Worklist.count(I)) 5134 return; 5135 5136 // If the use of the pointer will be a scalar use, and all users of the 5137 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5138 // place the pointer in PossibleNonScalarPtrs. 5139 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5140 return isa<LoadInst>(U) || isa<StoreInst>(U); 5141 })) 5142 ScalarPtrs.insert(I); 5143 else 5144 PossibleNonScalarPtrs.insert(I); 5145 }; 5146 5147 // We seed the scalars analysis with three classes of instructions: (1) 5148 // instructions marked uniform-after-vectorization and (2) bitcast, 5149 // getelementptr and (pointer) phi instructions used by memory accesses 5150 // requiring a scalar use. 5151 // 5152 // (1) Add to the worklist all instructions that have been identified as 5153 // uniform-after-vectorization. 5154 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5155 5156 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5157 // memory accesses requiring a scalar use. The pointer operands of loads and 5158 // stores will be scalar as long as the memory accesses is not a gather or 5159 // scatter operation. The value operand of a store will remain scalar if the 5160 // store is scalarized. 5161 for (auto *BB : TheLoop->blocks()) 5162 for (auto &I : *BB) { 5163 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5164 evaluatePtrUse(Load, Load->getPointerOperand()); 5165 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5166 evaluatePtrUse(Store, Store->getPointerOperand()); 5167 evaluatePtrUse(Store, Store->getValueOperand()); 5168 } 5169 } 5170 for (auto *I : ScalarPtrs) 5171 if (!PossibleNonScalarPtrs.count(I)) { 5172 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5173 Worklist.insert(I); 5174 } 5175 5176 // Insert the forced scalars. 5177 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5178 // induction variable when the PHI user is scalarized. 5179 auto ForcedScalar = ForcedScalars.find(VF); 5180 if (ForcedScalar != ForcedScalars.end()) 5181 for (auto *I : ForcedScalar->second) 5182 Worklist.insert(I); 5183 5184 // Expand the worklist by looking through any bitcasts and getelementptr 5185 // instructions we've already identified as scalar. This is similar to the 5186 // expansion step in collectLoopUniforms(); however, here we're only 5187 // expanding to include additional bitcasts and getelementptr instructions. 5188 unsigned Idx = 0; 5189 while (Idx != Worklist.size()) { 5190 Instruction *Dst = Worklist[Idx++]; 5191 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5192 continue; 5193 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5194 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5195 auto *J = cast<Instruction>(U); 5196 return !TheLoop->contains(J) || Worklist.count(J) || 5197 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5198 isScalarUse(J, Src)); 5199 })) { 5200 Worklist.insert(Src); 5201 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5202 } 5203 } 5204 5205 // An induction variable will remain scalar if all users of the induction 5206 // variable and induction variable update remain scalar. 5207 for (auto &Induction : Legal->getInductionVars()) { 5208 auto *Ind = Induction.first; 5209 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5210 5211 // If tail-folding is applied, the primary induction variable will be used 5212 // to feed a vector compare. 5213 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5214 continue; 5215 5216 // Determine if all users of the induction variable are scalar after 5217 // vectorization. 5218 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5219 auto *I = cast<Instruction>(U); 5220 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5221 }); 5222 if (!ScalarInd) 5223 continue; 5224 5225 // Determine if all users of the induction variable update instruction are 5226 // scalar after vectorization. 5227 auto ScalarIndUpdate = 5228 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5229 auto *I = cast<Instruction>(U); 5230 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5231 }); 5232 if (!ScalarIndUpdate) 5233 continue; 5234 5235 // The induction variable and its update instruction will remain scalar. 5236 Worklist.insert(Ind); 5237 Worklist.insert(IndUpdate); 5238 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5239 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5240 << "\n"); 5241 } 5242 5243 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5244 } 5245 5246 bool LoopVectorizationCostModel::isScalarWithPredication( 5247 Instruction *I, ElementCount VF) const { 5248 if (!blockNeedsPredication(I->getParent())) 5249 return false; 5250 switch(I->getOpcode()) { 5251 default: 5252 break; 5253 case Instruction::Load: 5254 case Instruction::Store: { 5255 if (!Legal->isMaskRequired(I)) 5256 return false; 5257 auto *Ptr = getLoadStorePointerOperand(I); 5258 auto *Ty = getMemInstValueType(I); 5259 // We have already decided how to vectorize this instruction, get that 5260 // result. 5261 if (VF.isVector()) { 5262 InstWidening WideningDecision = getWideningDecision(I, VF); 5263 assert(WideningDecision != CM_Unknown && 5264 "Widening decision should be ready at this moment"); 5265 return WideningDecision == CM_Scalarize; 5266 } 5267 const Align Alignment = getLoadStoreAlignment(I); 5268 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5269 isLegalMaskedGather(Ty, Alignment)) 5270 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5271 isLegalMaskedScatter(Ty, Alignment)); 5272 } 5273 case Instruction::UDiv: 5274 case Instruction::SDiv: 5275 case Instruction::SRem: 5276 case Instruction::URem: 5277 return mayDivideByZero(*I); 5278 } 5279 return false; 5280 } 5281 5282 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5283 Instruction *I, ElementCount VF) { 5284 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5285 assert(getWideningDecision(I, VF) == CM_Unknown && 5286 "Decision should not be set yet."); 5287 auto *Group = getInterleavedAccessGroup(I); 5288 assert(Group && "Must have a group."); 5289 5290 // If the instruction's allocated size doesn't equal it's type size, it 5291 // requires padding and will be scalarized. 5292 auto &DL = I->getModule()->getDataLayout(); 5293 auto *ScalarTy = getMemInstValueType(I); 5294 if (hasIrregularType(ScalarTy, DL)) 5295 return false; 5296 5297 // Check if masking is required. 5298 // A Group may need masking for one of two reasons: it resides in a block that 5299 // needs predication, or it was decided to use masking to deal with gaps. 5300 bool PredicatedAccessRequiresMasking = 5301 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5302 bool AccessWithGapsRequiresMasking = 5303 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5304 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 5305 return true; 5306 5307 // If masked interleaving is required, we expect that the user/target had 5308 // enabled it, because otherwise it either wouldn't have been created or 5309 // it should have been invalidated by the CostModel. 5310 assert(useMaskedInterleavedAccesses(TTI) && 5311 "Masked interleave-groups for predicated accesses are not enabled."); 5312 5313 auto *Ty = getMemInstValueType(I); 5314 const Align Alignment = getLoadStoreAlignment(I); 5315 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5316 : TTI.isLegalMaskedStore(Ty, Alignment); 5317 } 5318 5319 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5320 Instruction *I, ElementCount VF) { 5321 // Get and ensure we have a valid memory instruction. 5322 LoadInst *LI = dyn_cast<LoadInst>(I); 5323 StoreInst *SI = dyn_cast<StoreInst>(I); 5324 assert((LI || SI) && "Invalid memory instruction"); 5325 5326 auto *Ptr = getLoadStorePointerOperand(I); 5327 5328 // In order to be widened, the pointer should be consecutive, first of all. 5329 if (!Legal->isConsecutivePtr(Ptr)) 5330 return false; 5331 5332 // If the instruction is a store located in a predicated block, it will be 5333 // scalarized. 5334 if (isScalarWithPredication(I)) 5335 return false; 5336 5337 // If the instruction's allocated size doesn't equal it's type size, it 5338 // requires padding and will be scalarized. 5339 auto &DL = I->getModule()->getDataLayout(); 5340 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5341 if (hasIrregularType(ScalarTy, DL)) 5342 return false; 5343 5344 return true; 5345 } 5346 5347 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5348 // We should not collect Uniforms more than once per VF. Right now, 5349 // this function is called from collectUniformsAndScalars(), which 5350 // already does this check. Collecting Uniforms for VF=1 does not make any 5351 // sense. 5352 5353 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5354 "This function should not be visited twice for the same VF"); 5355 5356 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5357 // not analyze again. Uniforms.count(VF) will return 1. 5358 Uniforms[VF].clear(); 5359 5360 // We now know that the loop is vectorizable! 5361 // Collect instructions inside the loop that will remain uniform after 5362 // vectorization. 5363 5364 // Global values, params and instructions outside of current loop are out of 5365 // scope. 5366 auto isOutOfScope = [&](Value *V) -> bool { 5367 Instruction *I = dyn_cast<Instruction>(V); 5368 return (!I || !TheLoop->contains(I)); 5369 }; 5370 5371 SetVector<Instruction *> Worklist; 5372 BasicBlock *Latch = TheLoop->getLoopLatch(); 5373 5374 // Instructions that are scalar with predication must not be considered 5375 // uniform after vectorization, because that would create an erroneous 5376 // replicating region where only a single instance out of VF should be formed. 5377 // TODO: optimize such seldom cases if found important, see PR40816. 5378 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5379 if (isOutOfScope(I)) { 5380 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5381 << *I << "\n"); 5382 return; 5383 } 5384 if (isScalarWithPredication(I, VF)) { 5385 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5386 << *I << "\n"); 5387 return; 5388 } 5389 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5390 Worklist.insert(I); 5391 }; 5392 5393 // Start with the conditional branch. If the branch condition is an 5394 // instruction contained in the loop that is only used by the branch, it is 5395 // uniform. 5396 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5397 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5398 addToWorklistIfAllowed(Cmp); 5399 5400 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5401 InstWidening WideningDecision = getWideningDecision(I, VF); 5402 assert(WideningDecision != CM_Unknown && 5403 "Widening decision should be ready at this moment"); 5404 5405 // A uniform memory op is itself uniform. We exclude uniform stores 5406 // here as they demand the last lane, not the first one. 5407 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5408 assert(WideningDecision == CM_Scalarize); 5409 return true; 5410 } 5411 5412 return (WideningDecision == CM_Widen || 5413 WideningDecision == CM_Widen_Reverse || 5414 WideningDecision == CM_Interleave); 5415 }; 5416 5417 5418 // Returns true if Ptr is the pointer operand of a memory access instruction 5419 // I, and I is known to not require scalarization. 5420 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5421 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5422 }; 5423 5424 // Holds a list of values which are known to have at least one uniform use. 5425 // Note that there may be other uses which aren't uniform. A "uniform use" 5426 // here is something which only demands lane 0 of the unrolled iterations; 5427 // it does not imply that all lanes produce the same value (e.g. this is not 5428 // the usual meaning of uniform) 5429 SetVector<Value *> HasUniformUse; 5430 5431 // Scan the loop for instructions which are either a) known to have only 5432 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5433 for (auto *BB : TheLoop->blocks()) 5434 for (auto &I : *BB) { 5435 // If there's no pointer operand, there's nothing to do. 5436 auto *Ptr = getLoadStorePointerOperand(&I); 5437 if (!Ptr) 5438 continue; 5439 5440 // A uniform memory op is itself uniform. We exclude uniform stores 5441 // here as they demand the last lane, not the first one. 5442 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5443 addToWorklistIfAllowed(&I); 5444 5445 if (isUniformDecision(&I, VF)) { 5446 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5447 HasUniformUse.insert(Ptr); 5448 } 5449 } 5450 5451 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5452 // demanding) users. Since loops are assumed to be in LCSSA form, this 5453 // disallows uses outside the loop as well. 5454 for (auto *V : HasUniformUse) { 5455 if (isOutOfScope(V)) 5456 continue; 5457 auto *I = cast<Instruction>(V); 5458 auto UsersAreMemAccesses = 5459 llvm::all_of(I->users(), [&](User *U) -> bool { 5460 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5461 }); 5462 if (UsersAreMemAccesses) 5463 addToWorklistIfAllowed(I); 5464 } 5465 5466 // Expand Worklist in topological order: whenever a new instruction 5467 // is added , its users should be already inside Worklist. It ensures 5468 // a uniform instruction will only be used by uniform instructions. 5469 unsigned idx = 0; 5470 while (idx != Worklist.size()) { 5471 Instruction *I = Worklist[idx++]; 5472 5473 for (auto OV : I->operand_values()) { 5474 // isOutOfScope operands cannot be uniform instructions. 5475 if (isOutOfScope(OV)) 5476 continue; 5477 // First order recurrence Phi's should typically be considered 5478 // non-uniform. 5479 auto *OP = dyn_cast<PHINode>(OV); 5480 if (OP && Legal->isFirstOrderRecurrence(OP)) 5481 continue; 5482 // If all the users of the operand are uniform, then add the 5483 // operand into the uniform worklist. 5484 auto *OI = cast<Instruction>(OV); 5485 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5486 auto *J = cast<Instruction>(U); 5487 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5488 })) 5489 addToWorklistIfAllowed(OI); 5490 } 5491 } 5492 5493 // For an instruction to be added into Worklist above, all its users inside 5494 // the loop should also be in Worklist. However, this condition cannot be 5495 // true for phi nodes that form a cyclic dependence. We must process phi 5496 // nodes separately. An induction variable will remain uniform if all users 5497 // of the induction variable and induction variable update remain uniform. 5498 // The code below handles both pointer and non-pointer induction variables. 5499 for (auto &Induction : Legal->getInductionVars()) { 5500 auto *Ind = Induction.first; 5501 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5502 5503 // Determine if all users of the induction variable are uniform after 5504 // vectorization. 5505 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5506 auto *I = cast<Instruction>(U); 5507 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5508 isVectorizedMemAccessUse(I, Ind); 5509 }); 5510 if (!UniformInd) 5511 continue; 5512 5513 // Determine if all users of the induction variable update instruction are 5514 // uniform after vectorization. 5515 auto UniformIndUpdate = 5516 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5517 auto *I = cast<Instruction>(U); 5518 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5519 isVectorizedMemAccessUse(I, IndUpdate); 5520 }); 5521 if (!UniformIndUpdate) 5522 continue; 5523 5524 // The induction variable and its update instruction will remain uniform. 5525 addToWorklistIfAllowed(Ind); 5526 addToWorklistIfAllowed(IndUpdate); 5527 } 5528 5529 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5530 } 5531 5532 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5533 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5534 5535 if (Legal->getRuntimePointerChecking()->Need) { 5536 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5537 "runtime pointer checks needed. Enable vectorization of this " 5538 "loop with '#pragma clang loop vectorize(enable)' when " 5539 "compiling with -Os/-Oz", 5540 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5541 return true; 5542 } 5543 5544 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5545 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5546 "runtime SCEV checks needed. Enable vectorization of this " 5547 "loop with '#pragma clang loop vectorize(enable)' when " 5548 "compiling with -Os/-Oz", 5549 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5550 return true; 5551 } 5552 5553 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5554 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5555 reportVectorizationFailure("Runtime stride check for small trip count", 5556 "runtime stride == 1 checks needed. Enable vectorization of " 5557 "this loop without such check by compiling with -Os/-Oz", 5558 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5559 return true; 5560 } 5561 5562 return false; 5563 } 5564 5565 Optional<ElementCount> 5566 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5567 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5568 // TODO: It may by useful to do since it's still likely to be dynamically 5569 // uniform if the target can skip. 5570 reportVectorizationFailure( 5571 "Not inserting runtime ptr check for divergent target", 5572 "runtime pointer checks needed. Not enabled for divergent target", 5573 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5574 return None; 5575 } 5576 5577 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5578 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5579 if (TC == 1) { 5580 reportVectorizationFailure("Single iteration (non) loop", 5581 "loop trip count is one, irrelevant for vectorization", 5582 "SingleIterationLoop", ORE, TheLoop); 5583 return None; 5584 } 5585 5586 switch (ScalarEpilogueStatus) { 5587 case CM_ScalarEpilogueAllowed: 5588 return computeFeasibleMaxVF(TC, UserVF); 5589 case CM_ScalarEpilogueNotAllowedUsePredicate: 5590 LLVM_FALLTHROUGH; 5591 case CM_ScalarEpilogueNotNeededUsePredicate: 5592 LLVM_DEBUG( 5593 dbgs() << "LV: vector predicate hint/switch found.\n" 5594 << "LV: Not allowing scalar epilogue, creating predicated " 5595 << "vector loop.\n"); 5596 break; 5597 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5598 // fallthrough as a special case of OptForSize 5599 case CM_ScalarEpilogueNotAllowedOptSize: 5600 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5601 LLVM_DEBUG( 5602 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5603 else 5604 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5605 << "count.\n"); 5606 5607 // Bail if runtime checks are required, which are not good when optimising 5608 // for size. 5609 if (runtimeChecksRequired()) 5610 return None; 5611 5612 break; 5613 } 5614 5615 // The only loops we can vectorize without a scalar epilogue, are loops with 5616 // a bottom-test and a single exiting block. We'd have to handle the fact 5617 // that not every instruction executes on the last iteration. This will 5618 // require a lane mask which varies through the vector loop body. (TODO) 5619 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5620 // If there was a tail-folding hint/switch, but we can't fold the tail by 5621 // masking, fallback to a vectorization with a scalar epilogue. 5622 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5623 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5624 "scalar epilogue instead.\n"); 5625 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5626 return computeFeasibleMaxVF(TC, UserVF); 5627 } 5628 return None; 5629 } 5630 5631 // Now try the tail folding 5632 5633 // Invalidate interleave groups that require an epilogue if we can't mask 5634 // the interleave-group. 5635 if (!useMaskedInterleavedAccesses(TTI)) { 5636 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5637 "No decisions should have been taken at this point"); 5638 // Note: There is no need to invalidate any cost modeling decisions here, as 5639 // non where taken so far. 5640 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5641 } 5642 5643 ElementCount MaxVF = computeFeasibleMaxVF(TC, UserVF); 5644 assert(!MaxVF.isScalable() && 5645 "Scalable vectors do not yet support tail folding"); 5646 assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) && 5647 "MaxVF must be a power of 2"); 5648 unsigned MaxVFtimesIC = 5649 UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue(); 5650 // Avoid tail folding if the trip count is known to be a multiple of any VF we 5651 // chose. 5652 ScalarEvolution *SE = PSE.getSE(); 5653 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5654 const SCEV *ExitCount = SE->getAddExpr( 5655 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5656 const SCEV *Rem = SE->getURemExpr( 5657 SE->applyLoopGuards(ExitCount, TheLoop), 5658 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5659 if (Rem->isZero()) { 5660 // Accept MaxVF if we do not have a tail. 5661 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5662 return MaxVF; 5663 } 5664 5665 // If we don't know the precise trip count, or if the trip count that we 5666 // found modulo the vectorization factor is not zero, try to fold the tail 5667 // by masking. 5668 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5669 if (Legal->prepareToFoldTailByMasking()) { 5670 FoldTailByMasking = true; 5671 return MaxVF; 5672 } 5673 5674 // If there was a tail-folding hint/switch, but we can't fold the tail by 5675 // masking, fallback to a vectorization with a scalar epilogue. 5676 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5677 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5678 "scalar epilogue instead.\n"); 5679 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5680 return MaxVF; 5681 } 5682 5683 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5684 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5685 return None; 5686 } 5687 5688 if (TC == 0) { 5689 reportVectorizationFailure( 5690 "Unable to calculate the loop count due to complex control flow", 5691 "unable to calculate the loop count due to complex control flow", 5692 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5693 return None; 5694 } 5695 5696 reportVectorizationFailure( 5697 "Cannot optimize for size and vectorize at the same time.", 5698 "cannot optimize for size and vectorize at the same time. " 5699 "Enable vectorization of this loop with '#pragma clang loop " 5700 "vectorize(enable)' when compiling with -Os/-Oz", 5701 "NoTailLoopWithOptForSize", ORE, TheLoop); 5702 return None; 5703 } 5704 5705 ElementCount 5706 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5707 ElementCount UserVF) { 5708 bool IgnoreScalableUserVF = UserVF.isScalable() && 5709 !TTI.supportsScalableVectors() && 5710 !ForceTargetSupportsScalableVectors; 5711 if (IgnoreScalableUserVF) { 5712 LLVM_DEBUG( 5713 dbgs() << "LV: Ignoring VF=" << UserVF 5714 << " because target does not support scalable vectors.\n"); 5715 ORE->emit([&]() { 5716 return OptimizationRemarkAnalysis(DEBUG_TYPE, "IgnoreScalableUserVF", 5717 TheLoop->getStartLoc(), 5718 TheLoop->getHeader()) 5719 << "Ignoring VF=" << ore::NV("UserVF", UserVF) 5720 << " because target does not support scalable vectors."; 5721 }); 5722 } 5723 5724 // Beyond this point two scenarios are handled. If UserVF isn't specified 5725 // then a suitable VF is chosen. If UserVF is specified and there are 5726 // dependencies, check if it's legal. However, if a UserVF is specified and 5727 // there are no dependencies, then there's nothing to do. 5728 if (UserVF.isNonZero() && !IgnoreScalableUserVF) { 5729 if (!canVectorizeReductions(UserVF)) { 5730 reportVectorizationFailure( 5731 "LV: Scalable vectorization not supported for the reduction " 5732 "operations found in this loop. Using fixed-width " 5733 "vectorization instead.", 5734 "Scalable vectorization not supported for the reduction operations " 5735 "found in this loop. Using fixed-width vectorization instead.", 5736 "ScalableVFUnfeasible", ORE, TheLoop); 5737 return computeFeasibleMaxVF( 5738 ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue())); 5739 } 5740 5741 if (Legal->isSafeForAnyVectorWidth()) 5742 return UserVF; 5743 } 5744 5745 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5746 unsigned SmallestType, WidestType; 5747 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5748 unsigned WidestRegister = 5749 TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 5750 .getFixedSize(); 5751 5752 // Get the maximum safe dependence distance in bits computed by LAA. 5753 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5754 // the memory accesses that is most restrictive (involved in the smallest 5755 // dependence distance). 5756 unsigned MaxSafeVectorWidthInBits = Legal->getMaxSafeVectorWidthInBits(); 5757 5758 // If the user vectorization factor is legally unsafe, clamp it to a safe 5759 // value. Otherwise, return as is. 5760 if (UserVF.isNonZero() && !IgnoreScalableUserVF) { 5761 unsigned MaxSafeElements = 5762 PowerOf2Floor(MaxSafeVectorWidthInBits / WidestType); 5763 ElementCount MaxSafeVF = ElementCount::getFixed(MaxSafeElements); 5764 5765 if (UserVF.isScalable()) { 5766 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5767 5768 // Scale VF by vscale before checking if it's safe. 5769 MaxSafeVF = ElementCount::getScalable( 5770 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5771 5772 if (MaxSafeVF.isZero()) { 5773 // The dependence distance is too small to use scalable vectors, 5774 // fallback on fixed. 5775 LLVM_DEBUG( 5776 dbgs() 5777 << "LV: Max legal vector width too small, scalable vectorization " 5778 "unfeasible. Using fixed-width vectorization instead.\n"); 5779 ORE->emit([&]() { 5780 return OptimizationRemarkAnalysis(DEBUG_TYPE, "ScalableVFUnfeasible", 5781 TheLoop->getStartLoc(), 5782 TheLoop->getHeader()) 5783 << "Max legal vector width too small, scalable vectorization " 5784 << "unfeasible. Using fixed-width vectorization instead."; 5785 }); 5786 return computeFeasibleMaxVF( 5787 ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue())); 5788 } 5789 } 5790 5791 LLVM_DEBUG(dbgs() << "LV: The max safe VF is: " << MaxSafeVF << ".\n"); 5792 5793 if (ElementCount::isKnownLE(UserVF, MaxSafeVF)) 5794 return UserVF; 5795 5796 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5797 << " is unsafe, clamping to max safe VF=" << MaxSafeVF 5798 << ".\n"); 5799 ORE->emit([&]() { 5800 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5801 TheLoop->getStartLoc(), 5802 TheLoop->getHeader()) 5803 << "User-specified vectorization factor " 5804 << ore::NV("UserVectorizationFactor", UserVF) 5805 << " is unsafe, clamping to maximum safe vectorization factor " 5806 << ore::NV("VectorizationFactor", MaxSafeVF); 5807 }); 5808 return MaxSafeVF; 5809 } 5810 5811 WidestRegister = std::min(WidestRegister, MaxSafeVectorWidthInBits); 5812 5813 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5814 // Note that both WidestRegister and WidestType may not be a powers of 2. 5815 auto MaxVectorSize = 5816 ElementCount::getFixed(PowerOf2Floor(WidestRegister / WidestType)); 5817 5818 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5819 << " / " << WidestType << " bits.\n"); 5820 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5821 << WidestRegister << " bits.\n"); 5822 5823 assert(MaxVectorSize.getFixedValue() <= WidestRegister && 5824 "Did not expect to pack so many elements" 5825 " into one vector!"); 5826 if (MaxVectorSize.getFixedValue() == 0) { 5827 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5828 return ElementCount::getFixed(1); 5829 } else if (ConstTripCount && ConstTripCount < MaxVectorSize.getFixedValue() && 5830 isPowerOf2_32(ConstTripCount)) { 5831 // We need to clamp the VF to be the ConstTripCount. There is no point in 5832 // choosing a higher viable VF as done in the loop below. 5833 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5834 << ConstTripCount << "\n"); 5835 return ElementCount::getFixed(ConstTripCount); 5836 } 5837 5838 ElementCount MaxVF = MaxVectorSize; 5839 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5840 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5841 // Collect all viable vectorization factors larger than the default MaxVF 5842 // (i.e. MaxVectorSize). 5843 SmallVector<ElementCount, 8> VFs; 5844 auto MaxVectorSizeMaxBW = 5845 ElementCount::getFixed(WidestRegister / SmallestType); 5846 for (ElementCount VS = MaxVectorSize * 2; 5847 ElementCount::isKnownLE(VS, MaxVectorSizeMaxBW); VS *= 2) 5848 VFs.push_back(VS); 5849 5850 // For each VF calculate its register usage. 5851 auto RUs = calculateRegisterUsage(VFs); 5852 5853 // Select the largest VF which doesn't require more registers than existing 5854 // ones. 5855 for (int i = RUs.size() - 1; i >= 0; --i) { 5856 bool Selected = true; 5857 for (auto &pair : RUs[i].MaxLocalUsers) { 5858 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5859 if (pair.second > TargetNumRegisters) 5860 Selected = false; 5861 } 5862 if (Selected) { 5863 MaxVF = VFs[i]; 5864 break; 5865 } 5866 } 5867 if (ElementCount MinVF = 5868 TTI.getMinimumVF(SmallestType, /*IsScalable=*/false)) { 5869 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5870 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5871 << ") with target's minimum: " << MinVF << '\n'); 5872 MaxVF = MinVF; 5873 } 5874 } 5875 } 5876 return MaxVF; 5877 } 5878 5879 VectorizationFactor 5880 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) { 5881 // FIXME: This can be fixed for scalable vectors later, because at this stage 5882 // the LoopVectorizer will only consider vectorizing a loop with scalable 5883 // vectors when the loop has a hint to enable vectorization for a given VF. 5884 assert(!MaxVF.isScalable() && "scalable vectors not yet supported"); 5885 5886 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5887 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5888 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5889 5890 auto Width = ElementCount::getFixed(1); 5891 const float ScalarCost = *ExpectedCost.getValue(); 5892 float Cost = ScalarCost; 5893 5894 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5895 if (ForceVectorization && MaxVF.isVector()) { 5896 // Ignore scalar width, because the user explicitly wants vectorization. 5897 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5898 // evaluation. 5899 Cost = std::numeric_limits<float>::max(); 5900 } 5901 5902 for (auto i = ElementCount::getFixed(2); ElementCount::isKnownLE(i, MaxVF); 5903 i *= 2) { 5904 // Notice that the vector loop needs to be executed less times, so 5905 // we need to divide the cost of the vector loops by the width of 5906 // the vector elements. 5907 VectorizationCostTy C = expectedCost(i); 5908 assert(C.first.isValid() && "Unexpected invalid cost for vector loop"); 5909 float VectorCost = *C.first.getValue() / (float)i.getFixedValue(); 5910 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5911 << " costs: " << (int)VectorCost << ".\n"); 5912 if (!C.second && !ForceVectorization) { 5913 LLVM_DEBUG( 5914 dbgs() << "LV: Not considering vector loop of width " << i 5915 << " because it will not generate any vector instructions.\n"); 5916 continue; 5917 } 5918 5919 // If profitable add it to ProfitableVF list. 5920 if (VectorCost < ScalarCost) { 5921 ProfitableVFs.push_back(VectorizationFactor( 5922 {i, (unsigned)VectorCost})); 5923 } 5924 5925 if (VectorCost < Cost) { 5926 Cost = VectorCost; 5927 Width = i; 5928 } 5929 } 5930 5931 if (!EnableCondStoresVectorization && NumPredStores) { 5932 reportVectorizationFailure("There are conditional stores.", 5933 "store that is conditionally executed prevents vectorization", 5934 "ConditionalStore", ORE, TheLoop); 5935 Width = ElementCount::getFixed(1); 5936 Cost = ScalarCost; 5937 } 5938 5939 LLVM_DEBUG(if (ForceVectorization && !Width.isScalar() && Cost >= ScalarCost) dbgs() 5940 << "LV: Vectorization seems to be not beneficial, " 5941 << "but was forced by a user.\n"); 5942 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5943 VectorizationFactor Factor = {Width, 5944 (unsigned)(Width.getKnownMinValue() * Cost)}; 5945 return Factor; 5946 } 5947 5948 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5949 const Loop &L, ElementCount VF) const { 5950 // Cross iteration phis such as reductions need special handling and are 5951 // currently unsupported. 5952 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 5953 return Legal->isFirstOrderRecurrence(&Phi) || 5954 Legal->isReductionVariable(&Phi); 5955 })) 5956 return false; 5957 5958 // Phis with uses outside of the loop require special handling and are 5959 // currently unsupported. 5960 for (auto &Entry : Legal->getInductionVars()) { 5961 // Look for uses of the value of the induction at the last iteration. 5962 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5963 for (User *U : PostInc->users()) 5964 if (!L.contains(cast<Instruction>(U))) 5965 return false; 5966 // Look for uses of penultimate value of the induction. 5967 for (User *U : Entry.first->users()) 5968 if (!L.contains(cast<Instruction>(U))) 5969 return false; 5970 } 5971 5972 // Induction variables that are widened require special handling that is 5973 // currently not supported. 5974 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5975 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5976 this->isProfitableToScalarize(Entry.first, VF)); 5977 })) 5978 return false; 5979 5980 return true; 5981 } 5982 5983 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5984 const ElementCount VF) const { 5985 // FIXME: We need a much better cost-model to take different parameters such 5986 // as register pressure, code size increase and cost of extra branches into 5987 // account. For now we apply a very crude heuristic and only consider loops 5988 // with vectorization factors larger than a certain value. 5989 // We also consider epilogue vectorization unprofitable for targets that don't 5990 // consider interleaving beneficial (eg. MVE). 5991 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5992 return false; 5993 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 5994 return true; 5995 return false; 5996 } 5997 5998 VectorizationFactor 5999 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 6000 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 6001 VectorizationFactor Result = VectorizationFactor::Disabled(); 6002 if (!EnableEpilogueVectorization) { 6003 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 6004 return Result; 6005 } 6006 6007 if (!isScalarEpilogueAllowed()) { 6008 LLVM_DEBUG( 6009 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 6010 "allowed.\n";); 6011 return Result; 6012 } 6013 6014 // FIXME: This can be fixed for scalable vectors later, because at this stage 6015 // the LoopVectorizer will only consider vectorizing a loop with scalable 6016 // vectors when the loop has a hint to enable vectorization for a given VF. 6017 if (MainLoopVF.isScalable()) { 6018 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 6019 "yet supported.\n"); 6020 return Result; 6021 } 6022 6023 // Not really a cost consideration, but check for unsupported cases here to 6024 // simplify the logic. 6025 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 6026 LLVM_DEBUG( 6027 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 6028 "not a supported candidate.\n";); 6029 return Result; 6030 } 6031 6032 if (EpilogueVectorizationForceVF > 1) { 6033 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 6034 if (LVP.hasPlanWithVFs( 6035 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 6036 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 6037 else { 6038 LLVM_DEBUG( 6039 dbgs() 6040 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 6041 return Result; 6042 } 6043 } 6044 6045 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6046 TheLoop->getHeader()->getParent()->hasMinSize()) { 6047 LLVM_DEBUG( 6048 dbgs() 6049 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6050 return Result; 6051 } 6052 6053 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6054 return Result; 6055 6056 for (auto &NextVF : ProfitableVFs) 6057 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6058 (Result.Width.getFixedValue() == 1 || NextVF.Cost < Result.Cost) && 6059 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6060 Result = NextVF; 6061 6062 if (Result != VectorizationFactor::Disabled()) 6063 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6064 << Result.Width.getFixedValue() << "\n";); 6065 return Result; 6066 } 6067 6068 std::pair<unsigned, unsigned> 6069 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6070 unsigned MinWidth = -1U; 6071 unsigned MaxWidth = 8; 6072 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6073 6074 // For each block. 6075 for (BasicBlock *BB : TheLoop->blocks()) { 6076 // For each instruction in the loop. 6077 for (Instruction &I : BB->instructionsWithoutDebug()) { 6078 Type *T = I.getType(); 6079 6080 // Skip ignored values. 6081 if (ValuesToIgnore.count(&I)) 6082 continue; 6083 6084 // Only examine Loads, Stores and PHINodes. 6085 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6086 continue; 6087 6088 // Examine PHI nodes that are reduction variables. Update the type to 6089 // account for the recurrence type. 6090 if (auto *PN = dyn_cast<PHINode>(&I)) { 6091 if (!Legal->isReductionVariable(PN)) 6092 continue; 6093 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 6094 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6095 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6096 RdxDesc.getRecurrenceType(), 6097 TargetTransformInfo::ReductionFlags())) 6098 continue; 6099 T = RdxDesc.getRecurrenceType(); 6100 } 6101 6102 // Examine the stored values. 6103 if (auto *ST = dyn_cast<StoreInst>(&I)) 6104 T = ST->getValueOperand()->getType(); 6105 6106 // Ignore loaded pointer types and stored pointer types that are not 6107 // vectorizable. 6108 // 6109 // FIXME: The check here attempts to predict whether a load or store will 6110 // be vectorized. We only know this for certain after a VF has 6111 // been selected. Here, we assume that if an access can be 6112 // vectorized, it will be. We should also look at extending this 6113 // optimization to non-pointer types. 6114 // 6115 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6116 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6117 continue; 6118 6119 MinWidth = std::min(MinWidth, 6120 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6121 MaxWidth = std::max(MaxWidth, 6122 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6123 } 6124 } 6125 6126 return {MinWidth, MaxWidth}; 6127 } 6128 6129 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6130 unsigned LoopCost) { 6131 // -- The interleave heuristics -- 6132 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6133 // There are many micro-architectural considerations that we can't predict 6134 // at this level. For example, frontend pressure (on decode or fetch) due to 6135 // code size, or the number and capabilities of the execution ports. 6136 // 6137 // We use the following heuristics to select the interleave count: 6138 // 1. If the code has reductions, then we interleave to break the cross 6139 // iteration dependency. 6140 // 2. If the loop is really small, then we interleave to reduce the loop 6141 // overhead. 6142 // 3. We don't interleave if we think that we will spill registers to memory 6143 // due to the increased register pressure. 6144 6145 if (!isScalarEpilogueAllowed()) 6146 return 1; 6147 6148 // We used the distance for the interleave count. 6149 if (Legal->getMaxSafeDepDistBytes() != -1U) 6150 return 1; 6151 6152 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6153 const bool HasReductions = !Legal->getReductionVars().empty(); 6154 // Do not interleave loops with a relatively small known or estimated trip 6155 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6156 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6157 // because with the above conditions interleaving can expose ILP and break 6158 // cross iteration dependences for reductions. 6159 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6160 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6161 return 1; 6162 6163 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6164 // We divide by these constants so assume that we have at least one 6165 // instruction that uses at least one register. 6166 for (auto& pair : R.MaxLocalUsers) { 6167 pair.second = std::max(pair.second, 1U); 6168 } 6169 6170 // We calculate the interleave count using the following formula. 6171 // Subtract the number of loop invariants from the number of available 6172 // registers. These registers are used by all of the interleaved instances. 6173 // Next, divide the remaining registers by the number of registers that is 6174 // required by the loop, in order to estimate how many parallel instances 6175 // fit without causing spills. All of this is rounded down if necessary to be 6176 // a power of two. We want power of two interleave count to simplify any 6177 // addressing operations or alignment considerations. 6178 // We also want power of two interleave counts to ensure that the induction 6179 // variable of the vector loop wraps to zero, when tail is folded by masking; 6180 // this currently happens when OptForSize, in which case IC is set to 1 above. 6181 unsigned IC = UINT_MAX; 6182 6183 for (auto& pair : R.MaxLocalUsers) { 6184 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6185 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6186 << " registers of " 6187 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6188 if (VF.isScalar()) { 6189 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6190 TargetNumRegisters = ForceTargetNumScalarRegs; 6191 } else { 6192 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6193 TargetNumRegisters = ForceTargetNumVectorRegs; 6194 } 6195 unsigned MaxLocalUsers = pair.second; 6196 unsigned LoopInvariantRegs = 0; 6197 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6198 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6199 6200 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6201 // Don't count the induction variable as interleaved. 6202 if (EnableIndVarRegisterHeur) { 6203 TmpIC = 6204 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6205 std::max(1U, (MaxLocalUsers - 1))); 6206 } 6207 6208 IC = std::min(IC, TmpIC); 6209 } 6210 6211 // Clamp the interleave ranges to reasonable counts. 6212 unsigned MaxInterleaveCount = 6213 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6214 6215 // Check if the user has overridden the max. 6216 if (VF.isScalar()) { 6217 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6218 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6219 } else { 6220 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6221 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6222 } 6223 6224 // If trip count is known or estimated compile time constant, limit the 6225 // interleave count to be less than the trip count divided by VF, provided it 6226 // is at least 1. 6227 // 6228 // For scalable vectors we can't know if interleaving is beneficial. It may 6229 // not be beneficial for small loops if none of the lanes in the second vector 6230 // iterations is enabled. However, for larger loops, there is likely to be a 6231 // similar benefit as for fixed-width vectors. For now, we choose to leave 6232 // the InterleaveCount as if vscale is '1', although if some information about 6233 // the vector is known (e.g. min vector size), we can make a better decision. 6234 if (BestKnownTC) { 6235 MaxInterleaveCount = 6236 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6237 // Make sure MaxInterleaveCount is greater than 0. 6238 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6239 } 6240 6241 assert(MaxInterleaveCount > 0 && 6242 "Maximum interleave count must be greater than 0"); 6243 6244 // Clamp the calculated IC to be between the 1 and the max interleave count 6245 // that the target and trip count allows. 6246 if (IC > MaxInterleaveCount) 6247 IC = MaxInterleaveCount; 6248 else 6249 // Make sure IC is greater than 0. 6250 IC = std::max(1u, IC); 6251 6252 assert(IC > 0 && "Interleave count must be greater than 0."); 6253 6254 // If we did not calculate the cost for VF (because the user selected the VF) 6255 // then we calculate the cost of VF here. 6256 if (LoopCost == 0) { 6257 assert(expectedCost(VF).first.isValid() && "Expected a valid cost"); 6258 LoopCost = *expectedCost(VF).first.getValue(); 6259 } 6260 6261 assert(LoopCost && "Non-zero loop cost expected"); 6262 6263 // Interleave if we vectorized this loop and there is a reduction that could 6264 // benefit from interleaving. 6265 if (VF.isVector() && HasReductions) { 6266 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6267 return IC; 6268 } 6269 6270 // Note that if we've already vectorized the loop we will have done the 6271 // runtime check and so interleaving won't require further checks. 6272 bool InterleavingRequiresRuntimePointerCheck = 6273 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6274 6275 // We want to interleave small loops in order to reduce the loop overhead and 6276 // potentially expose ILP opportunities. 6277 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6278 << "LV: IC is " << IC << '\n' 6279 << "LV: VF is " << VF << '\n'); 6280 const bool AggressivelyInterleaveReductions = 6281 TTI.enableAggressiveInterleaving(HasReductions); 6282 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6283 // We assume that the cost overhead is 1 and we use the cost model 6284 // to estimate the cost of the loop and interleave until the cost of the 6285 // loop overhead is about 5% of the cost of the loop. 6286 unsigned SmallIC = 6287 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6288 6289 // Interleave until store/load ports (estimated by max interleave count) are 6290 // saturated. 6291 unsigned NumStores = Legal->getNumStores(); 6292 unsigned NumLoads = Legal->getNumLoads(); 6293 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6294 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6295 6296 // If we have a scalar reduction (vector reductions are already dealt with 6297 // by this point), we can increase the critical path length if the loop 6298 // we're interleaving is inside another loop. Limit, by default to 2, so the 6299 // critical path only gets increased by one reduction operation. 6300 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6301 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6302 SmallIC = std::min(SmallIC, F); 6303 StoresIC = std::min(StoresIC, F); 6304 LoadsIC = std::min(LoadsIC, F); 6305 } 6306 6307 if (EnableLoadStoreRuntimeInterleave && 6308 std::max(StoresIC, LoadsIC) > SmallIC) { 6309 LLVM_DEBUG( 6310 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6311 return std::max(StoresIC, LoadsIC); 6312 } 6313 6314 // If there are scalar reductions and TTI has enabled aggressive 6315 // interleaving for reductions, we will interleave to expose ILP. 6316 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6317 AggressivelyInterleaveReductions) { 6318 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6319 // Interleave no less than SmallIC but not as aggressive as the normal IC 6320 // to satisfy the rare situation when resources are too limited. 6321 return std::max(IC / 2, SmallIC); 6322 } else { 6323 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6324 return SmallIC; 6325 } 6326 } 6327 6328 // Interleave if this is a large loop (small loops are already dealt with by 6329 // this point) that could benefit from interleaving. 6330 if (AggressivelyInterleaveReductions) { 6331 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6332 return IC; 6333 } 6334 6335 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6336 return 1; 6337 } 6338 6339 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6340 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6341 // This function calculates the register usage by measuring the highest number 6342 // of values that are alive at a single location. Obviously, this is a very 6343 // rough estimation. We scan the loop in a topological order in order and 6344 // assign a number to each instruction. We use RPO to ensure that defs are 6345 // met before their users. We assume that each instruction that has in-loop 6346 // users starts an interval. We record every time that an in-loop value is 6347 // used, so we have a list of the first and last occurrences of each 6348 // instruction. Next, we transpose this data structure into a multi map that 6349 // holds the list of intervals that *end* at a specific location. This multi 6350 // map allows us to perform a linear search. We scan the instructions linearly 6351 // and record each time that a new interval starts, by placing it in a set. 6352 // If we find this value in the multi-map then we remove it from the set. 6353 // The max register usage is the maximum size of the set. 6354 // We also search for instructions that are defined outside the loop, but are 6355 // used inside the loop. We need this number separately from the max-interval 6356 // usage number because when we unroll, loop-invariant values do not take 6357 // more register. 6358 LoopBlocksDFS DFS(TheLoop); 6359 DFS.perform(LI); 6360 6361 RegisterUsage RU; 6362 6363 // Each 'key' in the map opens a new interval. The values 6364 // of the map are the index of the 'last seen' usage of the 6365 // instruction that is the key. 6366 using IntervalMap = DenseMap<Instruction *, unsigned>; 6367 6368 // Maps instruction to its index. 6369 SmallVector<Instruction *, 64> IdxToInstr; 6370 // Marks the end of each interval. 6371 IntervalMap EndPoint; 6372 // Saves the list of instruction indices that are used in the loop. 6373 SmallPtrSet<Instruction *, 8> Ends; 6374 // Saves the list of values that are used in the loop but are 6375 // defined outside the loop, such as arguments and constants. 6376 SmallPtrSet<Value *, 8> LoopInvariants; 6377 6378 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6379 for (Instruction &I : BB->instructionsWithoutDebug()) { 6380 IdxToInstr.push_back(&I); 6381 6382 // Save the end location of each USE. 6383 for (Value *U : I.operands()) { 6384 auto *Instr = dyn_cast<Instruction>(U); 6385 6386 // Ignore non-instruction values such as arguments, constants, etc. 6387 if (!Instr) 6388 continue; 6389 6390 // If this instruction is outside the loop then record it and continue. 6391 if (!TheLoop->contains(Instr)) { 6392 LoopInvariants.insert(Instr); 6393 continue; 6394 } 6395 6396 // Overwrite previous end points. 6397 EndPoint[Instr] = IdxToInstr.size(); 6398 Ends.insert(Instr); 6399 } 6400 } 6401 } 6402 6403 // Saves the list of intervals that end with the index in 'key'. 6404 using InstrList = SmallVector<Instruction *, 2>; 6405 DenseMap<unsigned, InstrList> TransposeEnds; 6406 6407 // Transpose the EndPoints to a list of values that end at each index. 6408 for (auto &Interval : EndPoint) 6409 TransposeEnds[Interval.second].push_back(Interval.first); 6410 6411 SmallPtrSet<Instruction *, 8> OpenIntervals; 6412 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6413 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6414 6415 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6416 6417 // A lambda that gets the register usage for the given type and VF. 6418 const auto &TTICapture = TTI; 6419 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 6420 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6421 return 0U; 6422 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 6423 }; 6424 6425 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6426 Instruction *I = IdxToInstr[i]; 6427 6428 // Remove all of the instructions that end at this location. 6429 InstrList &List = TransposeEnds[i]; 6430 for (Instruction *ToRemove : List) 6431 OpenIntervals.erase(ToRemove); 6432 6433 // Ignore instructions that are never used within the loop. 6434 if (!Ends.count(I)) 6435 continue; 6436 6437 // Skip ignored values. 6438 if (ValuesToIgnore.count(I)) 6439 continue; 6440 6441 // For each VF find the maximum usage of registers. 6442 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6443 // Count the number of live intervals. 6444 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6445 6446 if (VFs[j].isScalar()) { 6447 for (auto Inst : OpenIntervals) { 6448 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6449 if (RegUsage.find(ClassID) == RegUsage.end()) 6450 RegUsage[ClassID] = 1; 6451 else 6452 RegUsage[ClassID] += 1; 6453 } 6454 } else { 6455 collectUniformsAndScalars(VFs[j]); 6456 for (auto Inst : OpenIntervals) { 6457 // Skip ignored values for VF > 1. 6458 if (VecValuesToIgnore.count(Inst)) 6459 continue; 6460 if (isScalarAfterVectorization(Inst, VFs[j])) { 6461 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6462 if (RegUsage.find(ClassID) == RegUsage.end()) 6463 RegUsage[ClassID] = 1; 6464 else 6465 RegUsage[ClassID] += 1; 6466 } else { 6467 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6468 if (RegUsage.find(ClassID) == RegUsage.end()) 6469 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6470 else 6471 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6472 } 6473 } 6474 } 6475 6476 for (auto& pair : RegUsage) { 6477 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6478 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6479 else 6480 MaxUsages[j][pair.first] = pair.second; 6481 } 6482 } 6483 6484 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6485 << OpenIntervals.size() << '\n'); 6486 6487 // Add the current instruction to the list of open intervals. 6488 OpenIntervals.insert(I); 6489 } 6490 6491 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6492 SmallMapVector<unsigned, unsigned, 4> Invariant; 6493 6494 for (auto Inst : LoopInvariants) { 6495 unsigned Usage = 6496 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6497 unsigned ClassID = 6498 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6499 if (Invariant.find(ClassID) == Invariant.end()) 6500 Invariant[ClassID] = Usage; 6501 else 6502 Invariant[ClassID] += Usage; 6503 } 6504 6505 LLVM_DEBUG({ 6506 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6507 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6508 << " item\n"; 6509 for (const auto &pair : MaxUsages[i]) { 6510 dbgs() << "LV(REG): RegisterClass: " 6511 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6512 << " registers\n"; 6513 } 6514 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6515 << " item\n"; 6516 for (const auto &pair : Invariant) { 6517 dbgs() << "LV(REG): RegisterClass: " 6518 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6519 << " registers\n"; 6520 } 6521 }); 6522 6523 RU.LoopInvariantRegs = Invariant; 6524 RU.MaxLocalUsers = MaxUsages[i]; 6525 RUs[i] = RU; 6526 } 6527 6528 return RUs; 6529 } 6530 6531 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6532 // TODO: Cost model for emulated masked load/store is completely 6533 // broken. This hack guides the cost model to use an artificially 6534 // high enough value to practically disable vectorization with such 6535 // operations, except where previously deployed legality hack allowed 6536 // using very low cost values. This is to avoid regressions coming simply 6537 // from moving "masked load/store" check from legality to cost model. 6538 // Masked Load/Gather emulation was previously never allowed. 6539 // Limited number of Masked Store/Scatter emulation was allowed. 6540 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 6541 return isa<LoadInst>(I) || 6542 (isa<StoreInst>(I) && 6543 NumPredStores > NumberOfStoresToPredicate); 6544 } 6545 6546 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6547 // If we aren't vectorizing the loop, or if we've already collected the 6548 // instructions to scalarize, there's nothing to do. Collection may already 6549 // have occurred if we have a user-selected VF and are now computing the 6550 // expected cost for interleaving. 6551 if (VF.isScalar() || VF.isZero() || 6552 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6553 return; 6554 6555 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6556 // not profitable to scalarize any instructions, the presence of VF in the 6557 // map will indicate that we've analyzed it already. 6558 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6559 6560 // Find all the instructions that are scalar with predication in the loop and 6561 // determine if it would be better to not if-convert the blocks they are in. 6562 // If so, we also record the instructions to scalarize. 6563 for (BasicBlock *BB : TheLoop->blocks()) { 6564 if (!blockNeedsPredication(BB)) 6565 continue; 6566 for (Instruction &I : *BB) 6567 if (isScalarWithPredication(&I)) { 6568 ScalarCostsTy ScalarCosts; 6569 // Do not apply discount logic if hacked cost is needed 6570 // for emulated masked memrefs. 6571 if (!useEmulatedMaskMemRefHack(&I) && 6572 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6573 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6574 // Remember that BB will remain after vectorization. 6575 PredicatedBBsAfterVectorization.insert(BB); 6576 } 6577 } 6578 } 6579 6580 int LoopVectorizationCostModel::computePredInstDiscount( 6581 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6582 assert(!isUniformAfterVectorization(PredInst, VF) && 6583 "Instruction marked uniform-after-vectorization will be predicated"); 6584 6585 // Initialize the discount to zero, meaning that the scalar version and the 6586 // vector version cost the same. 6587 InstructionCost Discount = 0; 6588 6589 // Holds instructions to analyze. The instructions we visit are mapped in 6590 // ScalarCosts. Those instructions are the ones that would be scalarized if 6591 // we find that the scalar version costs less. 6592 SmallVector<Instruction *, 8> Worklist; 6593 6594 // Returns true if the given instruction can be scalarized. 6595 auto canBeScalarized = [&](Instruction *I) -> bool { 6596 // We only attempt to scalarize instructions forming a single-use chain 6597 // from the original predicated block that would otherwise be vectorized. 6598 // Although not strictly necessary, we give up on instructions we know will 6599 // already be scalar to avoid traversing chains that are unlikely to be 6600 // beneficial. 6601 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6602 isScalarAfterVectorization(I, VF)) 6603 return false; 6604 6605 // If the instruction is scalar with predication, it will be analyzed 6606 // separately. We ignore it within the context of PredInst. 6607 if (isScalarWithPredication(I)) 6608 return false; 6609 6610 // If any of the instruction's operands are uniform after vectorization, 6611 // the instruction cannot be scalarized. This prevents, for example, a 6612 // masked load from being scalarized. 6613 // 6614 // We assume we will only emit a value for lane zero of an instruction 6615 // marked uniform after vectorization, rather than VF identical values. 6616 // Thus, if we scalarize an instruction that uses a uniform, we would 6617 // create uses of values corresponding to the lanes we aren't emitting code 6618 // for. This behavior can be changed by allowing getScalarValue to clone 6619 // the lane zero values for uniforms rather than asserting. 6620 for (Use &U : I->operands()) 6621 if (auto *J = dyn_cast<Instruction>(U.get())) 6622 if (isUniformAfterVectorization(J, VF)) 6623 return false; 6624 6625 // Otherwise, we can scalarize the instruction. 6626 return true; 6627 }; 6628 6629 // Compute the expected cost discount from scalarizing the entire expression 6630 // feeding the predicated instruction. We currently only consider expressions 6631 // that are single-use instruction chains. 6632 Worklist.push_back(PredInst); 6633 while (!Worklist.empty()) { 6634 Instruction *I = Worklist.pop_back_val(); 6635 6636 // If we've already analyzed the instruction, there's nothing to do. 6637 if (ScalarCosts.find(I) != ScalarCosts.end()) 6638 continue; 6639 6640 // Compute the cost of the vector instruction. Note that this cost already 6641 // includes the scalarization overhead of the predicated instruction. 6642 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6643 6644 // Compute the cost of the scalarized instruction. This cost is the cost of 6645 // the instruction as if it wasn't if-converted and instead remained in the 6646 // predicated block. We will scale this cost by block probability after 6647 // computing the scalarization overhead. 6648 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6649 InstructionCost ScalarCost = 6650 VF.getKnownMinValue() * 6651 getInstructionCost(I, ElementCount::getFixed(1)).first; 6652 6653 // Compute the scalarization overhead of needed insertelement instructions 6654 // and phi nodes. 6655 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6656 ScalarCost += TTI.getScalarizationOverhead( 6657 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6658 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6659 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6660 ScalarCost += 6661 VF.getKnownMinValue() * 6662 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6663 } 6664 6665 // Compute the scalarization overhead of needed extractelement 6666 // instructions. For each of the instruction's operands, if the operand can 6667 // be scalarized, add it to the worklist; otherwise, account for the 6668 // overhead. 6669 for (Use &U : I->operands()) 6670 if (auto *J = dyn_cast<Instruction>(U.get())) { 6671 assert(VectorType::isValidElementType(J->getType()) && 6672 "Instruction has non-scalar type"); 6673 if (canBeScalarized(J)) 6674 Worklist.push_back(J); 6675 else if (needsExtract(J, VF)) { 6676 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6677 ScalarCost += TTI.getScalarizationOverhead( 6678 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6679 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6680 } 6681 } 6682 6683 // Scale the total scalar cost by block probability. 6684 ScalarCost /= getReciprocalPredBlockProb(); 6685 6686 // Compute the discount. A non-negative discount means the vector version 6687 // of the instruction costs more, and scalarizing would be beneficial. 6688 Discount += VectorCost - ScalarCost; 6689 ScalarCosts[I] = ScalarCost; 6690 } 6691 6692 return *Discount.getValue(); 6693 } 6694 6695 LoopVectorizationCostModel::VectorizationCostTy 6696 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6697 VectorizationCostTy Cost; 6698 6699 // For each block. 6700 for (BasicBlock *BB : TheLoop->blocks()) { 6701 VectorizationCostTy BlockCost; 6702 6703 // For each instruction in the old loop. 6704 for (Instruction &I : BB->instructionsWithoutDebug()) { 6705 // Skip ignored values. 6706 if (ValuesToIgnore.count(&I) || 6707 (VF.isVector() && VecValuesToIgnore.count(&I))) 6708 continue; 6709 6710 VectorizationCostTy C = getInstructionCost(&I, VF); 6711 6712 // Check if we should override the cost. 6713 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6714 C.first = InstructionCost(ForceTargetInstructionCost); 6715 6716 BlockCost.first += C.first; 6717 BlockCost.second |= C.second; 6718 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6719 << " for VF " << VF << " For instruction: " << I 6720 << '\n'); 6721 } 6722 6723 // If we are vectorizing a predicated block, it will have been 6724 // if-converted. This means that the block's instructions (aside from 6725 // stores and instructions that may divide by zero) will now be 6726 // unconditionally executed. For the scalar case, we may not always execute 6727 // the predicated block, if it is an if-else block. Thus, scale the block's 6728 // cost by the probability of executing it. blockNeedsPredication from 6729 // Legal is used so as to not include all blocks in tail folded loops. 6730 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6731 BlockCost.first /= getReciprocalPredBlockProb(); 6732 6733 Cost.first += BlockCost.first; 6734 Cost.second |= BlockCost.second; 6735 } 6736 6737 return Cost; 6738 } 6739 6740 /// Gets Address Access SCEV after verifying that the access pattern 6741 /// is loop invariant except the induction variable dependence. 6742 /// 6743 /// This SCEV can be sent to the Target in order to estimate the address 6744 /// calculation cost. 6745 static const SCEV *getAddressAccessSCEV( 6746 Value *Ptr, 6747 LoopVectorizationLegality *Legal, 6748 PredicatedScalarEvolution &PSE, 6749 const Loop *TheLoop) { 6750 6751 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6752 if (!Gep) 6753 return nullptr; 6754 6755 // We are looking for a gep with all loop invariant indices except for one 6756 // which should be an induction variable. 6757 auto SE = PSE.getSE(); 6758 unsigned NumOperands = Gep->getNumOperands(); 6759 for (unsigned i = 1; i < NumOperands; ++i) { 6760 Value *Opd = Gep->getOperand(i); 6761 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6762 !Legal->isInductionVariable(Opd)) 6763 return nullptr; 6764 } 6765 6766 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6767 return PSE.getSCEV(Ptr); 6768 } 6769 6770 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6771 return Legal->hasStride(I->getOperand(0)) || 6772 Legal->hasStride(I->getOperand(1)); 6773 } 6774 6775 InstructionCost 6776 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6777 ElementCount VF) { 6778 assert(VF.isVector() && 6779 "Scalarization cost of instruction implies vectorization."); 6780 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6781 Type *ValTy = getMemInstValueType(I); 6782 auto SE = PSE.getSE(); 6783 6784 unsigned AS = getLoadStoreAddressSpace(I); 6785 Value *Ptr = getLoadStorePointerOperand(I); 6786 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6787 6788 // Figure out whether the access is strided and get the stride value 6789 // if it's known in compile time 6790 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6791 6792 // Get the cost of the scalar memory instruction and address computation. 6793 InstructionCost Cost = 6794 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6795 6796 // Don't pass *I here, since it is scalar but will actually be part of a 6797 // vectorized loop where the user of it is a vectorized instruction. 6798 const Align Alignment = getLoadStoreAlignment(I); 6799 Cost += VF.getKnownMinValue() * 6800 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6801 AS, TTI::TCK_RecipThroughput); 6802 6803 // Get the overhead of the extractelement and insertelement instructions 6804 // we might create due to scalarization. 6805 Cost += getScalarizationOverhead(I, VF); 6806 6807 // If we have a predicated load/store, it will need extra i1 extracts and 6808 // conditional branches, but may not be executed for each vector lane. Scale 6809 // the cost by the probability of executing the predicated block. 6810 if (isPredicatedInst(I)) { 6811 Cost /= getReciprocalPredBlockProb(); 6812 6813 // Add the cost of an i1 extract and a branch 6814 auto *Vec_i1Ty = 6815 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6816 Cost += TTI.getScalarizationOverhead( 6817 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 6818 /*Insert=*/false, /*Extract=*/true); 6819 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6820 6821 if (useEmulatedMaskMemRefHack(I)) 6822 // Artificially setting to a high enough value to practically disable 6823 // vectorization with such operations. 6824 Cost = 3000000; 6825 } 6826 6827 return Cost; 6828 } 6829 6830 InstructionCost 6831 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6832 ElementCount VF) { 6833 Type *ValTy = getMemInstValueType(I); 6834 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6835 Value *Ptr = getLoadStorePointerOperand(I); 6836 unsigned AS = getLoadStoreAddressSpace(I); 6837 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6838 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6839 6840 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6841 "Stride should be 1 or -1 for consecutive memory access"); 6842 const Align Alignment = getLoadStoreAlignment(I); 6843 InstructionCost Cost = 0; 6844 if (Legal->isMaskRequired(I)) 6845 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6846 CostKind); 6847 else 6848 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6849 CostKind, I); 6850 6851 bool Reverse = ConsecutiveStride < 0; 6852 if (Reverse) 6853 Cost += 6854 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6855 return Cost; 6856 } 6857 6858 InstructionCost 6859 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6860 ElementCount VF) { 6861 assert(Legal->isUniformMemOp(*I)); 6862 6863 Type *ValTy = getMemInstValueType(I); 6864 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6865 const Align Alignment = getLoadStoreAlignment(I); 6866 unsigned AS = getLoadStoreAddressSpace(I); 6867 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6868 if (isa<LoadInst>(I)) { 6869 return TTI.getAddressComputationCost(ValTy) + 6870 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6871 CostKind) + 6872 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6873 } 6874 StoreInst *SI = cast<StoreInst>(I); 6875 6876 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6877 return TTI.getAddressComputationCost(ValTy) + 6878 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6879 CostKind) + 6880 (isLoopInvariantStoreValue 6881 ? 0 6882 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6883 VF.getKnownMinValue() - 1)); 6884 } 6885 6886 InstructionCost 6887 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6888 ElementCount VF) { 6889 Type *ValTy = getMemInstValueType(I); 6890 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6891 const Align Alignment = getLoadStoreAlignment(I); 6892 const Value *Ptr = getLoadStorePointerOperand(I); 6893 6894 return TTI.getAddressComputationCost(VectorTy) + 6895 TTI.getGatherScatterOpCost( 6896 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6897 TargetTransformInfo::TCK_RecipThroughput, I); 6898 } 6899 6900 InstructionCost 6901 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6902 ElementCount VF) { 6903 // TODO: Once we have support for interleaving with scalable vectors 6904 // we can calculate the cost properly here. 6905 if (VF.isScalable()) 6906 return InstructionCost::getInvalid(); 6907 6908 Type *ValTy = getMemInstValueType(I); 6909 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6910 unsigned AS = getLoadStoreAddressSpace(I); 6911 6912 auto Group = getInterleavedAccessGroup(I); 6913 assert(Group && "Fail to get an interleaved access group."); 6914 6915 unsigned InterleaveFactor = Group->getFactor(); 6916 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6917 6918 // Holds the indices of existing members in an interleaved load group. 6919 // An interleaved store group doesn't need this as it doesn't allow gaps. 6920 SmallVector<unsigned, 4> Indices; 6921 if (isa<LoadInst>(I)) { 6922 for (unsigned i = 0; i < InterleaveFactor; i++) 6923 if (Group->getMember(i)) 6924 Indices.push_back(i); 6925 } 6926 6927 // Calculate the cost of the whole interleaved group. 6928 bool UseMaskForGaps = 6929 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6930 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6931 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6932 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6933 6934 if (Group->isReverse()) { 6935 // TODO: Add support for reversed masked interleaved access. 6936 assert(!Legal->isMaskRequired(I) && 6937 "Reverse masked interleaved access not supported."); 6938 Cost += 6939 Group->getNumMembers() * 6940 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6941 } 6942 return Cost; 6943 } 6944 6945 InstructionCost LoopVectorizationCostModel::getReductionPatternCost( 6946 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6947 // Early exit for no inloop reductions 6948 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6949 return InstructionCost::getInvalid(); 6950 auto *VectorTy = cast<VectorType>(Ty); 6951 6952 // We are looking for a pattern of, and finding the minimal acceptable cost: 6953 // reduce(mul(ext(A), ext(B))) or 6954 // reduce(mul(A, B)) or 6955 // reduce(ext(A)) or 6956 // reduce(A). 6957 // The basic idea is that we walk down the tree to do that, finding the root 6958 // reduction instruction in InLoopReductionImmediateChains. From there we find 6959 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6960 // of the components. If the reduction cost is lower then we return it for the 6961 // reduction instruction and 0 for the other instructions in the pattern. If 6962 // it is not we return an invalid cost specifying the orignal cost method 6963 // should be used. 6964 Instruction *RetI = I; 6965 if ((RetI->getOpcode() == Instruction::SExt || 6966 RetI->getOpcode() == Instruction::ZExt)) { 6967 if (!RetI->hasOneUser()) 6968 return InstructionCost::getInvalid(); 6969 RetI = RetI->user_back(); 6970 } 6971 if (RetI->getOpcode() == Instruction::Mul && 6972 RetI->user_back()->getOpcode() == Instruction::Add) { 6973 if (!RetI->hasOneUser()) 6974 return InstructionCost::getInvalid(); 6975 RetI = RetI->user_back(); 6976 } 6977 6978 // Test if the found instruction is a reduction, and if not return an invalid 6979 // cost specifying the parent to use the original cost modelling. 6980 if (!InLoopReductionImmediateChains.count(RetI)) 6981 return InstructionCost::getInvalid(); 6982 6983 // Find the reduction this chain is a part of and calculate the basic cost of 6984 // the reduction on its own. 6985 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6986 Instruction *ReductionPhi = LastChain; 6987 while (!isa<PHINode>(ReductionPhi)) 6988 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6989 6990 RecurrenceDescriptor RdxDesc = 6991 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 6992 unsigned BaseCost = TTI.getArithmeticReductionCost(RdxDesc.getOpcode(), 6993 VectorTy, false, CostKind); 6994 6995 // Get the operand that was not the reduction chain and match it to one of the 6996 // patterns, returning the better cost if it is found. 6997 Instruction *RedOp = RetI->getOperand(1) == LastChain 6998 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6999 : dyn_cast<Instruction>(RetI->getOperand(1)); 7000 7001 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7002 7003 if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) && 7004 !TheLoop->isLoopInvariant(RedOp)) { 7005 bool IsUnsigned = isa<ZExtInst>(RedOp); 7006 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7007 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7008 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7009 CostKind); 7010 7011 unsigned ExtCost = 7012 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7013 TTI::CastContextHint::None, CostKind, RedOp); 7014 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7015 return I == RetI ? *RedCost.getValue() : 0; 7016 } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) { 7017 Instruction *Mul = RedOp; 7018 Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0)); 7019 Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1)); 7020 if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) && 7021 Op0->getOpcode() == Op1->getOpcode() && 7022 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7023 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7024 bool IsUnsigned = isa<ZExtInst>(Op0); 7025 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7026 // reduce(mul(ext, ext)) 7027 unsigned ExtCost = 7028 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7029 TTI::CastContextHint::None, CostKind, Op0); 7030 InstructionCost MulCost = 7031 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7032 7033 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7034 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7035 CostKind); 7036 7037 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7038 return I == RetI ? *RedCost.getValue() : 0; 7039 } else { 7040 InstructionCost MulCost = 7041 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7042 7043 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7044 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7045 CostKind); 7046 7047 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7048 return I == RetI ? *RedCost.getValue() : 0; 7049 } 7050 } 7051 7052 return I == RetI ? BaseCost : InstructionCost::getInvalid(); 7053 } 7054 7055 InstructionCost 7056 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7057 ElementCount VF) { 7058 // Calculate scalar cost only. Vectorization cost should be ready at this 7059 // moment. 7060 if (VF.isScalar()) { 7061 Type *ValTy = getMemInstValueType(I); 7062 const Align Alignment = getLoadStoreAlignment(I); 7063 unsigned AS = getLoadStoreAddressSpace(I); 7064 7065 return TTI.getAddressComputationCost(ValTy) + 7066 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7067 TTI::TCK_RecipThroughput, I); 7068 } 7069 return getWideningCost(I, VF); 7070 } 7071 7072 LoopVectorizationCostModel::VectorizationCostTy 7073 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7074 ElementCount VF) { 7075 // If we know that this instruction will remain uniform, check the cost of 7076 // the scalar version. 7077 if (isUniformAfterVectorization(I, VF)) 7078 VF = ElementCount::getFixed(1); 7079 7080 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7081 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7082 7083 // Forced scalars do not have any scalarization overhead. 7084 auto ForcedScalar = ForcedScalars.find(VF); 7085 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7086 auto InstSet = ForcedScalar->second; 7087 if (InstSet.count(I)) 7088 return VectorizationCostTy( 7089 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7090 VF.getKnownMinValue()), 7091 false); 7092 } 7093 7094 Type *VectorTy; 7095 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7096 7097 bool TypeNotScalarized = 7098 VF.isVector() && VectorTy->isVectorTy() && 7099 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7100 return VectorizationCostTy(C, TypeNotScalarized); 7101 } 7102 7103 InstructionCost 7104 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7105 ElementCount VF) const { 7106 7107 if (VF.isScalable()) 7108 return InstructionCost::getInvalid(); 7109 7110 if (VF.isScalar()) 7111 return 0; 7112 7113 InstructionCost Cost = 0; 7114 Type *RetTy = ToVectorTy(I->getType(), VF); 7115 if (!RetTy->isVoidTy() && 7116 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7117 Cost += TTI.getScalarizationOverhead( 7118 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 7119 true, false); 7120 7121 // Some targets keep addresses scalar. 7122 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7123 return Cost; 7124 7125 // Some targets support efficient element stores. 7126 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7127 return Cost; 7128 7129 // Collect operands to consider. 7130 CallInst *CI = dyn_cast<CallInst>(I); 7131 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 7132 7133 // Skip operands that do not require extraction/scalarization and do not incur 7134 // any overhead. 7135 SmallVector<Type *> Tys; 7136 for (auto *V : filterExtractingOperands(Ops, VF)) 7137 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7138 return Cost + TTI.getOperandsScalarizationOverhead( 7139 filterExtractingOperands(Ops, VF), Tys); 7140 } 7141 7142 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7143 if (VF.isScalar()) 7144 return; 7145 NumPredStores = 0; 7146 for (BasicBlock *BB : TheLoop->blocks()) { 7147 // For each instruction in the old loop. 7148 for (Instruction &I : *BB) { 7149 Value *Ptr = getLoadStorePointerOperand(&I); 7150 if (!Ptr) 7151 continue; 7152 7153 // TODO: We should generate better code and update the cost model for 7154 // predicated uniform stores. Today they are treated as any other 7155 // predicated store (see added test cases in 7156 // invariant-store-vectorization.ll). 7157 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7158 NumPredStores++; 7159 7160 if (Legal->isUniformMemOp(I)) { 7161 // TODO: Avoid replicating loads and stores instead of 7162 // relying on instcombine to remove them. 7163 // Load: Scalar load + broadcast 7164 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7165 InstructionCost Cost = getUniformMemOpCost(&I, VF); 7166 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7167 continue; 7168 } 7169 7170 // We assume that widening is the best solution when possible. 7171 if (memoryInstructionCanBeWidened(&I, VF)) { 7172 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7173 int ConsecutiveStride = 7174 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 7175 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7176 "Expected consecutive stride."); 7177 InstWidening Decision = 7178 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7179 setWideningDecision(&I, VF, Decision, Cost); 7180 continue; 7181 } 7182 7183 // Choose between Interleaving, Gather/Scatter or Scalarization. 7184 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7185 unsigned NumAccesses = 1; 7186 if (isAccessInterleaved(&I)) { 7187 auto Group = getInterleavedAccessGroup(&I); 7188 assert(Group && "Fail to get an interleaved access group."); 7189 7190 // Make one decision for the whole group. 7191 if (getWideningDecision(&I, VF) != CM_Unknown) 7192 continue; 7193 7194 NumAccesses = Group->getNumMembers(); 7195 if (interleavedAccessCanBeWidened(&I, VF)) 7196 InterleaveCost = getInterleaveGroupCost(&I, VF); 7197 } 7198 7199 InstructionCost GatherScatterCost = 7200 isLegalGatherOrScatter(&I) 7201 ? getGatherScatterCost(&I, VF) * NumAccesses 7202 : InstructionCost::getInvalid(); 7203 7204 InstructionCost ScalarizationCost = 7205 !VF.isScalable() ? getMemInstScalarizationCost(&I, VF) * NumAccesses 7206 : InstructionCost::getInvalid(); 7207 7208 // Choose better solution for the current VF, 7209 // write down this decision and use it during vectorization. 7210 InstructionCost Cost; 7211 InstWidening Decision; 7212 if (InterleaveCost <= GatherScatterCost && 7213 InterleaveCost < ScalarizationCost) { 7214 Decision = CM_Interleave; 7215 Cost = InterleaveCost; 7216 } else if (GatherScatterCost < ScalarizationCost) { 7217 Decision = CM_GatherScatter; 7218 Cost = GatherScatterCost; 7219 } else { 7220 assert(!VF.isScalable() && 7221 "We cannot yet scalarise for scalable vectors"); 7222 Decision = CM_Scalarize; 7223 Cost = ScalarizationCost; 7224 } 7225 // If the instructions belongs to an interleave group, the whole group 7226 // receives the same decision. The whole group receives the cost, but 7227 // the cost will actually be assigned to one instruction. 7228 if (auto Group = getInterleavedAccessGroup(&I)) 7229 setWideningDecision(Group, VF, Decision, Cost); 7230 else 7231 setWideningDecision(&I, VF, Decision, Cost); 7232 } 7233 } 7234 7235 // Make sure that any load of address and any other address computation 7236 // remains scalar unless there is gather/scatter support. This avoids 7237 // inevitable extracts into address registers, and also has the benefit of 7238 // activating LSR more, since that pass can't optimize vectorized 7239 // addresses. 7240 if (TTI.prefersVectorizedAddressing()) 7241 return; 7242 7243 // Start with all scalar pointer uses. 7244 SmallPtrSet<Instruction *, 8> AddrDefs; 7245 for (BasicBlock *BB : TheLoop->blocks()) 7246 for (Instruction &I : *BB) { 7247 Instruction *PtrDef = 7248 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7249 if (PtrDef && TheLoop->contains(PtrDef) && 7250 getWideningDecision(&I, VF) != CM_GatherScatter) 7251 AddrDefs.insert(PtrDef); 7252 } 7253 7254 // Add all instructions used to generate the addresses. 7255 SmallVector<Instruction *, 4> Worklist; 7256 append_range(Worklist, AddrDefs); 7257 while (!Worklist.empty()) { 7258 Instruction *I = Worklist.pop_back_val(); 7259 for (auto &Op : I->operands()) 7260 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7261 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7262 AddrDefs.insert(InstOp).second) 7263 Worklist.push_back(InstOp); 7264 } 7265 7266 for (auto *I : AddrDefs) { 7267 if (isa<LoadInst>(I)) { 7268 // Setting the desired widening decision should ideally be handled in 7269 // by cost functions, but since this involves the task of finding out 7270 // if the loaded register is involved in an address computation, it is 7271 // instead changed here when we know this is the case. 7272 InstWidening Decision = getWideningDecision(I, VF); 7273 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7274 // Scalarize a widened load of address. 7275 setWideningDecision( 7276 I, VF, CM_Scalarize, 7277 (VF.getKnownMinValue() * 7278 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7279 else if (auto Group = getInterleavedAccessGroup(I)) { 7280 // Scalarize an interleave group of address loads. 7281 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7282 if (Instruction *Member = Group->getMember(I)) 7283 setWideningDecision( 7284 Member, VF, CM_Scalarize, 7285 (VF.getKnownMinValue() * 7286 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7287 } 7288 } 7289 } else 7290 // Make sure I gets scalarized and a cost estimate without 7291 // scalarization overhead. 7292 ForcedScalars[VF].insert(I); 7293 } 7294 } 7295 7296 InstructionCost 7297 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7298 Type *&VectorTy) { 7299 Type *RetTy = I->getType(); 7300 if (canTruncateToMinimalBitwidth(I, VF)) 7301 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7302 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7303 auto SE = PSE.getSE(); 7304 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7305 7306 // TODO: We need to estimate the cost of intrinsic calls. 7307 switch (I->getOpcode()) { 7308 case Instruction::GetElementPtr: 7309 // We mark this instruction as zero-cost because the cost of GEPs in 7310 // vectorized code depends on whether the corresponding memory instruction 7311 // is scalarized or not. Therefore, we handle GEPs with the memory 7312 // instruction cost. 7313 return 0; 7314 case Instruction::Br: { 7315 // In cases of scalarized and predicated instructions, there will be VF 7316 // predicated blocks in the vectorized loop. Each branch around these 7317 // blocks requires also an extract of its vector compare i1 element. 7318 bool ScalarPredicatedBB = false; 7319 BranchInst *BI = cast<BranchInst>(I); 7320 if (VF.isVector() && BI->isConditional() && 7321 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7322 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7323 ScalarPredicatedBB = true; 7324 7325 if (ScalarPredicatedBB) { 7326 // Return cost for branches around scalarized and predicated blocks. 7327 assert(!VF.isScalable() && "scalable vectors not yet supported."); 7328 auto *Vec_i1Ty = 7329 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7330 return (TTI.getScalarizationOverhead( 7331 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7332 false, true) + 7333 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 7334 VF.getKnownMinValue())); 7335 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7336 // The back-edge branch will remain, as will all scalar branches. 7337 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7338 else 7339 // This branch will be eliminated by if-conversion. 7340 return 0; 7341 // Note: We currently assume zero cost for an unconditional branch inside 7342 // a predicated block since it will become a fall-through, although we 7343 // may decide in the future to call TTI for all branches. 7344 } 7345 case Instruction::PHI: { 7346 auto *Phi = cast<PHINode>(I); 7347 7348 // First-order recurrences are replaced by vector shuffles inside the loop. 7349 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7350 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7351 return TTI.getShuffleCost( 7352 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7353 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7354 7355 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7356 // converted into select instructions. We require N - 1 selects per phi 7357 // node, where N is the number of incoming values. 7358 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7359 return (Phi->getNumIncomingValues() - 1) * 7360 TTI.getCmpSelInstrCost( 7361 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7362 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7363 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7364 7365 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7366 } 7367 case Instruction::UDiv: 7368 case Instruction::SDiv: 7369 case Instruction::URem: 7370 case Instruction::SRem: 7371 // If we have a predicated instruction, it may not be executed for each 7372 // vector lane. Get the scalarization cost and scale this amount by the 7373 // probability of executing the predicated block. If the instruction is not 7374 // predicated, we fall through to the next case. 7375 if (VF.isVector() && isScalarWithPredication(I)) { 7376 InstructionCost Cost = 0; 7377 7378 // These instructions have a non-void type, so account for the phi nodes 7379 // that we will create. This cost is likely to be zero. The phi node 7380 // cost, if any, should be scaled by the block probability because it 7381 // models a copy at the end of each predicated block. 7382 Cost += VF.getKnownMinValue() * 7383 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7384 7385 // The cost of the non-predicated instruction. 7386 Cost += VF.getKnownMinValue() * 7387 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7388 7389 // The cost of insertelement and extractelement instructions needed for 7390 // scalarization. 7391 Cost += getScalarizationOverhead(I, VF); 7392 7393 // Scale the cost by the probability of executing the predicated blocks. 7394 // This assumes the predicated block for each vector lane is equally 7395 // likely. 7396 return Cost / getReciprocalPredBlockProb(); 7397 } 7398 LLVM_FALLTHROUGH; 7399 case Instruction::Add: 7400 case Instruction::FAdd: 7401 case Instruction::Sub: 7402 case Instruction::FSub: 7403 case Instruction::Mul: 7404 case Instruction::FMul: 7405 case Instruction::FDiv: 7406 case Instruction::FRem: 7407 case Instruction::Shl: 7408 case Instruction::LShr: 7409 case Instruction::AShr: 7410 case Instruction::And: 7411 case Instruction::Or: 7412 case Instruction::Xor: { 7413 // Since we will replace the stride by 1 the multiplication should go away. 7414 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7415 return 0; 7416 7417 // Detect reduction patterns 7418 InstructionCost RedCost; 7419 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7420 .isValid()) 7421 return RedCost; 7422 7423 // Certain instructions can be cheaper to vectorize if they have a constant 7424 // second vector operand. One example of this are shifts on x86. 7425 Value *Op2 = I->getOperand(1); 7426 TargetTransformInfo::OperandValueProperties Op2VP; 7427 TargetTransformInfo::OperandValueKind Op2VK = 7428 TTI.getOperandInfo(Op2, Op2VP); 7429 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7430 Op2VK = TargetTransformInfo::OK_UniformValue; 7431 7432 SmallVector<const Value *, 4> Operands(I->operand_values()); 7433 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7434 return N * TTI.getArithmeticInstrCost( 7435 I->getOpcode(), VectorTy, CostKind, 7436 TargetTransformInfo::OK_AnyValue, 7437 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7438 } 7439 case Instruction::FNeg: { 7440 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 7441 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7442 return N * TTI.getArithmeticInstrCost( 7443 I->getOpcode(), VectorTy, CostKind, 7444 TargetTransformInfo::OK_AnyValue, 7445 TargetTransformInfo::OK_AnyValue, 7446 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 7447 I->getOperand(0), I); 7448 } 7449 case Instruction::Select: { 7450 SelectInst *SI = cast<SelectInst>(I); 7451 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7452 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7453 Type *CondTy = SI->getCondition()->getType(); 7454 if (!ScalarCond) 7455 CondTy = VectorType::get(CondTy, VF); 7456 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7457 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7458 } 7459 case Instruction::ICmp: 7460 case Instruction::FCmp: { 7461 Type *ValTy = I->getOperand(0)->getType(); 7462 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7463 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7464 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7465 VectorTy = ToVectorTy(ValTy, VF); 7466 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7467 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7468 } 7469 case Instruction::Store: 7470 case Instruction::Load: { 7471 ElementCount Width = VF; 7472 if (Width.isVector()) { 7473 InstWidening Decision = getWideningDecision(I, Width); 7474 assert(Decision != CM_Unknown && 7475 "CM decision should be taken at this point"); 7476 if (Decision == CM_Scalarize) 7477 Width = ElementCount::getFixed(1); 7478 } 7479 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7480 return getMemoryInstructionCost(I, VF); 7481 } 7482 case Instruction::ZExt: 7483 case Instruction::SExt: 7484 case Instruction::FPToUI: 7485 case Instruction::FPToSI: 7486 case Instruction::FPExt: 7487 case Instruction::PtrToInt: 7488 case Instruction::IntToPtr: 7489 case Instruction::SIToFP: 7490 case Instruction::UIToFP: 7491 case Instruction::Trunc: 7492 case Instruction::FPTrunc: 7493 case Instruction::BitCast: { 7494 // Computes the CastContextHint from a Load/Store instruction. 7495 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7496 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7497 "Expected a load or a store!"); 7498 7499 if (VF.isScalar() || !TheLoop->contains(I)) 7500 return TTI::CastContextHint::Normal; 7501 7502 switch (getWideningDecision(I, VF)) { 7503 case LoopVectorizationCostModel::CM_GatherScatter: 7504 return TTI::CastContextHint::GatherScatter; 7505 case LoopVectorizationCostModel::CM_Interleave: 7506 return TTI::CastContextHint::Interleave; 7507 case LoopVectorizationCostModel::CM_Scalarize: 7508 case LoopVectorizationCostModel::CM_Widen: 7509 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7510 : TTI::CastContextHint::Normal; 7511 case LoopVectorizationCostModel::CM_Widen_Reverse: 7512 return TTI::CastContextHint::Reversed; 7513 case LoopVectorizationCostModel::CM_Unknown: 7514 llvm_unreachable("Instr did not go through cost modelling?"); 7515 } 7516 7517 llvm_unreachable("Unhandled case!"); 7518 }; 7519 7520 unsigned Opcode = I->getOpcode(); 7521 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7522 // For Trunc, the context is the only user, which must be a StoreInst. 7523 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7524 if (I->hasOneUse()) 7525 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7526 CCH = ComputeCCH(Store); 7527 } 7528 // For Z/Sext, the context is the operand, which must be a LoadInst. 7529 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7530 Opcode == Instruction::FPExt) { 7531 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7532 CCH = ComputeCCH(Load); 7533 } 7534 7535 // We optimize the truncation of induction variables having constant 7536 // integer steps. The cost of these truncations is the same as the scalar 7537 // operation. 7538 if (isOptimizableIVTruncate(I, VF)) { 7539 auto *Trunc = cast<TruncInst>(I); 7540 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7541 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7542 } 7543 7544 // Detect reduction patterns 7545 InstructionCost RedCost; 7546 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7547 .isValid()) 7548 return RedCost; 7549 7550 Type *SrcScalarTy = I->getOperand(0)->getType(); 7551 Type *SrcVecTy = 7552 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7553 if (canTruncateToMinimalBitwidth(I, VF)) { 7554 // This cast is going to be shrunk. This may remove the cast or it might 7555 // turn it into slightly different cast. For example, if MinBW == 16, 7556 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7557 // 7558 // Calculate the modified src and dest types. 7559 Type *MinVecTy = VectorTy; 7560 if (Opcode == Instruction::Trunc) { 7561 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7562 VectorTy = 7563 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7564 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7565 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7566 VectorTy = 7567 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7568 } 7569 } 7570 7571 unsigned N; 7572 if (isScalarAfterVectorization(I, VF)) { 7573 assert(!VF.isScalable() && "VF is assumed to be non scalable"); 7574 N = VF.getKnownMinValue(); 7575 } else 7576 N = 1; 7577 return N * 7578 TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7579 } 7580 case Instruction::Call: { 7581 bool NeedToScalarize; 7582 CallInst *CI = cast<CallInst>(I); 7583 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7584 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7585 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7586 return std::min(CallCost, IntrinsicCost); 7587 } 7588 return CallCost; 7589 } 7590 case Instruction::ExtractValue: 7591 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7592 default: 7593 // The cost of executing VF copies of the scalar instruction. This opcode 7594 // is unknown. Assume that it is the same as 'mul'. 7595 return VF.getKnownMinValue() * TTI.getArithmeticInstrCost( 7596 Instruction::Mul, VectorTy, CostKind) + 7597 getScalarizationOverhead(I, VF); 7598 } // end of switch. 7599 } 7600 7601 char LoopVectorize::ID = 0; 7602 7603 static const char lv_name[] = "Loop Vectorization"; 7604 7605 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7606 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7607 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7608 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7609 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7610 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7611 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7612 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7613 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7614 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7615 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7616 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7617 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7618 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7619 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7620 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7621 7622 namespace llvm { 7623 7624 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7625 7626 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7627 bool VectorizeOnlyWhenForced) { 7628 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7629 } 7630 7631 } // end namespace llvm 7632 7633 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7634 // Check if the pointer operand of a load or store instruction is 7635 // consecutive. 7636 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7637 return Legal->isConsecutivePtr(Ptr); 7638 return false; 7639 } 7640 7641 void LoopVectorizationCostModel::collectValuesToIgnore() { 7642 // Ignore ephemeral values. 7643 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7644 7645 // Ignore type-promoting instructions we identified during reduction 7646 // detection. 7647 for (auto &Reduction : Legal->getReductionVars()) { 7648 RecurrenceDescriptor &RedDes = Reduction.second; 7649 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7650 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7651 } 7652 // Ignore type-casting instructions we identified during induction 7653 // detection. 7654 for (auto &Induction : Legal->getInductionVars()) { 7655 InductionDescriptor &IndDes = Induction.second; 7656 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7657 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7658 } 7659 } 7660 7661 void LoopVectorizationCostModel::collectInLoopReductions() { 7662 for (auto &Reduction : Legal->getReductionVars()) { 7663 PHINode *Phi = Reduction.first; 7664 RecurrenceDescriptor &RdxDesc = Reduction.second; 7665 7666 // We don't collect reductions that are type promoted (yet). 7667 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7668 continue; 7669 7670 // If the target would prefer this reduction to happen "in-loop", then we 7671 // want to record it as such. 7672 unsigned Opcode = RdxDesc.getOpcode(); 7673 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7674 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7675 TargetTransformInfo::ReductionFlags())) 7676 continue; 7677 7678 // Check that we can correctly put the reductions into the loop, by 7679 // finding the chain of operations that leads from the phi to the loop 7680 // exit value. 7681 SmallVector<Instruction *, 4> ReductionOperations = 7682 RdxDesc.getReductionOpChain(Phi, TheLoop); 7683 bool InLoop = !ReductionOperations.empty(); 7684 if (InLoop) { 7685 InLoopReductionChains[Phi] = ReductionOperations; 7686 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7687 Instruction *LastChain = Phi; 7688 for (auto *I : ReductionOperations) { 7689 InLoopReductionImmediateChains[I] = LastChain; 7690 LastChain = I; 7691 } 7692 } 7693 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7694 << " reduction for phi: " << *Phi << "\n"); 7695 } 7696 } 7697 7698 // TODO: we could return a pair of values that specify the max VF and 7699 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7700 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7701 // doesn't have a cost model that can choose which plan to execute if 7702 // more than one is generated. 7703 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7704 LoopVectorizationCostModel &CM) { 7705 unsigned WidestType; 7706 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7707 return WidestVectorRegBits / WidestType; 7708 } 7709 7710 VectorizationFactor 7711 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7712 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7713 ElementCount VF = UserVF; 7714 // Outer loop handling: They may require CFG and instruction level 7715 // transformations before even evaluating whether vectorization is profitable. 7716 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7717 // the vectorization pipeline. 7718 if (!OrigLoop->isInnermost()) { 7719 // If the user doesn't provide a vectorization factor, determine a 7720 // reasonable one. 7721 if (UserVF.isZero()) { 7722 VF = ElementCount::getFixed(determineVPlanVF( 7723 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7724 .getFixedSize(), 7725 CM)); 7726 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7727 7728 // Make sure we have a VF > 1 for stress testing. 7729 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7730 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7731 << "overriding computed VF.\n"); 7732 VF = ElementCount::getFixed(4); 7733 } 7734 } 7735 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7736 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7737 "VF needs to be a power of two"); 7738 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7739 << "VF " << VF << " to build VPlans.\n"); 7740 buildVPlans(VF, VF); 7741 7742 // For VPlan build stress testing, we bail out after VPlan construction. 7743 if (VPlanBuildStressTest) 7744 return VectorizationFactor::Disabled(); 7745 7746 return {VF, 0 /*Cost*/}; 7747 } 7748 7749 LLVM_DEBUG( 7750 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7751 "VPlan-native path.\n"); 7752 return VectorizationFactor::Disabled(); 7753 } 7754 7755 Optional<VectorizationFactor> 7756 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7757 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7758 Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 7759 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 7760 return None; 7761 7762 // Invalidate interleave groups if all blocks of loop will be predicated. 7763 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7764 !useMaskedInterleavedAccesses(*TTI)) { 7765 LLVM_DEBUG( 7766 dbgs() 7767 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7768 "which requires masked-interleaved support.\n"); 7769 if (CM.InterleaveInfo.invalidateGroups()) 7770 // Invalidating interleave groups also requires invalidating all decisions 7771 // based on them, which includes widening decisions and uniform and scalar 7772 // values. 7773 CM.invalidateCostModelingDecisions(); 7774 } 7775 7776 ElementCount MaxVF = MaybeMaxVF.getValue(); 7777 assert(MaxVF.isNonZero() && "MaxVF is zero."); 7778 7779 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxVF); 7780 if (!UserVF.isZero() && 7781 (UserVFIsLegal || (UserVF.isScalable() && MaxVF.isScalable()))) { 7782 // FIXME: MaxVF is temporarily used inplace of UserVF for illegal scalable 7783 // VFs here, this should be reverted to only use legal UserVFs once the 7784 // loop below supports scalable VFs. 7785 ElementCount VF = UserVFIsLegal ? UserVF : MaxVF; 7786 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max") 7787 << " VF " << VF << ".\n"); 7788 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7789 "VF needs to be a power of two"); 7790 // Collect the instructions (and their associated costs) that will be more 7791 // profitable to scalarize. 7792 CM.selectUserVectorizationFactor(VF); 7793 CM.collectInLoopReductions(); 7794 buildVPlansWithVPRecipes(VF, VF); 7795 LLVM_DEBUG(printPlans(dbgs())); 7796 return {{VF, 0}}; 7797 } 7798 7799 assert(!MaxVF.isScalable() && 7800 "Scalable vectors not yet supported beyond this point"); 7801 7802 for (ElementCount VF = ElementCount::getFixed(1); 7803 ElementCount::isKnownLE(VF, MaxVF); VF *= 2) { 7804 // Collect Uniform and Scalar instructions after vectorization with VF. 7805 CM.collectUniformsAndScalars(VF); 7806 7807 // Collect the instructions (and their associated costs) that will be more 7808 // profitable to scalarize. 7809 if (VF.isVector()) 7810 CM.collectInstsToScalarize(VF); 7811 } 7812 7813 CM.collectInLoopReductions(); 7814 7815 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF); 7816 LLVM_DEBUG(printPlans(dbgs())); 7817 if (MaxVF.isScalar()) 7818 return VectorizationFactor::Disabled(); 7819 7820 // Select the optimal vectorization factor. 7821 auto SelectedVF = CM.selectVectorizationFactor(MaxVF); 7822 7823 // Check if it is profitable to vectorize with runtime checks. 7824 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7825 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7826 bool PragmaThresholdReached = 7827 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7828 bool ThresholdReached = 7829 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7830 if ((ThresholdReached && !Hints.allowReordering()) || 7831 PragmaThresholdReached) { 7832 ORE->emit([&]() { 7833 return OptimizationRemarkAnalysisAliasing( 7834 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7835 OrigLoop->getHeader()) 7836 << "loop not vectorized: cannot prove it is safe to reorder " 7837 "memory operations"; 7838 }); 7839 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7840 Hints.emitRemarkWithHints(); 7841 return VectorizationFactor::Disabled(); 7842 } 7843 } 7844 return SelectedVF; 7845 } 7846 7847 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 7848 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 7849 << '\n'); 7850 BestVF = VF; 7851 BestUF = UF; 7852 7853 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7854 return !Plan->hasVF(VF); 7855 }); 7856 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7857 } 7858 7859 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7860 DominatorTree *DT) { 7861 // Perform the actual loop transformation. 7862 7863 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7864 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 7865 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7866 7867 VPTransformState State{ 7868 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 7869 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7870 State.TripCount = ILV.getOrCreateTripCount(nullptr); 7871 State.CanonicalIV = ILV.Induction; 7872 7873 ILV.printDebugTracesAtStart(); 7874 7875 //===------------------------------------------------===// 7876 // 7877 // Notice: any optimization or new instruction that go 7878 // into the code below should also be implemented in 7879 // the cost-model. 7880 // 7881 //===------------------------------------------------===// 7882 7883 // 2. Copy and widen instructions from the old loop into the new loop. 7884 VPlans.front()->execute(&State); 7885 7886 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7887 // predication, updating analyses. 7888 ILV.fixVectorizedLoop(State); 7889 7890 ILV.printDebugTracesAtEnd(); 7891 } 7892 7893 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7894 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7895 for (const auto &Plan : VPlans) 7896 if (PrintVPlansInDotFormat) 7897 Plan->printDOT(O); 7898 else 7899 Plan->print(O); 7900 } 7901 #endif 7902 7903 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7904 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7905 7906 // We create new control-flow for the vectorized loop, so the original exit 7907 // conditions will be dead after vectorization if it's only used by the 7908 // terminator 7909 SmallVector<BasicBlock*> ExitingBlocks; 7910 OrigLoop->getExitingBlocks(ExitingBlocks); 7911 for (auto *BB : ExitingBlocks) { 7912 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7913 if (!Cmp || !Cmp->hasOneUse()) 7914 continue; 7915 7916 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7917 if (!DeadInstructions.insert(Cmp).second) 7918 continue; 7919 7920 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7921 // TODO: can recurse through operands in general 7922 for (Value *Op : Cmp->operands()) { 7923 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7924 DeadInstructions.insert(cast<Instruction>(Op)); 7925 } 7926 } 7927 7928 // We create new "steps" for induction variable updates to which the original 7929 // induction variables map. An original update instruction will be dead if 7930 // all its users except the induction variable are dead. 7931 auto *Latch = OrigLoop->getLoopLatch(); 7932 for (auto &Induction : Legal->getInductionVars()) { 7933 PHINode *Ind = Induction.first; 7934 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7935 7936 // If the tail is to be folded by masking, the primary induction variable, 7937 // if exists, isn't dead: it will be used for masking. Don't kill it. 7938 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7939 continue; 7940 7941 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7942 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7943 })) 7944 DeadInstructions.insert(IndUpdate); 7945 7946 // We record as "Dead" also the type-casting instructions we had identified 7947 // during induction analysis. We don't need any handling for them in the 7948 // vectorized loop because we have proven that, under a proper runtime 7949 // test guarding the vectorized loop, the value of the phi, and the casted 7950 // value of the phi, are the same. The last instruction in this casting chain 7951 // will get its scalar/vector/widened def from the scalar/vector/widened def 7952 // of the respective phi node. Any other casts in the induction def-use chain 7953 // have no other uses outside the phi update chain, and will be ignored. 7954 InductionDescriptor &IndDes = Induction.second; 7955 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7956 DeadInstructions.insert(Casts.begin(), Casts.end()); 7957 } 7958 } 7959 7960 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7961 7962 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7963 7964 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7965 Instruction::BinaryOps BinOp) { 7966 // When unrolling and the VF is 1, we only need to add a simple scalar. 7967 Type *Ty = Val->getType(); 7968 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7969 7970 if (Ty->isFloatingPointTy()) { 7971 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7972 7973 // Floating-point operations inherit FMF via the builder's flags. 7974 Value *MulOp = Builder.CreateFMul(C, Step); 7975 return Builder.CreateBinOp(BinOp, Val, MulOp); 7976 } 7977 Constant *C = ConstantInt::get(Ty, StartIdx); 7978 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7979 } 7980 7981 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7982 SmallVector<Metadata *, 4> MDs; 7983 // Reserve first location for self reference to the LoopID metadata node. 7984 MDs.push_back(nullptr); 7985 bool IsUnrollMetadata = false; 7986 MDNode *LoopID = L->getLoopID(); 7987 if (LoopID) { 7988 // First find existing loop unrolling disable metadata. 7989 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7990 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7991 if (MD) { 7992 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7993 IsUnrollMetadata = 7994 S && S->getString().startswith("llvm.loop.unroll.disable"); 7995 } 7996 MDs.push_back(LoopID->getOperand(i)); 7997 } 7998 } 7999 8000 if (!IsUnrollMetadata) { 8001 // Add runtime unroll disable metadata. 8002 LLVMContext &Context = L->getHeader()->getContext(); 8003 SmallVector<Metadata *, 1> DisableOperands; 8004 DisableOperands.push_back( 8005 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8006 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8007 MDs.push_back(DisableNode); 8008 MDNode *NewLoopID = MDNode::get(Context, MDs); 8009 // Set operand 0 to refer to the loop id itself. 8010 NewLoopID->replaceOperandWith(0, NewLoopID); 8011 L->setLoopID(NewLoopID); 8012 } 8013 } 8014 8015 //===--------------------------------------------------------------------===// 8016 // EpilogueVectorizerMainLoop 8017 //===--------------------------------------------------------------------===// 8018 8019 /// This function is partially responsible for generating the control flow 8020 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8021 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8022 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8023 Loop *Lp = createVectorLoopSkeleton(""); 8024 8025 // Generate the code to check the minimum iteration count of the vector 8026 // epilogue (see below). 8027 EPI.EpilogueIterationCountCheck = 8028 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8029 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8030 8031 // Generate the code to check any assumptions that we've made for SCEV 8032 // expressions. 8033 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8034 8035 // Generate the code that checks at runtime if arrays overlap. We put the 8036 // checks into a separate block to make the more common case of few elements 8037 // faster. 8038 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8039 8040 // Generate the iteration count check for the main loop, *after* the check 8041 // for the epilogue loop, so that the path-length is shorter for the case 8042 // that goes directly through the vector epilogue. The longer-path length for 8043 // the main loop is compensated for, by the gain from vectorizing the larger 8044 // trip count. Note: the branch will get updated later on when we vectorize 8045 // the epilogue. 8046 EPI.MainLoopIterationCountCheck = 8047 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8048 8049 // Generate the induction variable. 8050 OldInduction = Legal->getPrimaryInduction(); 8051 Type *IdxTy = Legal->getWidestInductionType(); 8052 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8053 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8054 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8055 EPI.VectorTripCount = CountRoundDown; 8056 Induction = 8057 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8058 getDebugLocFromInstOrOperands(OldInduction)); 8059 8060 // Skip induction resume value creation here because they will be created in 8061 // the second pass. If we created them here, they wouldn't be used anyway, 8062 // because the vplan in the second pass still contains the inductions from the 8063 // original loop. 8064 8065 return completeLoopSkeleton(Lp, OrigLoopID); 8066 } 8067 8068 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8069 LLVM_DEBUG({ 8070 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8071 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8072 << ", Main Loop UF:" << EPI.MainLoopUF 8073 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8074 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8075 }); 8076 } 8077 8078 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8079 DEBUG_WITH_TYPE(VerboseDebug, { 8080 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8081 }); 8082 } 8083 8084 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8085 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8086 assert(L && "Expected valid Loop."); 8087 assert(Bypass && "Expected valid bypass basic block."); 8088 unsigned VFactor = 8089 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 8090 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8091 Value *Count = getOrCreateTripCount(L); 8092 // Reuse existing vector loop preheader for TC checks. 8093 // Note that new preheader block is generated for vector loop. 8094 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8095 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8096 8097 // Generate code to check if the loop's trip count is less than VF * UF of the 8098 // main vector loop. 8099 auto P = 8100 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8101 8102 Value *CheckMinIters = Builder.CreateICmp( 8103 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 8104 "min.iters.check"); 8105 8106 if (!ForEpilogue) 8107 TCCheckBlock->setName("vector.main.loop.iter.check"); 8108 8109 // Create new preheader for vector loop. 8110 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8111 DT, LI, nullptr, "vector.ph"); 8112 8113 if (ForEpilogue) { 8114 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8115 DT->getNode(Bypass)->getIDom()) && 8116 "TC check is expected to dominate Bypass"); 8117 8118 // Update dominator for Bypass & LoopExit. 8119 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8120 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8121 8122 LoopBypassBlocks.push_back(TCCheckBlock); 8123 8124 // Save the trip count so we don't have to regenerate it in the 8125 // vec.epilog.iter.check. This is safe to do because the trip count 8126 // generated here dominates the vector epilog iter check. 8127 EPI.TripCount = Count; 8128 } 8129 8130 ReplaceInstWithInst( 8131 TCCheckBlock->getTerminator(), 8132 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8133 8134 return TCCheckBlock; 8135 } 8136 8137 //===--------------------------------------------------------------------===// 8138 // EpilogueVectorizerEpilogueLoop 8139 //===--------------------------------------------------------------------===// 8140 8141 /// This function is partially responsible for generating the control flow 8142 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8143 BasicBlock * 8144 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8145 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8146 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8147 8148 // Now, compare the remaining count and if there aren't enough iterations to 8149 // execute the vectorized epilogue skip to the scalar part. 8150 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8151 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8152 LoopVectorPreHeader = 8153 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8154 LI, nullptr, "vec.epilog.ph"); 8155 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8156 VecEpilogueIterationCountCheck); 8157 8158 // Adjust the control flow taking the state info from the main loop 8159 // vectorization into account. 8160 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8161 "expected this to be saved from the previous pass."); 8162 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8163 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8164 8165 DT->changeImmediateDominator(LoopVectorPreHeader, 8166 EPI.MainLoopIterationCountCheck); 8167 8168 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8169 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8170 8171 if (EPI.SCEVSafetyCheck) 8172 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8173 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8174 if (EPI.MemSafetyCheck) 8175 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8176 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8177 8178 DT->changeImmediateDominator( 8179 VecEpilogueIterationCountCheck, 8180 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8181 8182 DT->changeImmediateDominator(LoopScalarPreHeader, 8183 EPI.EpilogueIterationCountCheck); 8184 DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck); 8185 8186 // Keep track of bypass blocks, as they feed start values to the induction 8187 // phis in the scalar loop preheader. 8188 if (EPI.SCEVSafetyCheck) 8189 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8190 if (EPI.MemSafetyCheck) 8191 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8192 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8193 8194 // Generate a resume induction for the vector epilogue and put it in the 8195 // vector epilogue preheader 8196 Type *IdxTy = Legal->getWidestInductionType(); 8197 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8198 LoopVectorPreHeader->getFirstNonPHI()); 8199 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8200 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8201 EPI.MainLoopIterationCountCheck); 8202 8203 // Generate the induction variable. 8204 OldInduction = Legal->getPrimaryInduction(); 8205 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8206 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8207 Value *StartIdx = EPResumeVal; 8208 Induction = 8209 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8210 getDebugLocFromInstOrOperands(OldInduction)); 8211 8212 // Generate induction resume values. These variables save the new starting 8213 // indexes for the scalar loop. They are used to test if there are any tail 8214 // iterations left once the vector loop has completed. 8215 // Note that when the vectorized epilogue is skipped due to iteration count 8216 // check, then the resume value for the induction variable comes from 8217 // the trip count of the main vector loop, hence passing the AdditionalBypass 8218 // argument. 8219 createInductionResumeValues(Lp, CountRoundDown, 8220 {VecEpilogueIterationCountCheck, 8221 EPI.VectorTripCount} /* AdditionalBypass */); 8222 8223 AddRuntimeUnrollDisableMetaData(Lp); 8224 return completeLoopSkeleton(Lp, OrigLoopID); 8225 } 8226 8227 BasicBlock * 8228 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8229 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8230 8231 assert(EPI.TripCount && 8232 "Expected trip count to have been safed in the first pass."); 8233 assert( 8234 (!isa<Instruction>(EPI.TripCount) || 8235 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8236 "saved trip count does not dominate insertion point."); 8237 Value *TC = EPI.TripCount; 8238 IRBuilder<> Builder(Insert->getTerminator()); 8239 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8240 8241 // Generate code to check if the loop's trip count is less than VF * UF of the 8242 // vector epilogue loop. 8243 auto P = 8244 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8245 8246 Value *CheckMinIters = Builder.CreateICmp( 8247 P, Count, 8248 ConstantInt::get(Count->getType(), 8249 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 8250 "min.epilog.iters.check"); 8251 8252 ReplaceInstWithInst( 8253 Insert->getTerminator(), 8254 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8255 8256 LoopBypassBlocks.push_back(Insert); 8257 return Insert; 8258 } 8259 8260 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8261 LLVM_DEBUG({ 8262 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8263 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8264 << ", Main Loop UF:" << EPI.MainLoopUF 8265 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8266 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8267 }); 8268 } 8269 8270 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8271 DEBUG_WITH_TYPE(VerboseDebug, { 8272 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8273 }); 8274 } 8275 8276 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8277 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8278 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8279 bool PredicateAtRangeStart = Predicate(Range.Start); 8280 8281 for (ElementCount TmpVF = Range.Start * 2; 8282 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8283 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8284 Range.End = TmpVF; 8285 break; 8286 } 8287 8288 return PredicateAtRangeStart; 8289 } 8290 8291 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8292 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8293 /// of VF's starting at a given VF and extending it as much as possible. Each 8294 /// vectorization decision can potentially shorten this sub-range during 8295 /// buildVPlan(). 8296 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8297 ElementCount MaxVF) { 8298 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8299 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8300 VFRange SubRange = {VF, MaxVFPlusOne}; 8301 VPlans.push_back(buildVPlan(SubRange)); 8302 VF = SubRange.End; 8303 } 8304 } 8305 8306 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8307 VPlanPtr &Plan) { 8308 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8309 8310 // Look for cached value. 8311 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8312 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8313 if (ECEntryIt != EdgeMaskCache.end()) 8314 return ECEntryIt->second; 8315 8316 VPValue *SrcMask = createBlockInMask(Src, Plan); 8317 8318 // The terminator has to be a branch inst! 8319 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8320 assert(BI && "Unexpected terminator found"); 8321 8322 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8323 return EdgeMaskCache[Edge] = SrcMask; 8324 8325 // If source is an exiting block, we know the exit edge is dynamically dead 8326 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8327 // adding uses of an otherwise potentially dead instruction. 8328 if (OrigLoop->isLoopExiting(Src)) 8329 return EdgeMaskCache[Edge] = SrcMask; 8330 8331 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8332 assert(EdgeMask && "No Edge Mask found for condition"); 8333 8334 if (BI->getSuccessor(0) != Dst) 8335 EdgeMask = Builder.createNot(EdgeMask); 8336 8337 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8338 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8339 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8340 // The select version does not introduce new UB if SrcMask is false and 8341 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8342 VPValue *False = Plan->getOrAddVPValue( 8343 ConstantInt::getFalse(BI->getCondition()->getType())); 8344 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8345 } 8346 8347 return EdgeMaskCache[Edge] = EdgeMask; 8348 } 8349 8350 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8351 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8352 8353 // Look for cached value. 8354 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8355 if (BCEntryIt != BlockMaskCache.end()) 8356 return BCEntryIt->second; 8357 8358 // All-one mask is modelled as no-mask following the convention for masked 8359 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8360 VPValue *BlockMask = nullptr; 8361 8362 if (OrigLoop->getHeader() == BB) { 8363 if (!CM.blockNeedsPredication(BB)) 8364 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8365 8366 // Create the block in mask as the first non-phi instruction in the block. 8367 VPBuilder::InsertPointGuard Guard(Builder); 8368 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8369 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8370 8371 // Introduce the early-exit compare IV <= BTC to form header block mask. 8372 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8373 // Start by constructing the desired canonical IV. 8374 VPValue *IV = nullptr; 8375 if (Legal->getPrimaryInduction()) 8376 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8377 else { 8378 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8379 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8380 IV = IVRecipe->getVPValue(); 8381 } 8382 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8383 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8384 8385 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8386 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8387 // as a second argument, we only pass the IV here and extract the 8388 // tripcount from the transform state where codegen of the VP instructions 8389 // happen. 8390 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8391 } else { 8392 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8393 } 8394 return BlockMaskCache[BB] = BlockMask; 8395 } 8396 8397 // This is the block mask. We OR all incoming edges. 8398 for (auto *Predecessor : predecessors(BB)) { 8399 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8400 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8401 return BlockMaskCache[BB] = EdgeMask; 8402 8403 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8404 BlockMask = EdgeMask; 8405 continue; 8406 } 8407 8408 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8409 } 8410 8411 return BlockMaskCache[BB] = BlockMask; 8412 } 8413 8414 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8415 ArrayRef<VPValue *> Operands, 8416 VFRange &Range, 8417 VPlanPtr &Plan) { 8418 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8419 "Must be called with either a load or store"); 8420 8421 auto willWiden = [&](ElementCount VF) -> bool { 8422 if (VF.isScalar()) 8423 return false; 8424 LoopVectorizationCostModel::InstWidening Decision = 8425 CM.getWideningDecision(I, VF); 8426 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8427 "CM decision should be taken at this point."); 8428 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8429 return true; 8430 if (CM.isScalarAfterVectorization(I, VF) || 8431 CM.isProfitableToScalarize(I, VF)) 8432 return false; 8433 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8434 }; 8435 8436 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8437 return nullptr; 8438 8439 VPValue *Mask = nullptr; 8440 if (Legal->isMaskRequired(I)) 8441 Mask = createBlockInMask(I->getParent(), Plan); 8442 8443 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8444 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask); 8445 8446 StoreInst *Store = cast<StoreInst>(I); 8447 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8448 Mask); 8449 } 8450 8451 VPWidenIntOrFpInductionRecipe * 8452 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8453 ArrayRef<VPValue *> Operands) const { 8454 // Check if this is an integer or fp induction. If so, build the recipe that 8455 // produces its scalar and vector values. 8456 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8457 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8458 II.getKind() == InductionDescriptor::IK_FpInduction) { 8459 assert(II.getStartValue() == 8460 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8461 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8462 return new VPWidenIntOrFpInductionRecipe( 8463 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8464 } 8465 8466 return nullptr; 8467 } 8468 8469 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8470 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8471 VPlan &Plan) const { 8472 // Optimize the special case where the source is a constant integer 8473 // induction variable. Notice that we can only optimize the 'trunc' case 8474 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8475 // (c) other casts depend on pointer size. 8476 8477 // Determine whether \p K is a truncation based on an induction variable that 8478 // can be optimized. 8479 auto isOptimizableIVTruncate = 8480 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8481 return [=](ElementCount VF) -> bool { 8482 return CM.isOptimizableIVTruncate(K, VF); 8483 }; 8484 }; 8485 8486 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8487 isOptimizableIVTruncate(I), Range)) { 8488 8489 InductionDescriptor II = 8490 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8491 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8492 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8493 Start, nullptr, I); 8494 } 8495 return nullptr; 8496 } 8497 8498 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8499 ArrayRef<VPValue *> Operands, 8500 VPlanPtr &Plan) { 8501 // If all incoming values are equal, the incoming VPValue can be used directly 8502 // instead of creating a new VPBlendRecipe. 8503 VPValue *FirstIncoming = Operands[0]; 8504 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8505 return FirstIncoming == Inc; 8506 })) { 8507 return Operands[0]; 8508 } 8509 8510 // We know that all PHIs in non-header blocks are converted into selects, so 8511 // we don't have to worry about the insertion order and we can just use the 8512 // builder. At this point we generate the predication tree. There may be 8513 // duplications since this is a simple recursive scan, but future 8514 // optimizations will clean it up. 8515 SmallVector<VPValue *, 2> OperandsWithMask; 8516 unsigned NumIncoming = Phi->getNumIncomingValues(); 8517 8518 for (unsigned In = 0; In < NumIncoming; In++) { 8519 VPValue *EdgeMask = 8520 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8521 assert((EdgeMask || NumIncoming == 1) && 8522 "Multiple predecessors with one having a full mask"); 8523 OperandsWithMask.push_back(Operands[In]); 8524 if (EdgeMask) 8525 OperandsWithMask.push_back(EdgeMask); 8526 } 8527 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8528 } 8529 8530 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8531 ArrayRef<VPValue *> Operands, 8532 VFRange &Range) const { 8533 8534 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8535 [this, CI](ElementCount VF) { 8536 return CM.isScalarWithPredication(CI, VF); 8537 }, 8538 Range); 8539 8540 if (IsPredicated) 8541 return nullptr; 8542 8543 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8544 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8545 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8546 ID == Intrinsic::pseudoprobe || 8547 ID == Intrinsic::experimental_noalias_scope_decl)) 8548 return nullptr; 8549 8550 auto willWiden = [&](ElementCount VF) -> bool { 8551 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8552 // The following case may be scalarized depending on the VF. 8553 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8554 // version of the instruction. 8555 // Is it beneficial to perform intrinsic call compared to lib call? 8556 bool NeedToScalarize = false; 8557 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8558 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8559 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8560 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 8561 "Either the intrinsic cost or vector call cost must be valid"); 8562 return UseVectorIntrinsic || !NeedToScalarize; 8563 }; 8564 8565 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8566 return nullptr; 8567 8568 ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands()); 8569 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8570 } 8571 8572 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8573 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8574 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8575 // Instruction should be widened, unless it is scalar after vectorization, 8576 // scalarization is profitable or it is predicated. 8577 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8578 return CM.isScalarAfterVectorization(I, VF) || 8579 CM.isProfitableToScalarize(I, VF) || 8580 CM.isScalarWithPredication(I, VF); 8581 }; 8582 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8583 Range); 8584 } 8585 8586 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8587 ArrayRef<VPValue *> Operands) const { 8588 auto IsVectorizableOpcode = [](unsigned Opcode) { 8589 switch (Opcode) { 8590 case Instruction::Add: 8591 case Instruction::And: 8592 case Instruction::AShr: 8593 case Instruction::BitCast: 8594 case Instruction::FAdd: 8595 case Instruction::FCmp: 8596 case Instruction::FDiv: 8597 case Instruction::FMul: 8598 case Instruction::FNeg: 8599 case Instruction::FPExt: 8600 case Instruction::FPToSI: 8601 case Instruction::FPToUI: 8602 case Instruction::FPTrunc: 8603 case Instruction::FRem: 8604 case Instruction::FSub: 8605 case Instruction::ICmp: 8606 case Instruction::IntToPtr: 8607 case Instruction::LShr: 8608 case Instruction::Mul: 8609 case Instruction::Or: 8610 case Instruction::PtrToInt: 8611 case Instruction::SDiv: 8612 case Instruction::Select: 8613 case Instruction::SExt: 8614 case Instruction::Shl: 8615 case Instruction::SIToFP: 8616 case Instruction::SRem: 8617 case Instruction::Sub: 8618 case Instruction::Trunc: 8619 case Instruction::UDiv: 8620 case Instruction::UIToFP: 8621 case Instruction::URem: 8622 case Instruction::Xor: 8623 case Instruction::ZExt: 8624 return true; 8625 } 8626 return false; 8627 }; 8628 8629 if (!IsVectorizableOpcode(I->getOpcode())) 8630 return nullptr; 8631 8632 // Success: widen this instruction. 8633 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8634 } 8635 8636 VPBasicBlock *VPRecipeBuilder::handleReplication( 8637 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8638 VPlanPtr &Plan) { 8639 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8640 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8641 Range); 8642 8643 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8644 [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); }, 8645 Range); 8646 8647 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8648 IsUniform, IsPredicated); 8649 setRecipe(I, Recipe); 8650 Plan->addVPValue(I, Recipe); 8651 8652 // Find if I uses a predicated instruction. If so, it will use its scalar 8653 // value. Avoid hoisting the insert-element which packs the scalar value into 8654 // a vector value, as that happens iff all users use the vector value. 8655 for (VPValue *Op : Recipe->operands()) { 8656 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8657 if (!PredR) 8658 continue; 8659 auto *RepR = 8660 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8661 assert(RepR->isPredicated() && 8662 "expected Replicate recipe to be predicated"); 8663 RepR->setAlsoPack(false); 8664 } 8665 8666 // Finalize the recipe for Instr, first if it is not predicated. 8667 if (!IsPredicated) { 8668 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8669 VPBB->appendRecipe(Recipe); 8670 return VPBB; 8671 } 8672 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8673 assert(VPBB->getSuccessors().empty() && 8674 "VPBB has successors when handling predicated replication."); 8675 // Record predicated instructions for above packing optimizations. 8676 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8677 VPBlockUtils::insertBlockAfter(Region, VPBB); 8678 auto *RegSucc = new VPBasicBlock(); 8679 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8680 return RegSucc; 8681 } 8682 8683 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8684 VPRecipeBase *PredRecipe, 8685 VPlanPtr &Plan) { 8686 // Instructions marked for predication are replicated and placed under an 8687 // if-then construct to prevent side-effects. 8688 8689 // Generate recipes to compute the block mask for this region. 8690 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8691 8692 // Build the triangular if-then region. 8693 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8694 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8695 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8696 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8697 auto *PHIRecipe = Instr->getType()->isVoidTy() 8698 ? nullptr 8699 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8700 if (PHIRecipe) { 8701 Plan->removeVPValueFor(Instr); 8702 Plan->addVPValue(Instr, PHIRecipe); 8703 } 8704 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8705 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8706 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8707 8708 // Note: first set Entry as region entry and then connect successors starting 8709 // from it in order, to propagate the "parent" of each VPBasicBlock. 8710 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8711 VPBlockUtils::connectBlocks(Pred, Exit); 8712 8713 return Region; 8714 } 8715 8716 VPRecipeOrVPValueTy 8717 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8718 ArrayRef<VPValue *> Operands, 8719 VFRange &Range, VPlanPtr &Plan) { 8720 // First, check for specific widening recipes that deal with calls, memory 8721 // operations, inductions and Phi nodes. 8722 if (auto *CI = dyn_cast<CallInst>(Instr)) 8723 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8724 8725 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8726 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8727 8728 VPRecipeBase *Recipe; 8729 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8730 if (Phi->getParent() != OrigLoop->getHeader()) 8731 return tryToBlend(Phi, Operands, Plan); 8732 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 8733 return toVPRecipeResult(Recipe); 8734 8735 if (Legal->isReductionVariable(Phi)) { 8736 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8737 assert(RdxDesc.getRecurrenceStartValue() == 8738 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8739 VPValue *StartV = Operands[0]; 8740 return toVPRecipeResult(new VPWidenPHIRecipe(Phi, RdxDesc, *StartV)); 8741 } 8742 8743 return toVPRecipeResult(new VPWidenPHIRecipe(Phi)); 8744 } 8745 8746 if (isa<TruncInst>(Instr) && 8747 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8748 Range, *Plan))) 8749 return toVPRecipeResult(Recipe); 8750 8751 if (!shouldWiden(Instr, Range)) 8752 return nullptr; 8753 8754 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8755 return toVPRecipeResult(new VPWidenGEPRecipe( 8756 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8757 8758 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8759 bool InvariantCond = 8760 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8761 return toVPRecipeResult(new VPWidenSelectRecipe( 8762 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8763 } 8764 8765 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8766 } 8767 8768 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8769 ElementCount MaxVF) { 8770 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8771 8772 // Collect instructions from the original loop that will become trivially dead 8773 // in the vectorized loop. We don't need to vectorize these instructions. For 8774 // example, original induction update instructions can become dead because we 8775 // separately emit induction "steps" when generating code for the new loop. 8776 // Similarly, we create a new latch condition when setting up the structure 8777 // of the new loop, so the old one can become dead. 8778 SmallPtrSet<Instruction *, 4> DeadInstructions; 8779 collectTriviallyDeadInstructions(DeadInstructions); 8780 8781 // Add assume instructions we need to drop to DeadInstructions, to prevent 8782 // them from being added to the VPlan. 8783 // TODO: We only need to drop assumes in blocks that get flattend. If the 8784 // control flow is preserved, we should keep them. 8785 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8786 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8787 8788 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8789 // Dead instructions do not need sinking. Remove them from SinkAfter. 8790 for (Instruction *I : DeadInstructions) 8791 SinkAfter.erase(I); 8792 8793 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8794 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8795 VFRange SubRange = {VF, MaxVFPlusOne}; 8796 VPlans.push_back( 8797 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8798 VF = SubRange.End; 8799 } 8800 } 8801 8802 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8803 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8804 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 8805 8806 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8807 8808 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8809 8810 // --------------------------------------------------------------------------- 8811 // Pre-construction: record ingredients whose recipes we'll need to further 8812 // process after constructing the initial VPlan. 8813 // --------------------------------------------------------------------------- 8814 8815 // Mark instructions we'll need to sink later and their targets as 8816 // ingredients whose recipe we'll need to record. 8817 for (auto &Entry : SinkAfter) { 8818 RecipeBuilder.recordRecipeOf(Entry.first); 8819 RecipeBuilder.recordRecipeOf(Entry.second); 8820 } 8821 for (auto &Reduction : CM.getInLoopReductionChains()) { 8822 PHINode *Phi = Reduction.first; 8823 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 8824 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8825 8826 RecipeBuilder.recordRecipeOf(Phi); 8827 for (auto &R : ReductionOperations) { 8828 RecipeBuilder.recordRecipeOf(R); 8829 // For min/max reducitons, where we have a pair of icmp/select, we also 8830 // need to record the ICmp recipe, so it can be removed later. 8831 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8832 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8833 } 8834 } 8835 8836 // For each interleave group which is relevant for this (possibly trimmed) 8837 // Range, add it to the set of groups to be later applied to the VPlan and add 8838 // placeholders for its members' Recipes which we'll be replacing with a 8839 // single VPInterleaveRecipe. 8840 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8841 auto applyIG = [IG, this](ElementCount VF) -> bool { 8842 return (VF.isVector() && // Query is illegal for VF == 1 8843 CM.getWideningDecision(IG->getInsertPos(), VF) == 8844 LoopVectorizationCostModel::CM_Interleave); 8845 }; 8846 if (!getDecisionAndClampRange(applyIG, Range)) 8847 continue; 8848 InterleaveGroups.insert(IG); 8849 for (unsigned i = 0; i < IG->getFactor(); i++) 8850 if (Instruction *Member = IG->getMember(i)) 8851 RecipeBuilder.recordRecipeOf(Member); 8852 }; 8853 8854 // --------------------------------------------------------------------------- 8855 // Build initial VPlan: Scan the body of the loop in a topological order to 8856 // visit each basic block after having visited its predecessor basic blocks. 8857 // --------------------------------------------------------------------------- 8858 8859 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 8860 auto Plan = std::make_unique<VPlan>(); 8861 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 8862 Plan->setEntry(VPBB); 8863 8864 // Scan the body of the loop in a topological order to visit each basic block 8865 // after having visited its predecessor basic blocks. 8866 LoopBlocksDFS DFS(OrigLoop); 8867 DFS.perform(LI); 8868 8869 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8870 // Relevant instructions from basic block BB will be grouped into VPRecipe 8871 // ingredients and fill a new VPBasicBlock. 8872 unsigned VPBBsForBB = 0; 8873 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8874 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 8875 VPBB = FirstVPBBForBB; 8876 Builder.setInsertPoint(VPBB); 8877 8878 // Introduce each ingredient into VPlan. 8879 // TODO: Model and preserve debug instrinsics in VPlan. 8880 for (Instruction &I : BB->instructionsWithoutDebug()) { 8881 Instruction *Instr = &I; 8882 8883 // First filter out irrelevant instructions, to ensure no recipes are 8884 // built for them. 8885 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8886 continue; 8887 8888 SmallVector<VPValue *, 4> Operands; 8889 auto *Phi = dyn_cast<PHINode>(Instr); 8890 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 8891 Operands.push_back(Plan->getOrAddVPValue( 8892 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 8893 } else { 8894 auto OpRange = Plan->mapToVPValues(Instr->operands()); 8895 Operands = {OpRange.begin(), OpRange.end()}; 8896 } 8897 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 8898 Instr, Operands, Range, Plan)) { 8899 // If Instr can be simplified to an existing VPValue, use it. 8900 if (RecipeOrValue.is<VPValue *>()) { 8901 Plan->addVPValue(Instr, RecipeOrValue.get<VPValue *>()); 8902 continue; 8903 } 8904 // Otherwise, add the new recipe. 8905 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8906 for (auto *Def : Recipe->definedValues()) { 8907 auto *UV = Def->getUnderlyingValue(); 8908 Plan->addVPValue(UV, Def); 8909 } 8910 8911 RecipeBuilder.setRecipe(Instr, Recipe); 8912 VPBB->appendRecipe(Recipe); 8913 continue; 8914 } 8915 8916 // Otherwise, if all widening options failed, Instruction is to be 8917 // replicated. This may create a successor for VPBB. 8918 VPBasicBlock *NextVPBB = 8919 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8920 if (NextVPBB != VPBB) { 8921 VPBB = NextVPBB; 8922 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8923 : ""); 8924 } 8925 } 8926 } 8927 8928 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8929 // may also be empty, such as the last one VPBB, reflecting original 8930 // basic-blocks with no recipes. 8931 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8932 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8933 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8934 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 8935 delete PreEntry; 8936 8937 // --------------------------------------------------------------------------- 8938 // Transform initial VPlan: Apply previously taken decisions, in order, to 8939 // bring the VPlan to its final state. 8940 // --------------------------------------------------------------------------- 8941 8942 // Apply Sink-After legal constraints. 8943 for (auto &Entry : SinkAfter) { 8944 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8945 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8946 // If the target is in a replication region, make sure to move Sink to the 8947 // block after it, not into the replication region itself. 8948 if (auto *Region = 8949 dyn_cast_or_null<VPRegionBlock>(Target->getParent()->getParent())) { 8950 if (Region->isReplicator()) { 8951 assert(Region->getNumSuccessors() == 1 && "Expected SESE region!"); 8952 VPBasicBlock *NextBlock = 8953 cast<VPBasicBlock>(Region->getSuccessors().front()); 8954 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8955 continue; 8956 } 8957 } 8958 Sink->moveAfter(Target); 8959 } 8960 8961 // Interleave memory: for each Interleave Group we marked earlier as relevant 8962 // for this VPlan, replace the Recipes widening its memory instructions with a 8963 // single VPInterleaveRecipe at its insertion point. 8964 for (auto IG : InterleaveGroups) { 8965 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 8966 RecipeBuilder.getRecipe(IG->getInsertPos())); 8967 SmallVector<VPValue *, 4> StoredValues; 8968 for (unsigned i = 0; i < IG->getFactor(); ++i) 8969 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 8970 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 8971 8972 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 8973 Recipe->getMask()); 8974 VPIG->insertBefore(Recipe); 8975 unsigned J = 0; 8976 for (unsigned i = 0; i < IG->getFactor(); ++i) 8977 if (Instruction *Member = IG->getMember(i)) { 8978 if (!Member->getType()->isVoidTy()) { 8979 VPValue *OriginalV = Plan->getVPValue(Member); 8980 Plan->removeVPValueFor(Member); 8981 Plan->addVPValue(Member, VPIG->getVPValue(J)); 8982 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 8983 J++; 8984 } 8985 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 8986 } 8987 } 8988 8989 // Adjust the recipes for any inloop reductions. 8990 if (Range.Start.isVector()) 8991 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 8992 8993 // Finally, if tail is folded by masking, introduce selects between the phi 8994 // and the live-out instruction of each reduction, at the end of the latch. 8995 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 8996 Builder.setInsertPoint(VPBB); 8997 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 8998 for (auto &Reduction : Legal->getReductionVars()) { 8999 if (CM.isInLoopReduction(Reduction.first)) 9000 continue; 9001 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 9002 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 9003 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 9004 } 9005 } 9006 9007 std::string PlanName; 9008 raw_string_ostream RSO(PlanName); 9009 ElementCount VF = Range.Start; 9010 Plan->addVF(VF); 9011 RSO << "Initial VPlan for VF={" << VF; 9012 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9013 Plan->addVF(VF); 9014 RSO << "," << VF; 9015 } 9016 RSO << "},UF>=1"; 9017 RSO.flush(); 9018 Plan->setName(PlanName); 9019 9020 return Plan; 9021 } 9022 9023 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9024 // Outer loop handling: They may require CFG and instruction level 9025 // transformations before even evaluating whether vectorization is profitable. 9026 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9027 // the vectorization pipeline. 9028 assert(!OrigLoop->isInnermost()); 9029 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9030 9031 // Create new empty VPlan 9032 auto Plan = std::make_unique<VPlan>(); 9033 9034 // Build hierarchical CFG 9035 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9036 HCFGBuilder.buildHierarchicalCFG(); 9037 9038 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9039 VF *= 2) 9040 Plan->addVF(VF); 9041 9042 if (EnableVPlanPredication) { 9043 VPlanPredicator VPP(*Plan); 9044 VPP.predicate(); 9045 9046 // Avoid running transformation to recipes until masked code generation in 9047 // VPlan-native path is in place. 9048 return Plan; 9049 } 9050 9051 SmallPtrSet<Instruction *, 1> DeadInstructions; 9052 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9053 Legal->getInductionVars(), 9054 DeadInstructions, *PSE.getSE()); 9055 return Plan; 9056 } 9057 9058 // Adjust the recipes for any inloop reductions. The chain of instructions 9059 // leading from the loop exit instr to the phi need to be converted to 9060 // reductions, with one operand being vector and the other being the scalar 9061 // reduction chain. 9062 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 9063 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 9064 for (auto &Reduction : CM.getInLoopReductionChains()) { 9065 PHINode *Phi = Reduction.first; 9066 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9067 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9068 9069 // ReductionOperations are orders top-down from the phi's use to the 9070 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9071 // which of the two operands will remain scalar and which will be reduced. 9072 // For minmax the chain will be the select instructions. 9073 Instruction *Chain = Phi; 9074 for (Instruction *R : ReductionOperations) { 9075 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9076 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9077 9078 VPValue *ChainOp = Plan->getVPValue(Chain); 9079 unsigned FirstOpId; 9080 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9081 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9082 "Expected to replace a VPWidenSelectSC"); 9083 FirstOpId = 1; 9084 } else { 9085 assert(isa<VPWidenRecipe>(WidenRecipe) && 9086 "Expected to replace a VPWidenSC"); 9087 FirstOpId = 0; 9088 } 9089 unsigned VecOpId = 9090 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9091 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9092 9093 auto *CondOp = CM.foldTailByMasking() 9094 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9095 : nullptr; 9096 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 9097 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9098 WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe); 9099 Plan->removeVPValueFor(R); 9100 Plan->addVPValue(R, RedRecipe); 9101 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9102 WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe); 9103 WidenRecipe->eraseFromParent(); 9104 9105 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9106 VPRecipeBase *CompareRecipe = 9107 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9108 assert(isa<VPWidenRecipe>(CompareRecipe) && 9109 "Expected to replace a VPWidenSC"); 9110 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9111 "Expected no remaining users"); 9112 CompareRecipe->eraseFromParent(); 9113 } 9114 Chain = R; 9115 } 9116 } 9117 } 9118 9119 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9120 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9121 VPSlotTracker &SlotTracker) const { 9122 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9123 IG->getInsertPos()->printAsOperand(O, false); 9124 O << ", "; 9125 getAddr()->printAsOperand(O, SlotTracker); 9126 VPValue *Mask = getMask(); 9127 if (Mask) { 9128 O << ", "; 9129 Mask->printAsOperand(O, SlotTracker); 9130 } 9131 for (unsigned i = 0; i < IG->getFactor(); ++i) 9132 if (Instruction *I = IG->getMember(i)) 9133 O << "\n" << Indent << " " << VPlanIngredient(I) << " " << i; 9134 } 9135 #endif 9136 9137 void VPWidenCallRecipe::execute(VPTransformState &State) { 9138 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9139 *this, State); 9140 } 9141 9142 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9143 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9144 this, *this, InvariantCond, State); 9145 } 9146 9147 void VPWidenRecipe::execute(VPTransformState &State) { 9148 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9149 } 9150 9151 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9152 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9153 *this, State.UF, State.VF, IsPtrLoopInvariant, 9154 IsIndexLoopInvariant, State); 9155 } 9156 9157 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9158 assert(!State.Instance && "Int or FP induction being replicated."); 9159 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9160 getTruncInst(), getVPValue(0), 9161 getCastValue(), State); 9162 } 9163 9164 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9165 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc, 9166 getStartValue(), this, State); 9167 } 9168 9169 void VPBlendRecipe::execute(VPTransformState &State) { 9170 State.ILV->setDebugLocFromInst(State.Builder, Phi); 9171 // We know that all PHIs in non-header blocks are converted into 9172 // selects, so we don't have to worry about the insertion order and we 9173 // can just use the builder. 9174 // At this point we generate the predication tree. There may be 9175 // duplications since this is a simple recursive scan, but future 9176 // optimizations will clean it up. 9177 9178 unsigned NumIncoming = getNumIncomingValues(); 9179 9180 // Generate a sequence of selects of the form: 9181 // SELECT(Mask3, In3, 9182 // SELECT(Mask2, In2, 9183 // SELECT(Mask1, In1, 9184 // In0))) 9185 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9186 // are essentially undef are taken from In0. 9187 InnerLoopVectorizer::VectorParts Entry(State.UF); 9188 for (unsigned In = 0; In < NumIncoming; ++In) { 9189 for (unsigned Part = 0; Part < State.UF; ++Part) { 9190 // We might have single edge PHIs (blocks) - use an identity 9191 // 'select' for the first PHI operand. 9192 Value *In0 = State.get(getIncomingValue(In), Part); 9193 if (In == 0) 9194 Entry[Part] = In0; // Initialize with the first incoming value. 9195 else { 9196 // Select between the current value and the previous incoming edge 9197 // based on the incoming mask. 9198 Value *Cond = State.get(getMask(In), Part); 9199 Entry[Part] = 9200 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9201 } 9202 } 9203 } 9204 for (unsigned Part = 0; Part < State.UF; ++Part) 9205 State.set(this, Entry[Part], Part); 9206 } 9207 9208 void VPInterleaveRecipe::execute(VPTransformState &State) { 9209 assert(!State.Instance && "Interleave group being replicated."); 9210 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9211 getStoredValues(), getMask()); 9212 } 9213 9214 void VPReductionRecipe::execute(VPTransformState &State) { 9215 assert(!State.Instance && "Reduction being replicated."); 9216 Value *PrevInChain = State.get(getChainOp(), 0); 9217 for (unsigned Part = 0; Part < State.UF; ++Part) { 9218 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9219 bool IsOrdered = useOrderedReductions(*RdxDesc); 9220 Value *NewVecOp = State.get(getVecOp(), Part); 9221 if (VPValue *Cond = getCondOp()) { 9222 Value *NewCond = State.get(Cond, Part); 9223 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9224 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 9225 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9226 Constant *IdenVec = 9227 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 9228 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9229 NewVecOp = Select; 9230 } 9231 Value *NewRed; 9232 Value *NextInChain; 9233 if (IsOrdered) { 9234 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9235 PrevInChain); 9236 PrevInChain = NewRed; 9237 } else { 9238 PrevInChain = State.get(getChainOp(), Part); 9239 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9240 } 9241 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9242 NextInChain = 9243 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9244 NewRed, PrevInChain); 9245 } else if (IsOrdered) 9246 NextInChain = NewRed; 9247 else { 9248 NextInChain = State.Builder.CreateBinOp( 9249 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9250 PrevInChain); 9251 } 9252 State.set(this, NextInChain, Part); 9253 } 9254 } 9255 9256 void VPReplicateRecipe::execute(VPTransformState &State) { 9257 if (State.Instance) { // Generate a single instance. 9258 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9259 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9260 *State.Instance, IsPredicated, State); 9261 // Insert scalar instance packing it into a vector. 9262 if (AlsoPack && State.VF.isVector()) { 9263 // If we're constructing lane 0, initialize to start from poison. 9264 if (State.Instance->Lane.isFirstLane()) { 9265 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9266 Value *Poison = PoisonValue::get( 9267 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9268 State.set(this, Poison, State.Instance->Part); 9269 } 9270 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9271 } 9272 return; 9273 } 9274 9275 // Generate scalar instances for all VF lanes of all UF parts, unless the 9276 // instruction is uniform inwhich case generate only the first lane for each 9277 // of the UF parts. 9278 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9279 assert((!State.VF.isScalable() || IsUniform) && 9280 "Can't scalarize a scalable vector"); 9281 for (unsigned Part = 0; Part < State.UF; ++Part) 9282 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9283 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9284 VPIteration(Part, Lane), IsPredicated, 9285 State); 9286 } 9287 9288 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9289 assert(State.Instance && "Branch on Mask works only on single instance."); 9290 9291 unsigned Part = State.Instance->Part; 9292 unsigned Lane = State.Instance->Lane.getKnownLane(); 9293 9294 Value *ConditionBit = nullptr; 9295 VPValue *BlockInMask = getMask(); 9296 if (BlockInMask) { 9297 ConditionBit = State.get(BlockInMask, Part); 9298 if (ConditionBit->getType()->isVectorTy()) 9299 ConditionBit = State.Builder.CreateExtractElement( 9300 ConditionBit, State.Builder.getInt32(Lane)); 9301 } else // Block in mask is all-one. 9302 ConditionBit = State.Builder.getTrue(); 9303 9304 // Replace the temporary unreachable terminator with a new conditional branch, 9305 // whose two destinations will be set later when they are created. 9306 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9307 assert(isa<UnreachableInst>(CurrentTerminator) && 9308 "Expected to replace unreachable terminator with conditional branch."); 9309 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9310 CondBr->setSuccessor(0, nullptr); 9311 ReplaceInstWithInst(CurrentTerminator, CondBr); 9312 } 9313 9314 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9315 assert(State.Instance && "Predicated instruction PHI works per instance."); 9316 Instruction *ScalarPredInst = 9317 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9318 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9319 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9320 assert(PredicatingBB && "Predicated block has no single predecessor."); 9321 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9322 "operand must be VPReplicateRecipe"); 9323 9324 // By current pack/unpack logic we need to generate only a single phi node: if 9325 // a vector value for the predicated instruction exists at this point it means 9326 // the instruction has vector users only, and a phi for the vector value is 9327 // needed. In this case the recipe of the predicated instruction is marked to 9328 // also do that packing, thereby "hoisting" the insert-element sequence. 9329 // Otherwise, a phi node for the scalar value is needed. 9330 unsigned Part = State.Instance->Part; 9331 if (State.hasVectorValue(getOperand(0), Part)) { 9332 Value *VectorValue = State.get(getOperand(0), Part); 9333 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9334 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9335 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9336 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9337 if (State.hasVectorValue(this, Part)) 9338 State.reset(this, VPhi, Part); 9339 else 9340 State.set(this, VPhi, Part); 9341 // NOTE: Currently we need to update the value of the operand, so the next 9342 // predicated iteration inserts its generated value in the correct vector. 9343 State.reset(getOperand(0), VPhi, Part); 9344 } else { 9345 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9346 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9347 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9348 PredicatingBB); 9349 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9350 if (State.hasScalarValue(this, *State.Instance)) 9351 State.reset(this, Phi, *State.Instance); 9352 else 9353 State.set(this, Phi, *State.Instance); 9354 // NOTE: Currently we need to update the value of the operand, so the next 9355 // predicated iteration inserts its generated value in the correct vector. 9356 State.reset(getOperand(0), Phi, *State.Instance); 9357 } 9358 } 9359 9360 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9361 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9362 State.ILV->vectorizeMemoryInstruction(&Ingredient, State, 9363 StoredValue ? nullptr : getVPValue(), 9364 getAddr(), StoredValue, getMask()); 9365 } 9366 9367 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9368 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9369 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9370 // for predication. 9371 static ScalarEpilogueLowering getScalarEpilogueLowering( 9372 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9373 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9374 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9375 LoopVectorizationLegality &LVL) { 9376 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9377 // don't look at hints or options, and don't request a scalar epilogue. 9378 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9379 // LoopAccessInfo (due to code dependency and not being able to reliably get 9380 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9381 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9382 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9383 // back to the old way and vectorize with versioning when forced. See D81345.) 9384 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9385 PGSOQueryType::IRPass) && 9386 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9387 return CM_ScalarEpilogueNotAllowedOptSize; 9388 9389 // 2) If set, obey the directives 9390 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9391 switch (PreferPredicateOverEpilogue) { 9392 case PreferPredicateTy::ScalarEpilogue: 9393 return CM_ScalarEpilogueAllowed; 9394 case PreferPredicateTy::PredicateElseScalarEpilogue: 9395 return CM_ScalarEpilogueNotNeededUsePredicate; 9396 case PreferPredicateTy::PredicateOrDontVectorize: 9397 return CM_ScalarEpilogueNotAllowedUsePredicate; 9398 }; 9399 } 9400 9401 // 3) If set, obey the hints 9402 switch (Hints.getPredicate()) { 9403 case LoopVectorizeHints::FK_Enabled: 9404 return CM_ScalarEpilogueNotNeededUsePredicate; 9405 case LoopVectorizeHints::FK_Disabled: 9406 return CM_ScalarEpilogueAllowed; 9407 }; 9408 9409 // 4) if the TTI hook indicates this is profitable, request predication. 9410 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9411 LVL.getLAI())) 9412 return CM_ScalarEpilogueNotNeededUsePredicate; 9413 9414 return CM_ScalarEpilogueAllowed; 9415 } 9416 9417 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9418 // If Values have been set for this Def return the one relevant for \p Part. 9419 if (hasVectorValue(Def, Part)) 9420 return Data.PerPartOutput[Def][Part]; 9421 9422 if (!hasScalarValue(Def, {Part, 0})) { 9423 Value *IRV = Def->getLiveInIRValue(); 9424 Value *B = ILV->getBroadcastInstrs(IRV); 9425 set(Def, B, Part); 9426 return B; 9427 } 9428 9429 Value *ScalarValue = get(Def, {Part, 0}); 9430 // If we aren't vectorizing, we can just copy the scalar map values over 9431 // to the vector map. 9432 if (VF.isScalar()) { 9433 set(Def, ScalarValue, Part); 9434 return ScalarValue; 9435 } 9436 9437 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9438 bool IsUniform = RepR && RepR->isUniform(); 9439 9440 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9441 // Check if there is a scalar value for the selected lane. 9442 if (!hasScalarValue(Def, {Part, LastLane})) { 9443 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9444 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 9445 "unexpected recipe found to be invariant"); 9446 IsUniform = true; 9447 LastLane = 0; 9448 } 9449 9450 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9451 9452 // Set the insert point after the last scalarized instruction. This 9453 // ensures the insertelement sequence will directly follow the scalar 9454 // definitions. 9455 auto OldIP = Builder.saveIP(); 9456 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 9457 Builder.SetInsertPoint(&*NewIP); 9458 9459 // However, if we are vectorizing, we need to construct the vector values. 9460 // If the value is known to be uniform after vectorization, we can just 9461 // broadcast the scalar value corresponding to lane zero for each unroll 9462 // iteration. Otherwise, we construct the vector values using 9463 // insertelement instructions. Since the resulting vectors are stored in 9464 // State, we will only generate the insertelements once. 9465 Value *VectorValue = nullptr; 9466 if (IsUniform) { 9467 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9468 set(Def, VectorValue, Part); 9469 } else { 9470 // Initialize packing with insertelements to start from undef. 9471 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9472 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9473 set(Def, Undef, Part); 9474 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9475 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9476 VectorValue = get(Def, Part); 9477 } 9478 Builder.restoreIP(OldIP); 9479 return VectorValue; 9480 } 9481 9482 // Process the loop in the VPlan-native vectorization path. This path builds 9483 // VPlan upfront in the vectorization pipeline, which allows to apply 9484 // VPlan-to-VPlan transformations from the very beginning without modifying the 9485 // input LLVM IR. 9486 static bool processLoopInVPlanNativePath( 9487 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9488 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9489 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9490 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9491 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 9492 LoopVectorizationRequirements &Requirements) { 9493 9494 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9495 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9496 return false; 9497 } 9498 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9499 Function *F = L->getHeader()->getParent(); 9500 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9501 9502 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9503 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9504 9505 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9506 &Hints, IAI); 9507 // Use the planner for outer loop vectorization. 9508 // TODO: CM is not used at this point inside the planner. Turn CM into an 9509 // optional argument if we don't need it in the future. 9510 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 9511 Requirements, ORE); 9512 9513 // Get user vectorization factor. 9514 ElementCount UserVF = Hints.getWidth(); 9515 9516 // Plan how to best vectorize, return the best VF and its cost. 9517 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9518 9519 // If we are stress testing VPlan builds, do not attempt to generate vector 9520 // code. Masked vector code generation support will follow soon. 9521 // Also, do not attempt to vectorize if no vector code will be produced. 9522 if (VPlanBuildStressTest || EnableVPlanPredication || 9523 VectorizationFactor::Disabled() == VF) 9524 return false; 9525 9526 LVP.setBestPlan(VF.Width, 1); 9527 9528 { 9529 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 9530 F->getParent()->getDataLayout()); 9531 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 9532 &CM, BFI, PSI, Checks); 9533 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9534 << L->getHeader()->getParent()->getName() << "\"\n"); 9535 LVP.executePlan(LB, DT); 9536 } 9537 9538 // Mark the loop as already vectorized to avoid vectorizing again. 9539 Hints.setAlreadyVectorized(); 9540 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9541 return true; 9542 } 9543 9544 // Emit a remark if there are stores to floats that required a floating point 9545 // extension. If the vectorized loop was generated with floating point there 9546 // will be a performance penalty from the conversion overhead and the change in 9547 // the vector width. 9548 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9549 SmallVector<Instruction *, 4> Worklist; 9550 for (BasicBlock *BB : L->getBlocks()) { 9551 for (Instruction &Inst : *BB) { 9552 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9553 if (S->getValueOperand()->getType()->isFloatTy()) 9554 Worklist.push_back(S); 9555 } 9556 } 9557 } 9558 9559 // Traverse the floating point stores upwards searching, for floating point 9560 // conversions. 9561 SmallPtrSet<const Instruction *, 4> Visited; 9562 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9563 while (!Worklist.empty()) { 9564 auto *I = Worklist.pop_back_val(); 9565 if (!L->contains(I)) 9566 continue; 9567 if (!Visited.insert(I).second) 9568 continue; 9569 9570 // Emit a remark if the floating point store required a floating 9571 // point conversion. 9572 // TODO: More work could be done to identify the root cause such as a 9573 // constant or a function return type and point the user to it. 9574 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9575 ORE->emit([&]() { 9576 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9577 I->getDebugLoc(), L->getHeader()) 9578 << "floating point conversion changes vector width. " 9579 << "Mixed floating point precision requires an up/down " 9580 << "cast that will negatively impact performance."; 9581 }); 9582 9583 for (Use &Op : I->operands()) 9584 if (auto *OpI = dyn_cast<Instruction>(Op)) 9585 Worklist.push_back(OpI); 9586 } 9587 } 9588 9589 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 9590 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 9591 !EnableLoopInterleaving), 9592 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 9593 !EnableLoopVectorization) {} 9594 9595 bool LoopVectorizePass::processLoop(Loop *L) { 9596 assert((EnableVPlanNativePath || L->isInnermost()) && 9597 "VPlan-native path is not enabled. Only process inner loops."); 9598 9599 #ifndef NDEBUG 9600 const std::string DebugLocStr = getDebugLocString(L); 9601 #endif /* NDEBUG */ 9602 9603 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 9604 << L->getHeader()->getParent()->getName() << "\" from " 9605 << DebugLocStr << "\n"); 9606 9607 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 9608 9609 LLVM_DEBUG( 9610 dbgs() << "LV: Loop hints:" 9611 << " force=" 9612 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 9613 ? "disabled" 9614 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 9615 ? "enabled" 9616 : "?")) 9617 << " width=" << Hints.getWidth() 9618 << " unroll=" << Hints.getInterleave() << "\n"); 9619 9620 // Function containing loop 9621 Function *F = L->getHeader()->getParent(); 9622 9623 // Looking at the diagnostic output is the only way to determine if a loop 9624 // was vectorized (other than looking at the IR or machine code), so it 9625 // is important to generate an optimization remark for each loop. Most of 9626 // these messages are generated as OptimizationRemarkAnalysis. Remarks 9627 // generated as OptimizationRemark and OptimizationRemarkMissed are 9628 // less verbose reporting vectorized loops and unvectorized loops that may 9629 // benefit from vectorization, respectively. 9630 9631 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 9632 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 9633 return false; 9634 } 9635 9636 PredicatedScalarEvolution PSE(*SE, *L); 9637 9638 // Check if it is legal to vectorize the loop. 9639 LoopVectorizationRequirements Requirements; 9640 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 9641 &Requirements, &Hints, DB, AC, BFI, PSI); 9642 if (!LVL.canVectorize(EnableVPlanNativePath)) { 9643 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 9644 Hints.emitRemarkWithHints(); 9645 return false; 9646 } 9647 9648 // Check the function attributes and profiles to find out if this function 9649 // should be optimized for size. 9650 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9651 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 9652 9653 // Entrance to the VPlan-native vectorization path. Outer loops are processed 9654 // here. They may require CFG and instruction level transformations before 9655 // even evaluating whether vectorization is profitable. Since we cannot modify 9656 // the incoming IR, we need to build VPlan upfront in the vectorization 9657 // pipeline. 9658 if (!L->isInnermost()) 9659 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 9660 ORE, BFI, PSI, Hints, Requirements); 9661 9662 assert(L->isInnermost() && "Inner loop expected."); 9663 9664 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 9665 // count by optimizing for size, to minimize overheads. 9666 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 9667 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 9668 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 9669 << "This loop is worth vectorizing only if no scalar " 9670 << "iteration overheads are incurred."); 9671 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 9672 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 9673 else { 9674 LLVM_DEBUG(dbgs() << "\n"); 9675 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 9676 } 9677 } 9678 9679 // Check the function attributes to see if implicit floats are allowed. 9680 // FIXME: This check doesn't seem possibly correct -- what if the loop is 9681 // an integer loop and the vector instructions selected are purely integer 9682 // vector instructions? 9683 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 9684 reportVectorizationFailure( 9685 "Can't vectorize when the NoImplicitFloat attribute is used", 9686 "loop not vectorized due to NoImplicitFloat attribute", 9687 "NoImplicitFloat", ORE, L); 9688 Hints.emitRemarkWithHints(); 9689 return false; 9690 } 9691 9692 // Check if the target supports potentially unsafe FP vectorization. 9693 // FIXME: Add a check for the type of safety issue (denormal, signaling) 9694 // for the target we're vectorizing for, to make sure none of the 9695 // additional fp-math flags can help. 9696 if (Hints.isPotentiallyUnsafe() && 9697 TTI->isFPVectorizationPotentiallyUnsafe()) { 9698 reportVectorizationFailure( 9699 "Potentially unsafe FP op prevents vectorization", 9700 "loop not vectorized due to unsafe FP support.", 9701 "UnsafeFP", ORE, L); 9702 Hints.emitRemarkWithHints(); 9703 return false; 9704 } 9705 9706 if (!Requirements.canVectorizeFPMath(Hints)) { 9707 ORE->emit([&]() { 9708 auto *ExactFPMathInst = Requirements.getExactFPInst(); 9709 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 9710 ExactFPMathInst->getDebugLoc(), 9711 ExactFPMathInst->getParent()) 9712 << "loop not vectorized: cannot prove it is safe to reorder " 9713 "floating-point operations"; 9714 }); 9715 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 9716 "reorder floating-point operations\n"); 9717 Hints.emitRemarkWithHints(); 9718 return false; 9719 } 9720 9721 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 9722 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 9723 9724 // If an override option has been passed in for interleaved accesses, use it. 9725 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 9726 UseInterleaved = EnableInterleavedMemAccesses; 9727 9728 // Analyze interleaved memory accesses. 9729 if (UseInterleaved) { 9730 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 9731 } 9732 9733 // Use the cost model. 9734 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 9735 F, &Hints, IAI); 9736 CM.collectValuesToIgnore(); 9737 9738 // Use the planner for vectorization. 9739 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 9740 Requirements, ORE); 9741 9742 // Get user vectorization factor and interleave count. 9743 ElementCount UserVF = Hints.getWidth(); 9744 unsigned UserIC = Hints.getInterleave(); 9745 9746 // Plan how to best vectorize, return the best VF and its cost. 9747 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 9748 9749 VectorizationFactor VF = VectorizationFactor::Disabled(); 9750 unsigned IC = 1; 9751 9752 if (MaybeVF) { 9753 VF = *MaybeVF; 9754 // Select the interleave count. 9755 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 9756 } 9757 9758 // Identify the diagnostic messages that should be produced. 9759 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 9760 bool VectorizeLoop = true, InterleaveLoop = true; 9761 if (VF.Width.isScalar()) { 9762 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 9763 VecDiagMsg = std::make_pair( 9764 "VectorizationNotBeneficial", 9765 "the cost-model indicates that vectorization is not beneficial"); 9766 VectorizeLoop = false; 9767 } 9768 9769 if (!MaybeVF && UserIC > 1) { 9770 // Tell the user interleaving was avoided up-front, despite being explicitly 9771 // requested. 9772 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 9773 "interleaving should be avoided up front\n"); 9774 IntDiagMsg = std::make_pair( 9775 "InterleavingAvoided", 9776 "Ignoring UserIC, because interleaving was avoided up front"); 9777 InterleaveLoop = false; 9778 } else if (IC == 1 && UserIC <= 1) { 9779 // Tell the user interleaving is not beneficial. 9780 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 9781 IntDiagMsg = std::make_pair( 9782 "InterleavingNotBeneficial", 9783 "the cost-model indicates that interleaving is not beneficial"); 9784 InterleaveLoop = false; 9785 if (UserIC == 1) { 9786 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 9787 IntDiagMsg.second += 9788 " and is explicitly disabled or interleave count is set to 1"; 9789 } 9790 } else if (IC > 1 && UserIC == 1) { 9791 // Tell the user interleaving is beneficial, but it explicitly disabled. 9792 LLVM_DEBUG( 9793 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 9794 IntDiagMsg = std::make_pair( 9795 "InterleavingBeneficialButDisabled", 9796 "the cost-model indicates that interleaving is beneficial " 9797 "but is explicitly disabled or interleave count is set to 1"); 9798 InterleaveLoop = false; 9799 } 9800 9801 // Override IC if user provided an interleave count. 9802 IC = UserIC > 0 ? UserIC : IC; 9803 9804 // Emit diagnostic messages, if any. 9805 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 9806 if (!VectorizeLoop && !InterleaveLoop) { 9807 // Do not vectorize or interleaving the loop. 9808 ORE->emit([&]() { 9809 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 9810 L->getStartLoc(), L->getHeader()) 9811 << VecDiagMsg.second; 9812 }); 9813 ORE->emit([&]() { 9814 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 9815 L->getStartLoc(), L->getHeader()) 9816 << IntDiagMsg.second; 9817 }); 9818 return false; 9819 } else if (!VectorizeLoop && InterleaveLoop) { 9820 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 9821 ORE->emit([&]() { 9822 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 9823 L->getStartLoc(), L->getHeader()) 9824 << VecDiagMsg.second; 9825 }); 9826 } else if (VectorizeLoop && !InterleaveLoop) { 9827 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 9828 << ") in " << DebugLocStr << '\n'); 9829 ORE->emit([&]() { 9830 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 9831 L->getStartLoc(), L->getHeader()) 9832 << IntDiagMsg.second; 9833 }); 9834 } else if (VectorizeLoop && InterleaveLoop) { 9835 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 9836 << ") in " << DebugLocStr << '\n'); 9837 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 9838 } 9839 9840 bool DisableRuntimeUnroll = false; 9841 MDNode *OrigLoopID = L->getLoopID(); 9842 { 9843 // Optimistically generate runtime checks. Drop them if they turn out to not 9844 // be profitable. Limit the scope of Checks, so the cleanup happens 9845 // immediately after vector codegeneration is done. 9846 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 9847 F->getParent()->getDataLayout()); 9848 if (!VF.Width.isScalar() || IC > 1) 9849 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 9850 LVP.setBestPlan(VF.Width, IC); 9851 9852 using namespace ore; 9853 if (!VectorizeLoop) { 9854 assert(IC > 1 && "interleave count should not be 1 or 0"); 9855 // If we decided that it is not legal to vectorize the loop, then 9856 // interleave it. 9857 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 9858 &CM, BFI, PSI, Checks); 9859 LVP.executePlan(Unroller, DT); 9860 9861 ORE->emit([&]() { 9862 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 9863 L->getHeader()) 9864 << "interleaved loop (interleaved count: " 9865 << NV("InterleaveCount", IC) << ")"; 9866 }); 9867 } else { 9868 // If we decided that it is *legal* to vectorize the loop, then do it. 9869 9870 // Consider vectorizing the epilogue too if it's profitable. 9871 VectorizationFactor EpilogueVF = 9872 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 9873 if (EpilogueVF.Width.isVector()) { 9874 9875 // The first pass vectorizes the main loop and creates a scalar epilogue 9876 // to be vectorized by executing the plan (potentially with a different 9877 // factor) again shortly afterwards. 9878 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 9879 EpilogueVF.Width.getKnownMinValue(), 9880 1); 9881 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 9882 EPI, &LVL, &CM, BFI, PSI, Checks); 9883 9884 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 9885 LVP.executePlan(MainILV, DT); 9886 ++LoopsVectorized; 9887 9888 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 9889 formLCSSARecursively(*L, *DT, LI, SE); 9890 9891 // Second pass vectorizes the epilogue and adjusts the control flow 9892 // edges from the first pass. 9893 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 9894 EPI.MainLoopVF = EPI.EpilogueVF; 9895 EPI.MainLoopUF = EPI.EpilogueUF; 9896 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 9897 ORE, EPI, &LVL, &CM, BFI, PSI, 9898 Checks); 9899 LVP.executePlan(EpilogILV, DT); 9900 ++LoopsEpilogueVectorized; 9901 9902 if (!MainILV.areSafetyChecksAdded()) 9903 DisableRuntimeUnroll = true; 9904 } else { 9905 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 9906 &LVL, &CM, BFI, PSI, Checks); 9907 LVP.executePlan(LB, DT); 9908 ++LoopsVectorized; 9909 9910 // Add metadata to disable runtime unrolling a scalar loop when there 9911 // are no runtime checks about strides and memory. A scalar loop that is 9912 // rarely used is not worth unrolling. 9913 if (!LB.areSafetyChecksAdded()) 9914 DisableRuntimeUnroll = true; 9915 } 9916 // Report the vectorization decision. 9917 ORE->emit([&]() { 9918 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 9919 L->getHeader()) 9920 << "vectorized loop (vectorization width: " 9921 << NV("VectorizationFactor", VF.Width) 9922 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 9923 }); 9924 } 9925 9926 if (ORE->allowExtraAnalysis(LV_NAME)) 9927 checkMixedPrecision(L, ORE); 9928 } 9929 9930 Optional<MDNode *> RemainderLoopID = 9931 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 9932 LLVMLoopVectorizeFollowupEpilogue}); 9933 if (RemainderLoopID.hasValue()) { 9934 L->setLoopID(RemainderLoopID.getValue()); 9935 } else { 9936 if (DisableRuntimeUnroll) 9937 AddRuntimeUnrollDisableMetaData(L); 9938 9939 // Mark the loop as already vectorized to avoid vectorizing again. 9940 Hints.setAlreadyVectorized(); 9941 } 9942 9943 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9944 return true; 9945 } 9946 9947 LoopVectorizeResult LoopVectorizePass::runImpl( 9948 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 9949 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 9950 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 9951 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 9952 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 9953 SE = &SE_; 9954 LI = &LI_; 9955 TTI = &TTI_; 9956 DT = &DT_; 9957 BFI = &BFI_; 9958 TLI = TLI_; 9959 AA = &AA_; 9960 AC = &AC_; 9961 GetLAA = &GetLAA_; 9962 DB = &DB_; 9963 ORE = &ORE_; 9964 PSI = PSI_; 9965 9966 // Don't attempt if 9967 // 1. the target claims to have no vector registers, and 9968 // 2. interleaving won't help ILP. 9969 // 9970 // The second condition is necessary because, even if the target has no 9971 // vector registers, loop vectorization may still enable scalar 9972 // interleaving. 9973 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 9974 TTI->getMaxInterleaveFactor(1) < 2) 9975 return LoopVectorizeResult(false, false); 9976 9977 bool Changed = false, CFGChanged = false; 9978 9979 // The vectorizer requires loops to be in simplified form. 9980 // Since simplification may add new inner loops, it has to run before the 9981 // legality and profitability checks. This means running the loop vectorizer 9982 // will simplify all loops, regardless of whether anything end up being 9983 // vectorized. 9984 for (auto &L : *LI) 9985 Changed |= CFGChanged |= 9986 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 9987 9988 // Build up a worklist of inner-loops to vectorize. This is necessary as 9989 // the act of vectorizing or partially unrolling a loop creates new loops 9990 // and can invalidate iterators across the loops. 9991 SmallVector<Loop *, 8> Worklist; 9992 9993 for (Loop *L : *LI) 9994 collectSupportedLoops(*L, LI, ORE, Worklist); 9995 9996 LoopsAnalyzed += Worklist.size(); 9997 9998 // Now walk the identified inner loops. 9999 while (!Worklist.empty()) { 10000 Loop *L = Worklist.pop_back_val(); 10001 10002 // For the inner loops we actually process, form LCSSA to simplify the 10003 // transform. 10004 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10005 10006 Changed |= CFGChanged |= processLoop(L); 10007 } 10008 10009 // Process each loop nest in the function. 10010 return LoopVectorizeResult(Changed, CFGChanged); 10011 } 10012 10013 PreservedAnalyses LoopVectorizePass::run(Function &F, 10014 FunctionAnalysisManager &AM) { 10015 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10016 auto &LI = AM.getResult<LoopAnalysis>(F); 10017 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10018 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10019 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10020 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10021 auto &AA = AM.getResult<AAManager>(F); 10022 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10023 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10024 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10025 MemorySSA *MSSA = EnableMSSALoopDependency 10026 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 10027 : nullptr; 10028 10029 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10030 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10031 [&](Loop &L) -> const LoopAccessInfo & { 10032 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10033 TLI, TTI, nullptr, MSSA}; 10034 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10035 }; 10036 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10037 ProfileSummaryInfo *PSI = 10038 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10039 LoopVectorizeResult Result = 10040 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10041 if (!Result.MadeAnyChange) 10042 return PreservedAnalyses::all(); 10043 PreservedAnalyses PA; 10044 10045 // We currently do not preserve loopinfo/dominator analyses with outer loop 10046 // vectorization. Until this is addressed, mark these analyses as preserved 10047 // only for non-VPlan-native path. 10048 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10049 if (!EnableVPlanNativePath) { 10050 PA.preserve<LoopAnalysis>(); 10051 PA.preserve<DominatorTreeAnalysis>(); 10052 } 10053 PA.preserve<BasicAA>(); 10054 PA.preserve<GlobalsAA>(); 10055 if (!Result.MadeCFGChange) 10056 PA.preserveSet<CFGAnalyses>(); 10057 return PA; 10058 } 10059